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Abstract

Mooring systems that are used to secure position keeping of floating offshore oil and gas facilities are subject to

deterioration processes, such as pitting corrosion and fatigue crack growth. Past investigations show that pitting

corrosion has a significant effect on reducing the fatigue resistance of mooring chain links. In-situ inspections are

essential to monitor the development of the corrosion condition of the components of mooring systems and ensure

sufficient structural safety. Unfortunately, offshore inspection campaigns require large financial commitments. As a

consequence, inspecting all structural components is unfeasible. This article proposes to use value of information

analysis to rank identified inspection alternatives. A Bayesian Network is proposed to model the statistical dependence

of the corrosion deterioration among chain links at different locations of the mooring system. This is used to efficiently

update the estimation of the corrosion condition of the complete mooring system given evidence from local observations

and to reassess the structural reliability of the system. A case study is presented to illustrate the application of the

framework.
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Introduction

Mooring systems secure the position keeping of floating
offshore platforms and consist of several mooring lines that
connect the platform to an anchor on the seabed. The main
structural part of mooring lines is usually constituted by steel
chains, although alternative configurations and materials
exist, such as synthetic fiber rope, steel wire rope or a
combination of all of them.1 In this article, we focus on
mooring lines constituted by studless steel chains. The
integrity of mooring chains can be treated as a serial system,
since failure of a single link leads to structural failure of the
complete mooring line. A mooring line failure increases the
load level on the adjacent lines and thereby increases the
probability of progressive collapse of the mooring system.
This is associated with large environmental and economical
consequences, such as oil spill, loss of production and loss
of reputation of the involved companies. Consequently, the
detection of failures in a mooring line system is usually
followed by operation shutdown, which is associated with
large economical loss. Manufacturing of chain links is
costly and it demands large amounts of steel. Furthermore,
integrity management measures of mooring systems require
large financial investments, making it unfeasible to inspect

all components or to apply mitigation measures when any
deterioration is observed. Therefore, resources invested in
risk mitigation need to be carefully allocated to ensure a cost-
efficient and safe operation.

Mooring lines are subject to large environmental cyclic
loading while being exposed to a highly corrosive
environment, leading to fatigue and corrosion deterioration.
Fontaine et al.1 report that these deterioration processes
account for the majority of observed mooring line failures.
Recommended practice guidelines, such as API RP 2SK2,
and industry standards, such as ISO 19901-7:20133

and DNVGL-OS-E3014, consider that these deterioration
processes can be addressed independently from each other
for the design and integrity management of mooring lines.
Corrosion deterioration is typically assessed by estimating
the lifetime chain diameter reduction, assuming uniform
corrosion and wear per year. Fatigue design is commonly
conducted using S-N curves, which are curves that assess the
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number of cycles to fatigue failure for a given cyclic stress
range.

Several investigations emphasize the significant effect of
corrosion on the fatigue life of mooring chains.5–7 Structural
failure is in general not a linear superposition of the
effects of corrosion and fatigue, but a complex combination
of phenomena. Among the several ways in which the
two deterioration phenomena interact, it is identified that
localized corrosion, commonly known as corrosion pits,
act as stress raisers on the chain link surface, fostering
fatigue crack initiation.8,9 Gabrielsen et al.10 report results
of visual surface inspection of retrieved mooring chains,
which reveal significant local wear at the contact region
of links close to the winch on the installations and severe
spatially distributed pitting corrosion. Fatigue testing in
laboratory conditions of these retrieved links suggests that
surface roughness and pitting depth are the main indicators
of the reduction of fatigue resistance, which is aligned
with other research studies.11 The unaccounted interaction
between these phenomena in design standards may explain
why observed failure rates of mooring lines are larger than
expected and admissible.1,12

The deterioration conditions of the different chain links
constituting the mooring system are statistically dependent.
Dependence among different locations is mainly due to
common influencing factors related to the environment and
to the manufacturing process of the links. Examples of such
factors are material parameters, load history, pH, temperature
and the amount of dissolved oxygen. It is important to
take this dependence into account because (i) it affects
the structural reliability of the system13 and consequently,
integrity management decisions; (ii) it has a large impact
on the amount of information to be learned from local
inspections at discrete points in time, since information
gathered at one location can be used to update the belief
on the deterioration condition at other parts of the structural
system.14 Hence, the statistical modeling affects optimal
planning of inspection campaigns.

This study pursues to inform and support integrity
management decisions regarding the allocation of discrete
inspections in mooring line systems. For that purpose, we
propose a Bayesian Network (BN) to model the dependence
in the surface condition within the components of the
mooring system and its effect on the fatigue life of the
mooring lines and the structural integrity of the mooring
system. Value of information (VOI) analysis is then used
to assess the most valuable data to collect.15,16 The use of
BNs for modeling the problem helps with the integration
of observations (evidence) about variables of interest and

to efficiently perform statistical inference. BNs have been
used for decision making support and VOI analysis in
various contexts.17,18 Arzaghi et al.19 use a dynamical BN
to study pitting corrosion and fatigue degradation over time
for submerged pipelines. Li et al.20 apply BNs for modeling
corrosion of pipelines and to study an optimal maintenance
plan with a particular focus on risk-based maintenance.
Rather than providing a maintenance plan, the present study
focuses on using VOI analysis to assess the most valuable
data to gather in order to inform integrity management
decisions for mooring systems.

Problem setting

The structural integrity of the mooring system of a floating
oil and gas production unit is regarded. The decision maker
is the operator of the production unit. At a given point in time
of the service life of the mooring system, the decision maker
is to efficiently plan an inspection campaign. An inspection
campaign provides information on the corrosion condition
of one or several chain segments. Possible decisions that the
decision maker can choose from are to inspect any given
number of segments, or not to conduct any inspection. The
gathered evidence is used to inform actions on the structural
system, such as to repair or replace any line segment, or to
do nothing. It is assumed that both replacement and repair
of segments set their corrosion condition back to completely
uncorroded.

The structural system is subdivided into four hierarchical
levels, as illustrated in Figure 1. The first level corresponds
to the complete system of mooring chains, which is
constituted by a set of M ∈ N clusters of mooring lines C =

{C1, ..., CM}. At the second level, a cluster Cj is comprised
of Nj ∈ N mooring lines Lj = {L1,j , ..., LNj ,j}. The third
level is the mooring line level, where line Li,j is subdivided
into p ∈ N mooring line segments Si,j = {Si,j,1, ..., Si,j,p},
with each segment containing a number of chain links with
approximately the same expected deterioration condition.
Finally, the fourth level is constituted by the line segment.

Information about the corrosion condition of mooring
links can be gathered using in-situ techniques, for instance by
surface scanning using a remotely operated vehicle (ROV).
The subdivision of a mooring line into segments should be
performed so that one local observation, say of the surface
of one link, can be used to characterize the condition of
the entire segment with sufficient accuracy. By embedding
the presented hierarchical structure in a probabilistic model,
information retrieved from a particular segment can be used
to update the belief on the corrosion condition of the entire
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Figure 1. Hierarchical organization of the components of the
mooring system.

mooring system. Prior knowledge is required to train the
model for the corrosion conditions. This is done using
state of the art physics-based models, as described below.
Given a model that relates corrosion condition and fatigue
resistance, the structural reliability of the mooring system
can be subsequently reassessed when more information is
available.

Decisions regarding which segment to inspect are ranked
based on VOI analysis. The theoretical background of VOI
analysis is briefly presented in the next section. An estimate
of the structural reliability of the system is needed in order
to conduct the VOI analysis. A BN is developed and used
to relate the corrosion condition of the chain segments,
including all available information at the decision point in
time, with the structural reliability of the mooring system one
year ahead. We use this estimate of the system reliability for
the VOI analysis. This is a simplification, since inspection
planning optimization is in general a sequential decision
problem, i.e. inspection ranking at a given year depends on
the subsequent inspection planning. Assessing the sequential
decision problem is computationally demanding, since it
would require to evaluate a dynamic BN in order to compute
the evolution of the structural reliability in time and to
explore a set of possible inspection alternatives which
grows exponentially with the remaining service time of

the structure. Due to computational limitations, the authors
approach this issue by treating it as a static problem in this
article.

Value of information of discrete inspections

Decisions on when and where inspections of the surface
condition of mooring chain links are to be conducted are
made with the intention to balance the large costs associated
with these inspections and the value that they bring. Among
the several approaches that one can regard to inform these
decisions, VOI analysis is identified as a rational tool to
make more conscious decisions by minimizing the expected
costs. The value of conducting an inspection is a measure of
the potential that retrieving new evidence has on triggering
different actions upon the structural components of the
system. At its roots, the VOI is the maximum monetary value
that a decision maker should be willing to pay for a new
observation.16 In practice, the VOI associated with a variety
of possible inspection schemes can be used to rank these
schemes and to provide a useful basis for decision support.

Let a ∈ A denote actions or alternatives that the decision
maker can choose among. In the current application, these
actions relate to repair, replace or do nothing for different
combinations of segments, lines and clusters. The value
function v(x, a) describes the monetary value as a function
of the alternative a and the uncertain variables of interest
x. Boldface notation is used to indicate that x is a vector
consisting of the indicators for the corrosion condition
at the various segments, lines and clusters, and also the
temperatures at different sea depths and other variables that
contribute to a useful statistical representation of the system.
Before any inspection is done, the decision maker will select
the alternative that maximizes the expected value of v(x, a).
This is called the prior value (PV), and it is defined as

PV = max
a∈A
{E [v(x, a)]}. (1)

Decisions on inspection planning are conducted prior
to obtaining the information. The evaluation of inspection
alternatives is based upon conditional values, given
the observation outcomes. The preposterior value (PPV)
integrates over all the possible observation outcomes

PPVκ =

∫
yκ

max
a∈A
{E[v(x, a)|yκ]}Pr(yκ)dyκ, (2)

where the (possibly multivariate) retrieved data yκ denotes
the outcome of inspection scheme κ. Note that there are
many possible combinations of inspections schemes κ, such
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as inspecting a given segment or a combination of them. One
wants to choose these wisely so that inspection results yκ are
likely to improve the actions related to repair or replacement.

The VOI associated with a potential inspection alternative
κ is obtained by subtracting the PV to the PPV

VOIκ = PPVκ − PV. (3)

Given the fact that inspections come with a cost, the decision
maker can compare the VOI with the inspection cost (cκ),
and acquire data only if VOI(yκ)− cκ > 0. Moreover,
one can rank inspection alternatives according to their
information gain. The optimal inspection alternative is then

κopt = arg max
κ

PPVκ. (4)

Pit depth growth model

The division of the mooring line in smaller segments allows
the modeling of statistical dependencies between segments
of the same line at different depths and between segments
of different lines. The physical variable of interest is the
maximum pit depth d. When modeling d, it is necessary
to consider the possible factors that can affect pit growth.
Melchers21 shows that the development of pitting in steel
components immersed in seawater can be divided in two
major phases: aerobic and anaerobic. Initially, during a
period that can comprise some months to few years, pit
depth growth is driven by anaerobic action and is, in general,
significantly lower than the one caused by the subsequent
phase. During this first phase, biological activity, water
velocity and the amount of dissolved oxygen have relevant
effects on the pit growth. For the remaining service life of the
chain, the growth of corrosion pits is part of the anaerobic
phase. Growth during this phase is largely caused by
biological agents, such as sulfate-reducing bacteria (SRB).
The water temperature is found to play a central role for
the growth of SRB. Pits can reach extreme depths during
this phase, which may lead to failure of the mooring line in
combination with fatigue deterioration. Here, we focus on
the second, anaerobic phase when modeling pit growth.

It is assumed, in accordance with the model by
Melchers21, that the anaerobic phase starts right after
the aerobic phase at a time ta. This time is found to
mainly depend on temperature T and its best estimate is
represented by t∗a = 6.61 exp (−0.088T ). For a typical range
of temperatures in the North Sea (between 6.9 to 19.0 ◦C),
t∗a varies between 3.6 and 1.2 years. At time ta, the expected
maximum pit depth, denoted d̄ is found as a function of

Table 1. Best estimates of the parameters of the maximum pit
depth time propagation model.

Temperature faT t∗a [years] aT bT

6.9◦C 0.862 3.60 1.064 0.616
9.8◦C 0.880 2.79 1.100 0.562
12.0◦C 0.889 2.30 1.108 0.539
14.4◦C 0.896 1.86 1.110 0.526
16.6◦C 0.901 1.53 1.111 0.519
19.0◦C 0.905 1.24 1.116 0.518

temperature

d̄(ta, T ) = 0.99 exp (−0.052T ). (5)

A piece-wise function is proposed by Melchers21 to model
the time evolution of the mean maximum pit depth, which is
constituted by an initial non-linear growth curve followed by
a linear one. At time t = ta, the maximum pit depth grows
fast with an initial slope rap, which depends on temperature
T according to the following functional relationship

∂d̄(t, T )

∂t

∣∣∣∣
t=ta

= rap = 0.596 exp (0.0526T ). (6)

Afterwards, the growth rate decreases until it reaches a
constant value, which is modeled by a line with slope rsp
and intercept csp. In this study, the piece-wise function is
simplified to a single power-law of the form

d̄(t) = aT · (t− t∗afaT )bT t ≥ ta, (7)

where the parameters aT and bT are estimated by applying
the constraints in Eqs. (5) and (6) using a relaxation
parameter faT .

The model parameters are provided in Table 1 for a range
of typical temperatures in the North Sea. Note that this
simplified model is justified for short term predictions. For
longer term predictions, say more than 15 years, the power

r
ap

r
sp

Figure 2. Time evolution model for the anaerobic phase of the
expected maximum pit depth d for typical temperatures T in the
North Sea.
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low model may underestimate the growth in comparison with
the piece-wise function, as shown in Figure 2. Nevertheless,
such predictions are not needed for the purpose of inspection
planning, since evidence is provided in shorter intervals.
Figure 2 shows the time evolution model for the expected
maximum pit for two temperatures.

The uncertainty associated with the prediction of the
pit depth at a given time is taken into account with a
multiplicative Log-normal error δ2

d(t) = δ2d̄(t) t ≥ ta, (8)

where d̄(t) is the expected maximum pit depth in Eq. (7) and
δ2 has mean value µδ2 = 1 and standard deviation σδ2 , which
is varied to study its sensitivity later in the paper.

Corrosion levels

It is assumed that the decision maker uses seven levels to
characterize the corrosion condition, with γc = 1 being the
uncorroded state and γc = 7 being associated with heavy
corrosion and large pits. A corrosion level is assigned to
a chain link by visual assessment conducted by trained
personnel. The assignment synthesizes several aspects of
the corrosion condition, such as the average cross-section
reduction due to uniform corrosion, the number of pits
and the distribution of pit depths and their shape. There
is uncertainty associated with the assignment of corrosion
levels due to the nature of the visual inspection. In the
current case, the assignment of a corrosion level is assumed
to be largely correlated with the maximum pit depth d

present in the inspected specimen. This is consistent with
the dependence among pit depths in a given chain link.
The decision maker provides a probabilistic model of the
distribution of the largest pit depth conditional on the
corrosion level, see Table 2 and Figure 3.

In the BN, the corrosion levels are defined conditional
on the maximum pit depths. Hence, for each segment,
the probability of the corrosion level conditional on the

Table 2. Mean µ and coefficient of variation (CoV) of the
probability density function fD|Γc(d|γc) of pit depth d
conditional on the corrosion level.

Corrosion level Distribution µ [mm] CoV [-]

1 Exponential 0.05 1.0
2 Normal 0.30 0.2
3 Normal 0.70 0.2
4 Normal 1.10 0.2
5 Normal 1.40 0.2
6 Normal 2.00 0.2
7 Normal 3.00 0.2

= 1

= 2

= 3

= 4

= 5
= 6 = 7

Figure 3. Probability density function fD|Γc(d|γc) of pit depth d
conditional on the corrosion level Γc = [1, 2, ..., 7].

maximum pit depth needs to be specified. This conditional
probability is computed using the Bayes’ formula

Pr(γc|d) =
Pr(d|γc) Pr(γc)∑
γc

Pr(d|γc) Pr(γc)
, (9)

where fD|Γc(d|γc) is the conditional probability density
function of the maximum pit depth given the corrosion
level and Pr(γc) is the uniform distribution over the seven
corrosion levels. In order to evaluate this equation, the
continuous space of possible maximum pit depths (D ∈ R+)
is discretized.

Effect of pitting corrosion on fatigue
resistance

The following model is used to assess the combined effect of
cyclic stresses and pitting corrosion on fatigue life

NF (∆S, γc) = δ1 · k ·∆S−m · γβ2
c , (10)

where NF is the number of cycles to failure, ∆S are the
fatigue stress ranges, δ1 is the model uncertainty, and k,
m and β2 are regression parameters that mainly depend on
the material characteristics and geometry of the structural
component of interest. Here, δ1 = 10ε, with ε being Normal
distributed with zero mean and standard deviation σε. The
model parameters are summarized in Table 3.

Fatigue damage is a cumulative process. As the result
of a time dependent deterioration process, the probability

Table 3. Mean µ and standard deviation σ of the parameters of
the model in Eq. (10) for fatigue failure of a mooring line
segment with studless chain links.

Parameter Distribution µ σ

m Deterministic 3.0 0
log10 k Normal 11.200 0.100
β2 Normal -0.800 0.150
σε Normal 0.170 0.030
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of fatigue failure is typically represented by the cumulative
probability of failure given a reference period Tref . The
accumulated fatigue damage at year t is denoted D(t). For
a given stress range ∆Si and corrosion level γc, a fatigue
cycle i contributes to fatigue damage as

∆Di(∆Si, γc) =
1

NF (∆Si, γc)
. (11)

Note that the stress range ∆Si is a realization of the
process ∆S(t). The expected damage per cycle conditional
on the corrosion level E [Di|γc] is used in the following to
simplify the computation of the cumulative damage as

D(t, L) = 1 =

ν·t∑
i=1

∆Di ≈ ν · t · E [∆Di|γc] , (12)

where ν is the average number of stress cycles in a year,
which is assumed to be 105 cycles/year.

The expected damage per fatigue cycle can be elaborated
using the model in Eq. (10):

E [∆Di|γc] = E
[

1

NF (∆Se, γc)

]
=

1

k · δ1
·∆Sme · γ−β2

c , (13)

where ∆Se is the equivalent stress range of the wave-induced
stress process ∆S(t), which is defined as the constant stress
that leads to the same accumulated damage as the time-
dependent process. ∆Se is assumed to be Weibull distributed
with parameters kw and λw. Then ∆Se is given by

∆Se = E∆S [∆S(t)m]1/m = kw · Γ
(

1 +
m

λw

)1/m

, (14)

where Γ(·) is the complete gamma function. This expression
is substituted in Eq. (13) to compute the expected damage
per cycle.

The equivalent stress range ∆Se is calibrated so that the
uncorroded mooring line segment is associated with a target
cumulative probability of fatigue failure of 10−5 at the end
of service life when no inspections nor repairs are conducted.
Note that this target probability of failure is somewhat larger
than the requirements in some offshore standards, such as
DNVGL-OS-E3014, which is typically prescribed to be
10−3. The reason for this is that these standards do not
consider the effect of pitting corrosion in the fatigue limit
state. We assume that the mooring lines were provided at
design with some additional safety to accommodate for the
additional contribution of corrosion to fatigue failure. The
mean value of kw is calibrated to match the target probability

Table 4. Calibration of the expected shape parameter of the
Weibull distributed fatigue stresses E[kw] as a function of the
service life of the mooring life TSL for a target probability of
failure of 10−5.

TSL [years] 20 25 30 35 40

E[kw] [N/mm2] 5.1 4.7 4.4 4.2 4.0

of failure, where kw is assumed to be Log-normal distributed
with coefficient of variation (CoV) equal to 0.22, and λw is
deterministic and equal to 0.8. Some values of the calibrated
parameter are given in Table 4 for service lives TSL between
20 and 40 years.

The probability of failure of a mooring line segment with
a remaining service life of t years and subject to a corrosion
level γc is denoted Pf |Γc and assessed using the a limit state
function (LSF) g

Pf |Γc(t) = Pr[g(x; t|γc) ≤ 0], (15)

where g ≤ 0 defines the failure domain and X is a vector
collecting the involved random variables, which have a joint
probability distribution distribution fX(x; t) defined via the
BN model.

The limit state function g can then be written according to
the Palmgren-Miner failure criterion22

g(x; t|γc) = ∆−D(x; t|γc), (16)

where D(x; t|γc) is given by Eq. (12) and ∆ is a random
variable representing the uncertainty associated with the
fatigue failure criterion. JCSS23 recommends to model ∆ by
a Log-normal distribution with mean 1 and CoV 0.3.

The probability of failure of a mooring line segment
is defined conditional on its corrosion level by Eq. (15).
This equation can be evaluated with standard structural
reliability methods, such as the first order reliability method
(FORM). Note that the LSF depends on the fatigue damage
accumulated during a period t. During this time, an
equivalent fatigue stress is introduced to represent the effect
of the wave-induced stress range distribution. However, an
equivalent corrosion level is not available in the literature.
Corrosion is a complex deterioration process that evolves
with time. We assume as a simplification that the corrosion
condition can be regarded as constant within a reference
period of about a year.

The Bayesian network

A BN is a directed acyclic graph consisting of nodes and
arcs. The nodes represent the variables of interest, with
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discretized sample space in our case, and the arcs between
the nodes represent the dependencies. A BN is a convenient
representation of the problem where explicit use of causal
relations is incorporated via the arrangement of the network.
Moreover, the BN model allows efficient inference of the
conditional distributions when data become available at a
subset of nodes. The BN is formally represented on the
computer by a list of nodes and its neighbors along with
conditional probability tables (CPTs) for each variable. The
Bayes Net Toolbox24 is used for computing the models in
MATLAB c©.

We propose a BN with 8 layers to represent the
dependence structure of the decision problem. A summary
of the layers is shown in Table 5 and a brief description is
provided hereafter.

• Layer 1: at the highest layer of the network we have
the hyperparameter αT , which is used to introduce
statistical dependence among the temperature at the
different water depths.
• Layer 2: this layer is constituted by the nodes of

the influencing parameters of pitting corrosion, which
in our model is only the temperature nodes Ts.
Note that Ts refers to the yearly average temperature
of the segments Si,j,s. The temperature nodes are
represented by a discrete distribution.
• Layer 3: here we have the maximum pit depth

nodes di,j,s, which are specified conditional on the
corresponding temperature Ts.
• Layer 4: this layer is constituted by the corrosion level

nodes γc,i,j,s. Each of them is specified conditional on
the corresponding maximum pit depth node di,j,s.
• Layer 5: In order to assess the integrity of a segment
ES,i,j,s, the accumulated probability of fatigue failure
of the segment is computed conditional on its
corrosion level γc,i,j,s.
• Layer 6: the integrity of a mooring line EL,i,j is

specified conditional on the integrity of its segments
ES,i,j,s, with s = 1, 2, .., p.
• Layer 7: a simplified ultimate limit state is introduced

to specify the integrity of a clusterEC,j conditional on
the state of its lines EL,i,j , with i = 1, 2, ..., Nj .
• Layer 8: the integrity of the mooring system Esys is

calculated conditional on the state of the clustersEC,j ,
with j = 1, 2, ..,M .

The modeling of the dependence structure in the BN
(Layers 1-3) and the implementation of the structural
integrity model (Layers 4-8) are elaborated in more detail
hereafter.

Table 5. Layers of the Bayesian network, with a description of
the nodes.

Layer Description Node

Layer 1 Hyperparameter αT
Layer 2 Temperature Ts
Layer 3 Max pit depth di,j,s
Layer 4 Corrosion level γc,i,j,s
Layer 5 Segment integrity ES,i,j,s
Layer 6 Line integrity EL,i,j
Layer 7 Cluster integrity EC,j
Layer 8 System integrity Esys

Statistical dependence model

The statistical dependence of the corrosion condition among
line segments is captured in the BN in two ways, see
Figure 4. First, the dependence of the corrosion condition
among segments belonging to the same partition s of the
mooring lines is modeled by conditioning the maximum pit
depth nodes di,j,s on the corresponding temperature node Ts.
Second, the dependence among the condition of segments
from different partitions is modeled through the statistical
dependence of the seawater temperature at different water
depths. This correlation is introduced by conditioning the
seawater temperature nodes on a hyperparameter αT . A
Gaussian copula with given correlation coefficient is used
to represent the joint distribution of the temperature nodes,
according to the approach proposed by Luque and Straub25.

Other parameters of the employed deterioration model
may be correlated among different chain segments. The
consideration of additional parameter correlations would

T
1

T
s

T
p

α
T

… …

d
1,1,s d

i,j,s
d
N  ,M,s

… …

γ
c,1,1,s

γ
c,i,j,s

γ
c,N  ,M,s… …

N  ,M,s
M

c,N  ,M,s
M

Figure 4. Hierarchical structure of the upper layers of the
Bayesian network. The corrosion level nodes γc,i,j,s are
specified conditional on the maximum expected pit depth nodes
di,j,s, which in turn are specified conditional on the temperature
node of the corresponding water depth Ts. The temperature
nodes are correlated through the hyperparameter αT .
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Figure 5. Module LM i,j modeling the structural integrity a
mooring line EL,i,j as a serial system of the line segments
ES,i,j,1, ..., ES,i,j,p.

require to explicitly represent those parameters in the BN.
This would largely increase the complexity of the BN. Since
the aim of the decision framework is to rank the efficiency
of inspecting chain segments, the authors have prioritized
to limit the computational demand of the BN and not to
include these additional correlations. However, this would
not be justified if an accurate estimation of the reliability of
the mooring system would be needed to e.g. include target
reliability constraints.

Mooring line integrity

The structural integrity of the p segments is denoted
ES,i,j,1, ...ES,i,j,p, respectively. The fatigue integrity of a
line Li,j , denoted EL,i,j , is defined conditional on the
integrity of its segments, as illustrated in Figure 5. Note that
the integrity of the segments is conditional on their corrosion
level. Both the integrity of a segment and of the whole line
have a binary representation (0: Safe or 1: Fail). Therefore,
the CPT of EL,i,j needs to be defined for 2p combinations
of the segments states. The CPT mainly consists of zeros
and ones, since the mooring line survives only when all its
segments take the Safe state and fails in all other situations.

Integrity of a cluster of mooring lines

The modeling of the integrity of a cluster of mooring lines
Ec,j is shown in Figure 6. Ec,j has a binary representation
(0: Safe or 1: Fail). It is assumed that the undamaged
cluster is associated with an annual probability of failure of
10−5, as prescribed in DNVGL-OS-E301.4 The probability
of failure of a cluster conditional on the number of failed

E
c,j

LM
1,j

LM
i,j

LM
Nj,j

… …

CM
j

Figure 6. Module CM i,j modeling the structural integrity of a
cluster Ec,j , which constituted by Nj parallelly connected
mooring lines.

lines Pr(Ec,j = Fail|NF = `) is computed assuming brittle
failure due to ultimate load, i.e. a failed line does not
contribute to load bearing. The probability of cluster failure
conditional on the number of failed lines is then given by

Pr(Ec,j = Fail|NF = `) =∫
Q

Pr [Ec,j = Fail|q, (Nj − `)] fQ(q)dq, (17)

where fQ is the probability density function of the annual
extreme load Q and Pr [Ec,j = Fail|q, (Nj − `)] is the
probability of failure of the cluster conditional on the
load and the number of survived lines, which is computed
according to the solution by Daniels.26

It is assumed that the lines of a cluster have independent
and identically distributed ultimate load capacity Ri, which
is Log-normal distributed with CoV 0.15. The ratio between
the mean capacity of the undamaged cluster, i.e. Nj · µRi ,
and the mean annual maximum load µQ is calibrated so that
the cluster has the appropriate probability of failure in the
undamaged state. Q is assumed to be Gumbel distributed
with CoV 0.3. The conditional probability of failure of a
cluster is plotted in Figure 7 for clusters containing different
number of mooring lines Nj .

Structural integrity of the mooring system

The structural integrity of the mooring system Esys is
represented in the BN by a node with two states: 0: Safe or
1: Fail. The integrity of the system depends on the integrity
of the different clusters conforming it. This dependence is
case dependent and it is influenced by the configuration
of the anchoring system of the offshore floating unit. It
is often the case that the failure of a cluster of mooring

Prepared using sagej.cls
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Figure 7. Conditional probability of failure of a cluster with Nj
mooring lines for increasing number of failed lines `.

E
sys

CM
1

CM
j

CM
M

… …

Figure 8. Structural integrity Esys of the mooring line system
constituted of M mooring clusters.

lines leads to loss of sufficient anchorage and consequently
to disproportionate consequences, such as oil spill and
associated loss of reputation. The BN model of the integrity
of the mooring system is illustrated in Figure 8. Note that,
Esys is conditional on the integrity of the clusters Ec,j , with
j = 1, ...,M , which are defined by the module CM j in
Figure 6.

Case study

The potential benefits of the presented framework are
demonstrated alongside a case study on optimal inspection
planning for the mooring system of an oil and gas
platform in the North Sea. The case study contains several
simplifications to keep the complexity in comprehensible
limits.

The considered mooring system consists of four clusters,
each of them with four mooring lines. The mooring system
fails if any of the clusters fail. It is assumed that all the
mooring lines have been placed at the same time, and no
repairing or replacement have been conducted prior to the
assessment. The platform is located in an area where the
average water depth is ca. 100 m. The focus is on the
submerged parts of the mooring lines, which are divided

Figure 9. Probability mass function Pr(T ) of the average
seawater temperature at top, medium and bottom locations.

in three segments; the top segment ranging in the water
depth 0 - 20 m, the medium segment ranging in the water
depth 20 - 50 m and the bottom segment ranging deeper
than 50 m. In this case study, the VOI of inspecting the
corrosion condition of the different segments is assessed.
The simultaneous observation of several segments during
one inspection campaign is not considered for simplicity.

The assumptions for distribution and correlation of water
temperature are based on observations collected at the
UK shelf.27 The yearly average temperature in each depth
segment is modeled with the probability mass functions in
Figure 9, which has a discretization of intervals of ca. 3◦C
from the minimum to the maximum temperature, which are
5.5◦C and 20.7◦C, respectively. The temperature is averaged
over observations at each interval, which corresponds to the
values shown in Table 1. The linear correlation coefficient
among the average temperature of the segments is found to
be around 0.8.

The structure was designed with a service life of 30 years.
Hence, the expected shape parameter of the fatigue stress
range is taken as E[kw] = 4.4 N/mm2, according to Table 4.
The current analysis considers potential inspections at year
five and the projections of the structural integrity are assessed
for an additional year, i.e. potential failure between years five
and six. It is assumed that the corrosion condition can be
considered constant during one year.

A series of actions or decision alternatives that the
decision maker can choose from are to be specified to define
the value function in Eqs. (1) and (2). It is noted that the VOI
of an inspection scheme depends largely on the consideration
of these actions. We provide a variety of decision alternatives
in order to mimic the multiple options that would be explored
in a more realistic sequential decision analysis, where not
only repair options but also additional sequential inspection
alternatives would be assessed. The representation of the
latter would be by far too complex for this case study. Here,
the decision maker can choose to not take any action (a = 0),
to repair the top, medium, or bottom segment of a given line
(denoted a = 1, a = 2 and a = 3, respectively) or to repair
the top, medium, or bottom segment of one line per cluster
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(a = 4, a = 5, a = 6). Furthermore, the decision maker can
replace a complete line in a cluster (a = 7) or a complete line
in each cluster (a = 8). It is also possible to repair all the top,
medium and bottom segments of a cluster (a = 9, a = 10,
a = 11) or of the entire system (a = 12, a = 13, a = 14).

Assuming that inspection results yκ can be available, the
PPV calculation requires the expected values for all possible
observation outcomes. For the PV, the inspection just denotes
the empty set. First, for the alternative of no repair or
replacement (a = 0), the expected value is then defined as

E[v(x, 0)|yκ] = (18)

− cl max
i,j

{
Pr
(
ELi,j = 1|yκ

)}
− csPr (Esys = 1|yκ) ,

where cl is the cost of failure of a mooring line and cs is
the cost of system failure. Here, cl is taken as e 20 mln and
it is mainly associated with the cost of replacing the failed
line, including the production loss from the detection of the
failure until the line is replaced. The consequences of system
failure is taken as cs = e 180 mln.

For the other alternatives a > 0, we let γc(xa) denote the
corrosion level of the segments that have been repaired or
replaced and consequently returned to the uncorroded state,
i.e. γc(xa) = 1. The expected values are then

E[v(x, a)|yκ] = (19)

− cl max
h,l

{
Pr
(
ELh,l = 1|γc(xa) = 1,yκ

)}
− csPr (Esys = 1|γc(xa) = 1,yκ)− cana,

where ca = {cr, crl} is the cost of repairing (cr =

e 0.7 mln) or replacing (crl = e 0.9 mln) a segment
depending on the decision taken, and na is the number of
segments that are repaired or replaced; The costs ca are
assumed to be the same for all segments.

Given the structure of the value function, and that we
deal with discretizations of the continuous distributions, it is
possible to explicitly compute the PV and PPV. VOI analysis,
as formally introduced above, is used in the following to
select which segments to inspect.

Results

VOI analysis is first performed with the assumed standard
deviation of the pitting corrosion model uncertainty set to
σδ2 = 0.5. Afterwards, the effect of increasing or reducing
the model accuracy is investigated.

The effect of observing the corrosion condition of different
segments on the assessment of the probability of failure of
a line is illustrated in Figure 10. The effect of observing

Figure 10. Effect of belief propagation on the probability of
failure of a line Pr(EL,1,1 = Fail). Evidence of low corrosion in
the top segments of the assessed line and a nearby one is
shown in (b) and (c), respectively. (d) and (e) present the effect
of observing high corrosion in the same segments.

the corrosion condition of a segment of the line of interest
can be seen in cases (b) and (d). Observing a low
corrosion level (γc = 2) decreases the probability of failure
by approximately half with respect to the prior case, and an
observation of a high corrosion level (γc = 7) increases it by
30%. Inference from observations of a segment of a different
line are shown in (c) and (e) and show as well a considerable
effect, although weaker than for (b) and (d).

The computation of the VOI is conducted for a given line
of the system, where single observations of the corrosion
level are possible. Note that these results are valid for any
line of the system due its symmetry in terms of number
of segments and of number of lines in a cluster. Table 6
summarizes the results of the VOI analysis for the three
segments (top, medium and bottom). The obtained VOI can
be used to assess the most valuable location for inspection.
The results show that observing the corrosion level of the top
segments is the most valuable inspection.

The sensitivity of the results with respect to the modeling
error as parametrized by the standard deviation σδ2 is
studied. Table 7 shows a decrease of the VOI as the standard
deviation increases. On the one hand, a large uncertainty
in the estimation of the maximum pit depth results in
a less informative prior assessment. This suggests that
newly obtained information has the potential to drastically
change the expectation of the system condition. On the
other hand, a large model uncertainty also yields a broad

Table 6. Results of VOI analysis for observations of the
corrosion level of the top, medium and bottom segment of a
given line, when the decision alternatives are the ones
described in the case study section.

Top Medium Bottom

VOI e285 e278 e283
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Table 7. Results of VOI analysis for the observation of the
corrosion level of the top, medium and bottom segment of a
given line for different values of the standard deviation of the
multiplicative model error σδ2 .

Top Medium Bottom

VOI at σδ2 = 0.1 e294 e298 e304
VOI at σδ2 = 0.3 e292 e289 e295
VOI at σδ2 = 0.7 e272 e264 e269
VOI at σδ2 = 0.9 e260 e250 e254

Table 8. Results of VOI analysis for observations of the
corrosion level of the top, medium and bottom segment of a
given line after 10 years of service life of the system.

Top Medium Bottom

VOI e6225 e6223 e6239

likelihood function of the inspection outcomes, which
reduces the efficiency of the inspections. We argue that
due the large costs associated with the mitigation actions
and the consequences of failure, the latter has a larger
impact on the results. The fact that new observations
become more valuable when the model accuracy increases
emphasizes the importance of uncertainty quantification and
the development of an accurate model for pitting corrosion
degradation. It is observed that the most valuable inspection
switches from being the bottom segment inspection to be
the top segment inspection for a value of σδ2 somewhere in
between 0.3 and 0.5.

Finally, VOI is studied for a situation similar to the one
of Table 6, where the only difference is that now the study
is done after ten years of service life of the system. The
larger VOI in Table 8 shows how gathering information on
a more deteriorated system will be of greater value for the
decision maker. This is due to the larger variation that the
probability of failure of a line presents depending on the
corrosion condition and due to the overall larger probability
of system failure.

The computational complexity of the framework devel-
oped, is mostly associated with the evaluation of the VOI,
assuming a BN is already set with all the CPT computed.
For the preposterior value (PPV), a sum must be computed
over the possible outcomes of the observation (yk), and for
each outcome, the CPT are updated to get the conditional
expressions. For each outcome, this takes only about 1
second, and overall the BN fitting and VOI calculation only
take about 3 minutes on a commercial laptop with a 3.1 GHz
Dual-Core Intel Core i7 processor. A benefit of BN models
is that they represent the important variables in a compact
manner and large size computer intensive evaluations are
often avoided.

Discussion

The proposed framework aims at supporting inspection
planning decisions for mooring systems based on VOI
analysis. Relevant features that affect the decisions at hand
and their interactions are explicitly represented in a BN
model. The framework is ultimately a simplification of a
highly complex decision problem. The actual sequential
decision problem is simplified by neglecting the effect of
future inspections in the planning of inspections at a given
year. Furthermore, the assessment of the structural reliability
is conducted with projections of an additional year from the
decision point in time. This leads to low estimates of the
probability of failure, which in turn leads to low estimates
of the VOI. As a consequence, the results of the analysis
cannot be used to determine whether inspections should
be conducted, but only to rank which inspections should
be conducted first. It is nonetheless common practice that
the decision maker first chooses if it is needed to conduct
inspections, and then decides what to inspect. The proposed
framework can be used in the second step to guide that type
of decision.

Currently available models for pitting corrosion are asso-
ciated with large uncertainties. Despite these uncertainties,
integrity management decisions need to be made. This
stresses the importance of uncertainty quantification and of
integrating these uncertainties into a formal framework in
order to support decisions according to the best available
knowledge. More accurate modeling of the deterioration
processes could be added when available to improve the
quality of the outcomes. Results from the case study show
the value of improving the model accuracy, see Table 7.

A simplified model is used to assess the fatigue integrity
of a mooring segment conditional on its corrosion condition.
Since the corrosion condition evolves with time, the
unconditional probability of failure should be dynamically
assessed. The obtained estimation of the probability of
failure at a given year t is thus a conservative approximation
in which the corrosion at that year is used to represent the
condition at all the previous years. This is justified at the
early stages of the deterioration due to the power-law growth
of corrosion, in which pits rapidly reach significant depths
followed by a steadier growth. If the lifetime cumulative
probability of failure of a mooring line segment was to
be more accurately computed, the unconditional limit state
function g(x; t = TSL) ≤ 0 should be considered instead of
Eq. (16), where g(x; t) is defined as

g(x; t) = ∆−
t∑

τ=1

∑
Γc

D(x; τ |γc) Pr(γc; τ). (20)
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A dynamic BN should be developed to evaluate
this equation. This BN would drastically increase the
computational demand as compared to the one proposed in
this article. Nonetheless, it is unclear whether this would lead
to significantly better decisions.

Conclusions

A method based on value of information analysis is presented
in this paper with the aim of supporting efficient planning
of in-situ inspections of the corrosion condition of structural
elements of a mooring systems. We focus on the particular
case of mooring systems constituted by steel chain mooring
lines. Chain links in marine conditions are subject to pitting
corrosion, which leads to an increased probability of fatigue
failure of the chain links under cyclic loading. An ultimate
load limit state is used in order to assess the integrity of the
deteriorating system, which is subject to a combination of
pitting corrosion and fatigue. A state-of-the-art model is used
to model the growth of corrosion pits in time. The model
assumes that pit growth is mainly caused by the action of
sulfate reducing bacteria under anaerobic conditions, which
is driven by the average seawater temperature at a given
location.

The mooring system is regarded as hierarchically
structured with four levels: (i) the mooring system, (ii) the
cluster of mooring lines, (iii) the mooring line and (iv) the
line segment, which is constituted by a number of chain
links. We propose a Bayesian network to model statistical
dependence of the corrosion among line segments and to
estimate the structural integrity of the mooring system.
The network allows for efficient updating of the corrosion
condition of the mooring segments and reassessment of
the integrity of the system when new observations become
available. This allows to efficiently conduct value of
information analysis, which is used to rank inspection
alternatives. The application of the framework is illustrated
with a case study. Results emphasize the importance of the
accuracy of the corrosion model to increase the value of the
inspections.
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