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Abstract

Perfect Forward Secrecy (PFS) is vital in contemporary authenticated
key exchange (AKE) protocols. Typically attained using public key cryp-
tography, achieving forward secrecy is infeasible for communication in
resource-constrained environment. Consequently, lightweight AKE proto-
cols that offer PFS with only symmetric primitives are recently proposed.
Formal analysis of these protocols can help in providing credibility prior
to their deployment, and also reliably serve as a universally understood
proof for the corresponding security properties.

To this end, we perform the formal verification of the SAKE protocol
using an automatic verification tool Tamarin. In addition to proving
the claimed security properties of session key secrecy, authentication and
forward security, through Tamarin analysis, we also illustrate an attack
that breaks the synchronization robustness of the protocol, resulting in
de-synchronization of the internal states of the communicating parties.
Furthermore, we have cogently presented a comprehensive guide to using
Tamarin as a verification tool, detailing its key features, software usage
and the foundational logic behind its analysis.
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Chapter1Introduction

1.1 Motivation

Internet of Things (IoT) influences many facets of our everyday life. The use cases
of these proliferating objects include, but are not limited to, healthcare, industries,
wearables, smart homes and critical infrastructure, offering us automatization, in-
creased accessibility and convenience to achieve desired functionalities [AIM10]. With
such a diverse set of application scenarios, it is vital to safeguard the data trans-
mitted by these devices. Security flaws can result in breach of privacy, breakdown
of production lines, or even escalate to disruption of economy. Consequently, the
scientific community has seen a significant increase in research focus for IoT security.

IoT devices are, however, characterized by limited power, computational and
storage resources. As a result, new and application-specific protocols need to be
formulated, or present-day Internet protocols securing communications require al-
teration to accommodate these constraints. Amongst these cryptographic protocols,
key exchange schemes form the basis of a trusted exchange of information. The
primary goal of a key exchange protocol is to share a common secret key between the
participants communicating over an untrusted network. Such protocols essentially
allow symmetric-key cryptography to be used for secure transmission of data between
the parties after the key agreement, even in absence of prior shared knowledge.

Over time, employment of key exchange protocols in diverse application scenarios
and increasing adversarial capabilities resulted in evolution of the required security
guarantees. For the IoT scenario, achieving these guarantees also becomes more
complicated by the need to maintain compatibility with a vast number of vendors and
service providers, as well as change in bandwidth, energy availability and deployment
environment [KHHJ17]. Out of these requirements, one established security goal
in modern key exchange schemes is the authentication of communicating parties,
signifying that the key agreement indeed completed with the intended partners.
Consequently, many Authenticated Key Exchange (AKE) protocols with varied

1



2 1. INTRODUCTION

application purposes have been lately proposed for constrained environment [HS20].
Ever since, public review and security analysis of these protocols has proved to be
crucially important in their adoption and standardization.

1.2 Research Focus

As the protocols get complex, and niche, application-specific security properties are
desired, manual analysis turns out to be impractically tedious and error-prone. This
is worsened by frequent changes in implementation details and adversarial models
[CHSvdM16]. Therefore, computer-aided verification of protocols has become more
important in the last decade. Many tools are developed to perform an automatic
formal security analysis using mathematical and logical methods, resulting in flaw
detection or security affirmation for widely deployed protocols. Some prominent
analysis tools, including AVISPA [ABB+05], ProVerif [Bla16] and Tamarin [BCDS17],
and their usability in the context of lightweight AKE protocols are discussed in
[HS20; KHHJ17], eventually demonstrating the rationale to opt for Tamarin Prover
for formal verification of the protocols in this work. Tamarin, as a tool, not only
offers a more expressive modeling language as compared to many of its counterparts,
but also provides a comprehensive set of analysis features along with guaranteeing
termination of the analysis (Chapter 3). Formal analysis of these AKE protocols
using Tamarin will help in providing credibility prior to their deployment, and also
serve as a universally understood proof for the corresponding security properties.

1.2.1 Security Properties of Interest

Now, we will brief on the major security properties that we intend to verify in an AKE
protocol. Considering a typical Dolev-Yao adversary [DY83] that fully controls the
network, all protocols must fulfil two properties to secure the communication. First,
confidentiality, which implies that protected information is not made available to
unauthorized entities. For an AKE protocol, it takes the form of session key secrecy,
where an adversary is not able to learn or gain unauthorized access of the session
key agreed between the communicating parties. Broadly, there are two notions of
secrecy - syntactic secrecy, where it is only required that the adversary is not able to
learn the exact content of the protected data (by bits), and strong secrecy, which in
fact ensures that the adversary is not able to detect the change in message content
through the obtained ciphertext [Bla12]. Second important property, as defined
earlier, is authentication. By and large, it implies that the communicating parties
agree upon the same protocol parameters.

Today, perfect forward secrecy (PFS) has burgeoning importance and is a stan-
dard requirement in modern-day AKE protocols, accrediting to the ever-increasing
adversarial storage and computational capabilities. PFS signifies that revelation
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of long-term secrets should not divulge information exchanged in the past. This
is attained by the renewal of key materials used to derive the shared session keys.
A salient property, much of our interest, called synchronization robustness is pro-
posed and defined in [BDdK+21]. The property proves to be cardinal in asserting
correctness of AKE protocols based on only symmetric-key cryptography. We will
delve more into synchronization robustness in Chapter 2. Another notable security
property is availability, which concerns an adversary aiming to exhaust resources or
disrupt the communication. For IoT, such exhaustion of constrained resources results
in cryptographic Denial-of-Service (DoS). However, modeling availability for formal
analysis is challenging and many tools lack support to represent the DoS [KHHJ17].

1.3 Contribution

The thesis seeks to demonstrate the advantage of and stimulate the use of formal
analysis for the verification of AKE protocols. In this quest, we formally analyze
a lightweight AKE protocol called Symmetric-key Authenticated Key Exchange
(SAKE) [ACF20], using the automatic verification tool Tamarin. By doing so, we not
only verify the claimed security properties of the protocol, viz., session key secrecy,
authentication and forward security, but also find an attack that breaks the property
of synchronization robustness. The analysis, being one of the first works targeting
AKE protocols that provide PFS with symmetric-key cryptography, also paves a way
for future computer-aided verifications of protocols with similar security goals. In
addition, with the help of an artificial example protocol, we present a cogent account
of modeling in Tamarin, with appropriate focus on the operation and key features of
the tool, as well as fundamental reasoning behind its analysis.

The remainder of this thesis is divided into four chapters. Chapter 2 presents a
logical overview of the research area, along with delineation of the security properties
used later in the work. Chapter 3 functions as a step-by-step guide to the usage
and features of the formal analysis tool Tamarin. In Chapter 4, we use Tamarin
to analyse the SAKE protocol [ACF20], and verify the claimed security guarantees.
Finally, we briefly touch upon other symmetric-key schemes of interest providing
PFS, and conclude with the future scope of our analysis in Chapter 5.





Chapter2Background

In this chapter, we first walk through the major milestones in the design of key
exchange protocols (Section 2.1). Then, in Section 2.2, we introduce the two ap-
proaches in formal analysis to model security protocols, as well as the current extent
of their usage. Finally, Section 2.3 illustrates the problem in achieving PFS with
symmetric-key cryptography, and our focus on the verification of such protocols.

2.1 Key Exchange Protocols

Key agreement has been a subject of scientific research for over four decades after Diffie
and Hellman presented a method [DH76] to securely transmit keying information over
adversarially controlled network. In a Diffie-Hellman (DH) exchange, each participant
knows or generates a private exponent, which is used for session key derivation. As
shown in Figure 2.1, the adversary can only access the public components of the keys
through the transcript of the protocol. Owing to the discrete logarithm problem, it is
computationally infeasible to compute the private exponent x (respectively, y) from
the public key gx (respectively, gy). On the other hand, a simple exponentiation can
be used to compute gxy by either of the communicating parties. Note that the shown
exchange is not authenticated and cannot be considered as an AKE protocol.

The earliest attempts to design an AKE protocol, both symmetric and asymmetric-
key based, were demonstrated by Needham and Schroeder in 1978 [NS78]. The
symmetric-key protocol availed a trusted third party that generates and establishes
shared secrets between the communicating parties. However, a flaw in the freshness
of the keying message resulted in impersonation of the initiator at a later point of
time in case the previous session key is leaked [DS81].

Providing entity authentication is necessary to gain confidence in the derived
session key. The introduction of interleaving attacks by [BGH+92] led to weaknesses
in many the then existing AKE protocols. On similar lines, the concept of matching
protocol runs is presented in [DvOW92], where the authors propose a form of

5



6 2. BACKGROUND

Figure 2.1: DH key exchange

authenticated Diffie-Hellman (DH) key exchange, concluding that authentication and
key exchange must be linked to avoid impersonation attacks. Unfortunately, there
was still an absence of formalism in the definition of these security notions.

By that time, the idea of provable security was already being used to standardize
the security for cryptographic primitives such as probabilistic encryption and digital
signatures. In the wake of substantially large number of flawed protocols, Bellare and
Rogaway [BR94] were the first to apply this complexity-theoretic approach to model
entity authentication and key distribution. In this formalization, not only did they
consider a practical adversary controlling the network, but also incorporated the
possibility of participants being engaged in concurrent sessions. The model laid the
foundation for adversarial capabilities in modern-day formal analysis tools. While
[BR94] focused on the symmetric-key case, extensions of this modeling were also
proposed later for the public-key setting.

Subsequently, many other formalisms for the analysis of AKE protocols were
suggested, such as [CK01], that intends to improve upon previously presented
definitions, or [BAN90], that posits a whole new “logic-based” approach to prove
correctness of the protocols. Amongst other standard security goals of session
key secrecy and entity authentication, PFS gradually gained importance in many
application scenarios. Nevertheless, until recently, fulfilling forward security was only
modeled using asymmetric primitives, such as ephemeral public keys.

2.2 Modeling Protocols

The state-of-the-art formal analysis tools and their usage in the scientific community
were reviewed in the project preceding this thesis [Kab21]. The findings from the
project report are presented again in this section as follows.
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In order to prove correctness, security protocols can be modeled in two ways. First,
a symbolic model, also called Dolev-Yao model [DY83], which considers cryptographic
primitives as black boxes. It realizes perfect cryptography in the sense that equations
can model algebraic properties of the primitives but only these equalities hold [Bla12].
The verification aims to find contradiction to queries (desired security properties)
and can be automated. The security properties must hold for all states in the state
space of a model. Some of the notable tools operating in the symbolic model are
AVISPA [ABB+05], ProVerif [Bla16], Tamarin [BCDS17] and Verifpal [KNT20].

Another way to approach the verification is using a computational model. Intu-
itively, it is used for manual proofs where a security parameter governs the key length,
as well as runtime and success probability of a probabilistic polynomial-time (PPT)
adversary. Furthermore, the primitives are functions of bitstrings [Bla12]. In practice,
this model generates game-based proofs which might require human guidance [HS20].
Unlike the symbolic model, equalities other than the equations used to model the
primitives may hold (with a negligible probability), and therefore, this model is more
realistic. Although most tools verify protocols in the symbolic model, EasyCrypt
[BDG+14] is a representative example of tools relying on the computational model.
Unfortunately, no model can encompass all the possible attacker capabilities.

2.2.1 Formal Verification Today

Evidently, it is easier to analyze a protocol in the symbolic model than in the
computational model. However, the state space of a model explodes to infinity due
to the unbounded nature of message size and number of protocol runs (sessions)
interleaved under an active attacker [Bla12]. Although limiting the state space to
be explored mitigates this problem, it can only find attacks in the considered space
but not disprove existence of the attacks. Constraint-Logic-based Attack Searcher
(CL-AtSe) [CV01] and On-the-Fly Model Checker (OFMC) [BMV03] are some of the
example tools using bounded number of sessions to verify protocols. Tamarin, on
the other hand, considers verification under unbounded parallel sessions.

A substantial number of the recently proposed protocols have been analyzed
mainly using two tools, namely Tamarin and ProVerif, which have proved to be
efficacious verifiers in various facets of IoT. Novel 3-factor authentication schemes for
Wireless Sensor Networks (WSNs) deployed in healthcare sector are verified for their
security features under passive and active attackers [WLX+21; AA20; AIAA21]. The
security of crucial protocols designed by Internet Engineering Task Force (IETF) for
constrained devices has also been proven by multiple researchers. For instance, the
lightweight AKE protocol Ephemeral Diffie-Hellman Over COSE (EDHOC) [SMP21]
has been formally shown to provide session key secrecy, authentication and PFS
using ProVerif [BSGS18]. Some vulnerabilities in older versions of EDHOC have also
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been found through formal analysis with Tamarin [NSB21].

Furthermore, critical infrastructure has availed computer-aided verification to
assert security of the protocols deployed in many of its sectors. ProVerif has been used
to analyze lightweight authentication protocols for smart grids [MCN+18]. Amongst
important low-power wireless standards, Li et al. [LPH20] analyzed ZigBee 1.0 and
ZigBee 3.0 using Tamarin, showing vulnerabilities in the former as well as their
absence in the newer specification. Likewise, an NFC-based mobile payment protocol
is presented and verified for a secure end-to-end communication with Tamarin [BS19].
Kim et al. [KHHJ17] analyzed a handful of standard-based protocols like SigFox and
Long Range alliance (LoRa) with Tamarin, but with a focus on the challenges to
model DoS attacks and related countermeasures. However, formal verification and
comparison of AKE protocols pertaining to IoT is not thoroughly investigated.

2.3 Achieving PFS with Symmetric Primitives

As emphasized previously, achieving PFS is a vital security goal in contemporary
AKE protocols. This is aggravated by various deployment scenarios for IoT that make
them susceptible to physical compromise. PFS is traditionally achieved using public
key cryptography, for instance with Ephemeral Diffie-Hellman (DHE), which uses
fresh private exponents generated by the communicating parties during every protocol
run. Constrained devices, however, characterized by low memory and processing
capacities, cannot support such computationally heavy schemes [GMS15]. Therefore,
lightweight protocols that provide PFS with only symmetric primitives are designed.

One of the only approaches with symmetric key setting is the evolution of shared
keys. More precisely, new long-term keys (LTKs) are derived using existing long-term
keys, which are in turn used by the communicating parties to derive session keys.
This updation occurs during every protocol run such that an adversary cannot use
the new LTKs to efficiently compute prior keys. Unfortunately, this may lead to a
situation where only one of the parties updated their keys, stemming from various
reasons including unavailability and concurrency of sessions at an endpoint. This
leads to yet another requirement of synchronization between the two parties.

Fundamentally, if two parties involved in a session end up with different LTKs
after the run, their internal states are said to be desynchronized, and the derived
session keys will not be symmetric. To break PFS trivially, an adversary may corrupt
the party with older LTKs and derive session key corresponding to the information
exchanged in past wrt. to the other party. Therefore, it is of utmost importance
that LTKs are evolved and synchronized before either of the parties accepts the
session and derive session keys. This is captured in the notion of synchronization
robustness [BDdK+21]. Essentially, a protocol fulfilling this property ensures that
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the participants are able to re-synchronize their internal states on completion of the
protocol run, even in presence of an active adversary executing arbitrary number of
parallel protocol sessions. Hence, synchronization robustness is necessary to achieve
correctness of a key evolution protocol under stronger security notions.

One such protocol that uses a shrewd resynchronization algorithm to provide
PFS with symmetric keys is Symmetric-Key Authenticated Key Exchange (SAKE)
[ACF20]. While we are interested in verifying the claimed security properties, the
protocol and its formal analysis is covered in detail in Chapter 4. Another set of
protocols with similar security goals are provided in [BDdK+21]. In addition to
defining the property of synchronization robustness, the authors set forth two types
of protocols, linear and non-linear key evolving schemes. While the former follow
the classic “derive-then-evolve” technique, much like their counterparts, they only
achieve weaker form of synchronization robustness in which the target protocol run
cannot be interfered by adversarial queries. In contrast, the latter set of schemes
offer full synchronization robustness using puncturable pseudo-random functions
(PPRFs), such that the participants are able to re-synchronize even with arbitrary
adversarial queries during the target session [BDdK+21]. Henceforth, any mention
of synchronization robustness only signifies the stronger definition, as the adversary
in Tamarin considers all possible cases of manipulation using concurrent sessions.





Chapter3Tamarin Prover: The Essentials

In this chapter, we shall cover the rudiments of formal analysis with Tamarin Prover.
First, Section 3.1 gives a brief account of the logic and reasoning behind Tamarin
analysis. Then, Section 3.2 enlists and describes the basic building blocks that
constitute a typical model in Tamarin. At last, Section 3.3 outlines how proofs are
generated, as well as some advanced features used further in this thesis.

3.1 Tamarin Logic

Tamarin Prover is a symbolic model verification tool used to formally analyze security
protocols. The overview of Tamarin’s analysis logic was elicited in the project
preceding this thesis [Kab21], as followed in the next two paragraphs. Tamarin, like
other symbolic verifiers, takes as input the protocol model, which includes specifying
an adversary and actions taken by the actors in a protocol, as well as targeted security
properties. The tool then automatically verifies if the protocol fulfils these properties,
even with an unbounded number of parallel sessions.

The execution model of the tool, however, resembles a labeled transition system
[BCDS17]. Knowledge of the adversary, exchanged messages and the actor’s internal
states are represented as multi-sets of facts, constituting the state space of the model.
The adversarial capabilities and protocol model are accordingly expressed by multi-
set rewriting rules. Note that Tamarin considers a Dolev-Yao adversary by default
that controls the network and can maliciously perform corresponding operations.
Furthermore, the proofs to validate a security property employ the backward search
accompanied with reasoning modulo equational theories [BCDS17]. These semantics
enable Tamarin to handle complex control flows such as loops, stronger adversarial
models for key exchange protocols such as the eCK model [LLM07].

The proof construction in Tamarin is a distinct feature that covers the best of
two worlds, viz., automatic and manually-assisted verification.

11
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– To begin with, the tool has an automated mode, combining deduction and
equational reasoning to search for proofs. If terminated, the search yields
either a proof that the security property in question holds for arbitrarily many
protocol runs, or provides with a counterexample attack falsifying the property.
The fully automated mode can be operated on the command-line and takes as
argument a theory file typically containing three inputs: equational theory to
model messages, multi-set rewriting rules to model protocols and the desired
properties as lemmas. We will later look into each of these inputs in detail.

– Termination of proofs, however, is not guaranteed due to the undecidability of
security properties [HS20]. In this case, users can avail Tamarin’s interactive
mode which is implemented as a web server. It aids the analysis with interactive
proof guidance allowing inspection of attack graphs and proof states, through
which a user can automate analysis for chosen parts of the state space [BCDS17].
We use the interactive mode in this work for presentation clarity.

3.2 Building Blocks

In this section, we will explain each of the inputs that together make up a protocol
model to be analyzed in Tamarin, usually saved in a .spthy file. Throughout the
rest of the chapter, we work on a simple two-message Diffie-Hellman (DH) exchange
shown in Figure 3.1 to illustrate the Tamarin analysis in action. In this example
protocol, participants A and B share a secret key k used to calculate a Message
Authentication Code (MAC). Both the parties send their DH public keys over the
network, while only party A appends with it a MAC over the public component and
respective identities perceived in the exchange. B derives a secret session key gxy only
after verifying the MAC, while A derives it on reception of the second message. We
eventually intend to prove whether the derived key is secret, from the perspective of
either parties. Recall that Tamarin is a symbolic model verifier, therefore, messages
are modeled as terms and algebraic properties are modeled as equations.

3.2.1 Variables, functions and equations

In Tamarin, we generally encounter three types of variables. First is the fresh type,
denoted by a tilde (˜), used to signify freshly generated randomness, typically in
secret keys or nonces. Secondly, there is the public type, denoted by a dollar ($), used
to model publicly known values such as identities and labels. Finally, we have the
temporal type, denoted by a hash (#), used to relate timestamps during a protocol
execution. The temporal type variables are necessary to prove security properties as
the protocol must fulfil these properties at desired stages of the run.

As shown in Snippet 3.1, a typical Tamarin file starts with a custom theory name,
in our case, example, followed by the begin statement. Now, Tamarin supports
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Figure 3.1: An artificial DH protocol

a number of built-in, as well as user-defined function symbols. The support for
DH exponentiation and associated function symbols, like the generator constant
’g’, comes with the built-in diffie-hellman. Additionally, we need functions mac
and vfy to model the MAC generation and corresponding verification algorithms
respectively. The arity of a function is defined by a number adjoining the function.
Here, mac has an arity of 2, first input being the MAC key and the second being the
authenticated message. Similarly, vfy has an arity of 3 to accommodate the key, the
message as well as the MAC in question needed by the verification algorithm. Note
that <x1, x2, x3,..., xn> denotes a tuple and can be used to signify any number
of terms that constitute the message m in MAC generation. A function true (with
0-arity) is used to denote the Boolean TRUE output by the verification algorithm.

Snippet 3.1 Initialization, functions and equational theory

theory Example
begin

builtins: diffie-hellman
functions: vfy/3, mac/2, true/0
equations: vfy(k, m, mac(k, m)) = true

Further, we need equational theories to relate the properties of these functions.
The relation between mac and vfy is shown under equations in Snippet 3.1. The
built-ins come with a pre-defined set of equations necessary for the corresponding
functions to work. For a full list of built-in theories, please refer to the Tamarin
manual [Tea]. In an equation, both left-hand and right-hand sides can contain
variables, and the variables on the right-hand side must be present on the left-hand
side. Moreover, public constants are not allowed as a part of equations.
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3.2.2 Rules and restrictions

We will now look into the key components of a Tamarin file used to model the
exchanged messages and execution of the protocol, i.e., rules. We follow multiset
rewriting system to specify rules, a common way to model concurrent systems [Tea],
in our case being the protocol execution and actions of the adversary. This method
defines a labeled transition system and each of the multiset rewriting rules are triplets
of sequence of facts. A triplet has a left-hand side called premise, a label and a
right-hand side called conclusion. Facts are the basic units of storing information in
the protocol’s state, and are of the form Fact(t1, t2,..., tn), where Fact is the
fact symbol and the arguments are terms. Each fact has a fixed arity and therefore,
using same fact symbol with different arities results in an error.

Now, starting from an empty multiset as the initial state of the system, a rule
defines how state transitions occur. A rule is executed if all the facts in the premise
exist in the current state, resulting in a state that has the facts contained in the
conclusion. Usually, the facts in the premise are consumed in the process unless
marked persistent using an exclamation mark (!), in which case they are carried
forward to the next state. This is useful while defining facts that do not change
during the course of the protocol. The label, however, consists of action facts, which
do not appear in the system state, rather in the traces on which security properties
are specified. We will look more into action facts while defining such a property in
the next sections. There are three special facts in Tamarin: Fr, In and Out.

– The Fr fact is used while dealing with fresh values, which are in turn its
arguments. These facts can only appear in the premise and Tamarin ensures
that each instance of such a fact produces a unique term.

– The In fact models the reception of a message by a party from the untrusted
network, and like Fr fact, it can only appear in the premise.

– The Out fact, on the other hand, models the sending of a message by a party
to the untrusted network, and can only appear in the conclusion.

It is a good practice to start with a rule that sets up knowledge of parties before the
target protocol run. This can be achieved by writing a rule that models public key
infrastructure, i.e., generating a fresh key and associating a party’s identity with the
respective private and public components persistently. This is shown in Snippet 3.2;
note that the public key is also available to the untrusted network using Out fact.

We will, however, restrain ourselves to manually setting up the initial knowledge
using a rule written in Snippet 3.3. This helps us to distribute symmetric MAC
generation keys and also allows the parties to generate fresh private exponents during
the protocol run, which is a safer practice as compared to storing long term keys.
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Snippet 3.2 Public Key Infrastructure for DH-based protocols

rule pki:
[ Fr(~x) ]
--[]->
[ !Pk($A, ’g’^~x), !Ltk($A, ~x), Out(’g’^~x) ]

Snippet 3.3 Setup initial key knowledge with participants

rule setup:
[ Fr(~k) ]
--[]->
[ AgStA($A, $B, ~k), AgStB($B, $A, ~k) ]

The setup rule can therefore be described as follows. First, generate a fresh MAC
key k and then choose two public names A and B for which k acts as a symmetric
key. As a result, generate the fact AgSt that associates the agent A with its partner
B and the respective MAC key k (a similar fact is generated for the agent B). Now,
a term may occur multiple times and might be too big to sustain readability of the
rules. For such cases, Tamarin allows the use of let...in bindings. To illustrate,
let us write our next rule where we model the sending of the first message by A as
shown in Snippet 3.4. Here, the MAC generated by A is assigned as maca and the
message sent is assigned as m1 using the let statement. These assignments can then
be used in our rule after the in statement. In this rule, A generates a fresh private
exponent x and sends the corresponding public key to the network using the Out
fact. The knowledge of the agent is updated and contained in the fact AgStA1.

Snippet 3.4 First message: A sends the public key and corresponding MAC

rule a1:
let

maca = mac(~k, <’g’^~x, $A, $B>)
m1 = <’g’^~x, maca>

in
[ AgStA($A, $B, ~k), Fr(~x) ]
--[]->
[ Out(m1), AgStA1($A, $B, ~k, ~x, m1) ]

Next, let us write a rule for the reception and processing of m1 by B and sending
its own public key. After receiving m1 from the network using the In fact, B first
verifies the MAC maca. This can be modeled using restrictions. As the name suggests,
the purpose of a restriction is to restrict the traces considered for analysis. In our
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case, we need to analyze only those traces for which the MAC verification succeeds.
Like action facts, restrictions appear only on traces and therefore, are part of the
labels. Snippet 3.5 shows the restriction Equality, and how it is used in the label of
rule b2. It is a good practice to define restrictions just after the equations, for them
to be used in any rule that follows. The Equality restriction roughly says that for
any two values x and y, occurrence of Eq(x,y) at any given timepoint i implies that
x = y. The restriction is used in rule b2 such that only those traces of the protocol
are considered for which the output of the verify function is equal to true. Please
refer to the Tamarin manual [Tea] for more use cases of restrictions.

Once the MAC is verified, B generates its own fresh private exponent y and
sends the corresponding public key to the network. It also derives the session key by
calculating Xy, where X is the public key received from A. Similar to the rule a1, the
knowledge of the agent is updated and contained in the fact AgStB2. We will look
into the action fact AcceptsB in the following subsection.

Snippet 3.5 Second message: B processes m1 and derives the session key

restriction Equality:
"All x y #i. Eq(x,y) @i ==> x = y"

rule b2:
let

m1 = <X, maca>
m2 = ’g’^~y
sk = X^~y

in
[ AgStB($B, $A, ~k), Fr(~y), In(m1) ]
--[ Eq(vfy(~k, <X, $A, $B>, maca), true),

AcceptsB($B, sk)
]->

[ Out(m2), AgStB2($B, $A, ~k, ~y, X, m1, m2, sk) ]

As a last step in the protocol, the initiator party A receives m2 and derives the
session key by calculating Yx, where Y is the public key received from B. This is
depicted in Snippet 3.6. We will look into the action fact AcceptsA in the next
subsection. Note that the message m2 was not authenticated by a MAC, which will
result in an attack as we prove later. This finishes our model for the protocol, and
we move on prove the security properties.
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Snippet 3.6 A receives m2 and derives the session key

rule a3:
let

m2 = Y
sk = Y^~x

in
[ AgStA1($A, $B, ~k, ~x, m1), In(m2) ]
--[ AcceptsA($A, sk)

]->
[ AgStA3($A, $B, ~k, ~x, Y, m1, m2, sk) ]

3.2.3 Security properties and lemmas

The protocol properties can be specified either as trace or observational equivalence
properties. Let us first explain trace properties. Whenever a rule is executed, the
corresponding action facts in the label are appended to the trace [Tea]. All action
facts in this labeled transition are said to have occurred at the same time. A trace
property is simply a set of traces defined as guarded fragments of first-order logic
formulas over action facts, sorted with timepoints. As opposed to rules, terms in such
a formula cannot be built from function symbols, rather only quantified variables.

There are two kinds of quantified variables, universally quantified, starting with
a keyword All, and existentially quantified, starting with a keyword Ex. While the
former imposes the condition that the formula must hold for all instances of the
variables, the latter only requires one such instance. Amongst the logical operators
used, binding is tightest for negation, followed by conjunction (&), disjunction (|)
and implication (==>). Note that the variables must be guarded, which means that
they all appear in an action fact immediately after the quantifier. Additionally, inside
the quantifier, it requires for universally quantified variables to have an implication,
and for existentially quantified variables to have a conjunction as the outermost
logical operator. Keeping this in mind, a property is defined using the keyword lemma
followed by the appropriate formula. There are again two ways to define a property,
either use the keyword all-traces, which signifies that the property must hold for
all the traces of the protocol, or use the keyword exists-trace, which signifies that
the property holds even if one satisfying trace is found.

To illustrate these notions, let us write a simple lemma to verify secrecy of
the dervied session key with respect to either of the parties. Describing in words,
we want that whenever a party accepts the session and derives a session key, it
cannot be that the adversary knows the session key. This is written in the lemma
sessionKeySecrecyA as shown in Snippet 3.7. Breaking it down, the lemma states
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that for all the traces of the protocol, for all agent identities a and session key sk, if
a accepts the session acting as party A and derives sk at a timepoint i, then there
cannot exist a timepoint j such that the adversary knows sk at j. Note that in
Tamarin, knowledge of the adversary is represented using the arguments in predicate
K. This form of secrecy does not incorporate corruption of long term secrets or forward
security. A similar lemma sessionKeySecrecyB is also written for party B. After
the rules and the lemmas are specified, the model terminates with an end statement.

Snippet 3.7 Session key secrecy lemmas

lemma sessionKeySecrecyA:
all-traces
"All a sk #i.

AcceptsA(a, sk)@i ==>
not (Ex #j. K(sk)@j)"

lemma sessionKeySecrecyB:
all-traces
"All b sk #i.

AcceptsB(b, sk)@i ==>
not (Ex #j. K(sk)@j)"

This sufficiently exemplifies the trace properties. Another method of specifying a
security property is through observational equivalence. Unlike trace properties, these
properties are not independently defined on each trace. Rather, they focus on two
systems being virtually indistinguishable for an adversary. However, they are beyond
our requirements and for further details, please refer to the manual [Tea].

3.3 Tamarin Analysis

Finally, let us analyse our model by running Tamarin and verify if the security
properties are satisfied. To run the analysis in interactive mode, we use the com-
mand line tamarin-prover interactive example.spthy. Make sure there are no
wellformedness errors with the model, which are usually shown in the terminal. If
no errors are found, the theory file loads successfully, and a web server is started at
http://localhost:3001, displaying all theory files in the same directory as shown
in Figure 3.2. Click on the theory file named Example. This leads us to the theory
page loaded with our model, with left half appearing as Figure 3.3.

Let us explain each of these pointers briefly. The Message Theory contains all
the defined functions and equations. In addition, it lists all the functions that an
adversary can use, the construction rules help the adversary to construct new terms
from already available terms, while the deconstruction rules allow it extract terms
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Figure 3.2: Tamarin interactive mode landing page

from larger terms. As an example, the rule written in Snippet 3.8 helps the adversary
to calculate x.2x.1*x.3 from already known values of x.2x.3 and x.1.

Snippet 3.8 An example deconstruction rule

rule (modulo AC) d_exp:
[ !KD( x.2^x.3 ), !KU( x.1 ) ] --> [ !KD( x.2^(x.1*x.3) ) ]

Second in line, the Multiset Rewriting Rules contains the rules written in the
model, in addition to two default rules isend and irecv. While the former takes a
value x from the adversary’s knowledge !KU(x) and inputs it to the protocol In(x),
the latter allows the protocol output Out(x) to be passed to the adversary !KD(x).

Next, we look into the Raw and Refined sources. As mentioned earlier in Sec-
tion 3.1, Tamarin uses backward search to compute all possible sources of a fact
for efficient analysis. These are called case distinctions, and basically represent all



20 3. TAMARIN PROVER: THE ESSENTIALS

Figure 3.3: Model loaded from Example theory file

the rules that produce the fact in question. These sources are listed on the right
half of the page. As an example, consider the fact AgStA3, the sources for which are
depicted in Figure 3.4 (only one in this case). The boxes represent individual rules,
ordered with respective premise, label and conclusion. The only possible source for
AgStA3 is the rule a3, the premise of which contains the fact AgStA1, that in turn
sources from the rule a1, and the fact In(.), that sources from the rule isend. This
might hint at the attack we are going to cover in this section. The trapezoid at the
bottom simply depicts the sink for the fact AgStA3.

The difference between Raw and Refined sources appear when Tamarin is not
able to find sources for a fact, which is seen as a partial deconstruction is left. These
halt the automatic proof generation and are required to be manually handled by
techniques such as source lemmas [Tea]. These might be encountered while modeling
very complex protocols but we will refrain from any further discussion in this work.

Let us now move on to the main task at hand, proving security properties. Before
using Tamarin, we can roughly delineate our expectations from the proofs. The
public key received from B is not authenticated by a MAC and therefore, can be
replaced maliciously by a man-in-the-middle adversary. This leads to A calculating
a session key that is no longer secret as the same session key can be computed by
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Figure 3.4: Computed sources of the fact AgStA3

the adversary using the public key sent by A over the network. This, however, is not
the case with B. The associated MAC in message m1 ensures that the public key is
not altered and B computes the correct session key that cannot be accessed by the
adversary. Consequently, the session key secrecy lemma should be proved only for
party B. Now, the end of the list in Figure 3.3 contains the lemmas written in our
model. For the first lemma sessionKeySecrecyA, click on sorry, and Tamarin will
show the possible methods to start the proof (Figure 3.5).

The tool uses constraint solving to either prove that the property satisfies all
possible cases or finds an attack. The simplify and induction are two approaches
to the proof and can be used to manually guide through the proof in case of non-
termination [Tea]. We are, however, interested in the end result, and by clicking the
autoprove command, we use Tamarin heuristics to reach the final state of the proof.
Other autoprove variants are used to customize the proof trajectory, for instance
the one with a proof depth bound of 5 is used to analyze traces up-to 5 levels of
hierarchy in the backward search for case distinctions.
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Figure 3.5: Methods to prove a lemma

On the left half of the page, the lemma is turned red as shown in Figure 3.6, and
exhibits that a counter-example trace is found to disprove the secrecy property in
case a1. Clicking on accompanying solve statements, this case first replaces the
session key sk with Yx, and then Y with generator constant g. The attack becomes
clearer in the graph shown on the right half of the page as portrayed in Figure 3.7.
As expected, the adversary modifies message m2 and sends g instead of gy using the
rule isend. As a result, the session key computed by A is gx. Now, the adversary
gets gx from the Out fact in rule a1 (marked by a red arrow). Evidently, the session
key secrecy does not hold with respect to A.

Figure 3.6: Counter-example trace found
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Figure 3.7: Counter-example attack diagram

At last, we will verify the second lemma by following similar steps and navigate
to the final state of the proof by clicking on sorry followed by autoprove. This time,
the lemma is turned green as shown in Figure 3.8, indicating that it was successfully
proven. For each of the cases, by clicking on the solve statements and inspecting
the corresponding graphs on the right, we can conclude that Tamarin was unable to
find a counter-example. It is reasonable to ponder about the termination of proofs
under unbounded parallel sessions assumption. This is where the backward search
for case distinctions comes into picture, as the constraint solving system restricts
the traces considered for analysis to all possible manipulations of the target protocol
run by the adversary, which are in turn finite. In this way, Tamarin formally proves
and confirms our expected results. We are now well-equipped with the essential
functioning and features of Tamarin to analyze more complex protocols.
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Figure 3.8: Session key secrecy holds wrt. B



Chapter4Formal Analysis of SAKE

We shall now formally analyze the SAKE protocol [ACF20]. Section 4.1 reviews the
protocol execution, underlying assumptions and the security properties fulfilled. In
Section 4.2, we present an overview of the formal analysis of SAKE as modeled in
Tamarin, also reasoning for the associated lemmas. Finally, in Section 4.2.3, we brief
the weakness in their design and why it fails to provide synchronization robustness.

4.1 SAKE: Review

In this section, we outline the SAKE protocol and key assumptions used in its design.
SAKE employs key evolution based on symmetric-key functions to provide mutual
authentication, key agreement and forward secrecy [ACF20]. As opposed to counters
or a clock, the scheme uses another chain of keys to track the internal state of a
party. These keys are independent of the master keys used to derive session secrets
and help in resynchronization of communicating parties.

4.1.1 Design Ideas

For its analysis, SAKE employs the security requirements for AKE protocols presented
in [BJS16]. In practice, the adversary controls the network, and can arbitrarily modify,
relay, replay, delete or insert messages sent over the network between communicating
parties. A party can execute multiple runs of the protocol called sessions, each
having their own local state variables and access to the long term keys [ACF20].
The model then mathematically defines security goals like entity authentication, key
indistinguishability and security, along with the queries an adversary can make
to the participants, however, we will omit the details in this work. Additionally,
and more importantly, the authors of SAKE do not allow parallel executions of
the sessions, i.e., for any party, the protocol only considers sequential runs for the
resynchronization procedure to be effective.

25
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The SAKE protocol uses two chains of keys, one called the derivation master key
(K), used to derive session keys, and other called the authentication master key (K ′)
used to synchronize internal states. K ′ and K are updated together, and is depicted
in Figure 4.1 around an arbitrary epoch j. Here, UPD denotes a one-way function
and KDF denotes the key derivation function keyed with K.

Figure 4.1: Key evolution and session key derivation in SAKE (adapted from
[ACF20])

Now, in the case only sequential sessions are allowed, it can be shown that
synchronization states of two parties in SAKE cannot differ by a number other than
{−1, 0, 1}, if both of them are in sync at deployment [ACF20]. Then, consider an
initiator-responder paradigm, for any epoch j as shown in Figure 4.1, the initiator
stores four keys (kj , k′

j−1, k′
j , k′

j+1). For the corresponding protocol sessions at the
responder, it stores two keys (k, k′). Since the internal states of the two parties can
only differ by a maximum of 1 step, (k, k′) ∈ {(kj−1, k′

j−1), (kj , k′
j), (kj+1, k′

j+1)}. A
party deems to ’accept’ a session only after receiving confirmation of key updation
from its partner, and therefore, considers the derived session keys to be fresh. Note
that storing the authentication master key corresponding to a previous epoch does
not trivially break PFS as session keys are derived from the derivation master key,
which is only stored for the current epoch.

4.1.2 Protocol Flow

Let us consider two parties I and R, respectively denoting the initiator and responder.
At deployment, responder keys k and k′ are chosen uniformly at random. Also, the
initiator keys are initialized as kj = k, k′

j−1 =⊥, k′
j = k′ and k′

j+1 = UPD(k′). The
protocol flow for an arbitrary epoch j is shown in Figure 4.2. One round of updation
at the initiator (EvolI) entails the following operations:

– kj ←− UPD(kj)
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– k′
j−1 ←− k′

j

– k′
j ←− k′

j+1

– k′
j+1 ←− UPD(k′

j+1)
On the other hand, one round of updation at the responder (EvolR) includes:

– k ←− UPD(k)
– k′ ←− UPD(k′)
Vfy(k, m, τ) is the MAC verification function that outputs true if τ is a valid

MAC tag for message m and key k, otherwise outputs false. The key derivation
function KDF uses a one-way function f that represents any operation between
the nonces rI and rR generated by respective parties. The message mR contains a
MAC calculated with initial k′, and therefore, helps I to know the state of R at the
start of the protocol, and accordingly calculate the parameters δ and ϵ. Note that
even though KDF is applied, a party ’accepts’ only after reception of key update
confirmations, which in turn depend on the respective value of ϵ [ACF20].

In essence, we have three cases for the difference in internal states of I and R

at the start of the protocol. If I and R are in sync, δ = 0, I evolves its keys and
computes the session key, and R follows the same after reception of mI . If I is
one step behind R, δ = −1, I first evolves once, and then same steps follow as
when δ = 0. If I is one step ahead of R, δ = 1, R catches up first, evolves its keys
again and computes the session key, followed by I performing similar operations. I

always receives the key update confirmation with message τRR and hence, ’accepts’
on reception. R, however, receives the confirmation with mI if ϵ = 0 and with τII if
ϵ = 1, and accordingly ’accepts’ the session.

4.2 Modelling in Tamarin

Let us now model SAKE in Tamarin and try to prove the desired security properties. It
is important to remember that Tamarin, by default, considers interleaving concurrent
sessions while proving lemmas. Without loss of generality, we will only consider one
of the three cases of internal state disparity between I and R, as others may follow
similar proofs. Please refer to [sakemodel] for models covering other cases.

4.2.1 Rules

We will start with defining the key derivation function, the operation between nonces
rI and rR, as well as the MAC and corresponding verification function. A simple
equational theory defines the MAC verification as shown in Snippet 4.1. For simplicity,
we will use hashing as a means to evolve our keys. Remember that it is cardinal to
define the Boolean value true as a function for Tamarin to compile the model.
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Figure 4.2: SAKE protocol flow for an arbitrary epoch j (adapted from [ACF20])
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Snippet 4.1 Functions and equational theory

builtins: hashing
functions: kdf/2, opr/2, vfy/3, mac/2, true/0
equations: vfy(k, m, mac(k, m)) = true

Next, we initialize the protocol with a setup rule to define the knowledge of the
parties prior to the start of the target run. In this example, we choose to consider
the case when I is one step behind R (Figure 4.3). The fresh keys k and l in Snippet
4.2 represent root of the derivation and authentication master keys respectively.
Additionally, we include the Equality restriction used for MAC verifications.

Snippet 4.2 Producing facts that represent knowledge of participants

restriction Equality:
"All x y #i. Eq(x,y) @i ==> x = y"

rule setup:
[ Fr(~k), Fr(~l) ]
--[]->
[ AgStI($I, $R, <~k,~l,h(~l),h(h(~l))>), AgStR($R,<h(~k),h(h(~l))>) ]

Figure 4.3: Knowledge of initiator and responder before the target protocol run

We will now write rules to model the messages exchanged between the parties,
depicted in Figure 4.2. First, the initiator I chooses a fresh nonce ri and sends it to
R over the network. Notice how facts representing the knowledge of the parties in all
the following rules change from premise to that in conclusion. Also, the fact KeyI1
shows which derivation master key is stored with I during the execution of the rule
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I1. Finally, the action fact I1 shows the current stage of protocol execution in terms
of messages exchanged with respect to I. Similar action facts are used further.

Snippet 4.3 First Message: initiator sends a nonce

rule I1:
let

m1 = <$I, ~ri>
in
[ AgStI($I, $R, <~k,~l,h(~l),h(h(~l))>), Fr(~ri) ]
--[ I1($I, $R, m1)

, KeyI1($I, ~k)
]->

[ AgStI1($I, $R, m1, ~ri, <~k,~l,h(~l),h(h(~l))>),
Out(m1) ]

The responder R receives this first message, generates its own fresh nonce rr,
computes the MAC tr using its current authentication master key h(h(l)) and send
them over the network to I. Similar to KeyI1 and I1, the fact KeyR2 shows the key
stored with R and the action fact R2 shows the current stage of protocol execution
with respect to R after the rule R2 is completed. It is important to observe that
since the identity of the initiator is sent in plaintext, we use i instead of $I while
generating tr to signify that the value can be manipulated.

Snippet 4.4 Second Message: responder sends a nonce and divulges its internal
state
rule R2:
let

m1 = <i, ri>
tr = mac(h(h(~l)), <$R, i, ~rr, ri>)
mr = <~rr, tr>

in
[ AgStR($R,<h(~k),h(h(~l))>), In(m1), Fr(~rr) ]
--[ R2(i, $R, m1, mr)

, KeyR2($R, h(~k))
]->

[ AgStR2(i, $R, m1, mr, ri, ~rr, <h(~k),h(h(~l))>),
Out(mr) ]

After receiving the MAC tr, I compares it with the MAC generated by the key
h(h(l)) in its knowledge, and eventually in this case, knows that ϵ(ep) = 0. It also
accordingly evolves its keys, derives the session key sk and generates the MAC ti.
Finally, it sends ti and ϵ to R. Note that the MAC verification uses the restriction
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Equality as one of the action facts to check if the function vfy outputs true. The
protocol execution aborts if the equality check fails.

Snippet 4.5 Initiator evolves and derives a session key

rule I3:
let

mr = <rr, tr>
ep = 0
sk = kdf(h(~k), opr(~ri, rr))
ti = mac(h(h(~l)), <~ep, $I, $R, ~ri, rr>)
mi = <~ep, ti>

in
[ AgStI1($I, $R, m1, ~ri, <~k,~l,h(~l),h(h(~l))>), In(mr), Fr(~ep) ]
--[ I3($I, $R, m1, mr, mi)

, KeyI3($I, ~k)
, Eq(vfy(h(h(~l)), <$R, $I, rr, ~ri>, tr), true)
]->

[ AgStI3($I, $R, m1, mr, mi, ~ri, rr, ~ep, <h(h(~k)),h(h(~l)),
h(h(h(~l))),h(h(h(h(~l))))>, sk),
Out(mi) ]

Next, R receives and verifies ti, and subsequently, evolves its keys and derives
the session key sk. At this point, R may ’accept’ as both the parties are evolved and
share a session key with respect to the responder. However, for simplicity, we make
the responder ’accept’ only after the last message is processed. R also computes trr
using the evolved authentication master key h(h(h(l))) and sends it to I.

Snippet 4.6 Responder evolves and derives a session key

rule R4:
let

sk = kdf(h(~k), opr(ri, ~rr))
mi = <ep, ti>
trr = mac(h(h(h(~l))), <~rr, ri>)

in
[ AgStR2(i, $R, m1, mr, ri, ~rr, <h(~k),h(h(~l))>), In(mi) ]
--[ R4(i, $R, m1, mr, mi, trr)

, KeyR4($R, h(~k))
, Eq(vfy(h(h(~l)), <ep, i, $R, ri, ~rr>, ti), true)
]->

[ AgStR4(i, $R, m1, mr, mi, trr, ri, ~rr, <h(h(~k)),h(h(h(~l)))>, sk),
Out(trr) ]
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I, at this point, due to two rounds of update, has stored h(h(l)), h(h(h(l)))
and h(h(h(h(l)))) in its state. Therefore, it uses the middle key as per the protocol
to verify the MAC trr, which also serves as the key update confirmation, making I

accept. It then generates the MAC tii and sends it to R over the network. The
action fact EvolvedI shows the knowledge of I at the end of the protocol.

Snippet 4.7 Initiator accepts the target run

rule I5:
let

tii = mac(h(h(h(~l))), <~ri, rr>)
in
[ AgStI3($I, $R, m1, mr, mi, ~ri, rr, ~ep, <h(h(~k)),h(h(~l)),

h(h(h(~l))),h(h(h(h(~l))))>, sk), In(trr) ]
--[ I5($I, $R, m1, mr, mi, trr, tii)

, Eq(vfy(h(h(h(~l))), <rr, ~ri>, trr), true)
, AcceptsI($I, $R, sk, <~ri, rr>)
, EvolvedI($I, $R, <h(h(~k)),h(h(~l)),h(h(h(~l))),h(h(h(h(~l))))>)
]->

[ Out(tii) ]

Finally, R receives tii, verifies it using h(h(h(l))) and ’accepts’ the target run,
where EvolvedR shows the knowledge of R at the end of the protocol. The action
facts AcceptsI and AcceptsR have sk as argument and help in writing lemmas
for session key secrecy. After the protocol run, both the parties have evolved and
synchronized their internal states as shown in Figure 4.4. Moreover, they share a
session key derived using the derivation master key h(k).

Snippet 4.8 Responder accepts the target run

rule R6:
[ AgStR4(i, $R, m1, mr, mi, trr, ri, ~rr, <h(h(~k)),h(h(h(~l)))>, sk),

In(tii) ]
--[ R6(i, $R, m1, mr, mi, trr, tii)

, Eq(vfy(h(h(h(~l))), <ri, ~rr>, tii), true)
, AcceptsR(i, $R, sk, <ri, ~rr>)
, EvolvedR($R, <h(h(~k)),h(h(h(~l)))>)
]->

[ ]

4.2.2 Lemmas

We shall now verify the security properties of SAKE by writing lemmas. When
modeling real protocols, it is always a good practice to begin with an executability



4.2. MODELLING IN TAMARIN 33

Figure 4.4: Knowledge of initiator and responder after the target protocol run

lemma to show that our protocol model is able to complete the target run. To this
end, we define the lemma executable that uses the action facts I1, R2, I3... with a
monotonically increasing timestamps. This confirms that there is at least one trace
found which follows the logical order of the messages exchanged in SAKE such that
I1 occurs before R2, R2 occurs before I3, and so on. Such existence proofs ensure
that our lemmas are not vacuous truths and act as a sanity check that the model
is actually executable. Following the analysis steps illustrated in Chapter 3, the
existence of a trace is found as shown in Figure 4.5. Since our modeling is correct,
by default, Tamarin shows a trace diagram on the right for which these action facts
appear in the desired timepoint order. While Tamarin searches for the required trace,
it cycles through other traces covered by each of the previous cases. When clicked,
Tamarin simply displays a trace diagram for which the corresponding action facts
appear in a rule, not necessarily in the desired order.

Snippet 4.9 Executablity check for the model

lemma executable:
exists-trace
"(Ex i r m1 mr mi trr tii #i #j #k #l #m #n.

I1(i, r, m1)@i
& R2(i, r, m1, mr)@j & #i < #j
& I3(i, r, m1, mr, mi)@k & #j < #k
& R4(i, r, m1, mr, mi, trr)@l & #k < #l
& I5(i, r, m1, mr, mi, trr, tii)@m & #l < #m
& R6(i, r, m1, mr, mi, trr, tii)@n & #m < #n
)"

Next, we will verify the basic property of session key secrecy, with respect to
both the initiator and the responder. In other words, whenever a party ’accepts’
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Figure 4.5: Tamarin proof: overview of the executability lemma
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(represented with AcceptsI and AcceptsR action facts), it deems the session key
derived in the corresponding protocol run to be safe from the adversary. Since
we want this property to hold in all possible traces of the protocol, we use the
’all-traces’ keyword. The respective session key secrecy lemmas are written in
Snippet 4.10, and the proofs are summarized in Figure 4.6 and Figure 4.7.

Let us dive further into one of the two proofs for the initiator. If we click on the
solve statement corresponding to the fact AgStI3, Tamarin shows a graph in which
it searches for a counter-example that has AcceptsI and K(sk) action facts, the only
source of AcceptsI action being the rule I5. However, it is not able to find such a
trace, as again evident in the graphs shown under each of the sub-cases. The other
proof follows the same logic for the responder.

Snippet 4.10 Session key secrecy wrt. the initiator and the responder

lemma sessionKeySecrecyI:
all-traces
"All i r sk ri rr #i.

AcceptsI(i, r, sk, <ri, rr>)@i ==>
not (Ex #j. K(sk)@j)"

lemma sessionKeySecrecyR:
all-traces
"All i r sk ri rr #i.

AcceptsR(i, r, sk, <ri, rr>)@i ==>
not (Ex #j. K(sk)@j)"

However, our point of interest in such key evolving schemes is the provision of
PFS for the derived session key. Specifically, we want to prove that the session key is
safe from the adversary, even if it corrupts one of the parties after either accepts.
Here, we make use of the action facts KeyI1, KeyR2... to represent key knowledge
with the parties at different stages of the protocol execution. The PFS lemmas
with respect to the initiator and the responder are written in Snippet 4.11. For
instance, in lemma skPFSI, we intend to show that if I ’accepts’, the session key is
safe, or otherwise the derivation master keys stored with I or R have been previously
compromised. In our case with I being one step behind, the facts KeyI1 and KeyI3
correspond to key k, while KeyR2 and KeyR4 correspond to key h(k), both the keys
enabling the adversary to derive the session key. The overview of PFS proofs are
respectively shown in Figure 4.8 and Figure 4.9.

Similar to the session key secrecy proofs, let us look into the PFS proof for the
initiator and the proof for the responder follows an analogous method. If we click
on the solve statement corresponding to the fact AgStI3, Tamarin shows a graph
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Figure 4.6: Tamarin proof: session key secrecy lemma wrt. the initiator

Figure 4.7: Tamarin proof: session key secrecy lemma wrt. the responder
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in which it searches for a counter-example that has AcceptsI and K(sk) actions,
without using any of KeyI1, KeyR2, KeyI3 or KeyR4 action facts. Additionally, below
the graph, we see four formulas signifying that occurrence of any of these will lead
to a contradiction. However, yet again, Tamarin is not able to find such a trace, as
any of the constructed graphs under each of the sub-cases leads to the contradiction.

Snippet 4.11 Session key PFS wrt. the initiator and the responder

lemma skPFSI:
all-traces
"All i r sk ri rr #i.

AcceptsI(i, r, sk, <ri, rr>)@i ==>
(not (Ex #j. K(sk)@j))

| (Ex k #z. KeyI1(i, k)@z & K(k)@z & z < i)
| (Ex k #z. KeyR2(r, k)@z & K(k)@z & z < i)
| (Ex k #z. KeyI3(i, k)@z & K(k)@z & z < i)
| (Ex k #z. KeyR4(r, k)@z & K(k)@z & z < i)

"
lemma skPFSR:
all-traces
"All i r sk ri rr #i.

AcceptsR(i, r, sk, <ri, rr>)@i ==>
(not (Ex #j. K(sk)@j))

| (Ex k #z. KeyI1(i, k)@z & K(k)@z & z < i)
| (Ex k #z. KeyR2(r, k)@z & K(k)@z & z < i)
| (Ex k #z. KeyI3(i, k)@z & K(k)@z & z < i)
| (Ex k #z. KeyR4(r, k)@z & K(k)@z & z < i)

"

Finally, we will test the property of synchronization robustness. For SAKE, the
property is fulfilled iff after the target run, the communicating parties end up with
their internal states synchronized, similar to what is shown in Figure 4.4. In other
words, after the protocol is complete, if there exists a trace in which the derivation
master keys with both parties are not the same and the authentication master key
with the responder is not same as the middle authentication master key with the
initiator, then it signifies an attack against the desired property. The corresponding
lemma is written in Snippet 4.12, where EvolvedI and EvolvedR are used to compare
the keys stored with the parties after completion of the target run.

Figure 4.10 shows that, indeed, Tamarin is able to find such a trace, thereby
indicating that SAKE is not synchronization robust. The whole trace diagram can
be seen after the proof is completed, which roughly deconstructs as follows. Tamarin
starts two parallel sessions between two different pairs of initiator and responder
oracles. The first session follows the protocol steps until rule I5 is executed, after
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Figure 4.8: Tamarin proof: session key PFS lemma wrt. the initiator

which it is aborted, and the another session follows all the steps through to the end.
As a result, both EvolvedI and EvolvedR action facts appear in the trace at some
timepoints and the target run is completed. However, the derivation master key with
the EvolvedI fact in the first session is not the same as the derivation master key
with the EvolvedR fact in the second session. This stems from the fact that SAKE
was not designed to handle concurrent protocol runs. One of the sessions will have
its keys evolved first, and due to the key evolution in the other session, these action
facts will be associated with different derivation master keys, thereby proving the
lemma. Similar conclusion can be drawn for the authentication master keys.

Snippet 4.12 Synchronization robustness of the SAKE protocol

lemma SyncLossConcurrent:
exists-trace
"Ex i r k l m n o p #i #j.

EvolvedI(i, r, <k, l, m, n>)@i
& EvolvedR(r, <o, p>)@j
& not((k = o) & (m = p))"
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Figure 4.9: Tamarin proof: session key PFS lemma wrt. the responder

4.2.3 Discussion

Intuitively, for an initial state difference within one step, if multiple sessions run in
parallel, each of them can be altered such that after processing of the message mr at
the initiator, remaining messages are dropped. This might result in a state difference
of more than two steps between the initiator and the responder. Consequently,
the protocol logic breaks trivially as it is based on the assumption that the state
difference is bounded by one step. Disallowing concurrent sessions, although required
and deliberately chosen by the protocol designers, will weaken the security model
and undermine adversarial capabilities. In essence, the synchronization robustness
property incorporates concurrent sessions, and assures that all the traces end up with
the parties being synchronized. As proven by Tamarin and shown in Figure 4.10,
SAKE does not fulfil this property. For a complete diagram of the trace found as a
counterexample, please run the protocol models [sakemodel] in Tamarin. Although
the modeling and analysis presented in this chapter is pertaining to the case where
the initiator is one step behind the responder at the start of the protocol, other cases
where the initiator is in sync with or one step behind the responder follow the same
proofs. The change in sequence or number of updation of keys does not affect the
temporal logic of the action facts used to prove the desired security properties.
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Figure 4.10: Tamarin proof: existence of an attack against synchronization robust-
ness



Chapter5Conclusion and Future Work

5.1 Remarks

Formal analysis has proven to be indispensable in verifying security of cryptographic
protocols. It asserts soundness of the protocol in question and is increasingly becoming
a standard requirement with the protocol design. Not only it serves as a universal
language to scalably automate proofs, but also allows defining adversarial capabilities
in accordance with the security model, thereby covering corner cases with multiple
parallel protocol runs without the risk of manual errors.

In this thesis, we presented a rigorous formal analysis of the SAKE protocol
using Tamarin Prover. Summarizing our findings, SAKE, as an AKE protocol,
provides session key secrecy, as well as authentication using MACs in the exchanged
messages. Additionally, using a simple key-evolving technique, it provides PFS for
the derived session keys. However, the protocol is not synchronization robust, as
Tamarin finds an attack resulting in the internal states of the participants being
desynchronized after the target protocol run is completed. The participants of the
protocol are able to synchronize their states only if parallel execution of sessions is
prohibited. Furthermore, for the readers intending to work in and pick up formal
analysis, we have delineated a concise and comprehensive guide to using Tamarin
as a verification tool, besides reviewing the literature pertaining to key exchange
protocols and present-day advancements in formal verification.

5.2 Achieving Full Synchronization Robustness

Only recently, AKE protocols providing forward security based on symmetric primi-
tives have been proposed. Naturally, they are few in number and differ in efficiency
in terms of computational and storage load on end devices. Several strategies are
adopted to evolve the long-term keys. A protocol may update their keys based on
time [DJ14], and therefore, require the clocks of the participants to be perfectly
synchronized, which may incur additional costs. Other designs may use a separate

41
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counter to keep track of the internal state of a participant [BP10]. In order to syn-
chronize, these counters are exchanged during the run of the protocol. Unfortunately,
few of these attempts at making a forward secure AKE protocol assumes one of the
parties to be incorruptible [VBdM07; BP10]. This impractically weaken the security
model, rendering the protocol secrets vulnerable to be compromised in a real setting.

[BDdK+21] presented a set of lightweight symmetric-key based AKE protocols
that attain PFS without any such assumptions. The authors formally defined the
property of synchronization robustness and proposed a set of protocols that achieve
correctness even if concurrent sessions are allowed. While the linear key evolving
schemes make use of counters to synchronize the communicating parties, the non-
linear key evolving schemes use PPRFs to realize full synchronization robustness,
and unlike SAKE, ensure that the internal states of the participants of the target
session are efficiently re-synchronized, offering stronger security guarantees.

Formal analysis of the protocols demonstrated in [BDdK+21] will help in con-
firming the claimed security properties for yet another set of lightweight schemes
providing PFS with symmetric-key cryptography, therefore, being able to be ef-
ficiently used by constrained devices. More importantly, it may help in formally
defining and standardizing the property of synchronization robustness for future
protocol designers, so that an adversary is not able to maliciously de-synchronize
the internal states of the participants. With the use of counters, modeling these
protocols in Tamarin may require multiple updates of the derivation master key at
once. This, to the best of our knowledge, necessitates the construction of loops using
Tamarin language. If at all possible, this is non-trivial, given the tool’s features, and
might serve as an interesting future extension of the analysis presented in this work.
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