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Sammendrag 
Hyppige rørfeil og vannlekkasje utgjør en stor trussel for vannverkenes arbeid med å 

sikre en kontinuerlig og tilstrekkelig vannforsyning. Hydraulisk trykk som drivkraft i 

vanndistribusjonsnett regnes som en viktig driver ved rørbrudd og vannlekkasje og blir 

sett på som en viktig variabel for å bestemme forventet levetid for rør. Forventet levetid 

for rør og rørfeil henger sammen gjennom en kompleks sammenheng mellom en rekke 

fysiske og miljømessige faktorer. Når det gjelder lekkasje, er den hovedsakelig relatert til 

størrelsen på åpningen eller sprekken, trykket, jordforholdene og elastisiteten til 

rørmaterialet. I denne studien ble disse relasjoner trykk– forventet levetid – lekkasje 

undersøkt ved hjelp av en real-verden case-studie i Bergen. Flere regresjonsmodeller ble 

utviklet for å undersøke sammenhengen mellom trykk og forventet levetid for rør. Et 

stort datasett, som inkluderer servicerør og hovedrør som er rammet av ett eller flere 

brudd tidligere i Bergen, ble samlet inn for modellutvikling og validering. I tillegg ble det 

satt opp en hydraulisk modell for å undersøke sammenhengen mellom trykk og 

vannlekkasje ved å regulere trykket ved hjelp av ulike reguleringsmetoder. Data fra 

SCADA-systemet ble samlet inn, og komponentene for minimum nattforbruk (MNF) ble 

beregnet for å utvikle og kalibrere denne hydrauliske modellen for et utvalgt district 

metered area (DMA) i Bergen. Eiendoms- og adressedata ble brukt for en optimal 

fordeling av forbruket, og lekkasje ble modellert som en trykkavhengig komponent. 

Resultatene fra denne studien viser en direkte sammenheng mellom på den ene siden 

trykk og lekkasje, og trykk og forventet levetid på røret på den andre. Disse funnene kan 

forbedre effektiviteten til algoritmer for prioritering av rørutskifting og renovering. De 

kan også hjelpe til med å implementere passende trykkstyringsmetoder for å redusere 

lekkasje. 
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Abstract 
Frequent pipe failures and water leakage pose a major threat to the water utilities work 

in securing a continuous and adequate water supply. Hydraulic pressure as a driving 

force in water distribution networks is considered an important driver in pipe breakage 

and water leakage and is seen as a major variable in determining the life expectancy of 

pipes. Pipe-life expectancy and pipe failures are related through a complex correlation 

between a host of physical and environmental factors. As for leakage, it is mainly related 

to the size of the opening or crack, the pressure, the soil conditions, and the elasticity of 

the pipe material. In this study, these relationships pressure – life expectancy – leakage 

were investigated using a real-world case study in Bergen. Several regression models 

were developed to investigate the relationship between pressure and pipe-life 

expectancy. A large data set, that included the services and mains that experienced one 

or more breaks in the past in the city of Bergen, was collected for model development 

and validation. In addition, a hydraulic model was set up to investigate the relationship 

between pressure and water leakage by regulating the pressure using different 

management methods. Data from the SCADA system were collected, and the minimum 

night flow (MNF) components were calculated to develop and calibrate this hydraulic 

model for a selected district metered area (DMA) in Bergen. Property and address data 

was used for an optimal distribution of consumption, and leakage was modelled as a 

pressure-dependent component. The results from this study demonstrate a direct 

relationship between, on the one hand, pressure and leakage, and pressure and pipe-life 

expectancy, on the other. These findings can improve the efficiency of pipe replacement 

and renovation prioritization algorithms. They can also aid in deploying appropriate 

pressure management methods to reduce leakage. 
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Global freshwater demand is increasing at a rate of one percent per year due to 

population growth, and a global water deficit of 40% is expected by 2030 (UNESCO, 

2021). Approximately 71% of freshwater is used in agriculture, 12% in industry and 17% 

for domestic uses (World Bank, 2017). According to Liemberger and Wyatt (2018), an 

average of 30% of global freshwater withdrawal is lost on its way to consumers. They 

estimate this 30% to amount to 126 billion m³ per year. The increasing demand and 

water loss pose significant challenges to water utilities and threaten their ability to secure 

an adequate and continuous water supply. 

To address this challenge, many research studies in the past two centuries have focused 

on finding better ways to manage water resources and on deploying more efficient 

leakage management measures. Lambert and Hirner (2000) introduced a water balance 

model which basically categorises water consumption into authorised consumption and 

water losses and then into subcategories such as apparent and real losses. The water 

balance model has been used worldwide by water utilities to investigate and assess non-

revenue water in their water distribution systems (WDN). Further, minimum night flow 

(MNF) was established as a key performance indicator in leakage detection work. The 

MNF was divided into various components to be able to differentiate legal consumption 

from the water lost to leakage (Fantozzi & Lambert, 2010). Also several equations to 

calculate each component based on easily available data from the utility systems were 

developed (Lambert, 2009). In addition, Lambert (2000) and May (1997) identified four 

basic methods to reduce the avoidable leakage component of real losses, which itself is a 

component of non-revenue water. These methods are pressure management, speed 

and quality of repairs, active leakage control and pipeline and asset management. 

This thesis will try to quantify the impact of different pressure management practices in a 

selected pressure-managed DMA in the city of Bergen in Norway. Even though Bergen 

doesn’t face a scarcity issue like many other utilities, it has a leakage rate of 40% of the 

total water production (Bergen Vann, 2022). This leakage affects the utility significantly 

when it comes to the costs associated with production, distribution, and storage on top of 

its environmental impact. At the same time, Bergen must meet a national goal of no 

more than 20% leakage by 2030 or earlier where Bergen plans to meet this goal by 2028 

(Vann og avløpsetaten, 2020, p. 16). 

Different approaches to estimating the pressure-leakage relationship have been done in 

the past and can be categorised into experimental and theoretical groups. Experimental 

approaches are either made in a real WDN by testing different types of pressure 

reduction valves (PRV) with different control profiles and monitoring the flow-pressure 

data in real-time (Fontana et al., 2018) or in a lab using a loop network with a supply 

pipe (Hoțupan et al., 2019). Theoretical approaches usually represent a real WDN and 

use a calibrated hydraulic model to run simulations with different scenarios and PRV 

types and settings (Berardi et al., 2015). Other theoretical approaches may use hydraulic 

models for totally virtual WDN’s or represent real WDN models created long time ago, so 

they don’t represent the current situation in these, like using water distribution systems 

from the database developed by the Kentucky Infrastructure Authority (Jolly et al., 

2014). 

1 Introduction 
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The results of theoretical approaches should always be taken with high caution: No 

matter how extensive the conducted calibration of the hydraulic model is, there will be a 

degree of error. Error may be caused by inaccuracies in the data entered in the model, 

such as pipe lengths, diameters, roughness, valve openings, demand estimation and 

allocation, and others. Theoretical models do however enjoy cost and time advantages 

over field experiments. 

As mentioned, pressure management is only one facet of the leakage problem. It 

overlaps with the broader field of asset management which tries to avoid more significant 

impact and harmful consequences like frequent pipe breaks. Such pipe failures can occur 

because of internal, external or a combination of both internal and external factors 

(Ghorbanian et al., 2016). Breaks are usually followed by significant financial 

consequences due to the costs associated with the repair work, environmental 

consequences such as energy and water loss, and reputational consequences caused by 

water supply disruptions and traffic delays (Berardi et al., 2008). They also hinder the 

utility’s ability to improve and develop its networks. In addition, pipe breaks strain the 

operational capacity of the water utility. In most cases, they delay scheduled activities 

and require extra labour especially if there are no readily available alternatives for water 

supply and a need to deploy emergency water tanks arises. 

Unlike the water leakage rate, there is no global database or statistics for the rate of pipe 

breaks or pipe-life expectancy. The main reasons behind this may be that most water 

utilities prioritise reducing leakage over reducing pipe breaks because of water scarcity, 

high production, transport and distribution costs or other challenges. In addition, the 

leakage rate is usually used as an indicator of utility performance and as a national goal, 

traditionally linked to a deadline. Bergen, which is the case study in this thesis, has a 

burst rate of 120 to 165 breaks per 1000 km per year (Bergen Vann, 2015-2020). This 

burst rate is comparable to burst rates from other countries. For example, in the UK it is 

between 155-185 (Farrow et al., 2017) and in the US it is between 130-170 (Folkman, 

2018). Nevertheless, the interruptions and the costs associated with the minimum rate of 

120 are significant and preventative measures should be considered. 

The largest survey in this field was conducted by Thornton and Lambert (2007) where 

they managed to collect data from 112 systems in 10 countries. The survey data shows 

the impact of the reduction in maximum pressure on reducing new pipe breaks. Other 

forms of pressure indicators have been observed when reviewing previous studies, such 

as pressure fluctuations (Rezaei, 2017), mean pressure and pressure range (Jara-

Arriagada & Stoianov, 2021), maximum pressure (Moslehi & Jalili Ghazizadeh, 2020) and 

average maximum and average minimum pressure (Ghorbanian et al., 2016). Each of 

these indicators based on the results of the studies may explain the pressure-pipe break 

to some extent. However, there is still no general agreement on which indicator is 

preferable and provides the best explanation.  

In addition, water pressure can be found in two different types in the WDNs: steady-

state and dynamic. Steady-state pressures are stable over time. In contrast, dynamic 

pressure is a pressure caused by pressure transients or water hammers, which happen 

when sudden changes occur in the network, such as valve openings and closings, pump 

restarts, hydrant flushings, human mistakes, or equipment failure. Dynamic pressures 

are generally excluded in most of the previously published studies that investigate the 

pressure-break relationship because of their complex nature (Jara-Arriagada & Stoianov, 
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2021; Ghorbanian et al., 2016; Moslehi & Jalili_Ghazizadeh, 2020). For the same 

reasons, this thesis will only consider the steady-state type of pressure. 

Different research goals can be noticed when reviewing some of the previous studies of 

the pressure-break relationship. Some studies tried to estimate the probability of pipe 

breaks (Jara-Arriagada & Stoianov, 2021; Moslehi & Jalili_Ghazizadeh, 2020; Martínez-

Codina et al., 2015), others the rate of pipe breaks (Ghorbanian et al., 2016; Wang et 

al., 2009) and others still the pipe-life expectancy (Thornton and Lambert 2007). It’s also 

noticeable that the studies on pipe-life expectancy are limited in number and size. The 

lack of large-scale research on the impact of pressure on pipe-life expectancy considering 

other influencing factors leads to the necessity of conducting more studies that highlight 

this impact and determine its size to increase the life of the pipes. On the other hand, the 

life expectancy indicator may be easier to benefit from compared with other pipe break 

indicators, especially in pipe rehabilitation and replacement prioritisation algorithms. 

The approaches to achieving the goals mentioned above were categorised by Jara-

Arriagada & Stoianov (2021) into mechanistic and data-driven. Mechanistic approaches 

involve extensive field investigations that are costly and very time-consuming. On the 

other hand, data-driven approaches like statistical, classification and regression analyses 

provide good results in a short period at negligible cost. 

Beyond the effects of pressure, Wang et al. (2009) have highlighted a host of physical 

and environmental correlates of the life expectancy of pipes and their break rates. Most 

of the prior research appears to tend to include as many of these factors as possible, 

including one or several pressure indicators when building pipe break prediction or 

deterioration models (Robles-Velasco et al., 2020; Wang et al., 2009; Jara-Arriagada & 

Stoianov, 2021). However, there is always a limitation on how many factors can be 

included, mainly because of data quality and availability issues. 

Pipe-life expectancy as a term has no universal definition, but since pipes are products 

the term can follow one common definition for product life expectancy. “Product life 

expectancy is the duration of the life of a product starting from acquisition and ending at 

the moment of replacement” (Van Nes & Cramer, 2006). Based on this general definition, 

the life expectancy of a pipe in this thesis refers to the period between pipe installation 

and pipe burst, and this period can be extended due to repairs and renovations. 

Consequently, this thesis will address two questions: (1) what effects modulating water 

pressure has on avoidable water leakage, and (2) whether and to what extent maximum 

zonal pressure in conjunction with other parameters is correlated with the life expectancy 

of pipes in a water distribution system. 
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 Avoidable water leakage 

The methodology for investigating the pressure leakage relationship will follow the steps 

shown in Figure 1. It starts with the collection of necessary data from utility systems. A 

real pressure-managed DMA model will then be built and calibrated using field-verified 

pipe roughness data, and pressure and flow data from the utility's SCADA system. Next, 

MNF components' equations will be used to calculate the MNF components. After that, 

the calculated demands will be distributed and assigned to the addresses of consumers. 

Different hydraulic scenarios and pressure regulation methods will be considered for the 

simulation and investigation of the impact of pressure management on avoidable water 

leakage. The use of real SCADA data, MNF equations, and accurate demand allocation 

results in a representative hydraulic model of the real WDN that provides results with 

reasonable accuracy. An overview of the simulation results will then be presented and 

discussed. 

 

Figure 1 Main steps of the applied methodology for the pressure-leakage relationship 
investigation 

 Data acquisition 

The following data will be collected: 

- Data about the water mains and services (length, diameter, roughness, etc.) 

- Data about the water pumps, storage tanks and PRVs 

- Flow and pressure data 

- The addresses of the domestic and non-domestic properties and their numbers 

 Minimum night flow 
MNF is widely recognized and used as an important indicator in water leak detection 

work. It is used to determine the size of and to monitor the development of existing 

leaks, and to detect new leaks. 

To maximize the benefit of using MNF, the International Water Association divided MNF 

into four components to make it easier to focus on avoidable leakage. As shown in Figure 

2, these are customer night use, customer night leakage, unavoidable background 

leakage, and avoidable leakage. IWA has also developed several equations for the 

calculation of these components (Table 1). 
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Figure 2 MNF components (Fantozzi & Lambert, 2010) 

Table 1 MNF components’ equations (Lambert, 2009; Maggs, 2007) 

Equation Variables 

𝑨𝑵𝑼𝑵𝒐𝒏−𝑫𝒐𝒎𝒆𝒔𝒕𝒊𝒄 = 𝑵𝑫𝑷 ∗ 𝟖 
NDP = number of non-domestic 

properties 

𝑨𝑵𝑼𝑫𝒐𝒎𝒆𝒔𝒕𝒊𝒄 = 𝑫𝑷 ∗ 𝑹 ∗ 𝟎. 𝟎𝟔 ∗ 𝑪𝑺 

CS = average toilet citern size 

[liter], DP = [Number of domestic 

properties], R= average number of 

residents per property 

𝑨𝑵𝑼 = 𝑨𝑵𝑼𝑵𝒐𝒏−𝑫𝒐𝒎𝒆𝒔𝒕𝒊𝒄 + 𝑨𝑵𝑼𝑫𝒐𝒎𝒆𝒔𝒕𝒊𝒄 ANU = Assessed Night Use 

𝑪𝑵𝑼 = 𝑨𝑵𝑼 + 𝑬𝑵𝑼  CNU = Costumer Night Use 

𝑼𝑩𝑳 = (𝟐𝟎 ∗ 𝑳𝒎 + 𝟏. 𝟐𝟓 ∗ 𝑵𝑪 + 𝟎. 𝟎𝟑𝟑𝟑 ∗ 𝑳𝒄) ∗ (
𝑷

𝟓𝟎
)𝑵𝟏 

UBL = unavoidable background 

leakage [l/h], Lm = length of water 

mains [km], Nc = number of 

service connections, lp = average 

distance from curb stop to 

customer meter [m], Lc = total 

length of private pipe, Nc x lp [m], 

P = average pressure [m], N1= the 

leakage exponent 

𝑴𝑵𝑭𝑻𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 = 𝑼𝑩𝑳 + 𝑪𝑵𝑼 + 𝑪𝑵𝑳  

𝑨𝑳 =  𝑴𝑵𝑭𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 − 𝑴𝑵𝑭𝑻𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 AL = Avoidable leakage 
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 PRV control curves 

Prior research used several methods to create and optimize PRV control curves (Vicente 

et al., 2016). AbdelMeguid (2011) categorized these methods into three main categories: 

linearization methods, nonlinear programming and evolutionary computing and genetic 

algorithms. The linearization methods and nonlinear programming optimize the outlet 

pressure of the PRV to minimize pressure-dependent leakage, while the evolutionary 

computing and genetic algorithms optimize the outlet pressure of the PRV to minimize 

the pressure head at the network critical point (AbdelMeguid and Ulanicki, 2010). 

However, these methods share the optimisation problem of minimising background 

leakage with the minimum allowable pressure set as a common constraint, but they use 

different approaches to solve it. 

This thesis will include two types of PRV control curves: time-modulation and flow-

modulation curves. The time-modulation curve will be created empirically by using Mike 

Urban + as a hydraulic simulator to find PRV settings that maintain constant pressure at 

the critical point in the DMA over time. The flow-modulation curve will be created and 

optimized using the curve fitting toolbox in MATLAB and Mike Urban + as a hydraulic 

simulator. There will be no connection between MATLAB and Mike Urban +, so the 

hydraulic simulation results will be manually entered into the curve fitting toolbox in 

contrast to what AbdelMeguid and Ulanicki (2010) did in their application of genetic 

algorithms where the GA toolbox was connected to EPANET. The curve fitting toolbox has 

many built-in equations that can be used to optimize the flow modulation curve, such as 

Polynomial, Fourier, Gaussian, Sum of Sine, and others. A ‘Sum of Sine’ equation with 

three terms as expressed in Equation (1) is chosen. 

𝑷𝑹𝑽 𝑺𝒆𝒕𝒕𝒊𝒏𝒈 = 𝒉𝒙(𝒕) =  𝒂𝟏 ∗ 𝐬𝐢 𝐧(𝒃𝟏 ∗ 𝒒𝒙(𝒕) − 𝒄𝟏) + 𝒂𝟐 ∗ 𝐬𝐢 𝐧(𝒃𝟐 ∗ 𝒒𝒙(𝒕) − 𝒄𝟐) 

                                                  +𝒂𝟑 ∗ 𝒔𝒊𝒏(𝒃𝟑 ∗ 𝒒𝒙(𝒕) − 𝒄𝟑)      (1) 

 

Here, 𝒉𝒙(𝒕) = PRV outlet pressure [m] at the PMA entry, 𝒒𝒙(𝒕) = the flow [l/s] at the PMA 

entry at time 𝒕, and coefficients 𝒂𝟏, 𝒃𝟏 , 𝒄𝟏, … are coefficients of the flow modulation curve 

It’s worth mentioning that the optimization of the modulation curves will only consider a 

single-feed scenario for the sake of simplicity and because the chosen DMA has a single 

inlet with closed valves at the boundaries with adjacent DMAs. 

 Pipe-life expectancy 

I start by collecting the necessary data from the utility systems for the parameters that 

are expected to have an impact on the life expectancy of pipes. Significance analysis will 

then be performed to check if these independent variables are associated with the 

response. Then the best subset analysis will try to find the best combination of the 

independent variables to be used in a regression analysis and thus eliminate those that 

do not provide any additional information. After that, several regression models will be 

built using these independent variables. The models will be evaluated and compared 

using statistical measures to identify the best model. The best model will then be used to 

investigate the impact of pressure on pipe-life expectancy. See Figure 3. 



19 

 

 

Figure 3 Main steps of the applied methodology for the pressure-pipe-life expectancy 
relationship investigation 

 Data acquisition 

Data about the pipe’s material, breaks, length, diameter, year of construction and 

piezometric head will be collected. Detailed information about the data acquisition 

process is provided in the case study. 

 Significance analysis 

A significance analysis can help in determining whether there is a relationship between 

an independent variable or variables and a dependent variable. There are many methods 

that can be used to conduct the analysis. In this thesis, the test of fixed effect terms 

(Kenward-Roger approximation) is chosen. 

 Best subset analysis 

The use of too many variables to create a regression model increases the probability of 

including variables that may be unimportant for the performance of the model and may 

offer a fake improvement leading to an overfitted model. Overfitting happens when the 

model extensively fits the current data but cannot validate future data with the same 

precision, if at all. Therefore, it is crucial to investigate how the different independent 

variables (predictors) affect the model. Several methods such as best subset regression, 

forward stepwise regression, and Lasso regression can help conduct such investigation. 

In comparison between methods, Hastie, Tibshirani & Tibshirani (2020) have concluded 

that neither best subset analysis nor Lasso dominate the other and that best subset 

analysis and forward stepwise regression have similar performance. Therefore, all these 

methods are appropriate to perform the investigation.  

Best subset regression is chosen, and it will be used in this thesis to decide which 

independent variables to include in the regression analysis i.e. selecting the independent 

variables that increase R² and adjR² and decrease s and Mallows’ Cp values. 

 Statistical measures 

This section presents an overview of the statistical measures used to evaluate the results 

from the best subset analysis, the significance analysis, and the regression analysis. 

Statistical programs like Minitab and MATLAB are used to calculate these measures. 

However, their equations are included to show how they are calculated. 
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 R² 

R-squared or as sometimes called the “coefficient of determination” is a statistical 

measure commonly used as a measure of goodness of fit in regression models. In other 

words, R² indicates how well the model fits the data i.e. how close its predictions of the 

dependent factor (response) are to the observed data. R² can also explain how much the 

variability of the dependent factor is correlated with another related independent variable 

or variables. R² value always varies between 0.0 and 1.0, where 0.0 indicates that the 

model doesn’t explain any of the variability in the dependent factor while 1.0 explains all 

the variability in dependent factor. Thus, higher R² value indicates a better data fit, but 

this is not always the case. A justified causal relationship between the response and the 

predictor is necessary to consider R² value as a measure of goodness of fit. In this thesis, 

it is expected that there is a causal relationship between the regression predictors and 

the response. Therefor R² is considered an important measure to evaluate the results. R² 

can be calculated using the following equation: 

  (2) 
 

Where, 𝒀𝒊 = observed value, 𝒀̂𝒊 = predicted value of 𝒀𝒊, 𝒀 = mean value of the 

observations 

Other uses of R² like measuring the explanatory power of the regression predictors and 

using R² as an indicator of the correctness of the regression model were criticized by 

Moksony (1999). Moksony considers the use of R² for these purposes irrelevant and 

misleading for several reasons; R² does not provide any substantive explanation but only 

statistical explanation, R² does not necessarily indicate a real causal relationship, and R² 

value is based on the observations that are used in the regression model training which 

means this value can change for different set of observations. However, this thesis does 

not employ R² for any of the uses criticized by Moksony. 

 R² adjusted 

Adjusted R² as R² also indicates how well the model fits the data, but unlike R² the 

adjusted R² take into consideration the number of independent variables (k) as shown in 

Equation 3. R² value increases by adding more independent variables while adjusted R² 

decreases. More specifically adjusted R² decreases when the add parameters are useless 

and increases when these are useful. This is what makes adjusted R² preferred by 

researchers as a measure of goodness of fit instead of R² or along with R² (Lewis-Beck, 

Bryman & Liao, 2004). In this thesis, adjusted R² will be used to ensure that the increase 

in R² value is due to the addition of useful independent variables. 

  (3) 
 

Where, n = sample size, k = number of independent variables 

 R² predicted 

The predicted R² is mainly used to avoid overfitting when training a regression model. It 

can also be used to investigate the prediction performance of a regression model for new 

𝑹𝟐 = 𝟏 −
∑(𝒀𝒊 − 𝒀̂𝒊)

𝟐

∑(𝒀𝒊 − 𝒀)𝟐
 

 

adj𝑹𝟐 = 𝟏 − [
(𝟏 − 𝑹𝟐)(𝒏 − 𝟏)

𝒏 − 𝒌 − 𝟏
] 
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observations. It is calculated by removing a single observation from the data set, using 

the rest of the observations for training a regression model, and using the model 

equation to generate a prediction for the observation that is kept aside and then 

calculate the residual error. This process should be repeated for all the observations. The 

same equation for R² can then be used to calculate the predicted R². The only difference 

is that the 𝒀̂𝒊 in Equation (2) is the predicted value of the removed observation in each 

model run. 

 Mallows' Cp 

Mallow’ Cp is statistical measure helps in choosing between multiple regression models 

(Upton & Cook, 2008). Mallow’ Cp has a similar use as adjR² where Mallow’ Cp helps to 

decide which independent variables that contribute to improve the regression model. It 

compares precision and bias of the full model that includes all the independent variables 

of interest to subset models that include a different subsets of these variables. This 

comparison gives Mallow’ Cp the power to detect both overfitting (too many variables) 

and underfitting (too few variables) and thus it helps in balancing between overfitting 

and underfitting the models (Lesik, 2009). The Mallows’ Cp can be calculated as follows: 

  (4) 
 

Where, n = sample size, 𝑎𝑑𝑗𝑹𝟐
𝒑
 = adjusted R-squared for the subset model contains p 

independent variables of k, 𝑎𝑑𝑗𝑹𝟐
𝒌
 = adjusted R-squared when the model contains all 

variables of interest (k) (Managa ,2018) 

A small Mallows' Cp value that is less than the number of independent variables in the 

model plus one (P+1) indicates that the model is relatively unbiased and thus a large 

Mallows' Cp value indicates that the model has high bias. 

 S-value 

S-value is known as the standard error of the regression or the standard error of 

estimate. The S-value like R² is also used as a measure of goodness-of-fit, but unlike R², 

it measures the precision of predictions generated by a regression model where its value 

represents the average distance between the observed variables and the regression line 

(Siegel, 2016). The S-value can be calculated as follows: 

  (5) 
 

Where, df = degree of freedom (sample size minus number of independent variables), 𝒀𝒊 

= observed value, 𝒀̂𝒊 = predicted value of 𝒀𝒊 

 P-value 

The probability value (P-value) is a number used to decide whether to accept or reject 

the null hypothesis. The null hypothesis means that there is no significance and statistical 

relationship between two observed variables being studied (Perdices, 2017). The p-value 

ranges between 0 and 1, where a p-value < 0.05 is considered a strong evidence against 

𝑪𝒑 = (𝒏 − 𝒑)
(𝟏 − 𝑎𝑑𝑗𝑹𝟐

𝒑
)

(𝟏 − 𝑎𝑑𝑗𝑹𝟐
𝒌

)
+ 𝟐𝒑 − 𝒏 

𝑺 = √
𝟏

𝒅𝒇
∑ (𝒀̂𝒊 − 𝒀𝒊)

𝟐
𝒏

𝒊=𝟏
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the null hypothesis and vice verse (Lovell, 2020). In this thesis, p-value will be calculated 

using a statistical test called the test of fixed effect terms (Kenward-Roger 

approximation) in a statistical program called Minitab to check whether the is an 

association between the independet varaibles (predictors) and the dependent variable 

(response) which will be used in the regression analysis. The p-value can also be 

manually calculated by calculating the z-value then using the resulted z-value to find the 

p-value from the z-score table. The z-value can be calculated as follows: 

  (6) 
Where, n = sample size, 𝒑𝟎 = assumed population proportion in the null hypothesis, 𝒑̂ = 

sample proportion 

 MAE 

Mean absolute error (MAE) is a measure that can be used to compare actual observations 

with their predictions where MAE represents the average absolute distance (error) 

between the observed value and the predicted one (Sammut & Webb, 2011). So, the 

lower MAE value indicates a better model that generates predictions close to the actual 

observations. In this thesis, MAE will be used to assess the prediction performance of the 

regression models. The MAE can be calculated as follows: 

  (7) 
 

Where, n = sample size, 𝒀𝒊 = observed value, 𝒀̂𝒊 = predicted value of 𝒀𝒊 

 RMSE 

The root mean square error (RMSE) as MAE is also used a measure of prediction error. 

Unlike MAE the differences between the observed values and predicted values are being 

squared in RMSE. Therefore, the RMSE is more sensitive than MAE to large differences 

(Willmott & Matsuura, 2005). In this thesis, RMSE will help to choose a regression model 

with lowest presence of large differences. The RMSE can be calculated as follows: 

  (8) 
Where, n = sample size, 𝒀𝒊 = observed value, 𝒀̂𝒊 = predicted value of 𝒀𝒊 

𝒁 =
𝒑̂ − 𝒑𝟎

√𝒑𝟎(𝟏 − 𝒑𝟎)
𝒏

 

 

𝑴𝑨𝑬 =
𝟏

𝒏
∑ |𝒀̂𝒊 − 𝒀𝒊|

𝒏

𝒊=𝟏
 

 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒀̂𝒊 − 𝒀𝒊)

𝟐
𝒏

𝒊=𝟏
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This case study will focus on water leakage in one DMA in the water distribution system 

in the south of Bergen to investigate the impact of applying pressure management on the 

annual volume of the avoidable water leakage. Then the study will try to investigate the 

relationship between pressure and the life expectancy of the mains and services in the 

city of Bergen. For this purpose, data on pipes that had undergone breaks that were 

logged into Bergen’s water utility’s systems was collected. 

 Avoidable water leakage 

The chosen DMA (Figure 4) is also a PMA with a PRV on the entry pipe and closed zone 

values with neighbour DMA’s. It consists of approximately 8 km public pipes and 1.6 km 

private pipes include two pump stations. The main reason for choosing this particular 

PMA is that it has high leakage and high difference in altitude, representing a great part 

of the water network in Bergen. 

 

Figure 4 Representation of the chosen zone showing APP, CDP, CPP, PRV 

 Critical Pressure point (CPP) 

The critical pressure point is a pump station located at a high altitude of 84.6 m AMSL, 

35.8 meters higher than the DMA main entry. The pump station requires 18 m entry 

pressure for optimal operation and a minimum of 14 m to avoid a total shutdown. 

 Critical demand point (CDP) 

The highest fire hydrant in the network is 73 m AMSL and the pipes that supply it have 

great roughness which makes this hydrant the most vulnerable point when it comes to 

water demand. 

3 Case Study 
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 Average pressure point (APP) 
Some pressure regulation methods such as FM use a point located at an average height 

and distance from the PMA PRV beside CPP when creating and calibrating the PRV control 

curve. At the same time, APP is also used to confirm the pressure readings from the CPP, 

prevent technical problems from interrupting pressure management, and to avoid mis-

regulation in case of closed internal valves or open zone valves. 

 Firefighting demand 
Bergen's water norm categories the firefighting demand into residential buildings and 

other types of buildings demand. The minimum requirement for residential buildings is 

set at 20 l/s while 50 l/s for the other buildings with a pressure of not less than 1.0 bar, 

where the pressure is lowest due to the firefighting demand. The DMA in this case study 

consists largely of residential buildings, so the firefighting demand is considered 

accordingly 20 l/s. 

 Flow and pressure data 

A week (Monday - Sunday) of data from November 2021 is extracted for modelling, 

simulation, and analysis (Figure 5). This week has a repetitive flow pattern and stable 

pressure with an average of 55.8 m. 

 

Figure 5 A week (Monday - Sunday) of DMA pressure and flow data from SCADA 

 Pipe-life expectancy 

 Data acquisition and parameters investigation 

 Pipe material 

Bergen municipality's water distribution network consists of approximately 1020 km of 

public water mains and approximately 1500 km of private service pipes in operation. For 

the most part, the public water mains are from ductile iron (47%) and grey cast iron 

(23%) materials. While on the other hand, 71% of the private network consists of 

polyethylene materials. 
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As shown in Figure 6, the choice of pipe material types varied significantly over the 

years. By the mid-60s, grey cast iron made up over 90% of the public network. From 

1965 to 1980 the utility transitioned away from grey iron to ductile iron and asbestos 

cement pipes. By 1979 the utility had stopped using asbestos pipes due to the material’s 

health risk. The use of polyethylene pipes has seen an increase since the 1980s and 

constitutes today 10% of the entire public network. 

It is noteworthy that 2% of the public network and 21 % of the private network lack 

information about pipe material. These pipes and the pipes with material that has low 

population are not included in the regression analysis. 

 

Figure 6 Area diagram of Pipe Length - material - year of construction 

 Pipe burst 

The water utility in Bergen uses several data systems to register data over pipe bursts in 

its water network. Different amounts of information with different degrees of quality are 

stored in the operation and maintenance system, folders in one of the utility servers, the 

utility’s economic system, and the water network’s GIS map. It is also apparent that the 

data quality varies between the operators who submit it. In other words, there is a 

noticeable lack of following the utility burst registration routines. 

Following are some of the reasons that may explain the differences in data quality 

between the different operators: 

⮚ Some of the operators are more concerned with getting the job done, i.e. 

repairing the bursts instead of updating the register with information about them. 

⮚ Others forget to digitalize the information they write on paper. 

⮚ Quite a few of the operators managed to report sufficient information about the 

bursts. 

⮚ Organizational challenges regarding the responsibility of registration. 
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⮚ Lack of quality control and correction such as double registration, incorrect 

registration (incorrect pipe number, burst type, date of burst, location, etc.) 

⮚ Night -shift operators often leave the responsibility for burst registration to the 

day-shift operators. While the registration is supposed to be done within the shift 

time when the burst occurs or at least by those involved in the repair. 

A summary of the registered bursts is obtained by merging the data from the utility 
systems, and a data quality control is performed. The summary shows 2,641 pipes, 
largely from grey cast iron (Figure 7), with up to 11 bursts (Table 2). Depending on the 
number of bursts and other factors such as the year of construction, importance, 

location, diameter, material, etc., corrective actions such as pipe removal, renewal or 
replacement can be decided when needed. 

Table 2 Number of pipes grouped by number of burst 

Number of burst 1 2 3 4 5 6 7 8 9 10 11 

Number of pipes 2641 981 495 273 139 77 47 27 6 1 1 

 

 

Figure 7 Number of bursts by year of construction and material 

The oldest burst that can be found in the systems dates to 1974. At the same time, the 

oldest pipe dates to 1865 (Figure 7). This means there is no information about pipe 

bursts between 1865 and 1974, which presents a high uncertainty about the number of 

bursts, especially for pipes with a year of construction from this period. 

 Pipe length 

The recorded data on pipe lengths in the utility’s systems show that pipe length is not 

always measured in the same way. These data show that the length may be the distance 

between:  

⮚ a manhole and a service pipe connection point (Figure8), 

⮚ two manholes (Figure 8b), 
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⮚ a manhole and a virtual point or a point of replacement or renovation (Figure 8c) 

(Both pipes 1 and 2 have the same characteristics as the year of construction, 

diameter, and material. These virtual points are likely the result of an error that 

occurred while drawing the pipes.) 

⮚ or two virtual points or two points for replacement or renovation (Figure 8d, line 

2). In this case, the data on bursts will be associated with a length shorter (the 

pipe of the new ones which gets the original pipe ID) than the actual length 

(original pipe, sum of 1, 2 and 3 lengths) and may be duplicated to all new pipes 

(1, 2 & 3) 

 

a) a manhole and a service pipe 

connection point 

 

c) a manhole and a virtual point or a 

point of replacement or renovation 

 

b)  two manholes 

 

d) two virtual points or two points for 

replacement or renovation 

Figure 8 Reference points for measuring pipe length 

To avoid the uncertainty of pipe lengths, pipe lengths in this study have been 

recalculated to either the length between two manholes or the length between a manhole 

and the point of replacement or renewal (in case the burst happened after replacement 

or renewal). 

It is also worth mentioning that all pipe lengths are measured in two dimensions, i.e. 

calculated using the x and y coordinates of the pipe endpoints. Therefore, these 2D 

lengths do not consider the pipe slope, which in many cases results in pipe lengths much 

shorter than the actual lengths (3D length). Since Bergen is located on a terrain with a 

high difference in altitude, using 2D pipe lengths can cause significant errors in hydraulic, 

statistical, and other analyses. 
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 Pipe diameter 

The pipe diameter property used by the utility refers to either the inner, nominal, or 

outer diameter. Even though there are data fields for each type of diameter in the 

utility's systems, these are rarely used. Using the diameter parameter in a regression 

analysis without knowing the diameter type can cause a heterogeneity problem and 

impact the regression results. 

Another problem that may affect the regression results is the different population sizes 

for each pipe diameter. From Figure 9, it is obvious which pipe diameters are used most 

in public and private networks. It is also clear that a few pipe dimensions represent a 

large majority of the total available dimensions. These overrepresented dimensions might 

overshadow whatever role the less represented dimensions play, which in turn will be 

reflected in the regression analysis. 

It is also important to note that pipe diameter varies over time depending on the pipe 

material, hydraulic conditions, and water quality. Knowing the actual diameter of the pipe 

may significantly affect the results, but this is not an easy thing in water networks and 

requires costly and time-consuming fieldwork. 

 a) 

 b) 

Figure 9 Percentage of installed pipes by diameter (mm) for water mains (a) and 
services (b) 

 Pipe year of construction 

The year of construction is usually obtained from plumping reports stored in the 

municipality archive, giving this parameter a high degree of confidence. Still, the utility 

system lacks information about the year of construction for 1% of the public network and 
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16% of the private network. Figure 10 shows the year of construction for pipes in 

operation, where 90% of these pipes have a year of construction greater than 1955. 

 

 

Figure 10 Installed pipes by year of construction 

 Pipe piezometric head 

Piezometric pipe head is a parameter derived from maximum static zone pressure and 

pipe's minimum elevation. Sufficient information about the maximum static zone 

pressure is available in the utility systems, while the pipe's minimum elevation had to be 

obtained with the help of a data program called 'Saga GIS' by performing a B-spline 

interpolation between the pipes and a high-resolution DEM. 

Since pipes in Bergen are positioned at many different elevations, simplification in 

deriving the pipe's piezometric head was necessary. Therefore, the depth for all pipes 

was assumed to be the same (2 meters). It is worth mentioning that neglecting pipe 

depth is not based on the assumption that depth is unimportant. On the contrary, pipe 

depth can be used as a parameter independent of piezometric pressure since depth can 

explain the impact of weather conditions on pipe failure. 

 Pipe age at burst 

The pipe age at burst represents the dependent variable in the regression analysis. It is 

derived from the subtraction of the year of construction from the year of burst. The 

analysis will go through the individual observations of pipe age at burst to establish how 

they are related to pressure and the other parameters mentioned above to train a 

regression model that can generate predictions of pipe-life expectancy. 

 Other important parameters 

The parameters mentioned above are not the only parameters that can describe the 

pipe's physical and hydraulic condition. Many other parameters may be no less important 

in describing these conditions, such as product standard, ring stiffness, pressure class, 

safety factor, reinforcement, internal protection, external protection, connection method, 

pipe depth, water temperature, water PH-value, and water quality etc. Unfortunately, 

there is no sufficient information about these parameters in the utility databases that can 

be used in a regression analysis. 
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 Avoidable water leakage 

 Minimum nightflow (MNF) 
The minimum night flow components are calculated using IWA equations and shown in 

Table 3. It’s worth mentioning that: 

- The flow data from the utility Scada system doesn’t show any exceptional 

customer night use. So this component is assumed to be zero. 

- UBL is a pressure-dependent leakage, but it will be modelled as a constant 

consumption in this study. That's because UBL constitutes only a small part of 

MNF and is not the main interest of the study. In addition, costumer demands will 

be modelled as node demands in the hydraulic model, which will make it 

complicated to make only UBL pressure-dependent without affecting the other 

demands. 

- Customer night use will be modelled as a pressure-independent mode of 

consumption. Its equations require information about the number of residents and 

addresses. Hopefully, the municipality has a population register database with 

high accuracy containing this information. 

- Quite few costumers have flowmeters on their private pipes. Therefore, it is not 

possible to estimate the costumer night leakage. So its components are assumed 

to be zero. 

Table 3 MNF components calculation 

Night 

Leakage 

(NL) 

Unavoidable 

Background 

Leakage (UBL) 

Lm length of water mains [km] 19.98 

Nc number of service connections 1633 

lp average distance from curb stop 

to customer meter [m] 
20 

Lc total length of private pipe, Nc x 

lp [m] 
32660 

Average pressure [m] 55.8 

N1-factor * 1 

UBL Unavoidable Background 

Leakage [m³/h] 
3.94 

Avoidable Leakage 

(AL) 
MNF (Observed) - MNF (Theoretical) 

 

4 Results and discussion 
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Costumer 

Night 

Consumption 

(CNC) 

Costumer Night 

Leakage (CNL) 

Inside Buildings [m³/h] 0 

Outside Buildings [m³/h] 0 

 

Assessed 

Night Use 

(ANU) 

NDP (Non-domestic 

properties) 
530 

Costumer Night Use 

(CNU) 

Non-domestic use 

[m³/h] 
4.24 

CS average toilet 

cistern size [liter] 
10 

DP (Number of 

domestic properties) 
1549 

Number of residents 

(DP X R) 
6694 

Domestic use 

[m³/h] 
4.02 

ENU Exceptional Night Use 

[m³/h] 
0 

 

Avoidable 

Leakage 

(AL) 

MNF (Theoretical) [m³/h] 12.19 

MNF (Observed) [m³/h] 41.20 

Estimated Avoidable Leakage [m³/h] 29.01 

 

* The FAVAD N1 factor in the UBL equation is assumed to be 1; Lambert (2000) 

recommended a N1 of 1 for WDNs with mixed materials. The WDN in this case study 

consists of mixed material where the mains contain 89% metal and plastic 11%, and the 

services contain 66% metal and 34% plastic. 

Using the flow data shown in Figure 5 and the results from Table 3. Customer 

consumption, UBL, and avoidable leakage can be illustrated as shown in Figure 11. 

  

Figure 11 Demand components showing observed and theoretical MNF 
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 Demand pattern and allocation 

There are many hydraulic programs available in the market. These programs rely on the 

same hydraulic engine (EPANET), but they have different tools and functions and thus 

provide different possibilities. The main objective of this case study is to investigate the 

impact of pressure in an existing pressure-managed DMA in Bergen on its avoidable 

leakage. Therefore, a suitable program must provide comprehensive, high-resolution 

modelling that includes direct demand allocation (Figure 13) and accumulation from the 

addresses in DMA and offers different types of patterns ('date and time', 'year', 'day', 

'hour'). Mike + 2021 meets these requirements and includes other advantageous 

features, so it was chosen. 

The demand components differ in their pattern and must be modelled according to their 

nature. The customer consumption represented in blue in the Figure 11 varies 

throughout the day, is almost identical on working days and has higher flow peaks during 

weekends. Therefore, a corresponding hourly consumption pattern was created and 

implemented into the model (Figure 12). In contrast, UBL is considered constant and 

distributed equally to the service points. When it comes to avoidable leakage, over the 

years there has been different practices in modelling of this type of water loss. Some 

prefer to model it as constant demand for simplicity; others aim for higher accuracy and 

use emitters linked to the network points or demands attached to the pipes associated 

with their lengths. Emitters provide good accuracy, and their flow relies on the available 

pressure, making them preferable in this study. In Mike + emitters are defined with their 

exponent and flow coefficient. Mike + standard exponent of 0.5 is kept unchanged while 

the flow coefficient was found empirically to be 434e-5 l/s/m.  

 

Figure 12 Customer consumption pattern 

After setting a pattern for customer consumption, all that is needed is to know what the 

consumption is per address. A set of assumptions was tested to achieve average 

consumption in the model as the real average consumption from SCADA. The following 

assumptions have given the same average consumption: 130 l / pe / day for housing 

consumption and 70l / employee / day for public and private business consumption. 
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While the industrial consumption was taken from the flow meters (annually) to the 

industrial buildings and added directly to these. 

 

 

Figure 13 Representation of the chosen zone showing the consumer buildings and their 
connection to the WDN 

Figure 14 shows the water demand (UBL, avoidable leakage and customer consumption) 

at 55.8 m (SCADA average pressure) compared to SCADA flow data. It appears that they 

overlap and that the model can be used further to investigate the relationship between 

avoidable leakage and pressure. 

 

Figure 14 Actual DMA water input vs. model 

 Control curves 

Time-based pressure regulation and flow-based pressure regulation, besides fixed outlet 

pressure, will be used in this case study. TM and FM demand a control curve that PRV 

can follow to meet the DMA hydraulic requirements. These curves are usually generated 

empirically or by using different machine learning techniques. 

 Flow-modulation curve 

The flow control curve (FM) is empirically generated by using the 'curve fitting toolbox' in 

MATLAB and running the model using different control curves to reach a constant 
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pressure of 18 m at the CPP (Equation 9). Another flow control curve (FM modified) was 

generated to simultaneously meet a constant pressure at CPP and a firefighting demand 

at the CDP (Equation 10). As shown in Figure 15, the PRV maintains a 76 m pressure 

after the flow requirement exceeds 45 l/s since 76 m is the maximum upstream 

pressure. The control curve 'FM modified' is included in this chapter only to show FM's 

flexibility and possibilities. This type of control curve is applicable in the event of 

significant differences in pipe roughness in the WDN. 

𝑷𝑹𝑽 𝑺𝒆𝒕𝒕𝒊𝒏𝒈 𝑭𝑴 = 𝒉𝒙(𝒕) =  𝟒𝟖𝟎, 𝟐 ∗ 𝒔𝒊𝒏(𝟎. 𝟎𝟑𝟑𝟖𝟑 ∗ 𝒒𝒙(𝒕) − 𝟎. 𝟏𝟒𝟔𝟗) + 𝟒𝟓𝟓. 𝟒 ∗ 𝒔𝒊𝒏(𝟎. 𝟎𝟑𝟖𝟕𝟔 ∗ 𝒒𝒙(𝒕) +

𝟐. 𝟕𝟗𝟓) + 𝟑𝟕 ∗ 𝒔𝒊𝒏(𝟎. 𝟎𝟓𝟖𝟒𝟏 ∗ 𝒒𝒙(𝒕) + 𝟓. 𝟏𝟓𝟒)       (9) 

 𝑷𝑹𝑽 𝑺𝒆𝒕𝒕𝒊𝒏𝒈 𝑭𝑴𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅
= 𝒉𝒙(𝒕) =  𝟐𝟔𝟖. 𝟗 ∗ 𝒔𝒊𝒏(𝟎. 𝟎𝟑𝟖𝟔𝟏 ∗ 𝒒𝒙(𝒕) − 𝟎. 𝟏𝟓𝟏𝟑) + 𝟐𝟑𝟖. 𝟓 ∗

𝒔𝒊𝒏(𝟎. 𝟎𝟓𝟗𝟎𝟔 ∗ 𝒒𝒙(𝒕) + 𝟐. 𝟓𝟑𝟓) + 𝟒𝟗. 𝟎𝟑 ∗ 𝒔𝒊𝒏(𝟎. 𝟎𝟖𝟕𝟓𝟏 ∗ 𝒒𝒙(𝒕) + 𝟓. 𝟏𝟒𝟕)    (10) 

  

Figure 15 Flow modulation curves 

 Time-modulation curve 

This control curve is computed also empirically by running the model with a different set 

of PRV outlet pressure per hour throughout the day to reach as low as possible a 

pressure at nighttime and daytime. The resulting curve is shown in Figure 16. This curve 

is not achievable with the available PRV valves in the market, where the pressure 

adjustment ratio (0.1 m) required by the curve is too low. Even though TM is not 

practical in this PMA, it will be investigated theoretically to estimate the leakage 

reduction potential. 

 

Figure 16 Time-modulation curve 
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 The impact of pressure on water leakage 

By running the model with various PRV settings, including FM and TM, CPP pressure and 

PRV flow curves are generated. From Figure 17, an increase in the PRV outlet pressure 

results in a corresponding increase to a large extent in CPP pressure due to the absence 

of high-pressure losses in the pipes between PRV and CPP, especially in normal 

consumption situations. 

 

Figure 17 Pressure values at CPP and flow values at PRV for different PRV settings 

An interesting but, at the same time, not surprising observation is that FM, TM, and PRV 

fixed outlet pressure offer different pressures between day and night. FM provides higher 

pressure during the day and lower at night, PRV fixed outlet pressure does the opposite, 

and TM provides almost a constant CPP pressure throughout the day (Figure 18). 

 

Figure 18 Pressure values at CPP and flow values at PRV for 55.8, 58, TM and FM PRV 
settings 

The differences in PRV outlet pressure and between the day and night point to a 

difference in the avoidable leakage flow. Figure 19 shows hourly difference in 

consumption between the different valve settings. Both FM and TM give the most 

reduction in leakage compared to the rest of the PRV settings approximately 2,400 to 

2,600 m³ annually (Figure 20). This corresponds to NOK 24,000 - 26,000 if the current 

average production and distribution price of NOK 10 / m³ is used as a basis. On the other 

hand, 76 m PRV setting (2 bar higher than current pressure) increases the leakage by 
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approximately 38,000 m³ annually, which is 15% of the current annual leakage. In other 

words, the annual leakage increases at a rate of 8% for each one bar increase in 

pressure compared to the current annual leakage.  

 

Figure 19 Deviation from current consumption at different PRV settings 

 

Figure 20 Annual leakage, Annual change in leakage level vs. current leakage level at 
different PRV settings 

All the examined PRV settings managed to meet the CPP minimum pressure requirement 

in the normal consumption situation. But will these be able to do the same at higher 

demands at the network points connected to pipes with high roughness? The answer is 

no, not every setting. The only PRV settings that cover CPP's pressure requirements are 

always FM and 76 m. In case it is desired to use the other settings and at the same time 

ensure a minimum pressure in CPP, an extra PRV set point is usually used, which PRV 

switches to in case the demand is greater than what it can deliver with the current 

setting. 

For any of the aforementioned pressure regulation methods to be considered suitable for 

the selected DMA, it must meet the requirements for firefighting in CDP as well as ensure 

a minimum pressure in CPP or that the latter must not be dramatically affected. To 

provide more flexibility when it comes to pressure regulation in emergencies, a pressure 
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in CPP of no less than 14 m can be accepted. All methods have managed to ensure the 

desired flow (Figure 23) and pressure at CDP (Figure 21), but TM and 55 m failed to 

ensure a pressure of 14 m or above at CPP (Figure 22). Therefore, TM and 55 m are not 

considered suitable. 

 

Figure 21 Pressure at CDP - firefighting demand at peak hour 

 

Figure 22 Pressure at CPP - firefighting demand at peak hour 

 

Figure 23 Flow at the DMA inlet - firefighting demand at peak hour 
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 Pipe-life expectancy 

 Significance analysis 

The results from the test of fixed effect terms (Kenward-Roger approximation) shown in 

Table 4 and Table 5 confirm that there are association between the independent 

variables and the dependent variable where all P-values are smaller than 0.05, i.e. a 

variation in the independent variable value causes a variation in the response value. So, 

all the independent variables are considered meaningful for the regression analysis, and 

the null hypothesis can be rejected. 

Table 4 Variance Components 

Source Var % of Total SE Var Z-Value P-Value 

Year 1471.861136 84.00% 187.139430 7.865051 < .001 

Piezometric head 5.062326 0.29% 1.476365 3.428911 < .001 

Burst number 124.067990 7.08% 59.772791 2.075660 .019 

Diameter 50.279861 2.87% 18.945706 2.653892 .004 

LENGTH 68.324977 3.90% 3.095608 22.071582 < .001 

Error 32.549926 1.86% 1.063455 30.607700 < .001 

Total 1752.146215     

 

Table 5 Tests of Fixed Effects 

 

 Best subset analysis 

The results from the best subset analysis are presented in Table 6. The 

values R², adjusted R², S, and Mallows' Cp estimate the performance of different 

combinations of the parameters. The higher R² and adjusted R² and the lower S and 

Mallows' Cp present a good model. 

The results show that the year of construction is indispensable and combining it with one 

or several of the other parameters slightly increases the accuracy. Still, the best model 

remains a combination of all the parameters. 

 

 

Term DF Num DF Den F-Value P-Value 

Material 6.00 1759.76 4.13 < .001 

https://blog.minitab.com/blog/adventures-in-statistics/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit
https://blog.minitab.com/blog/adventures-in-statistics/multiple-regession-analysis-use-adjusted-r-squared-and-predicted-r-squared-to-include-the-correct-number-of-variables
https://blog.minitab.com/blog/adventures-in-statistics/regression-analysis-how-to-interpret-s-the-standard-error-of-the-regression
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Table 6 Best subset analysis results 
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1 74.6 74.6 74.6 452.5 10.892   X       

2 1.2 1.2 1.1 15335.2 21.503 X         

3 74.7 74.7 74.7 444.5 10.883   X     X 

4 2.1 2 2 15160.4 21.41       X X 

5 76.3 76.3 76.3 115.5 10.528   X   X   

6 75 75 75 384 10.818   X X     

7 75 75 75 381.6 10.815   X X   X 

8 76.4 76.3 76.3 108.4 10.519   X   X X 

9 76.8 76.8 76.7 23.3 10.425 X X   X   

10 76.5 76.5 76.5 73.9 10.481   X X X   

11 76.6 76.5 76.5 71.2 10.477   X X X X 

12 76.8 76.8 76.8 20.6 10.421 X X   X X 

13 76.9 76.9 76.8 6.9 10.405 X X X X   

14 76.9 76.9 76.8 6 10.403 X X X X X 

 The impact of pressure on pipe-life expectancy 

Many programs can be used to build a regression model, such as Minitab and MATLAB. 

MATLAB has a regression learner toolbox that includes various regression models, which 

provides a great opportunity to find the most suitable model; therefore, it is used in the 

case study. The regression models used here are primarily optimizable models to include 

as many sub-models as possible in the analysis and to be able to choose the number of 

iterations and limit the training time. The number of iterations was set to 30 for all 

models, and the results are presented in Table 7. The higher R² and the lower RMSE and 

MAE represent a better model. However, this only applies to comparisons of models 

evaluated by the same validation methods. MATLAB's regression learner toolbox has 

three validation methods K-fold cross-validation, Holdout validation and Resubstitution 

validation. Holdout validation is usually used for large datasets. Resubstitution validation 

is used when overfitting is not a problem where all the data is used for training and 

testing the model. K-fold cross-validation is used when overfitting is a problem where a 

part of the data is left for testing the model. The dataset in this case study is not large, 

and overfitting is not desired, so K-fold cross-validation is most suitable here. However, 

an example of Resubstitution validation is included to show the difference between these 

methods. As a first look, the model evaluated by Resubstitution (OER model) appears to 

be the best but knowing that OER does not protect the model against overfitting, it will 

be excluded. From Table 7, both OGPR and OEC models show a good fit for the training 

and test data. OGPR scored best in model validation, and OEC scored best in model test. 
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Table 7 Regression Results 

Regression 

response 

Regression 

predictorsᵃ 

Validation Test Model 

typeᵇ 

Validation 

methodᶜ RMSE R² MAE RMSE R² MAE 

Pipe age at 

burst 

Y, N, M, P, 

D, L 

8.95 0.83 6.88 5.80 0.93 4.43 OGPR KFCV 

9.18 0.82 7.08 4.91 0.95 3.76 OEC KFCV 

10.12 0.78 7.98 9.61 0.8 7.52 OSVM KFCV 

10.17 0.78 8.18 9.28 0.82 7.40 OT KFCV 

10.24 0.78 8.43 10.21 0.78 8.41 LR KFCV 

2.77 0.98 2.00 2.77 0.98 2.00 OER RV 

ᵃY = Year of construction; P = Piezometric head; N = Number of burst; M = Pipe material; D = Pipe 

diameter; L = Pipe length. 

ᵇOER = Optimizable Ensemble, OEC = Optimizable Ensemble, OGPR = Optimizable Gaussian 

Process Regression, LR = Linear Regression, OT = Optimizable Tree, OSVM = Optimizable Support 

Vector Machines. 

ᶜRV = Resubstitution validation, KFCV = K-fold cross-validation (5-fold). 

 

By plotting the predicted values from OGPR and OEC and the real data (Figure 24), it 

looks like OEC is more accurate in prediction. This is also confirmed statically in Table 8.  

 

Figure 24 Comparison of predictions from OEC and OGPR vs. real observations of pipe 
age at burst 
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Table 8 Prediction deviations from real data 

Deviation from real data 
OGPR (% of total 

values) 

OEC (% of total 

values) 

0-5% 35.0 42.1 

5-10% 25.6 23.9 

10-15% 15.4 13.4 

15-20% 7.9 7.8 

20-25% 4.6 3.7 

25-30% 2.6 2.0 

Over 30% 8.9 7.1 

 

Therefore, the OEC model is chosen to investigate the impact of maximum zonal 

pressure on pipe-life expectancy. The model is used to generate predictions of pipes age 

by reducing the piezometric head (by reducing the maximum zonal pressure) gradually 

by 2 m each run until a 10-m reduction is reached while keeping the other predictors 

unchanged. The results (Table 9) are grouped based on the piezometric head before 

reduction, and average change in pipe age is calculated for each group. 

It appears the reduction in pressure resulted in increases in pipe age for all the groups, 

but especially in pipes with a high piezometric head. So, there is great correlation 

between the maximum zonal pressure and pipe-life expectancy. The latter increases with 

a decrease in maximum zonal pressure and vice versa. 

Table 9 Average increase in pipe age [day] due to reduction in pressure [m] based on 
predictions from OEC model 

Reduction in Piezometric head 

range [m] 
Average 

increase in pipe 

age [day] 

Accumulated average 

increase in pipe age 

[day] 
Before 

reduction 
After reduction 

30-39 20-29 518 518 

40-49 30-39 641 1159 

50-59 40-49 717 1877 

60-69 50-59 853 2730 

70-79 60-69 875 3604 

80-89 70-79 1025 4629 

90-99 80-89 1044 5673 

100-109 90-99 1113 6787 

110-119 100-109 1247 8034 

 

Another way to investigate the effect of each predictor on pipe-life expectancy is by using 

the linear regression model. Linear regression coefficients are extracted, and its equation 

is generated (Table 10). The pressure coefficient has a negative value which means an 

increase in pressure will shorten pipe life while a decrease will do the opposite. However, 

the coefficient (0.0167) is insignificant, and pressure only slightly affects pipe life. In 
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other words, for each bar change in pressure, the pipe burst date will be changed by 

approximately 62 days. This change is too small compared to the results from OEC. It 

can be explained by the fact that the relationship between the pressure and the pipe-life 

expectancy is not linear. The impact of pressure change on the pipe-life expectancy 

changes due to interactions between the pressure and the other independent predictors. 

Table 10 Pipe material cofficient and Linear regression Equation 

Pipe material coefficient 
MCU MGA PE PVC SJG SJK 

12.974 0.5614 -0.0054 5.5041 0.1458 3.7057 

 

Response Regression equation 

Pipe age at burst 

(Life pipe 

expectancy) = 

1978.59 + Pipe material coefficient – 0.98801 Year of 

construction – 0.01666 Piezometric head + 2.350 Burst number 

– 0.00443 Diameter – 0.01264 Length 
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This paper attempted to determine the impact of maximum zonal pressure on the life 

expectancy of pipes and the impact of applying different pressure management practices 

on avoidable leakage in water distribution systems. 

Based on the regression analysis of the historical data of the pipes and their physical 

properties, it can be concluded that the maximum pressure has a significant influence on 

the pipe's life expectancy. The results indicate that even a small reduction of maximal 

pressure can potentially increase pipe life. 

The magnitude of the reduction needed depends on the pressure piezometric head before 

pressure management is applied. A one bar reduction in pressure can increase the life of 

a high-piezometric-head pipe by more than three years, but only by one year for low-

piezometric-head pipes. 

This increase due to one bar reduction may sound minimal compared to the total pipe 

life. Still, given the cumulative effect on all pipes in the region where pressure 

management is applied, the benefit is significant. Further, the results from this thesis can 

be used in pipe replacement and renovation prioritization algorithms where it will lead to 

a better timing of applying these corrective measures which again the water utilities 

benefit from economically, reputationally, environmentally and operationally. 

It can also be concluded that this thesis fills part of the research gap regarding the 

pressure-pipe life relationship. Future research should investigate other forms of pressure 

than maximum pressure such as average zonal pressure on pipe-life expectancy. At the 

same time, I recommend the collection of a bigger data set for pipe information like 

getting data from several municipalities or countries. A bigger data set will give a better 

opportunity of excluding corrupted and low-quality data without the risk of 

misrepresentation of the predictors in the analysis and at the same time it will lead to a 

bigger population for the pipes of relatively new materials or standards. Future research 

should also investigate the pressure impact on pipe-life expectancy in light of other 

factors such as pipe depth and water temperature which are not included in thesis due to 

lack of data. 

The results from the simulations of the hydraulic model in the case study show that 

pressure impacts avoidable leakage. This confirms the findings in most of the prior 

research. These results estimate that annual water leakage increases by 8% for each one 

bar increase in pressure. It's worth mentioning that the results are related to the 

particular DMA which is used for the case study. Still, the methodology can be replicated 

in its entirety to investigate the pressure-avoidable water leakage for other DMAs. 

 

Conclusion 
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