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Bayesian Spatial Inversion and Conjugate Selection Gaussian Prior Models\ast 

Henning Omre\dagger and Kjartan Rimstad\dagger 

Abstract. We study conjugate prior models in Bayesian spatial inversion. The spatial Kriging model may
be phrased in a conjugate Bayesian inversion setting with a Gaussian prior model and a Gauss-
linear likelihood function, resulting in a Gaussian posterior model. Spatial variables with unimodal,
symmetric spatial histograms can be represented by this Kriging model. We generalize this Gaussian
prior model by a selection mechanism, and this selection Gaussian prior model may represent
multimodal, skewed, and/or peaked spatial variables. Also this selection Gaussian prior model is
conjugate with respect to Gauss-linear likelihood functions. Hence the posterior model is selection
Gaussian and analytically tractable. Efficient algorithms for simulation of and prediction in the
selection Gaussian posterior model are defined. Model parameter inference in a maximum likelihood
setting, which is simplified by the conjugate property, is also discussed. Moreover, we demonstrate
that any conjugate prior model can be generalized by selection and still remain conjugate with
respect to the actual likelihood function. Lastly, a seismic inversion case study is presented, and
improvements of 20--40\% in prediction mean-square-error, relative to traditional Gaussian inversion,
are found.
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1. Introduction. Inversion constitutes a challenge in many mathematical engineering
problems. Observations from the variable of interest are often indirectly collected by some
complex acquisition device. The objective is naturally to predict the variable of interest based
on the available observations. We consider spatial variables in this study and examples of
inverse problems can be found in geophysics, image analysis, and remote sensing. Inversion of
seismic data is presented as a case study later in the paper.

The spatial variable of interest is \{ r(x);x \in \scrD \subset \scrR m\} with r(x) \in \scrR being the variable,
having spatial reference x running over the reference domain \scrD \subset \scrR m, which naturally has
dimension m equal to one, two, or three. The variable is discretized \{ r(x);x \in \scrL \scrD \} where \scrL \scrD 
is a regular grid, of size nr, covering \scrD , and the spatial variable is represented by the nr-vector
r \in \scrR nr . Assume further that an nd-vector of observations d \in \scrR nd related to the variable of
interest is collected. The focus is on assessing r given d, [r| d].
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We phrase the assessment in a probabilistic setting by using Bayesian inversion (see [30]):

[r| d] \rightarrow f(r| d) = [

\int 
f(d| r)f(r)dr] - 1 \times f(d| r)f(r)(1.1)

= const\times f(d| r)f(r),

where y \rightarrow f(y) reads as the random variable y is distributed according to the probability
density function (pdf) f(y). The f(r| d) is the posterior pdf being the ultimate solution
of Bayesian inversion. The likelihood function f(d| r), being a function of r, represents the
observation acquisition procedure, while the prior pdf f(r) summarizes prior information about
the spatial variable of interest. The likelihood and prior models uniquely define the posterior
model, although the integral in the normalizing constant usually is complicated to calculate.

Bayesian inversion is defined in a predictive setting with focus on the spatial variable.
Classical Bayesian inference (see [13]) has another focus, namely model parameter estimation.
The Bayesian inference model is often cast in a conjugate parametric framework for which
the posterior model can be determined analytically; see [13]. Hence complicated integral
calculations can be avoided. We use this conjugate model construction in the Bayesian
inversion model defined in the current study.

In Bayesian spatial inversion, the focus is on the discretized spatial variable represented by
the nr-vector r. The associated observations in the nd-vector d are assumed to be acquired
by a likelihood function being linear in r with additive centered Gaussian error term. This
likelihood function is in the Gauss-linear class. In subsurface data acquisition, medical imaging,
and remote sensing, the observations often appear as contrasts and/or with spatial convolutions
which can be represented by Gauss-linear likelihood models. By assigning a prior pdf to r from
the Gaussian class, one can easily demonstrate that the posterior pdf also will be Gaussian.
The corresponding model parameters can be analytically calculated from the model parameters
of the likelihood and prior models and the actual observed values. Hence the Gaussian class
of prior models is conjugate with respect to Gauss-linear likelihood models. The traditional
spatial Kriging model (see [15]) can be cast in this Bayesian spatial inversion setting, and its
analytical tractability is one major reason for the widespread use of Kriging prediction.

The Kriging model has Gaussian marginal pdfs and can represent spatial variables with
approximately unimodal, symmetric spatial histograms. In many spatial applications one
observes multimodal spatial histograms often caused by physical effects, categorical latent
variables, or extreme spatial heterogeneity. Examples are oil/water saturation in the subsurface
with only partial mixing of fluids, density in brain substance with varying latent tissue classes,
and pollution monitoring in an area with some emission sources. In the current study we
generalize the Gaussian spatial model to define a class of spatial prior models which can
represent these kinds of multimodal spatial variables. We demonstrate that for a Gauss-linear
likelihood function, the class of Gaussian prior models can be generalized by a selection
mechanism, inspired by the model discussed in [2], and still remain a conjugate class. This
construction makes it possible to define highly flexible prior spatial models, which may represent
spatial variables with multimodal, skewed, and/or peaked spatial histograms.

The developments of the selection Gaussian prior model is inspired by the early work
on skewed pdfs in [6] and [8]; see also [20] and [7]. These models are generalized to spatialD

ow
nl

oa
de

d 
08

/2
4/

21
 to

 1
29

.2
41

.2
31

.1
87

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

422 HENNING OMRE AND KJARTAN RIMSTAD

settings in [25], [1], and [28]. In the current study we use generalized selection sets as discussed
in [4] and [2] to construct spatial prior pdfs with marginal multimodality, skewness, and/or
peakedness.

Modeling spatial variables with multimodal marginal characteristics and spatial continuity
is challenging. The selection Gaussian spatial model discussed above is not the only model
option, however. Trans-Gaussian random fields (see [15]) based on univariate transformations
of the marginals may represent multimodality. For these models also the observations must be
transformed before conditioning, however, and for likelihood functions with convolutions and
observation errors, consistent transformations are not defined. Alternatively, mixture Gaussian
random fields containing a latent categorical random field as mode indicator can be used to
model multimodality. The latent categorical model can either be a Markov random field (see
[9], [27], [10], and [17]) or a level set random field (see [16] and [24]). These categorical spatial
models rely heavily on assessment by Markov chain Monte Carlo (McMC) simulation, since the
analytical tractability is very limited. For likelihood models including spatial convolutions, the
observations usually have wide spatial support and are often highly coupled. In these settings
spatial McMC algorithms tend to have poor convergence rates. The selection Gaussian spatial
model defined in this study is parametrized differently from the mixture Gaussian spatial
model, since it does not explicitly include a latent categorical variable. The former model
has more flexibility than the latter, since it can represent spatial variables with multimodal,
skewed, and/or peaked spatial histograms. Moreover, the selection Gaussian models define a
conjugate class with respect to Gauss-linear likelihood functions, which make the posterior
model selection Gaussian with parameters analytically available. The analytical tractability
makes it possible to define tailored simulation algorithms.

The selection construction presented above for the class of Gaussian pdfs can be generalized.
For a given class of likelihood models, the selection mechanism can be used on the corresponding
class of conjugate prior models, if it exists, and the resulting class of selection prior models
will remain conjugate. Hence the conjugate characteristic appears as invariant to the selection
operator. In the following sections we define the selection concept in a general setting and
demonstrate the flexibility for the Gaussian spatial models.

Bayesian predictive inversion and Bayesian parameter inference can be combined to have
hierarchical Bayesian inversion. It is, however, complicated to define general conjugate classes
of prior models in this setting; see [29] and [11]. We present a brief discussion and evaluation
of classical likelihood inference of the model parameters in the selection Gaussian prior pdf,
based on the available observations or one training image.

The major contribution of the current paper is, however, the discussion of conjugate prior
models in Bayesian spatial inversion and the demonstration that this conjugate characteristic
is closed under activation of a selection mechanism. This result holds for all types of conjugate
prior models including the prior Gaussian spatial model frequently used in practice. This
spatial selection Gaussian model may appear with multimodal, skewed, and/or peaked marginal
pdfs as presented in a variety of examples. Model parameter inference based on maximum
likelihood is defined and evaluated. Moreover, we present a case study of seismic inversion into
subsurface elastic properties being spatial variables with bimodal spatial histograms.

In the presentation f(y) denotes a pdf of the random variable y, while F (y \in \scrB ) denotes
the probability that the random variable is in the subset \scrB of its sample space. For theD

ow
nl

oa
de

d 
08

/2
4/

21
 to

 1
29

.2
41

.2
31

.1
87

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

BAYESIAN SPATIAL INVERSION---SELECTION GAUSSIAN 423

Gaussian random n-vector y we write

y \rightarrow f(y) = \phi n(y;\bfitmu ,\Sigma )(1.2)

= [2\pi ] - n/2| \Sigma |  - 1/2 exp

\biggl\{ 
 - 1

2
[y  - \bfitmu ]T\Sigma  - 1[y  - \bfitmu ]

\biggr\} 
,

F (y \in \scrB ) = \Phi n(\scrB ;\bfitmu ,\Sigma ) =

\int 
\scrB 
\phi n(u;\bfitmu ,\Sigma )du.

Note that from a computational point of view | \Sigma |  - 1 and \Sigma  - 1 are demanding, and so are
simulation from and calculation of the subset \scrB probability of an arbitrary high-dimensional
Gaussian pdf. The former two challenges are widely studied, however, while the latter challenge
has drawn much less attention; see one basic and one recent reference, [21] and [19]. Later, we
suggest some algorithms for simulation from and calculation of these subset \scrB probabilities.
We also use the notation in for a unit n-vector and In for an identity (n\times n)-matrix, while
I(A) is an indicator function taking value 1 if A is true and 0 otherwise.

In section 2, Bayesian spatial inversion is discussed, and a selection extended conjugate class
of prior pdfs for a given class of likelihood functions is defined. The conjugate class of selection
Gaussian prior pdfs is developed and discussed in detail. Section 3 contains a discussion of
model parameter inference and the development of a maximum likelihood estimator for the
model parameters of the conjugate class of selection Gaussian prior pdfs, based on the actual
observations or a training realization of the spatial variable. In section 4, a case study based
on real seismic data along a well profile from the Alvheim field in the North Sea is presented.
Comparisons with regular Bayesian Gaussian inversion are made. Lastly, in section 5, the
conclusions of the study are forwarded. In Appendix A some useful characteristics of the
selection Gaussian model are demonstrated.

2. Bayesian spatial inversion. The focus is on prediction of a spatial variable discretized
into the nr-vector r, based on the observations represented in the nd-vector d. We phrase
the prediction as Bayesian inversion (see (1.1)), which requires that the likelihood function
f(d| r) is given, and that the prior pdf f(r) is specified. Hereby, the corresponding posterior
pdf f(r| d) is defined. Along the lines of the definition of conjugate prior pdfs in traditional
Bayesian inference (see [13]), we present the following definition,

Definition 1 (conjugate class of prior pdfs). Consider Bayesian inversion

f(r| d;\bfittheta r| d) = const\times f(d| r;\bfitpsi d)f(r;\bfittheta r)

with likelihood function f(d| r;\bfitpsi d) in a parametrized pdf class \scrL \psi and prior pdf f(r;\bfittheta r) in a
parametrized pdf class \scrP \theta . If the associated posterior pdf f(r| d;\bfittheta r| d) also is in the pdf class \scrP \theta ,
then the pdf class \scrP \theta is termed a conjugate class with respect to the likelihood function class
\scrL \psi . The parameters of the posterior model \bfittheta r| d will be a function of [\bfitpsi d,\bfittheta r,d].

For continuous spatial variables, the class of Gaussian prior pdfs is known to be a conjugate
class with respect to Gauss-linear likelihood functions. Hence, if the observations are collected
through a linear forward model with additive Gaussian errors, and the prior pdf is specified to
be Gaussian, then the posterior pdf will also be Gaussian. This characteristic is the basis forD
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Kriging prediction and conditional simulation in geostatistics; see [14]. Moreover, for event
spatial variables the Poisson prior pdf is conjugate with respect to thinning likelihood functions
(see [23]), while for mosaic spatial variables the Markov prior pdf is conjugate with respect to
conditionally independent single-site response likelihood functions; see [22]. These conjugate
characteristics are of course the major reason for the frequent use of these spatial models. In
the next section we define an extended class of prior pdfs based on a selection concept and
demonstrate that this concept can be used to construct an extended conjugate class of prior
pdfs.

2.1. Generalization by selection. Consider the previously defined spatial variable repre-
sented by the nr-vector r with prior pdf f(r). Extend the dimension by an auxiliary random
n\nu -vector \bfitnu \in \scrR n\nu , such that\biggl[ 

r
\bfitnu 

\biggr] 
\rightarrow f

\biggl( \biggl[ 
r
\bfitnu 

\biggr] \biggr) 
= f(\bfitnu | r)f(r)(2.1)

with arbitrarily chosen pdf f(\bfitnu | r), and denote the pdf f(r) the basis-pdf. Consider an arbitrary
subset \scrA \nu \subset \scrR n\nu and define the associated random selection nr-vector rA by

rA = [r| \bfitnu \in \scrA \nu ] \rightarrow f(rA) = f(r| \bfitnu \in \scrA \nu )(2.2)

= [F (\bfitnu \in \scrA \nu )]
 - 1 \times F (\bfitnu \in \scrA \nu | r)f(r),

which is constructed by conditioning [r,\bfitnu ] on \bfitnu \in \scrA \nu and thereafter marginalizing to r. Note
in particular that f(rA) = f(r) if we define f(\bfitnu | r) = f(\bfitnu ), which of course is the extreme
choice of independence between r and \bfitnu . Based on this selection concept we have the following
definition.

Definition 2 (selection extension of prior pdfs). Consider a prior basis-pdf f(r;\bfittheta r) in a
parametrized pdf class \scrP \theta , and define auxiliary variable \bfitnu \in \scrR n\nu related to r by pdf f(\bfitnu | r;\bfitkappa \nu )
in a parametrized pdf class \scrE \kappa . Specify further a selection set \scrA \nu \subset \scrR n\nu . Define the selection
variable,

rA = [r| \bfitnu \in \scrA \nu ] \rightarrow f(rA) = f(r| \bfitnu \in \scrA \nu ;\bfittheta r,\bfitkappa \nu )

= [F (\bfitnu \in \scrA \nu ;\bfittheta r,\bfitkappa \nu )]
 - 1 \times F (\bfitnu \in \scrA \nu | r;\bfitkappa \nu )f(r;\bfittheta r),

with pdf f(r| \bfitnu \in \scrA \nu ;\bfittheta r,\bfitkappa \nu ) in the parametrized selection extended pdf class \scrS \scrA \nu [\scrP \theta \times \scrE \kappa ].
The selection extension can be made for any basis-pdf class for arbitrary auxiliary variables

with associated selection sets. The class of selection Gaussian pdfs with f(r) from the Gaussian
class and f(\bfitnu | r) being Gauss-linear with associated selection sets, and hence [r,\bfitnu ] being jointly
Gaussian, is thoroughly discussed in [2]. We define this class of selection Gaussian pdfs by a
Gaussian basis-pdf

r \rightarrow f(r) = \phi nr(r;\bfitmu r,\Sigma r)

with the expectation nr-vector \bfitmu r and the covariance (nr \times nr)-matrix \Sigma r being model
parameters. The auxiliary n\nu -vector \bfitnu is defined as

[\bfitnu | r] \rightarrow f(\bfitnu | r) = \phi n\nu (\bfitnu ;\bfitmu \nu | r,\Sigma \nu | r)D
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with the conditional expectation n\nu -vector being linear in r, \bfitmu \nu | r = \bfitmu \nu + \Gamma \nu | r(r - \bfitmu r) with
expectation n\nu -vector \bfitmu \nu , coupling (n\nu \times nr)-matrix \Gamma \nu | r, and the conditional covariance
(nr \times n\nu )-matrix \Sigma \nu | r all being model parameters of the selection Gaussian pdf. Hence [\bfitnu | r] is
Gauss-linear, and since r is Gaussian, the joint (nr+n\nu )-vector [r,\bfitnu ] is Gaussian. By enforcing
the selection \bfitnu \in \scrA \nu \subset \scrR n\nu , we obtain the selection Gaussian nr-vector rA,

rA = [r| \bfitnu \in \scrA \nu ] \rightarrow f(rA) = f(r| \bfitnu \in \scrA \nu )(2.3)

= [\Phi n\nu (\scrA \nu ;\bfitmu \nu ,\Sigma \nu )]
 - 1 \times \Phi n\nu (\scrA \nu ;\bfitmu \nu | r,\Sigma \nu | r)\phi nr(r;\bfitmu r,\Sigma r),

where the marginal covariance (n\nu \times n\nu )-matrix is \Sigma \nu = \Gamma \nu | r\Sigma r\Gamma 
T
\nu | r +\Sigma \nu | r. All valid sets of

model parameters (\bfitmu r,\Sigma r,\bfitmu \nu ,\Gamma \nu | r,\Sigma \nu | r,\scrA \nu ) define the class of selection Gaussian pdfs. Note
that by assigning \Gamma \nu | r a null-matrix or setting \scrA \nu = \scrR n\nu , the selection Gaussian class of pdfs
is identical to the Gaussian one.

In Figure 1 several examples of selection Gaussian pdfs are displayed. The top row contains
univariate selection Gaussian pdfs with nr = n\nu = 1. The displays present the auxiliary
[r, \nu ]-variable, being standard bi-Gaussian with correlation 0.9, and varying selection sets
\scrA \nu . The corresponding selection Gaussian pdfs is presented inverted on the horizontal axis.
The left display contains a one-sided selection, providing a selection Gaussian pdf that is
skewed. The selection set in the middle display consists of two subsets, resulting in a bimodal
pdf. Similarly, the right display contains three selection subsets providing a trimodal pdf.
The asymmetry of the pdfs is governed by the relative shifts of the selection sets \scrA \nu and
\mu \nu = 0. The bottom row contains bivariate selection Gaussian pdfs with nr = n\nu = 2 and
identical marginal pdfs from the corresponding top row display. The [r1, r2] correlation is
0.1. The left display contains a selection Gaussian pdf that is skewed. The pdfs in the two
other displays are multimodal, and the number of modes is the number in their marginal pdfs
squared. Figure 1 demonstrates the flexibility of the selection Gaussian class of pdfs, which can
represent multimodal, skewed, and/or peaked variables. For a spatial variable represented by
the nr-vector r having multimodal marginals, the number of modes in its selection Gaussian
model will obviously increase quickly with increasing grid-size nr.

The likelihood function of the actual observations do, f(do| r), is a function of r and only
dependent on the observation acquisition procedure, independent of the choice of prior pdf.
Hence, the posterior pdf based on a prior selection pdf can be expressed as

[rA| do] \rightarrow f(rA| do) = const\times f(do| rA)f(rA)(2.4)

= const1 \times f(do| r)f(r| \bfitnu \in \scrA \nu )

= const2 \times f(do| r)F (\bfitnu \in \scrA \nu | r)f(r)
= const3 \times F (\bfitnu \in \scrA \nu | r,do)f(r| do)
= [F (\bfitnu \in \scrA \nu | do)] - 1 \times F (\bfitnu \in \scrA \nu | r,do)f(r| do),

which relies on the conditional independence relation f(\bfitnu ,d| r) = f(\bfitnu | r)f(d| r). Note that the
posterior pdf corresponds to the selection pdf with basis-pdf being the conditional pdf f(r| d),
which provides the following theorem.

Theorem 1 (selection extended conjugate class of prior pdfs). Consider a likelihood function
in parametrized pdf class \scrL \psi and a prior pdf in the parametrized pdf class \scrP \theta . According toD

ow
nl

oa
de

d 
08

/2
4/

21
 to

 1
29

.2
41

.2
31

.1
87

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

426 HENNING OMRE AND KJARTAN RIMSTAD

r

ν

r

ν

r

ν
rA1

r A
2

rA1

r A
2

rA1

r A
2

Figure 1. Examples of univariate (top row) and bivariate (bottom row) selection Gaussian pdfs with varying
selection sets (gray).

Definition 1, let the pdf class \scrP \theta be a conjugate class with respect to likelihood function class \scrL \psi .
According to Definition 2, define the associated selection extended pdf class \scrS \scrA \nu [\scrP \theta \times \scrE \kappa ] based
on auxiliary pdf class \scrE \kappa and selection set \scrA \nu . Then the pdf class \scrS \scrA \nu [\scrP \theta \times \scrE \kappa ] is a conjugate
class with respect to the likelihood function class \scrL \psi for all pdf classes \scrE \kappa and selection sets \scrA \nu .
The conjugate characteristics of a prior pdf class \scrP \theta are closed under selection extension.

This closedness property for conjugate pdf classes is very general and applies to continuous,
event and mosaic spatial variables. Moreover, it may be used in traditional Bayesian inference.
For continuous spatial variables with a Gauss-linear likelihood function, prior pdfs from the
class of Gaussian pdfs are known to be conjugate. According to the results above, the selection
Gaussian pdf for any arbitrary auxiliary extension and selection set will define a conjugate
class of pdfs with respect to a Gauss-linear likelihood function. In the following subsections
we will explore this opportunity to define more flexible prior pdfs in Bayesian spatial inversion
with observations collected through a Gauss-likelihood function.

2.2. Likelihood model. We limit the likelihood function to be from the Gauss-linear class,

[d| r] = Hr+ ed| r \rightarrow f(d| r) = \phi nd
(d;Hr,\Sigma d| r),(2.5)

where H is an observation acquisition (nd \times nr)-matrix and ed| r is a centered Gaussian error
nd-vector with covariance (nd\times nd)-matrix \Sigma d| r independent of r. Hence the model parameters
are \bfittheta l = (H,\Sigma d| r). There are no constraints on the matrix H, and it may contain features ofD
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the observation acquisition procedure that need to be estimated. It may be binary, selecting
only a subset of elements in the vector r, or it could represent convolution by averaging over
elements in the vector r. Also numerical differentiation or integration can be captured by H.
In the case study we use a convolved, contrast-linearized approximation to the wave equation
to model acquisition of seismic data; see [12]. The seismic convolution kernel can often be
complicated to infer since it depends on the elastic properties of the geological overburden.

2.3. Prior model. The spatial variable of interest is represented in the nr-vector r. We
define the prior basis-pdf f(r) to be a spatially stationary Gaussian pdf,

r \rightarrow f(r) = \phi nr(r;\mu inr , \sigma 
2C),(2.6)

where the scalars (\mu , \sigma 2) are the stationary expectation and variance, respectively, while
the spatial correlation (nr \times nr)-matrix C is defined by the spatial translation invariant
positive definite correlation function \rho (\bfittau ); \bfittau \in \scrR m , which is assumed to tend towards
0 as | \bfittau | increases. This pdf is spatially stationary in the sense that the marginal pdfs
f(ri) = \phi 1(ri;\mu , \sigma 

2), i = 1, . . . , nr, are all identical. Moreover, it exhibits ergodicity since
f(ri, rj) \rightarrow f(ri)f(rj) as | xi  - xj | \rightarrow \infty since \rho (\bfittau ) tends towards 0 for increasing | \bfittau | , which
entails that consistent estimates of the model parameters can be obtained.

We use this Gaussian pdf as basis-pdf to define a selection pdf, with the auxiliary nr-vector
\bfitnu extension,

[\bfitnu | r] = \gamma \sigma  - 1[r - \mu inr ] + e\nu | r \rightarrow f(\bfitnu | r) = \phi nr(\bfitnu ; \gamma \sigma 
 - 1[r - \mu inr ], [1 - \gamma 2]Inr)

=

nr\prod 
i=1

\phi 1(\nu i; \gamma \sigma 
 - 1[ri  - \mu ], [1 - \gamma 2]),

where \gamma \in [ - 1, 1] \subset \scrR is a coupling parameter while e\nu | r is a centered Gaussian nr-vector with
independent elements with variance [1 - \gamma 2], independent of r. The extended variable becomes
jointly Gaussian,\biggl[ 

r
\bfitnu 

\biggr] 
\rightarrow f

\biggl( \biggl[ 
r
\bfitnu 

\biggr] \biggr) 
= \phi 2nr

\biggl( \biggl[ 
r
\bfitnu 

\biggr] 
;

\biggl[ 
\mu inr

0inr

\biggr] 
,

\biggl[ 
\sigma 2C \gamma \sigma C
\gamma \sigma C \gamma 2C+ [1 - \gamma 2]Inr

\biggr] \biggr) 
,(2.7)

and consists of two grid-discretized spatial variables with variances \sigma 2 and 1, respectively, with
intercorrelation \gamma \sigma and with identical spatial correlation function \rho (\bfittau ).

Define the selection set \scrA nr \subset \scrR nr with \scrA \subset \scrR , and hence identical selection sets for each
component in r. The corresponding spatial selection Gaussian pdf, which belongs to the class
of selection Gaussian pdfs (see (2.3)), is defined as

rA = [r| \bfitnu \in \scrA nr ] \rightarrow f(rA) = f(r| \bfitnu \in \scrA nr)(2.8)

= [F (\bfitnu \in \scrA nr)] - 1 \times F (\bfitnu \in \scrA nr | r)f(r)
= [\Phi nr(\scrA nr ; 0inr , \gamma 

2C+ [1 - \gamma 2]Inr)]
 - 1

\times 
nr\prod 
i=1

\Phi 1(\scrA ; \gamma \sigma  - 1[ri  - \mu ], [1 - \gamma 2]) \phi nr(r;\mu inr , \sigma 
2C)
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with the actual model parameters \bfittheta p = (\mu , \sigma 2, \gamma , \rho (\bfittau ),\scrA ). The spatial selection Gaussian prior
model, represented by the nr-vector rA, is closely related to a spatial Gaussian model, with
(\mu , \sigma 2) being parameters related to marginal centering and variability, respectively, and \rho (\bfittau )
being related to spatial smoothness. The model parameters \gamma and \scrA define the deviations from
Gaussianity of the marginal pdfs. If \gamma = 0 and/or \scrA is identical to \scrR , the selection Gaussian
model will be identical to the Gaussian prior basis-model. Hence the selection Gaussian prior
model appears as a generalization of the Gaussian prior model.

Note in particular that the prior model for the spatial variable of interest, represented by
the selection Gaussian pdf on the vector r, is subject to the grid \scrL \scrD . The selection Gaussian
concept breaks down when the grid size tends to zero by infilling of the grid; see [26] and [28].
This lack of generality limits the use of the model, of course, but in many applications like
geophysics, image analysis, and remote sensing, there is a natural choice of grid \scrL \scrD due to
the observation acquisition procedure. Moreover, this limitation is shared by the categorical
Markov random field model (see [9]), which has proven immensely useful in many segmentation
applications. One consequence of this grid dependency is that the model parameter values will
depend on the actual spatial discretization as it is for categorical Markov random fields. In
section 3 we discuss this subject in greater detail.

The selection Gaussian class of pdfs can be shown to be closed under marginalization (see
[2]), and the univariate marginal pdf is

rAi = [ri| \bfitnu \in \scrA nr ] \rightarrow f(rAi) = f(ri| \bfitnu \in \scrA nr)(2.9)

= [F (\bfitnu \in \scrA nr)] - 1 \times F (\bfitnu \in \scrA nr | ri)f(ri)
= [\Phi nr(\scrA nr ; 0inr , \gamma 

2C+ [1 - \gamma 2]Inr)]
 - 1

\times \Phi nr(\scrA nr ; \gamma \sigma  - 1ci(ri  - \mu ), \gamma 2[C - cic
T
i ] + [1 - \gamma 2]Inr)

\times \phi 1(ri;\mu , \sigma 
2),

which is a selection Gaussian pdf with nr-vector ci being the ith column of the correlation
matrix C. Note, however, that the two first moments of the marginal pdf, E(rAi) and Var(rAi),
do not have nice closed-form expressions. All lower dimensional marginal pdfs will also be
selection Gaussian pdfs.

All marginal selection Gaussian pdfs f(rAi) = f(ri| \bfitnu \in \scrA nr), i = 1, . . . , nr, are conditioned
on all nr elements of the auxiliary variable \bfitnu ---not only the respective \nu i. This conditioning
causes the pdfs to be defined relative to the grid \scrL \scrD . This coupling is contrary to marginal pdfs
of discretized Gaussian random fields where all dependence of other dimensions are integrated
out. Recall that the joint pdf f(r,\bfitnu ) is a discretized bivariate stationary Gaussian random
field with spatial correlation function \rho (\bfittau ), and therefore [ri, \nu i] and [rj , \nu j ] tend towards
independence as their interdistance | \bfittau ij | increases. Hence f(rAi) is primarily dependent on
\nu j with | \bfittau ij | being small. The prior selection Gaussian model is discretized on a regular grid
\scrL \scrD with identical selection sets \scrA for each node. Hence the marginal selection Gaussian pdfs
f(rAi), i = 1, . . . , nr, appear as spatially stationary, except for grid nodes close to the boundary
of \scrD . Moreover, the bivariate f(rAi, rAj) tends towards f(rAi)f(rAj) as the interdistance | \bfittau ij | 
increases since the coupling through \bfitnu decreases with increasing | \bfittau ij | . Consequently, by
introducing the auxiliary variable \bfitnu in a spatial setting on the grid \scrL \scrD , the prior selectionD
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Table 1
Model parameters for six cases, with \mu = 0 and \sigma 2 = 1 for all cases.

Case \gamma dh dv A Description

1 0.8000 2.0 2.0 (\infty , - 0.3] \cup [0.3,\infty ) sym. bimodal iso.
2 0.6500 6.0 0.85 (\infty , - 0.3] \cup [0.3,\infty ) sym. bimodal aniso.
3 0.9250 2.0 0.60 (\infty , - 0.85] \cup [0.8,\infty ) asym. bimodal aniso.
4 0.9995 3.0 3.0 [ - 0.45, - 0.2] \cup [ - 0.1, 0.1] \cup [0.2, 0.45] sym. trimodal iso.
5 0.7000 2.0 2.0 (\infty , - 0.7] \cup [ - 0.1, 2.5] asym. unimodal iso.
6 0.7000 2.0 2.0 (\infty , - 1.75] \cup [ - 0.5, 0.5] \cup [1.75,\infty ) sym. heavy tailed iso.

Gaussian pdf exhibits approximate stationarity and ergodicity in the sense defined above.
These characteristics make the model suitable as a prior pdf in Bayesian spatial inversion.
Moreover, by using the auxilary nr-vector \bfitnu flexibility is introduced in the prior model such
that the posterior model can capture more of the information in the observations.

The prior selection Gaussian pdf will naturally be inspected by simulation. Simulation is
performed sequentially by first generating a realization of the auxiliary variable \bfitnu s \in \scrA nr and
thereafter generating the realization rsA = [r| \bfitnu s]s. Since the joint variable [r,\bfitnu ] is Gaussian,
many efficient algorithms are available; see section SM1 in the supplemental material.

The variety of the prior selection Gaussian model is exhibited in Figure 2, which is based on
the model parameters listed in Table 1 with an anisotropic second-order exponential correlation
function with anisotropy factor (dh, dv). A more detailed discussion of the example is given in
section SM3 of the supplemental material. The spatial variable is represented on a (64\times 64)-grid.
The anisotropy factors vary, and so do the correlation and the selection sets for the auxiliary
variable. The selection set, for each case, defining the shape of the marginal pdfs of the prior
model is marked by light gray bars on the horizontal axis. We observe a large variety of prior
spatial models, all of them approximately stationary and ergodic in the sense discussed above.
The prior models have marginal distributions that can be multimodal, skewed, peaked, or a
combination of these features. The computer demand for generating one such realization is
typically a couple of minutes on a regular laptop computer.

2.4. Posterior model. The posterior pdf is uniquely defined by the likelihood function
and the prior pdf. With a likelihood function from the Gauss-linear class and a prior pdf
from the selection Gaussian class, the posterior pdf, due to Theorem 1, will also be from the
selection Gaussian class. The selection Gaussian class of prior pdfs is conjugate with respect
to Gauss-linear likelihood functions. Hence the model parameters of the posterior pdf are
analytically tractable based on the model parameters of the likelihood and prior models and
the actual observations. The joint pdf is

\left[  r
\bfitnu 
d

\right]  \rightarrow f

\left(  \left[  r
\bfitnu 
d

\right]  \right)  
(2.10)

= \phi 2nr+nd

\left(  \left[  r
\bfitnu 
d

\right]  ;

\left[  \mu inr

0inr

\mu Hinr

\right]  ,

\left[  \sigma 2C \gamma \sigma C \sigma 2CHT

\gamma \sigma C \gamma 2C+ [1 - \gamma 2]Inr \gamma \sigma CHT

\sigma 2HC \gamma \sigma HC \sigma 2HCHT +\Sigma d| r

\right]  \right)  ,
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Figure 2. First column: Marginal distribution of selection Gaussian random field (solid black), standard
normal distribution (dashed gray), and selection sets on auxiliary random field on axis (solid gray). Second
column: Quantile-quantile plot of marginal selection Gaussian random field versus theoretical quantiles from the
Gaussian distribution. Third column: Realization from selection Gaussian random field.

and one may demonstrate that [\bfitnu ,d| r] are conditionally independent. Note also that the
joint [r,d| \bfitnu \in \scrA nr ] will be selection Gaussian, and so will the two marginals [r| \bfitnu \in \scrA nr ] and
[d| \bfitnu \in \scrA nr ]. Hence the marginal pdf of the observations will be dependent on the actual
prior model, which the likelihood model will not. The focus of the study is on the posterior
[r| d,\bfitnu \in \scrA nr ] which will be selection Gaussian as well; see Appendix A.D
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From Theorem 1 and standard Gaussian theory one has

[rA| d] = [r| \bfitnu \in \scrA nr ,d] \rightarrow f(rA| d) = f(r| \bfitnu \in \scrA nr ,d)(2.11)

= [F (\bfitnu \in \scrA nr | d)] - 1 \times F (\bfitnu \in \scrA nr | r,d)f(r| d)
= [\Phi nr(\scrA nr ;\bfitmu \nu | d,\Sigma \nu | d)]

 - 1

\times \Phi nr(\scrA nr ;\bfitmu \nu | rd,\Sigma \nu | rd)

\times \phi nr(r;\bfitmu r| d,\Sigma r| d)

with \biggl[ 
\bfitmu r| d
\bfitmu \nu | d

\biggr] 
=

\biggl[ 
\mu inr

0inr

\biggr] 
+

\biggl[ 
\sigma 2CHT

\gamma \sigma CHT

\biggr] \bigl[ 
\sigma 2HCHT +\Sigma d| r

\bigr]  - 1
[d - \mu Hinr ] ,

\biggl[ 
\Sigma r| d \Gamma r\nu | d
\Gamma \nu r| d \Sigma \nu | d

\biggr] 
=

\biggl[ 
\sigma 2C \gamma \sigma C
\gamma \sigma C \gamma 2C+ [1 - \gamma 2]Inr

\biggr] 
 - 
\biggl[ 

\sigma 2CHT

\gamma \sigma CHT

\biggr] \bigl[ 
\sigma 2HCHT +\Sigma d| r

\bigr]  - 1 \bigl[ 
\sigma 2HC \gamma \sigma HC

\bigr] 
,

\bfitmu \nu | rd = \bfitmu \nu | d + \Gamma vr| d\Sigma 
 - 1
r| d[r - \bfitmu r| d],

\Sigma \nu | rd = \Sigma \nu | d  - \Gamma \nu r| d\Sigma 
 - 1
r| d\Gamma r\nu | d.

This posterior pdf will of course be spatially nonstationary due to conditioning on the ob-
servations d. The pdf will, however, be in the class of selection Gaussian pdfs (see (2.3))
and hence will be closed under marginalization and conditioning, with the corresponding
model parameters analytically tractable. Assessment of the posterior pdf is usually made by
simulation of realizations and locationwise prediction with associated precision intervals.

Simulation of realizations from the posterior pdf is made sequentially by first generating a
realization [\bfitnu s \in \scrA nr | d] and thereafter generating a realization [rA| d]s = [r| \bfitnu s,d]s. Since the
joint variable [r,\bfitnu | d] is Gaussian, many efficient algorithms are available, and the algorithm
actually used in the current study is specified in section SM1 of the supplemental material with

\bfitnu s = [\bfitnu | \bfitnu \in \scrA nr ,d] \rightarrow [\Phi nr(\scrA nr ;\bfitmu \nu | d,\Sigma \nu | d)]
 - 1 \times \phi nr(\bfitnu ;\bfitmu \nu | d,\Sigma \nu | d)\times I[\bfitnu \in \scrA nr ],(2.12)

[rA| d]s = [r| \bfitnu s,d] \rightarrow \phi nr(r;\bfitmu r| \nu sd,\Sigma r| \nu sd),

where

\bfitmu r| \nu sd = \bfitmu r| d + \Gamma r\nu | d\Sigma 
 - 1
\nu | d[\bfitnu 

s  - \bfitmu \nu | d],

\Sigma r| \nu sd = \Sigma r| d  - \Gamma r\nu | d\Sigma 
 - 1
\nu | d\Gamma \nu r| d.

Prediction of [rA| d] needs to be carefully designed since we often define selection Gaussian
prior models with multiple modes, and so will the posterior pdf be. The traditional expectation
(E) predictor based on a minimum locationwise squared error loss, denoted \^rE = E\{ rA| d\} ,D
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will often appear in low-probability regions in between modes of the posterior pdf. The
median (M) predictor based on a minimum locationwise absolute error criterion, denoted
\^rM = MED\{ rA| d\} , shares the same tendency to appear in low-probability regions. The
preferred predictor is the global maximum posterior predictor, but it is usually too computer-
demanding to determine since it requires optimization of an nr-dimensional multimodal function.
Therefore, we recommend the maximum posterior (MAP) predictor based on a maximum
locationwise posterior criterion,

\^rMAP = MAP\{ rA| d\} (2.13)

= \{ MAP\{ rAj | d\} = argmax
rj

\{ f(rj | d)\} ; j = 1, . . . , nr\} ,

with

[rAi| d] = [ri| \bfitnu \in \scrA nr ,d] \rightarrow f(rAi| d) = f(ri| \bfitnu \in \scrA nr ,d)

= [F (\bfitnu \in \scrA nr | d)] - 1F (\bfitnu \in \scrA nr | ri,d)f(ri| d)
= [\Phi nr(\scrA nr ;\bfitmu \nu | d,\Sigma \nu | d)]

 - 1

\times \Phi nr(\scrA nr ;\bfitmu \nu | rid,\Sigma \nu | rid)

\times \phi 1(ri;\mu ri| d, \sigma 
2
ri| d),

with \biggl[ 
\mu ri| d
\bfitmu \nu | d

\biggr] 
=

\biggl[ 
\mu 

0inr

\biggr] 
+

\biggl[ 
\sigma 2cTi H

T

\gamma \sigma CHT

\biggr] \bigl[ 
\sigma 2HCHT +\Sigma d| r

\bigr]  - 1
[d - \mu Hinr ] ,

\Biggl[ 
\sigma 2
ri| d \bfitgamma ri\nu | d

\bfitgamma \nu ri| d \Sigma \nu | d

\Biggr] 
=

\biggl[ 
\sigma 2 \gamma \sigma cTi
\gamma \sigma ci \gamma 2C+ [1 - \gamma 2]Inr

\biggr] 
 - 
\biggl[ 
\sigma 2cTi H

T

\gamma \sigma CHT

\biggr] \bigl[ 
\sigma 2HCHT +\Sigma d| r

\bigr]  - 1 \bigl[ 
\sigma 2Hci \gamma \sigma HC

\bigr] 
,

\bfitmu \nu | rid = \bfitmu \nu | d + \bfitgamma vri| d\sigma 
 - 1
ri| d[ri  - \mu ri| d],

\Sigma \nu | rid = \Sigma \nu | d  - \bfitgamma \nu ri| d\sigma 
 - 1
ri| d\bfitgamma ri\nu | d,

which normally appears close to the dominant mode of the posterior pdf. These locationwise
predictors can be identified from the marginal posterior pdfs which are known to be selection
Gaussian pdfs with analytically assessable parameter values. The associated locationwise
prediction \alpha -intervals will naturally be the interval between the upper/lower \alpha /2-quantiles
of the marginal posterior pdfs, which usually must be assessed by simulation-based inference.
Note also that these predictors and prediction intervals will correspond to Kriging if the
prior pdf is from the pure Gaussian class since MAP and E predictors coincide for unimodal
symmetrical pdfs.

The characteristics of the posterior selection Gaussian spatial model are exhibited in Figure
3, which is based on the parameter sets listed in Table 2. A more detailed discussion of theD
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Table 2
Model parameters for four posterior cases, with \mu = 0 and \sigma 2 = 1 for all cases.

Case \gamma dh A Description Cond. values

1 0.900 4 (\infty , - 0.4] \cup [0.4,\infty ) sym. bimodal 2.5, - 2.5
2 0.999 4 [ - 0.65, - 0.4] \cup [0.12, 0.12] \cup [0.40.65] sym. trimodal 0.55, - 0.55
3 0.600 4 (\infty , - 1.5] \cup [ - 0.5, 0.5) asym. unimodal 1.0, - 3.0
4 0.700 4 (\infty , - 1.75] \cup [ - 0.5, 0.5] \cup [1.75,\infty ) sym. heavy tailed 3.0, - 3.0

Figure 3. First column: Marginal distribution of prior selection Gaussian model (solid black) and corre-
sponding Gaussian model (dashed gray), and selection set on auxiliary random field on axis (solid gray). Second
column: Five realizations of the posterior selection Gaussian random field. Third column: Posterior selection
Gaussian model predictions, with E-prediction (solid black), MED-prediction (dashed black), and MAP-prediction
(dashed-dotted black). The corresponding Gaussian model prediction (E/MED/MAP) (dashed gray).

examples is presented in section SM4 of the supplementary material. The spatial variable is
represented on a 128-grid with exact observations in grid nodes 16 and 112. The different
prior models produce very different posterior realizations and predictions, all of them exactly
honoring the observations of course. The MAP-predictor is particularly sensitive to multimodal
marginals in the prior model. The computer demand for this simple example is very modest
since the posterior model is analytically tractable.D
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3. Model parameter inference. One challenge with this class of selection Gaussian pdfs
is the lack of clear interpretation of the model parameters, even in the reduced parametrization
used as spatial stationary prior pdf in this study. The fact that the model parameter values
are dependent on the actual grid design \scrL \scrD complicates matters even more. In this section we
discuss model parameter inference in greater detail.

In order to perform Bayesian inversion, all model parameters of both the likelihood function
and the prior pdf must be assigned values. The likelihood parameters \bfittheta l are assumed to be
known through studies of the observation acquisition procedure. The model parameters of the
prior pdf \bfittheta p are more complicated to elicit.

One may consider a hierarchical Bayesian inversion model, combining Bayesian inversion
and Bayesian inference, and consider \bfittheta p as a random variable with a suitable prior model
f(\bfittheta p). Then, in principle, the posterior model for \bfittheta p is available,

[\bfittheta p| d] \rightarrow f(\bfittheta p| d;\bfittheta l) = const\times 
\int 

f(d| rA;\bfittheta l)f(rA| \bfittheta p)f(\bfittheta p)drA.

Remember that \bfittheta p = (\mu , \sigma 2, \gamma , \rho (\bfittau ),\scrA ), where \mu \in \scrR , \sigma 2 \in \scrR +, and \gamma \in [ - 1, 1] \subset \scrR ,
while \rho (0) = 1, and \rho (\bfittau ); \bfittau \in \scrR m

\oplus is a positive definite function, and \scrA \subset \scrR . Hence, both
assigning suitable prior models to \bfittheta p and calculating the normalizing constant appear to be
very complicated.

We recommend using a maximum likelihood criterion when estimating the prior model
parameters \bfittheta p given the likelihood model parameters \bfittheta l,

\^\bfittheta p = argmax
\bfittheta p

\{ log f(d;\bfittheta p)\} ,

with

f(d;\bfittheta p) =

\int 
f(d| rA;\bfittheta l)f(rA;\bfittheta p)drA.

This estimate, \^\bfittheta p, will depend on the actual grid design \scrL \scrD of rA. Note that this expression is
identical to the inverse of the normalizing constant of the posterior pdf in Bayesian inversion;
see (1.1). In the general case this constant is unfeasible to compute even for given model
parameters (\bfittheta l,\bfittheta p) and hence even more challenging to optimize with respect to \bfittheta p given \bfittheta l.

For Bayesian inversion in a conjugate setting, however, the class of posterior pdfs is
known, and therefore analytical expressions for the normalizing constant are also known. This
advantage of using conjugate models in Bayesian inversion is seldom recognized. For the
selection Gaussian class of conjugate models with respect to Gauss-linear likelihood models,
the parameter likelihood function can be demonstrated to have the form of a selection Gaussian
pdf (see Appendix A),

f(d;\bfittheta p) = [\Phi nr(\scrA nr ;\bfitmu \nu ,\Sigma \nu )]
 - 1 \times \Phi nr(\scrA nr ;\bfitmu \nu | d,\Sigma \nu | d) \phi nd

(d;\bfitmu d,\Sigma d),

with parameters (\bfitmu \nu ,\Sigma \nu ) and (\bfitmu d,\Sigma d) defined in (2.10), and

\bfitmu \nu | d = \gamma \sigma CHT [\sigma 2HCHT +\Sigma d| r]
 - 1(d - \mu Hinr),

\Sigma \nu | d = [\gamma 2C+ [1 - \gamma 2]Inr ] - \gamma \sigma CHT [\sigma 2HCHT +\Sigma d| r]
 - 1\gamma \sigma HC.D
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In theory we may then define the maximum likelihood estimator for \bfittheta p by

\^\bfittheta p = argmax
\bfittheta p

\{ log f(d;\bfittheta p)\} ,(3.1)

but in practice we need to parametrize also \rho (\bfittau ) and A in order to perform the optimization,
and this parametrization will be problem-specific. One major challenge in the optimization is
that the probability \Phi nr(\cdot ) needs to be recalculated for varying \bfittheta p, which may be extremely
computer-demanding. We calculate this probability by an importance blocking rejection
algorithm; see section SM2 of the supplementary material. Lastly, there is no guarantee that
the object function log f(d;\bfittheta p) may not be multimodal, which makes optimization notoriously
complicated.

Alternatively one may use training images of the spatial variable of interest and discretize
them to a grid design corresponding to \scrL \scrD , i.e., the same grid spacing along all dimensions.
Denote one such discretized training image by nor-vector roA. The corresponding Bayesian
inference expression is

[\bfittheta p| roA] \rightarrow f(\bfittheta p| roA) = const\times f(roA| \bfittheta p)f(\bfittheta p),

which also will be very complicated to assess for the full model parameter vector \bfittheta p. In [3] and
[11] this posterior model for the model parameter \gamma given the other parameters in \bfittheta p and with
\scrA = \scrR \oplus is discussed. The authors of the former reference also provide guidelines for obtaining
conjugate prior models for \gamma . The generalization of these results to cover the full prior model
parameter vector \bfittheta p appears to be very complicated.

If we use the training image roA in a likelihood setting, it corresponds to using the parameters
\bfittheta l as nr = nd = nor, H = Ind

, and \Sigma d| r = 0\times Ind
in the likelihood expression above,

f(roA;\bfittheta p) = [\Phi no
r
(\scrA nr ;\bfitmu \nu ,\Sigma \nu ]

 - 1 \times 
no
r\prod 

i=1

\Phi 1(\scrA ;\mu \nu i| roAi
, \sigma 2

\nu i| roAi
) \phi no

r
(roA;\bfitmu r,\Sigma r),

and estimating \bfittheta p by

\^\bfittheta p = argmax
\bfittheta p

\{ log f(roA;\bfittheta p)\} .

In practice one encounters the same challenges in the optimization as those discussed above. It
will be unfair to say that not many unresolved issues remain, but we present one encouraging
example of prior model parameter elicitation based on training images below.

We evaluate the characteristics of the maximum likelihood estimator for \bfittheta p = (\mu , \sigma 2, d, \gamma , a),
where d = dh = dv and \scrA : ( - \infty , - a] \cup [a,\infty ) for case 1 in Figure 2 and Table 1. The results
are exhibited in Figure 4, and a more detailed discussion is presented in section SM5 of the
supplementary material. The training images are subsets of the realization in Figure 2 of sizes
[8\times 8], [16\times 16], [24\times 24], and [32\times 32]. By repeating this inference on 1000 realizations from
the prior model we can assess the accuracy and precision of the estimator. We observe from
Figure 4 that the estimator appears to be biased, but consistent as the training image increases,
which is as expected for maximum likelihood estimators for ergodic spatial models. Moreover,
it appears that relatively reliable estimates can be obtained even for training images of size
[24\times 24]. The computer demand for estimating \bfittheta p for one training image of size [32\times 32] is
typically one minute on a regular laptop computer.D
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Figure 4. Density plots of \^\bfittheta p based on repeated estimates, evaluated for increasing size of the training image
\bfr o. Below the axis are means and empirical 90\% confidence intervals. True values (vertical dashed lines) are
marked.

4. Case study: Seismic inversion. The objective of seismic inversion is to predict the
elastic material properties---pressure-wave velocity, shear-wave velocity, and density---in the
subsurface based on observed amplitude-versus-offset (AVO) seismic data collected at the
surface. The data appear as time-lagged, angle-dependent reflection intensities from the
subsurface created by an air pulse generated at the surface. We model the log-transformed
properties in the subsurface in order to have a linear likelihood function (see [12]) r =
(logvp, logvs, log\bfitrho ) \in \scrR 3nr and denote the seismic data by d = (d1,d2,d3) \in \scrR 3nd with
upper-index representing three angles. Hence the objective is to assess [r| d], and we phrase
the inversion in a Bayesian setting. In petroleum exploration, seismic AVO data is used to
map the elastic material properties in the reservoir zone of the subsurface. Based on these
elastic properties, rock physics relations are then used to predict the porosity/permeability
characteristics and oil/gas/water saturations in the zone in order to evaluate the petroleum
recovery potential.

The case study is based on data from the Alvheim field in the North Sea; see [5] and [27].D
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Figure 5. Seismic AVO data in the well trace for reflection angles 12\circ , 22\circ , and 31\circ , with depth in seismic
two-way travel time (a) and seismic wavelets shape for reflection angles 12\circ , 22\circ , and 31\circ (b).

The subsurface contains a turbiditic oil and gas reservoir at about 2000 meters depth, but we
use reflection time as depth reference with one meter (m) corresponding to approximately one
millisecond (ms). We consider one vertical profile at the depth range \scrD : [1935  - 2145] ms
discretized to \scrL \scrD with n = nr = nd = 55 grid nodes, where both AVO seismic data d and
exact observations of the elastic material properties ro in a well are available; see Figures 5a
and 6. Both d and ro are used to infer the likelihood and prior model parameters \bfittheta l and \bfittheta p,
by considering [d| ro] and ro as training images, respectively. Since both the likelihood and
prior models are spatially stationary with a relative small number of parameters, overfitting
does not appear to be a problem. In the Bayesian spatial inversion we consider [r| d]; hence
the posterior model is only conditioned on d. The training image ro is used to validate the
results. In practical use, seismic inversion of profiles in the neighborhood of the well trace,
without well observations, will be made (see [18]), but then model validation is complicated.
We perform Bayesian inversion based on two alternative prior models, one selection Gaussian
and one traditional Gaussian prior model, and we compare the corresponding posterior models.

The likelihood model f(d| r) links the seismic data d and the elastic material properties of
interest r. The model is based on a linearization of the wave equation as defined in [12],

[d| r] = WADr+ \bfitepsilon d| r(4.1)

\rightarrow f(d| r) = \phi 3nr(d;WADr, \sigma 2
d| r\Sigma 

o
d| r),

where W is a convolution matrix defined by the kernels in Figure 5b; matrix A represents the
angle-dependent linearized wave equation; D is a differentiation matrix; and \bfitepsilon d| r is a centered
Gaussian vector with covariance matrix \Sigma d| r = \sigma 2

d| r\Sigma 
o
d| r. The correlation matrix \Sigma o

d| r is defined

by exponential correlation functions in angle and time with ranges da and dt, respectively.
Hence the likelihood model is Gauss-linear with parameters \bfittheta l = (\sigma 2

d| r, d
a, dt).

The prior model f(r) represents the general characteristics of the elastic material properties
of interest. Figure 6 contains a display of the exact observations of the properties ro along theD
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Figure 6. Well observations of logarithm of pressure-wave velocity vp, share-wave velocity vs, and density \rho .
Top: Elastic properties in the well with estimated linear trend (dashed black). Middle: Quantile-quantile plot of
residual elastic properties. Bottom: Histograms and density estimates of residual elastic properties.

profile and Gaussian quantile-quantile plots and spatial histograms of residuals after removing
the linear vertical trend. The bimodality of the histograms of log vp and log vs are caused by
vertically varying rock types in the subsurface. By using a selection Gaussian prior model, this
bimodality in the marginal pdfs can be captured. The model as defined in section 2.3 must be
extended to represent the trivariate r, and the parametrization becomes \bfittheta p = (\bfitmu ,\Sigma ,\bfitgamma , dr,a).
The spatial exponential correlation function with range dr is common for all three variables,
and the selection sets are parametrized as \scrA : \{ ( - \infty , a], [a,\infty )\} with specific a values for
each variable. The alternative traditional Gaussian prior model fG(r) has parametrization
\bfittheta Gp = (\bfitmu ,\Sigma , dr) and will not capture the bimodality in the variables.

We infer the likelihood parameters \bfittheta l from the available seismic data d and the exact
observations of the elastic material properties ro by using a maximum likelihood criterion,

\^\bfittheta l = argmax
\bfittheta l

\{ f(d| ro;\bfittheta l)\} .

Likewise we infer the model parameters for the two alternative prior models, \bfittheta p and \bfittheta Gp , fromD
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Figure 7. Estimated prior marginal models. Marginal distributions of estimated selection Gaussian random
field (solid black), marginal distributions of estimated Gaussian random field (dashed black), and histograms of
well observations.

ro. We set the location parameter \bfitmu , for both models, equal to the vertical linear trend for
each of the three variables, and estimate the remaining parameters by a maximum likelihood
criterion,

\^\bfittheta p = argmax
\bfittheta p| \bfitmu  - trend \bfr o

\{ f(ro;\bfittheta p)\} ,

\^\bfittheta 
G

p = argmax
\bfittheta G
p | \bfitmu  - trend \bfr o

\{ fG(ro;\bfittheta Gp )\} .

The optimizations of the likelihood functions all appear to converge to unique optima with
computer demands of a few minutes on a regular laptop computer. The actual estimates for
the likelihood model parameters are

\^\bfittheta l : \sigma 
2
d| r = 0.402, da = 7.3, dt = 11.1,

while the estimates for the two alternative prior model parameters are

\^\bfittheta p :\Sigma =

\left[  0.0073 0.0126  - 0.0013
0.0126 0.0250  - 0.0039

 - 0.0013  - 0.0039 0.0018

\right]  ,

\bfitgamma =

\left[  0.8656
0.9061
0.3331

\right]  , dr = 1.61,a =

\left[  0.1110
0.2619
0.1151

\right]  ,

\^\bfittheta 
G

p : \Sigma =

\left[  0.0059 0.0093  - 0.0007
0.0093 0.0195  - 0.0025

 - 0.0007  - 0.0025 0.0016

\right]  , dr = 1.53.

The parameter estimates for the two alternative prior models appear to be consistent with
comparable range lengths and dependence structures between the three variables. In Figure
7 the marginal pdfs of the two prior models are displayed together with the histograms ofD
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Figure 8. Three simulated realizations from posterior random fields, and realizations integrated over time.
Left: Selection Gaussian model. Right: Traditional Gaussian model.
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Figure 9. Well predictions. Left: Selection Gaussian model. Right: Traditional Gaussian model. Well
observations (solid black), posterior mean (solid dark gray), posterior 80\% prediction interval (dashed dark gray),
prior mean (solid light gray), and prior 80\% prediction interval (dashed light gray).

ro. The selection Gaussian prior model captures the bimodality of the histograms without
overfitting to the available well observations.

Based on the Gauss-linear likelihood model f(d| r) with parameter values \^\bfittheta l and the selection
Gaussian prior model f(r) with parameter values \^\bfittheta p, we use Bayesian spatial inversion to assess
the posterior model f(r| d) which also will be selection Gaussian. By using the alternative
traditional Gaussian prior model with associated parameter values we obtain a Gaussian
posterior model fG(r| d).

Realizations from the two alternative posterior models, f(r| d) and fG(r| d), are displayed
in Figure 8. The realizations from the former can be generated sequentially as outlined
in section 2.4. The realizations from the selection Gaussian posterior model appear with
abrupt changes between two levels defined by the two modes in the prior model; hence theD
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Table 3
Summary of well predictions for the selection Gaussian and Gaussian models. Mean square error (MSE) of

predictions and posterior and prior 80\% coverage of prediction intervals.

MSE Prior 80\% coverage Posterior 80\% coverage
Selection Gaussian Selection Gaussian Selection Gaussian

log vp 0.0034 0.0050 0.84 0.88 0.85 0.96
log vs 0.0112 0.0191 0.82 0.89 0.84 0.87
log \rho 0.0009 0.0011 0.82 0.95 0.83 0.89

corresponding spatial histograms are bimodal. The realizations from the Gaussian posterior
model are smoother, and the corresponding spatial histograms are unimodal.

Predictions of [r| d] based on the two alternative posterior models with associated 0.8-
prediction intervals are displayed in Figure 9. Also the correct elastic material property profiles
ro are presented. Moreover, predictions and 0.8-prediction intervals for the two alternative
prior models are displayed. We use E-predictors for both models. In this case study, contrary
to the example in section 2.4, we have densely sampled data. The data consists of convolved,
gradient observations in every node of \scrL \scrD , and the marginal pdf of the selection Gaussian
posterior model will appear as almost unimodal, although flipping between modes vertically.
Consequently the E, MED, and MAP predictors will be almost identical, and the former is used
for computational convenience. The predictions based on both posterior models do reproduce
the correct profiles relatively well with large improvements of the prior predictions. The
predictions from the selection Gaussian posterior model appear with more abrupt changes than
the Gaussian one whenever the correct profiles have large steps. Moreover, the 0.8-prediction
intervals are narrower for the former model than for the latter.

Table 3 contains summary statistics for Figure 9. The mean-square-error (MSE) of the
predictions relative to the correct profiles for each variable for both alternative models is listed.
Moreover, the coverage of the 0.8-prediction intervals for the correct profiles for the prior and
posterior models is specified. The predictions from the selection Gaussian model appear to be
clearly superior to the predictions from the Gaussian one. The improvements in MSE are in
the range of 20--40 \%. The coverage values for the selection Gaussian model are close to 0.8, as
they should be, while the coverages for the Gaussian model are far too large and more variable.

5. Concluding remarks. We study Bayesian spatial inversion and introduce the concept of
conjugate classes of prior parametrized pdfs with respect to given classes of likelihood functions.
For this class of prior pdfs the associated posterior pdfs will be in the same class. Such
conjugate classes exist for continuous, event, and mosaic spatial variables for frequently used
likelihood functions. The conjugate class of prior models can be selection extended without
loss of the conjugate characteristic.

We demonstrate the potential of the selection extension by introducing the class of selection
Gaussian prior pdfs which is conjugate with respect to Gauss-linear likelihood functions. The
flexibility of this selection Gaussian class is displayed in a variety of examples which represent
multimodality, skewness, and peakedness in the marginal distributions.

By using a prior model from a conjugate class for a given likelihood function, the associated
posterior model can be assessed exactly based only on the model parameters of the prior
and likelihood models---and the actual observations, of course. The normalizing constant,D
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which usually complicates Bayesian spatial inversion, will be available in parametric form. We
demonstrate this favorable characteristic for the class of selection Gaussian prior pdfs and
show that the posterior selection Gaussian pdf is analytically tractable, which is used to make
efficient algorithms for simulation and prediction. Several examples presenting conditional
simulations and predictions exposing multimodality, skewness, and peakedness are displayed.

The class of selection Gaussian prior pdfs is parametrized by a number of model parameters
which are not easily interpretable. Moreover, the model parameter values will be dependent
on the spatial discretization of the spatial variable under study. Based on either the available
observations or one training image of the spatial variable, we define maximum likelihood
estimators for the model parameters. A limited simulation study is conducted, and we conclude
that the estimators appear to be consistent and that even for relatively small training images
reliable estimates can be obtained. These results are encouraging.

Lastly, a case study using the selection Gaussian prior model on seismic inversion of real
data is presented. We demonstrate 20--40\% improvement in the MSE of predictions compared
to the traditional Gaussian inversion. Also the prediction intervals of the former model appear
to be more reliable than those of the latter.

The selection extension of conjugate classes of prior pdfs in Bayesian spatial inversion
appears to have a large potential. We have to some extent explored this potential for
continuous spatial variables and the class of selection Gaussian prior pdfs. The challenge
for these models appears in sampling from and calculation of subset probabilities in high
dimensional Gaussian pdfs. We have presented some relatively efficient algorithms for these
purposes. Many improvements of these algorithms are definitely possible. For event and mosaic
spatial variables, the class of Poisson and Markov pdfs are conjugate with respect to certain
likelihood functions. Also, these classes can be selection extended and still remain conjugate.
We have not yet explored these possibilities.

Appendix A. Selection Gaussian model. The closedness properties of the selection
Gaussian model is demonstrated.

Definition 3 (selection Gaussian pdf). Consider the n-vector Gaussian basis-pdf,

r \rightarrow f(r) = \phi n(r;\bfitmu r,\Sigma r),

and Gauss-linear auxiliary q-vector variable,

[\bfitnu | r] \rightarrow f(\bfitnu | r) = \phi q(\bfitnu ;\bfitmu \nu | r,\Sigma \nu | r),

with \bfitmu \nu | r = \bfitmu \nu + \Gamma \nu | r(r - \bfitmu r), where \Gamma \nu | r is denoted as the coupling (q \times n)-matrix.
Define a selection set \scrA \nu \subset \scrR q and the corresponding n-vector selection Gaussian pdf,

rA = [r| \bfitnu \in \scrA \nu ] \rightarrow f(rA) = f(r| \bfitnu \in \scrA \nu )

= [\Phi q(\scrA \nu ;\bfitmu \nu ,\Sigma \nu )]
 - 1 \times \Phi q(\scrA \nu ;\bfitmu \nu | r,\Sigma \nu | r)\times \phi n(r;\bfitmu r,\Sigma r)

= const\times \Phi q(\scrA \nu ;\bfitmu \nu | r,\Sigma \nu | r)\times \phi n(r;\bfitmu r,\Sigma r),

with the covariance (q \times q)-matrix \Sigma \nu = \Gamma \nu | r\Sigma r\Gamma 
T
\nu | r +\Sigma \nu | r.

The class of selection Gaussian pdfs is defined by all valid sets of parameters (\bfitmu r,\Sigma r,\bfitmu \nu ,\Gamma \nu | r,
\Sigma \nu | r,\scrA \nu ).D
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The following results are useful for later proofs.

Result 1 (conditional probabilities). Consider the joint (n+m)-vectorial variable (x,y) with
joint pdf f(x,y); then,

R1. f(x) =

\int 
\Omega y

f(x,y)dy =

\int 
\Omega y

f(x| y)f(y)dy = Ey\{ f(x| y)\} ,

and also for arbitrary subset \scrA x \subset \Omega x,

R2. F (x \in \scrA x) =

\int 
\scrA x

f(x)dx =

\int 
\scrA x

Ey\{ f(x| y)\} dx = Ey\{ F (x \in \scrA x| y)\} .

For f(x,y) being a Gaussian pdf,

R1G. \phi n(x;\bfitmu x,\Sigma x) = Ey\{ \phi n(x;\bfitmu x| y,\Sigma x| y)\} ,
R2G. \Phi n(\scrA x;\bfitmu x,\Sigma x) = Ey\{ \Phi n(\scrA x;\bfitmu x| y,\Sigma x| y)\} .

The major statements are captured in the following proposition.

Proposition 1 (selection Gaussian models). Consider the selection Gaussian prior model,

rA \rightarrow f(rA) = f(r| \bfitnu \in \scrA \nu ) = const\times \Phi q(\scrA \nu ;\bfitmu \nu | r,\Sigma \nu | r)\times \phi n(r;\bfitmu r,\Sigma r),

and Gauss-linear m-vector likelihood model,

[d| rA] \rightarrow f(d| rA) = \phi m(d;\bfitmu d| r,\Sigma d| r),

with conditional expectation \bfitmu d| r = Hr, where H is an observation (m\times n)-matrix. Moreover,
assume conditional independence of [\bfitnu ,d| r].
Then the following hold:
A. [rA,d] is selection Gaussian.
B. d is selection Gaussian.
C. [rA| d] is selection Gaussian.

The proposition is justified by the following proof.

Proof 1. The three proposition items are demonstrated sequentially.

The joint pdf in A is

[rA,d] \rightarrow f(rA,d) = f(d| rA)f(rA)
= \phi m(d;\bfitmu d| r,\Sigma d| r)\times const\times \Phi q(\scrA \nu ;\bfitmu \nu | r,\Sigma \nu | r)\times \phi n(r;\bfitmu r,\Sigma r)

= const\times \Phi q(\scrA \nu ;\bfitmu \nu | r,\Sigma \nu | r)\times \phi n+m

\biggl( \biggl[ 
r
d

\biggr] 
;

\biggl[ 
\bfitmu r
H\bfitmu r

\biggr] 
,

\biggl[ 
\Sigma r \Sigma rH

T

H\Sigma r H\Sigma rH
T +\Sigma d| r

\biggr] \biggr) 
= const\times \Phi q(\scrA \nu ;\bfitmu \nu | rd,\Sigma \nu | rd)\times \phi n+m

\biggl( \biggl[ 
r
d

\biggr] 
;

\biggl[ 
\bfitmu r
H\bfitmu r

\biggr] 
,

\biggl[ 
\Sigma r \Sigma rH

T

H\Sigma r H\Sigma rH
T +\Sigma d| r

\biggr] \biggr) 
with the last identity from conditional independence of [\bfitnu ,d| r].D
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Hence from Definition 3, the joint (n+m)-vector [r,d] is selection Gaussian.
The marginal pdf in B is

d \rightarrow f(d) =

\int 
f(rA,d)dr

= const

\int 
\Phi q(\scrA \nu ;\bfitmu \nu | rd,\Sigma \nu | rd)\times \phi n+m

\biggl( \biggl[ 
r
d

\biggr] 
;

\biggl[ 
\bfitmu r
H\bfitmu r

\biggr] 
,

\biggl[ 
\Sigma r \Sigma rH

T

H\Sigma r H\Sigma rH
T +\Sigma d| r

\biggr] \biggr) 
dr

= const\times 
\int 

\Phi q(\scrA \nu ;\bfitmu \nu | rd,\Sigma \nu | rd)\times \phi n(r;\bfitmu r| d,\Sigma r| d)dr\times \phi m(d;\bfitmu d,\Sigma d)

= const\times Er| d\{ \Phi q(\scrA \nu ;\bfitmu \nu | rd,\Sigma \nu | rd)\} \times \phi m(d;\bfitmu d,\Sigma d)

= const\times \Phi q(\scrA \nu ;\bfitmu \nu | d,\Sigma \nu | d)\times \phi m(d;\bfitmu d,\Sigma d)

with the last identity from result R2G.
Hence from Definition 3, the marginal m-vector d is selection Gaussian.
The conditional pdf in C is

[rA| d] \rightarrow f(rA| d) = const\times f(rA,d)

f(d)

=

const\times \Phi q(\scrA \nu ;\bfitmu \nu | rd,\Sigma \nu | rd)\times \phi n+m

\biggl( \biggl[ 
r
d

\biggr] 
;

\biggl[ 
\bfitmu r
H\bfitmu r

\biggr] 
,

\biggl[ 
\Sigma r \Sigma rH

T

H\Sigma r H\Sigma rH
T +\Sigma d| r

\biggr] \biggr) 
const\times \Phi q(\scrA \nu ;\bfitmu \nu | d,\Sigma \nu | d)\times \phi m(d;\bfitmu d,\Sigma d)

= const\times \Phi q(\scrA \nu ;\bfitmu \nu | rd,\Sigma \nu | rd)\times \phi n(r;\bfitmu r| d,\Sigma r| d).

Hence from Definition 3, the conditional n-vector [rA| d] is selection Gaussian.
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