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ABSTRACT 

The objective of this paper was to assess the performance of the Adama-II Wind Farm in 

comparison to the feasibility study. Using one-year mast data, the site potential was reassessed by 

WAsP software and the performance of wind turbine generators was assessed by two years of 

SCADA data. The obtained mean annual wind speed was 7.75 m/s, and the mean wind power 

density was 462 w/m2 while in the feasibility study, 9.55 m/s, and 634.6 w/m2, which resulted in 

18.8%, and 27.1% deviations. The prevailing and secondary wind directions obtained in this paper 

were ENE and NE with 35.7% and 19.1% but, in the feasibility study, ENE with 36.5% and E with 

17.3%. From the SCADA data, the Capacity factor, Annual Energy Production (AEP), and 

Availability of wind turbines were determined as 30.5%, 396 GWh, and 95.1%.  Therefore, the 

reasons for this deviation were long-term correction and weather impacts. 

Keywords— Adama-II Wind Farm, Wind Farm performance, Wind characteristics, Annual 
Energy Production, Capacity Factor, Availability 
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INTRODUCTION 

There is significant wind power potential in Ethiopia, which is estimated to be more than 10,000 

MW, with a speed of 7 to 9 m/s. However, the current installed capacity is only 324 MW which is 

less than 5%. The Ethiopian government has a long-term plan of increasing the utilization of the 

resource by involving independent power producers. The case study farm here is Adama-II Wind 

Farm, located in the southeastern part of the country, 95 km from Addis Ababa and 7 km from 

Adama town. The farm’s elevation ranges from 1741 to 2173 m, and its central location is at the 

latitude of N 008° 34' 18'' and longitude of E 039° 12ˈ 10ˈˈ (Tadesse 2014; Hydro China 

Corporation, 2013). Figure 1 shows the location map of the wind farm.  

 

Figure 1: Location of Adama II Wind Farm (Generated by Arc Map 10.7) 
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Table 1: Parameters of the wind turbine at Adama-II wind farm 

Parameters Unit  Quantity  
Blade number Piece  3 
Blade diameter 77 m  

WTG set SANY SE7715 102 
Rated capacity 1500 kW  

Rotating speed 10.6-21.1 rpm  

Cut-in 3.5 m/s  

Rated wins speed 11.25 m/s  

Cut-out wind speed 25 m/s  

Hub height 70 m   

Table 1 shows the summary of wind turbine parameters in Adama-II Wind Farm. The installed 

power capacity of the farm is 153 MW with 102 turbines with a rated capacity of each turbine, 1.5 

MW. The farm has a 230 kV step-up substation with a total capacity of 180 MVA with two 

transformers rated 90 MVA each and a voltage level of 230/33 kV. The 230 kV outgoing line is 

connected to the Koka switch through a single circuit overhead line (Hydro China Corporation, 

2013). 

During the feasibility study, 4 years of mast data at wind speed measurement heights of 10 m and 

40 m, wind direction measurement at 10 m. The wind data was extrapolated to the hub height of 

the turbines at 70 m. The wind data was corrected by 30 years of NCEP/NCAR (National Centers 

for Environmental Prediction/National Centers for Atmospheric Research) at the grid points of 

7.5º N and 40 E which is 143 km from the central location of the wind farm. To verify these results, 

9 months (in 2011) wind measurement at the hub height of 70 m was used and the wind potential 

of the site was estimated using these data.  

Since the measurement period at the hub height was less than 1 year, there was an expectation that 

the results were prone to different uncertainties (Asian development bank, 2014). The uncertainties 

observed in the preconstruction period of wind resource assessment might be related to onsite 

measurement, long-term correction, and wind variability (Mönnich, et al., 2016). So, the main aim 

of this research is to compare production performance with the estimated values during the 

feasibility study. The paper addressed the following research questions. 

1. Is the feasibility study of the Adama-II Wind Farm comparable to the production data?  

2. If the is a deviation from the feasibility study, what could be the main reasons behind that 

deviation? 
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3. What should be considered to alleviate such problems? 

To answer the above research questions, the site potential was reassessed using one-year mast data 

by WAsP 10 and Weibull probability density functions (Weibull pdf), then the performance of 

wind turbine generators was assessed using two years of SCADA data, and KPIs were calculated 

and compared with the feasibility study. 

2. Literature Review 

The review of the state of art on this paper has two parts. The first one is about the pre and post-

construction wind resource estimation uncertainties and the second part is about the performance 

evaluation matrices of the operational wind farms. 

Wind resource assessment before the construction of a wind farm is vulnerable to various 

uncertainties that are related the wind variability, long-term correction, turbine power curve. Kwon 

(2010) showed that wind energy uncertainties do arise from wind resources and energy production. 

The first one comes from the calibration problem of measuring instruments, which includes the 

uncertainties associated with the type of sensor, installation, calibration of sensors, location of the 

towers, etc. Annual energy production uncertainties related to the power curve of a wind turbine. 

Grünbaum (2010) stated that wind energy is so unstable and indeterminate in its very nature that 

energy extraction is highly reliant on the weather. This variability introduces a challenge in 

predicting and handling the resource. Such uncertainties will be prevalent as the penetration level 

is getting higher and higher. Padhee et.al. (2017) stated that variations of wind power and system 

load have a great impact on the power system voltage profile. So, the study preferred a season-

focused modeling approach from a season-independent modeling approach to effectively analyze 

the impacts of the variations in wind power output and system load on the voltage profiles. Wind 

resources at the west coast of Ireland showed substantial change at a seasonal scale (Ren, 2018) 

and the winter season was characterized by high wind speed than the rest of the three seasons 

which results create uncertainties. Lira et al. (2016) used probabilistic models, Monte Carlo 

simulation, and MCP methods to determine the uncertainties due to wind inconsistency. Therefore, 

these methods assessed the risk of power output deviance. Abolude & Zhou, (2018) compared 

actual and theoretical power curves by doing an inspection of time series of wind turbine 

performance and energy yield has been done under three different situations using two seasons 

(i.e., winter and summer). The detected data displayed that wind direction might substantially 
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affect turbine power output; likewise, turbine momentum may withstand wind power production 

despite low wind speed. So, the researcher proposed Effective Power Curve (EPC) based on 

turbine performance over a given period and makes fewer estimation errors relative to the 

theoretical power curve when used for the prediction of 15-minute ranged power production 

(Abolude & Zhou, 2018). 

The second part of the literature review is about the performance metrics of wind farms. There 

various performance indicators as stated by different researchers, for instance, Pfaffel, et.al. (2019) 

divided wind farm KPIs into maintenance, reliability, health, safety and the environment (HSE), 

and Finance KPIs. Here, the capacity factor, time-based and, production-based availabilities fell 

under maintenance KPIs. Pfaffel, et.al. (2017) also reported that Availability and capacity factors 

are key performance indicators of various wind farms worldwide. Conroy, et.al.,(2011) compared 

time-based and energy-based wind farm availability and stated that time-based availability is the 

most commonly utilized by turbine manufacturers and power producers. The study also 

demonstrated that energy-based availability is preferable to time-based availability if the power 

producers have enough monitoring wind speed and SCADA data. Among the commonly used 

wind farm operational KPIs, capacity factor, time-based availability, energy-based availability, 

and wind energy index were described in (IEC TS 61400-26-1,2011; Bocard, 2009). The capacity 

factors cannot necessarily show the long-term wind potential of the site. They would rather indicate 

yearly output because they can evolve. For that reason, a low observed capacity factor might be 

due to low wind conditions, below their long-term potential (Rimple & Westerhellweg, 2013). 

There is also wind index which is considered as wind farm KPI which depends on the production 

of several reference wind turbines over a wide geographic area. Power system operators can 

identify a normal period of annual wind energy, expressed as 100%. This is also ideal in 

distinguishing underperforming turbines and wind strengths below expected levels. It also opens 

comparison room for the production of a wind farm with the available wind resource (Ritter, 

et.al.,2015; IEC TS 61400-26-2, 2014). 
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3. MATERIALS AND METHODS 

3.1 Available data 

For post-construction assessment of the wind farm potential, a one-year mast data was used and 

after preprocessing, this data was input to Wasp Climate analyst.  

Table 2: Information of Mast 10357# 

Mast 10357#  Tower 

height (m) 

Elevation 

(m) 

Speed measurement 

height (m) 

Direction 

measurement height  

(m) Latitude Longitude 

8°34.646'N 39°13.152'E 70 1885 70/50/30/10 70/10 

As shown in the above Table the location of Mast 10357# is at a latitude of 8°34.646'N and a 

longitude of 39°13.152'E. The height of the tower is 70 m with 4 speed measuring heights m, (10 

m, 30 m,50 m, and 70 m) and wind direction measuring heights of 10 m and 70 m. The types of 

sensors that are used on this mast are wind vanes, anemometers, pressure sensors, temperature 

sensors humidity sensors. Table 2 shows the location of the mast with the nearest turbine sites. 

 

Figure 2: Location of Mast 10357# 

As shown in the above figure, N74 and N72 are turbines near the mast.10357# 
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Long-term correction  

There were 1164 wind speed records at 70 m which were lower than speeds at 10 m (-ve wind shear). After 

identifying and replacing them with the 10 m records, 30 years of  MERRA-2 data was applied for 

long-term correction. The reason for choosing this data is its better spatial resolution and temporal 

resolution than NCEP/NCAR. 

Table 3:  Comparison of MERRA-2 and NCEP/NCAR 

Long-term 
Reanalysis data 

Spatial 
resolution 

Temporal 
resolution  

Distance from 
the center (km) 

Remark 

MERRA-2 0.5°X 0.625°  1 Hr.  
Used in this paper 

Nearest X and Y  541273 m 939594 m 20.5 
NCEP/NCAR 2.5° X 2.5° 6 Hr.  Used in the 

feasibility study Nearest X and Y  610335 829148 143 
 

NCEP/NCAR showed a strong up-wind long-term speed trend for the period of 1980-2009 while 

the MERRA-2 showed a lower long-term wind speed trend (Liléo & Petrik, 2011). The report also 

showed a 16% improvement of MERRA-2 over NCAR/NCEP and properly representing the site-

specific data. So, the hourly mean wind speed of 30 years long-term data was used in this paper is 

3.46 m/s 

To evaluate the performance of wind turbine generators, two years of 5-minute SCADA data were 

used. The wind index method is used for long-term correction because it is directly related to the 

energy production of a wind turbine (Thøgersen, et al., 2007). 

WIndex =
     

   
          (1) 

 
AEP long-term = 12 * MEP (month i) / Windex (month i) 

Where, MEP = Monthly Energy Production.  

So we can get 12 estimates of AEP in a year, the average of these all will be the long-term corrected 
value of AEP (Lindvall, et al., 2016). 

3.2. Methods 

After the long-term adjustment, the mast data was input to WAsP 10 to reassess the site potential 

and the following equations were used to obtain the characteristics of the site. 
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Table 4: Wind Mast data analysis and Weibull equivalent. 
Characteristics Meteorological Data Equivalent Weibull 

Mean wind speed 

Most frequent 
speed 

Most energetic 
speed 

Standard 
deviation 

𝑉 = 𝑉 𝑓(𝑉 ) 

𝑉 = 𝑉[𝑓(𝑉) ] 

𝑉 = 𝑉[𝑃 (𝑉) ] 

𝜎 = (𝑉 − 𝑉 ) 𝑓(𝑉)  

𝑉 = 𝐴. 𝛾(1 +
1

𝑘
) 

𝑉 = 𝐴. (1 +
1

𝑘
)  

𝑉 = 𝐴. 1 +
2

𝑘

/

 

𝜎 = 𝐴 𝛾 1 +
2

𝑘
− 𝛾 1 +

1

𝑘
 

The power production of wind turbine generators is also compared with the site predicted values 

in this paper and the feasibility. To study the performance of the wind farm, the performance KPIs 

used here are: capacity factor, Annual Energy production, Availability, capacity factors, and they 

are defined by the following equations.  

CF =
AEP

8760 ∑ P
      (2) 

Where AEP is Annual Energy Production, 

Prj, rated power of each turbine, and N is the number of turbines 

The following equation shows that AEP is dependent on installed capacity (IEC TS 61400-26-2, 

2014). 

AEP = N [F(V ) − F(V )]
P + P

2
        (3) 

F(V) = 1 − exp −                                 (4) 

Where AEP is Annual Energy Production in MWh,  

Nh is the total number of hours in a year, 8760 hrs,  

F(v) is the Rayleigh frequency distribution function and  

Pi is power reading from the power curve.  

The summary of the methodology followed in this paper is shown in the Figure below. 
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Figure 3: Flow diagram of the proposed study 

4. Result and Discussion 

4.1 Long-term correction  

The monthly correlation between MERRA-2 and mast 10357 at 10 m resulted in a correlation 

coefficient (R) of 0.8556, for the concurrent period of 2017. So, to correct the mast data with 

MERRA-2, a long-term correction coefficient is calculated and applied to each 10-minute data of 

the mast. The monthly correlation of wind speeds between the mast and the MERRA-2 in 2017 is given in 

the Figure 

Compare the results 
of WAsP and 
SCADA 

Compare with the feasibility 

Adama II WF 
Performance Study 

MCP by Regression 

 

MCP by Wind index 

Site prediction by 
WAsP  

SCADA Data Wind Mast Data  

Obtain Operational 
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Figure 4: Monthly wind speed Correlation at 10m 

Clt= Mean wind speed of MERRA-2 (30yrs)/Mean wind speed of MERRA-2 (2017) 

Clt=3.461/3.460= 1.00028 which is equal to 1 so, we can use the mast data wind speed as a long-

term corrected wind speed. So, the mean wind speed of the site is taken as the values recorded at 

10 m is 5.34 m/s at 7.68 m/s at 70 m. 

For long-term correction of wind direction at 10 m, 30yrs wind direction of MERRA-2 data is 

obtained as shown in the table below with primary and secondary directions of ENE and NE 

(32.4% and 20.7%) respectively. 

Table 5: Long-term wind direction of MERRA-2 

E ENE ESE N NE NNE NNW NW S SE SSE SSW SW W WNW WSW 

23418 85251 10508 727 54408 3267 1500 1004 2944 5796 3319 5187 31792 4528 1603 27716 

8.9% 32.4% 4.0% 0.3% 20.7% 1.2% 0.6% 0.4% 1.1% 2.2% 1.3% 2.0% 12.1% 1.7% 0.6% 10.5% 

The hourly wind rose of the MERRA-2 in 2017 is shown in the following rose plot below. 
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Figure 5: Rose plot of MERRA-2 at 10 m in 2017 

The wind direction of MERRA-2 shows that the prevailing and secondary wind directions are ENE 

and NE. The mean hourly wind direction in the 30 years was 118° and in 2017, it was 116°, so the 

long-term coefficient is equal to Cltd=118/116=1.0172, applying this coefficient to the 10-minute 

direction data of Mast 10357 gives, the following table,  

Table 6: Wind direction of Mast 10357# at 10 m 

E ENE ESE N NE NNE NNW NW S SE SSE SSW SW W WNW WSW 

6345 21069 762 597 3070 1180 2244 2873 470 345 292 585 1647 4187 3165 3729 

12.1% 40.1% 1.5% 1.1% 5.8% 2.3% 4.3% 5.5% 0.9% 0.7% 0.6% 1.1% 3.1% 8.0% 6.0% 7.1% 

As shown in the above table, primary and secondary wind directions are ENE and E with wind 

direction frequencies 40.1% and 12.1% respectively. 

As there is no wind direction measurement in MERRA-2 data at 70 m, the monthly wind direction 

of the mast at 70 m was correlated with the long-term adjusted direction of the wind mast at 10 m. 

The correlation coefficient obtained is 0.9112, which shows a strong correlation. Applying MCP, 

the wind direction at 70 m is shown in the table below. 
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Table 7: Wind direction frequencies of the site at 70 m 

 

As sown in the above table, the prevailing wind direction is found to be ENE with 35.7% and 

secondary wind direction is NE with 19.1 %. 

4.2 Observed Wind Climate (OWC) 

The observed wind climate of a site describes the site-specific wind climate and is the first step in 

wind resource assessment using WAsP. The input to this module is wind mast location and the 

measured wind data.  

 

Figure 6: Observed wind climate of the site 

The obtained result from this analysis is a mean wind speed of 7.75 m/s, and the values of shape 

and scale parameters were 2.29 and 8.6 m/s at a height of 70 m. The average power density was 

462 w/m2. This proved that the annual wind speed and mean wind power density at 70 m from 

feasibility estimation were less by 18.8% and 27.1%. The primary and secondary wind directions 

are ENE with 35.7% and NE with 19.1% respectively. 

E ENE ESE N NE NNE NNW NW S SE SSE SSW SW W WNW WSW
1453 18778 478 505 10057 1678 301 1128 618 301 485 2068 4156 3152 2897 4505
2.8% 35.7% 0.9% 1.0% 19.1% 3.2% 0.6% 2.1% 1.2% 0.6% 0.9% 3.9% 7.9% 6.0% 5.5% 8.6%
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The seasonal variation from the mast data can be seen in the table below. 

Table 8: Seasonal wind Resource Variation at 70m 

Season Daytime Nighttime Average 
Autumn 6.7 8.0 7.4 
Winter 9.2 11.1 10.2 
Spring 6.6 8.3 7.5 
Summer 6.4 5.6 6.0 

Table 8 shows that nighttime wind speeds were higher than daytime except in the summer. The 

winter season had a maximum mean speed of 10.2 m/s, and in the summer, it was 6 m/s. This 

means that the average value of wind speeds in winter was larger than the other three seasons. The 

average wind speed in autumn and spring were almost similar. 

 

Figure 7: Seasonal wind speed variation (hourly) 

Figure 7 shows the hourly variation of mean wind speed by season. In all seasons, daytime wind 

speeds were lower than nighttime speeds.  Winter has an ample amount of wind speed than the 

other seasons and it had lower wind speed during the day, reached a peak in the evening. And in 

the summer, low average wind speeds with no particular trend observed during hours of the day. 
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To manage the power generated during peak hours, peak loads, and energy trading aught be used 

during that time. 

The following table gives the wind characteristics of the Adama-II wind farm based on 2017 mast 

data. 

Table 9: Wind characteristics of Adama II site 
Wind characteristics. 𝒖@70m 𝒖@50m 𝒖@30m 𝒖@10m 
Mean speed(𝑼) 7.7 7.1 6.6 5.3 
SD(m/s) 3.5 3.2 3.1 2.7 
Wind power density 
(W/m2) 

460 333 267.6 161.2 

Most-frequent wind 
speed (Vf) (m/s) 

6.6 6.3 5.1 2.8 

 

As per Table 9, the mean annual wind speed and most frequent wind speeds at the height of 70 m 

were 7.7 m/s and 6.6 m/s. The predicted annual average wind speed during the feasibility study 

was 9.55 m/s at the height of 70 m. 

Farm-level resource categorization depending on mean wind speed(u), most frequent speed (uf), 

cut-in speed(uc), rated speed (ur), and cut-out wind speed (uo) are given in Table 10. 

Table 10: Duration of wind speed distribution 

u<𝒖 u≥𝒖 u=𝒖 u<uf u≥uf 

53.46% 45.43% 1.11% 32.51% 67.49% 

u<uc uc<u<ur u>uc u>ur u≥uo 

11.40% 71.60% 87.9 17.70% 0% 
 

As per the table, 52.6% of the wind speeds were lower than the average value (7.7 m/s), which 

implies 47.4% of the wind speeds were greater than or equal to the mean value. 67.5% of the 

speeds are greater or equal to the most frequent wind speed which means that the resource 

availability in the power productive range was higher. It is also shown that 72.5% of the speeds 

were producing power since they were in between the cut-in and rated speed. There are also speeds 

beyond rated speed (15.3%). By relating the site's wind potential with wind power classes, the 

wind farm falls in a wind power class of 4 because wind speed and wind power density at 50 m 

were 7.1 m/s, 333 W/m2, and at 30 m, 6.6 m/s, 267.6 W/m2. However, during the feasibility study, 

the wind farm was supposed to be of wind power class 6.  
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4.3 Wind Atlas (Generalized wind climate) of the area 

Wind Atlas of the site describes the general wind climate of the area, and it is obtained by using 

the observed wind climate of a site and adding a roughness class. The wind farm is characterized 

by an open agricultural area with a roughness ranging from 0.03 to 0.04. So, five roughness classes 

are considered with a roughness length of (0.000, 0.033, 0.036, 0.038, 0.04) at the heights of 10 m 

30 m, 50 m, 70 m, and 100 m (Tadesse, 2014).  

 

Figure 8: Generalized wind climate (Wind atlas) 

The general wind climate of the Adama area (GWC) shows that the mean wind speed at the height 

of 70 m is 7.3 m/s with a mean power density of 323 w/m2. 

The following figure shows the sitting of all wind turbines in the wind farm site. 
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Figure 9: Wind turbine sites as proposed by the feasibility 

Table 11: summary statistics of wind farm production estimation 

 

As shown in Table 11, the gross annual energy production was 570 GWh with 6.21 % of wake 

loss, which tends the net AEP to be 534 GWh. The mean speed of the site is to be 8.47 m/s and 

the mean annual wind power density of 478 w/m2. However, the gross production obtained during 

the feasibility study was 730.833 (Hydro China Corporation, 2013) which results in a deviation of 

22 %. 
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4.4 Power performance of Wind Turbine Generators  

Five-minute SCADA data of 2016 and 2017 were used for assessing the energy yield performance 

of each turbine. As per the determination of these parameters, the average values for wind speed 

varied from 6 m/s to 8.1 m/s, and wind power from 300 kW to 500 kW. Moreover, the standard 

deviation of wind speed and power ranged from 2.8 to 3.2 m/s and 300 kW to 400 kW respectively. 

The range of the maximum wind speed and wind power is from 17 m/s to 26.1 m/s and 1500 kW 

to 1581 kW respectively. These values were shown in the following box plots. 

 

Figure 10:  Monthly SCADA data of wind power (2016) 
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Figure 11: Monthly wind power production in 2017 

For evaluating the power performance of all turbines, monthly SCADA data of each turbine was 

considered. 

As the main part of this performance study, the annual variation of performance indices for 2016 

and 2017 was determined and shown in Table 12. 

Table 12: Annual variation of performance indices before long-term correction 

Year AEP(GWh) U (m/s) Pav (kW) 
A-Time 
(%) 

A-Energy 
(%) 

CF (%) 

2016 409 7.4 481.2 96.68 79.26 30.5 

2017 408.5 7.7 478.9 93.57          76.2 30.5 

Average 408.8 7.6 480.1      95.1 77.73 30.5 

  

Where A-Time is Time based Availability or turbines’ availability and A-Energy, is energy-based 

Availability. The table shows that the time-based availability is 95.1% while energy production 

availability was 77.73%. This means that the turbines were available as per the warranty of the 

manufacturer. The average wind speed of the farm was 7.6 m/s. When this value is compared with 

the feasibility study's annual wind speed (9.55m/s), it showed a deviation of 20.4%. Annual Energy 
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Production for the two years was 408.8 MWh. After applying the wind index on the monthly 

production of the two years, the long-term annual energy is given in the tables below. 

Table 13: Long-term Corrected AEP for 2016 

Months  

AEP long-term for 2016 AEP long-term for 2017 

Speed(m/s) 
Wind 
Index 

MEP/WI MEPi*12 Speed 
Wind 
Index 

MEP/WI 
(GWh) 

(MEP/WI)*12 
GWh 

1 8.00 1.10 38.20 458.20 9.30 1.20 38.80 465.40 

2 8.90 1.20 40.00 479.70 8.70 1.10 34.10 409.10 

3 7.50 1.00 36.40 436.70 7.60 1.00 37.00 444.40 

4 5.40 0.70 23.00 275.40 8.30 1.10 38.90 467.30 

5 5.70 0.80 26.10 312.90 5.70 0.70 30.30 363.20 

6 7.40 1.00 35.00 420.10 7.00 0.90 34.20 410.30 

7 7.40 1.00 36.10 433.20 7.80 1.00 35.60 426.90 

8 7.00 1.00 32.10 385.00 7.10 0.90 32.00 384.50 

9 5.00 0.70 19.10 229.50 4.90 0.60 17.50 210.00 

10 7.90 1.10 34.50 413.80 7.80 1.00 33.60 403.20 

11 8.80 1.20 36.70 440.90 9.30 1.20 32.70 392.60 

12 9.60 1.30 38.80 465.80 9.10 1.20 35.30 423.10 

Average 7.40 1.00 33.00 395.90 7.70 1.00 33.30 400.00 

The long-term corrected AEP for 2016 and 2017 were 395.9 GWh and 400 GWh this gives the 

average of the two years to be 398 GWh. 

Reasons of deviation from the feasibility study 

The reason for the deviation in the wind climate estimation is the long-term correction data used 

in the feasibility study. Because the feasibility study used the reference point 143 km from the 

center of the wind farm. However, in this paper, the long-term MERRA-2 reanalysis data used 

which, better temporal and spatial resolution, distance is around 20.5 km from the center of the 

wind farm. From the SCADA data, the average environmental disenabled time was 971 Hrs. in 

2016 (11.1%) and 821 Hrs. in 2017 (9.3%). 

CONCLUSION  

This study addressed the Adama II wind farm performance by reassessing the wind potential of the 

site and the energy production of wind turbine generators compared to the feasibility. Using one-

year mast data, the site's mean annual wind speed found to be 7.75 m/s while, in the feasibility 

study, it was 9.55 m/s at 70 m. The prevailing and secondary wind directions obtained were ENE 
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by 35.7% and NE 19.1%. But in the feasibility study, these figures were ENE and E with a 

frequency of 35.3% and 17.3% at 70 m. From the energy performance evaluation aspect, two years 

of SCADA data were used. The gross annual energy predicted in the preconstruction of the wind 

farm was 730.833GWh but in this study, it was 570 GWh, which shows a deviation of 22%. The 

capacity factor determined was 30.5%, but in the feasibility study, it was 35%. The average wind 

farm availability of turbines was 95.1%, and in the feasibility, it was 95%. The reason for the 

deviation was the long-term correction and environmental dis-inability for the turbines to produce 

power. The weather influence considered in the feasibility was only 2 % while in this production 

years, 10.2 %. 
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Appendix 

Appendix 1: Satellite data descriptions 

Date of 
acquisition 

Sensor Spatial Resolution Data Type Format Source 

2014 SRTM(DEM) 30m 
Elevation/Contour 

map Raster USGS 

 
 

Appendix 2: The software used to process the data 

Software Name Version Application in the Process 

ArcGIS 10.7 Mapping study area and Contour map 

Global Mapper 2020 Exporting contour into Wasp map file 

Wasp map editor 10 Roughness mapping 
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