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Abstract—Speculative side-channel attacks access sensitive data and
use transmitters to leak the data during wrong-path execution. Various
defenses have been proposed to prevent such information leakage. However,
not all speculatively executed instructions are unsafe: Recent work
demonstrates that speculation invariant instructions are independent of
speculative control-flow paths and are guaranteed to eventually commit,
regardless of the speculation outcome. Compile-time information coupled
with run-time mechanisms can then selectively lift defenses for speculation
invariant instructions, reclaiming some of the lost performance.

Unfortunately, speculation invariant instructions can easily be manip-
ulated by a form of speculative interference to leak information via a
new side-channel that we introduce in this paper. We show that forward
speculative interference where older speculative instructions interfere
with younger speculation invariant instructions effectively turns them into
transmitters for secret data accessed during speculation. We demonstrate
forward speculative interference on actual hardware, by selectively filling
the reorder buffer (ROB) with instructions, pushing speculative invariant
instructions in-or-out of the ROB on demand, based on a speculatively
accessed secret. This reveals the speculatively accessed secret, as the
occupancy of the ROB itself becomes a new speculative side-channel.

I. INTRODUCTION

Speculative side-channel attacks use speculative execution to gain
access to information that would otherwise be inaccessible. Specu-
latively executed instructions are capable of temporarily bypassing
hardware or software defenses to gain illegal access to data that are
then passed to speculative side-channel instructions, a transmitter
gadget, capable of leaking those sensitive data to the non-speculative
domain. Transmitter gadgets perform an operation that alters the
microarchitectural state of the processors, leading to a data leak. A
receiver observes the changes in the microarchitectural states and is
able to identify leaked data outside of the speculation window.

To tackle this problem several hardware defenses [3], [4], [6], [8],
[9], [11], [12], [13], [15] have been proposed, introducing a variety
of security guarantees. However, defenses also introduce various
levels of complexity and performance overhead. Several hardware
defenses rely on techniques that protect instructions while they are
speculative, and focus on making them invisible. One example is
Delay-on-Miss (DoM) [11]. DoM delays speculative loads that miss
in the L1 cache until they become non-speculative, at which point they
can be executed safely. Another example is InvisiSpec [13]. InvisiSpec
performs speculative loads but keeps the effects of a miss invisible in
the cache hierarchy. When the speculation is verified, changes in the
memory hierarchy are effected with a visible access.

Hardware defenses, such as DoM and InvisiSpec, add significant
performance overhead [11], [13]. For this, Zhao et al. proposed
InvarSpec [16], a framework that detects and lifts the protection
for speculative instructions that become speculation invariant. For
an instruction to be speculative invariant, its data and control
dependencies must be resolved during the speculation window. Such
instructions are eventually going to execute with the same operands,
even if they are temporarily squashed due to misspeculation, and are,

thus, considered safe to execute. Lifting the protection for speculation
invariant instructions enables the visible execution of an instruction
while it is still under speculation, maintaining the “invisible speculative
execution” semantics of defenses such as DoM or InvisiSpec while
recovering significant performance lost to these defenses.

In a related development, Behnia et al. demonstrate that Speculative
Interference [5] can break (under some assumptions) the DoM and
InvisiSpec defenses. Up until now, the transmitter instructions were
considered to be exclusively under speculative execution. With the
introduction of Speculative Interference attacks, this has changed.
In such an attack, the transmitter instructions are placed before
(in program order) the speculation window. Hence, the transmitter
instructions can lie outside the protection of DoM or InvisiSpec
defenses, as these are engaged only for instructions that follow
(in program order) the source-of-speculation instruction(s). Since
Speculative Interference is based on the fact that younger speculative
instructions can influence the timing of older instructions, it can
consequently lead to information leakage even under speculative
defense mechanisms [5].

The key insight of our work is that speculation-invariant instructions
are susceptible to speculative interference from older speculative
instructions: Forward Speculative Interference (FSI). To clearly
differentiate between FSI and the speculative interference from
younger speculative instructions, we refer to the latter as Backward
Speculative Interference (BSI). Using FSI, a new side-channel can
be created by manipulating the inclusion or exclusion of speculation-
invariant instructions in the reorder buffer (ROB). Other forms of
forward interference are also possible and Behnia et al. [5] discuss
how to delay instruction fetch with reservation station (RS) contention,
called GI

RS in [5]. However, GI
RS concerns blocking of instruction

fetch (and the front-end) which affects the I-Cache and is distinctly
different from the ROB-contention interference discussed here that
concerns instruction execution.

We demonstrate FSI with ROB contention on actual processors (Intel
Sandy Bridge) and show how the ROB can be used as a side-channel.
Specifically, we show how, during speculation, we can selectively push
in-or-out of the ROB load instructions that are on the—yet unknown—
correct path of execution, leading to side-effects that remain observable
after the speculation has been resolved. These load instructions would
be marked as speculative-invariant by InvarSpec, therefore the Invar-
Spec framework is susceptible to such a side-channel attack as well.

II. BACKGROUND

A. Delay-on-Miss

Delay-on-Miss (DoM) is a hardware defense mechanism against
speculative side-channel attacks, focusing on side-channels that abuse
the memory hierarchy [11]. Consecutively, side-channel attacks that
do not focus on the memory hierarchy are outside the scope of DoM
and are not hindered by it.
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DoM operates on two fundamental principles. First, DoM delays
transient loads until they become non-speculative. DoM introduces the
concept of speculative shadows to efficiently track the speculative state
of instructions and discover the earliest time instructions become non-
speculative, typically significantly earlier than reaching the commit
stage (becoming head of the reorder buffer).

Second, DoM delays only loads that miss in the cache. Because
reading data into a cache requires complicated interactions with the
rest of the system, it is difficult to hide the side-effects of loads in the
memory hierarchy on a cache miss, as demonstrated in prior solutions
such as InvisiSpec [13] and Ghost Loads [10]. However, a cache hit
requires only small modifications to the cache state (update of the
replacement state etc.), which can be easily deferred for when the
load is non-speculative. Thus, instead of delaying all loads, DoM
allows loads that hit in L1 cache to execute under speculation, while
delaying any side-effects until the load becomes non-speculative.

B. Speculation Invariance: InvarSpec

InvarSpec is a framework that detects when a speculative instruction
becomes speculation invariant and upon detection lifts any existing
protections for the instruction [16]. InvarSpec consists of two main
parts. The first part is a compiler technique that after static analysis
generates a safe set (SS) for the instructions. The second part is a
hardware mechanism that at runtime designates an execution-safe
point (ESP) according to the SS.

An example of speculation invariance is shown in Figure 1, where
a (instr3) has a potential data dependence with instr2, and instr2
has a control dependence with instr1. In order for instr3 to become
speculation invariant, it must reach its execution safe point, meaning
both instr1 and instr2 must reach their outcome safe point. Since
instr4 has no data nor control dependencies with any other instruction
(its SS is empty) it can execute immediately.

1 if(cond){ // instr1
2 si = load i; // instr2
3 }
4 a = load si; // instr3
5 b = load j; // instr4

(a) Source Code Instr3

Instr2

Instr1 Instr4

Control Dependence

Data Dependence

No Dependence

(b) Instruction dependence graphs

Fig. 1: Dependences related to safe set (SS)

Each instruction has its safe set (SS) defined by the compiler and
corresponds to the instruction’s control and data dependencies on the
instructions in the set [16]. The SS is used to determine at run-time
when an instruction is ready and safe to execute during speculative
execution. An instruction is considered to be speculation invariant
when it reaches its execution-safe point (ESP). To reach the ESP, the
operands of an instruction must have been finalized. Older instructions
that comply with these rules are said to have reached their outcome-
safe point (OSP), meaning that their final result will not change, no
matter how many future squashes may happen. When everything in
the safe set reaches the outcome-safe point, the instruction itself has
reached the execution-safe point and the speculative side-channel
defense mechanisms can be lifted for the instruction to be executed,
even if the speculation has not been verified.

Figure 2 shows the timeline of an instruction using InvarSpec
framework. As a reminder, an instruction is said to have reached its

ESP when all its operands reach their OSP. Once the instruction is
ready to be executed, even if the speculation has not been resolved,
the defense mechanisms are lifted and the instruction executes.

missprediction
Speculation Window

instr1 instr2 instr3 instr4
ESP?OSP?OSP? ESP

Time

Fig. 2: Speculation Invariant Timeline: For instr3 to be considered
speculation invariant, instr2 and instr1 must reach their OSP. Instr4
has no dependences, and executes immediately under speculation
using InvarSpec framework.

C. Backward Speculative Interference

Speculative Interference attacks [5] are able to break defense
mechanisms similar to DoM and InvisiSpec. Even though speculative
loads are executed invisibly, misspeculated instructions can change
the timing of older instructions that may be outside the protection of
DoM or InvisiSpec as non-speculative instructions. This change can
influence the ordering of memory operations that will be committed,
setting the fundamentals for a possible attack.

For example, assume that the interference target is a load that
takes X cycles before its operand becomes ready. The interference
gadget can then use the secret value to selectively add contention in the
MSHRs. For example, if the secret is equal to 1, the interference gadget
attempts to fill all MSHR entries before the interference target is ready
to execute. Otherwise, if the secret is equal to 0, no memory operations
are performed by the interference gadget. Once the interference target
becomes ready to execute, if the secret was 1 it will be further delayed,
otherwise, if the secret was 0, it will be executed unhindered. This
difference in behavior can lead to information leakage as it can affect
the order of the interference target with respect to other loads, and
thus affect the cache replacement state.

III. ROB-CONTENTION: AN FSI ATTACK THAT BREAKS

SPECULATIVE INVARIANCE

Speculation invariance allows (bound-to-commit) speculative in-
structions to be executed without defenses before the speculation is
verified. In this respect, speculation-invariant instructions behave the
same as the corresponding instructions in an unprotected processor.

In Backward Speculative Interference, the interference gadget delays
the execution of the interference target, a bound-to-commit instruction
that is placed prior to the speculation. In Forward Speculative
Interference, the interference gadget instead interferes with a bound-to-
commit speculation-invariant instruction, which is executed while still
under speculation, unprotected by defense mechanisms like DoM [11]
or InvisiSpec [13].

While FSI can take many forms, in this paper we introduce a novel
side-channel based on manipulating ROB contention. To the best
of our knowledge, this has not been explored previously. The ROB
side-channel can be used to construct new Spectre [7] variants on
unprotected processors, but more importantly, it can break InvarSpec
approaches [16] that selectively lift defenses of instructions under
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speculation. Assuming DoM as the underlying defense mechanism—
other defenses, such as InvisiSpec, are similarly susceptible—an FSI
ROB-contention attack consists of three parts:

1) A branch predictor that is trained to follow the attack path.
2) A secret that is read from the cache (allowed in DoM) and

ROB contention, as a function of the secret value, is added.
3) A speculation-invariant target instruction that resides just after

the reconvergence point and that is executed with the DoM pro-
tections lifted. We initialize the speculation-invariant instruction
with an empty safe set, i.e., a set that has no dependencies and
can execute immediately when it becomes ready.

Depending on the contention-induced delay, and thus on the secret
value, the speculation invariant target instruction will be affected
in terms of when it will be ready to execute. For example, when
the secret is equal to 1, we add extra ROB contention, in the form
of a loop or a long sequence of spurious instructions. As a result,
the ROB is filled with speculative instructions, which prevents the
speculation-invariant target instruction from even entering the ROB and
executing. On the other hand, the path followed when the secret is 0
behaves normally, enabling the speculation-invariant target instruction
to execute when it enters the ROB. Since InvarSpec has lifted the
defenses from the instruction, any side-effects caused by its execution
will remain observable even after the misspeculation has been detected
and squashed, making it possible to infer the secret value outside of
the speculative window.

While the FSI ROB-contention attack shares some similarities with
the GI

RS speculative interference attack, described by Behnia et
al. [5], it is distinctly different in a number of ways: First, in contrast
to GI

RS , ROB-contention manipulates the execution of bound-to-
commit loads (which lie after the reconvergence point) rather than
instruction fetch. As such, ROB-contention directly affects mitigations
such as DoM or InvisiSpec (when combined with InvarSpec) that aim
to protect data caches from leaking information, which is not a concern
with GI

RS : GI
RS uses the instruction cache as a side-channel—ROB-

contention uses the data cache. Second, GI
RS must cause a front-end

stall to work. ROB-contention works as long as a target instruction
is kept just outside the ROB, which does not necessarily mean a
front-end stall. For example, if the target instruction is sufficiently far
from the reconvergence point, the front end will keep fetching and
decoding instructions from the reconvergence point onwards.

The technique of identifying the secret can be thought-of as a
version of the Flush&Reload attack [14]. It is shown in Figure 3 and
is based on testing if data are cached in the L1 cache or not.

To achieve this, we measure the access time of the speculation-
invariant target instruction when the speculation is finally resolved
and the execution continues from the correct path. While on the
misspeculated attack path, whether the load instruction at the
reconvergence point will be executed depends on which path the
speculative execution followed, i.e., it depends on if the secret is 0
or 1. Then, on the correct path, the time it takes to execute the load
will change depending on if the data was loaded by the attack path,
thus making it possible to infer the secret value.

The attack starts by ensuring that the address of the speculation-
invariant target instruction is flushed from the cache. If the secret is
equal to 1 then the speculative-invariant target instruction is never
executed along the incorrect path. Once the speculation is resolved and
the correct path is taken a load with the same address as the speculative-
invariant target instruction will miss in the cache and experience a
long delay. If the secret is equal to 0 then the speculative-invariant
target instruction is executed in the incorrect path and the load in the
correct path will hit in the cache and experience a short delay.

IV. ROB ATTACK USING REP INSTRUCTIONS

An FSI ROB-contention attack requires filling the ROB with
speculative instructions. While either a tight loop, or a long sequence
of spurious instructions, fit the bill for this purpose, interestingly, one
can achieve the same result with a single static instruction.

In the x86 ISA, REP is a prefix that can be used before string
instructions. It creates a single-instruction loop, with the value stored
in the ECX register acting as the loop counter.

The key property that enables a single REP instruction to affect
ROB contention is that it unrolls as a µop loop in the microarchitecture,
at decode time [1]. ROB occupancy becomes a function of ECX.

According to empirical studies [1], [2], REP-prefixed x86 instruc-
tions expand into a number of µops in the ROB.

The following table lists the number of µop expansion (ECX==n)
in the ROB for two typical REP instructions and for some well-known
microarchitectures—similar expansion takes place for the majority of
x86 microarchitectures [1].

Instr./Proc. Haswell Broadwell Skylake IceLake
rep movs 2n 2n 2n 2n
rep lods 5n+12 5n+12 5n+12 5n+12

Furthermore, we ascertain that the REP movs instruction expands
speculatively on a Sandy Bridge microarchitecture. We tested this
scenario by giving ECX various values, after a speculation point,
followed by a REP instruction (as in the code shown in Figure 3). By
timing the code, we observe that the REP instruction, indeed, expands
speculatively into a number of µops that is proportional to ECX.

To mount a ROB attack with REP instructions (Figure 3), we use
the speculatively-accessed secret to update the ECX register, which
then controls the number of µops that are dispatched to the ROB. To
create a large enough repetition factor, we left-shift the secret by, e.g.,
ten places (if the secret is zero, it does not change). This value is
passed to ECX which subsequently drives a REP movs instruction
to selectively flood the ROB with up to 2n µops.

1 if(value){ // mispredict - Attack Path
2

3 secret = secret << 10; // Repetition factor
4

5 // Pass secret to ECX and execute rep
6 asm("movl %0, %%ecx" : : "c" (secret));
7 asm("rep movsb");
8 }
9 else { // Normal Path

10 t1 = __rdtscp(); // Start measuring latency
11 transmitter = probe[0]; // Evaluation
12 t2 = __rdtscp(); // End measuring latency
13 t = t2-t1;
14 }
15

16 transmitter = probe[0]; // Recovergence Point

Fig. 3: Abusing InvarSpec with Forward Speculative Interference
using REP Instruction

V. ATTACK DEMO AND EXPERIMENTAL RESULTS

We implemented our FSI attack on actual hardware. While DoM
defenses and InvarSpec are not implemented, we can see the effects
of the attack in an unprotected core, which behaves the same as a
protected core with respect to speculative-invariant instructions. We
evaluated our results on an Intel® CoreTM i7-2600K, which is a Sandy
Bridge microarchitecture, running at up to 3.40GHz. The processor
has 4 cores (2 SMT threads per core, for 8 threads in total) and 3
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cache levels. Each core has a 32KiB L1 Cache and a 256KiB L2
Cache, and all cores share an 8MiB LLC.

The overall structure of the attack demo is illustrated in Figure 3.
We report on the results for the timing-load variant on a real system.
Before we follow the attack path, all load addresses are flushed
from the cache. The branch predictor is trained so that it will
always mispredict and follow the attack path. The secret value is
already cached in the L1. Depending on the secret, ROB contention
is added, so that speculation invariant instruction
(line 16) will be delayed. If secret==1, delay from ROB
contention will be sufficient for speculation to be verified before
speculation invariant instructions (line 16) ex-
ecutes. If secret==0, no delay is applied and speculation
invariant instruction (line 16) is executed as soon as
possible.

Cy
cl
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0

50

100

150

200

250

300

Secret 0

Secret 1

Fig. 4: Speculation Invariant access latency, in cycles, leaking the
secret

Figure 4 illustrates the average cycles every 100 repetitions. We
show, that when repeating the attack, the results diverge, making it
easier to identify the secret: An average load when secret==0 is
170 cycles. On the other hand, when secret==1 an average load
is 260 cycles.

Our results show that, clearly, forward speculative interference and
ROB-contention work successfully in actual processors, and constitute
a new side-channel that can be used to construct Spectre-type attacks.
Because the speculation-invariant instructions behave the same as
instructions from the re-convergence path in unprotected processors,
FSI ROB-contention poses a significant threat when we want to lift
defenses for speculation-invariant instructions.

VI. CONCLUSION

In this work, we present a new side-channel, based on ROB
contention, and a new speculative execution attack (ROB-contention
attack) using this side-channel. The attack is achieved through FSI,
i.e., speculative instructions interfering with younger instructions that
are bound to commit regardless of the speculation outcome. For this
reason, techniques, such as the InvarSpec framework, that lift the
defenses for such bound-to-commit instructions, are susceptible to
the same attack and can leak speculatively accessed information.
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