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Abstract
When two hyperspectral cameras are sensitive to comple-

mentary portions of the electromagnetic spectrum it is funda-
mental that the calibration processes conducted independently
lead to comparable radiance values, especially if the cameras
show a shared spectral interval. However, in practice, a perfect
matching is hard to obtain, and radiance values that are expected
to be similar might differ significantly. In the present study we
propose to introduce an ulterior linear correcting factor in the
radiometric calibration pipeline of two hyperspectral cameras,
operating in the visible near infrared (VNIR) and short wave in-
frared (SWIR) intervals. The linearity properties of both cameras
are preliminarily assessed, conducting acquisitions on five stan-
dardized targets, and highlighting noise at the sensors level and
different illumination fields as the main causes of radiance mis-
match. The correction step that we propose allows the retrieval
of accurate and smoothly connected VNIR-SWIR reflectance fac-
tor curves.

Introduction
The ability to retrieve more than colour information from

images is highly regarded amongst scientists whose goal is to
effectively study the material features of objects in a non-invasive
manner, such as in the fields of cultural heritage [1], medical
[2], and quality control [3]. Imaging techniques carry a great
advantage over their punctual analytical counterparts, since they
can capture information along the spatial dimensions, allowing
the efficient mapping of the feature under examination [4].

One of the most popular imaging technique exploited for
material mapping is Imaging Spectroscopy. Originally exploited
by NASA to analyze satellite images [5], it found numerous ap-
plications, first limited to the domain of airborne remote sensing
[6], then in laboratory use, for proximal sensing applications [7].
Imaging Spectroscopy allows the pixel-wise observation of the
spectral information contained in a scene. Multispectral (MS)
and Hyperspectral (HS) systems are differentiated according to
the number of bands and the bandwidth of their sensors [8], thus,
for the same spectral interval, a HS camera will produce an image
sampled at a higher spectral resolution.

The materials usually adopted to build the sensors possess
a limited range of sensitivity to light across the electromagnetic
spectrum. For this reason, it is not currently possible to build a
sensor that is able to capture simultaneously all of the electro-
magnetic field energy. Different ranges can however be acquired
using sensors constructed with different materials. This is the
case for the visible near infrared (VNIR) and short wave infrared
(SWIR) regions, for which at least two sensors are necessary to
capture the whole range. The former spans from the visible re-
gion of the electromagnetic spectrum (400−700) nm to the IR-A
(700−1400) nm, whilst the latter encloses the IR-B, from 1400
nm to 3000 nm.

For most laboratory applications of HS imaging, the end
goal is to analyze the reflectance properties of the acquired ma-
terials. In order to achieve this physical quantity, the raw signal
recorded by the cameras must be first transformed into Radiance
(L) via radiometric calibration, eliminating the influence of the
camera and acquisition parameters [9]. At this stage, the signal
carries information regarding the illumination and the observed
material. If the two cameras under study share an overlapping
region in their spectral ranges, then the radiances in the over-
lap region must match. Without a radiance match, it will not be
possible to retrieve a continuous and smooth reflectance factor
curve of the objects under study. For a variety of applications,
a smooth and continuous reflectance factor curve is not only a
sign of optimal joint calibration, but a powerful asset as well,
as it could facilitate operations of spectral matching, which are
often used in pigment mapping for example [10]. Contrarily to
the expectations, we will show how in our setup there exists a
mismatch between the VNIR and SWIR radiance curves in the
shared spectral interval, between 950 nm and 1000 nm.

The simultaneous use of HS cameras sensitive to different
spectral intervals has been extensively studied in airborne appli-
cations [11]. In a typical framework, the two cameras are placed
side by side on the aircraft and acquire the scene at the same
time. In post processing, the two images having different spatial
and spectral resolutions are co-registered and fused in order to
form a unique output. Pansharpening [12] and its fully-spectral
extension hypersharpening [13] techniques have been developed
to overcome the issue of fusing images coming from different de-
vices. Hardware solutions were developed as well, headlined by
co-boresighted systems, that however reaped little success, due
mainly to high costs and fragility [14].

In hypersharpening, the issue of spectral mismatch in over-
lapping regions is generally not treated. The quality evaluation
of the final fused spectral image usually relies on a fictional
ground truth, derived from the usage of Wald’s protocol [15].
The ground truth is then composed based on the available dataset,
which might already suffer from a radiance mismatch, if the sys-
tems adopted share a spectral working interval. Moreover, de-
pending on the sharpening technique selected, one can prioritize
the preservation of spatial information over spectral information,
and vice versa. The overlapping bands of systems are also prone
to the presence of noise, and are generally discarded in those ap-
plications, accepting spectral holes in the final images.

The work that we present here is a first step of investiga-
tions that will eventually lead to the effective combination of
VNIR and SWIR HS images, similarly to a hypersharpening
framework. The first chapter of this larger study concerns the
spectral matching of two cameras in a proximal sensing applica-
tion. Therefore, the spatial information provided by the cameras
is momentarily set aside, and used to average regions of inter-
est in the image, in order to reduce the influence of individual



fluctuations in the collected spectra.
We propose to match the VNIR and SWIR radiance curves

by introducing a linear corrective factor in the calibration work-
flow. For that we assume a linear behavior of both cameras with
respect to changes in radiance intensities and camera parameters
such as integration time.. The contributions of this study are the
verification of the linear behavior of both HS cameras, and the
proposition of a preliminary framework for spectral matching.

Material and Methods
Experimental setup

In this work, the dual acquisition system comprises two HS
cameras: HySpex VNIR1800 and HySpex SWIR384, manufac-
tured by Norsk Elektrikk Optikk (NEO). Both systems exploit
the push-broom technology, in which at each acquisition, a spa-
tial line is acquired in its entire spectrum. In this setup, the
cameras and the illumination are kept in fixed positions, whilst
a trolley shifts the scene across the field of view of the captur-
ing system. Being line-scanners, both cameras allow incoming
light from a narrow slit and then onto a diffraction grating which
scatters the different wavelengths before they are captured by the
photosensitive material and transduced in electronic signals.

In a simultaneous acquisition, the translational stage moves
at a speed synchronized with the integration times and frame pe-
riods of both cameras. In the dual camera setup, the selection
of the relative frame periods is critical to obtain images that are
neither saturated nor under exposed.

The VNIR camera exploits a CMOS sensor sensitive in the
interval from 400 nm to 1000 nm, sampling channels at a spec-
tral resolution of 3.26 nm, which results in producing 186 spec-
tral bands. The SWIR camera, which sensor is made of MCT
(Mercury-Cadmium-Telluride), is sensible to light from 950 nm
to 2500 nm, sampling every 5.45 nm, and outputting 288 spec-
tral bands. The overlapping area between the VNIR and SWIR
range is found from 950 nm to 1000 nm, and it includes 15 VNIR
bands and 9 SWIR bands.

The two cameras differ greatly in spatial resolution: al-
though having similar fields of view (17° and 16°, respectively),
the VNIR camera acquires 1800 pixel per line, whereas the
SWIR camera only 384. Thus, the spatial resolutions are roughly
in a ratio 5 : 1, with the pixels sizes being 50 µm and 220 µm, re-
spectively, at an acquisition distance of 30 cm.

The targets used for this experiment are two different Spec-
tralon targets: a 4-step-Spectralon [99%,50%,25%,12.5%] and
a Standard gray target (G). The reflectances of the 5 standard-
ized samples are provided by the manufacturers and defined in
the interval between 250 nm and 2500 nm at steps of 1 nm.

The illumination system deployed two halogen lights placed
next to the cameras. Since the cameras are arranged side by side,
only the closer light forms a 45° angle with the correspondent
camera. The experimental setup is schematically represented in
Fig. 1.

Radiometric Correction
The digital numbers reported as pixel values in the RAW

image are influenced by the type of deployed sensor, and by the
effects of the selected acquisition parameters. To move into a
camera-independent space that aims to represent unambiguously
the observed scene it is necessary to get rid of such influence.
With radiometric correction [9], the scene radiance is reverse en-
gineered, exploiting the previous knowledge that we have about
camera calibration and settings. The correction to obtain the ra-
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Figure 1. Experimental setup. The standardized targets are placed at

30 cm from the cameras and illuminated by halogen lights at 45°. The trol-

ley moves at a speed that is synchronized with the integration times of the

cameras.

diance image L can be summed up with the following equation:

L(x,λ ) =
[RAW(x,λ )−BG(x,λ )] ·h · c

QE(λ ) ·RE(x,λ ) ·SF ·A · t ·ω ·∆λ (λ ) ·λ
(1)

in which x defines the pixel index, RAW is the image sig-
nal expressed in digital counts, BG is the background (dark cur-
rent) image acquired averaging 200 lines with the same acqui-
sition parameters and closed shutter, h · c is the Planck’s con-
stant times speed of light expressed in [J ·m]. QE represents the
quantum efficiency of the sensor, whilst RE is the gain matrix,
a calibration-derived matrix with unitary mean obtained by cap-
turing an integrating sphere. The scaling factor SF represents the
digital numbers per photoelectron and is associated to the camera
under consideration. The integration time, camera aperture and
pixel field of view are reported with t, A, and ω , and expressed in
units of [s], [m2], and [sr], respectively. The terms ∆λ and λ rep-
resent the bandwidths (Full Width at Half Maximum) and cen-
tral wavelength of the spectral channels, respectively. The units
of radiance are [W · sr−1 ·m−2 ·nm−1]. All of the aformentioned
quantities are accessible from the header file that accompanies
each acquisition output.

Flat-field correction is performed by normalizing the whole
spectral image with a spectral line derived from the acquisi-
tion of a uniform target (FF). With this procedure, it is possi-
ble to correct the non-uniform illumination field that may arise
from the experimental setup. We can thus substitute the term
[RAW(x,λ )−BG(x,λ )] in Eq. 1 with:

RAW∗(x,λ ) =
RAW(x,λ )−BG(x,λ )

FF(x,λ )−BG(x,λ )
(2)

Eq. 1 is applied on the RAW images of the two cameras
independently. At this stage, it is expected that the radiances
coming from VNIR and SWIR in the overlapping area (950 nm
to 1000 nm) are matching, or close to match. However, this is
not the case, as it is possible to observe in Fig. 2.

Linearity Evaluation
To study the linear behavior of the cameras we propose two

approaches, depending on the considered signal. Raw digital

https://www.hyspex.com/hyspex-products/hyspex-classic/hyspex-vnir-1800/
https://www.hyspex.com/hyspex-products/hyspex-classic/hyspex-swir-384/
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Figure 2. Radiance plot at fixed integration times (50 ms for VNIR, 15 for

SWIR) of the 5 standardized targets. The VNIR/SWIR mismatch is observ-

able with different magnitudes in all instances.

counts linearity can be evaluated by observing the responses of
the cameras when varying the observed reflective tiles and the
integration times of the acquisitions, whereas radiance linearity
can only be evaluated in the first instance, since the influence of
integration time is annihilated by radiometric correction. Other
degrees of freedom could be added by applying a neutral density
(ND) filter or by changing the intensity of the light sources, but
those ways were not explored in this preliminary work.

During the acquisition campaign, 6 different integration
times are selected for each camera in the simultaneous capture.
The VNIR integration times were set to [60,50,40,30,20,10] ms,
whereas the SWIR times were set to [18,15,12,9,6,3] ms.

Masks are manually cropped from the VNIR image and
transformed into SWIR coordinates, in order to ensure the selec-
tion of the same spatial areas between the two acquisition modal-
ities. RAW values are extracted from the masks and converted
into radiance by using Eq. 1. Then, the corresponding radiance
spectra are obtained by averaging along the spatial dimensions.

The linear behavior is assessed spectrally: for each band, the
values corresponding to the 5 standardized tiles or to the 6 inte-
gration times are extracted. A linear model is fitted via regres-
sion, while its parameters are stored for evaluation. The slope of
the fitted line can give insights on the influence of the selected
variable (reflective intensity or integration time), whereas the co-
efficient of determination of the model R2 can be exploited as
linearity indicator:

R2 = 1− ∑
N
i=1 (yi − ŷi)

2

∑
N
i=1 (yi − ȳ)2 (3)

In Eq. 3, y represents the observed signal, ŷ its estimation,
ȳ the mean of the observations, and N the total number of sam-
ples. The coefficient of determination R2 is defined in the interval
[−1,1], with 1 indicating a perfectly linear model.

Matching correction
Once the linear behaviors of both cameras are assessed, we

can proceed to introduce a multiplicative correcting factor in the
radiometric correction pipeline, to match the VNIR and SWIR
radiances in the overlapping spectral interval. Instead of match-
ing the SWIR curves to the VNIR curves or vice versa, both
ranges are corrected. As observed in Fig. 2, the SWIR curves are

dispersed, while it is known that the VNIR camera suffers from
a low signal-to-noise ratio (SNR) at higher wavelengths (Fig. 3)
[16].
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Figure 3. Signal-to-Noise Ratio by wavelength for the two HS cameras.

The computation is performed on the 99% reflective tile at the highest inte-

gration time (60 ms for VNIR and 18 ms for SWIR). For each band, the SNR

is obtained as the ratio between the mean value and the standard deviation:

SNR(λ ) = µ/σ

Since there are infinite possibilities for the two curves to
match by applying correcting factors, we decided to design an
optimization process that aims to minimize the reconstruction er-
ror on the retrieved reflectances.

For a single acquisition at a specific integration time, the
output of the optimization is formed by two vectors, ΦΦΦ and
ΨΨΨ, each constituted of 5 elements (as many as the consid-
ered reflective tiles) such that ΦΦΦ = (φw,φ2,φ3,φ4,φ5)

T and ΨΨΨ =
(ψw,ψ2,ψ3,ψ4,ψ5)

T for VNIR and SWIR respectively, and cor-
responding in order to the tiles: 99%, 50%, 25%, 12.5%, and G.
During the reflectance retrieval operation, the white tile with av-
erage reflectance of 99% is selected as reference, and in the nota-
tion can be recognized by the subscript w. The necessary condi-
tion for the matching of VNIR and SWIR curves is that ΦΦΦ

ΨΨΨ
= Os

Ov ,
in which Ov and Os are subsets of the radiance curves in the over-
lap region, for VNIR (v) and SWIR (s) respectively. These two
vectors have length q = 9, i.e. the number of SWIR bands in the
interval. Since the two curves are sampled at different frequen-
cies, a linear interpolation was performed to down-sample the
VNIR curve to match the spectral resolution and central wave-
lengths of SWIR to reduce the risk of interpolating error that
may arise from an up-sampling step. The optimization problem
to be solved can be formulated as:

argmin
ΦΦΦ,,,ΨΨΨ

 N

∑
i=1

(
ρ

v
i −

Lv
i ·ΦΦΦ

Lwv
i ·φw

ρ
vw
i

)2
+

M

∑
j=1

(
ρ

s
j −

Ls
j ·ΨΨΨ

Lws
j ·ψw

ρ
sw
j

)2


s.t.
ΦΦΦ

ΨΨΨ
=

Os

Ov =
Ls
(950−1000nm)

Lv
(950−1000nm)

(4)

in which the symbol w indicates the white tile used as ref-
erence. N and M are the number of VNIR and SWIR bands,
respectively, while ρ is the known reflectance target of the stan-
dardized tiles. The sum of squared errors of VNIR and SWIR
is used as function to be minimized. The optimization is run in
Matlab using the optimization toolbox [17]:



1 %define optimization as a minimization
problem

2 prob = optimproblem(’ObjectiveSense ’,’min’);
3 %initialize the dimensions of correcting

factors
4 x = optimvar(’x’ ,2,5);
5 %equality constraint as in Eq.4
6 EqCon = x(1,:)./x(2,:) == mean(Os./Ov);
7 prob.Constraints.EqCon = EqCon;
8 %initialize the correcting factor to no

correction
9 start.x = ones (2,5);

10 %define the cost function
11 prob.Objective = sum((Lv.* start.x(1,:)./
12 (Lvw*start.x(1,1)).* rho_v - rho_v)^2) +
13 sum((Ls.* start.x(2,:)./
14 (Lsw*start.x(2,1)).* rho_s - rho_s)^2)
15 %solution commands
16 sol = solve(prob ,start);
17 correcting_factors = sol.x;

Listing 1. Sample Matlab code for optimization

The correcting factors contained in ΦΦΦ and ΨΨΨ are then ap-
plied in a multiplicative way to the radiance spectra of VNIR and
SWIR, respectively. In this preliminary work and with this re-
duced sample size, the factors are applied to the same objects
used for calibration. However, the general idea is to apply the
corrective factor to the rest of the spectral images as well.

Results
Linearity evaluation

To verify the linear behavior of the HS cameras, we ac-
quired 5 standardized tiles at 6 integration times. To analyze the
results, we propose to consider the observations in both RAW
mode and radiance mode, while we differentiate between linear-
ity by integration time and linearity by reflectance. For the dif-
ferent instances we will use the following notation: (a) for RAW
with fixed reflective tiles, (b) for radiance with fixed tiles, (c) for
RAW with fixed integration times, and (d) for radiance with fixed
integration times. For each instance and at every wavelength, we
fit a linear model and retrieve its slope and coefficient of deter-
mination R2.

Fig. 4 reports the values of the normalized slopes by wave-
length in each of the aforementioned instances. We can notice
that the values are generally positive, except for (b), in which the
scale changes as well. Indeed, the influence of the integration
time is expected to be null on radiance signals, and such slope
values indicate rather flat and noisy curves. The slopes gener-
ally follow closely the shape of the considered spectra in case
of RAW mode, whilst for radiance mode with fixed integration
times (d), the curves all collapse in the same locus, meaning that
the camera responses behave similarly for all tiles when the inte-
gration time is varied.

Similarly, Fig. 5 reports the coefficients of determination R2

along the wavelengths for both cameras. This measure is used as
linearity indicator.

When the tiles are varied, in instances (c) and (d), the val-
ues of R2 approach 1, implying a very high degree of linearity.
The case of (b) can confirm the observation made with the slope
examination, and linearity is not achieved due to the fact that the
integration time has been accounted for during radiometric cor-
rection. The most interesting case is reported in (a). Here, a high
degree of linearity is achieved in the VNIR range, while a rather
varying outcome is present for SWIR. When darker tiles are an-
alyzed, we can observe how the values of R2 are much lower at
shorter wavelengths. This result might be due to the presence of
noise in the sensor, which leads to distorted values, when both the
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integration time and the average reflectance of the target are de-
creased. Indeed, if we consider the histogram of intensities of the
recorded signals against background noise (Fig. 6), we observe a
progressive overlap as we approach the described instances. The
background image is obtained prior to the acquisition by averag-
ing 200 frames with the camera settings of the acquisition and
closed shutter.

The largest presence of noise in the SWIR spectral interval
is found at shorter wavelengths, in the region in which the over-
lap with VNIR occurs. Noise leads to differing radiance curves,
which eventually leads to non-matching radiance and reflectance
values between VNIR and SWIR.

We can conclude that the two examined HS cameras gen-
erally possess linear behaviors, confirming the expectations. As
introduced in [18], there exists a range of integration times for
which this statement is true, as we observe the failing of linearity
for the SWIR camera when the exposure values decrease. The
verification of the linearity of both VNIR and SWIR cameras
justify at this point the introduction of linear correcting factors in
the radiometric correction pipeline.



Figure 6. Recorded signal against background signal (dark current) for

the SWIR camera. As we shift towards darker reflective targets (12%) and

lower integration times, the overlap between the two signals becomes larger,

indicating more unstable results. For readability, the values on the axes have

been omitted. The Intensity value axis ranges from 0 to 48000 digital counts,

whereas the Count axis ranges from 0 to 15000.

VNIR-SWIR Matching
The effects of the optimization process adopted to match

the radiances and consequently the reflectances of the VNIR and
SWIR curves are analyzed in terms of spectral similarity between
the retrieved reflectances and those provided by the manufac-
turer of the reference tiles. The Mean Square Error (MSE) is
computed for the VNIR range, the SWIR range, and for both
ranges combined. Fig. 7 reports the three instances, compar-
ing the reflectances obtained via standard procedure, via the de-
scribed optimization, and via matching of the SWIR curves to
VNIR (without optimization). In the last instance, the ratio be-
tween the spectra in the overlapping interval is used to correct
the SWIR radiance.
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The spectra proposed by the optimization process follow more closely those

provided by the manufacturers. The direct matching can provide better re-

sults than the standard procedure, but it matches the SWIR curves to the

VNIR ones, assuming that the VNIR radiances are correct. The bars are

computed excluding the reconstructions on the 99% reflective tile, since it

was used as reference and thus, always perfectly reconstructed.

To better understand the impact of the correction performed
on the radiance curves, Fig. 8 reports heat maps in which the
values represent the percentage of shift of the curves, in every
combination of tiles and integration times. The values appear to
be significant, with peaks that focus mainly along a specific in-
tegration time (40 ms for VNIR and 12 ms for SWIR) and along
the gray target, which is built in a different material with respect
to the rest. We have to bear in mind that the optimization is run
for all tiles simultaneously and the best compromise forcefully
prioritizes the most represented material in the unbalanced sam-
ple set.
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with peaks concentrating along a specific integration time (40 ms for VNIR,

and 12 ms for SWIR), and the gray tile, which is built with a different material

than the rest.

Discussion
The proposed optimization process allows to achieve re-

flectance curves that are more accurate than those obtained in
the standard calibration procedure. Moreover, the radiance and
reflectance curves are smoothly fused in the interval from 400
nm to 2500 nm, without presenting jumps in the shared spectral
range. The correction can be seen as a function of the considered
reflective tile and the integration time. However, such correction
implies that the radiance equality property at different integration
times is lost. There exists a trade-off between accurate spectral
matching between cameras and uniformity of radiance within a
single camera. In this work, we decided to prioritize the out-
come of smooth and continuous reflectance curves, since most
of the applications will involve reflectances, rather than radiance
quantities. We also observed an alleged material-dependence, as
the results obtained on the gray Spectralon target did not follow
closely the general behavior of the other targets.

We finally point out that the optimization was performed
and then tested on the same dataset. This decision is taken con-
sidering that only a few standardized targets defined in the VNIR
and SWIR range exist.

Conclusion
In this work, we highlighted the shortcomings of a simulta-

neous dual acquisition setup of hyperspectral imagery, in terms
of spectral matching between the response curves of the two
cameras. We proposed a solution based on the optimization of
correcting factors that allow the spectral matching, exploiting an
overlap area in the electromagnetic spectrum from 950 nm to
1000 nm. The linearity of both cameras were preliminarily as-
sessed in terms of RAW and radiance signal response, varying
the average reflectance of the considered samples, and the inte-
gration time of the acquisitions. As a possible line of future work,



the information regarding the signal to noise ratio of the cameras
can be exploited to obtain wavelength-dependent correcting fac-
tors, in conjunction with smoothing procedures in the spectrally
overlapping region. Moreover, we are currently assuming a per-
fectly specular acquisition set-up, adopting two lights belonging
to the same family and model. However, it might be possible that
such light sources produce illumination fields with different in-
tensities in the radiance space. This could be the major cause for
spectral mismatching, and identifying it could lead to modifica-
tion in the set-up, or carefully designed post-processing steps.
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