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Abstract

Arrangements of nanomagnets known as artificial spin ices
show great potential for use in unconventional computation.
The majority of exploratory work done in this area considers
just a small handful of well studied geometries (nanomag-
netic arrangements), and uses them as if they were a black
box. Here we detail a novel representation of artificial spin
ice geometries, which lends itself to the tuning and evolu-
tionary search of geometries. Using our representation we
present geometries tuned to exhibit a desired computational
or meta-material property. This is the first example of such a
search performed on artificial spin ice.

Introduction
New materials and novel computational paradigms are of
great interest, as traditional silicon based computing sys-
tems struggle with scaling issues due to the slow-down of
Moore’s law (Moore, 1965), the power wall (Bose, 2011),
and architectural challenges (Dennard et al., 1974). The ar-
chitectural challenges do not relate to the silicon substrate
but originated in the Turing-Von Neumann (Turing, 1937;
von Neumann, 1945) concept of global control and continu-
ous data and instruction movement.

In contrast to the global sequential principles of con-
ventional computers, unconventional computation (Teuscher
and Adamatzky, 2005), and material computation (Stepney,
2008) may exploit vast parallelism and emergent phenom-
ena, e.g., self-organisation, in combination with bio-inspired
design methods to achieve a physical system capable of ex-
tremely effective computation.

Artificial spin ice (ASI) has become a medium of interest
for both its behaviour as a meta-material (Stepney, 2008),
and its computational potential (Jensen et al., 2018). ASI
is a ferromagnetic meta-material consisting of a large array
of nanomagnets. In most of work on ASI, the nanomagnets
are organised in fixed repeated patterns termed geometries.
Figs. 1a to 1c illustrate three such patterns: Square, Pin-
wheel and Kagome. The nanomagnets interact locally pro-
viding a material with complex emergent behaviour (Skle-
nar et al., 2019). ASI’s self-organisation properties, together

with their rich dynamics based on a large number of non-
linear elements, make it an intriguing substrate for material
computation.

ASI arrays are easy to scale, i.e., scaling the number of
elements from a few to millions. Furthermore, ASI systems
can be perturbed externally, e.g., using global or local mag-
netic fields as to influence the dynamics.

ASI is a substrate well suited to neuromorphic comput-
ing (Monroe, 2014) and evolution in materio (Miller et al.,
2014). The external magnetic field and the geometry are
the main adjustable properties that influence the dynamical
and emergent properties of an ASI. In recent work by Jensen
and Tufte (2020) and Hon et al. (2021) an external magnetic
field was used to tune the ASI dynamics toward computa-
tional properties. Here we take the less explored route of
searching for novel ASI geometries that provide the sought
after properties.

Evolutionary Algorithms (EAs) are a good choice for
exploring new substrates, particularly when the relation-
ship between the configuration of the system and the emer-
gent behaviour is mostly unknown. However, the number
of elements in ASIs can be a challenge for EAs, if us-
ing a representation requiring each of many magnet to be
parameterised independently. To support the the possibil-
ity of exploring the scalability of ASI we propose using a
genotype-phenotype mapping inspired by tiling (Downing,
2005) where the representation could be used to generate
geometries at different sizes.

We put forward a new representation for ASIs, to facili-
tate the evolutionary search of their geometry. We evaluate
our representation and the geometries it produces, using a
material property and a computational property, assessing
resilience and diversity respectively. The two quite oppo-
site properties are chosen to show that ASI geometries are
truly evolvable, it is possible, using our representation, to
move smoothly an incrementally through the search space.
Further, the scalability of the representation is explored by
investigating whether the novel evolved ASI geometries pro-
duced can be scaled up in size whilst a dynamic property
is maintained. The tiling approach offers the possibility to
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(a) Square (b) Pinwheel (c) Kagome (d) Evolved geometry

Figure 1: Example of standard ASI geometries (a), (b) and (c). (d) illustrates an instance of an evolved ASI geometry.

keep the search space (genotype space) small or constant,
whilst the size of the ASI (phenotype) can be specified inde-
pendently as part of the mapping process. The evolved ASIs
are evaluated toward dynamic behaviour, i.e., the fitness is
based on trajectories through the state space.

All ASI systems are simulated using the flatspin simula-
tor (Jensen et al., 2020).

Artificial spin ice
Originally, ASIs were developed as nanosystem substrates
for studies into geometrical frustration (Wang et al., 2006).
In later years the term ASI has become broadened to include
any 2D arrangement of nanomagnets. The vast majority of
ASI experiments deal with uniform pattern of nanomagnets,
e.g., Square (Wang et al., 2006) or Pinwheel (Macêdo et al.,
2018) (Figs. 1a and 1b), due to the need for somewhat pre-
dictable behaviour in physical experimental samples. How-
ever, there is no requirement for an ASI to be restricted to
repeating patterns, as long as the design constraints, e.g.,
minimum distance between any two magnets, are fulfilled.
Fig. 1d illustrates an example of a novel evolved ASI geom-
etry.

If the shape of the nanomagnet itself is below some crit-
ical dimensions (length, width, and thickness) the internal
spin moments of the magnet will align in one direction, at a
macro level the magnet can then be viewed as a binary ele-
ment, i.e., the spin points in one of two possible directions
along the elongated shape of the magnet. Interactions be-
tween a global field or other magnets can cause a magnet
to change its state (flip). The arrows in the upper square of
Fig. 1a illustrate the alignment of the magnets’ spins in one
of the two possible directions.

From its origin in experimental physics, there are estab-
lished lithographical fabrication processes for ASI. Fig. 2a
illustrates a produced ASI sample from our ongoing experi-
ments with Pinwheel geometries and Fig. 2b shows an exam-
ple of a preliminary produced sample of one of our evolved
geometries. For experiments targeting behaviour there are
imaging techniques that can capture the magnetisation of in-
dividual nanomagnets.

Detailed simulation frameworks like the mumax3 micro-
magnetic simulator (Vansteenkiste et al., 2014) give an accu-
rate and detailed understanding of the internal behaviour of
nanomagnetic elements and their interactions (in the range
of hundreds of nanomagnets). In other large scale simula-
tors, such as flatspin (Jensen et al., 2020), such fine grained
detail is traded off for speed and efficiency. This offers in-
sight into the dynamics of ASI systems at a scale (millions
of nanomagnets) where emergence and self-organisational
properties are observable in reasonable simulation time. As
such, ASI, as a substrate for computation, offers models
from interacting atomic spins to large scale meta-material
simulations, as well as the opportunity to produce physical
samples for experimental verification.

ASI as computer

Vast parallelism with emergent and self-organisational prop-
erties, arising from local communication make ASI a
promising substrate for computation. Moreover, ASIs are
capable of a huge range of behaviours, just the small ad-
justment from Square (Fig. 1a) to Pinwheel (Fig. 1b) (el-
ements rotated 45◦) gives the system completely different
emergent properties. However, to provide useful compu-
tation, the system must be tunable to a dynamic regime
where computation can be observed and exploited. Re-
cently several promising results demonstrate that ASI is a
substrate with such a potential. Within the Reservoir Com-
puting (RC) framework (Jaeger, 2001; Maass et al., 2002)
dynamics in Square ASI geometries have been tuned by
external magnetic fields to different modes of computa-
tion, i.e., memory, classification, or systems including both
properties (Jensen et al., 2018). Furthermore, ASI geome-
tries Pinwheel (Jensen and Tufte, 2020) and Kagome (Hon
et al., 2021) have been demonstrated to exhibit dynam-
ics that show good scores on standard RC benchmarks of
kernel-quality and generalisation-capability (Legenstein and
Maass, 2005). The given example of computing in ASI uses
external magnetic fields and physical parameters such as dis-
tance between nanomagnets as tuning parameter whilst the
geometry was fixed.
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(a) Manufactured Pinwheel

(b) Manufactured evolved geometry

Figure 2: Scanning electron microscopy (SEM) images of
(a) a Pinwheel ASI, and (b) an ASI found through evolution
using our ASI representation.

Representation and evolutionary setup
An EA consists of a population of individuals, a means
to discover new individuals (mutation or crossover), and a
mechanism to remove less fruitful individuals (selection).
Consequently, it also requires some notion of ordering on
the individuals, defining which is the most or least fruitful
(fitness function). In evolutionary terms, this is the fitness
of an individual. Here, we detail our novel representation of
individuals for use in an EA, how they are used to generate
ASI geometries, how they can be mutated and combined to
explore new geometries, and how fitness can be assessed.

Representation of ASIs
Given that ASIs of interest can be made up of thousands of
magnets or more, it would be difficult to use a representa-
tion where each magnet is parameterised independently. It
follows therefore, that a good representation is one where a
few parameters can determine the layout of many magnets,
via some genotype to phenotype mapping. A benefit of this
approach is that the same representation could be used to
generate a given geometry at different sizes.

Common ASI geometries can be scaled to any size

through a simple tiling process using a square tile or unit
cell, though such a tiling process would bias the complex-
ity required to create certain geometries of seemingly equal
structural complexity, e.g., a Square or Pinwheel geome-
try can be constructed with a tile of two magnets whereas
a Kagome geometry requires three. Ideally a representa-
tion for such fundamental geometries as these should, it-
self, be fundamental. This issue can also be seen in Linden-
mayer systems (L-systems) which are commonly employed
for generating structures. Where a simple structure does not
necessarily have a simple representation. Furthermore, L-
systems are very sensitive to small changes in the rule-set
(genotype), leading to large changes in the produced struc-
ture (phenotype). Whereas, when using an EA, the ability
to move smoothly and incrementally between different solu-
tions is highly desirable.

Our representation of an ASI uses a set of tiles, but does
not place them in a conventional manner. Each tile consists
of exactly two magnets: one ‘origin magnet’ fixed in the
centre with 0◦rotation, and one ‘free magnet’ that can be
positioned anywhere in the tile and have any rotation. A tile
can be ‘applied’ to a magnet to generate a new magnet as
follows: given a magnet M and a tile T , rotate and translate
T such that the origin magnet in T is completely aligned
with M , then the position and rotation of the free magnet in
T is used to generate a new magnet in the pattern. A full,
rigorous description of this is given in algorithm 1, and a
pictorial description is given in Fig. 3. Essentially, we use
our tiles more as stencils: aligning a tile to a magnet in the
system shows where the next magnet can be ‘drawn’. Note
that a tile can be applied to the same magnet twice, as the
magnets have 2-fold rotational symmetry.

An additional level of complexity can be achieved through
attributing symbols to each magnet, similar to that of a
rewriting system. When using symbols, in order for a tile T
to be applied to a magnet M , the symbol of M must match
the symbol of the origin magnet in T . These symbols can be
parameterised, as in parameterised L-systems. In this work,
we choose to modify the symbol of a magnet as a function of
its current rotation. Specifically, we use a piece-wise func-
tion to select the symbol of a magnet depending on whether
its orientation is greater or less than 180◦. This is by no
means the most sophisticated, or likely the best way, to pa-
rameterise the symbols. It is merely a simple example we
found sufficient to increase the ‘context-sensitivity’ of the
generative process.

Our ASIs are built through the iterative application of tiles
on magnets, as described above. As such the tiles are anal-
ogous to the genes in a genome, a finite number of build-
ing blocks which are used to construct an ASI geometry
(the phenotype). The process is described in detail in al-
gorithm 2.

As can be seen in algorithm 2, magnets are not placed if
they would overlap with an already placed magnet (to en-
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(a) (b)

(c) (d)

Figure 3: Two applications of a tile, starting from a single
magnet. (a) The tile that will be applied, with the origin
magnet marked in red. (b) An initial single magnet that the
tile shall be applied to. (c) The result after one application of
the tile. (d) The result of again applying the tile to the result
in (c). At each application, the origin (red) magnet of the
tile is overlapped with all magnets which have not yet had a
tile applied to them (blue). Continuing the shown iteration
produces the Square geometry.

sure physical restrictions of manufacturing are not violated),
or if the compared symbols are different. It is also possible
to specify the minimum distance permitted between mag-
nets (this is useful for when it comes to physically produc-
ing the ASI). Due to these constraints, it is possible that, af-
ter a number of steps, no new magnets can be placed. Thus
for some tile-sets, the size of phenotype they can produce is
bounded. Depending on the use-case of the representation
this could be a drawback if geometries of a certain size are
required, as some individuals may have to be culled or other-
wise if they cannot produce geometries which satisfy a size
requirement. Alternatively, this can be viewed as a form of
self-regulation, giving the representation, and therefore the
EA, control over where the geometry should terminate.

Mutation and crossover

Given our genotype is a collection of tiles, we have two
classes of mutation operators. The first class entails adding
or removing tiles to the genotype. In the second class are op-
erations which modify individual tiles within the genotype,
through rotating or transposing the second magnet within
the tile. Similarly, the two crossover operators produce new
individuals by either sampling tiles from two parent indi-
viduals, or by combining the angles and positions from the
parents’ tiles.

Algorithm 1 Apply a Tile to a Magnet

1: function APPLYTILE(tile, magnet)
2: newMagnets← empty list
3: origin← origin magnet of tile
4: Rotate tile about centre of origin such that ROTA-

TION(origin) = ROTATION(magnet)
5: for θ ∈ {0, 180} do
6: Rotate tile θ◦ about centre of origin
7: if SYMBOL(origin) = SYMBOL(magnet) then
8: add copy of the non-origin magnet in tile to
newMagnets

9: end if
10: end for
11: return newMagnets
12: end function

Simulating geometries
Using flatspin we can provide input and stimuli to the mag-
netic system through applying and altering the properties of
a global magnetic field. There are limitless options when
deciding how an external field can be employed to encode
input. Here, for simplicity, we constrain ourselves to apply-
ing a global field as a sine wave, and alter the amplitude and
the angle at which the field is applied in order to stimulate
the system.

flatspin models the time evolution of the system, aris-
ing from magnet-to-magnet interactions or influence from a
global field, on a flip by flip basis. As such flatspin provides
us with a detailed time series of the system’s dynamics. At
each point in the time series we can view the current spin of
each magnet. The ensemble of these binary spin values is
what we define as the state of the system.

Evolving geometries
In this section we employ two fitness functions to assess the
representation’s ability to facilitate the evolutionary search
for a material property: the resilience to an external field,
and a computation property: the number of unique states in
the system’s trajectory.

Resilience: Minimising flipping and examining
scalability
Here we search for a simple, yet non-trivial property of an
ASI; the resilience of an ASI to an external field. That is, un-
der a series of global field applications, find an ASI which
minimises the number of magnet flips that occur. To achieve
our goal of resilience, we use a minimum flips fitness func-
tion. Secondly, to demonstrate scalability in our representa-
tion, we show that we can search for a property in a ASI of
one size, and then scale up the chosen ASI and see it retains
the desired property.

If an oscillating field was applied at only one angle, then
given the elongated, rectangular shape of our magnets the
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Algorithm 2 Produce ASI from a tile set

1: function GENERATEASI(tileSet, maxSize)
2: frontier ← empty list
3: frozen← empty list
4: insert into frontier a magnet with position=(0, 0), angle=0 and symbol = 0
5: while SIZE(frontier) + SIZE(frozen) < maxSize and SIZE(frontier)> 0 do
6: newMagnets← {APPLYTILE(tile,magnet) | ∀tile ∈ tileSet, ∀magnet ∈ frontier}
7: remove all magnets in frontier and add them to frozen
8: for magnet ∈ newMagnets do
9: if magnet does not intersect any magnet in frozen then

10: add magnet to frontier
11: end if
12: end for
13: end while
14: append magnets in frontier to frozen
15: return TRUNCATE(frozen, maxSize)
16: end function

solution would trivially be to orient all magnets orthogo-
nal to the field, aligning it to their hard axis. We observed
such behaviour in preliminary evolutionary runs of this fit-
ness function. To increase the difficulty of the task, and thus
give a more interesting solution, we oscillate a field at 0◦and
then at 90◦. Now the EA must take account of the local in-
teractions between the magnets rather than only the global
property of a magnet’s angle compared to the angle of the
global field.

As we are evolving the geometry of the ASI and not the
initial state, we do not want the fitness to heavily depend
upon the initial state, that is, the starting orientation (spin)
of magnets in the geometry. If the magnets happen to be
initialised in a state of high energy they are more likely to
flip. To remedy this, we cycle the fields multiple times and
do not record flipping that happens in the first field cycles to
allow the system to settle into a lower energy state, as to not
penalise unfavourable initial states.

A benefit of the scalable nature of our representation is
that it allows us to find candidate ASIs that would otherwise
be of too greater size to search for in reasonable time. For
some given property, we can search more quickly for an ASI
at a smaller size. When sufficiently fit individual is found,
we can use the representation to grow it to a larger size and
evaluate if it still retains the desired property. Of course, the
fitness of this individual may strongly depend on the size to
which it is grown. To encourage the EA to produce individ-
uals with fitness less sensitive to their size, we evaluate their
fitness at multiple sizes.

Geometries of 100 magnets were evolved using the fol-
lowing evolutionary parameters: populations size = 200,
maximum number of generations = 500, mutation rate
= 0.3 and crossover rate = 0.2. Here we allow individu-
als to consist of up to two tiles, and a symbol alphabet of
size 3. The magnets have dimension 220 nm× 80 nm and

cannot be placed closer than 20 nm to another. Under this
fitness function, it would be advantageous for an individual
to self-regulate itself into producing less than 100 magnets
(fewer magnets, fewer flips). Thus individuals that cannot
produce the required number of magnets are not evaluated,
and assigned the worst possible fitness (though they are still
able to undergo mutation and crossover). Roulette selection
with elitism is used to remove low fitness individuals from
the population.

Geometries are mapped into flatspin using the following
flatspin parameters: hc = 0.2, α = 30272, swb = 0.4,
swc = 1, swβ = 3, swγ = 3. The deceptively large mag-
nitude of α, the flatspin parameter specifying the strength
of interaction between individual magnets, is due to the dif-
ference of units used in the tiles and flatspin (nanometers in-
stead of meters). The fitness is evaluated by applying one pe-
riod of a sinusoidal field, with amplitude H , at 0◦then again
at 90◦. This is repeated four more times and the total num-
ber of times any magnet flips is recorded, excluding those
that flipped in the first two periods. As aforementioned, we
also apply this procedure to smaller fractions of the geome-
try. We evaluate the number of flips recorded when growing
the individual to 20, 40 and 80 magnets, as well as full size
(100 magnets). Thus our minimum flips fitness function is
given by the sum of these values, and it is this that the EA
attempts to minimise.

Fig. 4 shows separate runs of the EA with different val-
ues of field strength H . Clearly the difficulty of the task to
find a geometry that minimises the number of flips is heavily
dependent onH; for a weak field it is easy to choose a geom-
etry with few or no flips. To illustrate the inherent difficulty
at each field strength a random sample of 100 individuals
was evaluated with the minimum flips fitness function, and
show the spread of these results. If a randomly generated in-
dividual cannot meet the geometry size requirement due to
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Figure 4: Box plot showing the spread of the minimum
flips fitness when applied to 100 randomly initialised ge-
ometries, at each field strength H . Red crosses indicate the
fitness of best geometry discovered through evolution. For
reference we also include a perfect Square geometry (blue
plusses) with the smallest magnet-to-magnet distance that
was available to the EA. This was also done for Pinwheel
and Kagome, but they are excluded from the graph as they
were strictly outperformed by Square.

self-regulation, it is discarded and re-sampled.
From Fig. 4 we see that the EA performs as well as or

better than the best individual in the random sample at all
values of H , and significantly better for some values of H .
At low values of H it is unlikely that flips occur regardless
of the geometry, we see the random sample producing many
low fitness individuals. Towards the higher field values, we
see saturation in the minimum fitness that can be produced
in both the results of the EA and the random sample. At
these high field values, it appears that the solution of least
flips resembles the trivial, single field direction case, in that
the magnets are orientated close to perpendicular against one
of the fields thus only flipping every other field cycle. This
is made clear by the minimum fitness saturating at 1920 ex-
actly half of the maximum possible fitness.

The area possibly of most interest in Fig. 4 is the region
H ∈ [0.08, 0.095], where the field is strong enough that all
geometries in the random sample have high fitness, but the
EA is still able to achieve low, and in some cases, perfect (0)
fitness . The fitness in this region being well below 1920,
while the random sample has saturated. This indicates that
the EA is finding geometries which exploit the interaction
between magnets to prevent the flipping, rather than consid-
ering only each individual magnets orientation with respect
to the global field angle. Surprisingly, we see the best fit-
ness found at H = 0.08 (117) is noticeably worse than the
best found at H = 0.095 (0). In fact, the individual found at
H = 0.095 has perfect fitness when evaluated at H = 0.08.
This discrepancy is likely due to the inherent randomness of

Figure 5: Graph showing the minimum flips fitness of
the best individual in the population at each generation, for
H= 0.08 and H= 0.095. H = 0.095 terminates early as it
achieves perfect fitness (0)

the evolutionary search; looking at Fig. 5 we can see that
a much steeper descent in fitness in the H = 0.08 case.
This seems to indicate the poorer results are the product of
premature convergence and could be remedied by diversity
measures or otherwise, though such things are outside of the
scope of this work.

In Fig. 6 we have taken the geometry found by the EA
at H = 0.07 and evaluated its fitness after scaling it up to
different sizes. We see at a 1.5 scaling factor the perfect fit-
ness of the individual is retained; at 2 and 4 times the fitness
is still relatively low. We see a degradation of the scaling
above this point with the dramatic increase in fitness at 8
times scaling.

Diversity: State count novelty search
Now we examine the EA’s performance when using a com-
putational property as our fitness function. Commonly, in
the pursuit of computation with a dynamical system, the tra-
jectory of the system is leveraged for computation e.g., bal-
listic computing (Stepney, 2008) or RC. Such approaches
require the ability to perturb the trajectory via some input to
the system.

Here we explore the ability of our representation to pro-
duce geometries with variety of responses to an input, and
the ability of the EA to locate them. Specifically, we de-
fine the property ‘state count’ as the number of unique states
an ASI passes through as it is perturbed by a series of in-
puts. We fix the input series and use a naı̈ve novelty search
fitness, attempting to find geometries with state counts not
previously seen by the EA. Essentially, we are aiming to
maximise the number of different state counts present in the
population referred to as the state count diversity. The state
count diversity is therefore maximised when the population
contains an individual for every possible value of state count.
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Figure 6: The best geometry found for the minimum flip-
ping fitness function at H = 0.07 scaled up to 1.5, 2, 4 and
8 times its original size.

We encode an input bit string as a variation on the angle
of a global sinusoidal field acting upon the system. A zero
or one in the input bit string represents applying a field cycle
at 0◦or 90◦respectively. After each field application the state
of the system is recorded. As such, the maximum number of
unique states observed under an input string of length n is
n.

The EA and flatspin parameters remain almost unchanged
from previous experiment, the only difference is that we in-
crease both the number of tiles and symbol alphabet size to
6. This allows more complex geometries to be found, and
vastly increases the search space, thus allowing for greater
diversity in the population. We fix the input to the arbitrarily
chosen bit string “0101 0011 0011 0000 1111”. Geome-
tries are simulated in flatspin and their state count is com-
puted. The fitness of an individual, which the EA is min-
imising, is the difference between the state count of the indi-
vidual and the closest state count value not yet found by the
EA. Though this is a rather crude implementation of nov-
elty search, given the very small and discrete behavioural
space in this case, we believe it is sufficient. As before, in-
dividuals which cannot meet the geometry size requirement
receive the worst possible fitness score.

Again, as our problem of interest is likely dependent on
the field strength H of our input to the system, we test the
EA at multiple values of H and compare it to random sam-
ples to gain some intuition of the difficulty of the task. As
state count diversity is a property of the population not an
individual, we must sample random populations. 100 in-
dependent populations containing 100 randomly initialised

Figure 7: Box plot showing the spread of the unique states
fitness when applied to 100 randomly initialised geometries.
The red crosses indicate the number of different state counts
the EA was able to discover, 20 being the maximum possi-
ble.

geometries were generated for each value of H . Then, for
each population, the state count diversity was calculated. In
Fig. 7 we see that, for all but two H values, the EA finds
an as good or better variety of geometries w.r.t state count.
At H = 0.07 the EA achieves perfect state count diversity,
meaning for any desired state count we can supply a geom-
etry which provides it. We see two instances towards the
end of the graph where the EA fails to find as many different
state counts as seen in the best populations of the random
sample. These instances both occur after the variety of dif-
ferent state counts has begun to saturate, and in both cases
the EA achieves a state count diversity one fewer than the
best population in the sample.

Discussion
Through the use of an EA, facilitated by our novel ASI rep-
resentation, we were able to discover geometries resilient to
external influence. More generally, this shows this repre-
sentation can be used as a useful tool when searching for a
structure with certain, emergent, physical properties.

In our experiment on scalability we observed perfect scal-
ing on the examined geometry at 1.5 scaling and a gentle
degradation fitness as the scaling increased up to 4. Clearly
there is some threshold between 4 and 8 at which the fitness
suffers greatly from increases in size, and the exact location
of this threshold is likely strongly tied to the properties of
the evolved individual. The apparently poor scalability at
the highest scaling factor is somewhat to be expected, after
all it is by no means uncommon for extrapolations to fail
when too far from the original measurements. Such scal-
ing problems could arise from small numerical noise in the
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position and angle of magnets, which is amplified when the
geometry is scaled up. Despite this, the results show our
representation has potential for scalability, and we expect
the scalability observed here could be improved upon with
more a sophisticated approach to encouraging scalability in
the geometries. As an example, rewarding the geometries
which exhibit higher levels of self-similarity could improve
scalability. Alternatively, Harding and Miller (2007) demon-
strate the merit in re-evolving individuals when necessary;
one could envision a process in which an EA is run quickly
for many generations with geometries of a smaller sizes,
then, the best individuals could be scaled up and undergo
evolution for a small number of generations in order to fine-
tune them.

Figure 8: A selection of the geometries found in the search
for different unique state counts at H = 0.07

The novelty search targeting the state count property
demonstrated the representation’s capability in producing
diverse geometries with a variety of responses to a given in-
put. Furthermore, through purely visual examination of the
structures shown in Fig. 8, we can see these different indi-
viduals vary greatly in their structure also. Such a range is
crucial to a representation if it is to be exploited for evolu-
tionary search, particularly when we have little knowledge a
priori on the kind of geometry that would perform well on a
given task.

In both evolutionary runs, we a see good variety of differ-
ent structure being explored, indicating the range represen-
tation covers sufficiently large region of the search space.
Furthermore, from the H = 0.095 fitness evolution shown
in Fig. 5, we see the EA is capable of moving smoothly
through the behavioural landscape using our representation.
Of course, premature convergence will always be an issue
when there are no measures in place to combat it.

With this representation, many of the most well-studied
and simple geometries, e.g., Square, Pinwheel and Kagome,
are represented by the simplest form of individual - an in-
dividual consisting of only one tile. Consequently, in this
representation, the transition between these geometries can
be completely continuous. More complex geometries arise
from individuals made up of more tiles, which gives a mech-
anism to bias the complexity of individuals produced in an
evolutionary search.

Engel et al. (2018) use machine learning to generate a
large zoo of possible ice structures. Their search is bounded
by thermodynamic constraints. In ASI we have no such
constraints, which may be why no similar attempt has been
made for ASI. With our representation such an endeavour
may now be feasible, as it give a way to generate many ge-
ometries and allows restrictions to be placed on the geome-
tries size or complexity. In a similar vein, one could classify
geometries based on their computation properties. Dale et al.
(2019) give a framework which can be used to measure the
potential of a substrate for use in RC, and to indicate which
computational tasks the substrate would excel at. Using such
a framework in conjunction with our representation, would
allow the creation of a catalogue of geometries sorted by the
class of computational task they perform well in.

Conclusion
In this paper we demonstrate what is, to the best of our
knowledge, the first example of the computational proper-
ties of ASI being tuned through the changing of geometry.
This is made possible by our novel representation of ASI ge-
ometry, which provides an EA with a mechanism to gener-
ate many varied geometries. Such a variety is key when the
relation between system configuration and the emergent be-
haviour is mostly unknown. The representation’s ability to
move smoothly and incrementally through the search space
allows the EA to follow gradients in the fitness landscape.

Scalability arises naturally from the generative process at
the heart of our representation. Our results showed geome-
tries can be tuned at one size and then scaled up, while re-
taining their observed behaviour. Though we note the failure
of this scaling above a certain threshold, we provide some
viable solutions to further extend this threshold.

The domain of ASI geometries is severely underexplored,
with research mostly split between basic tilings and, at the
other end of the spectrum, heavily engineered nanomagnetic
logic systems. Our hope is that this representation opens the
door to a middle ground of complex, interesting and unfore-
seen geometries with computationally useful properties.
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