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This paper addresses a new machine learning-based behavioral strategy using the deep Q-learning algorithm for the RoboCode
simulation platform. According to this strategy, a new model is proposed for the RoboCode platform, providing an environment
for simulated robots that can be programmed to battle against other robots. Compared to Atari Games, RoboCode has a fairly
wide set of actions and situations. Due to the challenges of training a CNN model for such a continuous action space problem, the
inputs obtained from the simulation environment were generated dynamically, and the proposed model was trained by using
these inputs. The trained model battled against the predefined rival robots of the environment (standard robots) by cumulatively
benefiting from the experience of these robots. The comparison between the proposed model and standard robots of RoboCode
Platform was statistically verified. Finally, the performance of the proposed model was compared with machine learning based-
customized robots (community robots). Experimental results reveal that the proposed model is mostly superior to community
robots. Therefore, the deep Q-learning-based model has proven to be successful in such a complex simulation environment. It
should also be noted that this new model facilitates simulation performance in adaptive and partially cluttered environments.

1. Introduction

In the last decade, studies on machine learning and ro-
botics have shown notable improvements compared to
previous years with the evolution of technology and the
demands of the sector. Research studies have shown that
one of the most substantial application areas of machine
learning applications is adaptive control. Adaptive control
systems are able to deal with uncertainties without de-
manding any external intervention. Reinforcement
learning (RL) is considered as a solution to this concept,
which is a leading machine learning technique and in-
spired by behavioral science. RL, in essence, provides an
agent to learn in a defined environment by trial and error

using feedback from its own actions and experiences
[1, 2]. RL is a learning discipline that allows an agent to
gain self-thinking ability based on a rewarding and
punishing mechanism. Aforementioned computer science
literature was adapted from the science of psychology [3].
According to Skinner, a famous psychologist and be-
haviorist, behaviors are affected by the results [4]. In this
context, reinforced learning is the process of shaping the
behavior by controlling the results of the behavior.
Skinner basically suggests changing behavior by pun-
ishment and reward where rewards are used to strengthen
the desired behavior, and penalties are used to prevent
unwanted behavior. This theory was used in accordance
with the principles mentioned in computer science. It was
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inspired by the idea that an agent could be conditioned to
a particular movement or series of actions by giving a
penalty or reward at the end of each move.

Q-learning, one of the most popular RL techniques, is a
successful model and has a solid foundation in the Markov
theory of decision processes [5]. This learning technique, in
essence, utilizes the formal framework of Markov decision
processes to describe the interaction between the agent and
the environment in terms of situations, actions, and rewards.
This framework is a simple way to represent the key features
of most artificial intelligence- (AI-) based problems. Due to
its simplicity, it has been applied to different fields, from
robotic control to computer vision. Recently, it is also
adapted in video games [6, 7]. The main purpose of this
algorithm is to examine the actions that an agent will
perform in the environment in which it is defined, to see the
reward that the agent will win according to these movements
and to act in accordance with the maximum reward. The
prizes to be won in the environment in which the agent is
defined and the places where the agent is expected or not are
determined by the user beforehand, and these values are
written in a reward table. The forward-looking experiences
and moves of the agent are determined according to this
table. The agent uses the experiences gained for each move
applied to the award determined by the user to select the
moves to be applied. It keeps these experiences in a table
called “Q-table.” This table is initially assigned to zero since
the agent has no experience with the environment. This
allows the agent to move randomly until finding a reward in
the environment. Along with the first award estimated, the
agent starts inserting the “q value” regarding the relation
between the state and action into the Q-table. Subsequently,
the agent starts to predict and reach the prize by maximizing
the values of forward-looking moves at each iteration [8].

Despite having a strong and stable learning model, this
will cause extreme growth of the Q-table to be created for
situations and actions when the number of situations and
actions increases excessively, thus causing problems in
accessing and updating the table. For instance, for an en-
vironment using 10,000 states and 1000 actions, the size of
the Q-table that the agent will access for each action to be
performed must consist of 10 million cells, which causes
problems in terms of both memory space and processing
time. For the solution of this problem, it is envisaged to use
an artificial neural network that can approximately deter-
mine the values obtained with the Q-table. Thus, by com-
bining deep learning and Q-learning algorithms, the concept
of deep Q-learning has emerged [9-11]. Primarily, deep
Q-Learning is a Q-learning algorithm that employs deep
neural networks to approximate the Q value essential for the
agent to predict the move to be applied in the specified
environment. Overall, a supervised learning approach is
adapted to estimate Q values, which allows Q-learning al-
gorithm to be efficient for not only discrete but also con-
tinuous space problems.

In recent years, it has been observed that the deep
Q-learning concept has been used especially in video games
and successful results have been achieved. Especially the
article written by Mnih et al. [10] is a pioneer in this subject.
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Within the scope of the mentioned article, seven popular
Atari 2600 games were trained with images obtained from
the arcade games through the convolutional neural network
using the deep reinforcement learning model, and agents
that can play 7 games with very high scores were obtained
[10]. This study has been revolutionary in terms of satis-
factory results and the use of reinforced learning and
convolutional neural networks. The concept mentioned in
the study was later used in various fields such as image
processing, computer vision, robotics. The aforementioned
study motivates authors to adapt the deep Q-learning al-
gorithm in a more complex simulation environment, in-
volving multiagent systems and battling strategies.
Accordingly, in this paper, a new model is designed and also
a data acquisition strategy is developed for the RoboCode
simulation environment using a deep Q-learning algorithm.
RoboCode is an open-source war simulator program de-
veloped by IBM using Java programming language in 2001
[12, 13]. The purpose of this simulator is to program a war
robot using the classes offered by the platform to the users in
a two-dimensional environment and to measure the per-
formance of the programmed agent by fighting these robots
in the environment provided by this simulator which is
called the arena. Each robot body consists of parts named as
barrel and radar, and in simulation, users are provided to
control these parts with certain interfaces. Considering the
anatomy and mobility of the robot in question, the situation
and action number of the simulation is more complex than
“Atari 2600” games. In this respect, rules have been deter-
mined to optimize the number of situations and actions
throughout the study. Evolutionary neural networks were
created by applying reward and penalty formulas along with
the determined situations and actions, and the network was
trained using the screenshots of the simulation. The aim was
to get the highest score from the simulation by applying the
next movement of the robots with the q values formed with
the trained network. Trained robots fought in the arena with
the predefined robots in the RoboCode application which
helped to test the proposed model by making score
measurements.

The rest of the paper is structured as follows. Section 2
introduces the RoboCode platform and the existing litera-
ture, while Section 3 presents the proposed adaptive learning
model and system for the RoboCode platform. Section 4
presents the results of the proposed model based on different
scenarios and compares the results with the state-of-the-art
robots. Section 5 summarizes the results of this study.

2. RoboCode and Background

RoboCode is a combat simulator developed on the basis of
the Java programming language, the first version released by
“IBM AlphaWorks” in 2001, where it is necessary to code a
robot war tank in order to fight against the enemy robotsin a
determined war arena [14, 15]. In this simulator, the player is
the programmer of the robot and, as a rule, does not have a
direct effect on the robot in the simulator. Instead, the
players run the customized model in defined environments
called the arena by coding the robot’s artificial intelligence
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capabilities, in other words, how the robot on the battlefield
behaves and reacts to events in an adaptive manner. Battles
fought in the arena are instantly broadcasted on the screen.
Figure 1 illustrates an example from the arena.

2.1. The Rules of the RoboCode Game. Figure 1 illustrates the
RoboCode battle environment where robots fight with each
other until the last robot remains in the arena. Robots can
fight individually or join a robot group to fight other groups.
A battle consists of several rounds and the winner of the
game is the robot or the group having the highest score at the
end of the war. Robots in the arena initially have “100”
energy levels and are destroyed once the energy level drops
below zero. Robots fight with each other using projectile
shots. Each robot is equipped with a radar (local sensor) that
can scan other robots up to “1200 pixels” away, which helps
to get information about distance, route, speed, name, and
energy about another robot entering its scanning area.

Radar, gun turret, and robot body can rotate 360 degrees
independently. The firepower of the turret is the key variable.
In this manner, the turret can damage target robots of
different values depending on the firepower set by the player.
The heating feature of the turret was also added to the
simulation as a disadvantage of increasing firepower. Bullets
with high firepower cause the robot’s turret to heat up more,
which means that the robot cannot fire for a while. In ad-
dition, low-power shells move faster, while high-power
shells move slower. All battles take place in a rectangular
arena of variable sizes surrounded by walls (see Figure 1). On
the other hand, RoboCode has a limited physical structure,
restricting some actions. These drawbacks, in essence, are
deliberately added to the platform so as to make the game
more realistic and complex [16]. For instance, the robot
cannot move at full speed while rotating. Firing the weapon
causes a robot to lose the same amount of energy as its firing
power. If the bullet hits a target, the lost energy is recovered
by three times the bullet power. Since it runs on a single
thread, the operations of the robots defined in RoboCode are
sequential. Consequently, a limited time is allowed for a
robot to make its moves. When all robots have completed
their sequence, the actions are repeated. This means that
there must be a compromise between the complexity of the
actions a robot can perform and the time elapsed. For this
reason, the robot may lose in the arena if aiming to perform a
complex action that requires extremely complex calculations
and spends the time allocated to it to perform an action.
RoboCode relies on a scoring system to determine the
winner of a match. In order for a robot to be a winner, it is
not sufficient only to survive on all rounds because robots
can earn more points than the winner due to some offensive
actions. A list of the rules for the RoboCode platform can be
seen in [8, 9]. The flow diagram of the process cycle used by
the RoboCode engine can also be seen in Figure 2.

2.2. Battling Strategy and the Literature. Strategies are the
most critical guidelines for how to act in a particular situ-
ation. Effective strategies to be implemented in the arena are
of great importance for international tournaments that are

organized annually for the RoboCode war simulator [13]. It
should be noted that, while a robot can perform well in a
one-on-one battle, other adaptive strategies may be required
for close combat. It is a general belief that a good strategy in
melee combat in the RoboCode battle arena is to stay away
from the battlefield and not draw attention at all [17]. With
this method, other robots are expected to kill each other.
Afterward, it is easier to kill the remaining robots due to
possible damage. However, when the opponent has full
energy, this strategy does not work equally well in one-on-
one battles. Another argument against this strategy is the
scoring system used in RoboCode. Due to the principles of
the RoboCode simulator, the war is not won only on the
basis of being the last agent standing. In addition to the
simulator, the damage done and the number of robots skilled
by the robot also has a huge impact.

Nowadays, RoboCode war simulation is accepted as a
member of the serious game category [18, 19] and is
employed as an artificial intelligence training tool in many
parts of the world. These robots, which are developed by
researchers, are published on the platform called “Robot-
Rumble,” where they score by fighting in arenas and are
ordered accordingly. It is noted that, in these tournaments,
robots having the highest scores are implemented based on
AT algorithms. Apart from a few of the robots that belong to
the platform called RobotRumble, the vast majority are
applications that are not academically documented. The first
academic papers in this area are based on the RoboCode
simulator several years after the release date. First, Eisenstein
worked on a robot based on genetic algorithms (GA) and
explored how to best implement a combat robot based on
assumption and behavior-oriented languages such as REX
[20]. In the following years, it is seen that most of the Al
robots developed for the RoboCode war simulators are
designed based on genetic algorithms [18, 21]. Shichel et al.
made the first attempt to introduce evolutionarily designed
robots in international RoboCode competition [21]. In
another study, a Bayesian network is defined to choose
between an aggressive or defensive strategy [22]. On the
other hand, particle swarm optimization (PSO), an efficient
metaheuristic strategy, is also adapted for RoboCode agents
[23]. In a similar study, a neural network model is trained by
an adaptive PSO algorithm by considering different pa-
rameters so as to approximate optimum turning angle for a
RoboCode agent [24].

Reinforcement learning (RL) is also applied for the tank
battling scenario of the RoboCode platform. In a recent
study, the performance comparison between the GA and RL
algorithm is done using different scenarios defined for the
RoboCode environment [25]. An improved Q-learning
technique in Semi-Markov decision processes is validated by
using the RoboCode environment in [26]. Q-learning is one
of the leading oft-policy RL algorithms, preferred in another
recent study due to its efficiency and popularity. However, in
this study, an artificial neural network is designed to ap-
proximate Q values instead of trying to keep them in a “Q-
table,” which is essentially not possible for such a continuous
space problem [8]. The neural network has a very modest
structure, involving only two layers. The first layer denotes
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inputs, namely, “X position,” “Y Position,” “the distance of
the robot to its opponent,” “the bearing angle,” “action
value,” and the “bias value,” whereas the hidden layer is a
fully connected layer and the output aims to approximate the
“Q values.” Consequently, despite some metaheuristic and
machine learning based research conducted for RoboCode,
Deep Q-learning based model has not been designed and
applied to this problem. The model essentially gathers and
processes images taken from the RoboCode simulator and

then reinforced them using the deep convolutional neural
networks without requiring any feature extraction process.
According to the best of our knowledge and experience,
there is no study and a robot model developed in this di-
rection, which is one of the main contributions of this study
to the field. It should be noted that RoboCode involves a
larger and more complex environment than the environ-
ment of Atari Games, the efficiency of the model on those
games has been previously proved by [10].
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3. Methodology

With the latest developments in computer vision and speech
recognition, it has been observed that deep neural networks
are effectively trained in a wide range of training sets. The
most successful approaches are trained directly from raw
inputs using mild updates based on stochastic back gradient
processing. It is often possible to learn better presentations
than handmade features by feeding enough data to deep
neural networks [27]. In addition to all of these, the studies
that efficiently process educational data by connecting the
reinforcement learning algorithm directly to the deep neural
network working on RGB images and using stochastic
backward gradient updates and thus developing agents that
can play video games with superhuman performance have
also been very successful [10, 11].

3.1. Q-Learning. Q-learning is a model-free and values-
based reinforcing learning algorithm. The purpose of this
learning model is to learn a policy that trains an agent on
what action to take under what conditions. It does not
require a model of the environment and can solve problems
with stochastic transitions and rewards without requiring
adaptation. For any finite Markov decision process,
Q-learning finds an optimal policy, starting from the current
situation, in terms of maximizing the expected value of the
total reward of all consecutive steps. Given the unlimited
discovery time and a partially random policy, Q-learning can
determine the most appropriate action selection policy for
any Markov decision process. The g-function used in the
Q-learning algorithm uses the Bellman equation and takes
two inputs: state (s) and action (a). The Q-function is
represented by equation (1). The equation expressed in the
formula refers to the expected total reward for a situation
and action at the moment ¢, which is applied.

Q" (s> a,) = E[Rt+1 + YRy + Y Risbr .. 5 1Ss at]. (1)

The Q values are kept in a state-action-size table called
the Q-table, and the relevant table values are updated
according to the reward value that the agent receives for each
move it applies:

Q,(s, a)=Q(s, a) + o[R(s, a) + ymaxQ' (s', a') = Q(s, a)].
(2)

Here, the value indicated by “0” is the learning factor and
it is a hyperparameter that determines how old the newly
acquired information overrides. The value of Q (s, a) rep-
resents the current q value, whereas “y” is the discount
factor. The expression R (s, a) refers to the reward for
performing this action in the specified state, whereas ex-
pression maxQ' (s', a') defines the highest reward value for
each action in the set of all possible actions for the current
situation.

3.2. Deep Q-Learning. The agent can find the action in which
it can get the greatest reward for the situations defined in the
environment with the Q-learning algorithm. Although this

is a simple but very powerful algorithm, creating a (status x
action) size Q-table requires huge memory space and pro-
cessing time, which is an expected case, especially for
continuous space problems. This problem has been solved
with the idea of obtaining q values using machine learning
models such as deep neural networks instead of calculating g
values and storing them in a g-table. In deep Q-learning, the
deep neural network model is mainly used to approximate
the q value function. This network is given as an input and
the Q value of all possible transactions is output. By choosing
the highest data among the obtained Q values, the agent
learns. The comparison between Q-learning and Deep
Q-Learning (DQL) algorithms is shown in Figure 3. DQL is
revealed as one of the most successful learning models by
compensating for the drawbacks of the conventional
Q-learning algorithm.

3.3. Proposed Architecture. Tesauro’s TD-Gammon [28] and
Mnih’s et al. [10] architectures are considered as a starting
point for the proposed architecture. The aim of these archi-
tectures is to modify the parameters of a network that esti-
mates the value function using the algorithm’s interactions
with the environment. Unlike TD-Gammon, in Atari archi-
tecture, the experience repetition concept, in which the net-
work is trained by using the values of the past experiences of
the agent, is used [29]. During the internal cycle of the algo-
rithm with repetition of experience, the Q-learning updates or
minibatch training updates are applied to the randomly drawn
experience samples in this pool of repetition of stored expe-
rience and the network is trained. After the training, the agent
selects an action in accordance with the epsilon greedy policy
and carries out this action. The experience repetition method
has many advantages [30]. First, in contrast to the experience
repetition method, diversity is insufficient due to the strong
correlations between the inputs in the direct learning model
using sequential inputs. Randomizing the inputs prevents these
correlations and therefore reduces the variance of network
updates. In this way, repetition of experience averages many of
the behavioral distributions of previous situations and prevents
oscillations or deviations in parameters by softening learning. It
has been seen that this concept gives successful results in Atari
architecture. For this reason, repetition of experience was used
in the learning of the deep neural network structure within the
scope of this study. The algorithm used in this context stores
only the last # series of experience in memory and randomly
takes samples from this series while performing the updates.
This approach is problematic in some respects because the
memory buffer cannot distinguish important transitions and is
always overwritten because of the finite memory length (1)
[10]. Within the scope of the study, firstly, screenshots of the
arena were recorded periodically for the input of con-
volutional neural networks, and it was decided to take
action based on these images. Since RoboCode does not
have any periodic screen capability feature, first, a program
that can take screenshots periodically was implemented by
running the RoboCode program. However, initial results
prove that this process has several disadvantages. Due to
the difference in frame rate (fps) between the RoboCode
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arena and the developed program, it is not possible to store
all frames of the arena. It should also be noted that training
the model by taking a screenshot using the application’s
visual interface significantly increases the learning time of
the model. Consequently, a program has been written that
enables the image to be given as an input to the network using
the position and direction information of the robots in the
RoboCode arena and the position information of the bullets
shot in the arena. With this program, images similar to the
display of the arena were obtained, and the disadvantaged
screenshots were eliminated. The screenshots that will be
given as input to the evolutionary neural network architecture
represent the current state of the RoboCode arena and have
limited knowledge for training the network. In other words, it
gives the positions where robots and bullets can be detected
for screen input at time “t,” but there is also a need for
knowledge of the direction of movement of robots and bullets
in order to escape bullets and carry out effective attacks. In
order to obtain this information, the screenshot at “¢+1” can
be considered. Essentially, giving input to the convolutional
neural network that will be defined by processing more than
one frame at the same time will also protect the flow of in-
formation between these frames and make the network more
powerful. For this reason, four consecutive frames (obtained
from t to t+3 time instants) are employed in the model,
designed, and given to the network as input.

One of the difficulties in raising a reinforced learning agent
in the RoboCode application is that the agent works in a heavy
sandbox, which is not guaranteed to be shared between games.
Robots have limited access to resources on the host computer
for security reasons and also to prevent robots from cheating
in the game. Moreover, no external Java library is available.
For this reason, it is not possible for robots to report the
necessary information for the DQL model, such as instant
locations, health conditions, points, and rewards, to any lo-
cation on the host computer. For the solution to this problem,
it was concluded that the training of the deep neural network
model and the registration of the trained model were carried
out outside the robot development process.

For the solution of the problem mentioned in the study,
an out-of-process Python code has been implemented that
periodically saves information from the network to a file
using the “http” data protocol, by listening to the experience
samples obtained from the agent during the war, storing

them in memory, updating the learning model according to
the inputs from the robot, using the status information sent
by the robot to the robot, giving feedback to the robot by
deciding what the optimal action is. With this program, the
necessary communication with the robot takes place via the
http server to train the network and implement the most
appropriate action. After starting the game, the agent opens
a UDP connection with the server and sends the inputs that
will feed the model to the server. The agent also applies the
response by questioning the action decision made by the
model from the server for each situation in the war started in
the arena. The study on how to overcome the limitations of
RoboCode simulation is shown in Figure 3. In the scenario
expressed in the figure, the agent sends the environmental
data instantly to the server. Using this data sent by the agent,
the server produces and displays the image needed by the
convolutional neural network model. As a result of the given
input, the most optimal action accessible by the model is sent
to the agent via “UDP” connection through the server. Data
about the war sent by the agent to the server for training are
described as follows.

The corresponding parameters between the agent and
the server are defined as follows:

(i) Coordinates. The agent sends the x and y coordi-
nates to the server, involving the agent coordinates
and the opponent robot location acquired by the
radar scan.

(ii) Direction. Directions of the agent and the opponent
robot, found as a result of radar scanning, are sent to
the server.

(iii) Bullet. Agent sends the locations of enemy bullets to
the server. The coordinates of the bullets launched
by the agent are not included in the information
sent to the server.

(iv) Energy. The agent sends the energies that he and the
rival robot found as a result of radar scanning to the
server. This information is used for reward signals,
not image production.

The information sent by the robot to the model server is
converted into images suitable for the convolutional neural
network model with the image generator utility. The posi-
tions of the robots and the bullets that will make the agent
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prevail in the arena and the direction of the robots should be
included in the produced image. Unlike RoboCode, it was
decided to produce robot objects in a triangle formation. The
image presented by the RoboCode arena and its rendered
state to be used as the convolutional neural network input is
shown in Figure 4.

A basic preprocessing step is implemented to reduce
input sizing to adapt the input to the convolutional neural
network model. Raw images were first converted from RGB
color range to gray scale and then downsampled to a lower
resolution, 80 x 60. Since the ease of matrix operations re-
quired for the image inputs, suitable for the convolutional
neural networks model, facilitates network design, it is more
beneficial to work with pictures having a square frame
[27, 31]. Since robots can access every point in the arena,
cropping of the picture does not cause loss of information.
Subsequently, the resolution is converted to 80 x 80 pixels.
The action sets to be determined for an agent in the
RoboCode arena can be very diverse. Within the scope of
this study, the following action sets are determined.

(i) Turn 10 degrees to the right
(ii) Turn 10 degrees to the left
(iii) Move forward (5 pixels)
(iv) Move backward (5 pixels)
(v) 1-shoot bullet power

As mentioned before, the RoboCode environment allows
different values for right-to-left turns, back-and-forth
movements, and the power of the bullet. These values are
fixed to simplify the problem. Although the RoboCode en-
vironment gives a score based on the actions taken at the end
of the war, it is not possible to get this score directly and
transmit it to the network. Since RoboCode cannot provide a
direct reward signal, it is necessary to artificially create a
reward signal. The most standard approach imaginable in
this regard is to give a “+1” or “~1” reward only in terminal
situations, depending on whether the agent has won the war
or not. The preliminary work was to train the network using
the first mentioned approach, but with this method, it was
observed that the reward signal had a very rare frequency,
and the agent could not receive enough signals to learn a
reasonable policy. Once the general winning strategies ap-
plied in order to prevail in the RoboCode environment are
examined, it is the general belief that the main way to be
superior for robots in an arena is to have more energy than
the rival robot. Therefore, it was thought that the main focus
for the reward signal should be a function dependent on the
energies of the robots. Considering the energies possessed,
the differences between the energies of the robots at “#”
moment give information about which robot is ahead on the
way to win, but the energies of the robots at “t—1” are also
considered to be included in the reward function. This means
that the reward function also includes bullet drop infor-
mation. The reward function containing the energies of the
robots at the moments “t” and “t-1” is determined as follows:

Ry =A-A_+R,-R,. (3)

Here, A, refers to the agent and R, refers to the rival
robot. This formula allows the agent to receive a consistent
positive reward as it progresses over time. The discount
factor (y) value, illustrated in equation (2), is defined as
“0.99.” By considering this value, a higher priority is given to
the prizes. The epsilon greedy policy was applied in the
training of the agent within the scope of this study. It should
be noted that the discount factor is a critical hyperparameter,
regulating how much the RL agents care about rewards in
the distant future corresponding to those in the immediate
future. The value of the discount factor parameter is mainly
adapted from [32, 33]. Experimental results validate the
parameter value adapted for this study. In this context, the
process of selecting the action of the maximum value of “g,”
which the neural network model applies when choosing an
action, is limited by the possibility of “1-epsilon” selection.
In this way, the model can choose random action as much as
the possibility of epsilon. In this way, during the learning of
the agent, it is prevented from converging to a point with
randomness according to the value of epsilon.

The proposed network structure, illustrated in Figure 5, is
created with “80 x 80 x 4” input referring 4 consecutive frames
(images) having “80 x 80” resolutions. The first hidden layer of
the convolutional neural network is composed of 16 “8 x 8”
filters (4 strides) with an input image, each applying a non-
linear rectifier [34]. The second hidden layer involves 32 “4 x 4”
filters with 2 steps and then applies the nonlinear rectifier once
again. The last hidden layer of the network consists of a neural
network model consisting of 256 rectifier units that are
completely connected to each other. The output layer is a fully
connected linear layer with a single output for each valid
process. Networked outputs consist of 5 previously specified
actions, namely, “turn 10 degrees to the right,” “turn 10 degrees
to the left,” “go 5 pixels forward,” “go back 5 pixels,” and “shoot
with 1-shot power.” The structure of the specified model is
illustrated in Figure 5.

4. Experimental Section

This section introduces the experimental work and also
details the results. In order to train the models and perform
the experiments, a computer of medium configuration is
utilized. The computer has an Intel Core i7, 3.40 GHz CPU,
and 8 GB RAM. It should be noted that the RoboCode
simulation has some limitations on access to resources re-
lated to security reasons. In order to avoid these restrictions,
a server that can communicate with the robot and transmit
the future actions of the robot is established, and the robot is
enabled to talk to this server.

The experimental section is divided into four sections,
namely, experimental section with primitive robots, ex-
perimental section with advanced robots, and experimental
section with community robots. The first two sections
mainly involve experiments by using standard robots of the
RoboCode platform. The third section presents the exper-
iments against community robots. The final section presents
the discussion and statistical analysis of experiments based
on standard robots.
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FIGURE 4: A screenshot of the RoboCode arena (a). Input to the deep learning model (b).
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FIGURE 5: The proposed evolutionary deep Q network model for the RoboCode simulation environment.

4.1. Experiments by Using Primitive Robots of RoboCode
Platform. Within the scope of the training process, it is
aimed to train the convolutional neural network by choosing
a predefined robot, “SittingDuck” that does not move and
does not perform any projectile firing action. The weight
values of deep neural network cells are recorded at the end of
each round with input from the agents. These recorded
values are reloaded with the start of the tour and robots are
trained with previously trained models. In this way, it is
aimed to increase the cumulative experiences of the trained
model and achieve better scores in each battle played by the
agent in the arena. Essentially, in this way, it is assumed that
the robot, which fights with the rival robot and started to
prevail, will tend to learn the correct bullet shooting action at
the end of the training. For this reason, the SittingDuck
robot was fought in the arena until %100 success was
achieved by the agent robot, and the agent finally learned the
targeted policy after over 4000 battles. The greedy strategy

« »

was followed during the training phase and the “e

parameter was kept at “0.1.” Another noteworthy point
throughout the learning is that the robot intensifies the
projectile firing action over time. In order to report this
situation, all actions performed by the agent are stored and
then visualized. The amount of actions that the agent has
applied throughout the education is given in Figure 6, and
the distribution of these actions in the iterations range is
given in Figure 7.

The proposed model trained with the “SittingDuck”
carried out approximately 4000 battles with the Corners
robot in the same environment of RoboCode. However, as it
is expected, it was observed that the model failed with the
existing approaches against aggressive opponents like
Corners robot. Essentially, the robot failed against the
Corners robot due to not being educated against rival robots,
which can fire bullets. Accordingly, several optimization
techniques have been applied to train the network, detailed
below. One of the critical learning challenges of a RoboCode
agent is that the robot rarely reaches the reward even in the
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presence of a predetermined reward signal. The reason for
this is that considering the determined reward function, the
robot must shoot the opponent robot in random directions
in order to see any positive reward. Considering the similarly
awarded function, every projectile that does not hit the target
will cause the agent to receive a negative reward since the
projectile shot by the robot will decrease its energy. As a
result, the agent can only see a few positive prize passes
thanks to randomness, while the epsilon value is only “1” in
the early period. The agent has a positive effect on achieving
the reward after increasing the randomness that it will be
influenced at the beginning. For this reason, it is foreseen
that the epsilon value starts with a value of 1 at the beginning
of the training and then decreases linearly to 0.2 per 100
iterations. In addition to all these, the firing and going
actions learned by the “SittingDuck” robot were decided to
train the network from the beginning with the said opti-
mizations so that the agent could produce more balanced
actions compared to the previous model during the learning
process. The network was trained by repeating 4000 battles
previously carried out against the Corners robot. The score
values and action distributions of this network trained are
shown in Figure 8.

4.2. Experiments by Using Advanced Robots of RoboCode
Platform. In the light of the graph presented, it was inter-
preted that the balanced lands given by the educated agent
with the Corners robot were reflected on the RoboCode
score and the model obtained was more successful. The
target training model obtained was recorded and continued
to be used to fight with predefined robots in the arena in the
RoboCode simulator. In order to train the agent well, 100
iterations of war are executed for each of the predefined
robots so that the model could be trained cumulatively by
benefiting from the experience of all robots. This model has
been applied for each of the 100 iterations and the robot has
gained cumulative learning ability. Each of the predefined
robots of the artificial intelligence agent RoboCode simu-
lator participated in 2800 different battles with robots, each
with a different combat strategy, and RoboCode scores for
these battles are shown in Figure 9. This figure, in essence,
contains the game score between the proposed robot (Al
robot) and each advanced robot, defined in the RoboCode
platform. Additionally, the average training performance is
added as a separate graph.

4.3. Experiments by Using Community Robots. After the
success of the proposed Al robot against predefined robot is
validated (see Figure 9), it is aimed to fight with the robots in
the platform named “RobotRumble,” where users can load
the robots they have developed. Therefore, leading robots of

Complexity

this platform, namely, “Bl4ck,” “QBot,” “Net,” have been
compared with the developed robot. It should be noted that
these leading robots were also trained by machine learning
algorithms.

Figure 10 presents the results of the first 400 matches of
these encounters. In addition, it was also planned to combat
these machine learning-based robots of “RobotRumble”
platform with the predefined robots of RoboCode platform,
namely, “Walls,” “Corners,” “Tracker”, “SpinBot,” “Ram-
Fire.” In order to compare these with the proposed model,
machine learning based robots and the proposed robot
fought in the arena for 100 iterations against the same
predefined robots. The graph including the scores obtained
is shown in Figure 11.

4.4. Discussion and Statistical Analysis. Figure 9 illustrates
that once the number of battles increases, the superiority
of the proposed model over enemy robots defined in the
RoboCode environment is validated. Besides, it has been
proved that the proposed model is mostly superior to other
RoboCode community robots against predefined robots
defined in the RoboCode simulation environment, as
shown in Figure 11. The only exception is the “Net” robot
which produces a higher score against the “Corners” robot.
In addition to the aforementioned experiments, a statis-
tical test, T-test, was applied in order to provide a
benchmark comparison between the proposed AI Robot
and standard robots of RoboCode platform. It measures
whether the difference between two sets of data is random
or statistically significant [35]. It should be noted that that
RobotRumble platform involves nonstandard robots that
may be removed, modified, or restricted by developers.
Hence, they are not used in statistical analysis. Conse-
quently, in order to provide test data, “Corners,” “Walls,”
“Tracker,” and “SpinBot” robots defined on RoboCode and
previously defeated by AI ROBOT (proposed robot) were
selected. These robots were subjected to 10, 100, 500, 1000,
5000 arena battles with themselves, respectively. Win
percentages were formed by proportioning the number of
victories achieved by the robots. In the second phase, the
default robots were subjected to the same number of
battles with AI robot, respectively. Victory (Winning)
percentages were formed by proportioning the number of
victories achieved by AI robot after the war. Al ROBOT
fought with each robot by resetting the learning model
before the war. In this way, the learning tendency of the
model was also being observed. Overall, T-test (two-
sample assuming unequal variances) techniques were
applied to the proportioned victory percentages table.
Results, presented in Tables 1 and 2, verify the efficiency of
the proposed model.
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TaBLE 1: The T-test results between the AI robot and Corners and Wall robots.
Corners vs. Al robot Walls vs. Al robot
t Stat -10.8663 t Stat —7.4899
P (T'<t) one tail 5.73E-05 P (T<t) one tail 6.92E-05
t Critical one-tail 2.015048 t Critical one-tail 1.894579
P (T<t) two tail 0.000115 P (T'<t) two tail 0.000138

t Critical one-tail 2.570582 t Critical one-tail 2.364624
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TaBLE 2: T-test results between the AI robot and Tracker and
SpinBot robots.

Tracker vs. Al robot SpinBot vs. Al robot

t Stat —-3.91654 t Stat —7.43674
P (T<t) one tail 0.002887 P(T <t) one tail 0.000346
t Critical one-tail 1.894579  t Critical one-tail ~ 2.015048
P (T<t) two tail 0.005775 P(T<t) two tail 0.000693
t Critical one-tail ~ 2.364624  t Critical one-tail ~ 2.570582

5. Conclusions

This paper introduces a new framework using a deep
Q-learning algorithm for a complex simulation platform,
namely, RoboCode. This platform offers predefined robots
and allows Al-based customized robots developed by the
community. Compared to Atari Games, RoboCode has a
fairly wide set of actions and situations. In addition, the
simulation has various restrictions on access to computer
resources for security reasons. In order to avoid these
limitations, a server model that can communicate with the
robot and transmit future actions of the robot has been
established and the robot is enabled to talk to this server
continuously. In the light of the information obtained from
the robot, the proposed convolutional neural network model
has continuously experienced the arena and directed the
agent. During the model training, it was determined that the
in-game images given as input to the neural network were
quite noisy and the agent failed. Hence, instead of using in-
game images, images were produced by using the infor-
mation obtained by the agent during the war in the arena.
The proposed model was first tested on a simple predefined
robot, “SittingDuck,” where it is much easier to dominate the
arena than other robots, and the model achieved %100
success, as it was expected. Essentially, the effect of the
epsilon greedy algorithm on the success of the agent has been
observed, which allows the agent to make random selections
without being dependent on Q values. The agent’s use of its
combat experience against more aggressive robots led to
unsuccessful results. Consequently, the model is trained with
more complex robots, namely, “Corners,” “RamFire,”
“Walls,” and “SpinBot,” offering different battling strategies.
Furthermore, some optimization approaches have been
applied to increase the overall performance of the model.
With the cumulative learning method applied during the
training of robots, it was observed that the training model
achieved significant success against the aforementioned
predefined robots and the results are validated statistically.
The proposed model was also compared with machine
learning based model defined in the literature. Results also
reveal that the proposed model is mostly superior to models
defined in RoboCode literature and community. In the light
of these results, the deep Q-learning algorithm has proven to
be successful in the RoboCode simulation environment as in
Atari 2600 games.
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