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Abstract
We deploy an adaptive observer recently developed for general hyperbolic partial differential equation (PDE) systems, to detect
and diagnose various drilling faults. The well is modeled by a distributed PDE which, contrary to lumped models, preserves
fundamental properties of well flow dynamics enabling faster and more accurate fault detection and estimation. Wired drill-pipe
technology with pressure sensors are needed to locate and isolate faults. Four realistic simulation case studies demonstrating
various properties of the observer are presented. Drilling incidents treated in the case studies include, pack-off in the annulus,
formation inflows, loss of circulation, and various combinations of these. While simulation results show that the developed
observers successfully estimate properties of the incidents that they are tailored for, they do not constitute a fault detection system
for drilling. But they provide a part of the data on which an overall fault detection system can rely.

Introduction
A variety of faults can impose significant threats to both operational safety and efficiency in oil well drilling. Fast detection
and identification of faults are therefore of uttermost importance to ensure that the appropriate counteractive steps are taken.
It is almost equally important to avoid false alarms and false classification so that the operational efficiency is not reduced by
unnecessary actions (?).

The well flow is accurately described by a hyperbolic partial differential equation (PDE) model. Unfortunately, up until
recently, few results in the field of observer design for hyperbolic systems have been developed. In addition, a complicating factor
in the field of fault detection and estimation is that a fault incident is by definition unknown, so that the corresponding model
parameters can not be a-priori known. To handle such systems, the observer design must be adaptive to parameter uncertainties.

The use of lumped ODE models for fault detection and estimation, however, have been studied extensively. The model
presented in ? is commonly used to describe the lumped pressure in the annulus and drill-string and the drill-bit flow rate. Based
on this model, various fault detection, estimation and localization schemes using an adaptive observer have been developed in
????, which in addition to pump flow measurement utilized wired-pipe technology with distributed pressure sensor for fault
localization. The lumped model is derived by simplifying a distributed PDE model. Distributed flow dynamics are ignored, with
the effect that the finite time propagation property is lost. An adaptive observer for fault detection and estimation in drilling
based on low order lumped models is also presented in ?. In our recent work ???, we derive adaptive observers for general
hyperbolic systems utilizing distributed measurements. Our recently developed observer design for PDEs is an extension of the
adaptive observer for ODEs developed in ?? which were used for flow and parameter estimation in systems described by the low
order lumped well model in ?.

Various logging tools, collectively referred to as logging while drilling (LWD), are embedded into the bottom hole assembly.
While these measurements are fairly accurate, the transmission bandwidth is often insufficient. Traditionally, mud pulse telemetry
has been used to transmit LWD data to the rig in real-time. The bandwidth of mud pulse telemetry is typically in the range
of 10− 40bit/second, but can drop to as low as 0.5bit/s in long wells (see e.g. ?). Either way, it is too low for kick & loss
detection. As an alternative, wired pipe technology offers bandwidths up to 1Mbit/s . However, possibly due to high cost and
complexity of deployment, this technology has so far seen limited use. Another interesting application of wired drill-pipe is
along-string pressure sensing where pressure sensors are installed at a fixed interval inside the annulus. This possible application
is discussed in ?. In this paper, we apply the adaptive observer ??? for fault detection and estimation by utilizing wired-pipe
technology with pressure measurements. The distributed flow model and theoretical results from ?? are briefly presented in the
Appendix. We study three types of faults; pack-off, lost circulation and influx which are described in following section. Next, the
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main contribution of the paper is the construction of 4 realistic case studies which are designed to illustrate the broad range
of possible applications for the observer. For each case a detailed description of the model parameters and simulation setup is
discussed and the corresponding results from computer simulations are presented.

The list of possible applications mentioned above is by no means exhaustive. However, the drilling incidents studied in
the case studies are among the most studied problems in drilling, which facilitates comparisons with previous model-based
estimation schemes in drilling. In particular, all 3 drilling incidents studied in this paper are also studied in ????. On the other
hand, oil and gas drilling is associated with a wide range of possible incidents. We make no claim to cover them all. The
possibility of applying the proposed method to detect and identify drilling incidents such as pipe sticking, hole deviation, pipe
failures, bore hole instability, mud contamination, formation damage, hole cleaning, H2S bearing formations and shallow gas
influx etc, is an area for further research. Our expectation, however, is that characterizing all such incidents will require a large
set of different models. Alternatively, an attempt to incorporate all possible effects in any single model will yield a high order
model too complicated to be useful in any real-time estimation or control scheme. Furthermore, measurements corrupted by noise
and un-modeled dynamics make the model output uncertain. The problem of fault detection and identification is consequently a
statistical problem, where competing explanatory models should be weighted against each other based on uncertain observed and
estimated data.

Flow rate and parameter estimation
To illustrate the observer design, we will focus on single-phase flows in the annulus. However, the method can also be applied to
interconnected flow systems with an arbitrary number of subsystems, for example a drill-string – annulus interconnection, or
linearized multi-phase systems.

Model derivation. To model the flow in the annulus, we use the classical water-hammer equations (see e.g. ???) which are
derived under the assumption of unidirectional, axis-symmetric flow of a compressible fluid in a rigid pipe. The validity of the
unidirectional flow assumption in pipe systems have been studied extensively in e.g. ??. The local, area-averaged, water-hammer
equation can be written in conservative form
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for the momentum balance, where ρ is fluid density, q is volumetric flow, p is pressure, η is a momentum correction coefficient,
A is cross-sectional area, qin is volumetric formation inflow, G = ρAdxgsinα accounts for gravitational forces and α is the
inclination of the well relative to vertical, and F are other external momentum sources such as frictional forces or momentum
in-flux from the surrounding formation. Using that the density ρ is dependent on the pressure p, the mass and momentum
balance can be written in the non-conservative form
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where c =
√

d p
dρ

is the pressure wave velocity. Since the pressure wave velocity is much larger than the convective flow velocity
c� q, i.e. a low Mach number, terms linear in q or qin are neglected, yielding
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In the following, we will also assume constant pressure wave velocity c and linearize around a constant ρ . The structure of
the inflow-model qin and the momentum sources F are application specific and will be specified in later sections. For now, let
β

A
∂qin
∂x = φ1(p,x)θ1 and − 1

ρ

∂G
∂x −

1
ρ

∂F
∂x = φ2(p,q,x)θ2 where φ1 and φ2 are general nonlinear functions, of dimension R1×n1 and

R1×n2 for some n1,n2 > 0 respectively, that can be used to model various mass and momentum sources and sinks and θ1 and θ2
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are unknown parameters of dimension Rn1 and Rn2 respectively. To sum up, assuming unidirectional, axis-symmetric flow in a
rigid pipe, and linearizing around q = 0 and ρ = const, the flow in the annulus is thus described by

∂

∂ t
p(x, t)+

β

A
∂

∂x
q(x, t) =φ1(p(x, t),x)θ1 (5a)

∂

∂ t
q(x, t)+

A
ρ

∂

∂x
p(x, t) =φ2(p(x, t),q(x, t),x)θ2 (5b)

where the pressure p(x, t) and volumetric flow q(x, t) are functions of the along-string distance x ∈ [0,L] ( where x = 0 is
bottom-hole, x = L is top-side at the rig, and L is the total well length), and time t ∈ [0,∞). The model in Eq. (5) is common
model, often used as an alternative to the low order lumped model in ?, in drilling applications where distributed phenomena,
such as fast pressure oscillations (e.g. the heave problem in offshore drilling) or pack-off and loss localization, are significant (see
e.g. ????). The left hand side of Eq. (5) represent a sufficient description of the pressure waves in the well, while the right hand
side represents mass and momentum sources and sinks which are associated with more uncertainty, such as friction and various
fault situations. The purpose of the observer is to estimate the uncertain elements using a stream of real-time measurement from
the drilling system, and as such compensate for any model deficiencies.

The boundary conditions are given in terms of bottom-hole bit flow and top-side choke pressure (or atmospheric pressure for
conventional drilling),

q(0, t) =qbit(t) (6a)
p(L, t) =pchoke(t) (6b)

where the boundary functions qbit and pchoke are arbitrary. We assume that the initial conditions p(x,0) and q(x,0) are compatible
with Eqs. (5) and (6). In the following, for readability, the argument in time will be dropped when unambiguous.

Note that only the fast propagating pressure waves are modeled in Eq. (5). Thermal conditions, lithology and rheology that
affect the parameters of the model (β ,ρ) vary extremely slowly compared to the time-scale at which faults are detected using
Eq. (5).

Problem statement and theoretical results. We assume that wired-pipe technology with along-string pressure sensors are
being used and make the simplifying assumption that continuous distributed pressure measurements are available (?). Considering
the level of smoothness of the pressure profile, this is a reasonable assumption for a sufficiently high pressure sensor density. In
addition, we assume that the bottom-hole bit flow is known. If the pump flow into the drill-string is measured, the bottom-hole
bit flow can be estimated in finite time.

The objective is to estimate the distributed flow rate q and the unknown parameters θ1,θ2. The technical details of the
adaptive observer are given in the Appendix where the two main results are stated in Theorem 1and Conjecture 1. Here, we
just ascertain the significance of the main property established for the adaptive observer which is that we can obtain estimates
of θ1 and θ2, which characterize faults, even though q(x, t) is not measured. The needed level of variation in the measurement
data, however, is a limiting factor. The expression variation in the (measurement) data or excitation is precisely mathematically
defined in the appendix. In systems with no mass-influx (i.e θ1 = 0 which is considered in Theorem 1), the flow estimates still
converge in the absence of sufficient excitation needed for parameter convergence. Nevertheless, for many of the faults modeled
in the next section, parameter convergence is equally important. However, an important property of the parameter estimation
scheme for θ2 is that the needed excitation is achieved locally. Meaning that increasing the number of spatial discretization points
does not demand a higher level of excitation. The estimates of θ1 on the other hand require global excitation. Consequently, if
θ1 is used to model local phenomena, the level of excitation is usually insufficient and parameter convergence is not achieved.
However, as stated in Conjecture 1, the estimates will still be bounded and as the simulations in later sections will show, the
estimate will often be sufficiently accurate to be useful in many fault detection and localization applications.

Fault detection, estimation and localization
We will in this paper limit the study to 3 types of faults; pack-off in annulus, lost circulation, influx of formation fluids and
various combinations of these. The method can also be used to estimate and locate incidents such as drill-string washout or bit
nozzle plugging. For these incidents, a model of the flow inside the drill-string must be included, and the multi-dimensional
observer design presented in the Appendix can be used to estimate the flow and unknown parameters in the drill-string – annulus
interconnected system.

Pack-off is a local build-up of debris around the drill-string, consequently limiting the flow of drilling fluid. Pack-off is
commonly caused by inadequate transportation of cuttings triggered by a low circulation rate, or a collapse of the well-bore wall
(?). A pack-off will affect the local friction and can be modeled by a frictional force term Ff on the right hand side of Eq. (5b).
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Lost circulation is loss of drilling fluids into the formation, which occur in high-permeability regions or where fractured
formations are either naturally encountered or caused by a drilling-pressure exceeding the fracturing pressure (?). Loss of
circulation will first and foremost affect the mass-balance where qin is negative (a sink) in Eq. (5a), but will often also lead to a
loss of momentum modeled by an equivalent force term Fr on the right hand side of Eq. (5b).

Influx of formation fluids or a kick occur when the formation pore pressure exceeds the well pressure. The volumetric inflow
qin will by positive and act as a mass source in Eq. (5a). In addition, an influx will often lead to a gain of momentum modeled by
a force term Fr in Eq. (5b). A kick related incident can pose a serious threat to operational safety and has, as such, been studied
extensively. See e.g. ????.

Combinations of the three fault types can lead to many interesting detection and estimation problems. For example, a loss of
circulation will result in lower pressure downstream due to a lower frictional head, which in turn might trigger a kick further
downstream. Or, combinations of a local pack-off and an influx will both result in increased local friction. A sufficient level of
variation in the data is needed to distinguish between the two types of faults.

Case studies
The objective of the case studies is to illustrate the fault size estimation and localization capabilities of the adaptive observer
proposed in ???. Fault detection and identification in the broader sense of correctly detecting and identifying a single fault
among a set of possible faults is mainly a statistical problem, and is not considered.

All four cases are simulated in MATLAB using the ode45 solver and method of lines with 200 spatial discretization points.
For each case, both system states and the estimation error signals are shown in figures. Note that the true well flow and parameter
estimation error signals are not available in a real-world implementation, but are computable in computer simulations.

Case 1: Annulus pack-off. In the first case, we examine the observers ability to locate and estimate the size of isolated regions
with pack-off. We assume no mass influx so that the only momentum sink is frictional loss. In addition to the local friction loss
due to pack-off, denoted Flocal(q), we assume a global uniform wall friction Fglobal(q). Let

Ff (q) = Flocal(q)+Fglobal(q). (7)

We assume laminar flow in regions without pack-off and use the linear model

Fglobal(q) = fwqdx. (8)

The pack-off region is modeled as an orifice plate where the flow through the orifice is proportional to the square root of the
pressure difference. We use the model

Flocal(q) = fpq|q|dx. (9)

Considering the model Eq. (5), we obtain a model with source terms φ T
1 = θ1 = 0 and

φ2(q(x),x) =

 −Agsinα(x)
−q(x)

−q(x)|q(x)|χ(x)

 ,θ2 =

 1
fw
ρ

fp,0
ρ
.


T

(10)

We assume that both frictional coefficients are unknown while the first element in θ1 is obviously known. For the local frictional
forces we discretize the well into N = 10 subintervals. The number of intervals is arbitrary, but the computational cost is
approximately of order N. The indicator function χ(x) is of dimension N where each element has local support in a region
centered at x and with width L

N . In the simulation, we use

fp(x) =χ(x) fp,0 (11)

where

fp,0 =
[
0 0.5 0 0 1 0 0 0 0.7 0

]T
×105kgm−6 s−2 (12)

The inclination α(x) is selected as

α(x) =
π

2
x
L
. (13)
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The top-side choke pressure is kept constant at p(L, t) = 10bar (1×106 Pa) and the bit flow rate is initially zero and then ramped
up to 2m3 min−1 as shown in ??. This is meant to simulate a realistic pack-off incident, which is often caused by a too-low
bit flow rate, e.g. during a connection, which is detectable only after the bit flow is ramped up again. Numeric values for the
remaining model parameters are given in Table 1.

The system is initially in steady state for the given bit flow rate and choke pressure. The resulting flow and pressure profiles
are shown in ???? respectively. The flow is estimated accurately throughout the well, as can be seen in ????. ?? shows that the
global friction factor estimate f̂w does not converge to the true value fw. Nevertheless, the pack-off friction factor estimates are
sufficiently accurate and the pack-off regions are easily located as illustrated in ??, which shows the estimated coefficient at
three distinct times together with the true coefficient values. As can be seen, the size of the pack-off can also be estimated fairly
accurately after t = 25s.

Case 2: Open hole with non-local uncertain parameters. One of the most common causes of kicks is during a connection
when the bit flow rate is ramped down. The frictional head provided by the circulation of drilling fluid keeps the well overbalanced.
In the second case, we examine in/out-flow size estimation in a vertical well (α(x) = π/2) with an open hole region during bit
flow ramp down. We use the pressure-dependent inflow model

qin(x) = J(x)(pr(x)− p(x))dx (14)

where J, called the productivity index, is uniform and equal to J(X1) = 2×10−11 m2/s/Pa in the open hole region X1 ⊂ [L/2,L]
and zero in the sealed off region [0,L/2]. The formation pressure pr(x) is assumed to follow the linear model

pr(x) = ρrgx+ pr,0 (15)

where ρr and pr,0 are known constants. The same global friction model Eq. (8) as for Case 1 is used. In addition, we model the
momentum influx from the reservoir as a force equivalent

Fr(qin(x)) = frqin(x)dx. (16)

The source terms in Eq. (5) are implemented as

φ1(p,x) =
β

A

ψ(x)gh(x)
ψ(x)

−ψ(x)p(x)

 , θ1 =

 Jρr
Jpr,0

J

 (17a)

φ2(p,q,x) =
1
ρ


−Agsinα(x)
−q

−ψ(x)gh(x)
−ψ(x)

ψ(x)p(x)

 , θ2 =


1
fr

fwJ0ρr
fwJpr,0

fwJ

 (17b)

where the indicator function ψ is equal to one in the open-hole region and zero elsewhere. Numerical values for all model
parameters are given in Table 2. Compared to case 1, we have changed the friction factor and drilling mud density so that the
system is initially in steady state with no inflow. That is,

qin(x,0) = 0⇔ pr(x) = p(x,0)∀x ∈ [0,1] (18)

which is satisfied if

ρ = ρr−
fw

Ag
qbit(0), p(0,0) = pr,0(0) (19)

The bit flow rate is initially at 2m3 min−1 before being ramped down to 0m3 min−1 and then back up to 2m3 min−1 again as can
be seen in ??. As the bit flow rate is reduced, the formation pore pressure will exceed the well pressure which will result in a
kick. The top-side choke pressure is kept constant at 10bar (1×106 Pa). We assume that the formation pressure is known and
the only unknown parameter is the productivity index J. This is a reasonable assumption as the well is initially in steady state
and the formation properties can be computed from Eq. (19). The productivity index however is unobservable as long as the
inflow is zero.

The flow and pressure profiles are shown in ???? and the inflow is shown in ??. As predicted, the inflow increases as the bit
flow is ramped down, and vanishes when the bit rate is ramped back up again. Interestingly, a small loss of circulation occurs in
the transient ramp up phase between around t = 30s to t = 50s. ???? show that the well flow rate estimation error converges to
zero. In addition, ?? shows that the inflow estimation error (which is based on the parameter estimates) also converge to zero.
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Case 3: Geological faults causing zero net gain. In the third case we introduce a geological fault that divides the formation
into two zones with two distinct pore pressures. The case is constructed so that the well pressure is lower than the pore pressure
in the fist zone and higher than the pore pressure in the second zone (see ??). Consequently we will have a region where the
drilling fluid is lost and another region with formation influx. The net inflow as observed top-side will be less than the total
absolute in- and out-flow. This case will test the observers ability to identify local in- and out-flow phenomena.

The same inflow model Eq. (14) as in case 2 is used, but the reservoir pressure is now given as

pr(x) =

{
203bar, x ∈ [0,0.75L]
183bar, x ∈ [0.75L,L]

=

{
2.03×107 Pa, x ∈ [0,0.75L]
1.83×107 Pa, x ∈ [0.75L,L]

(20)

which with N = 12 sub-intervals is implemented as

pr(x) = χ(x)pr,0 (21)

where

pr,0 =
[
13183bar 19203bar

]
=
[
131.83×107 Pa 192.03×107 Pa

]
. (22)

The indicator function χ(x) is of dimension N where each element has local support in a region centered at x and with width
L
N . In addition, we assume that the open hole region is X1 = [0.5L,L] with productivity index J(X1) = 2×10−11 m2/s/Pa in
the open hole region (and zero in the sealed region [0,0.5L]). Additional simulation parameters are given Table 3. The well
inclination is

α(x) =

{
0, x ∈ [0,0.7L]
π

4 , x ∈ [0.7L,L],
(23)

the top-side choke pressure is kept constant at 10bar (1×106 Pa), while the bit flow rate, similar to case 2, is initially at
2m3 min−1 before being ramped down to 0m3 min−1 and then back up to 2m3 min−1 again as can be seen in ??. This gives the
initial well pressure and formation pore pressure profiles shown in ??. The source terms in Eq. (5) have the form

φ1(p,x) =
β

A

[
ψ(x)χ(x)
−ψ(x)p(x)

]
, θ1 =

[
Jpr,0

J

]
(24a)

φ2(p,q,x) =
1
ρ


−Agsinα(x)
−q

−ψ(x)χ(x)
ψ(x)χ(x)p(x)

 , θ2 =


1
f

fwJpr,0
fwJ

 . (24b)

where the indicator function ψ is equal to one in the open-hole region and zero elsewhere.
The complete flow, inflow and pressure profiles can be seen in ???????? respectively. Comparing the bit flow rate in ?? with

the choke flow rate in ??, it can be observed that the net accumulated inflow is small, and thus not easily detected using top-side
sensing only. The observer is able to estimate both the distributed flow, formation inflow, the formation pore pressure and the
fault location fairly accurately. The flow estimation error is shown in ???? while the inflow estimation error and formation
pressure estimation error are shown in ???? respectively.

Case 4: Mass influx and pack-off. In the final case study, we simulate both a region with pack-off and an open-hole section
with formation in- and out-flow. Both pack-off and formation inflow will act as momentum sinks, but the frictional loss caused
by a pack-off will be flow dependent, while the formation inflow is pressure dependent. Thus, for sufficient variation in the data,
the observer should be able to distinguish between the two types of fault and successfully locate and estimate the size of the two
faults.

The pack-off will be modeled by the same orifice equation Eq. (9) used in case 1, but with

fp(x) =χ(x)
[
0 0 0 fp,0

]T (25)

where fp,0 = 1×105 kgm−6 s−2 and the indicator function χ(x) is of dimension N where each element has local support in a
region centered at x and with width L

N . The same inclination Eq. (23) as in case 3 is used, the topside choke pressure is kept
constant at 10bar (1×106 Pa) and the bit flow rate is ramped up and down between 1m3 min−1 and 2m3 min−1 as shown in ??,
which is needed in order to achieve the necessary variation in the data for parameter convergence. The inflow model Eq. (14)
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from case 2 is used (which is also used in case 3), but the reservoir pressure is assumed to be known and constant at pr = 193bar
(1.93×107 Pa) (the well is horizontal in the open-hole section). The productivity index is implemented as

J(x) = χ(x)
[
0 0 0 J0.

]
(26)

where J0 = 2×10−11 m2/s/Pa. The remaining simulation parameters are given in Table 3. We discretized the well into N = 4
sub-intervals, so that 4 pack-off friction factor estimates and 4 productivity index estimates are generated. Again, we stress that
the number of sub-intervals does not affect the level of variation in the data required, only the computational cost. The source
terms in Eq. (5) take the form

φ1(p,x) =
β

A
ψ(x)χ(x)(pr− p(x)) (27a)

θ1 =J0 (27b)

φ2(p,q,x) =
1
ρ


−Agsinα(x)
−q
−q(x)

−q(x)|q(x)|χ(x)
−ψ(x)χ(x)(pr− p(x))

 (27c)

θ2 =
[
1 fw fp fwJ0

]T
. (27d)

The resulting flow, pressure and inflow profiles are shown in ??????. As can be seen in ??, the pressure variations caused by the
changing bit flow rate, makes the inflow alternate between being positive and negative. The pressure profile is also shown for
t = 5 and t = 20 in ?? where the bit flow rate is qbit(t = 5) = 1m3 s−1 and qbit(t = 20) = 2m3 s−1 respectively. The pressure
drops due to pack-off and formation inflow are clearly visible. As can be seen in ????, the flow estimation error is small, but
does not converge to zero. More interestingly, the unknown parameters are estimated fairly accurate. The pack-off friction factor
estimates are shown in ?? while the productivity index estimates are shown in ??. The pack-off region (??) and inflow region
(??) are easily identified, and the size estimates are fairly accurate.

Concluding remarks
In this paper, a recently developed adaptive observer has been used to estimate the flow, and locate and estimate the size of a set
of faults affecting either the mass balance or the momentum balance in the annulus. The observer is demonstrated though 4
simulation case studies involving 1) annulus pack-off, 2) formation inflow, 3) geological faults resulting in simultaneous losses
and gains, and 4) a combination of formation inflow and annulus pack-off. The method can be extended to handle multi-phase
flows, interconnected pipe systems with distinct flow regimes, or other related drilling incidents. The observer utilizes wired-pipe
technology for pressure measurements, which makes it robust to local variations in the pressure profile and local momentum
sources and sinks can easily be identified. To identify faults only affecting the momentum balance, such as a pack-off, the
necessary level of variation in the data is easy to achieve. This was demonstrated in case 1. Here, the localization accuracy is
only affected by the number of distributed pressure sensors. For faults affecting the mass balance, boundary flow measurements
must be utilized, which makes the necessary level of variation harder to achieve. However, most faults resulting in mass inflow
are also likely to affect the local momentum balance, and a redundant set of parameter estimates can be generated. Cases 2,3,4
demonstrate that sufficient estimation accuracy is possible to achieve even without the necessary level of variation in boundary
data needed to achieve parameter estimation convergence for the parameters affecting the mass balance. The fault detection
problem is a statistical problem which involves the identification of a single explanatory model from a large set of possible
models (one for every conceivable drilling incident). The observers that we have demonstrated in this paper may be elements of
an overall fault detection system.

Nomenclature
List of symbols

p = well pressure, Pa

q = well flow, m3 s−1

β = bulk modulus, Pa

A = cross-sectional area, m2
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ρ = density of drilling mud and formation fluids (assumed equal), kgm−3

φ1θ1 = mass balance source term, Pa

φ2θ2 = momentum balance source term, m3 s−1

G = gravitational forces, kgms−2

Ff = flow dependent frictional forces, kgms−2

Fr = force equivalent formation momentum inflow term, kgms−2

qin = well inflow from formation, m3 s−1

qbit = bit flow, m3 s−1

pchoke = choke pressure, Pa

Flocal = local frictional forces, kgms−2

Fglobal = global frictional forces, kgms−2

fr = formation momentum inflow factor, kgm−3 s−1

α = well inclination angle, dimensionless

χ = indicator function, dimensionless

L = well length, m

fp = friction factor due to pack-off, kg/m6/s2

fw = wall friction factor, kgm−3 s−1

J = productivity index, m2/s/Pa

pr = formation pressure, Pa

ρr = formation density, kgm−3

g = gravitational acceleration, 9.81ms−2

X1 = open-hole region, m

ψ = indicator function, dimensionless

t = time, s

x = spatial position, m

Acronyms

LWD Logging While Drilling

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PE Persistently Exciting (or Persistent Excitation)
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Appendix A: Overview of observer design
The equations needed to implemented the observer are presented in the following. First, the simple design from ?? for scalar
2×2 systems is given. This design was extended to multi-dimensional n×n systems in ? which is presented next. We first state
the following main technical results.

Theorem 1 (Modified from ?). Consider the state observer Eq. (A.4) and let q̂(x) = ζ̂ (x)− l p(x) for some constant l > 0. If
θ1 = 0 and estimates of θ2 are generated with the adaptive law specified by Eqs. (A.10)–(A.13). Then, the state estimation error
||q̃|| and parameter estimation error (θ2− θ̂2) are bounded and

||q̃|| → 0. (A.1)

Conjecture 1 (Modified from ?). Consider the state observer Eq. (A.4) with θ̂1 generated by the adaptive law Eqs. (A.5)–(A.8)
and θ̂2 generated with the adaptive law specified by Eqs. (A.10)–(A.13), and let q̂(x) = ζ̂ (x)− l p(x) for some constant l > 0.
Then, the state estimation error ||q̃|| and parameter estimation error (θ1− θ̂1), (θ2− θ̂2) are bounded. Moreover, if PE condition
Eq. (A.9) is satisfied, then

||q̃|| → 0. (A.2)

Notation For some matrices A,B, the notation A� B is used to indicate that A−B is positive definite, and equivalently A� B
is used to indicate that A−B is positive semi-definite. The notation := is used to indicate that the left hand side is a defined
variable. The symbol · is used as a place-holder when a function is not strictly a function of some variable. E.g. for a function

u : [0,1]× [0, t)→ R : (x, t) 7→ u(x, t), we write e.g. ||u(·, t)|| to denote the L2([0,1]) norm
√∫ 1

0 u2(x, t)dx which is a function of
t ∈ [0,∞) only.

Observer design for 2×2 hyperbolic systems. Consider the 2×2 hyperbolic system given in Eq. (5) and define a = β

A ,b = A
ρ

.
Let ζ (x) = l p(x)+q(x) for some l such that λ := la > 0. We have

ζt(x)+λζx(x) =(l2a−b)px(x)

+lφ T
1 (p(x),x)θ1 +φ

T
2 (q(x),x)θ2 (A.3a)

ζ (0) =l p(0)+q(0) (A.3b)

To estimate the unknown state ζ , consider the observer

ζ̂t(x)+λ ζ̂x(x) =(l2a−b)px(x)

+lφ T
1 (p(x),x)θ̂1 +φ

T
2 (q̂(x),x)θ̂2 (A.4a)

ζ̂ (0) =ζ (0) (A.4b)

where q̂(x) = ζ̂ (x)− l p(x) and θ̂1, θ̂2 are estimates of θ1,θ2.
For estimates of θ1, let the operators Ψ, Ω and ∆ be defined as

Ψ[p] :=
∫ 1

0
p(x)dx (A.5a)

Ω[p] :=
∫ 1

0
φ1(p(x),x)dx (A.5b)

∆[q] :=−a(q(1)−q(0)) (A.5c)

and consider the filters

ν̇ =− ςν +Ω[p] (A.6a)
ρ̇ =− ς(ρ−Ψ[p])+∆[q] (A.6b)

for some ς > 0 and let

Ψ̄ := ρ +ν
T

θ1. (A.7)
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For some Γ1 = ΓT
1 � 0, we select the adaptive law

˙̂
θ1 = Γ1ε1ν (A.8)

where ε1 := Ψ[p]−ρ−νθ̂1. For parameter convergence, we say that Ω[y] is PE (persistence of excitation) if

α0I � 1
T

∫ t+T

t
Ω[y]Ω[y]T dτ � α1I, (A.9)

for some α0,α1,T > 0.
For estimates of θ2, consider the signal σ̂ defined by

˙̂σ =
∫ 1

0
η [q̂](x)

(
−bpx +φ

T
2 (q̂(x),x)θ̂2

)
dx (A.10a)

σ̂(0) =θ̂
∗
2 (0) (A.10b)

where

η [q̂] = λ
−1

Γ2Φ[q̂], (A.11)

and let

θ̂2 = σ̂ −Ξ[q̂]. (A.12)

where the operator Ξ is computed as

Ξ[q̂(·, t1)] = +Ξ[q̂(·, t0)]

+
∫ 1

0

∫ 1

0
η [q̂(·, t0)+ γ [q̂(·, t1)− q̂(·, t0)]] (x)

× (q̂(x, t1)− q̂(x, t0))dxdγ. (A.13)

Observer design for n×n hyperbolic systems. The observer design for 2×2 hyperbolic systems can be generalized to n×n.
Consider the system

yt +Ayx +Bzx = f (y,x) (A.14)
zt +Cyx +Dzx =g(y,x)+φ(y,z)θ (A.15)

where y is a m-dimensional measured signal, z is a (n−m)-dimensional unknown signal, A,B,C,D are constant parameters
describing the flux densities, and f ,g are general non-linear functions. For any diagonal Λ1 and Λ2 with distinct entries, and any
K2, there exist matrices K1, L and P = diag(P1,P2) such that (α,β ) := P(y,z) maps system Eq. (A.14) into

αt +Λ1αx + B̄βx = f̄ (α,x)−K̄1αx (A.16a)
βt +C̄αx +Λ2βx =ḡ(α,x)

+ φ̄((α,β ),x)θ−K̄2αx (A.16b)
(α(x,0),β (x,0)) =P(yic(x),zic(x)) (A.16c)

where

K̄1 =P1K1P−1
1 (A.17a)

K̄2 =P2K1P−1
1 (A.17b)

B̄ =P1BP−1
2 (A.17c)

C̄ =P2(C− (D+LB)L+LA−K2)P1 (A.17d)

and [
f̄ (α,x)
ḡ(α,x)

]
=P
[

f (P−1
1 α,x)

g(P−1
1 α,x)

]
(A.18)

φ̄((α,β ),x) =P2φ(P−1(α,β ),x). (A.19)
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Based on Eq. (A.16) we propose the observer

α̂t +Λ1α̂x + B̄β̂x = f̄ (α,x)− K̄1αx (A.20)

β̂t +C̄α̂x +Λ2β̂x =ḡ(α,x)+ φ̄((α, β̂ ),x)θ̂

− K̄2αx (A.21)

(ŷ, ẑ) =P−1(α̂, β̂ ) (A.22)

where each element θ̂i, in θ̂ is generated as

θ̂i =σ̂i−Ξi[(α, β̂ )] (A.23)

˙̂σi =
〈

η
α
i [(α, β̂ )],−(Λ1+K̄1)αx + f̄ (α, ·)

〉
+
〈

η
β̂

i [(α, β̂ )],−P2DP−1
2 β̂x +Σ

〉
(A.24)

Σ(x) =ḡ(α,x)+ φ̄((α, β̂ ),x)θ̂−C̄α̂x− K̄2αx (A.25)

σ̂i(0) =θ̂0 +Ξ[(αic, β̂ic] (A.26)

and where the operator Ξ is computed as

Ξi[(α(·, t), β̂ (·, t))]

=
∫ 1

0

〈
η

α
i

[(
α(·,0)+ γ(α(·, t)−α(·,0))
β̂ (·,0)+ γ(β̂ (·, t)− β̂ (·,0))

)]
,

α(·, t)−α(·,0)〉dγ

+
∫ 1

0

〈
η

β̂

i

[(
α(·,0)+ γ(α(·, t)−α(·,0))
β̂ (·,0)+ γ(β̂ (·, t)− β̂ (·,0))

)]
,

β̂ (·, t)− β̂ (·,0)
〉

dγ (A.27)

where (ηα
i ,η

β̂

i ) solves

(P1BP−1
2 )T

η
α
i [(α, β̂ )] =−γiΦi[(α, β̂ )] (A.28)

(P2LBP−1
2 )T

η
β̂

i [(α, β̂ )] = γiΦi[(α, β̂ )]. (A.29)
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Table 1—Simulation parameters case 1.

Parameter Value Description

L 1650m Well length
β 1.78×109 Pa Bulk modulus
ρ 1210kgm−3 Drilling fluid density
A 0.0636m3 Annulus cross sectional area
g 9.81 ms−2 Gravitational acceleration
fw 50kgm−3 s−1 Wall friction factor

Table 2—Simulation parameters case 2.

Parameter Value Description

L 7000m Well length
β 1.78×109 Pa Bulk modulus
ρ 1196kgm−3 Drilling fluid density
A 0.024m3 Annulus cross sectional area
g 9.81 ms−2 Gravitational acceleration
fw 100kgm−3 s−1 Wall friction factor
fr 100kgm−3 s−1 Inflow-induced friction factor
ρr 1210kgm−3 Formation pressure parameter #1
pr,0 10×105 Pa Formation pressure parameter #2

Table 3—Simulation parameters case 3 and 4.

Parameter Value Description

L 7000m Well length
β 1.78×109 Pa Bulk modulus
ρ 1210kgm−3 Drilling fluid density
A 0.024m3 Annulus cross sectional area
g 9.81 ms−2 Gravitational acceleration
fw 100kgm−3 s−1 Friction factor
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