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Summary

In this Master’s thesis, methods and work are presented that enable the use of
high resolution Zivid point clouds in machine learning using the Minkowski En-
gine library created by Chris Choy. Additionally, a data set consisting of Zivid
point clouds was created in order to perform training in the Fully Convolutional
Geometric Features (FCGF) and Deep Global Registration (DGR) libraries.

The training of both the FCGF and DGR models using Zivid point clouds was
performed in a Singularity container on the NTNU Idun high performance cluster.
The container was created to enable the utilization of the latest Nvidia A100
GPU’s for training the neural networks in PyTorch. Additionally, the container is
able to perform the preprocessing of the raw Zivid point clouds in order to create
a data set for use with the FCGF and DGR libraries.

The Zivid point cloud data set was created by scanning multiple objects from
different angles. The data set presented in this thesis is limited in terms of size
and diversity, but functions as a proof of concept when training neural networks.
Each scan in the data set is close to an order of magnitude larger in terms of
megabytes than in the 3DMatch data set originally used in FCGF and DGR.

The Zivid data set enabled the FCGF and DGR libraries to be used with Zivid
point clouds as input data. We were able to perform training using the Zivid data
set and the results indicated problems in loss calculation. The FCGF model was
having issues with calculating loss which in turn lead to no apparent progress in
the training process. It is assumed that tuning the loss related hyperparameters
in the trainer configuration can lead to improvements in loss calculations. This
is proposed as an interesting topic off study going forward. The results from
training the DGR model also indicated loss related errors. Although, since the
DGR trainer requires a functioning FCGF model it is assumed that these errors
are related to feature extraction rather than only failure to perform registration
on the point clouds.





Sammendrag

I dette masterprosjektet presenteres det metoder og arbeid som muligjør bruken
av høyoppløste Zivid punktskyer i maskinlæringsbiblioteket Minkowski Engine
skrevet av Chris Choy. I tillegg har det blitt laget et datasett bestående av Zivid
punktskyer til å trene nevrale nettverk med kodebibliotekene Fully Convolutional
Geometric Features (FCGF) og Deep Global Registration (DGR).

Treningen av både FCGF og DGR modellene med Zivid punktskyer ble utført i
en Singularity container på NTNU Idun high performance cluster. Containeren
ble bygget for å kunne ta i bruk Nvidia sin siste CUDA arkitektur og dermed
også A100 GPUene på Idun til å trene nevrale netverk i PyTorch. I tillegg in-
neholder containeren de nøvendige bibliotekene til å gjennomføre preprosessering
av rådataene fra Zivid 3D-kameraet for å kunne bruke punktskyene til trening i
FCGF og DGR bibliotekene.

Zivid punktsky-datasettet ble laget ved å skanne flere objekter fra ulike vinkler.
Datasettet som presenteres i denne oppgaven er begrenset med tanke på størrelse
og diversitet. Det fungerer som et konseptbevis for å trene modellene og viser
at det er mulig å generere datasettet. Hvert 3D-bilde i datasettet er omtrent en
størrelsesorden større enn bildene i 3DMatch datasettet som originalt ble brukt i
FCGF og DGR publikasjonene.

Zivid datasettet gjorde det mulig å bruke FCGF og DGR bibliotekene med Zivid
punktskyer som inndata. Vi fikk til å kjøre treningsprogrammet som hører til
FCGF biblioteket og resultatene indikerte at det var problemer med kalkulerin-
gen av feil for hver epoke. Dette problemet førte til at det ikke var noen fremgang
i ytelse for det nevrale nettverket. Vi antar at justering av de feilrelaterte hy-
perparameterene kan føre til forbedringer i feilkalkuleringen. Dette foreslås som
et interessant tema for videre arbeid. Resultatene fra trening av DGR mod-
ellen indikerte også problemer med utregningen av feil. Siden DGR treningen er
avhengig av en velfungerenede FCGF modell antas det at problemene i DGR er
relaterte til feature extraction i stedet for problemer med å utføre registrering på
punktskyene.
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Chapter 1.

Introduction

1.1. Problem Statement
The future of the internet is assumed to be highly dependent upon 3D-data. The
Metaverse is said to be an all encompassing user experience with virtual or aug-
mented reality capabilities. As the fidelity and detail of available 3D-resources
increase, and games and simulations creeps up on photo realism, the need for
efficient solutions for processing such data skyrockets. Today, large corporation’s
such as Spotify, Meta (Facebook) and Tesla use machine learning and AI to im-
prove the user experience of their products. The data that is available for such
corporation’s may shift towards predominantly 3D-based data and therefore also
dramatically increase the need for specialized machine learning libraries focused
on handling 3D-data.

When performing computations on large amounts of 3D-data, a common and effi-
cient approach is to use GPU’s rather than CPU’s for their advantage in parallel
computing. For even more computing capability, one can utilize a high perfor-
mance cluster. Clusters typically offer unparalleled performance and are often the
go-to solution for large scale machine learning. However, using specific libraries
for machine learning on high performance clusters can be a challenge. Such li-
braries often have many specific requirements which can be difficult to manage on
a system wide level. A possible solution is the use of predefined and reproducible
virtual environments such as Docker or Singularity containers. Such containers
can be defined using recipes that specify which version of software to install and
use.

Registration of point clouds is a common problem in 3D scene reconstruction
from real world data. Registration is the process of making two different 3D
scans overlap to create a larger and coherent 3D scene than the two input scans.
This allows for higher detail 3D scenes to be constructed using multiple scans.
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Registration is dependent on common points in the two input scans, such point-
pairs can be found using feature extraction and matching in feature space. In this
thesis, the goal is to provide the necessary foundations for performing registration
with high resolution point clouds captured with a Zivid 3D camera on a high
performance GPU cluster.

1.2. Related Work
This section primarily presents some of the work of Christopher Choy (NVIDIA).
He has been able to represent 3D-data as sparse tensors on the GPU for increased
performance and usability in machine learning. Additionally, he has presented
multiple papers utilizing this technology to solve different problems regarding
3D-data based machine learning [4, 5, 6].

1.2.1. 4D Spatio-Temporal ConvNets

Choy et al. [5] proposed using convolutional neural networks which used 3D-video
as input data. These videos consisted of point-clouds with timestamps. The
proposed convolution kernel type was four dimensional, using the time axis as its
fourth dimension in addition to the three spatial dimensions (X,Y,Z).

When representing a 3D scene, the authors state that the scene is mostly empty
space in terms of important 3D perception features. Therefore the authors choose
to represent the 3D data as sparse tensors. A sparse tensor is a representation of a
tensor where a specific value is removed and only the remaining data is saved. The
selected data is then saved as a dense tensor and the removed values are saved as
a map of regions that consisted of these values. In this way, the authors are able
to represent 3D scenes as dense data-rich tensors for more efficient computations
on the GPU where memory typically is a limited resource.

The authors propose the use of specializes kernels for convolution in four dimen-
sions. The kernels can be thought of as multiple three dimensional kernels that
are applied on multiple tensors at once where the number of tensors the kernels
are applied to is the size of the 4D-kernel in the time axis. The best perform-
ing kernel is the hybrid kernel, which can be seen as a combination between the
hypercross and hypercube kernels presented in Figure 1.1.
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Figure 1.1.: The figure shows kernels used in 4D convolution. The red arrows
indicate the time-axis and the third spatial dimension is hidden. The figure is
adapted from [5].

The results indicate that 3D convolutional neural networks generally outperforms
2D networks, and that the spatio-temporal networks are more robust to noise in
the 3D data.

1.2.2. Fully Convolutional Geometric Features

As a continuation of the work presented in [5], Choy et al. present a method
for fast and efficient method for feature extraction from 3D data using a 3D
fully convolutional neural network. Choy, Park, and Koltun state that feature
extraction traditionally rely on patch extraction for features or computation of
low level features to be used as input data. The authors present a solution which
is able to extract features using a single fully convolutional neural network.

The work presented attempts to provide improvements in the field of 3D percep-
tion and registration tasks, as well as tracking and object detection in 3D scenes.
The term registration refers to the process that is aligning multiple 3D-scans by
calculating the transformation matrix that when applied to one point-cloud makes
it overlap with another. In the end, the goal is one continuous scene built from
the input point clouds. The proposed feature extraction method is a form of
learning-based 3D-feature extractor which has increased dramatically in popular-
ity in recent years due to increased performance and robustness.

The number of extracted features per scan is quite high at 4 × 104. As a con-
sequence, computing all possible pairwise distances is impractical as a learning
metric. The authors propose the use of hardest-contrastive and hardest-triplet
as alternative learning metrics in fully convolutional feature learning. Both con-
trastive and triplet loss methods traditionally use randomly sampled points for
triplet and contrastive pair generation. The loss is then calculated by evaluating
the associated features by a distance metric, commonly euclidean distance. Con-
trastive pairs are pairs of points which have a large euclidean distance between
them relative to other pairs. Triplets are combinations of a contrastive pair and
the opposite of a contrastive pair. They consist of three points in which there are
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two that are close to each other and two which are far apart in terms of euclidean
distance. The terms hardest-triplet and hardest-contrastive refers to the most
extreme cases in the two methods described above.

The authors present results from testing multiple feature extraction methods on
several data sets. These results indicate that their solution outperforms other
prospective feature extraction methods by a significant amount both in speed and
recall accuracy.

1.2.3. Deep Global Registration

Recently, Choy, Dong, and Koltun proposed a method for pairwise registration of
point clouds [4]. The method utilizes a 6-dimensional convolutional neural net-
work for inlier prediction for feature pairs and a weighted Procrustes algorithm [24]
for pose estimation and a robust gradient-based optimizer on the 3-dimensional
special euclidean group SE(3). The Procrustes algorithm is an algorithm for esti-
mating a 6-dimensional pose. This pose accounts for both spatial transformation
and rotation in 3D space. The algorithm uses two sets of points which correspond
to each other and estimate the transform and rotation to be applied to one of
them to make the points overlap in the best way.

Deep global registration (DGR) utilizes features extracted using Fully convolu-
tional geometric features (FCGF) [6]. Following extraction using a pretrained
FCGF-model, the features are used for training and registration. The nearest
neighbour method is used to find pairs of extracted features from both scans in
the feature-space (typically 32 or 16 dimensional). These pairs are the input data
for a 6-dimensional convolutional neural network that handles inlier-prediction.
In contrast to the multi-dimensional output of the FCGF network, this network
only outputs a probability value that predicts the likelihood of the proposed pair
being a match. For all pairs, the probability is saved and used in the weighted
Procrustes algorithm for pose estimation as a way of prioritizing the pairs with a
higher confidence level.

The Procrustes analysis returns a translation and a rotation which are checked
in the Robust Registration module. Here, the proposed solution from Procrustes
is subjected to additional test which checks for diverging solutions and noisy
correspondence data. This module investigates if the Procrustes solution is likely
to succeed, and if not it will default to a fail-safe method such as RANSAC [11]
for pose estimation.

The results indicate that Deep Global Registration is a robust method of pose
estimation which outperforms other state-of-the-art methods for registration of
3D data in terms of both speed and accuracy.
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1.2.4. Octree-based SIMD Strategy for ICP Registration and
Alignment of 3D Point Clouds

Eggert et al. [10] propose the implementation of octrees as 3D representation of
point clouds. An octree is a data structure in which each node have exactly eight
branches. It is known to be a highly efficient way of representing 3D data. In this
paper, the authors perform 3D point cloud registration using the iterative closest
point algorithm. The algorithm uses k-nearest neighbour algorithm to determine
the closest points within each cell in the octree. However, the proposed method is
dependent on a high resolution reference point cloud to match the lower resolution
input point cloud to. The implementation of octrees is interesting, although this
specific method is not capable of utilizing the GPU. Therefore, it is comparatively
slower to other registration methods.

1.2.5. The MVTec 3D-AD data set for Unsupervised 3D
Anomaly Detection and Localization

Bergmann et al. [3] present a method using a 3D convolutional neural network
for anomaly detection in point clouds. Additionally, the authors provide a large
scale data set consisting of over 4000 point clouds captured using a Zivid One+
Medium camera. The data set is inspired by real-life visual inspection problems
and is based around 10 different inspection object categories.

1.3. Objectives
In this Master’s thesis, the goal is to provide the methods and insight necessary
for using Zivid point clouds in feature extraction and registration tasks. The
objectives for the work presented is listed below.

• Define a reproducible virtual environment for use with NTNU Idun HPC

• Perform data collection for an entry level data set using Zivid point clouds
for feature extraction and registration

• Provide the ability to preprocess the Zivid point clouds for further machine
learning

• Attempt feature extraction from Zivid point clouds using the Fully Convo-
lutional Geometric Features method presented in [6]

• Attempt registration of Zivid point clouds using the Deep Global Registra-
tion method presented by Choy et al. [4]





Chapter 2.

Preliminaries

2.1. Problems in 3D Computer Vision
Currently, the automotive and robotics industries are pushing the boundaries of
computer vision. Additionally, the exclusive use of 3D data has become a viable
solution for creating better vision systems. The inclusion of depth in images pro-
vide a more beneficial data type for tasks such as perception, object detection,
pose estimation and several other computer vision tasks. All though there are ad-
vantages with 3D over 2D, there are also challenges. A common way of processing
data in vision tasks is convolutional neural networks. Even though convolution
adds significant advantage over fully connected neural networks, the addition of
a dimension dramatically increases the required memory of the training device
compared to 2D convolutional neural networks.

2.2. 3D Cameras
To capture real world 3D data, specialized devices are required. Some of the most
common 3D data capture devices are LiDAR and depth cameras. LiDAR can
be incredibly fast, but offers only 3D data inherently while depth cameras are
commonly able to provide color images in addition to 3D point clouds.

2.2.1. LiDAR

LiDAR devices are based either on time-of-flight or wavelength shift for determin-
ing the distance from a laser emitter to the surface of interest. Point aquisition
using LiDAR can be extremely fast, and the application of LiDAR in self driving
cars is becoming more popular. The device emits laser beams in a specific pattern
and measures the distance for each projected beam to create 3D scans. The beams
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are typically projected in a grid pattern to provide points in three dimensions.
Additionally, LiDAR can provide two dimensional data. In this case, the beams
are projected in only one plane, often in a circle pattern from the emitter.

Figure 2.1.: The figure shows two overlapping point clouds from the LiDAR
based KITTI data set [29]. The figure is adapted from [4].

2.2.2. Stereo Cameras

Stereo cameras refers to cameras using two sensors to capture separate images
from different spatial positions and then using these two images to create 3D
data. In the industry today, one of the most common tools for acquiring 3D
data is the Intel® RealSense D400 series of stereo cameras. Intel® combines an
RGB-sensor with two infrared sensors and one infrared emitter. Stereo vision is
the classical method for achieving 3D data from the real world. It is based on
calculating the distance from the camera to each point in an image based on the
point’s position in the images from the two sensors using the intrinsic and extrinsic
parameters of the cameras. The Intel® RealSense D400 cameras use the infrared
emitter as a dot projector which projects a pattern of dots onto a scene and the
two infrared cameras capture images of the dots. The use of a dot pattern makes
calculating the distance from the camera less computationally expensive due to
the fact that it is easier to calculate correspondences between dots in a pattern
than it is between pixels in RGB images.

2.2.3. Structured Light Cameras

In contrast to classical stereo cameras, structured light cameras use only one
camera in combination with a projector to achieve 3D vision. The projector
is responsible for projecting a set of known patterns onto the scene as can be
seen in Figure 2.2. These patterns are commonly vertical lines of varying width.
Projecting known patterns onto the scene from one angle and capturing an image
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of the scene from a different angle while different patterns are being projected
creates a set of images with distorted patterns. The fact that the original patterns
are known makes it possible to use intrinsic and extrinsic parameters to calculate
the depth of each pixel, creating a 3D image.

Figure 2.2.: Visualisation of the function of a structured light camera. The
figure is adapted from Sarbolandi et al. [23].

Zivid is at the top of their field in structured light camera technology, and has
pushed the limits of accuracy and trueness in 3D point clouds. Zivid cameras
provide best-in-class resolution and per point RGB-α data in the point cloud.
Compared to the Intel® RealSense D400 cameras, the Zivid cameras provide close
to 10 times the per point accuracy in terms of depth [26, 8]. The Zivid camera
models provide unparalleled performance which makes them highly interesting in
the field of 3D-data based machine learning.

2.2.4. Advantages and Disadvantages

The Intel® RealSense D400 cameras are among the most commonly used 3D-
sensors in the world. Intel offers significantly lower prices than many other
providers of 3D vision solutions and has therefore been able to position them-
selves as the go-to solution for affordable 3D cameras. The Intel® cameras can
offer faster data acquisition rates, but at the cost of resolution and accuracy com-
pared to Zivid. The Zivid Two camera can at best offer 10 scans per second,
although at the expense of image quality and point accuracy. These cameras are
more suited towards stationary tasks such as bin picking where the operation is
not as time sensitive.



10 Chapter 2. Preliminaries

2.3. Convolution
Convolution is the process of combining two functions, and the term often refers
to the result of the process. The process is more accurately described as the
changing of one function performed by another one.

2.3.1. 2D Convolution

Convolution in 2D can be visualized as an input matrix and a kernel that passes
over the input moving in steps, where the size of each step is called stride. The
term kernel here refers to a matrix of weights which is responsible for what the
convolution process either highlights or dampens. Common kernels are Gaussian
blur and edge detection kernels for image processing. The kernel weights are
multiplied with each of the input matrix’ corresponding values and summarised
for the output matrix as can be seen in Figure 2.3.

Figure 2.3.: The figure shows the input matrix (blue) and output matrix (green)
as well as the kernel (denoted numbers, dark blue) for a convolution operation
with stride of one. Note that the output dimensions are reduced in relation to the
input matrix. The figure is adapted from [9].

As mentioned, the stride is the distance the kernel shifts for each convolution. The
stride and kernel size both affect the output matrix size. Normally with a stride
of one, the output matrix will be reduced in relation to the input matrix by the
width and height of the kernel minus one. To counteract dimensional reduction
one can pad the input matrix with values such as 0.
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2.3.2. 3D Convolution

Convolution in three dimensions is only an extension of 2D convolution in terms
of all parameters. The input matrix, kernel and stride all have three dimensions,
although the mathematical operation is the exact same as in two dimensions. 3D
convolution is commonly used for object detection and image classification.

Figure 2.4.: Visualization of 3D convolution on an image where the image depth
indicates the color channels red, green and blue. The kernel is shown in red. The
figure is adapted from [30]

2.4. Artificial Neural Networks
Artificial neural networks (ANN) can be described as a set of neurons or nodes
that together process data through interconnections and layers. ANN’s can be
trained to perform specific tasks, but requires data that correlates to the task at
hand to do so. In machine learning there are three main principles, supervised, un-
supervised and reinforcement learning [31]. These three principles also apply for
neural networks. As the name implies, in supervised learning the network needs
to be told what the desired output is for every input condition [14]. Reinforce-
ment learning is not dependent on the “correct” answer for each input. However,
it is dependent on certain directions. These directions are simply rewards and or
punishments for choices that leads to better or worse outcomes respectively for
the given problem [17]. As opposed to both supervised and reinforcement learn-
ing strategies, unsupervised learning requires no external notion of the “correct”
answer for the input data. An example of unsupervised leaning is clustering and
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segmentation, where the networks separate data into groups only based on the
input data.

2.4.1. Residual Neural Networks

A subclass of artificial neural networks are residual neural networks (ResNet)
which was presented by He et al. [12]. Residual networks makes it possible to
include more concatenated convolutional layers in a neural network than what
was previously feasible. This is made possible by the addition of skip connections
from one location in the network to another one as can be seen in Figure 2.5.
It is possible to skip multiple layers as well as single layers. Providing a skip
connection that skips over large parts of the network and ends closer to the end
of the network may help in including higher level features in the final prediction
of the network.

Figure 2.5.: The residual building block. The figure shows a skip connection
which skips two layers and is then merged with the output of the two weight
layers after the data is processed. The figure is adapted from [12].

2.4.2. Convolutional Neural Networks

Convolutional neural networks are among the most common type of neural net-
works in machine learning today. LeCun et al. [19] proposed the use of convolution
kernels as the weights in the neural network which drastically increased the max-
imum number of layers in neural networks. The reason for this was that previous
network architectures relied heavily on fully connected layers where all nodes in
one layer is connected to all nodes in the next layer with each connection having
an individual weight that had to be trained and stored. The introduction of con-
volutional neural networks resulted in reduced memory requirements for larger
and deeper neural networks.
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Figure 2.6.: Architecture of LeNet-5 which was presented by LeCun et al. [19].

For each convolutional layer in a neural network there is a kernel. This kernel
contains the weights that are tuned during training of the network. As previously
mentioned, kernels in convolution can be seen as a filter which highlights different
features in the input data. During training, these features are determined inde-
pendently of human interaction. The network is what determines which features
are important for the final prediction.

2.5. 3D Data Representation
There are many types of 3D data representations, and in this section some of
these are presented.

2.5.1. Depth Images

Depth images are images that in addition to color data have per pixel depth. Each
pixel may have four data values associated with it such as the red, green and blue
color channels along with a distance from the camera. From this (r, g, b, d)-data
structure it is possible to calculate the coordinates of each point in relation to the
camera in terms of x, y and z coordinates.

2.5.2. Point Clouds

Point clouds generally include 3D coordinates for each point in the scan. There
are several ways of representing such coordinates such as a list of points using only
(x, y, z) values, a list of points with pixel coordinates i.e. (px, py, x, y, z). Another
example is an array where the two first dimensions of the array correspond to pixel
coordinates. Further, each entry in the array is a point using the (x, y, z) format,
possibly with other augmenting data such as color or transparency. There are also
many point cloud file formats which can provide a challenge when gathering data
for use in machine learning where standardization of input data is important.
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2.5.3. Sparse Tensors

A sparse tensor is a condensed version of a dense tensor where certain information
is stored in bulk in a different array. When scanning a 3D scene, the resulting
point cloud is a representation of the surface that is perceived by the camera. Due
to the nature of current 3D cameras both the space between the camera and the
surface and the space beyond the surface is left empty in point clouds. To perform
tasks such as convolution on a 3D scene, it is common to voxelize the point cloud.
Voxelizing is the process of dividing up the space that encompasses the scan into
volumetric pixels. When the scene is voxelized, the vast majority of the voxels
are empty and are therefore very similar to each other in terms of not containing
usable 3D data. Such dense tensors often contain up to 99% empty voxels. Storing
and performing convolution tasks on such tensors is highly inefficient.

To make the utilization of voxelized point clouds in machine learning, we can
convert the dense tensors to sparse tensors. The conversion splits the dense ten-
sor into a dense tensor of values and a vector of indices corresponding to those
values. In addition the original size of the dense tensor is saved for reconstruction
purposes.

D =


1 0 0 0
0 0 2 0
0 0 0 0
0 0 0 3

 , V =
[
1 2 3

]
, I =

[
[0, 0] [1, 2] [3, 3]

]
, S = [4, 4] (2.1)

In Equation 2.1, the matrix D represents the dense input tensor. When converting
to a sparse tensor, the V vector consists of the values in the tensor and the I vector
stores the indices of each value in the original matrix. The S vector stores the
original shape.

2.6. High Performance Computing Cluster
High performance clusters are networks of individual high performance computers
called nodes, and there are different types of nodes for different tasks. Separate
nodes are responsible for CPU compute, GPU compute and storage. These nodes
are often interconnected using high speed networking. Splitting the cluster into
nodes makes it easier to allocate resources between different users at the same
time. Additionally, single users can allocate more than one node for computing
tasks that benefit from parallel computing.
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2.7. Slurm
Slurm is a solution for managing Linux clusters. It can handle queuing of jobs
and allocation of resources while being easy to expand with more nodes in the
future. When using Slurm for jobs on a cluster it is common to write a .slurm
file, which specifies what resources are required for which amount of time together
with a script that executes the job commands.

2.8. Singularity
Singularity is an open source container platform, designed for ease of use and se-
curity. Singularity is generally based on definintion files which define the building
blocks and commands that are needed in order to create a specific container. Once
a container is created, it is immutable. It is commonly used for installing cor-
rect versions of software to ensure compatibility. When compiled, the container
provides an environment with all the specified installations, and can be shared
directly as a .sif file. Alternatively, one can share the definition file and let other
users compile the image themselves.

2.9. Docker
Similarly to Singularity, Docker is a solution for creating and running containers.
The dockerfile is what defines a Docker container, and behaves much in the same
way as the definition file in Singularity. Docker additionally support caching each
instruction in the dockerfile as “layers” so that a change in one of the layers
prevent the need to compile the entire container from the beginning each time. It
is also possible to upload docker images to DockerHub where they are available
for everyone to use.

2.10. Machine Learning Frameworks
Machine learning has gained incredible amounts of attention and has grown drasti-
cally as a field of study. As a result, multiple frameworks have been made publicly
available. In these frameworks, many common machine learning tasks and func-
tions are already implemented and allow researchers and computer scientists to
hit the ground running without having to start from scratch. Common features
include, convolution in neural networks, many different activation functions, mul-
tiple optimizers and tensor operations. Among the more popular frameworks are
Jax, TensorFlow, Keras and PyTorch.
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2.10.1. PyTorch

PyTorch is one of the most popular machine learning frameworks. It is open source
and primarily written in C/C++ and Python for use in Python. It is based on
the older framework Torch which is written in a fast scripting language called Lua
created for scientific computing and machine learning. PyTorch includes support
for GPU accelerated parallel programming using the Nvidia CUDA API. This
allows for faster training of neural networks, but requires a CUDA capable Nvidia
GPU.
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Methods

In this chapter, a complete walk-through for training both FCGF and DGR models
on Idun HPC are presented. The chapter also presents the necessary changes made
to both libraries in order to perform training. In addition, both data set collection
and preprocessing will be presented here.

3.1. Creating an Environment for Using the
Minkowski Engine on Idun HPC

In contrast to the method presented in [2], Docker is used for creating the con-
tainerized environment as opposed to Singularity. However, Singularity will still
be used to run the container on Idun HPC [27].

3.1.1. Docker Installation

The Docker Desktop application can be installed following the instructions on [13].
Here, there are guides available for Linux and Mac as well. When the installation
is complete, start the Docker Desktop application.

To verify the installation, run the command below in a terminal.

docker version

3.1.2. The Dockerfile

The Dockerfile is the recipe that defines the Docker image. Here, the type and
version of operating system is specified and also what is to be installed onto that
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operating system. Creating a Dockerfile can be done in a text editor or in an
integrated development environment such as Visual Studio Code with a docker
extension installed.

ARG VERSION="20.04"
FROM ubuntu:${VERSION}

Here, the ARG keyword defines an argument to be used later in the file. This is
useful if there are several references to the same version or other arguments in the
Dockerfile. The FROM keyword specifies what base image to build the image on
top of. Here, the image will be built upon an Ubuntu image from DockerHub.

The Dockerfile also supports running commands on the base opertaing system
(OS) for installing other dependencies. Any command valid for the OS can be
issued using the RUN keyword.

RUN apt-get update
RUN apt-get install git

RUN commands can only be issued after pulling a base image using the FROM
keyword. In the code shown above, the Docker compiler will update the list of
available packages with RUN apt-get update. Further, it will install the latest
version of Git available for the operating system using RUN apt-get install
git.

In the Dockerfile, it is also possible to set environment variables. This is useful
when a specific command relies on the environment variables to execute correctly
or yield the desired result. In the code below, the environment variable MAX_JOBS
is being set prior to a command execution.

ENV MAX_JOBS=1

3.1.3. Building a Docker Image

When building a Docker image it is important to note that the system needs to
be able to store the image in its entirety. If one is installing large libraries on
top of an operating system, the size of the final image will quickly increase. Prior
to building an image, it is recommended to log in to DockerHub, either from the
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Docker Desktop program or the command line using the docker login command.
An example of how to build a Docker image from a Dockerfile is shown below.

docker build -t <USERNAME>/<IMAGE_NAME>:<TAG> <LOCATION>

In the command shown above, the -t flag tells Docker that we wish to tag this
image. Using the username for DockerHub in place of <USERNAME> and naming
the image <IMAGE_NAME>, the image is more easily uploaded to DockerHub after
completing the build. The <TAG> is a way of handling versions of an image. Each
unique tag is a different image and accessible as unique versions in Docker. When
the image is built, upload the image to DockerHub using the command below.

docker push <USERNAME>/<IMAGE_NAME>:<TAG>

3.1.4. Reproducible Environment for Minkowski Engine

This section will present the Dockerfile used to build the environment used for per-
forming preprocessing and machine learning tasks on Idun HPC. The Dockerfile
presented in this section can be found in Appendix A.

ARG PYTORCH="1.9.0"
ARG CUDA="11.1"
ARG CUDNN="8"

FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel

In the code above, the three arguments describe a specific version of PyTorch,
CUDA and cuDNN (CUDA Deep Nerual Network library). These three arguments
are used to pull the correct version of a Linux operating system where these
three dependencies are installed previously. This image is pulled from a PyTorch
repository on DockerHub [22].

ENV TORCH_CUDA_ARCH_LIST="8.0+PTX"
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This line sets the environment variable TORCH_CUDA_ARCH_LIST to "8.0+PTX"
where “8.0” determines the cuda architecture we wish to compile for when using
the Nvidia Cuda Compiler (nvcc). There are several different CUDA capable
GPU’s installed in Idun HPC, but this image only builds for the latest A100
cards. To expand the compute compatability of the image, one can add other
numbers to the environment variable i.e. TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1
7.0 7.5 8.0 8.6+PTX". However, the nvcc will compile a unique build for each
architecture in the list which will increase both build time and image size.

ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all"

The environment variable TORCH_NVCC_FLAGS is responsible for how the nvcc will
handle .cu files when compiling.

RUN apt-get update
RUN apt-get install -y git ninja-build cmake build-essential \

libopenblas-dev xterm xauth openssh-server tmux wget \
mate-desktop-environment-core

RUN apt-get clean
RUN rm -rf /var/lib/apt/lists/*

In the code shown above, the Docker compiler will install dependencies directly
on the operating system. RUN apt-get clean clears the install cache and avoids
storing the cache in the docker image. The rm -rf /var/lib/apt/lists/* com-
mand deletes the stored information about packages that have been installed using
apt.

RUN pip install matplotlib pillow numpy scipy cython \
scikit-image sklearn opencv-python open3d \
netCDF4 easydict h5py tensorboardX

This command installs a number of libraries for Python. NumPy and Open3D
are requirements for using the Minkowski Engine library. NetCDF4 is used for
reading the Zivid point cloud files in preprocessing.
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ENV MAX_JOBS=1
RUN pip install -U git+https://github.com/NVIDIA/MinkowskiEngine \

-v --no-deps \
--install-option="--force_cuda" \
--install-option="--blas=openblas"

Finally, the Minkowski Engine library is installed. The line ENV MAX_JOBS=1
determines the max number of parallel jobs that the CUDA compiler can perform
when building the library back-end. The final command is the recommended way
of installing the Minkowski Engine library which can be found on GitHub [21].

The Docker image is then built and pushed to DockerHub using the commands
shown below. The command is issued in a command prompt after navigating to
the Dockerfile location.

docker build -t jonassaa/minkowskiengine:latest .
docker push jonassaa/minkowskiengine:latest .

3.1.5. Pulling a Docker Image on Idun HPC using Singularity

For login instructions for Idun HPC, see [20] or follow the instructions provided
in [2]. The unpublished specialization project [2] can be found in Appendix G.
When logged in to Idun, execute the following command to create a Singularity
image from a docker image on DockerHub.

singularity pull docker://<USERNAME>/<REPOSITORY>:<TAG>

This command will download an image from any public user on Dockerhub speci-
fied by <USERNAME>. The <REPOSITORY>:<TAG> specifies which image and version
of that image to download. If the <TAG> is omitted, singularity will pull the im-
age with the “latest” tag. To download the image used in this thesis, execute the
command below.

singularity pull docker://jonassaa/minkowskiengine:latest
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The command above will download the docker image from subsection 3.1.4 and
convert it to a .sif file. This .sif file can be used to run the environment on Idun
using Singularity.

3.2. Creating a Data Set of Zivid Point Clouds
This section presents a method of capturing and preprocessing Zivid point clouds
for use with FCGF and DGR.

3.2.1. Capturing Zivid Point Clouds

To create a data set using Zivid point clouds, multiple 3D scans had to be cap-
tured. To capture the 3D scans, a computer with Zivid Studio installed was
connected to a Zivid One camera. The specific camera was an older model and
required an older version of the Zivid software (1.8.3). The setup is shown in
Figure 3.1.

Figure 3.1.: Illustration showing the experimental setup for capturing Zivid
point clouds. The red cube shows the approximate position of the objects scanned.
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The resulting files was organized into the structure shown below.

• Data Set Folder

– Object 1

∗ Scan 1

∗ Scan 2

∗ Scan 3

– Object 2

– Object 3

For each object, 10 scans were captured from different positions around the object.
All scans were captured using the same fixed vertical camera position as well as
the same capture angle relative to the table.

3.2.2. Converting Zivid Point Cloud to NumPy Array

A program was created for preprocessing the Zivid point clouds. The code for
this program can be found in Appendix B and on GitHub [16]. To read the Zivid
point cloud files, a library called NetCDF4 can be used. The Zivid point clouds
are saved as netCDF files inherently.

def loadPointCloudFromZivid(pcd):
zividPointCloud = netCDF4.Dataset(pcd, 'a', format = "NETCDF4")
return np.reshape(np.asarray(zividPointCloud["data/pointcloud"]),

(1920*1200,3))

Here, we define a function that reads a Zivid point cloud file (pcd) with a .zdf
extension and converts it to a numpy array with the dimensions (1920*1200,3).
This array is structured as a list of 3D vectors, where the vector describes x, y and
z coordinates of each pixel in 3D space. This operation also converts the Zivid
point clouds to unstructured point clouds.

3.2.3. Matching 3DMatch Data Structure

In the repositories FCGF and DGR by Chris Choy, one of the data sets used to
test the performance of the two methods is called 3DMatch [32]. This data set
consists of numerous scans of rooms and objects in a RGB-D video format and is
publicly available. Chris Choy provides a version of this data set that is structured
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to work with the data-loaders in both DGR and FCGF. To match the structure
of the provided data set using Zivid point clouds, the data set folder described
in subsection 3.2.1 is processed using the Preprocess.py program provided in the
Zivid_DGAP repository [16]. The program enumerates through the file structure
of the data set folder and creates numpy arrays for each scan in the data set. Each
array is named after the parent object on the format <Name of object>_<Scan
number for that object>.npz. Here, the .npz extension shows that the array
is saved as a compressed numpy array. For each object, unique pairs of scans are
generated and the resulting pairs are listed in a text file as shown below.

Object_0.npz Object_1.npz
Object_0.npz Object_2.npz
Object_0.npz Object_3.npz
Object_0.npz Object_4.npz
Object_0.npz Object_5.npz

As can be seen in the list above, the Object has been scanned multiple times as
denoted by the numbers. Each line represent a unique pair of two scans of the
object.

Additionally the data set is split into a training and validation subset. A text file
is created for each subset, listing the objects that are part of it. Finally, the entire
data set is compressed into a single archive with a .zip extension. How to use the
preprocessor program is described in [16].

3.3. Data Loader for FCGF and DGR
In both FCGF and DGR, the data loader is not equipped to handle Not a Number
(NaN) values. In Zivid point clouds there are several points that are saved with
NaN coordinates. In both repositories, the addition of the following code excludes
points that contain NaN values.

xyz0 = data0["pcd"][~np.isnan(data0["pcd"]).any(axis=1), :]

The code above creates a boolean array depending on what points have any NaN
values. The boolean array is then used as a filter to only include valid points.
The data loaders for the Zivid data set in FCGF and DGR can be found in the
code repositories in Appendix G.
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3.4. Training
This section describes the steps for executing training using Singularity on Idun
HPC. Additionally, the necessary preparations will also be presented.

3.4.1. Prerequisites

On Idun HPC, create an empty directory and clone the FCGF and DGR reposi-
tories using the commands below.

git clone https://github.com/jonassaa/FCGF.git
git clone https://github.com/jonassaa/DeepGlobalRegistration.git

Transfer the processed data set files (Appendix G) to Idun HPC using the method
described in [2]. For both FCGF and DGR, the configuration file has been edited
to use the Zivid data set by default.

3.4.2. Training FCGF Model

For training the FCGF model, we schedule a job in the slurm queue. The slurm
script defines and describes what resources are required.

1 #!/bin/bash
2 #SBATCH --job-name=FCGF_train
3 #SBATCH --mail-type=ALL
4 #SBATCH --mail-user=jonassaa@stud.ntnu.no
5 #SBATCH --nodes=1
6 #SBATCH --ntasks=1
7 #SBATCH --cpus-per-task=12
8 #SBATCH --mem=16000
9 #SBATCH --time=96:00:00

10 #SBATCH --output=/cluster/home/jonassaa/jobs/FCGF/outputs/FCGF_train.log
11 #SBATCH --partition=GPUQ
12 #SBATCH --gres=gpu:A100m80:1
13

14 date;hostname;pwd
15 singularity exec --nv minkowskiengine.sif ./train_FCGF.sh
16 date
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In the commands shown above, the lines 2-12 describe the behaviour of slurm.
Specific resources and time limit, as well as email notifications and log output file is
determined here. This script requests one Nvidia A100 card with 80 GB of VRAM
for the job. The lines 14-16 describes what commands are to be executed when
the job is running. Line 14 writes the date and time, hostname and the current
directory to the log file. Line 15 is responsible for executing the training script in
the Singularity container. The ––nv flag ensures that the GPU is available within
the container. Line 16 prints the date and time before the job is finished.

#!/bin/bash
export OMP_NUM_THREADS=12
cd ./FCGF
nvidia-smi

python ./train.py \
--batch_size=2 \
--voxel_size=0.001 \
--max_epoch=100 \
--train_num_thread=12 \
--val_num_thread=12 \
--hit_ratio_thresh=0.0425\
--conv1_kernel_size=7

The code above is the shell script that executes the train.py program within the
container. Batch size is the number of point clouds processed in parallel. The voxel
size is defined in meters, 0.001 corresponds to 1 mm. The hit_ratio_thresh is
a threshold for determining if a pair of features correspond or not. A lower
value describes better correspondence. Finally, the flag ––conv1_kernel_size
determines the convolution kernel size in the first layer of the neural network.

To schedule the training job, execute the command below.

sbatch <Slurm script file>
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3.4.3. Training DGR Model

Training the DGR model is performed in a similar manner to the FCGF model.
The slurm script for training the DGR model is nearly identical to the FCGF
script. It utilizes the same Singularity container and command, but executes a
different shell script as shown below.

singularity exec --nv minkowskiengine.sif
./trainDGR_singularity_script.sh↪→

1 #! /bin/bash
2 export OMP_NUM_THREADS=12
3 cd /cluster/home/jonassaa/jobs/DeepGlobalRegistration
4 python ./train.py \
5 --dataset ZividPairDataset \
6 --zivid_dataset_dir "/cluster/home/jonassaa/jobs/ZividOne_v2/" \
7 --feat_model ResUNetBN2C \
8 --feat_model_n_out=32 \
9 --feat_conv1_kernel_size=7 \

10 --lr 1e-1 \
11 --batch_size=2 \
12 --max_epoch=100 \
13 --voxel_size 0.001 \
14 --hit_ratio_thresh=0.0425 \
15 --weights "./modelsFCGF/3Dmatch_25mm_32dim.pth"

Training the DGR model is dependent upon an existing FCGF model for feature
extraction. Here, the ––weights flag is used to tell the program where to find
the pretrained FCGF model. It is important to match ––feat_model_n_out,
––feat_conv1_kernel_size and ––feat_model to the settings that was used
when training the FCGF model to avoid incompatibility errors. Line 2 is respon-
sible for setting the number of threads used in parallel when loading point clouds.
If this environment variable is not set, the Minkowski engine library will throw a
warning and set it to a default value of 16.
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Results and Discussion

This Master’s thesis proposes the use of high resolution Zivid point clouds in
feature extraction and registration tasks, using the Minkowski engine library. In
this chapter, the method described in chapter 3 as well as the results are subject
to analysis and discussion. To our knowledge, attempting to train the feature
extraction and registration models from FCGF and DGR on Zivid point clouds
has not been performed previously, therefore relevant literature is scarce.

4.1. Virtual Environment for using the Minkowski
Engine Library on Idun HPC

Idun HPC does not support the use of docker images to run containers, it only
supports the use of Singularity containers. However, when attempting to change
the TORCH_CUDA_ARCH_LIST to include the 8.0 architecture, the build method
presented in [2] failed. The Singularity compiler preferred to compile the CUDA
code in the Minkowski engine library in parallel regardless of the instructions
provided. This lead to an error being thrown and the compile process failing.
The assumption is that parts of the CUDA code was being compiled before its
dependencies was finished compiling.

Singularity does however support directly converting a docker image from Dock-
erHub. Building upon the Dockerfile from the Minkowski engine repository, a
Dockerfile was created that included the necessary python libraries and the cor-
rect Cuda architecture. Building this image with Docker was a success. The
resulting image can be found on DockerHub [15], and the Dockerfile can be found
in Appendix A. The transition to Docker also provides a more available image.
As mentioned, the image can be downloaded and converted directly on Idun HPC
which eliminates the need for users to compile the image themselves and upload
it to Idun.
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The use of Docker as opposed to Singularity also makes it faster to alter the con-
tents of the container. The different commands in the Dockerfile are cached as
layers by default when compiling and makes recompiling a Docker image signifi-
cantly faster than recompiling a Singularity container.

4.2. Zivid Point Cloud Data Set
Using the method described in subsection 3.2.1, 219 scans divided among 22
different scenes were captured. Compared to the 3DMatch data set consisting of
2189 scans presented in [32], our data set is comparatively small. When capturing
the point clouds for the Zivid data set, each scan took between 30-90 seconds.
Due to limited time with access to the Zivid One camera, expanding the data set
further was not possible. The aim of this data set as opposed to the 3DMatch
data set was to provide scans that were of higher quality as well as more relevant
to bin picking in the robotics industry.

As mentioned, one of the aims of creating this data set was to provide a more
relevant data set for bin picking. An example of the resulting scans from the Zivid
One camera is shown in Figure 4.1.

Figure 4.1.: Left: RGB image of bins with plastic fittings and a pair of scissors.
Right: Depth map of the same scene as to the left.

One of the reasons each scan took so long was the fact that the camera occa-
sionally produced unusable scans. These were scans where the computation of
depth seemed to have diverged and resulting in a scan where the 3D data did not
resemble the object in any way. In hindsight, it was brought to our attention that
the specific camera that was used to capture the data set had been damaged and
was therefore prone to outputting scrambled data.
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Figure 4.2.: Visualization of a 3D point cloud in the Zivid data set. This point
cloud is the result of the same scan as in Figure 4.1

Zivid point clouds have higher resolution than competitive vision systems while
including color, normal and position data. As a result, these point clouds are
significantly larger than the scans produced by other lower resolution cameras.
In turn, the raw data captured is larger in terms of storage space. Interestingly,
the processed Zivid point clouds are less data-dense than the original files. In the
compressed numpy arrays, only 3D data remain. However, the processed data
set is 6.06 GB compared to 4.75 GB unprocessed as can be seen in Table 4.1.
This raises the question of what is more efficient, pre-processing the raw data
beforehand, or implementing the processing in the dataloader directly.

3DMatch Data Set Zivid Data Set
Number of scans 2189 219
Raw data set size Not applicable 4.75 GB

Processed data set size 8.12 GB 6.06 GB
Avg. size per scan 3.72 27.64 MB

Table 4.1.: Comparing the Zivid data set to the 3DMatch data set.

The Zivid SDK [25] supports sub-sampling the point clouds for reduced resolution
and file size. Due to unknown errors, we were not able to install the Zivid SDK
onto the Docker image used on Idun HPC. This was the reason for using the
NetCDF4 library for reading the point clouds. Additionally, the implementation
of the SDK would allow sub-sampling in the data set generation process and in
turn allow for a smaller overall data set as well as faster training times.
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It would be interesting to investigate the impact of sub-sampling from Zivid point
clouds in future studies. It is assumed that sub-sampling will yield generally less
noisy data, which may be better for training. The ability for subsampling using
the Zivid SDK is built into the Zivid_DGAP repository, but was not utilized in
this project. It is possible to perform subsampling of point clouds using other
libraries such as Open3D or by using the methods proposed in [1]. However, these
methods were not utilized in this project due to time constraints.

As the Zivid SDK include ROS functionality, it would be interesting to use a robot
for data set capture. Programming predetermined or random positions and then
capturing multiple scans of objects would be both easier and less time consuming.
This would allow for more known data in the data set. Overlap ratio is described
in Zeng et al. [32] as the ratio of each scan overlapping the next. The 3DMatch
data set even include subsets of pairs with an overlap ratio of least 0.3 and 0.7
to ensure registration is possible. Knowing the exact positions of the camera for
each scan in relation to the object would allow us to create overlap ratio subsets
in the Zivid data set for better training.

The Zivid_DGAP repository used for processing data on Idun HPC as well as
the raw and processed 3D scans can be found in Appendix G.

4.3. Training FCGF Model
Training the FCGF model was performed as described in subsection 3.4.2. The
models provided by Chris Choy on the FCGF Github page has a final feature
match ratio (FMR) of 0.9578. This indicates that over 95% of the extracted
features in one scan could be found in the paired scan on average. However, this
number is dependent upon many, factors such as voxel size and the threshold
for what is a valid feature match. In our testing, we were able to achieve an
FMR of 0.9222. Even though this number is close to the best feature match
ratio obtained by Choy, Park, and Koltun, this metric does not guarantee a well
performing model. The feature match ratio is the default validation metric, and
in our testing we found that it was directly related to the hit ratio threshold which
is a tuneable parameter in the configuration. Tuning this variable did not seem
to produce a better model in terms of either the translational or rotational error.

Unfortunately, the training with the Zivid data set did not yield a good model.
There seems to be no significant improvement in performance metrics in correla-
tion to epochs. The validation metrics fluctuate sporadically and no clear trend
can be seen in terms of increase or decrease over time. Many attempts have
produced the best validation score early in terms of epochs and show no sign of
increasing despite being run for 100 epochs. One would expect some form of over-
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fitting as described by Lawrence et al. [18], as the data set is quite limited in terms
of scans compared to the 3DMatch data set. Interestingly, this seems to not be
the case. There is no apparent increase or decrease in performance metrics, which
leads to the assumption of hidden errors or improper hyperparameter tuning.
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Figure 4.3.: The graph shows the final loss as a function of epochs when training
the FCGF model on the Zivid data set.
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Figure 4.4.: The graph shows the final loss as a function of epochs when training
the FCGF model on the 3DMatch data set.
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Training an FCGF model on the Zivid data set yielded substantially different
results than what was expected in terms of loss. Even though the parameters are
different in the two cases, the results are assumed to be comparable. As can be
seen in Figure 4.3 and Figure 4.4, the loss is lower by an order of magnitude when
training on the Zivid data set compared to the 3DMatch data set. The 3DMatch
training loss resembles what is to be expected as shown in Figure 4.5.

Figure 4.5.: Visualization of expected loss behaviour when training a neural net-
work. The figure is adapted from Suárez-Paniagua [28].

Due to the generally low loss values when training on the Zivid data set compared
to the 3DMatch data set, we assume that the loss function for FCGF is incompat-
ible with spatially smaller scenes such as in the Zivid data set. The 3DMatch data
set consists of scans from 3D videos of rooms and hallways where the point clouds
approximately measure 2x2x2 meters. For further studies using Zivid point clouds
with FCGF, it would be interesting to investigate other means of calculating loss.

When testing the training process in the FCGF library, many different combina-
tions of voxel_size, conv1_kernel_size and hit_ratio_thresh were tested.
Unfortunately, this did not lead to better model performance. This strengthens
our assumption that training problems have been related to loss calculation.

In hindsight, the method for capturing Zivid point clouds may have differed too
far from the 3DMatch data set to which it is compared in testing. Theoretically,
capturing the same scenes as the ones in 3DMatch with a Zivid camera and
setting the voxel sizes equal for the two data sets should yield very similar results.
It would be ineteresting to investigate if using a Zivid camera to create a data
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set that resembled 3DMatch more closely would impact the performance of the
model. This would be useful for determining the reason the FCGF training does
not perform well with the Zivid data set.

The FCGF repository used for training on Idun HPC can be found in Appendix G.

4.4. Training DGR Model
Training a DGR model is dependent upon having an FCGF model. The Deep
Global Registration library utilizes an FCGF network for feature extraction prior
to inlier prediction and registration. Performing registration is in turn dependent
on good feature extraction, which requires a well performing feature extraction
model. As described in section 4.3, we were not able to produce a well performing
FCGF model based on the Zivid data set. Multiple trained FCGF models were
tested when training the DGR model. All FCGF models tested, resulted in an
infinite loss error. Moreover, it was also investigated whether using an FCGF
model from the FCGF Model Zoo [7] would yield different results. This approach
also resulted in infinite loss errors as can be seen in the log provided in Appendix G.
It is assumed that this was due to the features in the 3DMatch data set not being
similar to the ones in the Zivid data set.

The DGR registration program was modified to accommodate for the NaN values
in the Zivid point cloud tensors. The registration module takes two tensors and
a set of weights as input data as shown below.

def weighted_procrustes(X, Y, w, eps):

The initial problem was that the tensors X and Y consistently had a size mismatch
due to the NaN values being removed independently in the dataloader. To ensure
matching sizes, the following code was added to the weighted Procrustes function.

1 # Cleaning up input data for nan, removing the same rows from all
tensors↪→

2 newX = X[~torch.any(X.isnan(),dim=1)]
3 newY = Y[~torch.any(X.isnan(),dim=1)]
4 new_w = w[~torch.any(X.isnan(),dim=1)]
5

6 newX = newX[~torch.any(newY.isnan(),dim=1)]
7 new_w = new_w[~torch.any(newY.isnan(),dim=1)]
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8 newY = newY[~torch.any(newY.isnan(),dim=1)]
9

10 X = newX
11 Y = newY
12 w = new_w

In the code shown above, the program removes the points from all arrays that
correspond to NaN values in both input tensors X and Y as well as the weight
tensor w. These point clouds are unstructured, meaning they only contain a list
of points as opposed to points with additional pixel coordinates. Removing points
from the point clouds is assumed to not impact the registration in a significant
manner. This is due to the similarity between removing points and parts of
the geometry being obstructed when scanning. Further, the weighted Procrustes
function had issues with performing singular value decomposition (SVD). SVD
generally fails when the input matrix is singular, meaning its determinant is equal
to zero. The solution was the addition of the code shown below as opposed to U,
D, V = torch.svd(Sxy).

1 try:
2 U, D, V = torch.svd(Sxy)
3 except:
4 # torch.svd may have convergence issues for GPU and CPU.
5 U, D, V = torch.svd(Sxy +

1e-2*Sxy.mean()*torch.rand(Sxy.shape[0],3))↪→

As shown above, the program adds random noise to the Sxy tensor if regular SVD
fails and recalculates SVD afterwards. The random noise is scaled to be maximum
1% of the mean value in the tensor. These changes enabled the registration
program to run. However, the exact reason for failing SVD is unknown. We
assume that the Sxy tensor which is calculated with both the extracted features
and the weights from the DGR model somehow becomes singular. This could
happen in the case that all weights from the DGR inlier predictions being zero.
This is most likely due to bad feature extraction in FCGF which directly affects
the Sxy tensor and the DGR weights.

The DGR repository used for training on Idun HPC can be found in Appendix G.



Chapter 5.

Conclusion and Future Work

5.1. Conclusion
The work presented in this Master’s thesis enables the use of high resolution
Zivid point clouds for machine learning using the Minkowski Engine library on
the NTNU Idun HPC. Further, a data set of Zivid point clouds was created to
attempt feature extraction and registration using the FCGF and DGR libraries.

The reproducible environment for using the Minkowski Engine library presented
in this thesis is able to utilize the latest Nvidia CUDA architechture for training
neural networks in PyTorch. All training in this project was performed using
Nvidia A100 GPU’s. Further, the environment contains the necessary require-
ments to be able to perform the preprocessing of the Zivid point clouds to create
the Zivid data set used for training the FCGF and DGR models.

The Zivid data set was created using a time consuming by-hand approach and
the result is closer to a proof of concept rather than a data set to be used as is.
This is due to the limited size and diversity in the data set. Further, the large
size of each scan in the data set makes it impractical to increase the number of
scans by a substantial amount.

The creation of the Zivid data set enabled the training of FCGF and subsequently
DGR models using Zivid point clouds. The results indicated that the FCGF
library was having problems calculating the loss when using Zivid point clouds as
opposed to the point clouds in the 3DMatch data set. This problem is assumed
to be the reason that the FCGF model was not able to properly extract features.
Training the DGR model also resulted in errors. These errors was assumed to
be related to improper feature extraction using the FCGF model. There are
many parameters relating to loss and error calculation in the FCGF configuration.
Tuning these hyperparameters to suit the Zivid data set provided in this thesis
could improve the loss calculation and in turn the FCGF model performance.
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5.2. Future Work
Based on the results and insights gained from working on this thesis, the following
topics are proposed for future study.

• Enhanced data set collection using a robot mounted Zivid camera with ROS
integration.

• Utilize Zivid SDK features or other methods to investigate the impact of
sub-sampling.

• Create a data set of Zivid point clouds resembling the 3DMatch data set
to more closely compare the performance of high resolution point clouds in
feature extraction and registration tasks.

• Investigate alternative methods for calculating loss in FCGF or tune hyper-
parameters to suit the Zivid data set.
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Appendix A.

Dockerfile for Docker image
used on Idun HPC

1 ARG PYTORCH="1.9.0"
2 ARG CUDA="11.1"
3 ARG CUDNN="8"
4

5 FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
6

7 ##############################################
8 # You should modify this to match your GPU compute capability
9 # 8.0 is compatible with A100 cards on Idun HPC

10 ENV TORCH_CUDA_ARCH_LIST="8.0+PTX"
11 ##############################################
12

13 ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all"
14

15 # Install dependencies
16 RUN apt-get update
17 RUN apt-get install -y git ninja-build cmake build-essential

libopenblas-dev \↪→

18 xterm xauth openssh-server tmux wget mate-desktop-environment-core
19

20 RUN apt-get clean
21 RUN rm -rf /var/lib/apt/lists/*
22

23 RUN pip install matplotlib \
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24 pillow \
25 numpy \
26 scipy \
27 cython \
28 scikit-image \
29 sklearn \
30 opencv-python \
31 open3d \
32 netCDF4 \
33 easydict \
34 h5py \
35 tensorboardX
36

37 # Use only MAX_JOBS=1, build fails otherwise
38 ENV MAX_JOBS=1
39 RUN pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v

--no-deps \↪→

40 --install-option="--force_cuda" \
41 --install-option="--blas=openblas"

This Dockerfile is an adaptation of the one provided in the MinkowskiEngine
repository [21].
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Zivid_DGAP: Dataset
Generator and Data
Preprocessor

1 import numpy as np
2 import argparse
3 from os import path, walk
4 import os
5 import shutil
6 from datetime import date
7 import time
8 import random
9 import netCDF4

10

11 def loadPointCloudFromZivid(pcd):
12 zividPointCloud = netCDF4.Dataset(pcd,'a', format = "NETCDF4")
13 return np.reshape(np.asarray(zividPointCloud["data/pointcloud"])

,(1920*1200,3))↪→

14

15 def loadRGBFromZivid(pcd):
16 zividPointCloud = netCDF4.Dataset(pcd, 'a', format = "NETCDF4")
17 return np.reshape(np.asarray(zividPointCloud["data/rgba_image"])

[:,:,0:3], (1920*1200,3))↪→

18

19 def readZividPCD(framefile,subsample):
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20 frame = zivid.frame.Frame(framefile)
21 pcd = frame.point_cloud()
22

23 if subsample is not None:
24 pcd = pcd.downsample(subsample)
25

26 xyz = pcd.copy_data("xyz")
27 rgba = pcd.copy_data("rgba")
28 normals = pcd.copy_data("normals")
29

30 return xyz, rgba, normals
31

32

33 def saveZividPcdAsNpz(savedir,savename,framefile,normVectorSave = False,
save_color=False, subsample = None,scale_to_meters = True):↪→

34 if not os.path.exists(savedir):
35 os.mkdir(savedir)
36

37 xyz,rgba,normals =
readZividPCD(framefile=framefile,subsample=subsample)↪→

38

39 if scale_to_meters:
40 xyz = xyz/1000
41

42 if normVectorSave and save_color:
43 np.savez_compressed(os.path.join(savedir,savename), rgb =

rgba[:, :, 0:3].reshape(np.shape(xyz)[0]*np.shape(xyz)[1],
3), pcd = xyz.reshape(np.shape(xyz)[0]*np.shape(xyz)[1], 3),
normals = normals)

↪→

↪→

↪→

44

45 elif normVectorSave and not save_color:
46 np.savez_compressed(os.path.join(savedir,savename), pcd =

xyz.reshape(np.shape(xyz)[0]*np.shape(xyz)[1], 3), normals =
normals)

↪→

↪→

47

48 elif not normVectorSave and save_color:
49 np.savez_compressed(os.path.join(savedir,savename), rgb =

rgba[:,:, 0:3].reshape(np.shape(xyz)[0]*np.shape(xyz)[1],
3), pcd = xyz.reshape(np.shape(xyz)[0]*np.shape(xyz)[1], 3))

↪→

↪→
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50

51

52 elif not normVectorSave and not save_color:
53 np.savez_compressed(os.path.join(savedir,savename), pcd =

xyz.reshape(np.shape(xyz)[0]*np.shape(xyz)[1], 3))↪→

54

55 def saveZividPcdAsNpzNetCDF(savedir, savename, framefile,
save_color=False, scale_to_meters = True):↪→

56

57

58 xyz = loadPointCloudFromZivid(framefile)
59 if scale_to_meters:
60 xyz=xyz/1000
61 rgb = loadRGBFromZivid(framefile)
62

63 if save_color:
64 np.savez_compressed(os.path.join(savedir,savename),
65 pcd = xyz,
66 rgb = rgb)
67 else:
68 np.savez(os.path.join(savedir,savename),
69 pcd = xyz)
70

71

72 def testZividSaveLoad():
73 FILEPATH = "C:\Users\jonas\Documents\NTNU\" +

"MasterThesis\DummyDataset\Object1\black cable - zvd1ps.zdf"↪→

74 saveZividPcdAsNpz('./testfolder','testname',FILEPATH)
75

76 loaded = np.load('./testfolder/testname.npz')
77 print(loaded["rgba"][200,200])
78 print(loaded["xyz"][200,200])
79 print(loaded["normals"][200,200])
80

81 def splitTrainVal(objectList,trainFile,valFile,valFraction = 0.1):
82

83 trainN = int(len(objectList)*1-valFraction)
84

85 trainList = random.sample(objectList,trainN)
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86 valList = []
87

88 for n in objectList:
89 if not trainList.__contains__(n):
90 valList.append(n)
91

92

93 f = open(trainFile,"a")
94 for t in trainList:
95 f.write(f"{t}\n")
96 f.close()
97

98 f = open(valFile,"a")
99 for t in valList:

100 f.write(f"{t}\n")
101 f.close()
102

103

104 def main():
105 #Parsing arguments
106 parser = argparse.ArgumentParser()
107 parser.add_argument("--dir",help="Directory of Zivid

pointclouds",type = str,default =
"C:/Users/jonas/Documents/NTNU/MasterThesis/DummyDataset")

↪→

↪→

108 parser.add_argument("--zivid_camera_file",help="Path to .zfc camera
for camera emulation", type=str, default =
"./FileCameraZividOne.zfc")

↪→

↪→

109 parser.add_argument("--val_fraction", type=float, default=0.1)
110 parser.add_argument("--include_normals",type=bool, default=False)
111 parser.add_argument("--include_color",type= bool, default=False)
112 parser.add_argument("--subsample", type=str, default = None, help =

"Default is no subsamplng, ommit this flag for raw data input.
For subsampling input arguments by4x4 by3x3 or by2x2 ")

↪→

↪→

113 parser.add_argument("--dataset_output_name",type=str,default =
"ZividDataset")↪→

114 parser.add_argument("--train_file_name",type= str,
default="trainZivid.txt")↪→

115 parser.add_argument("--val_file_name",type= str,
default="valZivid.txt")↪→
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116 parser.add_argument("--scale_to_meters", type=bool,default=True)
117 parser.add_argument("--zivid", type=bool,default=False)
118 parser.add_argument("--no_compress", type = bool, default=False)
119

120 args = parser.parse_args()
121

122

123 if args.zivid:
124 import zivid
125 # Connecting ZividFileCamera
126 app = zivid.Application()
127 camera = app.create_file_camera(args.zivid_camera_file)
128 settings =

zivid.Settings(acquisitions=[zivid.Settings.Acquisition()])↪→

129 #frame = camera.capture(settings)
130

131 datasetFolder = args.dir
132

133 print("\n")
134 print("Preprocessing Zivid pointclouds")
135 print("\n")
136 print(f"=> Processing data in {datasetFolder}")
137

138 directories = []
139

140 for (dirpath, dirnames, filenames) in walk(datasetFolder):
141 directories.extend(dirnames)
142

143

144 if args.no_compress:
145 outputFolder = args.dataset_output_name
146 else:
147 outputFolder = outputFolder
148

149

150 if os.path.exists(outputFolder):
151 shutil.rmtree(outputFolder)
152 os.makedirs(outputFolder)
153
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154 splitTrainVal(directories, os.path.join(outputFolder,
args.train_file_name), os.path.join(outputFolder,
args.val_file_name), args.val_fraction)

↪→

↪→

155

156 for dir in directories:
157 print(f"\nNow processing files in

{os.path.join(datasetFolder,dir)}")↪→

158 files = os.listdir(os.path.join(datasetFolder,dir))
159 i = 0
160 f = open(os.path.join(outputFolder,str(dir)+"_all.txt"),"x")
161 for file in files:
162

163

164 if args.zivid:
165 saveZividPcdAsNpz(outputFolder, f"{dir}_{i}",

os.path.join(datasetFolder, dir,
file),normVectorSave=args.include_normals,
save_color=args.include_color,
subsample=args.subsample, scale_to_meters =
args.scale_to_meters)

↪→

↪→

↪→

↪→

↪→

166 else:
167 saveZividPcdAsNpzNetCDF(outputFolder, f"{dir}_{i}",

os.path.join(datasetFolder, dir, file),
scale_to_meters = args.scale_to_meters)

↪→

↪→

168

169 f.write(f"{dir}_{i}\n")
170 i += 1
171 f.close()
172

173 #Create .txt files
174 filesInSaveFolder = os.listdir(outputFolder)
175 for file in filesInSaveFolder:
176 if file.__contains__(".txt"):
177 name = file.split("_all.")
178

179 listFile = open(f"{os.path.join(outputFolder,file)}","r")
180 listFileContents = listFile.read().split("\n")
181 pairFile = open(f"{os.path.join(outputFolder,

name[0])}.txt", "x")↪→
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182

183 listFileContents1 = listFileContents
184 usedElements = []
185 for element1 in listFileContents1:
186 for element2 in listFileContents1:
187 if element1 == element2 or len(element1)<2 or

len(element2)<2 or
usedElements.__contains__(element1) or
usedElements.__contains__(element2) :

↪→

↪→

↪→

188 None
189 else:
190 pairFile.write(f"{element1}.npz

{element2}.npz\n")↪→

191

192 usedElements.append(element1)
193

194 listFile.close()
195 pairFile.close()
196

197 t = time.localtime()
198 current_time = time.strftime("%H%M", t)
199

200 if not args.no_compress:
201 shutil.make_archive(f"{args.dataset_output_name}_" + "ss_{

args.subsample}_colors_{args.include_color}_normals_{
args.include_normals}_{
str(date.today())}_{str(current_time)}" , 'zip',
outputFolder)

↪→

↪→

↪→

↪→

202 shutil.rmtree(outputFolder)
203

204

205

206 if __name__=="__main__":
207

208 main()





Appendix C.

Shell Script for Training FCGF
Model

1 #!/bin/bash
2 export OMP_NUM_THREADS=12
3 cd ./FCGF
4 nvidia-smi
5

6 echo "##################################################"
7 echo " TRAINING FCGF"
8 echo "##################################################"
9

10

11 python ./train.py \
12 --batch_size=4 \
13 --voxel_size=0.002 \
14 --stat_freq=10\
15 --max_epoch=200 \
16 --train_num_thread=12 \
17 --val_num_thread=12 \
18 --lr 1e-1\





Appendix D.

Slurm File for Training FCGF
Model

1 #!/bin/bash
2 #SBATCH --job-name=FCGF_train
3 #SBATCH --mail-type=ALL
4 #SBATCH --mail-user=jonassaa@stud.ntnu.no
5 #SBATCH --nodes=1
6 #SBATCH --ntasks=1
7 #SBATCH --cpus-per-task=12
8 #SBATCH --mem=16000
9 #SBATCH --time=96:00:00

10 #SBATCH --output =
/cluster/home/jonassaa/jobs/FCGF/outputs/FCGF_train.log↪→

11 #SBATCH --partition=GPUQ
12 #SBATCH --gres=gpu:A100m80:1
13

14 date;hostname;pwd
15

16 singularity exec --nv plain_minkowskiengine_latest.sif
/cluster/home/jonassaa/jobs/singularityExecScripts/train_FCGF.sh↪→

17

18 date





Appendix E.

Shell Script for Training DGR
Model

1 #! /bin/bash
2 export OMP_NUM_THREADS=12
3 cd /cluster/home/jonassaa/jobs/DeepGlobalRegistration
4 nvidia-smi
5

6 echo "#############################################"
7 echo " TRAINING DGR"
8 echo "#############################################"
9 python ./train.py \

10 --dataset ZividPairDataset \
11 --zivid_dataset_dir "/cluster/home/jonassaa/jobs/ZividOne_v2/" \
12 --feat_model ResUNetBN2C \
13 --feat_model_n_out=32 \
14 --feat_conv1_kernel_size=7 \
15 --lr 1e-1 \
16 --batch_size=2 \
17 --val_batch_size=1 \
18 --max_epoch=40 \
19 --voxel_size 0.001 \
20 --hit_ratio_thresh=0.0425 \
21 --weights "/cluster/home/jonassaa/modelsFCGF/3Dmatch_25mm_32dim.pth"





Appendix F.

Slurm File for Training DGR
Model

1 #!/bin/bash
2 #SBATCH --job-name=DGR_train
3 #SBATCH --mail-type=ALL
4 #SBATCH --mail-user=jonassaa@stud.ntnu.no
5 #SBATCH --nodes=1
6 #SBATCH --ntasks=1
7 #SBATCH --cpus-per-task=12
8 #SBATCH --mem=16000
9 #SBATCH --time=24:00:00

10 #SBATCH --output=DGR_train
11 #SBATCH --partition=GPUQ
12 #SBATCH --gres=gpu:A100m80:1
13

14 date;hostname;pwd
15

16

17 singularity exec --nv
/cluster/home/jonassaa/jobs/plain_minkowskiengine_latest.sif
/cluster/home/jonassaa/jobs/singularityExecScripts/trainDGR.sh

↪→

↪→

18

19 date





Appendix G.

Zipfile

This appendix describes the folder structure of the accompanying zipfile uploaded
alongside this thesis. In this Zipfile, all code used to produce the results presented
in this thesis is provided as well as the data set of Zivid point clouds.

• CodeRepositories

– DGR

– FCGF

– Zivid_DGAP

• IdunHpcScripts

– SingularityExecScripts

∗ train_FCGF_3dmatch.sh

∗ train_FCGF_Zivid.sh

∗ train_DGR_Zivid.sh

– SlurmScripts

∗ train_FCGF_3dmatch.slurm

∗ train_FCGF_Zivid.slurm

∗ train_DGR_Zivid.slurm

• Plotting

– plotFromLog.py

• TrainingLogs

– train_FCGF_3dmatch_log.log
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– train_FCGF_Zivid_log.log

– train_DGR_Zivid_log.log

• ZividDataset

– Processed

∗ ZividOneDataset

– Raw

∗ ZividOneDataset

• Project_thesis_Jonas_Strand_Aasberg.pdf
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