
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Oskar Gjesdal Veggeland

Real-Time Vision-Aided Inertial
Navigation for Vertical Take-Off and
Landing of Unmanned Aerial Vehicles

Hovedoppgave i MTTK - Kybernetikk og Robotikk
Veileder: Konstantinos Alexis
Medveileder: Paolo de Petris
Juni 2022H

ov
ed

op
pg

av
e

Oskar Gjesdal Veggeland

Real-Time Vision-Aided Inertial
Navigation for Vertical Take-Off and
Landing of Unmanned Aerial Vehicles

Hovedoppgave i MTTK - Kybernetikk og Robotikk
Veileder: Konstantinos Alexis
Medveileder: Paolo de Petris
Juni 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for teknisk kybernetikk

Preface

This report is the delivery for my master thesis, TTK4900, at the institute of engineering cybernet-
ics at NTNU in the spring of 2022. Throughout the semester I have been supervised by professor
Konstantinos Alexis, with help from Ph.D. student Paolo De Petris. With bi-weekly meetings,
they have helped me plan my work, identify problems and interpret results.

Most of the software used in the thesis was found online. The exceptions are the ROS node used
to synchronize cameras and IMU, the algorithm extension to ROVIO and all software used to
produce plots and figures. In addition to this, some modifications have been made to the pre-made
software. Any such borderline cases should be clearly indicated in the thesis. All figures, images
and other forms of visual representations are created specifically for the thesis.

My visual inertial odometry setup was created with help from the institutes workshop. They made
the aluminium bar with screw threads so the camera positions could be easily adjusted. From a
base design received by Paolo, the camera mounts was re-designed to fit the aluminium rod. These
mounts were 3D-printed at the workshop of MAKE-NTNU.

The paper is written such that anyone with a background from cybernetics and robotics should
comprehend the content, although other papers may be referred to for more detailed information
or explanations. Good reading.

i

Table of Contents

List of Figures iii

1 Introduction 2

2 Theory 3

2.1 Visual Odometry . 3

2.1.1 Camera modelling . 3

2.1.2 Front-end . 4

2.1.3 Back-end . 8

2.2 Visual Inertial Odometry . 9

2.3 Stereo triangulation and disparity . 10

2.4 ROVIO . 11

3 Related Work 18

4 System implementation 20

4.1 Hardware . 20

4.2 Driver . 21

4.3 Calibration . 22

5 ROVIO extension 24

6 Results and discussion 29

6.1 Experiment 1 - On the effect of initial depth estimates 31

6.2 Experiment 2 - On the effect of initialization maneuvers 36

6.3 Experiment 3 - On the effect of different baselines 38

6.4 Experiment 4 - Monocular and stereo performance 42

6.5 Experiment 5 - ROVIO extension analysis . 47

7 Conclusion 52

8 Further work 53

Bibliography 54

ii

List of Figures

1 A general VO pipeline. 3

2 Image distortion effect . 5

3 A photometric error example. 7

4 Illustration of a triangulation scheme for a stereo camera system. 10

5 Camera disparity example. 11

6 Patch warping in images. 13

7 Prototype created for data collection . 20

8 High-level diagram of hardware setup . 21

9 Timing diagram for camera timestamps offset. 22

10 Aprilgrid target pattern (created with Kalibr[9]) 23

11 Planar filter extension visualized. 24

12 Height clustering example . 26

13 Planar filter with depth update . 27

14 Example figure for trajectory evaluations . 30

15 Illustration of directed metrics for performance evaluation. 30

16 Cross-camera feature prediction, conceptual description. 31

17 Main building from 25m distance. 32

18 Performance analysis of triangulation for different initial depth parameters. 33

19 Accuracy analysis based on different initial depth values 34

20 Cross-camera feature prediction, example. 34

21 Accuracy comparison of initialization maneuver. 36

22 Scale comparison of initialization maneuver. 37

23 Triangulated distances for different baselines. 39

24 Baseline comparison for accuracy and scale. 40

25 Average accuracy per baseline. 41

26 Camera configuration comparison with good initial depth estimate. 43

27 Camera configuration comparison with bad initial depth estimate. 44

28 Wall distances over the course of three runs. 45

29 Effect of erroneous mounting on feature predictions. 46

30 Cluster segmentation visualization. 48

31 Cluster algorithm performance for a single plane. 49

32 Cluster algorithm performance for a two-planes trajectory 50

33 Cluster trajectory example . 51

iii

Abstract

This thesis presents an analysis of Visual Inertial Odometry (VIO) as a state estimation
solution for autonomous fixed wing aircraft during vertical take-off and landing (VTOL). A
theoretical foundation of VIO is presented together with some of its properties related to aerial
applications. Later, an extensive description of a specific framework, called ROVIO, is given.
This framework has been tested on a hardware setup for stereo VIO built for collecting data
for the thesis. The setup is presented in detail together with the calibration approach used.

Using this setup, different experiments have been conducted to analyze how the systems
performance may be affected by different parameters, motions and configurations. These
experiments are mostly related to the long distance to visual features in a typical VTOL
scenario. The analysis can conclude, not surprisingly, that the initial depth value given to
image features have a significant effect on the system accuracy. It also becomes clear that
initializing the system trajectory with sufficient movement can make feature depths converge
more quickly, reducing the overall error. Investigating the performance with different cam-
era distances (baselines), revealed no clear correlation. This is likely due to quite apparent
calibration issues, probably resulting from frequent camera remounts. Finally, an analysis of
the difference between stereo and monocular systems is conducted, showing advantages and
disadvantages of either configuration.

The most important contribution of the thesis is a proposed extension to ROVIO, which
builds on an assumption of the operating environment in a VTOL scenario. By assuming a
flat landing area, the algorithm has been extended to estimate the position of this plane. With
this estimate, features can be filtered out if they lie sufficiently far away. Other features can be
updated in the direction of the ground estimate, to improve their position accuracy. Details
of the extension is presented in the report, together with promising results of its performance.
Although this specific extension is tailor-made for ROVIO, the general concept should be
applicable for any VIO algorithm.

1

1 Introduction

This master thesis will investigate a possible state estimator used during vertical take-off and land-
ing (VTOL) for unmanned aerial vehicles (UAVs). The topic is motivated by the Norwegian drone
transportation startup Aviant, which transports goods between hospitals in the medical sector of
Norway. Medical goods can be transported faster, cheaper, and at shorter notice between medical
institutions with such transportation options. There are a few restrictions for small unmanned
vehicles that should be imposed on the system. The first thing to think about is that the system’s
size and weight restrict the total vehicle cargo capacity. This means that a small, lightweight
system is preferred to increase the payload. The issue extends to the fact that power consumption
should be kept to a minimum, as high-capacity batteries are large and heavy. Lastly, since this
is a commercial company with expectations of profit, the price of a system should be kept to a
minimum.

The proposed solution is an inertial navigation system (INS) that uses a stereo camera system to
perform filter updates. These systems are often referred to as visual-inertial odometry (VIO), a
highly researched area for autonomous systems. One of the reasons for this is that it is highly
versatile and capable of operating in different working environments. Because VIO does not rely
on any external sensors or equipment, it is not restricted to a geographical area. This yields
opportunities for exploration underground[23], subsea[39] and even in outer space[21] where global
navigation satellite systems (GNSS) are unavailable. Although the application in question for
this thesis is not deprived of access to GNSS measurements, there is another motivation to avoid
using them. In urban areas with dense construction, GNSS measurements become less reliable.
A common issue is that satellite signals can bounce between buildings before reaching the sensor,
corrupting the measurements as they are calculated based on a signal’s travel time and distance.

Although VIO has the advantage of not relying on external sources, this does not come without
a drawback. The introduction of GNSS measurements makes the absolute position of a system
observable. In contrast, VIO systems suffer from a drifting position estimate unless corrected by
a place recognition or re-localization scheme. Another issue with VIO is the dependency on visual
information. The thesis will focus mainly on images in the visible specter, but there is research to
support that VIO can work well with thermal imaging as well[14]. The most important thing is
that the camera can capture information about the scene, including texture, edges, and different
kinds of features. This is a highly relevant issue because lighting conditions in a VTOL scenario
can be unpredictable.

As part of the thesis, a VIO system consisting of two cameras and an IMU has been created.
With this setup, data has been collected from several scenarios resembling VTOL. Without an
actual drone for testing, the problem has been flipped such that big walls simulate the ground
in a take-off and landing scenario. By walking up to and back from the wall, one can analyze
how the VIO system reacts to a scene with varying depths, stretching to as much as 25 meters
in some of the experiments. The open-source framework for VIO, ROVIO[4] has been used to
process the collected data. The data is analyzed in different experiments to look at how different
configurations and parameters affect the system performance. This includes looking at different
initial depth estimates, initial camera movements, different camera baselines, and the difference
between monocular and stereo systems. Finally, an adaption to ROVIO is presented where the
system assumes that the landing area is flat, yielding the opportunity to disregard or correct
outliers that are not predicted to be on the ground plane.

2

2 Theory

This section will provide some insight into the field of visual inertial odometry. First, a review of
the camera sensor and its ability to estimate motion from an image series is given. Next, the fusion
of visual and inertial measurement will be presented together with pros and cons of VIO systems.
A short introduction to stereo camera triangulation will be given before a thorough review of a
state-of-the-art VIO system called ROVIO is presented. ROVIO is the system used to perform
experiments in section 6, so a conceptual understanding of the framework is essential to analyze
the produced results. Although modifications have been made, large parts of this section is taken
from the author’s unpublished master project.

2.1 Visual Odometry

Visual odometry (VO) is the problem of estimating the motion between two camera frames by
associating changes in the image with a change in the camera perspective. Most VO frameworks
can be related to the pipeline illustrated in fig. 1. The first procedure, called feature detection,
is based on finding unique features in an image. This is usually points in the image with high
gradients such as corners or edges. After detection, the features are tracked, meaning they are
associated between images. These tracks can be used to estimate the frame-to-frame motion of the
camera. Finally, we can optimize several of these motions jointly, considering that feature tracks
can span over multiple camera frames. This procedure is called smoothing and can considerably
improve the global consistency of a VO system.

Figure 1: A general VO pipeline, estimating a set of camera poses from a sequence of images.

In visual odometry, it is customary to separate image and feature related processing from the
estimation and optimization. The two parts are referred to as the system’s front-end and back-
end. There exists a wide variety of front-end and back-end schemes and countless combinations
of the two. For simplicity, the front-end frameworks will be divided into two different categories:
indirect and direct methods. The indirect methods perform feature detection in every new image
and try to match these features to those of previous images. On the other hand, direct methods
do not perform this feature detection for every new image. These methods assume that previous
features can be located in a new image by searching for similar areas based on pixel intensities.
The difference between these methods will be further explained in section 2.1.2.

2.1.1 Camera modelling

Like any other sensor, we need to define a model for how a camera interprets its surroundings
to create an image. The most commonly used model, which is also used in this thesis, is the
perspective camera model. This can be used for front-view cameras with a field of view below
180°. The perspective camera model, often called the pinhole model, assumes that all light that
reaches the image sensor goes through a singular point (pinhole) in the camera. It further assumes
that light moves in a straight line from any object in a scene through this pinhole. The key idea of
modeling the camera is to create a mapping that takes a three-dimensional point from the camera
frame X = [x, y, z] and projects it onto the image frame with coordinates [u, v]. If we define the
camera frame such that x is positive to the right, y is positive downwards, and z is positive into
the scene, the camera projection can be defined as

3

λ

uv
1

 = KX =

αu 0 u0

0 αv v0
0 0 1

xy
z

 (1)

where (αu, αv, u0, v0) are the camera intrinsic parameters and λ is a scaling parameter used to
normalize the image coordinates. (αu, αv) are defined as the distance between the camera pinhole
and the image sensor. (u0, v0) is the coordinates of the image center. Although the intrinsic
parameters have clearly defined physical interpretations, these values should be calibrated for each
camera because of constructional inaccuracies and modelling errors.

Distortion

Distortion effects result from inaccuracies in the camera model and often appear as morphing
effects in the image. The perspective camera model is usually best in the center of an image
and becomes worse further away. To apply motion tracking on features in the entire image, it is
crucial to account for this deviation. Solutions to the problem rely on mathematical descriptions
of the distorting effect and are summarized in a distortion model. Tang et al. define the distortion
problem as a mapping f from the undistorted projection of the perspective model (uu, vu) to the
distorted and faulty projection (ud, vd) which we observe in a raw image[37]. If this distortion
model is found, the solution to the problem would be to apply the reverse mapping g such that

uu = gu(ud, vd), vu = gv(ud, vd) (2)

In theory, these models can include any mathematical description, but common choice is a radial
model. Radial models define the distortion effect based on a pixels distance from a distortion center,
(u0, v0). I will denote the distance on each axis as ūu = uu − u0, v̄u = vu − v0 and ūd = ud − u0,
v̄d = vd − v0 in the undistorted and distorted cases respectively. The radial assumption reduces
the distortion model to a one-dimensional mapping from the distorted radius rd =

√
ū2
d + v̄2d to

the undistorted radius ru =
√
ū2
u + v̄2u. While this is very interpretable, it cannot always account

for all the distortion effects in a regular camera. A proposed improvement is to add tangential
distortion, which accounts for misalignment between the image sensor and camera lens. This makes
up for some of the non-radially symmetric distortion effects, and the undistortion model can be
written

uu = ud +

Radial distortion︷ ︸︸ ︷
ud(k1r

2
d + k2r

4
d)+

Tangential distortion︷ ︸︸ ︷
2p1udvd + p2(r

2
d + 2u2

d) (3)

vu = vd + vd(k1r
2
d + k2r

4
d) + 2p2udvd + p1(r

2
d + 2v2d) (4)

where k1, k2 and p1, p2 are distortion parameters and should be calibrated for each individual
camera. Higher-order terms can also be included with the addition of more distortion parameters.
The combination of radial and tangential distortion models is chosen for experiments with ROVIO
in this thesis.

One easy way to spot distortion in images is to look at how straight lines are projected to the
image. They tend to appear curved in distorted images. Figure 2 illustrates what happens when
we perform undistortion. Note how the straight edges on the door appear bent in the distorted
image (left). The undistorted image (right) almost completely removes this unwanted effect.

2.1.2 Front-end

Two main types of front-end frameworks will be considered, indirect and direct methods. Common
for both is that they try to associate features from one image to another. Indirect methods perform

4

Figure 2: Comparing a raw, undistorted image (left) with the effect of applying the radial and
tangential undistortion model (right).

feature detections on every single frame. A similarity search over features in a previous image is
performed to look for matches for each feature in a new image. The direct methods do however
not rely on feature detection for new images. Instead, these methods perform an alignment of the
previous features in a new image. By looking at the pixel intensities of a feature, a search in the
new image is performed to find the best match of a feature. If the match is good enough, the
feature track is accepted. Although direct methods do not generally perform feature detection for
every new image, some do this to initialize new features for tracking. These are called semi-direct
methods and include, among others, ROVIO.

Feature detection

Feature detection is the procedure of finding points in an image that are easily identifiable and
highly likely to be tracked between frames. Many scenes contain corners, edges, and other areas
with big changes in pixel intensities. These points are usually easy to associate from image to
image because of the big difference in image intensities around the feature, as opposed to uniform
surfaces with little texture. Nixon describes two main procedures of extracting local features in
his book on feature extraction in computer vision[25]. He argues that finding corners in an image
is the same as finding edges with high curvature, meaning areas with a high rate of change in the
edge direction. Since the edge itself is defined by a high gradient opposite the edge direction, areas
of a high gradient in two opposite directions can be related to a corner. This is the fundamental
assumption for the famous Harris corner detector [12], which analyzes the image gradients to
extract corners and edges. Nixon also describes a more modern approach based on the analysis of
image patches, that is, smaller subsets of an image. These methods can deal with issues that the
basic curvature methods are not. For example, they can be created scale-invariant, meaning that
a feature can be of any size in the image and still be detected.

An example of a patch-based feature detection scheme is FAST [31], which is used in ROVIO as a
feature initialization tool. FAST, or Features from Accelerated Segmentation Test, was proposed as
a high-speed detector, trading down the feature quality for a better runtime. A test is performed
on a query pixel p by looking at 16 pixels surrounding it in a circle. If at least 12 of the 16 pixels
have an intensity that differs more than some threshold from the query pixel, the pixel is registered
as a feature. The first four pixels to be tested are straight above, to the left, right, and below the
query pixel to further increase the speed. If two or more of these pixels are not below or above
the threshold, the query pixel is immediately rejected as a corner, avoiding the need to test all 16
values.

5

Indirect tracking

To perform tracking between images, indirect methods rely on some way to describe the similarity
between detected features. This is what feature descriptors are used for. One very simple feature
descriptor is simply taking the pixel intensity values of a patch around the feature. A similarity
function could then be to calculate the sum of square differences between the pixels of two patches.
The problem with this descriptor is that it is neither scale nor orientation invariant, making
it unreliable for tracking between images with significant camera motion. More sophisticated
descriptors such as SIFT (scale-invariant feature transform) [18] and SURF (speeded up robust
features) [3] are examples of descriptors that deal with these issues. The downside to more detailed
descriptors and similarity functions is their high computational requirement.

The simplest way to find matches is by comparing every feature in one image to every feature
in another. However, the number of computations for this method is quadratic in the number
of features, making such a brute force method slow when the feature extraction yields many
candidates. Some approaches avoid this by predicting the location of a feature in the next frame
and then only searching for matches in the vicinity of this prediction. This motion prediction
can be performed using motion sensors, such as an IMU, or by applying a motion model such as a
constant velocity model. Based on the uncertainty in these models, one can calculate the predicted
mean and covariance of a feature position and use this to specify the search area when looking for
matches.

Direct tracking

Direct feature tracks are found by performing a search for previous features in a new image. This
is done by finding the new feature location which minimize the photometric error of the feature
between the two images. The photometric error is a pixel-by-pixel comparison between image
intensity values. An illustration of this is given in fig. 3, where we can see that the errors have
high values where the reference and measured patch are different. By visual analysis, we can see
that by moving the measured patch downwards and to the right, we can reduce the photometric
error until the two white squares are aligned. For some methods, the reference is an entire image.
Other methods choose only a subset of the image pixels, for example, those areas of the image with
sufficiently high gradients. The last group, which includes ROVIO, minimizes the error of one or
more reference patches. We will assume the last problem in this walk-through of direct feature
tracking for simplicity.

A well-known approach to the direct feature tracking problem is the optical flow algorithm proposed
by Lucas and Kanade [19]. Following their notation, we define the problem mathematically. Let
F (x) and G(x) define the pixel intensities at position x = [u, v] of the reference and measured
patch respectively. We further assume that we move our measured patch by a small perturbation,
δx = [δu, δv], in order to reduce the photometric error. The square of each pixel intensity value
is then a way to measure how well aligned the two patches are.

E =
∑
x

[F (x+ δx)−G(x)]2 (5)

We want to find the perturbation δx that minimizes this error, yielding the minimization problem

min
δx

∑
x

[F (x+ δx)−G(x)]2 (6)

where

F (x+ δx) ≈ F (x) + δ
∂F (x)

x
(7)

6

Figure 3: Photometric error example. The photometric errors resemble a pixel-by-pixel intensity
difference between the reference and measured patch. In the signed case, gray areas correspond to
zero intensity difference while black and white correspond to positive and negative differences. The
unsigned photometric error shows the absolute value of differences, so the black areas represent no
error, and the white areas represent a big error.

By making a first-order approximation of the form eq. (7), we can solve the minimization problem
by differentiating eq. (5) and setting this equal to zero.

0 =
∂

∂(δx)
E

=
∂

∂(δx)

∑
x

[F (x+ δx)−G(x)]2

≈
∑
x

2
∂F (x)

∂x
[F (x) + δx

∂F (x)

∂(x)
−G(x)]

Finally, solving for δx gives us

δx =

[∑
x

(
∂F (x)

∂x

)T

[G(x)− F (x)]

][∑
x

(
∂F (x)

∂x

)T (
∂F (x)

∂x

)]−1

(8)

This result shows that by moving the measured patch by the perturbation in eq. (8), the photo-
metric error from eq. (5) will be minimized. That is, assuming the approximation in eq. (7) holds.
If this is not the case, the procedure can be performed multiple times until convergence. Many of
the proposed feature tracks may be bad due to local minima, changing scenery, and noise. For this
reason, it is normal to perform some additional testing to make sure that the track is sufficiently
good. This can, for example, be done by placing a threshold on the final photometric error. Other
tests used by ROVIO will be presented in section 2.4.

7

2.1.3 Back-end

Motion estimation

Scaramuzza and Fraundorfer[32] discuss three different kind of motion estimation schemes, all
relying on a functioning camera model and feature correspondences. They are:

1. 2D-to-2D: Motion is estimates based on 2D image correspondences between two camera
frames.

2. 3D-to-3D: Motion is estimated based on correspondences between 3D features given in their
respective camera frames.

3. 3D-to-2D: 3D landmark positions are assumed to be known, and their 2D image corres-
pondences are used to estimate the motion of a camera.

A walkthrough of the 3D-to-2D motion estimation case is given below, as this resembles the back-
end of ROVIO. Here, 3D features are kept track of in the filter state, and 2D image observations
of these features are used to update the filter.

In 3D-to-2D motion estimation, we assume that we have a prior estimate of the 3D position
of a landmark, Xk−1, and a current 2D image point, pk, associated with that landmark. When
estimating the motion of the camera, we want to find the transformation T k such that the 3D
point X̂k = T kXk−1 projected onto the camera frame, p̂k, is as close as possible to pk. This
difference is often referred to as the reprojection error, and the camera motion is found by solving
the following minimization problem.

argmin
T k

||pk − p̂k||2 = argmin
T k

||pk − π(T kXk−1)||2 (9)

One needs several correspondences to avoid ambiguous solutions to the problem. In fact, [7] shows
that at least three 3D-to-2D correspondences are necessary to calculate the camera pose. An
extension of the previous minimization problem can be extended to include n correspondences.

argmin
T k

i=n∑
i=0

||pi
k − p̂i

k||2 = argmin
T k

i=n∑
i=0

||pi
k − π(T kX

i
k−1)||2 (10)

This problem can be solved with a nonlinear optimization scheme like Levenberg-Marquardt or
Gauss-Newton. The outcome of the optimization may depend on the initialization of the paramet-
ers in T k. If the frame rate is sufficiently high, the initial transformation T k can be set to identity.
If not, there are solutions to yielding reasonable prior estimates using algorithms such as DLT[13].
The problem of finding reasonable initial estimates for the transformation is one of the reasons
why fusion with inertial measurements in VIO can produce a better output. The initial value of
T k can be directly calculated from the inertial measurements between each camera frame.

Filtering vs. smoothing

The procedure just described estimates motion on a frame-to-frame basis, discarding measurements
further back in time than the current image. This procedure is often referred to as filtering and can
minimize the overhead that comes from keeping track of old and possibly irrelevant frames. This
also reduces computational costs and runtime, which is crucial in many applications, especially in
real-time operations.

The alternative to filtering is called smoothing and relies on feature tracks from longer series of
images. By jointly optimizing over several camera poses at once, it is possible to reduce the overall

8

error of the trajectory estimation and reduce the amount of drift in the system. It is possible only
to perform smoothing on a fixed set of previous frames to keep computational costs feasible in
real-time applications. This procedure is called fixed-lag smoothing. Another procedure to reduce
the computational costs of smoothing is by introducing keyframes. Instead of smoothing over all
the most recent frames, one can choose only to keep track of images that are sufficiently different
from each other.

2.2 Visual Inertial Odometry

Scaramuzza and Zhang describes cameras and IMUs as complementary sensor types in their article
on visual-inertial odometry of aerial robots[33]. While cameras can extract much information about
the scene, the IMU is independent of its surroundings. Camera measurements also contain a lot
more information than inertial measurements. A typical gray-scale image is represented by a byte-
sized value for each pixel, but IMU measurements only need a couple of bytes for each degree of
freedom. The large amount of data in an image makes the processing of measurements much slower
than for the IMU. In addition, measurement acquisition is much slower for the camera because of
the required exposure time to receive enough light in the photo-sensor. These two properties make
it possible to operate the IMU at a much higher rate than the camera. Thus, by including an IMU
in the estimation, the filter can extract information about the system in the time between each
camera measurement. This information can be used to predict the camera motion, giving a good
initial estimate to the motion estimation discussed earlier in section 2.1.3

Camera measurements can be unreliable in many scenarios. When retrieving an image, the
camera exposes its image sensor to light from the scene for a period of time. The length of this
period, the exposure time, will often depend on properties of the scene, such as lighting conditions,
and can have a significant impact on the final image. If the exposure time is too short, the image
sensor will receive a small amount of light, and the image becomes very dark, or under-exposed.
Likewise, if the exposure time is too long, the image sensor will receive too much light, and the
image becomes very bright, or over-exposed. Some scenes can have a high dynamic range (HDR),
meaning that they both have very bright and very dark areas. This can cause a problem because
capturing a valuable image of the entire scene will be challenging. If the exposure is set to capture
a very light image area, it will cause under-exposure in other areas and vice versa. Another issue
related to the exposure time is the presence of motion blur. The image scene will change during
the exposure during fast motions and cause a blurring effect. Even if there are no exposure issues
and sharp images are obtained, there is no guarantee that the image is valuable in a VO context.
For example, Low-texture areas with no unique features would make it very difficult to perform
tracking.

All the cases above make VO unreliable because feature tracking becomes difficult. In a VIO
framework, the same issues would not be as critical because the inertial measurements can be
integrated to estimate the motion of a system in the absence of visual information. However, pure
integration of inertial measurements is unreliable over a longer period. The presence of biases and
noise would lead to a quickly drifting estimate upon integration, making them unfit for motion
estimation by itself. In combination with the camera’s ability to capture scene details and perform
localization based on surrounding features, this drift can be corrected.

An issue related to monocular VO, visual odometry with just one camera, is the ambiguity of
scale. Different strategies have been tried to solve this scale ambiguity problem by introducing a
scaled constraint to the estimation. For instance, [5] proposes to use the assumption of a planar
ground and a fixed distance from the ground to the camera. They argue that this is usually
valid for mobile robots and vehicles moving indoors or on roads. These kinds of assumptions are
not necessary for VIO systems. IMU measurements include metric measures in acceleration and
angular rate, rendering scale observable in the overall state estimation.

Another advantage of using inertial measurements is to gain observability of pitch and roll. Mar-
tinelli shows that when gravity is present, these states will be observable modes in the dynamics

9

[22]. In the case of no movement, the accelerometer will only measure the gravitational pull on
the sensor. This gravity vector can be decomposed onto the three accelerometer axis, making
it possible to calculate its pitch and roll. However, it will not yield any information about the
rotation around the gravity axis, i.e., yaw/heading angle.

2.3 Stereo triangulation and disparity

One of the biggest advantages of stereo systems is that they make it possible to initialize the depth
of features from a single image pair. While a monocular camera can only induce the direction of a
feature, a perfect stereo system with infinite resolution can, in theory, pinpoint the exact point of a
feature. This is done by triangulating the feature position, using knowledge of the camera models
and their spatial configurations. Figure 4 illustrates the concept in a simplified 2-dimensional case.
The cameras L and R both see a feature P in their image.

Figure 4: Illustration of a triangulation scheme for a stereo camera system.

The feature, P, is projected to image coordinates xL and xR respectively. From the figure, we can
identify two sets of similar triangles, one for each camera projection. Since the side ratios between
two similar triangles must be constant, we can set up one equality for each camera:

f

z
=

xL

x
,

f

z
=

xR

x− b
(11)

With the known quantities f (focal length), xL, and xR (image plane coordinates), we have two
equations with two unknown variables corresponding to the unknown coordinates of the feature.
Simple algebra yields the following closed-loop expression for x and z

z = f
b

xL − xR
, x = xL

b

xL − xR
(12)

10

(a) Baseline=12.5cm (b) Baseline=25cm

(c) Baseline=12.5cm (d) Baseline=25cm

Figure 5: Example of how disparity grows with baseline and decrease with distance. The left and
right images are captured with baselines of 12.5cm and 25cm respectively. It is clear from (a) and
(b) that the disparity is larger for the images captured with a baseline of 25cm. The effect of scene
distance can be seen as the disparity of both (c) and (d) is greatly reduced from (a) and (b).

We can see that the difference between camera pixel coordinates xL − xR is inversely proportional
to both parameters. This value is often referred to as the stereo disparity, d. From eq. (12) we
can see that the disparity is significantly decreased with distance to an object, but also with the
baseline of the camera system. Figure 5 illustrates this effect with one set of images from ∼ 2m
and one set from ∼ 10m.

Since the image sensors are discretely divided, the detected disparity accuracy will decrease with
lower image resolutions. Other noise can also be introduced by inaccurate camera modeling and cal-
ibration. Since the noise will have a relatively bigger impact on small disparities, the triangulation
should, in theory, suffer from smaller baselines on large distances where the disparity becomes close
to zero. In such cases, increased resolution and baseline should improve the accuracy. Since higher
resolution demands higher computational effort, this is not necessarily plausible. High baselines
can also become an issue, both regarding the use of space and feature matching quality. When the
baseline increase, the change in the viewpoint of a feature can yield a less accurate cross-camera
match. This is especially relevant for close-range matching. For these reasons, the best camera
resolution and baseline choice will vary with the resources available and feature distances.

2.4 ROVIO

ROVIO [4] is a VIO framework created by the Autonomous Systems Lab at ETH, Zurich. It can
be categorized as a filter-based VIO using direct feature tracking. The framework is relatively
lightweight, which makes it suitable for aerial robots. Due to its direct front-end with multi-level
patches, the method is robust to low texture scenes, an important factor for VTOL applications in
changing weather conditions. It is also possible to incorporate multiple cameras, making it possible
to utilize disparity to initialize feature depths.

11

Front-end

Multilevel patches

Every feature is described by a multi-level patch, P = {P0, P1, ..., PL} where L is the number of
levels in the patch. Every patch level Pl is a n× n image patch taken at the l’th resolution level.
For each level, the resolution image resolution is down-sampled by a factor of 2. This means that
P0 will be a full resolution patch while patch Pn will have a reduced resolution of a factor 1

2n . Since
the patch size for each level is constant, patches of higher levels will cover a larger area of the scene.
Using these patches as feature descriptors has the advantage of taking a large set of pixels into
account in the filtering process. In contrast to indirect methods, this approach inherently considers
the scene’s texture, making it possible to track non-corner-shaped features such as lines. It also
makes the tracking more robust to lighting conditions, image blur, and low-texture scenes. During
VTOL in an outdoor environment, one can not guarantee anything about scene conditions. Foggy
weather could lead to low-texture image frames, and lightning conditions will not be predictable.

Photometric error and jacobian

For an image patch P = {P0, ..., PL} with coordinate p, each patch pixel pj at image level l has
the photometric error given by eq. (13). Il represents the intensity values of an image at level l.
Illumination differences between images are taken care of by the a and b values, and sl is a scaling
factor used to correct for resolution differences in the higher patch levels. The matrix D is used
to account for warping effects between images and will be explained later.

el,j(p, P, I,D) = Pl(pj)− aIl(psl +Dpj)− b (13)

By stacking all error terms in a vector b(p̂, P, I,D), where p̂ is the current estimate of the patch
position, we can formulate the minimization of intensity errors as a Gauss-Newton optimization
problem.

b(p̂+ δp, P, I,D) = A(p̂, I,D)δp+ b(p̂, P, I,D) (14)

A(p̂, I,D) denotes the jacobian of the error terms and δp a perturbation in the patch position.
Although this can be solved numerically by a nonlinear optimizer, the dimensionality of A is way
too big for this to be efficient. We shall see later how this problem is solved in the update step of
the filter.

Patch warping

When a camera is moved around, objects in the scene will appear warped in different ways de-
pending on the camera’s perspective. This warping effect should be accounted for when comparing
feature patches between images to achieve optimal results. Figure 6 shows an image of a chess-
board that has been warped from the first image to the second. The same feature in the two
images should cover the same areas to get the most information from the photometric error. We
can see that simply reusing the patch shape from the first image does not work very well in the
second. On the other hand, the warped green patch captures the exact area of the original patch
from the first image. This warping can be described mathematically by

D =
∂p2

∂p1
=

∂π(µ2)

∂p1
=

∂π(µ2)

∂µ2

∂f(µ1)

∂µ1

∂π−1(p1)

∂p1
(15)

where π() is the camera projection model, f() is a process model transforming the bearing vector
µi of a feature from frame i to i + 1 and pi is the pixel coordinate of a feature in frame i. The

12

Figure 6: Patch warping example. Note that the two images are scaled differently, such that the
original patch (red) is really the same size.

formula can be interpreted as a jacobian matrix describing how a perturbation around a feature
position will affect the projection in the next frame.

Feature Management

Detection of new features in ROVIO is based on the FAST corner detector [30] and provides a
large number of candidates. After candidates close to current features are removed, the rest is
sorted based on a gradient-based score. This score is based on calculating the eigenvalues of the
matrix H, where gx and gy are the image gradients in the x and y directions of the feature. It
is similar to the one proposed by [35] but extended to work for multi-level patches. In order to
obtain a good distribution of features over the image, a bucketing technique is used to ensure that
there are not initialized many features in the same area.

H =

[
g2x gxgy
gxgy g2y

]
(16)

The original Shi-Tomasi score ranks a feature based on the minimal eigenvalue of H. This is
motivated by interpreting the eigenvalues as the gradient size in the direction of their corresponding
eigenvectors. A good corner feature should therefore have two high eigenvalues. In ROVIO, the
sum of both eigenvalues is used to include edges in addition to corners. Even though edges might
have a minimal eigenvalue in the direction of the edge, they can introduce much information in
the opposite direction. Including such features can increase the system’s robustness in low-texture
scenarios with few corner points.

To avoid a continuously growing state space with old and useless features, evaluations of the features
are performed regularly. The IEKF is not very scalable, so a large state space should be avoided to
keep the runtime feasible. After every update step in the filter, all features are subjected to several
tests to check their validity. The obtained innovation residuals are compared to the predicted
innovation covariance for every feature. If the covariance weighted norm of residuals precedes a
certain threshold, the features are rejected. The features are also rejected if the total intensity
error is above a certain threshold, regardless of its predicted covariance. Further, a local texture

13

test is performed by comparing the residuals of four points around each feature with the residual
of the actual feature. If the residuals surrounding the feature are not sufficiently larger than the
feature residual, the area is considered too uniform, and the feature is rejected.

In addition to these individual feature tests, three additional quality parameters are used to rank
features against one another.

1. Global quality: How often has the feature track been successful since initialization?

2. Local quality: How often has the feature track been successful when predicted to be in the
field of view?

3. Local visibility: How often has the feature been in the field of view?

These quality measures ensure that an upper bound of features is maintained in the filter state.
An adaptive threshold ensures that more old and poor features are filtered out to make room for
new ones.

Back-end

The back-end is based on an iterated extended Kalman filter. Starting from the prior state estimate
x−
k , the dynamics are linearized about iteratively refined linearization points x+

k,j , where k denotes
the time and j the iteration number in the current update step. This makes the filter much more
robust to poor initial estimates, which becomes essential when estimating newly initialized and
uncertain landmarks. Once the filter has converged, the number of iterations will be reduced
significantly, making it much more effective.

Formalizing the filter

The propagation step takes the a posteriori state estimate at a previous time step, x+
k−1, and

estimates the a priori estimate in the current time step, x−
k , based on the model dynamics f . The

corresponding covariance is also calculated by eq. (18).

x−
k = f(x+

k−1,0) (17)

P−
k = F k−1P

+
k−1F

T
k−1 +Gk−1W

+
k−1G

T
k−1 (18)

Here, F k−1 and Gk−1 are the jacobians of the dynamics with respect to state xk−1 and the process
noise w ∼ N (0,W) respectively.

F k−1 =
∂

∂xk−1
f(x+

k−1) (19)

Gk−1 =
∂

∂wk−1
f(x+

k−1) (20)

The update step can be considered iterative in two ways. First of all, it performs update steps for
each feature individually. Each feature i neglects the other features in the state and performs the
update step considering only the current feature. Secondly, it performs the update step several
times for each feature, iteratively refining the linearization points for each step, starting from the
first predicted estimate at time k, x+

k,0 = x−
k . The j’th update step will then yield the following

jacobians:

14

Hk,j =
∂h

∂xk
(x+

k,j ,0) (21)

Jk,j =
∂h

∂nk
(x+

k,j ,0) (22)

Lk,j =
∂(x−

k ⊞∆x)

∂∆x
(x+

k,j ⊟ x−
k) (23)

where h(x+
k,j ,nk) defines the innovation term yk,j and Lk,j is necessary to account for special

linearizations of the rotational state components, and ⊞, ⊟ are addition and subtraction operators
adapted to work for rotations. Because of constraints enforced on 3D rotational matrices, they
require a special kind of mathematical analysis based on Lie theory. Solà et al. describes this
phenomena and it’s importance in robotics applications such as state estimation and control[36].
Using eqs. (21) to (23) we can calculate a Kalman gain Kk,j and state update terms ∆xk,j for
each iteration j as

Sk,j = Hk,jL
T
k,jP

−
k,jLk,jH

T
k,j + Jk,jRkJ

T
k,j (24)

Kk,j = LT
k,jP

−
k Lk,jH

T
k,jS

−1
k,j (25)

∆xk,j = Kk,j

(
Hk,jLk,j(x

+
k,j ⊟ x−

k)− h(x+
k,j ,0)

)
−Lk,j(x

+
k,j ⊟ x−

k) (26)

x+
k,j+1 = x+

k,j ⊞∆xk,j (27)

This update step is repeated until the state estimate converges, i.e., ∆xk,j is below a specified
threshold. The a posteriori covariance is only updated after convergence at the n’th iteration with
the formula

P+
k = (I −Kk,nHk,n)L

T
k,nP

−
k Lk,n (28)

State definition

The filter state x is defined by the following variables.

• r := position of IMU

• v := velocity of IMU

• q := attitude of IMU

• bf := bias of accelerometer

• bω := bias of gyroscope

• c := translation from IMU to camera

• z := rotational from IMU to camera

• µi := bearing vector to landmark i

• pi := distance parameter of landmark i

Propagation step

The propagation step is driven by the IMU measurements denoted as f̃ and ω̃ for accelerometer
and gyroscope measurements respectively. After correcting for bias, bf , bω and noise wf ,wω, the

estimated accelerations and angular rates, f̂ and ω̂, is obtained.

f̂ = f̃ − bf −wf (29)

ω̂ = ω̃ − bω −wω (30)

15

We can further calculate the estimated camera velocity and angular rate, where z() denotes a
rotation from IMU to the camera frame.

v̂C = z(v + ω̂×c) (31)

ω̂C = z(ω̂) (32)

Using these definitions, we can write the dynamics of the system ẋ = f(x) as follows.

ṙ = −ω̂×r + v +wr (33)

v̇ = −ω̂×v + f̂ + q−1(g) (34)

q̇ = −q(ω̂) (35)

ḃf = bbf (36)

ḃω = wbω (37)

ċ = wc (38)

ż = wz (39)

µ̇i = N(µi)
T

(
ω̂C + n(µi)

× v̂C

d(ρi)

)
+wµ,i (40)

ρ̇i = −n(µi)
T v̂C/d

′(ρi) + wp,i (41)

N(µi) is the projection of a 3D vector onto the 2D tangent space of the bearing vector µi,
n(µi) is the 3D unit vector corresponding to µi and g is the gravity vector expressed in the
world frame. d(ρ) is the distance function and d′(ρ) its derivative. This function takes a distance
parameter and produces the actual distance to a feature. By default, ROVIO uses the inverse
depth parameterization

d(p) =
1

p
(42)

To match the formulation of eq. (17), these equations should be integrated over the specified
time-step ∆t, which in the case of ROVIO is done using a forward-euler scheme.

x−
k+1 = f(x+

k ,0) = x+
k ⊞∆tẋk (43)

While trivial for most of the states, this becomes a more complicated calculation for the rotational
states, q, z and µ because of the Lie theory related issues mentioned earlier. The equations are
given underneath, where the ⊗ operator is defined as the quaternion product and exp() is defined
as the exponential map from angle to quaternion following the Hamilton convention in eq. (47).

qk+1 = qk ⊗ exp (∆t(bω,k +wω,k − ω̃k)) (44)

zk+1 = exp(∆twz,k)⊗ zk (45)

µi,k+1 = exp

(
∆t
((

I − n(µi,k)n(µi,k)
T
)
ω̂C

+ n(µi,k)
× v̂C

d(ρi,k)
+N(µi,k)wµ,i

))
⊗ µi,k (46)

exp(θ) = I − (1− cos(||θ||))θ×

||θ||2
+

(||θ|| − sin(||θ||))θ×2

||θ||3
(47)

16

Update step

ROVIO applies the photometric error as a direct innovation term in their Kalman filter update.
The error term is very high-dimensional, which would lead to a high computational cost. However,
by observing that eq. (14) is only dependent on the pixel coordinate pi for patch Pi, it should
be possible to reduce it to a two-dimensional error term. This can be done by employing a QR-
decomposition of the jacobian matrix.

A(pi, I,Di) = Q(pi, I,Di)R(pi, I,Di)

=
[
Q1(pi, I,Di) Q2(pi, I,Di)

] [[R1(pi, I,Di)
0

]
(48)

Where the innovation term yi and its jacobian Hi for feature i becomes

yi = Q1(pi, I,Di)
T b(pi, Pi, I,Di) (49)

Hi = R1(pi, I,Di)
dπ

dµ
(µ+

i) (50)

These results can be used directly in the update step equations defined from eq. (24).

Multiple camera extension

The filter description above is based on a monocular VIO setup, although ROVIO does have the
ability to integrate multiple cameras in the filter.

In the case of multiple cameras, the filter state becomes more or less the same. Extrinsic parameters
for the extra cameras must be added, and the features must be parameterized for a specific camera.
If features are used in the filter update of a different camera than the one used for parameterization,
a transformation of the bearing vector to the correct frame has to be performed. Since this step
is highly reliant on the transformation between cameras, the performance of stereo systems will
depend heavily on accurate calibration.

17

3 Related Work

In a paper comparing several different state-of-the-art VIO systems, Delmerico and Scaramuzza
score the systems on their per-frame processing time, CPU and memory usage[6]. Their results
show a clear positive correlation between these properties and the accuracy of a system. Across
several experiments, they found that VINS-mono[27] was the most consistently accurate system.
This method applies fixed-lag smoothing, which improves consistency over the previous frames.
In addition to this, the algorithm includes temporal calibration of the sensors online, making
the method less affected by synchronization issues[28]. Another promising system that could
show high accuracy despite the long per-frame processing time was OKVIS[17]. Delmerico and
Scaramuzza argues that this shows that the algorithm is robust but points out that the data
collected did not include high-velocity motions, which can be challenging to handle with low frame
rates. This method, like VINS-mono, applies fixed-lag smoothing to improve consistency across
camera frames. Although this can increase the accuracy of the systems, it does not come without
its price. The smoothing significantly increases computational costs and memory usage. In contrast
to this, ROVIO[4] applies a much cheaper pure filter method for the image updates. Although it
is evaluated to have lower accuracy than VINS-mono and OKVIS, its lightweight nature can make
it a better choice as resources can be freed up for other tasks such as motion planning and control.

In VIO, the quality of the input data is essential for the system’s performance. The actual quality
of measurements does not only rely on the quality of the sensor. Another critical factor is how we
associate the measurement to a point in time. If measurements are given wrong timestamps, it
can corrupt the estimation process and lead to significant inaccuracies. In a multi-sensor system
such as VIO, relating all sensors to a common reference clock can significantly impact the system’s
quality. An approach used by Nikolic et al. is to have an onboard MCU to oversee the timestamps.
This keeps track of the reference time and periodically triggers the IMU and cameras to start data
acquisition[24]. They also point out a critical difference between the IMU and camera acquisition.
Because the camera needs some exposure time to retrieve data, the measurement will suffer from
an exposure-dependent offset, assuming that the ideal measurement timestamp is in the middle of
the exposure. They propose a strategy where the camera trigger signal is sent slightly earlier to
account for the exposure offset.

Although the method mentioned above can reduce significant errors related to time offsets between
different sensors, there still may be constant offsets related to hardware delays. The signal used to
trigger a camera can have significant delays during transmission, e.g., due to internal signal filtering
in the camera. To account for this, Furgale et al. suggests a software solution to estimating the
temporal offset between sensors in continuous time[8]. The method proposed jointly estimates both
temporal and spatial differences between the IMU and camera sensors by including the temporal
offset as a variable in the optimization process. The procedure is available in the open-source
calibration toolbox, Kalibr[9].

Varying lighting conditions can be challenging in many VIO applications, including outdoor
VTOL. With bad lighting, the cameras will struggle to extract and track features. They will be
rendered useless, and we are left with a dead reckoning IMU system. Mascarich et al. deals with
this challenge in an underground environment by attaching LED lights to their drone[23]. The
LEDs are only triggered to flash when the camera shutter is open to save energy. Whether this
is a possible solution in VTOL is not necessarily given. The experiments were conducted in a
much more confined space, making it easier to illuminate with a restricted light source. If more
powerful equipment is needed, it could become too heavy, big, or power demanding to be applicable.
Another solution to the light problem is to move away from the visual light specter, for example,
applying thermal imaging instead. Khattak et al. concluded nighttime experiments at an height
of 11 meters above a parking lot[14]. Their key-frame-based thermal VIO system showed good
accuracy, indicating that a thermal solution to VIO might be a good option for VTOL at night.
In another paper, Khattak et al. presents a thermal inertial odometry system that is resilient not
only to dark environments but visually degraded scenes in the presence of smoke and dust[15].
This robustness to weather conditions can be of high value to a company such as Aviant, which

18

may need to transport medical goods despite bad conditions.

When it comes to solving the problem of VTOL, much research suggests the use of a target
pattern on the landing site. Both Araar et al. and Lange et al. use patterns designed such that
they are detectable at different distances[2][16]. This is done by utilizing sub-patterns in different
scales, such that different sub-patterns can be recognized at different distances. They both show
that the problem of landing a multi-rotor UAV with visual detection of a landing platform is
plausible, even with a moving target, as in the case of Araar et al. A shortcoming of this type of
solution is the need for a specific platform pattern at the place of landing, making the system less
versatile. Also, occluded scenes may make the pattern invisible, ruining the chance of detecting
the target. They also perform their experiments indoors, with good lighting conditions and low
distances. This is not comparable with an outdoor scenario with unstable weather conditions and
much larger ranges.

The large feature ranges are perhaps on of the main challenges related to VTOL. As discussed by
Warren et al., the stereo disparity is reduced with distance to the scene. For higher altitudes, a
stereo camera system is thus reduced to a monocular system which makes feature depth estimation
more difficult [38]. In their research on fixed-wing aircraft, Warren et al. perform visual odometry
up to heights of 120m. Due to the wrong initial depth estimates from ordinary stereo triangulation,
they suggest a solution where scale is optimized over a bundle of stereo images instead. This yields
a bigger disparity due to the movement of the aircraft between images. Although this effect might
not be as significant in a VTOL case as opposed to a fixed-wing aircraft with much higher horizontal
speeds, it indicates that horizontal excitation of the cameras will improve the observability of a
UAV’s height.

An analysis from Alvertos [1] shows that increasing either the baseline or resolution of the cameras
will improve the triangulation of features at large distances. However, the overlapping field of view
can restrict the stereo’s ability to detect cross-camera features at close distances. To account for
this, Gallup et al. suggests a setup with a dynamic baseline and camera-resolution which can be
changed online[10]. By adjusting the baseline and camera resolution, their system can maintain
sufficient disparity between the cameras across different scene depths. The result is an overall
accuracy less affected by varying feature depths than a regular VIO system.

Another solution to altitude estimation for fixed-wing aircraft is proposed by [40]. Their solution
is based on using a deep neural network to evaluate the height from the ground, based on images
of the runway on which it is landing. With supporting inertial measurements, their network can
predict accurate altitude estimates that significantly outperform standard VIO methods. An issue
related to this type of solution is the need for training data for the network. If a UAV is to perform
VTOL in unknown areas, there is no guarantee that the scene is relatable to the training data for
the network.

19

4 System implementation

The implemented VIO system consists of two cameras and an IMU, all rigidly mounted on an
aluminum rod as shown in fig. 7. All three sensors are connected through a USB interface to
provide sensor data and meta information to an external host computer. The host computer runs
serial drivers to read and process the data.

Figure 7: Prototype created for data collection

4.1 Hardware

Hardware synchronization

In VIO, synchronized data acquisition is key to high-performance systems. All measurements
should be related to the same clock reference, as their timestamps relative to system startup are
used in the estimation process. All measurements are triggered from the same microcontroller unit
(MCU) to ensure this. The MCU is triggered to store a time stamp on an internal microsecond
counter at the time of IMU acquisition. A trigger signal to the cameras is timed with the same
counter to ensure that the cameras and IMU use the same clock reference. The setup is visualized
in the block diagram of fig. 8. Note that the actual images are transferred by a direct serial interface
between the computer and cameras, while the corresponding timestamps are transferred from the
MCU. Images are associated with the correct timestamps in a synchronization node discussed in
section 4.2.

Cameras

The system incorporates two Blackfly S USB3 cameras from Teledyne FLIR. These are color
cameras with a resolution of 1.6 megapixels and a maximum frame rate of 226 frames per second.
The camera is equipped with a USB connector used to transfer image data to a host computer
and control commands to the cameras. The control signal is, among other things, used to reduce
the resolution from 1440x1080 to 720x540 to reduce computational costs and set up the camera
to be triggered by an external source. This trigger signal uses the general-purpose input/output
(GPIO) connections available on the camera. Two such pins are used in the implementation, the

20

Figure 8: High-level diagram of hardware setup

opto-isolated input, and opto-isolated ground pins. The former is connected to a trigger GPIO
pin on the MCU, the latter to MCU GND to ensure a common voltage reference between the two
systems.

Evaluation board and IMU

The IMU and MCU depicted in fig. 8 are tightly integrated on a single circuit board developed
by Aceinna. This is called an evaluation board, and it is produced to make system integration
with the IMU easier for developers. It handles the low-level communication with the IMU and
prepares data for transmission over a UART interface. The onboard MCU is programmed to adjust
the data acquisition process. It is configured to read and transmit IMU measurements at 200Hz.
At every 10th cycle, the MCU sets one of the GPIO pins high to trigger the cameras, yielding a
camera frame rate of 20Hz. It also records the time of triggering, which is sent together with IMU
measurements to the host computer over UART.

4.2 Driver

To collect VIO data, a host computer is needed to run the drivers for the setup. This is implemented
using ROS (Robot Operating System) and consists of three different nodes, the Blackfly Nodelet,
OpenIMU ROS driver and the Synchronizer node.

The Blackfly Nodelet is responsible for communication with the cameras. At system startup,
the cameras are configured, and an image stream is set up between the cameras and the host
computer. Some functionality has been added to the node, but the main content is taken from a
Github repository from NTNU-ARL[26]. Images are read with their frame number, which is used
to associate the image with a timestamp. An exposure-dependent offset is added to the timestamp
after retrieval. By adding half the exposure time, the adjusted timestamp is placed in the middle
of acquisition instead of the very beginning. This timing offset is illustrated in fig. 9, which also
shows the temporal offset (TO). The temporal offset is not accounted for in the driver but in the
ROVIO node and will be discussed further in section 4.3. The exposure-dependent offset is an
essential adjustment in cases with fast-moving scenes where images are blurred due to the motion.

21

Figure 9: Camera timing diagram. The image measurement timing is affected by two offsets, the
temporal offset, and an exposure offset. The temporal offset (TO in the diagram) accounts for
delays between when the trigger signal is sent, and the camera starts exposing. The exposure offset
is equal to half the exposure time of the camera.

Once the correct image stamp is obtained, it is published together with the image on a ROS topic.

The OpenIMU ROS driver [29] is a driver published by Aceinna, used to read IMU data in real-time
with ROS. Some adjustments have been made to handle communication with the other driver nodes
and signal the MCU control acquisition and triggering frequency. The node communicates with
the evaluation board MCU over UART and collects both IMU data and timestamp information.
During an initialization face, the driver waits for signals from the blackfly nodelet, indicating that
a connection to the cameras has been established. Once all connections are established, the driver
signals the MCU to start data acquisition and camera triggering. Together with their corresponding
timestamps, IMU data are sent directly to a ROS topic. Camera timestamps and trigger count are
also received. These are sent to the Synchronizer server, which handles the association between
timestamps and camera measurements.

The last is the mentioned Synchronizer node, which consists of a server storing timestamps and
associating them to camera measurements. This node is created to handle communication between
the IMU and camera drivers. Whenever the camera driver receives an image, it requests its
corresponding timestamp from the synchronizer node, using the image count as a key. These
image stamps are stored in the synchronizer node when received by the IMU driver.

4.3 Calibration

Calibration is the process of finding system-specific parameters that should be used in the math-
ematical description of the system. Since the underlying calibration methods is considered out of
scope for the thesis, they will not be explained in detail. A short summary of how calibration was
performed will however be given.

1. IMU noise parameters

2. Camera intrinsic parameters

3. Camera extrinsic parameters

4. Temporal offset between cameras and IMU

The IMU noise parameters include white noise density and bias random walk of the accelerometer
and gyroscope. The two different noise categories can be considered high-frequency noise and low-
frequency drift that occurs in a signal. IMU measurements were recorded overnight for 18 hours
without moving the sensor to estimate these values. The collected data was analyzed with the
Allan Variance method discussed in [34] using the open-source library from [11].

The camera model uses intrinsic parameters to project 3D points onto the image plane. The
intrinsic parameters describe focal length, optical center, and distortion for the pinhole model used
in this project. Intrinsic calibration was performed using the calibration toolbox, Kalibr [9]. The
intrinsic calibration procedure requires a set of images with a specific type of checkered pattern in
the frame. A regular choice is the aprilgrid shown in fig. 10. With knowledge of the spacing and

22

size of the pattern, the toolbox can optimize the parameters by minimizing the reprojection errors
of recognized edges from the target. It is essential to use a set of images such that the calibration
target covers the entire image frame. This makes the distortion calibration robust in all parts of
the image.

The extrinsic parameters describe the spatial transformations between the cameras and IMU. These
transformations are essential to predict the movement of features in a camera frame. Without the
spatial information of the system, one can not predict how the camera moves based on IMU
measurements. The temporal offset calibration is closely related to the extrinsic parameters, as
this indicates how much the time source for each camera deviates from the IMU. In our case, all
sensors are stamped with the same clock, but there are still delays in the camera triggering process
that need to be accounted for, such as internal signal filtering in the camera inputs. This temporal
offset is illustrated in the timing diagram in fig. 9, denoted as TO. Both extrinsic parameters and
temporal offset were calibrated using Kalibr[9]. A video sequence is required for this calibration,
containing a target pattern as shown in fig. 10. It is vital that all IMU axis is adequately exited
and that the movements are smooth.

Figure 10: Aprilgrid target pattern (created with Kalibr[9])

23

5 ROVIO extension

Part of the thesis has been devoted to extending the ROVIO algorithm to take advantage of
the specific problem of VTOL. By default, the method is a general-purpose algorithm, and so it
does not apply prior knowledge about the pose trajectory or camera scenes. In VTOL scenarios,
however, we can make a few assumptions about the geometry of the surroundings.

The extension is built around the assumption of a flat ground. Relative to the descending or
ascending direction, usually the direction of gravity, the ground should appear as a normal plane.
In addition to this, the extension assumes that there can be multiple such planes. This can, for
example, be a flat platform on top of a flat rooftop and even include the flat ground on which the
building stands. With this assumption in mind, we can utilize the fact that the vertical distance
from the drone to each point has to correspond with one of the planes. This is illustrated in fig. 11,
where we can see that the red outliers fail to fit either of the two heights. A thorough mathematical
description of how this is done will be given, but some notation has to be defined first. In the rest
of this section, A

PQr refers to a vector from P to Q, defined in a reference frame A. Furthermore,

the rotation from a reference frame B to the reference frame A is defined as A
ABq. Using this

formulation a vector can be transformed between reference frames by eq. (51).

A
PQr = A

ABq(
B

PQr) (51)

Figure 11: Visualizing the cluster filter. Features are filtered out based on their vertical distances
from the system. Uncertainties in feature positions are neglected in this illustration, although they
are accounted for in the actual implementation.

A general way to calculate the vertical distance between the drone and a feature P is necessary.
Because of the robocentric formulation, the position of a feature P is given by its bearing vector
and distance parameter. This is parameterized in the camera frame and the position of the feature
can thus be written as a vector on the form C

CPr = [Cx,Cy,Cz]. Because the camera extrinsics are
known, we can easily find the vector from the IMU to P in the IMU frame M as

24

M
MPr = M

MCq(
C

CPr) +
M

MCr (52)

This vector can be transformed into the world frame W by applying a rotation with the robot
orientation available in the filter state, denoted here as W

WMq

W
MPr = W

WMq(M
MPr) =

W
WMq(M

MCq(
C

CPr) +
M

MCr) (53)

With this description, the vertical distance hP from IMU to a feature P can easily be extracted
from the third component of W

MPr. This is because the world frame z-axis Wz = [0, 0, 1] is enforced
to be aligned with the direction of gravity upon initialization.

With a formulation of the vertical distance of all the points, we can take the set of distances
and perform a one-dimensional clustering algorithm to find the most reasonable distances for each
plane. Only features with sufficiently low uncertainty-to-depth ratios are considered to make the
clustering more reliable. The clustering is performed with a k-means algorithm which iteratively
refines cluster positions and assigns points to the closest one[20]. This procedure is illustrated for
the one-dimensional distance problem in fig. 12. The clustering procedure requires a predetermined
number of clusters k for which a center value is assigned. With the position of these k centers,
we have our best guess of where the different planes are located. The output from the procedure
also includes an uncertainty measure of each cluster, defined as the standard deviation of all points
assigned to each center. This is illustrated by the red and blue error-bars in fig. 12. Features whose
depth is not close enough to the k values are filtered out. In this step, the uncertainty of clusters
and feature positions are accounted for. If the scene contains a high spread of feature distances,
the cluster filter will be less likely to neglect outlying features. For a feature P with a vertical
distance hP from the drone, the criteria for matching a cluster i with vertical distance hi is given
by

||hP − hi|| − 3std(hP)− std(hi) < 0 (54)

where std() is the standard deviation of a variable. The equation shows that features with high
variance have a low chance of being filtered away, giving newly initialized features a chance to
converge in the filter. Hence, the feature is only considered an outlier if it converges to an outlying
distance. Subtraction of the cluster deviation is used to penalize uncertain clusters. This gives
some slack to the assumption of a completely flat surface and accounts for inconsistencies in the
plane.

Updating the feature depth

In addition to detecting outliers, the cluster centers can provide a ”ground truth” for the feature
depths. After a feature is assigned to a cluster i, its depth could be readjusted to perfectly match
the cluster center with a depth di. However, a correction step is implemented instead of completely
adjusting the depth to give some slack to the planar assumption. The correction is based on a
one-dimensional Kalman filter update, where the observed cluster depth di corresponds to the
state measurement, and the current depth estimate dp is analogous to the prior state estimate.
The procedure is illustrated in fig. 13. To update the feature, we thus need to find the cluster
depth estimate and its covariance. The depth can be found by scaling the feature bearing vector
such that the vertical feature distance hp equals the vertical cluster distance hi. This gives the
following expression for the cluster depth

di =
hi

hp
dp (55)

Its standard deviation std(di) =
√
Pi can be calculated by performing a measured depth calculation

for a hypothetical cluster with center at a distance of one standard deviation from the original

25

Figure 12: Illustration of k-means clustering for the 1 dimensional distance separation problem.
Circles correspond to features vertical distances used in the clustering process. Error-bars indicate
centers, together with their standard deviation.

center, lets call this di+. The difference between the two calculated depths is equal to the standard
deviation of the measurement, so

Pi = std(di)
2 = (di+ − di)

2 =

(
hi + std(hi)

hp
dp −

hi

hp
dp

)2

(56)

Since the prior feature depth dp and its covariance Pp is already known in the filter, we have
everything we need to calculate the adjusted a-posteriori depth d+p . With these values in place,
and the prediction value and uncertainty present in the filter, we can calculate the corrected depth
by a standard Kalman update, given in eq. (57).

K =
Pp

Pi + Pp

(57)

d+p = dp +K(di − dp) (58)

P+
p = (1−K)Pp (59)

To control the strength of the update extension, a positive scaling factor s is introduced to the
calculation of the Kalman gain, making the gain less corrective for s < 1 and more aggressive for
values of s > 1. The Kalman gain equation then becomes

K = s
Pp

Pi + Pp

, s ≥ 0 (60)

26

Figure 13: Depth update based on clustering measurement. Colored circles and lines indicate
the respective depths and standard deviations. After a cluster detection, features assigned to the
cluster can be updated in direction of the center. This is done by adjusting the predicted depth in
direction of the cluster depth illustrated in the figure.

Adjustment for non-VTOL experiments

The formulation described above only works when the distance of interest is aligned with the
direction of gravity. In experiments performed for this thesis, the system has been carried up to
and away from vertical walls to simulate VTOL, so the calculations should be adjusted to find the
distance in the direction of the wall instead. To make this adjustment, a change in the ROVIO
initialization is necessary. The original method use a measurement from the accelerometer Mf0 =
[fx, fy, fz] to initialize the rotation W

WMq0 of the robot. ROVIO requires a z-axis Wz = [0, 0, 1]

aligned with the direction of gravity, induced by the initial measurement Mf0 with the following
equality

W
WMq0(

Mf0) = ||Mf0||Wz (61)

The problem with this in the experiments is that there is no way to tell how the robot pose will
be aligned with the other axis Wx and Wy. Small changes in roll and pitch upon initialization
will therefore affect the initial yaw angle of the robot, meaning that there is no general way to
say anything about a global distance in these directions. To account for this, an adjustment was
made to the initialization process. This is essentially done by concatenating the original initial
rotation W

WMq0 with an alignment rotation W
WMqalign defined by aligning the robot y-axis in the

world frame Wym = W
WMq0(

Mym) to the world-frame x-axis.

W
WMqalign(

Wym) = Wx (62)

This results in an initial pose
W

WMq′
0 defined as

W
WMq′

0 = W
WMqalign ⊗ W

WMq0 (63)

where ⊗ is defined as the quaternion product. With this adjustment, we can use the filter described
earlier as long as we align the prototype with the direction of the wall from initialization. As long

27

as the IMU y-direction points against the wall, we can choose the first component of W
MPr as the

distance of interest for feature P .

28

6 Results and discussion

All results have been divided into a series of experiments. The goal is to keep the findings as tidy
as possible so that it is easier to look at how individual changes affect system performance. The
experiments test out various features to see how they affect the accuracy of the estimated traject-
ories. All collected data is meant to simulate a VTOL scenario, where different walls represent the
ground. Experiments include trajectories where the system is carried up the wall to simulate a
landing and back to the starting point, similar to a take-off.1 The data should compare well with
VTOL because most or all features appear on a flat surface at considerable depths. Although it
should be possible to draw some conclusions on relevant issues related to VTOL, further research
and testing should be performed with an actual aerial vehicle to retry the results.

Each of the following experiments will give a brief introduction to the motivation of the experiment,
present some results, and discuss the observations. Since no ground truth is available, the evalu-
ation metrics are somewhat limited. Therefore, most results are derived from internal estimation
values and compared with real-life measurements in the testing area. Underneath is a collection of
frequently used evaluation methods which will be used in several experiments. These are explained
here to avoid repeating their intuition every time they are used.

Total position error

The first is a measure of the overall accuracy of a trajectory. Utilizing the fact that all trajectories
have the same start and ending point, we can calculate the total position error by finding the
position difference between the initial and final position estimates. Typically, these results will be
presented as a scatter plot, where the x-value represents the baseline used for that particular run
and the y-value represents the total position error. An example of this is given in fig. 14a.

Directed translation plot

The second trajectory measure looks at how far the system is estimated to move in a specified
direction, defined here as the directed translation of a trajectory. Most interestingly is the direction
of the wall, which corresponds to the height trajectory of an actual VTOL scenario. This is
illustrated to the left in fig. 15. Since all trajectories in a dataset follow approximately the same
path, the point where the system turns around to go back to its origin is the same for all runs of the
same trajectory. The distance from this point to the initial position has been measured physically,
and can provide an approximate ”ground truth” for evaluating the estimates. This information
can be collected in a scatter-plot for directed translation as shown in fig. 14b. A typical use-case
for this type of metric is to see how a trajectory scale is captured by the system. Even though a
particular estimate has a very low total position error, it can have a very bad scale estimate, which
indicates that the trajectory estimate is in fact quite bad.

Directed feature distance

Some of the results and discussions will be referring to directed feature distances. This is simply
the feature depth, decomposed in direction of the wall. A visual illustration of this can be found
in fig. 15. This is a useful way to measure feature positions in the following experiments because
the distance between the cameras and the wall is usually known, albeit with limited accuracy due
to texture in the wall an inaccurate measurements. Nevertheless, this information can produce
approximate ground truths when analyzing the accuracy of a features estimated position.

1For a more visual representation of the collected data, please visit the video playlist on youtube at ht-
tps://youtube.com/playlist?list=PLGvCS2eO6FFSZ15 l0nN -fzCSyCDjXLt for video examples of the different ex-
periments.

29

https://youtube.com/playlist?list=PLGvCS2eO6FFSZ15_l0nN_-fzCSyCDjXLt
https://youtube.com/playlist?list=PLGvCS2eO6FFSZ15_l0nN_-fzCSyCDjXLt

(a) Total position error example (b) Directed translation example

Figure 14: Example figure, illustrating how typical figures might look like for (a) Total position
error, and (b) Directed translation.

Figure 15: Illustration of the directed translation and directed feature distance metrics. The
directed translation (1.) is a measure of how far a trajectory has moved in direction of the wall.
The directed feature distance (2.) is a features depth, decomposed in direction of the wall.

30

6.1 Experiment 1 - On the effect of initial depth estimates

In general, it is always preferable to have as accurate initial conditions as possible when it comes to
navigation. This also includes initial estimates of the feature in a VIO system. From the perspective
of a camera, the bearing vector to a feature is well-defined on initialization, as it can be extracted
from its detected pixel coordinate. The depth however is not observable based on a single image
observation. In ROVIO, this is solved by giving a newly initialized feature either a fixed initial
depth value or the median value of the other camera features, depending on how well the filter
has converged. On initialization, the filter has not had time to converge, making the initial depth
parameter the only viable option. In stereo systems, it is possible to adjust the value, however.
If the feature can be found in both camera frames, it is possible to triangulate the depth of the
feature as discussed in section 2.3. To match features between cameras, a feature bearing vector is
transformed from one camera frame to the other. From this initial prediction, a local search for the
feature is performed in the second camera. If the initial depth estimate is bad, we should expect the
cross-camera transformation to be less accurate, negatively affecting the triangulation accuracy.
Figure 16 illustrates how the initial depth estimates affects this cross-camera transformation.

Figure 16: Illustration of how depth estimates affect the predicted bearing vector of a secondary
camera. Depending on the left cameras depth estimate, the features bearing vector in the right
camera frame changes.

To test this theory, data have been sampled from three different types of trajectories in front of
the main building. All trajectories follow a straight path in direction of the main building wall.
The system is carried up to the wall and back to the same starting point, with cameras constantly
facing the building. The main difference between the three trajectories is their starting point.
They are initialized from a distance of 10, 20 and 25 meters away from the wall. An example of
a typical starting point for the 25m trajectory can be seen in fig. 17. Each of the three types of
trajectories has been recorded five times with six different baseline configurations. Each run was
evaluated with different initial depth estimates, ranging from 2 to 99 meters. The values tested
are indicated on the x-axis of figs. 18 and 19.

An overview of how the initial depth parameter affect the triangulation can be found in fig. 18.
Figure 18a shows how the number of triangulated features vary with the initial depth parameter
while fig. 18b show the average directed distance of triangulated features. As a motivation for why
the depth estimate matters, fig. 20 show how the predicted location of a feature after a cross-camera
transformation is affected by the features depth estimate. Finally, an analysis of how the system’s
overall accuracy is affected can be seen in fig. 19, where the total position errors are plotted.

31

Figure 17: Main building from 25m distance. Each square represents the location of a multilevel
patch in the image, and its color indicates which camera frame the feature is represented in.

Discussion

A visual analysis of fig. 20 clearly shows that a bad depth estimate negatively affects the predicted
location of a left camera feature in the right camera. Running a patch alignment algorithm on
the two predicted patch locations, using the red patch as a reference, it should be clear that the
green prediction has the best chance of aligning correctly due to a superior initial condition. This
implies that a good initial depth estimate yields a higher chance of finding a correct feature match
and performing an accurate triangulation.

Support for this argument can be found in fig. 18, where it is clear that too low initial depth
estimates lead to much fewer and less accurate triangulations. The triangulated depths are very
low for low initial depth values, indicating that the patch alignment fails to find the correct patch
and matches two different points in the scene. Interestingly, too high initial depth values do
not significantly affect the triangulation accuracy. There is no apparent change in the number
of triangulated features or their depths for the initial wall distances of 20 and 25 meters. This
indicates that overestimating the initial depth estimates from large distances will have little effect
on the triangulation procedure. This is in line with predictions from section 2.3, saying that the
disparity approaches zero as the distance to features increases. With growing depth estimates, the
predicted disparity also approaches zero, so the difference between the two becomes very small and
a patch alignment is able to find the correct match. On the other hand, when the actual distance
gets closer, the observed disparity increases, so the difference between predicted and observed
disparity increases as well. This is a probable reason for why we see a decline in the number of
triangulated features from 10 meters, as the initial depth estimate increases in fig. 18a.

If we further analyze the trajectory errors in fig. 19, we see that the average position errors
more or less converge with increasing initial depth values. Since the trajectories starting from
20 and 25 meters can triangulate with the same accuracy for increasing depth values, this is not
surprising. What may seem odd at first is that the trajectory from an initial distance of 10 meters
also performs equally well with increasing initial depth values. One reason for this could be that
ROVIO initializes the covariance of a feature based on its depth. A high initial depth value will
yield low faith in the features from the start. The high covariance leads to a bigger trust in IMU
measurements in the period before features can converge. Since this experiment is performed with

32

(a) Number of initially triangulated features as a function of the initial depth value.

(b) Average directed distances (as illustrated in fig. 15) of initially triangulated fea-
tures as a function of the initial depth value.

Figure 18: Analysis of the how the initial depth value affects the triangulation accuracy from for
the first set of images in a set of VIO datasets. The three lines correspond to three different types
of trajectories, starting from 10, 20 and 25 meters away from the wall. Ticks on x-axis is only
present for the tested initial depth values.

33

Figure 19: Average total position error as a function of the initial depth value. The three lines
correspond to three different types of trajectories, starting from 10, 20 and 25 meters away from
the wall. Ticks on x-axis is only present for the tested initial depth values.

Figure 20: Visualization of the effect of depth estimates on cross-camera predictions from a wall
distance of ∼ 25m. The colored square represent the correct size of the multilevel patches used in
my experiments. The green and blue patches are predicted with feature depth estimates of 25m,
and 2m, respectively.

34

an initialization maneuver (which will be explained further in the next experiment), the features
converge very quickly despite their bad initialization, so the propagated errors are not very big.
Similarly, we can see that the errors are very big when a low initial depth value is given. This is
very likely because the depth covariance is assigned a proportionally small value. Bad initial values
with low covariance is certainly not preferable, and introduce large errors into the filter. This is
however a very specific problem to the algorithm. Slight changes in the source code of ROVIO
should resolve some of these issues.

To summarize, it seems that the initial depth estimate indeed does matter. The results indicate that
overestimating does not negatively impact performance too much, while underestimation can cause
larger problems. At least, this seems to be the case with ROVIO, which is not customized to this
type of trajectories. Two main problems occur with this algorithm related to VTOL. The first is the
fact that the system perform local searches for patch alignment upon triangulating feature depths.
This works well with good initial estimates of the features depth, but it may end in horrible feature
matching depending on scene depth and depth estimate. The local feature matching alignment is
justified by the fact that it reduces computational costs significantly to enable the system to run
at a high frequency in real-time scenario. A suggestion to the specific problem of VTOL could
however be to perform only the initial triangulation procedure with a wider, or even a global image
search to ensure proper depth initialization of the features. The second problem related to ROVIO
and VTOL seems to be the fact that the features depth covariance is heavily underestimated when
given low initial depth values. A simple solution to this would be to provide a more conservative
covariance to all features, not necessarily depending on the initial depth value.

35

6.2 Experiment 2 - On the effect of initialization maneuvers

From the previous experiment, we have seen that the initial depth estimates of features can sig-
nificantly impact the accuracy of ROVIO. Unfortunately, it will not always be possible to have
reasonable initial depth estimates. This experiment looks at introducing initialization maneuvers
as an alternative way to quickly observe the depth of features and increase the accuracy and
robustness of the VIO system.

The initialization maneuver is a procedure where the system is moved around such that the detected
features are moved around in the image frame. This serves to converge the IMU biases and feature
depth estimates in the filter. By moving the system, the filter can correct the prediction errors
of feature locations by adjusting these parameters. As discussed in section 3, the observability of
depth for stereo systems is reduced when the baseline-to-depth ratio becomes too small, as is the
case in VTOL scenarios far from the ground. In this case, the only way to observe the depth of
features is by moving and rotating the cameras, trusting that the filter can adjust the depths based
on prediction errors. From large distances, small translations will have a relatively small effect on
the images. Rotating the setup will however yield more movement of features in an image, and
hopefully make them converge faster. The maneuver does not have to be very big, but sufficient
enough to significantly move features around in the image.

To investigate the effects of initialization maneuvers, trajectories have been recorded from the same
location with and without the maneuver. These trajectories resemble the data from experiment 1
in the way they approach a wall and go back to the same location, while facing the wall throughout
the trajectory. The initial distance from the system to the wall was approximately 20 meters, and
the turning point approximately 10 meters from the wall. This should yield an expected directed
translation, as described in fig. 15, of ∼10 meters. Three such runs was collected for five different
baselines (It was six until the data for baseline=17.5cm was corrupted). The total position errors
for each run is shown in fig. 21, and the directed translation values can be seen in fig. 22.

(a) 2m initial depth estimate (bad) (b) 20m initial depth estimate (good)

Figure 21: Position errors for different initial depth values. Red and blue dots correspond to with
and without initialization maneuver respectively. Each dot represents the total position error of a
trajectory in the dataset. The right column marked Average visualize the average total position
error over all trajectories.

Discussion

Looking at the position errors in fig. 21a, there should be no doubt that the initialization maneuver
has indeed had a big impact on the accuracy of the system, with an initial depth value of 2 meters.
The average total position error is reduced by a factor 3 across all the baselines. Comparing
this with fig. 21b, we see that the effect is not as big when the initial depth value is set to 20
meters, which is approximately the distance to the wall. In this case, the systems position errors
are comparatively low either way. The fact that we observe such a significant improvement when

36

(a) 2m initial depth estimate (bad) (b) 20m initial depth estimate (good)

Figure 22: Directed translation values for different initial depth values as explained in the begin-
ning of this chapter. Red and blue dots correspond to with and without initialization maneuver
respectively. Each dot represents the total position error of a trajectory in the dataset.

the initial depth value is bad, and not with an appropriate value indicates that the initialization
maneuver indeed has the advantage of compensating for bad initialization by updating and quickly
converging the features after startup. The slight improved performance with good initial estimates
can probably be explained by two factors: i) The initialization maneuver makes estimation of IMU
biases possible, yielding higher accuracy IMU measurements from an early stage in the trajectory.
ii) Although the initial depth value is good, it is not perfect for all features. Therefore, the
initialization maneuver will still have a job of correcting for, albeit small, initial value errors.

The directed translation values in fig. 22 show how well the trajectory scale is captured, at least
in the direction of the wall, which is the most interesting as it relates to the height of a drone
in VTOL. In the case with an initial depth value of 2m (fig. 22a), some baseline configurations
strongly underestimate the trajectory length. This is probably the result of low depth estimates,
which corrupts the filter by asserting that the world is smaller than it is. The same scale errors
are corrected when the maneuver is applied. In the case with 20m init depth, the difference is not
as big, probably due to proper depth initialization of the features. However, we notice that the
12.5cm baseline strongly overestimates the scale when the initialization maneuver is not performed.
There is a good chance that this data is erroneous and that the observed improvement is not a
result of the maneuver. It seems highly unlikely that such significant errors should be observed
when the initial estimate is this good.

A general observation from fig. 22 is that most of the trajectories seem to underestimate the
trajectory. Even for trajectories with good initial depth estimates and initialization maneuvers,
this is the case. We will see later, in experiment 4, that this is an effect that occurs only in the
stereo camera case. The problem will be discussed further then, so it will not be discussed here.

From the results presented, it should be clear that applying an initialization maneuver can improve
the performance of a VIO system. This has been shown, both as a reduction in overall position
error, and from a more correct scale estimate of the trajectory. A probable cause for the improve-
ment is the enhanced ability to quickly converge feature depths. Since this assumption does not
rely on special attributes of ROVIO, it can be assumed that the conclusion is general for most VIO
systems.

37

6.3 Experiment 3 - On the effect of different baselines

This experiment will look at how changing the baseline of a system might affect estimation accuracy.
In theory, the baseline of the cameras restricts the ability to triangulate at higher depths due to
the disparity restrictions discussed in section 2.3. The idea is to see if evidence can be found of
these restrictions in the collected data and see how well this fits with theory. This analysis will be
performed with the same dataset as used in experiment 1, with three different initial wall distances
of 10, 20, and 25 meters.

The initially triangulated directed feature distances, as illustrated in fig. 15, for three different
wall distances is shown in fig. 23. Only triangulated features from the very first frame is used.
With 5 runs per baseline, and approximately 25 triangulated features for each run, the total set of
triangulated features amount to almost 125 per baseline. This should be sufficient to see if there
are clear trends in the data. From top to bottom, the triangulations from 10, 20, and 25 meters
are visualized using two different plots. The left ones are scatter-plots over the directed distances,
sorted by which baseline produced them. The fact that they are directed, means that we can use
the measured distance from the system start to the wall as an approximated ground truth. On the
right, these directed distances are converted into probability densities to compare the mean and
spread more easily across different baselines. In addition to the analysis on feature triangulation,
trajectory metrics for total position error and directed translation is included in fig. 24. These
visualizations give accurate descriptions of the separate runs, but they are a bit noisy. To get a
more general view of the evaluations, a plot of the average position errors and their corresponding
standard deviations are shown in fig. 25.

Discussion

At first glance, the different baseline performances in fig. 24 look quite sporadic. There is no clear
pattern, at least not for the trajectories starting from 10 and 20 meters. It may be argued that
the lower baseline in fig. 24c perform somewhat worse than the others, but it is really hard to tell
the baselines apart from this data. Looking at the average error plots in fig. 25c, it does indeed
seem to be a slight trend of improved performance with increasing baselines when the wall distance
becomes sufficiently high. Since the two other average plots in figs. 25a and 25b seem to show no
correlation, it is tempting to conclude that increasing the distance to 25 meters has made a baseline
based performance effect appear. If we assume that the lower baseline is poorly affected by a lack
of disparity, this should also be possible to observe in the triangulation plots in fig. 23c. From a
distance of 25 meters, we can see that the smallest baseline of 12.5cm indeed underestimates the
distances quite a lot compared with the other baselines. The same effect does not appear at closer
distances in figs. 23a and 23b, making it plausible to assume that the increased wall distance has
degraded the triangulation accuracy of the lowest baseline. A big problem with this assumption
is the fact that there is no evidence of correlation between baseline and triangulation distance for
the larger baselines. In lack of a more clear trend including the entire set of baselines, it is difficult
to conclude on the effect based on the results presented here. Although the evidence is not quite
adequate, it may work as a weak indicator. Since we only observe a slight tendency to deprecation
for the lowest baseline from the most extended range, it may be the case that the experiments are
just able to scratch the surface of where the effect starts to appear. For this reason, the study
should be repeated with even lower baselines and longer feature ranges. This should be able to
give more clear evidence of the effect if it is even present at all.

From fig. 24 we can see that the scale observed by the different baselines varies a lot. Furthermore,
there is no clear correlation between the observed scale and a change in baseline. Since everything
but the baselines remains equal between each trajectory, this may indicate an issue related to the
extrinsic calibration. Slight changes in the camera mounts between calibration and data collection
could lead to errors in the cross-camera transformations, resulting in unpredictable behaviour.
Resolving this problem should yield more consistent results, and may even make the presence of a
potential baseline effect easier to observe.

38

(a) Directed distance distribution from 10m

(b) Directed distance distribution from 20m

(c) Directed distance distribution from 25m

Figure 23: Initial directed distances to the wall for all triangulated features. To the left, the
directed distance of each triangulated feature is scattered for every baseline. To the right, the
distribution of directed distances is shown for each of the baselines configurations. Both figures
include a ground truth marker, which is the measured as the shortest distance from the initial
system position to the wall.

39

(a) Initial wall distance = 10m

(b) Initial wall distance = 20m

(c) Initial wall distance = 25m

Figure 24: Trajectory evaluations for three different initial wall distance trajectories. Left plots
show the total position errors of each run according to baseline. Right plots show the directed
translation in direction of the wall for each run. The reader is referred to the beginning of the
chapter for a more thorough explanation of these metrics.

40

(a) Average errors per baseline from 10m (b) Average errors per baseline from 20m

(c) Average errors per baseline from 25m

Figure 25: Average accuracy of the system as a function of the camera baseline. Red dots indicate
the average total position error for a specific baseline. The gray fill covers an area of one standard
deviation away from the average value.

41

6.4 Experiment 4 - Monocular and stereo performance

This experiment will investigate the performance of monocular systems against stereo systems. In
addition, evaluations of a stereo system where the cameras are treated separately as two monocular
cameras will be included. This means that features are not mapped from one camera to the other
during the filter update. The cameras rather keep track of individual set of features, and so the
camera update is treated as two separate monocular updates. This type of configuration will be
referred to as a non-cross-camera stereo system. The three configurations are all investigated using
the same dataset. This is done by ignoring one of the cameras in the monocular case. The datasets
is the same as in experiment 1 and 3, from the front of the main building at Gløshaugen and include
trajectories starting from 10, 20, and 25 meters away from the building.

Trajectory data from this experiment can be found in figs. 26 and 27, where the initial depth value
is respectively set to 2 meters and the initial distance to the wall, respectively. The left plots in
both figures correspond to the final position error of the trajectories. Right plots illustrate the
directed translation, as described in fig. 15, compared to the ground truth marked as a dashed
line. All figures include a color-coded system where each color corresponds to a different camera
configuration specified in the caption. In fig. 28, one example run for each of the trajectories is used
to illustrate the perceived wall distance for each of the camera configurations. This wall distance
is calculated as the average directed feature distance (as in fig. 15) for each image frame in the
trajectory.

Discussion

From the directed translation plots in figs. 26 and 27, we can see a pretty clear trend where
monocular and non-cross-camera estimations repeatedly overestimate the trajectory length, while
the cross-camera stereo configuration underestimates it. This is probably a result of wrongful
estimation of feature distances, as observed in fig. 28. We see here that the stereo system in
general estimates a lower directed features distance than the monocular and non-cross systems.
One reason for the high predicted depths in the monocular and non-cross case can be a lack of
feature motion. When the scene has low motion in the camera frame, it is difficult for the filter
to correct the feature depths. In the stereo case, each feature is constantly updated by a disparity
observation between the cameras, making it less dependent on movement in the scene. It does
however seem from the consistently underestimated directed translation values in figs. 26 and 27
that this perpetual stereo correction is slightly harsh, and ends up underestimating the feature
depths.

Interestingly, it is challenging to see any significant difference between the monocular and non-
cross-camera stereo performance. This is likely because the stereo pair is reduced to a system with
two monocular cameras when cross-camera measurements are not used. The two cameras do not
complement each other, so the information gain from using both cameras is very low. Especially
considering that their fields of view are very similar.

When it comes to accuracy, the better configuration choice seems to depend strongly on the initial
depth estimate and distance to the ground. As shown in fig. 26, the stereo system with cross-camera
measurements outperforms the others with accurate initial depth estimates when it comes to total
position errors. This is not obvious from the trajectory starting at a 10m distance in fig. 26a,
but becomes apparent with the longer-range trajectories in figs. 26b and 26c. This indicates that
the stereo advantage is higher with large distances, possibly because the depth is more accurately
estimated. Since long-range objects move less in the scene than closer ones, the updates of long-
range features will be less robust to the presence of image noise and thus less accurate. Introducing
a second camera with cross-camera measurements can counteract this effect. If the first camera
performs a bad update, the second camera can correct for this damage. This dynamic also makes
it possible for the cameras to determine the depth of features with little movement. Studying the
wall distance estimates in fig. 28 we find supporting evidence of this. It seems that the green lines,
corresponding to stereo estimated wall distances, is less noisy than the others. It is not unlikely
that this is a result of reduced noise as a side-effect of having two cameras observe the same feature.

42

(a) Trajectory starting 10 meters away from the wall

(b) Trajectory starting 20 meters away from the wall

(c) Trajectory starting 25 meters away from the wall

Figure 26: Position errors and directed trajectory lengths with good initial depth estimates corres-
ponding to the actual distance to the wall. The colors represent three different camera configura-
tions. Blue dots represent values from a mono-camera evaluation, red dots from a stereo camera
evaluation without cross-camera measurements, and green dots represent the classic stereo system
with cross-camera measurements.

43

(a) Trajectory starting 10 meters away from the wall

(b) Trajectory starting 20 meters away from the wall

(c) Trajectory starting 25 meters away from the wall

Figure 27: Position errors and directed trajectory lengths with bad initial depth estimates of 2m.
The colors represent three different camera configurations. Blue dots represent values from a mono-
camera evaluation, red dots from a stereo camera evaluation without cross-camera measurements,
and green dots represent the classic stereo system with cross-camera measurements.

44

(a) Initial wall distance = 10m (b) Initial wall distance = 20m

(c) Initial wall distance = 25m

Figure 28: Estimated distance to the wall for example trajectories from 10, 20 and 25 meters. This
estimate is found by taking the average directed distance of all features in each frame. In these
plots, the initial depth estimate of all features is set to 2 meters.

45

Moving to the scenario of bad initial depth values, we see an apparent negative effect of having
cross-camera measurements in fig. 27. The total position error for the stereo system is quite big,
even for the trajectory starting from only 10 meters. One reason for this may lie in the erroneous
cross-camera feature transformation. With bad depth estimates, the features are transformed into
a secondary camera frame at completely wrong pixel coordinates. When the direct multi-patch
search is performed, there is no way to guarantee that it finds the correct feature but instead
updates the filter after a completely wrong patch alignment. We can also see from fig. 28 that
the stereo system use longer time to converge than the other configurations. This is a probable
cause for high errors in the stereo systems, if bad initial depth values are given. However, the
stereo system seems to have a much lower total position error than the other configurations, even
with bad initial depth estimates, when the initial wall distance becomes large. This is seen in
fig. 27c, where the average position errors for monocular and non-cross systems are extraordinary
high. This is caused by diverged trajectories, outside the scope of the plot. This indicates that
even though the stereo system is slower to converge with bad initial estimates, it is more robust
to diverging filter states due to their cross-camera measurements.

An important thing to consider from these results is the fact that the stereo system with cross-
camera measurements show sporadic and highly varying difference between the different baselines.
This is for example apparent in fig. 26b, where the directed translation is greatly overestimated
with a baseline of 17.5cm. Since this difference is completely removed without cross-camera meas-
urements, it is reasonably to assume that the error stems from a discrepancy between the camera
mounting and calibrated extrinsic parameters. This discrepancy has probably occurred because
the camera mounts have been frequently readjusted between baseline configurations after the ini-
tial calibration was completed. Only the slightest difference in remounting the cameras can cause
significant model errors. If the camera mount is skew, with respect to the calibrated orientation,
the error introduced will increase with the distance to features as illustrated in fig. 29. Accurate
calibration is therefore crucial in a VTOL scenario with large feature depths. The observed cal-
ibration issues must have been present in all experiments presented in the thesis. It is probably
most relevant in this comparison and in the analysis of different baselines because the experiments
are inherently built around assumptions of accurate cross-camera measurements. However, with
knowledge of this systematic error, all results should be interpreted accordingly.

Figure 29: Illustration of how mounting errors can increase with distance to a feature. When a
camera is mounted with an error, such as the skew illustrated, the predicted bearing vector to a
feature after a cross-camera transformation does not correspond with the actual bearing to the
feature. The prediction error of the feature location grows with the distance to the feature. This
illustrates the importance of accurate calibration when performing cross-camera measurements.

46

6.5 Experiment 5 - ROVIO extension analysis

This experiment has the purpose of evaluating the implemented ROVIO extension described in
section 5. The extension is based on the assumption that all features lie on a set of planes,
orthogonal to the direction of gravity. Since this direction is not well-defined in the datasets, the
IMU’s initial pose is used to define the direction of interest. In the following data, two versions
of the extension have been tested. The first is a simple outlier detection scheme that detects and
removes features that do not fit the plane assumption. The second version perform the same outlier
detection, but goes on step further by updating the feature depths in direction of its closest cluster.

To analyze the assumption of a single plane, the trajectories in front of the main building starting
from initial distances of 10, 20, and 25 meters are used. This is the same dataset as used in
experiments 1,3 and 4. Since the extension is made to handle an arbitrary amount of planes, a
couple of runs have also been collected from a scenario where there are two distinct planes at
different distances. These trajectories contain a set of containers up close at ∼10 meters from the
initial position, and a big wall in the background at a distance of ∼25 meters. Some example
images from both the single plane and double plane trajectories are shown in fig. 30. In the single
plane visualization, shown in fig. 30a, yellow patches are used to indicate the features that are
included in the cluster. With two planes as seen in fig. 30b, yellow and cyan patches are used to
indicate a features assignment to the respective clusters. In all images, other colors indicate a lack
of cluster assignment.

A summary of the total position errors in the single plane case is summarized in fig. 31. Trajectory
evaluations are sorted into different baseline configurations to make it more interpretable how
the different trajectories are affected by the extensions. An extra column showing the overall
average is shown to the far right of each figure as well. Some of the markers are difficult to see in
this column because they lie on top of each other, meaning their average performance is close to
identical. Accuracy results for the trajectories with two planes are visualized in fig. 32. Since this
experiment contains less data, each run is shown separately to clarify how the extensions affected
each run. As in fig. 31, the average performance is summarized in the rightmost column.

Discussion

Figure 30 can be used to understand some of the properties of the cluster extension. We can see
that not all features are assigned to a cluster, yet they are not discarded as outliers. This is the
case for some of the points in the left images of figs. 30a and 30b. The reason why the features are
not immediately discarded for not being assigned to a cluster is because their uncertainty-to-depth
ratio is too high. This is an important property of the extension, as newly initialized features are
by nature highly uncertain, and labeling them as outliers immediately is therefore not preferable.
They should only be considered outliers if they do not match a cluster center after converging in
the filter. We can for example see that one of the non-assigned features to the left in fig. 30a indeed
is included in the cluster after converging in the right image.

From fig. 30b, it is clear that segmentation between more than one plane is possible with the
extension. Both images show that the filter has no problem separating features on the back wall
from features on the container. We can also see here, in the left image, that a feature on the
lamp-post is included in the front cluster. Although this may seem strange, it is mathematically
sensible, because the lamp-post is positioned approximately as far away as the containers.

Quantitative results from fig. 31 show an interesting tendency. The extended algorithm performs
worse than the original from an initial distance of 10m (fig. 31a). From the 20 meters there are no
significant changes (fig. 31b), and from 25 meters, the extension seems to be performing somewhat
better (fig. 31c). A possible explanation for this is the fact that the underlying assumption of the
extension breaks down when the system is closer to the wall. Significant indents, windows and
other texture has a relatively bigger effect on the directed feature distance from close-range than
from a long-range. For example, the doorway of the building is indented by a meter or so. From
a distance of 25 meters, this corresponds to an error of 1

25 = 4%, but from a range of 10 meters,
the same error is 1

10 = 10%.

47

(a) Two images from the same trajectory with a single plane.

(b) Two images from the same trajectory with two planes.

Figure 30: Visualizing the cluster assignments for (a) A single plane trajectory and (b) A double
plane trajectory. Left images are taken in the early stage of a trajectory, while the right images
are taken at later times, after features have had time to converge. Yellow and cyan are color-codes,
indicating what cluster a feature is assigned to. Green patches indicate that the feature is not
assigned to any of the clusters.

Analysis of the double plane case in fig. 32 shows that the extensions indeed perform well when
introducing a second plane. This is supported by the accurate segmentation ability seen in fig. 30b.
In this case, the closer plane of 10 meters is relatively flat compared with the wall in fig. 30a. The
background wall is a bit noisier, but this is sufficiently far away for the plane assumption to hold.
Overall, the extensions perform well in this scenario, although more data should be collected from
different environments to investigate this further.

We can see from fig. 32 that the depth update extension performs worse than the benchmark on
run 2. This motivates for a further analysis of the spesific trajectory. The estimated cluster centers
in fig. 33c show that there is a point in the trajectory where the plane segmentation fails, around
frame 350. An image from this area, is shown in fig. 33a, where the source of error can be identified.
All detected features lie on the wall in the background, so the assumption of two distinct planes
break down. Since the extension works with a predetermined number of cluster, in this case two,
the algorithm fails if features are only detected in a single plane. We can see from the rest of the
graph in fig. 33c that the issue is only temporary, and that the cluster segmentation successfully
recovers after a few hundred frames. This is supported by visual inspection of fig. 33b, where the
two planes are clearly separated again. This effect motivates the idea of extending the algorithm
to automatically detect the number of clusters, or in the very least detect when such scenarios
occur. This can for example be done by asserting a sufficient separation between the two clusters,
such that the filter extension is disregarded if the clustering algorithm returns two centers with a
difference below a certain threshold.

Another interesting observation from fig. 33c is the fact that the cluster centers are only valid
when their deviations are sufficiently low. This is because the cluster considered too uncertain to
be taken into account, and so the filter extension is not performed.

In conclusion, the extension shows some promising results, at least with sufficient feature depths

48

(a) Initial wall distance = 10m (b) Initial wall distance = 20m

(c) Initial wall distance = 25m

Figure 31: Comparing accuracy’s for the standard ROVIO algorithm with my two extensions.
Every point corresponds to the position error of a single run. The average errors are summarized
in the rightmost column.

when the underlying assumption remains accurate. It is important to keep in mind here that
the procedure can be somewhat negatively impacted because the assumed planes’ direction is not
well-defined. Since the direction is calculated based on the initial pose of the system, some error
is bound to be introduced. Even if the system was initialized perfectly, the direction would drift
over time with the yaw angle, which is not observable in VIO as discussed in section 2.2. In the
case of VTOL, this would not be a problem. Due to gravity, the direction of the planes will always
be easily observable. It should also be mentioned that the results presented here stem from a very
limited dataset, in terms of variety and size. To further conclude on the extension performance,
larger datasets should be collected from a much more diversified set of scenes.

49

Figure 32: Comparing accuracy’s for the standard ROVIO algorithm with my two extensions on
a dataset containing two planes at different distances. Each column shows how a single run was
evaluated by ROVIO with and without the implemented extensions. All runs was collected with
the same baseline of 25cm. The average errors over all five runs are summarized in the rightmost
column.

50

(a) Image frame 351 (b) Image frame 823

(c) Estimation of cluster centers

Figure 33: The images in (a) and (b) are taken from the run that produced the graph in (c).
This is run 2, as defined in fig. 32, where we can see that the depth update fails and performs
slightly worse than the classical approach. The graph in (c) illustrates the estimated cluster centers
throughout the trajectory, together with their standard deviations. When no cross is marked, it
means that the clustering algorithm failed, due to high variance in the cluster or too few features.

51

7 Conclusion

The first thing we observed was the importance of a good initial depth estimate when it comes
to the system’s accuracy. Underestimating the depth gives bad stereo matching and results in
an erroneous depth triangulation. Since this results from the local search that ROVIO performs,
other methods may not have the same issue. It also seems that overestimating the initial depth is
better than underestimating it in case of doubt. If the system cannot extract good depths from
triangulation, a possible solution may be to perform an initialization movement before landing.
This allows the filter to update and converge the feature depths.

There is no clear sign from the results presented that the baselines significantly impact the system’s
accuracy. Weak tendencies to better performance for high baselines are present in the trajectory
from 25 meters, but certainly not enough to conclude anything. From the same experiment, it was
clear that there was a big difference in the observed scale between the baselines, but this did not
seem to correlate with the baseline distance. A possible reason for this is calibration errors caused
by the frequent remounting of the cameras.

After comparing the performance of monocular systems to stereo systems with and without cross
camera measurements, more evidence of poor calibration was presented. The observed traject-
ory scales were much more consistent over the baselines in the monocular case, indicating that
something was off with the cross-camera projections. Despite this, the cross camera stereo system
seemed to outperform the monocular and non-cross camera systems in the case where the initial
depth was appropriately tuned. However, when wrong initial depth estimates were used, the stereo
system gave significant errors, even in the shortest range scenario. Due to the mounting errors, it
is difficult to say whether this result has much value. Therefore, the experiment should be re-tried
with a more rigid mount, which should not be remounted between calibration and data collection.

The presented ROVIO extension showed improved accuracy for some of the collected data. The
fact that the extension worked poorly from a distance of 10 meters and better from further ranges
is supported by the underlying assumption of the extension. Since wall indents, windows, and
other textures are relatively big from short ranges, the flat ground assumption is expected to break
down at these distances. From the results with two planes, it seems that the algorithm is able
to separate different clusters from each other, and the overall errors was in fact reduced when
applying the extension. Although more data should be collected to say anything sure about the
accuracy improvement, the preliminary results are promising.

52

8 Further work

The effect of baselines on the accuracy of long-range initialization of features should be further
explored by extending the range of baselines. The system had a lower limit of 12.5cm and an
upper limit of 25cm. Expanding these limits in both directions could make it easier to observe its
effect on disparity and accuracy. On the same topic, changing the cameras’ resolutions have not
been investigated, although this, in theory, should have a similar effect. This can be done in two
ways: adjusting the camera settings to sample images at different resolutions or playing with the
pyramid levels of the multilevel patches in ROVIO. Neglecting the lowest pyramid level in a patch
should have a similar effect as lowering the camera resolution by half on both axes. In addition,
even higher ranges or altitudes can be tested to further analyze the interaction between baseline,
resolution, feature depth, and disparity.

Another topic that has not been examined in the thesis is the robustness to changing and varying
light conditions. While investigating the different attributes of VTOL and VIO, data has only
been collected in good conditions to isolate the effects of the different experiments. If VIO is to
be implemented as a solution for VTOL in a commercial system, care has to be taken concerning
how it reacts to smog, glare, and other weather phenomena that might affect the visual quality of
the images.

Since the clustering extension needs to know the number of planes in its view, it is not robust to
emergency landings in areas where the terrain is unknown. It could be interesting to investigate
the possibility of automatically detecting the number of planes. This could be extended to the
problem of turning on and off the cluster filter based on the scene. Furthermore, the clustering
algorithm should be tested with more data for multi-plane scenarios. The five runs used in this
thesis may indicate good performance, but this is not enough to conclude on anything. Several
diversified scenarios should be tested and evaluated to give a broader perspective.

As a more general note, two things need to be considered for all experiments performed in the thesis.
First of all, the constant issues related to inaccuracies in extrinsic calibration need to be resolved.
In further work, it should be noted that calibrating the system only to remount the cameras
frequently is not a viable solution. Even the slightest change in camera orientation can throw off
the cross-camera measurements. A more systematic approach where baseline configurations are
calibrated and not changed until after the data is collected might be necessary. Secondly, all results
are based on horizontal movements against walls to simulate a VTOL. While similar in the sense
that the visual information is the same, the fact that gravity points in another direction can impact
the results. For this reason, the experiments should be replicated in an actual VTOL scenario to
make them more trustworthy.

53

Bibliography

[1] N. Alvertos. ‘Resolution limitations and error analysis for stereo camera models’. In: Con-
ference Proceedings ’88., IEEE Southeastcon. 1988, pp. 220–224. doi: 10.1109/SECON.1988.
194847.

[2] Oualid Araar, Nabil Aouf and Ivan Vitanov. ‘Vision Based Autonomous Landing of Multiro-
tor UAV on Moving Platform’. eng. In: Journal of intelligent & robotic systems 85.2 (2016),
pp. 369–384. issn: 0921-0296.

[3] Herbert Bay, Tinne Tuytelaars and Luc Van Gool. ‘SURF: Speeded Up Robust Features’.
In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis, Horst Bischof and Axel Pinz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417. isbn: 978-3-540-33833-8.

[4] Michael Bloesch et al. ‘Iterated extended Kalman filter based visual-inertial odometry us-
ing direct photometric feedback’. In: The International Journal of Robotics Research 36.10
(2017), pp. 1053–1072. doi: 10.1177/0278364917728574.

[5] Sunglok Choi, Jaehyun Park and Wonpil Yu. ‘Resolving scale ambiguity for monocular visual
odometry’. In: 2013 10th International Conference on Ubiquitous Robots and Ambient Intel-
ligence (URAI). 2013, pp. 604–608. doi: 10.1109/URAI.2013.6677403.

[6] Jeffrey Delmerico and Davide Scaramuzza. ‘A Benchmark Comparison of Monocular Visual-
Inertial Odometry Algorithms for Flying Robots’. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). 2018, pp. 2502–2509. doi: 10.1109/ICRA.2018.8460664.

[7] M. Fischler and R. Bolles. ‘Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography’. In: Communications of the
ACM 24.6 (1981), pp. 381–395. url: /brokenurl#%20http://publication.wilsonwong.me/load.
php?id=233282275.

[8] Paul Furgale, Joern Rehder and Roland Siegwart. ‘Unified temporal and spatial calibration
for multi-sensor systems’. In: 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2013, pp. 1280–1286. doi: 10.1109/IROS.2013.6696514.

[9] Paul Furgale et al. Kalibr. https://github.com/ethz-asl/kalibr. 2021.

[10] David Gallup et al. ‘Variable baseline/resolution stereo’. In: 2008 IEEE Conference on Com-
puter Vision and Pattern Recognition (2008), pp. 1–8.

[11] Martin Günther et al. Allan Variance ROS. https://github.com/ori-drs/allan variance ros/.
2021.

[12] Christopher G. Harris and M. J. Stephens. ‘A Combined Corner and Edge Detector’. In:
Alvey Vision Conference. 1988.

[13] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.
2nd ed. Cambridge University Press, 2004. doi: 10.1017/CBO9780511811685.

[14] Shehryar Khattak, Christos Papachristos and Kostas Alexis. ‘Keyframe-based thermal–inertial
odometry’. In: Journal of Field Robotics 37.4 (2020), pp. 552–579. doi: https://doi.org/10.
1002/rob.21932. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21932. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21932.

[15] Shehryar Khattak, Christos Papachristos and Kostas Alexis. ‘Keyframe-based thermal–inertial
odometry’. In: Journal of Field Robotics 37 (Dec. 2019). doi: 10.1002/rob.21932.

[16] Sven Lange, Niko Sunderhauf and Peter Protzel. ‘A vision based onboard approach for land-
ing and position control of an autonomous multirotor UAV in GPS-denied environments’.
In: 2009 International Conference on Advanced Robotics. 2009, pp. 1–6.

[17] Stefan Leutenegger et al. ‘Keyframe-Based Visual-Inertial Odometry Using Nonlinear Op-
timization’. In: The International Journal of Robotics Research 34 (Feb. 2014). doi: 10.1177/
0278364914554813.

[18] D.G. Lowe. ‘Object recognition from local scale-invariant features’. In: Proceedings of the
Seventh IEEE International Conference on Computer Vision. Vol. 2. 1999, 1150–1157 vol.2.
doi: 10.1109/ICCV.1999.790410.

54

https://doi.org/10.1109/SECON.1988.194847
https://doi.org/10.1109/SECON.1988.194847
https://doi.org/10.1177/0278364917728574
https://doi.org/10.1109/URAI.2013.6677403
https://doi.org/10.1109/ICRA.2018.8460664
/brokenurl#%20http://publication.wilsonwong.me/load.php?id=233282275
/brokenurl#%20http://publication.wilsonwong.me/load.php?id=233282275
https://doi.org/10.1109/IROS.2013.6696514
https://github.com/ethz-asl/kalibr
https://github.com/ori-drs/allan_variance_ros/
https://doi.org/10.1017/CBO9780511811685
https://doi.org/https://doi.org/10.1002/rob.21932
https://doi.org/https://doi.org/10.1002/rob.21932
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21932
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21932
https://doi.org/10.1002/rob.21932
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1109/ICCV.1999.790410

[19] Bruce D. Lucas and Takeo Kanade. ‘An Iterative Image Registration Technique with an
Application to Stereo Vision’. In: Proceedings of the 7th International Joint Conference on
Artificial Intelligence - Volume 2. IJCAI’81. Vancouver, BC, Canada: Morgan Kaufmann
Publishers Inc., 1981, pp. 674–679.

[20] J. MacQueen. ‘Some methods for classification and analysis of multivariate observations’. In:
1967.

[21] Mark Maimone, Yang Cheng and Larry Matthies. ‘Two years of Visual Odometry on the Mars
Exploration Rovers’. In: Journal of Field Robotics 24.3 (2007), pp. 169–186. doi: https://
doi.org/10.1002/rob.20184. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20184.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20184.

[22] Agostino Martinelli. ‘Vision and IMU Data Fusion: Closed-Form Solutions for Attitude,
Speed, Absolute Scale and Bias Determination’. In: IEEE Transactions on Robotics (July
2011), Volume 28 (2012), Issue 1 (February), pp 44–60. url: https://hal.archives-ouvertes.fr/
hal-00743262.

[23] Frank Mascarich et al. ‘A multi-modal mapping unit for autonomous exploration and map-
ping of underground tunnels’. In: 2018 IEEE Aerospace Conference. 2018, pp. 1–7. doi:
10.1109/AERO.2018.8396595.

[24] Janosch Nikolic et al. ‘A synchronized visual-inertial sensor system with FPGA pre-processing
for accurate real-time SLAM’. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). 2014, pp. 431–437. doi: 10.1109/ICRA.2014.6906892.

[25] Mark Nixon. Feature Extraction and Image Processing for Computer Vision. Vol. 3rd ed.
Academic Press, 2012, pp. 180–199. isbn: 9780123965493. url: https://search.ebscohost .
com/login.aspx?direct=true&db=nlebk&AN=477505&site=ehost-live.

[26] NTNU-ARL. blackfly nodelet. https://github.com/ntnu-arl/blackfly nodelet. 2021.

[27] Tong Qin, Peiliang Li and Shaojie Shen. ‘VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator’. In: IEEE Transactions on Robotics 34.4 (2018), pp. 1004–
1020. doi: 10.1109/TRO.2018.2853729.

[28] Tong Qin and Shaojie Shen. ‘Online Temporal Calibration for Monocular Visual-Inertial
Systems’. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2018, pp. 3662–3669.

[29] ROS Driver for OpenIMU. https://github.com/ROS-Aceinna/ros openimu. 2021.

[30] Edward Rosten and Tom Drummond. ‘Fusing points and lines for high performance tracking.’
In: IEEE International Conference on Computer Vision. Vol. 2. Oct. 2005, pp. 1508–1511.
doi: 10.1109/ICCV.2005.104. url: http://www.edwardrosten.com/work/rosten 2005 tracking.
pdf.

[31] Edward Rosten and Tom Drummond. ‘Machine learning for high-speed corner detection’. In:
European Conference on Computer Vision. Vol. 1. May 2006, pp. 430–443. doi: 10.1007/
11744023 34. url: http://www.edwardrosten.com/work/rosten 2006 machine.pdf.

[32] Davide Scaramuzza and Friedrich Fraundorfer. ‘Visual Odometry [Tutorial]’. In: IEEE Robot.
Automat. Mag. 18 (Dec. 2011), pp. 80–92. doi: 10.1109/MRA.2011.943233.

[33] Davide Scaramuzza and Zichao Zhang. ‘Visual-Inertial Odometry of Aerial Robots’. In: (June
2019).

[34] Naser El-Sheimy, Haiying Hou and Xiaoji Niu. ‘Analysis and Modeling of Inertial Sensors
Using Allan Variance’. In: Instrumentation and Measurement, IEEE Transactions on 57
(Feb. 2008), pp. 140–149. doi: 10.1109/TIM.2007.908635.

[35] Jianbo Shi and Tomasi. ‘Good features to track’. In: 1994 Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. 1994, pp. 593–600. doi: 10.1109/CVPR.1994.
323794.

[36] Joan Solà, Jeremie Deray and Dinesh Atchuthan. A micro Lie theory for state estimation in
robotics. 2021. arXiv: 1812.01537 [cs.RO].

[37] Zhongwei Tang et al. ‘A Precision Analysis of Camera Distortion Models’. In: IEEE Trans-
actions on Image Processing 26.6 (2017), pp. 2694–2704. doi: 10.1109/TIP.2017.2686001.

55

https://doi.org/https://doi.org/10.1002/rob.20184
https://doi.org/https://doi.org/10.1002/rob.20184
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20184
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20184
https://hal.archives-ouvertes.fr/hal-00743262
https://hal.archives-ouvertes.fr/hal-00743262
https://doi.org/10.1109/AERO.2018.8396595
https://doi.org/10.1109/ICRA.2014.6906892
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=477505&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=477505&site=ehost-live
https://github.com/ntnu-arl/blackfly_nodelet
https://doi.org/10.1109/TRO.2018.2853729
https://github.com/ROS-Aceinna/ros_openimu
https://doi.org/10.1109/ICCV.2005.104
http://www.edwardrosten.com/work/rosten_2005_tracking.pdf
http://www.edwardrosten.com/work/rosten_2005_tracking.pdf
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34
http://www.edwardrosten.com/work/rosten_2006_machine.pdf
https://doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1109/TIM.2007.908635
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://arxiv.org/abs/1812.01537
https://doi.org/10.1109/TIP.2017.2686001

[38] Michael Warren, Peter Corke and Ben Upcroft. ‘Long-range stereo visual odometry for ex-
tended altitude flight of unmanned aerial vehicles’. In: The International Journal of Ro-
botics Research 35.4 (2016), pp. 381–403. doi: 10.1177/0278364915581194. eprint: https :
//doi.org/10.1177/0278364915581194. url: https://doi.org/10.1177/0278364915581194.

[39] Zhizun Xu et al. ‘An Integrated Visual Odometry System for Underwater Vehicles’. In: IEEE
Journal of Oceanic Engineering 46.3 (2021), pp. 848–863. doi: 10.1109/JOE.2020.3036710.

[40] Xupei Zhang et al. ‘VIAE-Net: An End-to-End Altitude Estimation through Monocular
Vision and Inertial Feature Fusion Neural Networks for UAV Autonomous Landing’. In:
Sensors 21 (Sept. 2021), p. 6302. doi: 10.3390/s21186302.

56

https://doi.org/10.1177/0278364915581194
https://doi.org/10.1177/0278364915581194
https://doi.org/10.1177/0278364915581194
https://doi.org/10.1177/0278364915581194
https://doi.org/10.1109/JOE.2020.3036710
https://doi.org/10.3390/s21186302

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Oskar Gjesdal Veggeland

Real-Time Vision-Aided Inertial
Navigation for Vertical Take-Off and
Landing of Unmanned Aerial Vehicles

Hovedoppgave i MTTK - Kybernetikk og Robotikk
Veileder: Konstantinos Alexis
Medveileder: Paolo de Petris
Juni 2022H

ov
ed

op
pg

av
e

	List of Figures
	Introduction
	Theory
	Visual Odometry
	Camera modelling
	Front-end
	Back-end

	Visual Inertial Odometry
	Stereo triangulation and disparity
	ROVIO

	Related Work
	System implementation
	Hardware
	Driver
	Calibration

	ROVIO extension
	Results and discussion
	Experiment 1 - On the effect of initial depth estimates
	Experiment 2 - On the effect of initialization maneuvers
	Experiment 3 - On the effect of different baselines
	Experiment 4 - Monocular and stereo performance
	Experiment 5 - ROVIO extension analysis

	Conclusion
	Further work
	Bibliography

