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Abstract—Frequency-domain model reduction is a crucial 

concern in applying the prevailing impedance method for the 
stability analysis of complex systems, e.g., the modular multilevel 
converter (MMC). Recently, it has been shown that under 
symmetric conditions, a 2×2 matrix-based impedance model 
characterizing the two coupled frequencies of MMC are sufficient 
for its stability analysis. However, when the asymmetry occurs, 
principally, a much higher number of frequency couplings will 
appear in the MMC and thereby leads to a significant rise in the 
model dimension. Enlighted by this issue, there is an urgent need 
of finding a suitable frequency-domain method that can serve as a 
general criterion for model reduction. To this end, this paper 
proposes a block diagonal dominance (BDD)-based model 
reduction method and applied it to the asymmetric MMC. 
Basically, the BDD can decompose an N-dimensional task to N 
one-dimensional tasks, via which a significant reduction in model 
dimension can be realized. It is shown that by properly shifting the 
impedance model from one domain to another (e.g., α-β domain to 
d-q domain), the BDD property can be achieved for most 
asymmetric scenarios. Finally, various case studies considering 
different asymmetry degrees are conducted to validate the 
effectiveness of the proposed method. 

 
Index Terms—MMC, asymmetric, reduced-order model, block 

diagonal dominance (BDD), impedance, stability 

I. INTRODUCTION 
ODULAR Multilevel Converter (MMC), with its 

inherent advantages such as built-in redundancy, higher 
efficiency, and lower harmonics, has gained its popularity in 
applications of high voltage direct current (HVDC) 
transmissions [1], [2]. However, recent practices have shown 
that serious small-signal instability problem [3] may occur due 
to control interaction, which poses significant challenges for the 
system’s stable and reliable operation.  

In this respect, numerous studies aimed at characterizing 
small-signal behaviors of the MMC and associated stability 
analysis have been recently carried out, where the adopted 
methods mainly include dynamic phasor [4]-[6], harmonic 
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state-space (HSS) [7], harmonic linearization [8], etc. However, 
most of them are focused on the three-phase symmetric 
operating states, while the asymmetric operating states have not 
been paid much attention. Typical asymmetric issues [9] of the 
MMC family include discrepancy of branch inductor 
parameters, asymmetry of branch submodules (SM) numbers in 
case of SM failures, inequality of capacitor voltage, dynamic 
load condition, unbalanced ac-grid condition, etc. Under 
asymmetric conditions, the internal dynamics of the MMC will 
become much more complicated, because of current waveform 
distortion, voltage ripple aggravation and multi-frequency 
couplings [10]-[12], etc. All these factors pose a significant 
challenge for the asymmetric stability analysis, however, so far, 
very few related studies have been devoted to this issue. Refs 
[13], [14] mainly analyzed the effect of control parameters on 
the stability of the MMC under asymmetric conditions, both of 
which were based on the state-space model developed by the 
dynamic phasor. Despite that Refs [13], [14] have gained 
valuable insights into the potential stability issues of the MMC 
arising from three-phase asymmetries, more dedicated analyses 
are deserved, e.g., from the impedance perspective. 

To the best knowledge of the authors, the impedance-based 
asymmetric stability analysis of the MMC has so far been 
missing, where the main difficulty may lie in the applicability 
of the resulting high-dimensional impedance to practical 
analysis. Specifically, for symmetric cases, as demonstrated in 
[15]-[17], a 2×2 impedance matrix can accurately depict the 
MMC AC-side dynamics, because there mainly exists one pair 
of frequency couplings. However, for asymmetric cases, 
multiple frequency couplings will appear, especially those at 
the same frequency (denoted by the sequence coupling [8]). 
Consequently, the dimension of the impedance matrix will be 
much larger than that of the 2×2 matrix developed for 
symmetric cases, i.e., the resulting impedance model will be a 
high-dimensional multi-input-multi-output (MIMO) system. 
Although the Generalized Nyquist Criterion (GNC) is in 
principle applicable to impedance matrices regardless of 

Chen Zhang is with Department of Electrical Engineering, Technical 
University of Denmark, Copenhagen, Denmark. (e-mail: 
chezh@elektro.dtu.dk). 

Marta Molinas is with Department of Engineering Cybernetics, Norwegian 
University of Science and Technology, Trondheim, Norway. (e-mail: 
marta.molinas@ntnu.no). 

Corresponding author: Chen Zhang; Xu Cai 

Block Diagonal Dominance-based Model 
Reduction Method Applied to MMC 

Asymmetric Stability Analysis 
Haoxiang Zong, Student Member, IEEE, Chen Zhang, Member, IEEE, Jing Lyu, Senior Member, 

IEEE, Xu Cai, Marta Molinas, Member, IEEE 

M 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

dimensions, the resulting multiple Nyquist diagrams will be 
difficult to be inspected and interpreted. More importantly, 
using such a high-dimensional model will be challenging for 
interconnected stability analysis, especially connected with 
low-dimensional impedance models. Therefore, in the presence 
of three-phase asymmetries, a reduced-order impedance model 
will be beneficial for simplifying the stability analysis of the 
MMC or various MMC-based transmission systems.  

In this regard, mainly two model reduction methods [18] for 
the MIMO system can be considered: (1) transforming the N-
dimensional MIMO system into the equivalent 1-dimensional 
form; (2) reducing the N-dimensional MIMO system into a set 
of separate single-loop forms. The first method originated from 
the individual channel design theory [18], now so-called single-
input-single-output (SISO) model, which can preserve all 
information of the high-dimensional MIMO system. However, 
it is, in fact, a closed-loop model dependent on both the source 
and load systems [19], [20]. Therefore, the nonexistence of 
right-half-plane (RHP) poles cannot be assured and should be 
re-evaluated which brings inconveniences to the stability 
analysis. The second method is based upon a careful use of a 
specific criterion of partial interaction, the diagonal dominance 
concept [21]. The latter method is more preferred in the 
interconnected analysis, because it is aimed at the open-loop 
model which has many good properties like no RHPs, more 
flexibility, etc.  

In fact, not all coupling elements within the high-dimensional 
MIMO impedance matrix will have significant influence on the 
stability margin, which means those with weak strength can be 
discarded. This qualitative understanding implies that there 
exists a headroom for the model reduction. However, the main 
difficulties lie in the proposition of a feasible reduction 
criterion. To bridge this gap, based on the block diagonal 
dominance (BDD) theory [21]-[23], this paper proposes a 
model reduction method for MMC asymmetric stability 
analysis. It is noted that the obtained reduced-order model will 
not compromise the accuracy of stability judgements for most 
asymmetric scenarios, which is a major merit of this method. 

The rest of the paper is arranged as follows. In Section II, the 
MIMO impedance model of the MMC is introduced, based on 
which a qualitative analysis of the asymmetric effects is carried 
out; In Section III, according to the BDD theory, the model 
reduction method is presented, and the reduced-order 
impedance model is obtained; In Section IV, asymmetric 
branch conditions and asymmetric ac-grid conditions are used 
to test the effectiveness of the proposed method; Section V 
concludes the paper. 

II. MIMO IMPEDANCE MODEL OF THE MMC AND 
ANALYSIS OF ASYMMETRIC EFFECTS 

In this section, multi-frequency couplings within the MMC 
under asymmetric conditions are studied qualitatively and the 
MIMO impedance model along with its verification is given. 
Then, the existing difficulties for the impedance-based 
asymmetric stability analysis are illustrated, which motivates 
the necessity of model reduction discussed in the next section.  

A. Qualitative Analysis of the Asymmetric Effects 
Fig. 1 presents a typical grid-tied MMC system, which is 

mainly composed of a three-phase MMC and a Thevenin 
equivalent AC grid. The DC voltage is assumed constant in this 
study, whereas the power control, circulating current 
suppressing control (CCSC) and the phase locked loop (PLL) 
will be modelled in detail.  

To first acquire a qualitative cognition of the MMC small-
signal characteristics under symmetric and asymmetric 
conditions, a small-signal voltage perturbation of 25 Hz is 
injected at the point of common coupling (PCC) and the 
frequency response of the PCC current is shown in Fig. 2. For 
symmetric conditions, it can be seen from Fig. 2(a) that only 
one pair of frequency couplings (25 Hz & 75 Hz) appears, the 
coupling mechanism of which has been studied well in [15]-
[17]. Refs [15]-[17] also explain why a 2×2 impedance matrix 
is adequately accurate for reflecting the MMC AC-side 
dynamics. For asymmetric conditions (Larmb=Larmc=0.36H, 
Larma=3×0.36H), it can be seen from Fig. 2(b) that more than 
one pair of frequency couplings are generated in the feedback 
current, such as 25 Hz, 75 Hz, 125 Hz and 175 Hz. Moreover, 
three-phase harmonic components of each coupled frequency 
are different from each other, which means the sequence 
coupling cannot be ignored at this time. To consider these 
multi-frequency couplings, a high-dimensional MIMO 
impedance matrix is needed. 

B. MIMO Impedance Model of the MMC 
Irrespective of being under symmetric or asymmetric 

conditions, the MMC is always a nonlinear time-periodically 

+

-

+

-

Σ+-

                

Three phase MMC

PCC

Power Control 
&CCSC

Σ+-

Σ
PLL

abc
/dq

abc
/dq

dq/
abc

Σ+-

 
Fig. 1.  The three-phase grid-tied MMC system 
 

 
Fig. 2.  FFT analysis of the PCC current, (a) symmetric; (b) asymmetric 
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varying system, which can be modelled via the HSS method. In 
this part, a 14×14 MIMO impedance matrix of the MMC is 
established [7], [24], where the modelling process of the main 
circuit, power control and CCSC is presented in detail.  

1) HSS Model of the Main Circuit 
The HSS theory has been amply discussed recently [15]-[20], 

and thus not presented here for brevity. The averaged dynamic 
model of the MMC is adopted and the corresponding HSS 
equations of the main circuit are given in (1). In what follows, 
boldface characters refer to vector or matrix quantities. 
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 (1) 
where the Xhss is the state-vector, consisting of the ∆icx

hss, ∆νcux
hss , 

∆νclx
hss , ∆igx

hss  (x=a,b,c), which represent the three-phase HSS 
form of the circulating current, upper arm voltage, lower arm 
voltage and PCC current, respectively. The Uhss is the input-
vector, consisting of ∆ugx

hss  which represents the three-phase 
HSS form PCC voltage. The Nhss, ahss, mhss and bhss are all 
Toeplitz matrices as defined in Appendix A.  

The concrete expression of ∆igx
hss is given in (2) as an example, 

for better illustration of the symbol definition. 
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where the superscript ‘h’ represents the considered harmonics 
order in the HSS model.  

The modulation ratio ∆mux
hss, ∆mlx

hss can be expressed as: 
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where the ∆ugx
hss*  and ∆ucx

hss*  represent the output modulation 
voltages of the power control and CCSC, respectively.  

2) HSS Model of the Power Control  
At first, the HSS model of the Park transformation is given 

in (4), which is essentially a memoryless linear time 
periodically varying (LTPV) system [24].  
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where the submatrices like Acosb
hss  or Acos2b

hss  are the Toeplitz 
matrices of cos(ω1t −2π 3⁄ )  and cos(2ω1t +2π 3⁄ ) . For 
example, the nonzero elements of Acosb

hss  are A+1= a* 2⁄ , 
A−1= a 2⁄  with a=ej2π 3⁄ . 

The HSS model of the phase locked loop (PLL) is like:  
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where Hpll
hss=diag�…,Hpll�s−jω1�,Hpll(s),Hpll�s+jω1�,…� 

are obtained via frequency shifting of the Hpll(s) = kp
pll+ ki

pll s⁄ . 
The operation point Ugd0

hss  is a Toeplitz matrix same as the ‘Ugd0
htf ’ 

defined in [24].  
The HSS model of the PQ outer loop is like: 

 
hss
PQ0

hss* hss hss hss hss
gd PQ gd0 gq0 gd

hss* hss hss hss hss
gq PQ gq0 gd0 gq

hss
PQ

hss
PQ

3

2

3
           

2

       
               
                      

 
  
  



U

i H U U i

i H U U i

H

H

 

 

hss
PQ0

hss hss hss
gd0 gq0 gd

hss hss hss
gq0 gd0 gq

   
       
           



I

I I u

I I u





 (6) 

where HPQ
hss  are the frequency-shifted copies of the HPQ(s) =

kp
PQ+ ki

PQ s⁄ . The Ugq0
hss , Igd0

hss  and Igq0
hss  are all Toeplitz matrices.  

The HSS model of the PQ inner loop considering the PLL 
dynamics is given in (7). 

 

hss* hss
gd gq0 hss

pllhss* hss
gq gd0

hss hss* hss hss
i gd gd gq0 hss

pllhss hss* hss hss
i gq gq gd0

   
      
         

                                                     

u U

u U

H i i I

H i i I






 


 

(7) 

where Hi
hss  are the frequency-shifted copies of the Hi(s) =

kpi+ kii s⁄ . 
Substituting (5) and (6) into (7) yields (8), and by applying 

the Park transformation at fundamental frequency to (8), the 
three-phase modulation voltage ∆ugx

hss* can be obtained in (9). 
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3) HSS Model of the CCSC 
The HSS model of CCSC with the PLL dynamics is like: 
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where Hc
hss  are the frequency-shifted copies of the Hc(s) =

kpc+ kic s⁄ . The Ucd0
hss , Ucq0

hss , Icd0
hss  and Icq0
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The three-phase output modulation voltage ∆ucx

hss*  is 
obtained in (11) by substituting (4) and (5) into (10). 
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 (11) 

4) MIMO Impedance Model 
By substituting (9) and (11) into (3), the modulation ratio 

∆mux
hss, ∆mlx

hss can be represented totally by the state variables 
∆icx

hss, ∆igx
hss and input variables ∆ugx

hss as: 
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 (12) 
Substituting (12) into (1) yields the HSS model of the MMC: 

  
hss

1
hss hss hss hss hss


   
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X A N B U



 (13) 

where the definition of Ahss and Bhss is given in Appendix A.  
By expanding the (13) in matrix form, the AC-side 

admittance, i.e., the input-output relationship between the PCC 
voltage ∆ugx

hss and the PCC current ∆igx
hss, can be extracted as:  
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 (14) 

Usually, the accuracy of the HSS model can be ensured by 
setting h=3 [7]. The admittance Yx

hss(s) is transformed into the 
impedance and rearranged in harmonic order as: 
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1 1

1 1
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x

x x

u i

Z

u i

 (15) 

where for example, ∆igx
−3ω1 = �∆iga

−3ω1 ∆igb
−3ω1 ∆igc

−3ω1�
𝑇𝑇
.  

Since zero-sequence components usually have no flow path 
in MMC [6], the three-phase system can be represented by a 
two-phase system (α-β) through the Clarke transformation, 
then using the vector representation of variables in α-β frame, 
i.e., α+jβ and α-jβ. The following relationship can be 
established: 
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T

 (16) 
Based on the (16), the MIMO impedance in α-β domain can 

be calculated from the one developed in the abc-frame as: 

       1mmc hss mmc hss
/ /abc abcs s  



    xZ T Z T  (17) 

where Tabc/αβ±
hss =diag�…,Tabc/α𝛽𝛽±,Tabc/α𝛽𝛽±,Tabc/α𝛽𝛽±,…�.  

C. Asymmetric Effects on the MIMO Impedance 
The accuracy of the established Zαβ±

mmc(s) will be validated by 
comparing with the measured frequency responses (electrical 
and control parameters of the MMC are given in Table I [7]). 
Due to space limitations, only the verification results of matrix 
elements from 1st row to 7th row and 1st column to 7th column 
are presented in Fig. 3, including symmetric conditions and 
asymmetric conditions. As can be seen from the comparative 
results, the calculated frequency responses are consistent with 
the frequency scanning results, confirming the accuracy of the 
established MIMO impedance model.  

For symmetric conditions, it can be seen from Fig. 3(a) that 
there only exist the elements denoted by black squares 
(diagonal components) and red squares (mirror frequency 
coupling [19]), while the values of remaining elements are 
nearly zero (sporadic red points, e.g., in 1st row and 3rd column, 
are caused by measurement singularities, which will not 
influence the correctness of the analytical model). It has been 
proven in Refs [16], [25] that the red squares separated by 2ω1 
can be obtained using the frequency shifting properties, and 
thus a 2×2 impedance matrix can contain all information of the 
14×14 MIMO impedance. This again demonstrates the 
feasibility of the 2×2 impedance model developed for 
symmetric MMC analysis. 

For asymmetric conditions, it can be seen from Fig. 3(b) that 
more coupling terms will appear such as the elements denoted 

TABLE I 
PARAMETERS OF THE MMC  

Items Value Items Value 
Rated power 50MW PQ outer loop kp

PQ 2e-6 
Nominal Frequency  50Hz PQ outer loop ki

PQ 2e-5 
Arm inductance 0.36H Current loop kpi 15 
SM capacitance 1.4mF Current loop kii 3000 
Rated ac voltage 166kV PLL kp

pll 50 
Arm resistance 0.2Ω PLL ki

pll 900 
SM number per arm 200 CCSC kpc 10 
DC link voltage 320kV CCSC kic 2000 
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by blue squares (sequence coupling). A detailed introduction of 
various couplings mentioned above, including mirror frequency 
coupling and sequence coupling, is given in Appendix B. It 
becomes arguable whether the 2×2 impedance matrix as 
truncated in the way of the symmetric cases is still accurate 
enough to represent the whole MIMO impedance under 
asymmetric conditions. Therefore, it is desirable to establish a 
model reduction criterion, which will be presented in the 
forthcoming section.  

III. BLOCK DIAGONAL DOMINANCE-BASED REDUCED-
ORDER IMPEDANCE MODEL 

The above discussion reveals that the main reason for the 
increasing in the dimension of the MMC impedance is the 
appearance of multiple non-diagonal elements. Qualitatively, if 
non-diagonal elements are ‘weak’ enough compared to 
diagonal ones, a simpler model can be obtained by retaining 
only diagonal elements. Such understanding can be rephrased 
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Fig. 3.  Impedance verification of the Zαβ±
mmc(s) [1:7, 1:7], (a) symmetric condition; (b) asymmetric branch condition (Larma=3×0.36H). 
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as the partial interaction or the diagonal dominance, proposed 
by Rosenbrock [21] seeking to reduce a multivariable problem 
to one amenable to classical techniques. Then, such diagonal 
dominance concept was promoted to the block matrix and the 
block diagonal dominance (BDD) theory [22], [23] was 
developed. Based on such BDD concept, in this section, a 
model reduction criterion for the MIMO impedance of the 
MMC is developed considering various asymmetric scenarios. 

A. BDD-based Simplified Stability Criterion 
The BDD theory was originally applied in simplifying the 

design of the MIMO control system [21], while the same notion 
can be deployed for model reduction. The essence of the model 
reduction criterion can be summarized as: ‘if the MIMO system 
belongs to BDD, the stability conclusion can be accurately 
predicted by only using block diagonal components instead of 
the whole MIMO matrix’. Of primary importance in this 
simplified stability criterion is the definition of a BDD system, 
which will be introduced at first. Then, the BDD-based stability 
criterion will be brought in detail. 
1) Definition of the BDD System 

The block diagonally dominant matrix is the generalized 
form of the diagonally dominant matrix1. Let Z(s) be a n×n 
rational matrix, partitioned in the following manner:  

  

     
     

     

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

N

N

N N N N

s s s

s s s
s

s s s

 
 
 
 
   
 
 
 
  





 



z z z

z z z
Z

z z z

 (18) 

where the submatrices zii(s) are square of order nii, 1≤i≤N.  
Definition 1: Let D be a closed elementary contour in C, i.e., 

complex plane. Suppose zii(s) has no pole and is nonsingular 
on D (i=1,⋯,N), the matrix Z(s) is block diagonally dominant 
on the contour D if for each s on D: 

    
2 2

1,

N

ii ij
j j i

s s
 

 z z  (19) 

where the 
2
 denotes the 2-norm (Euclidean norm), i.e., the 

square root of maximum eigenvalue of zii
* (s)zii(s).  

Since zii(s) is nonsingular, (19) can be rewritten as: 

 
 

 
 

2
1,

2

1

i

N

ij
j j i

ii

k s

s

s
  




z

z
 (20) 

where the ratio is defined as the ki(s)  ( i=1,⋯,N ) for 
convenience.  

The Definition 1 means that if ki(s)≤1 (i=1,⋯,N) across the 
frequency range of interest (e.g. 1~1kHz), the Z(s)  can be 
regarded as a BDD matrix/system. Particularly, if the Z(s) is a 

 
1 In mathematics, a square matrix is said to be diagonally dominant if, for 

every row of the matrix, the magnitude of the diagonal entry in a row is larger 

block diagonal matrix, i.e., only principal block diagonal 
elements zii(s)≠0, then ki(s) (i=1,⋯,N) maintain 0. To be more 
intuitive, the ratio of the number of frequency points whose 
ki(s)>1  to the number of considered frequency points η is 
defined as ξi: 

 
  1

,     1i f
i

Number k s
f 




    (21) 

where if ξi≈0 for i=1,⋯,N (i.e., ki(s)≤1 for nearly all frequency 
points), the Z(s) can be regarded as a BDD system. 

Compared with the diagonal dominance theory [21], the 
robustness of the Definition 1 is greatly improved due to its 
ability of partitioning the Z(s) with flexible dimensions. From 
the experience of symmetric cases [15]-[17], the dimension of 
the submatrix zii(s) can be set as 2 (nii=2), the simplest form 
containing at least one pair of coupling terms. It is noted that if 
Definition 1 cannot be complied with the 2×2 dimension, then 
the nii needs to be increased.  
2) BDD-based Nyquist Stability Criterion 

The equivalent circuit of the grid-tied MMC and its closed-
loop system are shown in Fig. 4, where F(s) represents the 
MMC admittance Ymmc

hss (s)  and G(s)  represents the grid 
impedance Zgrid

hss (s).  
Lemma 1: Suppose F(s) has no RHP-pole, and �F(s)−1 +

G(s)�  is block diagonally dominant on the contour D. Let 
det�Fii(s)

−1 + Gii(s)�  map D into  which encircles the 
origin Γi  times clockwise ( i=1,⋯,N ). Then, the closed-loop 
system is asymptotically stable if and only if 

 0
1

N

i
i

p


   (22) 

where p0 represents the number of open-loop system RHP-
poles. The rigorous proof for the Lemma 1 can be referred to 
Ref [22].  

Since the studied closed-loop system is type of Z+Y [26] 
system and each submodule is stable in stand-alone mode, there 
will be no RHP-poles in the sub-system F(s) and G(s), i.e., 
p0=0. What’s more, the F−1(s)  (i.e., the impedance of the 
MMC) generally doesn’t surround the origin if with the proper 
design, which indicates that Γi �det�Fii

−1�� = 0  and thus 

Γi �det�Fii
−1 + Gii�� = Γi�det(Iii + GiiFii)�. Consequently, 

the stability of the closed-loop system can be evaluated 
equivalently using the impedance-ratio Gii(s)Fii(s).  

The Lemma 1 is able to reduce the stability analysis of a N-
dimensional MIMO problems to that of N separate 1-

than or equal to the sum of the magnitudes of all the other (non-diagonal) entries 
in that row. 

-

+
+

-
 

Fig. 4.  Equivalent circuit and closed-loop system 
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dimensional problems. The stability judgement only needs to 
inspect the encirclement situation of (-1, j0) using N separate 
Gii(s)Fii(s) (also known as the impedance ratio). What’s more, 
the HSS model is possessed of frequency shifting properties 
[25], e.g., G11(s)F11(s)=G44(s−4jω1)F44(s−4jω1) . Aided 
with this property, the stability analysis can be further 
simplified by using one single block diagonal submatrix, which 
contains all information of other block diagonal submatrices.  

In conclusion, if the Lemma 1 was satisfied, the high-
dimensional MIMO impedance can be reduced as a 2×2 matrix. 
The stability conclusion can be accurately predicted by using 
one 2 ×2 impedance ratio Gii(s)Fii(s) , e.g., G44(s)F44(s) . 
Compared with the Gershgorin circle theory [27], [28], the 
conservativeness of the Lemma 1 has been reduced a lot, the 
reason behind which can be referred to Ref [22]. 

B. BDD System Characteristics Analysis 
A useful model reduction criterion is obtained from the 

above analysis, while its feasibility depends on whether the 
requirements of the Lemma 1 can be satisfied, i.e., the studied 
MIMO system belongs to BDD. Around this, the BDD 
characteristics analysis of the established MIMO impedance is 
carried out considering various asymmetry degrees (weak, 
medium and strong). The mentioned three kinds of asymmetry 
degrees are defined based on the results of the rigorous BDD 
inspection.  
1) BDD Characteristics in α-β Domain 

At first, the BDD characteristics of the derived MIMO 
impedance is analyzed in α-β domain. The grid impedance 
Zαβ±

grid(s) in α-β domain can be transformed from the three-phase 

grid impedance Zx
grid(s) (e.g., Za

grid(s) = Rga+sLga) using (17). 
To be more intuitive, based on (20) and (21), the k4(s) and ξ4 
corresponding to the ‘s’ is calculated as an example. 
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j j
j j

f

s s

k s
s s

Number k s






 



     

 F G

F G  (23) 

where the considered η=1kHz (i.e., considering one thousand 
frequency points). 

Qualitatively, the system asymmetry will be deepened by 
increasing the single-phase (e.g., A phase) branch inductance or 
single-phase grid impedance. The BDD characteristics of the 
grid-tied MMC with unbalanced A-phase inductance is 
presented in Fig. 5(a) (red curve denotes the α-β domain), 
where the ξ4 decreases as the Larma increases and approaches to 
0 (BDD) when Larma >3.7×0.36H (Larmb=Larmc=0.36H). Four 
examples of k4(s) are given in Fig. 5(a), from which it can be 
observed obviously that the number of frequency points whose 
k4(s)>1 gradually decreases. Similarly, the BDD characteristics 
of grid-tied MMC with unbalanced A-phase grid impedance is 
presented in Fig. 5(b) (red curve denotes α-β domain). When 
the Xga is larger than 10.5×47.3Ω (Xgb=Xgc=47.3Ω), the BDD 
can be met in α-β domain. Based on these two cases, it can be 
concluded that when the asymmetry degree of the main circuit 
is deepened to some extent, the MIMO impedance at ‘s’ become 
a BDD system by using the impedance model in α-β domain. 

 
(a) 

 
(b) 

Fig. 5.  BDD characteristics of the MIMO impedance matrix in α-β and d-q domain, (a) Asymmetric branch conditions; (b) Asymmetric ac-grid conditions 
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2) BDD characteristics in d-q domain 
From the Fig. 5, it should be noted that there still exists an 

area (e.g., Larma<3.7×0.36H or Xga<10.5×47.3Ω), where the 
BDD cannot be acquired. To improve the applicability of the 
model reduction criterion, a permutation matrix is commonly 
applied to rearrange the components’ distribution of the MIMO 
matrix without affecting its eigenvalues, so that the new MIMO 
matrix may become BDD. This tech was frequently used in the 
design of MIMO control system and a suitable permutation 
matrix is usually acquired via the graph theory [21]. In this 
paper, as will be demonstrated, the rotation matrix of the α-β 
domain to the d-q domain [18] is indeed a good permutation 
matrix [25] with sound physical implications, the effect of 
which can be interpreted as selecting the appropriate reference 
frame for modelling and analysis. The rotation matrix at hω1 
harmonic can be expressed as: 

 

 

 

   

   

1 1 11 1

11 1 11

1

1 1 1

1 1 1

h h hh j t
dq d q

j th h hh
dq d q

u u ju ue

e uu u ju



   


  


   
 

  


                                       

P

 (24) 
By extending (24) in the harmonic domain, the MIMO 

impedance Zαβ±
grid(s) can be transformed into the Zdq±

grid(s) as: 

  
1 1

1
hss hss hss hss
dq  



   Z P Z P  (25) 

where the permutation matrix Pω1
hss is the Toeplitz form of the 

Pω1
 as: 

 
1

hss

1 0

0 0

0 0 1 0

0 1 0 0

0 0

0 1



 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 









P  (26) 

The effect of the permutation matrix is studied in Fig. 6, 
where the lighter the square color, the weaker the coupling 
strength in accordance with the results of Fig. 3. For symmetric 
cases, there will only exist elements denoted by black and red 
squares. It can be observed that the red squares in Zαβ±

mmc(s) are 
moved to the principal block diagonal in Zdq±

mmc(s), while the 
blue squares are moved out. In fact, the coupling terms denoted 
by blue squares are the so-called sequence coupling, whose 
strength is closely associated with the three-phase asymmetry. 
The coupling terms denoted by the red squares are the so-called 
mirror frequency coupling (MFC) [18], whose strength is 
mainly affected by the control asymmetry (e.g., d-q asymmetry 
[29]).  

Now, the BDD characteristics of the grid-tied MMC will be 

analyzed in d-q domain and the Fig. 5 can be used again for 
illustration. As shown in the blue curve in Fig. 5(a), ξ4 in d-q 
domain increases as the Larma increases and approaches to 0 
(BDD) when Larma<1.7×0.36H. Similarly, as shown in the blue 
curve in Fig. 5(b), ξ4  in d-q domain increases as the Xga 
increases and approaches to 0 (BDD) when Xga<3.25×47.3Ω. 
Based on these two cases, it can be concluded that when the 
asymmetry degree of the main circuit is weak, the MIMO 
impedance at ‘s’ can become a BDD system by using the 
impedance model in d-q domain. 

C. BDD-based Reduced-order Model 
Based on the qualitative analysis presented above, the 

criterion for different asymmetry degrees and the corresponding 
reduced-order model can be given as:  

Strong Asymmetry: If each ξi  of the �F(s)−1 + G(s)� is 
close to 0 in α-β domain, it equivalently means that the overall 
system satisfies the prerequisite of Lemma 1 in α-β domain. 
This evidence further implies that three-phase asymmetric 
effect (i.e., sequence coupling) dominates the small-signal 
characteristics of the models. Therefore, a system follows such 
a condition is defined as the ‘strong asymmetry’. Under such 
circumstance, the 2×2 reduced-order model in α-β domain can 
be applied.  

Weak Asymmetry: If each ξi  of the �F(s)−1 + G(s)�  is 
close to 0 in d-q domain, it equivalently means that the overall 
system satisfies the prerequisite of Lemma 1 in d-q domain. 
This evidence further implies that control asymmetric effect 
(i.e., mirror frequency coupling) dominates the small-signal 
characteristics of the models. Therefore, a system follows such 
a condition is defined as the ‘weak asymmetry’. Under such 
circumstance, the 2×2 reduced-order model in d-q domain can 
be applied. 

Medium Asymmetry: If some ξi  of the �F(s)−1 + G(s)� 
are larger than 0 both in d-q and α-β domain, it equivalently 
means that the overall system can satisfy the prerequisite of 
Lemma 1 neither in d-q domain nor α-β domain. This evidence 
further implies that neither control asymmetry nor three-phase 
asymmetry can be ignored. Therefore, a system follows such a 
condition is defined the ‘medium asymmetry’. The proposed 

Diagonal elements Sequence coupling
Other couplingsMirror frequency coupling  

Fig. 6.  The effect of the permutation matrix Pω1
hss on the impedance distribution 
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reduced-order models either in d-q or α-β domain are invalid.  
To be more intuitive, the above analysis is summarized in 

Table II, the idea of which is consistent with the qualitative  
understanding of the MMC frequency response: (1) when the 
three-phase system is symmetric or weak asymmetric, the 
frequency response will be dominated by the MMC control, 
which is mostly based on the dq-frame, thus it is favorable to 
analyze the system at dq-frame to achieve a compact block 
matrix; (2) in contrast, if the system is more towards the three-
phase asymmetric (strong asymmetric), then the effect of three-
phase asymmetry may take over that of the control, resulting in 
that the αβ-impedance will be more compact than the dq one. 
However, an exact conclusion of whether the studied grid-tied 
MMC is a BDD system can only be drawn by evaluating each 
ξi of the (F(s)−1 + G(s)) using the (20) and (21). 

IV. CASE STUDIES 
In this section, the effectiveness of the proposed reduced-

order model is tested by using two common asymmetric 
scenarios, i.e., unbalanced branch conditions and unbalanced 
ac-grid conditions. 

A. Case Description 
The asymmetric parameters of the adopted six cases are listed 

in Table III, while other parameters remain symmetric as given 
in Table I. The marginally stable/unstable states (i.e., the critical 
condition) are realized by adjusting the internal resistance of the 
ac-grid.  

According to the Section III.A, the stability of the 
asymmetric grid-tied MMC system can be determined by using 
any 2 × 2 impedance ratio Gii(s)Fii(s) , as long as the 
prerequisites of the Lemma 1 are satisfied. Here, the impedance 
ratio corresponding to ‘s’ (i=4) is chosen which can be rewritten 
in α-β domain and d-q domain as: 

 
       
       

grid mmc

44 44
grid mmc

44 44dq dq dq

s s

s s
    

  

 

 

L Z Y

L Z Y
 (27) 

where both the 14×14 Zαβ/dq±
grid (s) and Yαβ±/dq±

mmc (s) have been 
partitioned into the 7×7 block matrices. 

B. Evaluation of Asymmetry Degrees  
Before carrying out the asymmetric stability analysis, the 

first step is to evaluate each ξi of the �F(s)−1 + G(s)� so as to 
determine the asymmetry degree (weak/medium/strong) of the 
studied case. Since the MIMO matrix in d-q domain is truncated 
at ‘±3ω1’ (i=1 or 7) referring to the Fig. 6, only ξi (i=2~6) need 
to be assessed.  

The asymmetry degree evaluation of the six cases are 
presented in Fig. 7, from which it can be obtained that: (1) for 
the Case 1, each ξi (i=2~6) is close to 0 in d-q domain which 
means the asymmetry degree of this case is weak and the Ldq± 
should be adopted; (2) for the Case 2, each ξi (i=2~6) are close 
to 0 in α-β domain which means the asymmetry of this case is 
strong and the L𝛼𝛼𝛼𝛼± should be adopted; (3) for the Case 3, the 
ξi is larger than 0 both in d-q and α-β domain which means the 
asymmetry of this case is medium and the proposed reduced-
order models are invalid. Similar conclusions can be obtained 
for the Case 4~6 that the Ldq± should be adopted for the Case 4, 
while the L𝛼𝛼𝛼𝛼± should be adopted for the Case 5. As for the 
Case 6, the proposed reduced-order models are invalid either in 
d-q or α-β domain. 

C. Asymmetric Stability Analysis 
Based on the results of asymmetry degree assessment, the 

corresponding stability analysis is carried out to verify the 
accuracy of the proposed reduced-order models on marginally 
stable/unstable states predictions.  
1) Asymmetric branch conditions 

Case 1: As shown in Fig. 8(a), the Ldq±  can predict the 
correct stability conclusion, i.e., the marginally stable state with 
Rgx=8Ω  and the marginally unstable state with Rgx=6Ω , 
which conforms with the time-domain simulations. A 
counterexample using L𝛼𝛼𝛼𝛼± is also given in Fig. 8(a), where an 
optimistic stability conclusion is obtained, i.e., the stable state 
with Rgx=8Ω  and 6Ω . Now, it has been validated that the 

TABLE II 
IMPEDANCE REDUCTION 

d-q domain 
(i=1,⋯,N) 

α-β domain 
(i=1,⋯,N) 

Asymmetry 
Degree Reduced model 

ξi ≈0 ξi >0 Weak 2×2 d±jq 
ξi >0 ξi ≈0 Strong 2×2 α±jβ 
ξi >0 ξi >0 Medium \ 

 

TABLE III 
CASE PARAMETERS  

 No. MMC Parameters Grid Parameters 

Asym
metric 
MMC 

#1 Larmbc=0.36H, Larma=1.5Larmb Xgx=37.7Ω 
#2 Larmbc=0.36H, Larma=3.7Larmb Xgx=40.8Ω 
#3 Larmbc=0.36H, Larma=2.2Larmb Xgx=39.3Ω 

Asym
metric 
Grid 

#4 Larmx=0.36H Xga=2.25Xgb, Xgbc=28.1Ω 
#5 Larmx=0.36H Xga=11.25Xgb, Xgbc=15.5Ω 
#6 Larmx=0.36H Xga=6.75Xgb, Xgbc=17.1Ω 

 

 
Fig. 7.  Asymmetry degree evaluation. 
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accurate stability conclusion can be obtained by using the 2×2 
impedance in d-q domain under the Weak Asymmetry. 

Case 2: As shown in Fig. 8(b), the 𝑳𝑳𝛼𝛼𝛼𝛼±  can predict the 
correct stability conclusion, i.e., the marginally stable state with 
Rgx=8Ω  and the marginally unstable state with Rgx=5Ω , 
which conforms with the time-domain simulations. A 
counterexample using Ldq± is also given in Fig. 8(b), where an 
extremely pessimistic conclusion is obtained, i.e., the unstable 
state with Rgx=8Ω and5Ω. Now, it has been validated that the 
accurate stability conclusion can be obtained by using the 2×2 
impedance in α-β domain under the Strong Asymmetry. 

Case 3: As shown in Fig. 8(c), compared with the time-
domain results, neither the 𝑳𝑳𝛼𝛼𝛼𝛼±  nor the Ldq±  can give an 
accurate stability conclusion. The obtained stability result is 
more pessimistic using Ldq±, while more optimistic using 𝑳𝑳𝛼𝛼𝛼𝛼±. 

In practical systems, there basically will only exist Weak 

Asymmetry under asymmetric branch conditions [12], which 
means the 2×2 impedance model truncated under the symmetric 
conditions can still be used without losing accuracy. Despite 
that, the presented stability analyses concerning medium and 
strong asymmetry are still meaningful in justifying the integrity 
of the proposed model reduction method, i.e., the global 
applicability. What’s more, extreme unbalanced branch 
conditions are very common in the distribution system. For 
example, Ref [9] reported an asymmetric MMC case with A-
phase inductance nearly 3 times smaller than the B-/C-phase, 
which happened in a railway electrical system. 
2) Asymmetric AC-grid Conditions 

Case 4: As shown in Fig. 9(a), the Ldq±  can predict the 
correct stability conclusion, i.e., the marginally stable state with 
Rgx=6Ω  and the marginally unstable state with Rgx=5Ω , 
which conforms with the time-domain simulations. Here, it 
should be noted that although the λ1 (previous state and latter 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 8.  Theoretical stability analysis and time-domain verifications, (a) Case 1; (b) Case 2; (c) Case 3. 
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state) cross the left half real axis, they do not surround the (-1, 
j0) which can be observed more clearly from the partial 
enlarged subfigure in Fig. 9(a). A counterexample using 𝑳𝑳𝛼𝛼𝛼𝛼± 
is also given in Fig. 9(a), where a pessimistic stability 
conclusion is obtained, i.e., the unstable state with Rgx=6Ω 
and 5Ω. Now, it is again verified that the 2×2 impedance in d-
q domain can predict the stability conclusion accurately under 
the Weak Asymmetry. 

Case 5: As shown in Fig. 9(b), the 𝑳𝑳𝛼𝛼𝛼𝛼±  can predict the 
correct stability conclusion, i.e., the marginally stable state with 
Rgx=3Ω  and the marginally unstable state with Rgx=2Ω , 
which conforms with the time-domain simulations. A 
counterexample using Ldq± is also given in Fig. 9(b), where an 
extremely pessimistic conclusion is obtained, i.e., the unstable 
state with Rgx=3Ω and 2Ω. Now, it is again verified that the 2
× 2 impedance in α-β domain can predict the stability 
conclusion accurately under the Strong Asymmetry. 

Case 6: As shown in Fig. 9(c), compared with the time-
domain results, neither the 𝑳𝑳𝛼𝛼𝛼𝛼±  nor the Ldq±  can give an 
accurate stability conclusion. The obtained stability result is 
more pessimistic using Ldq±, while more optimistic using 𝑳𝑳𝛼𝛼𝛼𝛼±. 

Based on the above analysis, similar conclusions can be 
drawn from asymmetric ac-grid cases, which further verify the 
global applicability of the proposed method. In conclusion, for 
most of asymmetric cases, the accurate stability conclusion can 
be obtained using the reduced-order model (2×2) either in α-β 
domain or d-q domain, depending on which one can better 
satisfy the prerequisites of the Lemma 1 (i.e., BDD system). 

It should be noted that the above two asymmetric scenarios, 
i.e., unbalanced branch conditions and unbalanced ac-grid 
conditions, are only served as an example to demonstrate how 
the proposed method is implemented, which can also be applied 
in other asymmetric cases as long as the BDD characteristics of 
the studied case are properly evaluated. 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 9.  Theoretical stability analysis and time-domain verifications, (a) Case 4; (b) Case 5; (c) Case 6. 
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V. CONCLUSION 
This paper presented a block diagonal dominance (BDD)-

based model reduction method aiming for simpler frequency-
domain/impedance-based stability analysis. 

Application of this method in the model reduction and 
stability of the MMC is shown in detail. In which, the applied 
permutation matrix for the applicability improvement of BDD 
characteristics turns out to be the rotation matrix from α-β to d-
q domain. Moreover, it is demonstrated that by using this 
permutation matrix, a 2×2 reduced-order impedance model of 
the MMC can be acquired either in α-β or d-q domain. 
Specifically, the impedance model in α-β domain is more 
preferred for the strong asymmetry, while the impedance model 
in d-q domain exhibits better BDD property for the weak 
asymmetry. This useful finding is justified via the case studies 
considering different asymmetry degrees, including the typical 
asymmetric MMC scenario and ac-grid scenario.  

Although the grid-connected MMC system is used as an 
example to demonstrate the proposed BDD-based model 
reduction method, it is worth of mentioning that by following a 
similar principle and BDD evaluation procedure, the proposed 
method can be applied to other asymmetric cases. Therefore, it 
shows potential for being promoted as a systematic tool for 
simplifying the frequency-domain/impedance analysis, 
particularly for asymmetric cases. This is worth of being 
explored in future works.  

APPENDIX A 
The Nhss is defined as:  
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  (A1) 

where Np=blkdiag(Npa,Npb,Npc) , 
Npa=Npb=Npc=diag(s−jhω1,…,s,…,s+jhω1). 

The ahss is defined as:  
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The mhss is defined as:  
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The bhss is defined as:  
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The definitions of the Ahss and Bhss are given in (A5) (at the 
bottom of this page).  

The above used VΣ
hss, V∆

hss, IΣ
hss, I∆

hss are defined as:  
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APPENDIX B 
By definition, harmonics result from periodic steady state 

operating conditions, and thus their prediction should be 
formulated in terms of (harmonic) phasors, i.e., in the frequency 
couplings. Various couplings generated in the system can be 
collectively referred as (harmonic) frequency couplings. In 
practical application, a decoupled model is more preferred. 
However, for the commonly used abc frame and d-q frame, a 
model without coupling terms is hardly to be obtained due to 
the inherent inter-phase or d-q couplings. Therefore, the 
complex vector frame is widely applied, where two most 
representative frames are sequence domain (α±jβ) and 
modified sequence domain (d±jq). It is noted that by selecting 
the appropriate complex vector frame, the off-diagonal terms 
can be rotated to the principal diagonal.  

Sequence coupling [8]: the coupling across the α+jβ 
(positive sequence) and α-jβ (negative sequence) at the same 
frequency. The strength of such coupling is positively 
correlated with the three-phase asymmetry. If the system is 
three-phase symmetric, the sequence coupling should be zero. 

Mirror Frequency coupling [19]: the coupling across the ‘s’ 
and ‘s-2jω1’. The strength of such coupling is positively 
correlated with the control asymmetry (e.g., PLL, outer loops, 
etc.). If the control scheme is symmetric, the mirror frequency 
coupling should be zero and the system is called ‘mirror 
frequency decoupled (MFD)’.  
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