
Visualizing Repository D
ata to Facilitate Feedback in SE courses

Fredrik F. Lindhagen, and Sigurd M
. M

elsom

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Fredrik Førde Lindhagen, and
Sigurd Marius Melsom

Visualizing Repository Data to
Facilitate Feedback in Software
Engineering courses

Master’s thesis in Master in Informatics
Supervisor: George Adrian Stoica
June 2022

M
as

te
r’s

 th
es

is

Fredrik Førde Lindhagen, and
Sigurd Marius Melsom

Visualizing Repository Data to
Facilitate Feedback in Software
Engineering courses

Master’s thesis in Master in Informatics
Supervisor: George Adrian Stoica
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Learning to plan and build software in collaboration is essential for Computer
Science (CS) students to learn. In the industry Git has become the favored Version
Control System (VCS), and an important part of CS education.

We explore how current research analyses data from Git, repository hosting
services, and project management systems to improve the quality of Software En-
gineering courses and is used to evaluate and counsel students. Then a prototype
is built using third-party visualization software to give student groups visualized
feedback on projects in Software Engineering courses. Finally, usability tests are
conducted in two rounds to discover and resolve usability problems and receive
qualitative data on how students and Teaching Assistants (TAs) value the visual-
ization tool.

This thesis has two main contributions. First, 1) Increased qualitative knowl-
edge of how lower-level Computer Science students value insight into a course
project through an interactive visualization tool. Important considerations when
developing such tools are also covered. Lastly, 2) increased knowledge of the ben-
efits and limitations of using third-party software to create visualizations for stu-
dent groups.

We find that students and TAs react positively to a visualization tool that con-
tinuously gives them feedback on their projects, amplifying their feedback loop.
Third-party visualization software is found to have limitations affecting students’
usability. However, the effects are more promising for Teaching Assistants (TAs).

This knowledge, and related research, can be built upon in further research
to create a more generalizable and applicable platform for students in Software
Engineering courses.

iii

Sammendrag

Planlegging og utvikling av programvare er fundamentale egenskaper å lære for
datastudenter. I industrien har Git blitt det foretrukne verktøyet for versjonskon-
troll og blitt en viktig del av utdanningsløpet til datastudenter.

I denne oppgaven utforsker vi hvordan data fra Git, kodebrønner, og prosjek-
styringssystemer anvendes i forskning for å bedre kvaliteten på programvareutviklingsfag,
samt bruk i evaluering og oppfølging av studenter. Videre utvikles det en prototype
i et tredjeparts visualiseringsverktøy som gir studenter visualiserte tilbakemeldinger
på hvordan de jobber på prosjekter i programvaretuviklingsfag. Til slutt utføres
brukertester fordelt på 2 runder for å utbedre brukskvalitet og få kvalitative data
på hvordan studenter og studentassistenter verdsetter plattformen.

Denne avhandingen har i hovedsak to bidrag: 1) Økt kvalitativ kunnskap
om hvordan studenter innen programvareutvikling verdsetter innsikt i prosjek-
ter gjennom et interaktivt visualiseringsverktøy, og viktige poenger til utviklingen
av slike systemer. 2) Økt kunnskap om fordelene og begrensningene ved å bruke
tredjeparts visualiseringsverktøy for å utvikle visualiseringer for studentgrupper i
fag.

Vi viser at både studenter og studentassistenter er positive til et visualiser-
ingsverktøy som gir dem raskt tilbakemelding på prosjektene sine og forsterker
tilbakemeldingssyklusen. I tillegg viser vi at tredjeparts visualiseringsverktøy har
begrensninger som påvirker brukskvaliteten til studenter, men er mer lovende for
studentassistenter.

Denne kunnskapen kan bygges videre på ved å utvikle en mer generaliserbar
og anvendbar plattform for studenter i programvareutviklingsfag.

v

Preface

This thesis marks our final submission of our two year Master of Science in Infor-
matics at the Norwegian University of Science and Technology (NTNU), and in
total five years of education at NTNU.

Firstly, we would like to extend our gratitude to our supervisor George Adrian
Stoica. His patience and guidance throughout the semester has been greatly ap-
preciated.

Furthermore, we want to extend our gratefulness to all students and Teaching
Assistants (TAs) who partook in interviews, providing invaluable insight and sug-
gestion for improvements. Additionally, we wish to thank the Information Systems
and Software Engineering (ISSE) group at Department of Computer Science for
financial support of gift cards to the participants.

Lastly, we thank our friends and family for their support, and the staff at Café-
sito Stripa (NTNU), who kept us caffeinated throughout the thesis.

Fredrik Lindhagen & Sigurd Melsom
Trondheim, 2022

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Acronyms . xvii
Glossary . xix
1 Introduction . 1

1.1 Motivation . 1
1.2 Research objective . 2

1.2.1 Stakeholders . 2
1.2.2 Research Questions . 3

1.3 Findings . 3
1.4 Thesis Structure . 4

2 Background . 5
2.1 Version Control . 5

2.1.1 Git . 6
2.2 GitLab . 7
2.3 Software Engineering at NTNU . 9

2.3.1 IT1901 - Informatics, Project I 9
2.3.2 TDT4140 - Software Engineering 10

2.4 Existing analysis systems . 11
2.4.1 GitLab Analytics . 11
2.4.2 GitHub Classroom . 11
2.4.3 Pluralsight Flow . 12
2.4.4 Gitinspector . 12

3 Related Work . 13
3.1 Literature Review Process . 13
3.2 Use of Learning Analytics in Software Engineering courses 15

3.2.1 Analytics to better understand students’ development pro-
cesses . 15

3.2.2 Analytics for evaluation of student contributions 16
3.2.3 Application of analytics to improve student learning 18

ix

x Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

3.3 Summary of metrics from the literature 20
4 Methodology . 21

4.1 Research process . 21
4.2 Research ethics . 22
4.3 Design and Creation strategy . 23

4.3.1 Conducting Design and Creation research 24
4.4 Data generation methods . 25

4.4.1 Participants and Recruitment 26
4.4.2 Interview guide . 26

4.5 Interview transcription . 29
4.6 Data analysis . 29

5 Prototype design . 31
5.1 Constraints . 31
5.2 Architecture . 31
5.3 Metric aggregator . 32

5.3.1 Database alternatives . 33
5.3.2 Metric aggregation architecture 33
5.3.3 Classifying code contribution for each student 36

5.4 Visualization tool . 38
5.4.1 Third-party Visualization software 38
5.4.2 Selecting a third-party visualization software 39

5.5 Prototype development . 40
5.5.1 Initial prototype . 40
5.5.2 Second revision . 43

6 Research Results . 47
6.1 About the participants . 47
6.2 Usability tests . 48

6.2.1 Usability tests first iteration . 48
6.2.2 Usability tests second iteration 53

6.3 The perceived value of the tool . 58
6.3.1 How students would use the tool 62

7 Discussion . 63
7.1 RQ1 - Students value of the visualizations 63

7.1.1 Considerations affecting the value 65
7.1.2 Summary . 68

7.2 RQ2 - Using third-party visualization software 69
7.2.1 Grafana as Visualization software for educational uses 69
7.2.2 Comparing the limitations of Grafana with the other third-

party software . 71
7.2.3 Considering custom-built visualization software 71
7.2.4 Summary . 71

7.3 Research limitations . 72
8 Conclusion and Future Work . 75

8.1 Future work . 76

Contents xi

Bibliography . 77
A Interview Guide - Students . 83
B Interview Guide - TAs . 89
C NSD Approval . 93
D Interview Consent form . 97

Figures

2.1 Primary types of VCS architectures . 6

3.1 Literature review process . 14

4.1 Project roadmap . 21
4.2 The research process used in this thesis 22
4.3 The Design and Creation research process structured in this thesis . 24

5.1 Architectural overview of the primary responsibilities and their de-
pendencies . 33

5.2 Diagram of architectural components 34
5.3 State diagram of rate-limiting . 36
5.4 Internal flow of Metric aggregator . 37
5.5 Full page screenshot of the initial prototype design 40
5.6 Grafana description box . 43
5.7 Screenshot of the start view of the second revision 45
5.8 Full page screenshot from second revision 46

xiii

Tables

1.1 Stakeholders . 2

2.1 Git best practices . 8
2.2 Specific rules for a good commit message 9

3.1 General inclusion and exclusion criteria for our literature search . . 13
3.2 Git metrics used in the literature . 20

5.1 Architectural constraints . 32

6.1 Anonymized student identifiers . 48
6.2 Summary of the discussed topics in the first round of usability tests 49
6.3 Summary of the discussed topics in the second round of usability

tests . 54
6.4 Positive values discussed during the usability tests 59

7.1 Concerns discussed during the usability tests 65

xv

Acronyms

CD Continuous Delivery. 7–11, 68, 74

CI Continuous Integration. 1, 7–11, 18, 68, 74

CS Computer Science. iii, 9, 10, 15, 19

CVCS Central Version Control System. 5, 6

DORA DevOps Research and Assessment. 11

DVCS Distributed Version Control System. 5, 6

GUI Graphical User Interface. 3, 4, 27, 28, 69

JS JavaScript. 71

JSON JavaScript Object Notation. 12, 70

LDAP Lightweight Directory Access Protocol. 39

LoC Lines of Code. 18, 20, 49–51, 54, 55, 65, 66

NSD Norwegian Centre for Research Data. 22, 24, 28, 72, 73

NTNU Norwegian University of Science and Technology. vii, 1, 2, 5, 7–10, 16, 19,
22, 26, 28, 73

RBAC Role-based access control. 71

SAML security assertion markup language. 38

SSO Single Sign-On. 32, 38, 39, 69, 71

TA Teaching Assistant. iii, vii, 2–4, 13, 16, 23, 25–27, 29, 40, 43, 47, 51, 53, 58,
59, 61, 64–66, 68, 72, 73, 75, 76

VCS Version Control System. iii, xiii, 1, 5–7, 15, 75

XML eXtensible Markup Language. 12

xvii

Glossary

DevOps "The combination of cultural philosophies, practices, and tools that in-
creases an organization’s ability to deliver applications and services at high
velocity"1. 23, 66, 68

Git A Distributed Version Control System, used to handle code changes and sim-
plify collaboration. iii, v, xv, 1–8, 10, 11, 13, 15–19, 24, 27, 28, 31, 35, 37,
41, 42, 44, 48, 51, 54, 59–61, 63–70, 72, 75, 76

GitLab Centralized Git repository for multiple projects, with additional project
management features. 1–11, 13, 15, 18, 19, 23–25, 27, 28, 31–36, 39, 41,
42, 44, 49–51, 53, 54, 59–61, 63, 64, 69, 70, 72, 75, 76

IT1901 Course at Norwegian University of Science and Technology (NTNU), where
students get knowledge and skills in agile application development in teams.
2. 1, 2, 4, 8–10, 16, 21–24, 26–29, 31–33, 38, 41, 42, 47, 48, 55, 56, 61–63,
72–74

IT2810 Course at Norwegian University of Science and Technology (NTNU), where
students are taught technologies and methods used in the development of
web-based solutions. This course is taught in the fall semester.3. 19, 47

Linter ESLint defines linting as: "Code linting is a type of static analysis that is
frequently used to find problematic patterns or code that doesn’t adhere to
certain style guidelines"4. 17, 55, 68

Software Engineering Software Engineering deals with the design, development,
testing and maintenance of software applications. iii, 1–3, 5, 10–13, 15–19,
27, 63, 67–69, 71–73, 75, 76

TDT4140 Course at Norwegian University of Science and Technology (NTNU),
where students are taught project management, agile and group processes,

1https://aws.amazon.com/devops/what-is-devops/
2https://www.ntnu.edu/studies/courses/IT1901
3https://www.ntnu.edu/studies/courses/IT2810
4https://eslint.org/docs/about/

xix

https://aws.amazon.com/devops/what-is-devops/
https://www.ntnu.edu/studies/courses/IT1901
https://www.ntnu.edu/studies/courses/IT2810
https://eslint.org/docs/about/

xx Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

and demonstrate the ability to plan and manage a small Software Engineer-
ing project. This course is taught in the spring semester.5. 4, 8–10, 16, 19,
47, 72, 73

Trello A web-based work management tool with kanban task boards.6. 53

5https://www.ntnu.edu/studies/courses/TDT4140
6https://trello.com/

https://www.ntnu.edu/studies/courses/TDT4140
https://trello.com/

Chapter 1

Introduction

1.1 Motivation

Collaboration with peers is crucial for computer scientists in academia and the
industry [1–3]. The Version Control System (VCS) Git1 is at the centre of collab-
orative development, enabling developers to work on the same code base asyn-
chronously. To properly utilize Git, the Git repository should be hosted on reposi-
tory hosting services like GitHub and GitLab. These hosting services have collab-
orative features such as task management, Continuous Integration (CI) pipelines,
code reviews, and wiki services. Mastering these tools is a crucial skill for becom-
ing a proficient developer [1, 4] and has become part of the curriculum for many
computer science degrees. These Software Engineering skills are best learned
through group projects [5]. In order to learn good practices and become skilled
at collaborative software development [6], it is favorable for students to get con-
tinuous feedback [7] and insight into their projects.

In the Software Engineering course IT1901 at Norwegian University of Science
and Technology (NTNU), the main objective is to build the basis for producing
high-quality software in an agile development paradigm. The focus is on learning
core techniques for managing source code, issues, build and deployment, testing,
and the basic elements of agile development. For most students, this course is their
first experience programming together in a team. The course is based on a group
project with deliveries, which forms the basis for their grade. The functionality
of the developed product is not as crucial as its code quality and testing. Their
practices in collaborative tools like Git and GitLab are evaluated and part of their
grade in the course.

We believe that a tool that highlights the mistakes and shortcomings of stu-
dents’ software development projects can give the students a better understand-
ing of how to collaborate. Furthermore, the students can quickly correct bad prac-
tices by getting immediate feedback on their development process throughout the
project, which helps improve the students’ performance [7]. The outlined tool can

1https://git-scm.com/

1

https://git-scm.com/

2 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

also help course staff get an improved overview of how the groups collaborate,
facilitating effective individual feedback to the different groups. We believe such
a tool can be implemented by mining data from GitLab repositories and using
established analytics and third-party visualization tools.

1.2 Research objective

The main objective of this thesis is to expand the knowledge on making students
more skilled at collaborative programming. More specifically, we look at how vi-
sualization software can be used to provide continuous feedback on data from Git
and repository hosting services.

We hypothesize that relevant insights will improve students’ learning- and soft-
ware development process and give course staff the ability to help students strug-
gling by providing more targeted feedback. A prototype of a visualization tool is
developed using third-party visualization software. It is made with the require-
ments of the a specific Software Engineering course at Norwegian University of
Science and Technology (NTNU), IT1901. The prototype is tested for its usability
and value through interviews, generating qualitative data. Literature on learning
analytics in Software Engineering education is reviewed to determine the state of
the art of collaborative insights for student development groups.

It is important to note that the goal of this insight is primarily to provide stu-
dents with valuable insights during the course, so they can improve their process
and not make quantitative evaluation metrics for course staff.

1.2.1 Stakeholders

In this project we focus on two primary stakeholders, Students and Teaching Assis-
tant (TA) (Table 1.1). Students are most important since they are expected to get
the most value from this system. TAs are included because they supervise one or
multiple student groups, requiring access to the same insights.

Stakeholder Description

Teaching Assistant (TA) Students and PhDs hired to assist the
Course staff and Student Groups.

Student Students attending a Software Engi-
neering course collaborating in stu-
dent groups.

Table 1.1: Description of the primary project stakeholders.

Chapter 1: Introduction 3

1.2.2 Research Questions

The motivation and context can be broken down into the Research Questions,
which specifies the objectives of our thesis.

RQ1 "What is the perceived value of a tool visualizing Git and GitLab usage, for
students in Software Engineering courses?"

RQ2 "What are the benefits and limitations of using a third-party visualization
software to visualize insight into students’ Software Engineering projects?"

RQ1 is answered by building a prototype of a visualization tool, which is tested
on students and Teaching Assistants (TAs) in a relevant Software Engineering
course. The usability tests are conducted in two rounds, allowing us to address us-
ability problems between each round (See Chapter 4 for details). Post-interviews
collect qualitative data by asking open-ended questions to participants and having
them reflect on the benefits and limitations of a visualization tool.

RQ2 is answered by looking at a selection of popular third-party visualization
software (Section 5.4.1), comparing their benefits and limitations. Then one of
those systems is selected for further prototyping (Section 5.5) and tested as part of
the usability testing. Usability problems that participants explicitly noted, as well
as other observations, were recorded. Finally, any problems that require consid-
erable effort to resolve in the visualization software are discussed (Section 7.2.1)
together with its benefits.

1.3 Findings

It is found that both students and TAs react positively to a visualization tool that
continuously gives them feedback on their projects, amplifying their feedback
loop. Additionally, some students appreciated how this data could enable them
to discuss better how they cooperate.

Further, Grafana2, a third-party visualization software, was chosen for devel-
oping a prototype. Grafana has several promises in terms of fast prototyping, flex-
ibility in visualization options, and the ability to drill down in time. Ideal for TAs
and course staff to get insight into one or multiple projects. However, for the
primary use case, RQ1, the standardized Graphical User Interface (GUI) has sev-
eral limitations in providing students with customized and interactive feedback.
Most of the feedback received in the last round of tests was rooted in graphical
limitations in Grafana. Accordingly, the thesis shows that third-party visualiza-
tion software has limitations for stakeholders requiring a high degree of flexibil-
ity. Therefore, a custom-built visualization tool should be considered for student
groups.

2https://grafana.com/

https://grafana.com/

4 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

The findings from this thesis show future possibilities to explore in more detail
what type of visualizations provide students with the most help, comparing differ-
ent approaches. Additionally, a case study should explore how students use such
tools during their courses. Finally, even though students and TAs from IT1901 are
used as the basis for the developed prototype, the feedback should be generaliz-
able to other similar courses. For example, most participants did, in parallel, at-
tend a similar course, TDT4140 Software Engineering3, and noted a similar value
in this course as well.

1.4 Thesis Structure

This thesis starts with necessary background information on specific topics in
Chapter 2. Chapter 3 summarizes related research on the use of analytical data
from Git and GitLab in educational contexts. Next, Chapter 4 describes the overall
design and creation process to build the prototype and details how the usability
testing, with pre-interviews and post-interviews, is planned, conducted, and ana-
lyzed. Subsequent, Chapter 5 goes into detail about the creation of the prototype.
That chapter discusses overall technical decisions, explains why Grafana was cho-
sen as the third-party visualization system, potential pitfalls from crawling Git-
Lab, and how the Graphical User Interface (GUI) evolved between each revision.
Chapter 6 presents the findings from usability testing and interviews. Chapter 7
answers RQ1 and RQ2 by discussing the benefits and limitations of our visualiza-
tion tool based on our findings, related work, and experience building the tool.
Lastly, Chapter 8 summarizes the thesis and its contribution, including a section
on future work.

3https://www.ntnu.edu/studies/courses/TDT4140 - Web page describing the course "Soft-
ware Engineering"

https://www.ntnu.edu/studies/courses/TDT4140

Chapter 2

Background

This chapter introduces select theoretical concepts and background knowledge
needed to understand the contributions of this thesis. This includes what a Ver-
sion Control System (VCS) is, best practices in Git, relevant functionality from
GitLab, the most relevant Software Engineering courses at Norwegian University
of Science and Technology (NTNU), and existing commercial and open-source
analysis systems.

2.1 Version Control

A Version Control System (VCS) is a system for managing and keeping track of
changes to files over time [8]. The most obvious trait of a VCS is the possibility of
reverting files to previous versions and rolling back an entire project to a previous
state. However, these systems have several other features, such as tracking the
author of specific edits, monitoring the evolution of files, and working on differ-
ent tasks by using branches. As a result, VCSs are considered a must by develop-
ers in the industry to successfully manage code changes in Software Engineering
projects [9].

Typically, VCSs are classified as one of two architectures: Central, or Distributed.
Their core differences are illustrated in Figure 2.1.

Central Version Control System (CVCS), is an architecture designed for coop-
eration, with a single centralized server for tracking file changes. However, this
single server architecture is vulnerable as it becomes a single point of failure. If
this server were corrupted or unavailable, the project files would be unavailable
and, in the worst-case unrecoverable. This architecture is used by systems such as
Subversion1 and Concurrent Versions System2 [8].

The architecture of Distributed Version Control System (DVCS) is similar to
CVCS in the sense that it is suited for cooperation. However, there is no central-
ized server. Instead, the version database is mirrored on all the developers’ com-

1https://subversion.apache.org/
2https://cvs.nongnu.org/

5

https://subversion.apache.org/
https://cvs.nongnu.org/

6 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

(a) Central Version Control System (CVCS) (b) Distributed Version Control System
(DVCS)

Figure 2.1: Primary types of VCS architectures. Figures are from [8]. Retrieved
February, 2022

puters, avoiding the single point of failure architecture of CVCS. One computer
can go down without affecting the other developers by mirroring the entire ver-
sion history to all the developers. The project can be recovered from one of the
other mirrored instances.

2.1.1 Git

Git is an open-source DVCS which has become the most popular VCS tool for
developers. The Stack Overflow 2021 developer survey reported that over 90% of
76-thousand respondents use Git [10]. Git has become the standard when col-
laborating with other developers on software projects and an essential skill for
developers to master. The distributed architecture of Git allows all developers of a
project to work on the same codebase and files simultaneously. A hosted Git repos-
itory, such as GitHub3, GitLab4, or BitBucket5, are typically used as the centralized
codebase, representing the code running in production.

In Git, file evolutions are tracked with snapshots called commits. A commit is
a snapshot of all the files in a version of the project at the moment in time. Every
time a commit is created, snapshots of all files changed since the previous com-
mit are taken. In addition to the file snapshots, commits contain metadata such

3https://github.com/
4https://about.gitlab.com/
5https://bitbucket.org/

https://github.com/
https://about.gitlab.com/
https://bitbucket.org/

Chapter 2: Background 7

as timestamp, author name, email, commit message, a reference to the previous
commit, and an identifying hash used to identify a specific commit. The commit
message is written by the commit author when initiating the commit, which is
useful for explaining what changes are done in the commit.

Git Commit Best practices

To successfully utilize Git most projects adhere to a set of conventions good enough
for their project that makes tracking changes over time consistent and predictable.
Best practices are mainly discussed in Grey Literature [11] such as web articles.
Even though most sources agree on the primary conventions, there are different
scales of strictness, such as how Git commits should be structured. For example,
Conventional Commits follow a strict and semantic approach [12], with the benefit
of having machine-parseable commits autogenerating changelogs. This, however,
might be too strict for most developers who do not require the added features.

Table 2.1 is a summarized collection of general Git best practices, synthesized
from collections of different Grey Literature. These are sourced through Google
Scholar6 and common search engines, by searching for "Git Best practice". Note
that this is not an exhaustive list of references but includes enough to have suffi-
cient confidence in what practices are recommended by multiple, instead of just
a preference from a particular author or company.

Most notable commit practices are "Write good commit messages", "Make small,
atomic/single-purpose commits", "Branch frequently, using short-lived branches", and
"Do not commit half-done work", which are referenced by more than two sources.
Additional practices are likely also relevant, but this depends more on how each
project is structured. The practices "Use branches" can, for many projects, be a good
practice. However, Trunk-based development [13] recommends that small teams
may directly commit to trunk (main/master branch), with the claim that this in-
creases Continuous Integration (CI) & Continuous Delivery (CD) performance.

Good commit messages can be distilled to a collection of guidelines, Table 2.2.
These are typically more specific and agreed upon by many sources. Tools such as
commitlint7 have been created to validate the structure of a commit during devel-
opment, preventing developers from introducing violating messages to a project.
However, not all of the rules are easily validated by a tool. Validating the use of
"Imperative mood" requires more complicated systems to understand the language.

2.2 GitLab

Norwegian University of Science and Technology (NTNU) use a self-hosted ver-
sion of GitLab as the primary VCS. Similar to GitHub, Bitbucket and other hosting

6https://scholar.google.com/
7https://commitlint.js.org/#/

https://scholar.google.com/
https://commitlint.js.org/#/

8 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Best practice Referenced in

Write good commit messages (details in Table 2.2) [14–19]
Make small, atomic/single-purpose commits [14, 15, 17–19]
Branch frequently, using short-lived branches [13, 15, 19, 20]
Do not commit half-done work [14–16, 18]
Commit often [14, 15]
Test your code before you commit [14, 15]
Use branches [14, 19]
Obtain feedback through code reviews [15, 19]
Agree on a workflow and branching strategy [14, 19]
Use trunk (main/master branch) as the only
shared branch for a team

[13]

Be concise and straight to the point. Explain why
the changes were made, not what has changed

[18]

Table 2.1: Git best practices
Collection is synthesized from multiple Grey Literature articles and books, to

give a confidence indicator on each best practice’s relevance.

services, GitLab provide a centralized place where developers can store and man-
age their codebase. Additionally, these services provide project management, code
review, and other Continuous Integration (CI) & Continuous Delivery (CD) func-
tionalities to manage the whole life-cycle of a product. In several of the courses
at NTNU that use GitLab, such as IT1901 (Section 2.3.1) and TDT4140 (Sec-
tion 2.3.2), the ability to work efficiently with GitLab’s features is an important
learning goal. Most notable features are GitLab Issues, Milestones, and Merge Re-
quests.

GitLab issue tracking provide developers with a central location to record, pri-
oritize and manage project tasks. Developers can directly discuss an issue and
reference them in Git commits or Merge Requests, which can automatically up-
date or close the issue.

Merge Request is functionality in GitLab that allow other developers to peer re-
view changes done to the code before it is merged into a branch, typically the main
branch. This is similar to the Pull Request functionality in GitHub and Bitbucket.
Peer-reviewed code has been empirically shown to provide higher quality soft-
ware [21] while being a valuable tool to share knowledge with other peers [22,
23]. The Merge Request views typically present the developers with an overview

Chapter 2: Background 9

Commit message rules Referenced in

Commit messages should be no longer than 50
characters

[8, 14–18]

Begin a commit message using capital letter [16–18]
Do not end the message with a period [16, 18]
Use the imperative mood [8, 14, 16–19]
Commit message should be consistent [18]
Explain why the changes were made, not what [18]
Always leave the second line blank [8, 14–16]
Wrap the body at 72 characters [8, 16]
Use the body to explain what and why instead of
how

[16]

Table 2.2: Specific rules for a good commit message

of the files and lines changed between two branches, including name and descrip-
tion on the Merge Request, relevant GitLab Issues, test coverage, and CI & CD
pipeline status.

Different guidelines to how peer review of code should be conducted exist,
such as Google’s guidelines for code review8. A notable point from their guideline
is to have fast code reviews, that should take at most one business day to receive a
response.

2.3 Software Engineering at NTNU

Norwegian University of Science and Technology (NTNU) have multiple courses
teaching Software Engineering. The most popular courses are IT19019 and TDT414010,
teaching students software development and agile methodologies.

2.3.1 IT1901 - Informatics, Project I

The software engineering course IT1901 is a practical programming course at
NTNU aimed at teaching "knowledge and skills in agile application development
in teams". It is mainly taken by second-year Computer Science (CS) students. The
course is graded on a group project with three deliveries, where the students work
in groups of 5-6 members. Along with the projects, weekly lectures on tools and

8https://google.github.io/eng-practices/review/
9https://www.ntnu.no/studier/emner/IT1901

10https://www.ntnu.edu/studies/courses/TDT4140

https://google.github.io/eng-practices/review/
https://www.ntnu.no/studier/emner/IT1901
https://www.ntnu.edu/studies/courses/TDT4140

10 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

methodology needed for the projects are held. The course objectives include learn-
ing to use methodologies and tools for collaborative programming, code structure
and quality, and REST API architecture. The focus is to put a solid basis of skills
and techniques for core software development practices.

In the projects, students are required to version the project with Git using
NTNU’s own GitLab server. For many students, this course is their first time in a
Software Engineering and using Git. The lectures give a theoretical introduction
to Git and its best practices, while the course project is a hands-on introduction
to the tool.

Several parts of GitLab are investigated when the course staff evaluates groups’
development processes. The course project is divided into 3 phases where the
emphasis of the evaluation is on the last phase. The students are expected to have
learned the practices through the first two phases. When evaluating groups, course
staff explore multiple GitLab practices, such as:

• Commit messages are expected to be informative and of reasonable length
(Table 2.1). Commit messages should also reference other GitLab features
such as Issues.
• Issue tracking and Milestones: Students should structure their work into

GitLab Issues which should have informative descriptions, tags, and titles.
Each of the three project phases should have a designated GitLab Milestone,
and the issues should belong to their respective Milestone. Each issue should
be assigned to a group member and marked as closed when completed.
• Merge Requests should be used for merges to main/master. The requests

should reference GitLab Issues, be reviewed by another team member, and
merged by someone other than the author.
• Presence of special files: Files such as .gitignore and README.md are ex-

pected to be present in the repository. Depending on the project and technol-
ogy used, other files, such as pom.xml for Maven11 projects, be considered
necessary, and absence may lead to point reduction.
• CI & CD: Use of GitLab CI & CD with a reasonable implementation of

pipelines is desirable, but not a requirement.
• Other details: Some unexpected things have previously been found in the

repositories, which the students should have avoided. An example is some
groups committing build-folders and dependency-folders, causing reposi-
tory storage to exceed 500MB, failing to correct the mistake.

2.3.2 TDT4140 - Software Engineering

TDT4140 is a course taught in the spring semester to second-year Computer Sci-
ence (CS) students at NTNU, where IT1901 is a recommended prerequisite course.
Compared to IT1901, TDT4140 focus more purely on the Agile methodology
Scrum, and the activities related to it [24]. The students learn throughout the

11https://maven.apache.org/

https://maven.apache.org/

Chapter 2: Background 11

course how to plan and manage small Software Engineering projects by work-
ing in groups to develop a project and completing individual assignments. Even
though a product is developed, the quality and robustness of the actual product
are not in focus. Most importantly is how the group utilizes the Scrum activities
during development.

2.4 Existing analysis systems

Several commercial systems to analyze Git and project management usage exist,
either through the repository hosting themselves, such as GitLab Analytics or as
external systems reading from the repositories. This section look at commercial
and open-source, ready-to-use options.

2.4.1 GitLab Analytics

GitLab Analytics is a built-in feature on GitLab, providing insight into the behav-
ior and usage of projects and groups. These insights cover the amount of time
spent waiting for Code review, time spent planning an issue, overall success ratio of
pipelines, ratio of succeeded and all pipelines over time, pipeline duration per com-
mit, code coverage statistics, and number of commits per day in month, weekday
and hour. The benefit of GitLab’s analytics insight are that they are rooted in De-
vOps Research and Assessment (DORA) [20, 25]. However, to get more insightful
and granular data, such as Contribution Analysis12, a Premium or Ultimate sub-
scription tier is required. These subscription tiers may be too costly for certain
organizations even though education/academic institutions get free licenses to
the higher tiers13.

Furthermore, GitLab Analytics does not provide visualization or feedback of
common Git best practices (Table 2.1) or custom recommendations on Issues and
Merge Requests because these are highly dependent on project and organization
policies.

2.4.2 GitHub Classroom

GitHub Classroom14 is a collection of features designed to simplify the manage-
ment and grading of assignments. Through GitHub Classroom, course staff can
run code for automated assignment grading and create Pull Requests to answer
questions and provide feedback. However, except for the ability to create standard-
ized Continuous Integration (CI) & Continuous Delivery (CD) pipelines, it does
not provide analytical functionality to receive insights into how students work.
Each repository has access to basic insights into its project, such as the Number
of Commits, Number of Lines Added or Deleted. However, in GitHub Classroom,

12https://docs.gitlab.com/ee/user/group/contribution_analytics/
13https://about.gitlab.com/solutions/education/
14https://classroom.github.com/

https://docs.gitlab.com/ee/user/group/contribution_analytics/
https://about.gitlab.com/solutions/education/
https://classroom.github.com/

12 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

this requires a GitHub Team subscription, which may be too costly for particular
courses.

2.4.3 Pluralsight Flow

Pluralsight Flow15 claim to optimize software delivery with actionable insights,
helping teams identify where their workflow bottlenecks are and what changes
have the biggest impact on delivery. Flow supports different code repositories and
can show how many lines of code are spent on new work, legacy refactoring,
churn, or helping others. Regarding collaboration, managers can see who creates
Merge Requests and who typically conducts Code Review on them. Although this
is a commercial product, it claims many benefits but does not reflect on its lim-
itations. Neither does it show any evidence supporting its claim to help improve
productivity and collaboration versus being a tool to micromanage development.
Although some insights in this product look promising for use in Software Engi-
neering courses, the Flow software is designed for software teams working full
time. Therefore, several key metrics may show inaccurate trends when student
groups only have one or two days of work in a week.

2.4.4 Gitinspector

Gitinspector is an open-source static analysis tool showing general analysis per
author or workload over time. This includes the Number of Commits, Number of
Lines Added and Deleted and can show cumulative work done by each author. It
was initially created to fetch repository statistics for university courses at Chalmers
University of Technology and Gothenburg University and now claims it is used as
a grading tool by many universities.

Although Gitinspector can output raw HTML with the analyzed results, it also
supports machine-readable output formats, such as eXtensible Markup Language
(XML) and JavaScript Object Notation (JSON). The machine-readable formats
make it extensible for future analysis or presentation.

Gitinspector’s main drawback is the lack of maintenance, with the last release
in 2016. Currently, it supports only Python 2.7, which has been deprecated since
202016.

15https://www.pluralsight.com/product/flow
16https://www.python.org/doc/sunset-python-2/

https://ww%20w.pluralsight.com/product/flow
https://www.python.org/doc/sunset-python-2/

Chapter 3

Related Work

This chapter reviews the state-of-the-art literature on how Learning Analytics is
applied in Software Engineering courses. Furthermore, relevant metrics from Git
and GitLab of student contribution and work are synthesized into Table 3.2. A
subset of the synthesized metrics are selected to be included in the prototype
(Chapter 5) and tested on students and Teaching Assistants (TAs).

3.1 Literature Review Process

Relevant research is discovered through literature review, using Snowballing [26]
as the primary strategy. Inclusion and exclusion criteria for the search and filtra-
tion process are listed in Table 3.1.

Inclusion Exclusion

Discuss Git or GitLab metrics and its
use in Student Project

Is not written in English or
Norwegian

Mention Learning analytics in the
context of Software Engineering
courses

Is older than 2005

Is Bachelor thesis’ or panel discussion

Table 3.1: General inclusion and exclusion criteria for our literature search
Some exceptions can be made for the exclusions, if we consider the source to be

highly relevant

The snowballing process involved building a starting set of literature that
formed the basis for further expansion and iterations (Figure 3.1). These are se-
lected from the available literature that is considered relevant for this thesis and

13

14 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

*RRJOH�6FKRODU2ULD

ΖQLWLDO�6WDUW�VHW

$FWXDO�VWDUW�VHW

)RUZDUG�6QRZEDOOLQJ %DFNZDUGV�VQRZEDOOLQJ

7R�LQFOXGH

)LOWHU�E\�7LWOH�DQG�DEVWUDFW

)LOWHU�E\�FRPSOHWH�WH[W

Q� ���

Q� ��

Q� ��� Q� ���

Q� ���

'DWD�VRXUFHV

Figure 3.1: Literature review process
The literature review process using snowballing [26] as strategy. The blue boxes

illustrate steps in the filtration process.

literature found on Oria1 and Google Scholar2. In addition to a master thesis, 5
papers are chosen for the initial start set.

In the first iteration, Forward and Backward snowballing are applied to the
start set, where Forward finds sources that reference the literature in the starter
set. In Backward snowballing, the reference list in the starter set is crawled and
filtered. All new literature that has been chosen from the first round is placed
in a new starter set. Next, this process is repeated multiple times until we have
sufficient literature or no new literature is found. In total, 66 documents from
Backward snowballing and 18 from Forward snowballing matched the criteria
in their Title or abstract. Each was read in more detail to consider their actual

1https://ntnu.oria.no
2https://scholar.google.com/

https://ntnu.oria.no
https://scholar.google.com/

Chapter 3: Related Work 15

relevance. Finally, 16 papers were kept after the final filtering.

3.2 Use of Learning Analytics in Software Engineering
courses

Using digital tools in Software Engineering courses generates a substantial amount
of data that can be used for Learning Analytics. Such data has great potential for
teachers to get an insight into students’ group work and has become an impor-
tant research direction [27]. Learning Analytics in software engineering courses
has been researched from several approaches and with different intentions. For
example, some research is aimed at applying Learning Analytics to courses to in-
crease the understanding of how Software Engineering course can be improved
[27, 28]. Other papers focus on how Learning Analytics can be applied in project
assessment [29–31].

3.2.1 Analytics to better understand students’ development processes

Learning Analytics is frequently used in Software Engineering to understand bet-
ter how students work and make course improvements.

Macak et al. [32] applied process mining to Git logs from student reposi-
tories motivated to understand the students’ development process for im-
proving a Software Engineering course. In the pre-processing step for process
mining, Macak et al. [32] classified each commit based on whether it added or
deleted code, contained test code, and commit size (small, medium, or large),
and whether a branch was used or not. The main problems Macak et al. found in
the student’s development process were: 1) Lack of systematic testing, 2) Inade-
quate use of branches, 3) Too much last-minute work before the deadline, and 4)
Uneven workload between group members.

Baumstark and Orsega [33] researched the development process of intro-
ductory Computer Science (CS) students. Data from the students’ develop-
ment process was mined from their Mercurial VCS repositories. Baumstark and
Orsega found that the students generally produced small and focused commits,
but similarly to Macak et al., varying testing practices were found. Baumstark and
Orsega plan to implement a teaching tool giving the students feedback on their
development process as part of future work.

Rein et al. [34] wrote a master thesis on improving course management and
student supervision with data from Git and learning management systems
(LMSs). They created a web application to support the management of software
development courses, including visualizations of groups’ GitLab projects. The vi-
sualizations were made to give course staff an overview of all the progress of the

16 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

groups with an ability to drill down to visualizing individual group members’ con-
tributions. It was made for facilitating course staff in supervision and guidance
of students and not for facilitation of students learning. Rein et al. evaluated the
application with expert interviews and focus groups on course coordinators and
Teaching Assistants (TAs) from a selection of software development courses at
NTNU, including IT1901 and TDT4140. Rein et al. found indications that their
application gives students improved feedback from the course staff.

Hamer et al. [28] generated visualizations of Git metrics to offer insights to
students’ and teams’ development practices and processes. The contribution
metrics focused on inequality in contributions and distribution of work over time.
Hamer et al. found that all the projects they monitored had inequalities and that
students tend to work near deadlines. Hamer et al. argued that the insights from
the visualizations could aid course staff in course improvement and grading pro-
cesses. Further, it is argued that the objective feedback from the visualizations can
be valuable to students and their development skills.

3.2.2 Analytics for evaluation of student contributions

Group work is a staple of Software Engineering education [5]. It is, however,
inherently difficult for course staff to evaluate such group projects due to the
difficulty of contributions from individuals versus from the team [28]. Applying
Learning Analytics to the assessment process has been investigated in several pa-
pers.

Parizi et al. [30] proposed in a conference lecture, a model for evaluating
team members contribution based on objective metrics from Git repositories.
Their model used the following metrics: Number of commits, Number of merges,
Number of files, Total lines of code, and Time spent on the project per day.

Time spent on project per day is estimated using the algorithm git-hours3. This
algorithm estimates the number of working hours by summarizing working ses-
sions in Git. In order to identify a working session, all commits in a repository are
listed, comparing the time difference between them. Then, using a pre-defined
threshold, split the sets of commits by this threshold and time differences. Parizi
et al. used 2 hours as the threshold because longer coding sessions would be un-
realistic. Afterward, the authors should have an overview of all working sessions
per author. These metrics were used individually and in combination to score each
developer numerically. Their score was ranked by the grades: Excellent, Good, Sat-
isfactory, Poor, and Unacceptable. When metrics are combined, these scores are
averaged. A deficiency of ranking developers on these performances is its simplic-
ity and does not consider the difficulty of work. The authors propose a difficulty
gauge for difficulty and contribution.

3https://github.com/kimmobrunfeldt/git-hours

https://github.com/kimmobrunfeldt/git-hours

Chapter 3: Related Work 17

The metrics proposed by Parizi et al. can be considered intuitive and reusable
for multiple use cases. In addition, their Git mining system could be reused as
a data analysis platform. The ranking system is a good starting point. However,
the ranking formula is too simplistic for most projects or provides precise grading
guidelines. Even though the authors introduced a difficulty gauge, they do not
provide sufficient evidence that this will adequately catch all nuances in building
a project.

Buffardi [29] explored automated evaluation of individual contributions to
collaborative Software Engineering projects. To do so, the groups’ Kanban
boards were investigated in addition to their Git logs. Buffardi introduced met-
rics that ranked the individual team members by comparing them to the rest of
the group. This was done using quantitative metrics such as Relative Contribu-
tion Share, Relative Commit Share, and Relative Story Share. These metrics high-
light how many code lines, commits, and kanban stories each group member has
added/completed relative to the group’s total.

It was found that there are inconsistencies between the quantitative measure-
ments and the subjective assessments of the students. Buffardi argued that using
performance metrics to assess individual contributions may provide a more ob-
jective assessment than a traditional subjective instructor assessment. However,
the metrics have limitations. He argues that no metric which perfectly reflects
contribution value exists. The paper further discussed a limitation to using met-
rics for assessment situations, referred to as Campbell’s law [35]. This is an effect
where such measurements can cause students to manipulate the measurements
for their own gain when used in an assessment situation. Conclusively, Buffardi
recommends that quantitative performance metrics be used to supplement and
validate the traditional assessment process.

A limitation to Buffardi’s research is that it was based on a single instructor’s
evaluations from a single course. As a response to this, Hundhausen et al. [36]
replicated Buffardi’s research to test the robustness by collecting data from three
different instructors in three different courses. As a result, they could replicate
most of Buffardi’s key results. Additionally, Hundhausen et al. were able to find a
stronger correlation between the objective and subjective evaluations, indicating
that quantitative metrics might be more applicable than previously outlined by
Buffardi. However, Hundhausen et al. also points out that there are limitations to
the quantitative metrics. They argue that log data on GitHub activities, such as
activities regarding GitHub issues and code reviews, could be valuable for future
work.

Chen et al. [31] developed an automated programming assessment system.
The system takes code quality into account, as well as code contributions. To mea-
sure code quality, they used static code analysis with Linters and SonarQube4.

4https://www.sonarqube.org/

https://www.sonarqube.org/

18 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

SonarQube is an advanced code quality analysis tool. However, the code quality
assessment’s efficacy has not been evaluated. To quantify contribution, Chen et al.
introduced the metrics Contribution Index and Contribution max-difference. These
are more complex metrics to measure individual student’s contributions to a team.

Contribution Index is the ratio between a student’s contributions and the team’s
average contributions, measured by a specified metric M . By using commits, LoC,
or issues/stories as M , Contribution Index becomes very similar to Relative Commit
Share, Relative Change Share, and Relative Story Share outlined by Buffardi [29].

Contribution max-difference measures the difference in contributions from a
single student and the highest contributing member in the team for metric M .

Chen et al.’s system is aimed at course-staff of Software Engineering courses
to help manage group-based projects. The system uses data from Git and a Con-
tinuous Integration (CI) server. When evaluating the developed system, Chen et
al. found it especially beneficial for detecting free-riders in group projects.

Guerrero-Higueras et al. [37] attempt to predict whether students’ passed or
failed in three different computer science courses. To do this, they tested a
wide range of machine learning models. The input data used for the predictions
were metrics from Git and the students’ Github Classroom repositories. The fea-
tures included Number of commits, LoC, Number of issues created, and Number of
issues closed. Guerrero-Higueras et al. also used Number of days where at least one
commit was done as a feature to their model. This feature was the most discrim-
inant feature meaning the most important feature to their predictive model in
front of LoC and Number of commits.

3.2.3 Application of analytics to improve student learning

As suggested by Hamer et al. in Section 3.2.1, insights into students’ Git repository
data can be valuable for students in Software Engineering courses.

Eraslan et al. [39] researched the effect of using GitLab metrics in consul-
tation sessions in a software engineering course. The consultation sessions
were arranged twice during the semester, and the students were shown a report of
GitLab metrics specific to their group. The metrics focused on assigned and com-
pleted GitLab issues. They found that almost all students were satisfied with the
consultation sessions through interviews. Although some metrics, such as number
of commits, were too simplistic. Code quality and amount of code were of higher
value than the number of commits due to differences in commit behavior. A com-
parative analysis of the first year with such consultations and the preceding year
found students much more likely to pass the course. However, this is not verifiable
with the current data and hence only indicative.

Gustavsson and Brohede [40] described an assessment tool for continuously
assessing students’ performance in Software Engineering projects. The as-

Chapter 3: Related Work 19

sessment tool provided support for both students and course staff. The tool shows
contribution metrics for each student and a ranking for each contribution. This
conveys how the student compares to the rest of the class. The tool is implemented
to get insight into individual students and has no functionality for groups. Gus-
tavsson and Brohede argues that continuous feedback to students can help ensure
students actively participate in the project. Further, they argue that weekly data
collection is a suitable data collection frequency for their application in a large
10/week-long Software Engineering course.

Gary and Xavier [41] presented a monitoring tool, which provided students
with continuous feedback. The tool gave students insight alongside a project
by visualizing activities and progress. The data is pulled daily from GitHub for
code activity and Scrumwise5 for task management activity. From the tool, the
students can see and compare their individual performance, team performance,
and the average of the entire class. The tool was overall found helpful by the
students surveyed.

Haugse and Aalberg [1] explored how to best visualize Git data and what
the visualizations had to offer for both students and course staff. They im-
plemented a custom-built prototype of a visualization tool and evaluated it on
course staff and students from two courses at NTNU, TDT4140 Software Engi-
neering (Section 2.3.2) and IT2810 Web Development6. The tool used GitLab
data for visualizations, including insight into code contributions, commits, issues,
and merge requests. Through interviews, Haugse and Aalberg found support for
the relevance of a visualization tool, giving students and course staff insight into
work and work patterns. The visualization tool did not support pair programming,
which the interviews found to cause a wrongful impression of workload imbalance
among several students.

Tarmazdi et al. [6] contributes with a dashboard to help educators monitor
teams in real-time. It allows for visualization of team mood, role distribution,
and emotional climate. The authors are motivated by the need to learn teamwork
in Computer Science (CS) studies to prepare students for industry properly.

The dashboard is founded on learning theory, elements of learning analytics,
and teamwork models. A case study was conducted on a third-year university
course, where 2 to 4 students cooperated on group-based assignments. Using Pi-
azza7 as input data for each team discussion, sentiment analysis was conducted to
identify each student’s role and discover tensions. For example, the lecturer in the
course could use the dashboard to identify which groups had not started on an as-
signment yet, and identify any students showing frustration or anger. The lecturer
could use this information to provide more targeted guidance to students.

5https://www.scrumwise.com/
6https://www.ntnu.edu/studies/courses/IT2810
7https://piazza.com/

https://www.scrumwise.com/
https://www.ntnu.edu/studies/courses/IT2810
https://piazza.com/

20 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Tarmazdi et al. demonstrates the value of using analysis tools courses to better
aid learning environments. However, in this case study, they only receive feedback
from one lecturer’s experience, not including the students’ role. Therefore, assess-
ing the value from the students’ perspective or how Piazza as a discussion tool
and the analysis of what they spoke affected them is difficult. Furthermore, even
though this tool has the potential to help student groups resolve tensions before
they manifest into more significant conflicts, it also requires that all discussions
are done in writing.

3.3 Summary of metrics from the literature

Notable metrics from the literature in this chapter are synthesized into Table 3.2,
giving an overview of what has been prioritized.

Metric Referenced by

Number of Commits [1, 28–30, 32, 34, 36, 37, 39–41]
Lines of Code (LoC) [1, 29, 30, 32–34, 36, 37, 39–41]
Number of issues closed/done [1, 29, 34, 36, 37, 39]
Number of issues created [1, 34, 37, 40]
Contribution Index and Contribution
max-difference

[31][29, 36]*

Time Spent on a Project per day [28, 30]
Number of Review Request [1, 30, 34]
Number of days where at least one
commit was done

[37]

Number of issues assigned [34, 39]
Number of issue comments [40]
Group attendance [39]
Issue state by type over time [41]
Code quality measure [31]
Commit Size (S/M/L) [32]
Number of Files created/owned [30]

Table 3.2: Metrics used in the literature. Each metric can be drilled down to
student level. * very similar, but not identical metric.

Chapter 4

Methodology

This chapter elaborates on the process and methods used to answer the research
questions (Section 1.2.2), describes what it is, and discuss the choices made. The
project timeline of the thesis is illustrated in Figure 4.1, giving a general overview
of the overall process.

-XQH0D\$SULO0DUFK)HEUXDU\

(DVWHU

/LWHUDWXUH�5HYLHZ

'HVLJQ�DUFKLWHFWXUH�DQG�EXLOG�SURWRW\SH

5HFHLYH�DSSURYDO�IURP�16'

3ODQ�DQG�WHVW�LQWHUYLHZV

&RQGXFW�LQWHUYLHZV

5HYLVH�SURWRW\SH�EDVHG�RQb
IHHGEDFN

&RPSOHWH�7KHVLV�GUDIW

)LQDOL]H�7KHVLV

Figure 4.1: The project’s planned roadmap through the semester. Tasks related
to general research and documentation are colored blue, implementation focused
work are colored yellow, and work related to interviews and feedback gathering
are colored green.

4.1 Research process

The research process applied in this thesis, illustrated in Figure 4.2, shows from
where research questions are derived, what strategy is used to answer them, in-
cluding methods to analyze and validate these answers.

Motivation behind each Research Question (Chapter 1) is a combination of
Experience & motivation and Literature review. Experience by course staff and stu-
dents who have taken the course IT1901, serves as the primary motivation.

The Literature review was conducted using the strategy Snowballing [26], de-
tailed in Section 3.1. Most literature primarily focuses on the evaluation of stu-
dents and not tools to help guide them [2, 30, 42, 43]. Literature focused on better

21

22 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

guidance to students similarly has the lecturer as the target instead of the students
[6].

Design and creation is used as a strategy to build a prototype tool to help an-
swer RQ1. This process is explained in detailed in Section 4.3.

Data generation methods and Data analysis are used to generate necessary
evidence of our contributions [44]. Section 4.4 describes which methods have
been selected.

([SHULHQFHV�DQGb
PRWLYDWLRQ

5HVHDUFKb
TXHVWLRQ�V�

/LWHUDWXUH�UHYLHZ

&RQFHSWXDOb
IUDPHZRUN

6XUYH\

'HVLJQ�DQGb
FUHDWLRQ

([SHULPHQW

&DVH�VWXG\

$FWLRQ�UHVHDUFK

(WKQRJUDSK\

ΖQWHUYLHZV

2EVHUYDWLRQ

4XHVWLRQQDLUHV

'RFXPHQWV

4XDQWLWDWLYH

4XDOLWDWLYH

6WUDWHJLHV 'DWD�JHQHUDWLRQb
PHWKRGV

'DWD
DQDO\VLV

XVXDOO\
��� RIWHQ

��1

Figure 4.2: The research process used in this thesis. The figure is adapted from
[44], where the colored boxes represent our process.

4.2 Research ethics

Given that personal information and behavior are processed in this thesis, ethics
and privacy are key concerns. Unless there are strong reasons against it, research
participants have a minimum set of rights that must be considered1. Norwegian
Centre for Research Data (NSD) enables responsible use of personally identifiable
information in research. All research in Norway must be approved by NSD before-
hand if processed information is directly or indirectly able to identify a person.

Two types of personal information are processed: 1) Git and GitLab usage for
student groups in IT1901, and 2) Contact information and voice recording from
interviews. A single application to NSD was submitted at the beginning of the re-
search process, with an expected processing time of around one month. In accor-
dance with the NSD approval (Appendix C), all personally identifiable information
is stored on NTNU approved software, servers, and devices.

1https://www.nsd.no/personverntjenester/oppslagsverk-for-personvern-i-forskning/
rettighetene-til-de-registrerte

https://www.nsd.no/personverntjenester/oppslagsverk-for-personvern-i-forskning/rettighetene-til-de-registrerte
https://www.nsd.no/personverntjenester/oppslagsverk-for-personvern-i-forskning/rettighetene-til-de-registrerte

Chapter 4: Methodology 23

4.3 Design and Creation strategy

Design and Creation is described by Oates [44, p.108] as a research strategy fo-
cused on developing new IT products called artifacts. Different artifacts can be
used depending on what the research is expected to contribute.

Constructs are concepts used in IT-related domains, such as the notion of enti-
ties or data flows.

Models combines constructs that represent a situation. It is used to aid in un-
derstanding problems and developing a solution.

Methods are stages in processes to solve problems with the help of IT. A method
can be a strict formal algorithm or informal practice descriptions gathered from
experience.

Instantiations is "a working system used to demonstrate that construct, models,
methods, ideas, genres or theories can be implemented in a computer-based system"
- Oates [44]

Parts of this thesis fall under the Instantiation artifact. In order to answer RQ1
and RQ2, a functional prototype is constructed using a third-party visualization
tool. Through Semi-structured Interviews and user tests, the prototype is expected
to demonstrate how students would value such a platform qualitatively. Addition-
ally, the experience from building the prototype, with feedback from students and
TAs, should identify the benefits and limitations of using a third-party tool. There-
fore, our prototype should be described as a vehicle for something else.

Although the prototype has the possibility of being used directly and immedi-
ately, the contribution mainly is the feedback received from the interviews on the
demonstrated insights/graphs and how students find them valuable (discussed in
Chapter 7). How a complete platform should be structured and developed highly
depends on the organization, course, and end-users. For example, a particular or-
ganization may have an existing platform and wish to integrate these insights.
Others may want to utilize third-party graph solutions, to reduce maintenance
work and maximize user flexibility. The organization maintaining such a platform
should also base its development on acknowledged Software Development prac-
tices, such as DevOps [20, 45] and Agile processes.

As previously mentioned, this thesis uses data from the course IT1901, which
is available from GitLab. Other courses, however, may use Github or Bitbucket,
which require the data to be extracted differently. Therefore, there is no one-size-
fits-all solution, and each organization has to adapt the contributions from this
thesis into its domain.

24 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

4.3.1 Conducting Design and Creation research

The Design and Creation research utilizes an iterative approach consisting of five
general phases. Figure 4.3 give a general overview of each phase in this thesis and
the iterations done after two rounds of interviews (Evaluation phase). A detailed
roadmap is presented in Figure 4.1.

6IPEXIH�[SVO�ERH�MRMXEPɸ
JIIHFEGO�JVSQ�'SYVWI�7XEJJ

�%[IVIRIWW

(IXIVQMRI�MRMXMEPɸ
VIUYMVIQIRXW��EVGLMXIGXYVI�ɸ

ERH�WXEOILSPHIVW
�7YKKIWXMSR

(IZIPST�TVSXSX]TI
�(IZIPSTQIRX

9WEFMPMX]�XIWXMRK
�)ZEPYEXMSR

7YQQEVM^I�ƼRHMRKW�MRɸ
8LIWMW

�'SRGPYWMSR

6WDUW

(QG

ΖWHUDWH�EDVHG
RQ�UHVXOWV

Figure 4.3: The Design and Creation research process structured in this thesis.
Development and Evaluation are done in two rounds, allowing for refinements
to the prototype

1) Awareness recognizes and articulates a problem based on existing literature,
experience from practitioners, or the needs of clients.

In this phase our thesis explore best practices in Git and GitLab, and use cases
from course staff in IT1901, see Chapter 2. Next, related work (Chapter 3) explore
metrics from similar use case in other literature.

Exploration into the Git and GitLab behavior of students in IT1901 were in-
cluded in the latter half of the thesis because access to the data required approval
from Norwegian Centre for Research Data (NSD). A temporary solution was to
use our GitLab repositories from earlier courses and create a couple of simulated
GitLab repositories with known anti-patterns. However, the usefulness of reposi-
tories created by our projects is limited in providing insight, with the risk of being
biased.

The data from these steps set the baseline for the initial prototype. This thesis
mainly targets the student role while ensuring that course staff access the same
information. However, in situations where the usefulness of a metric conflicts with
these stakeholders, the students are generally favored. Distinguishing between
metrics used to evaluate and guide the student is necessary because the former is
rarely expected to be read directly by students and present them with actionable
or understandable information on how to improve.

2) Suggestion "involves a creative leap from curiosity about the problem to of-
fering a very tentative idea of how the problem might be addressed" [44, p. 112].

This phase focused on exploring the benefit and limitations of third-party vi-
sualization tools (Section 5.4.1). Next, these candidates were filtered down to one
system based on the requirements, constraints, and needs identified in the Aware-
ness phase. Given the similarities between each solution, we expect to get more

Chapter 4: Methodology 25

value by testing and improving the visualizations on one system instead of having
to test the same layout and data on all third-party solutions.

3) Development is the phase where the design is implemented, based on insight
from the Suggestion and Awareness phases. Chapter 5 go into the details of the
prototype design.

This thesis plan to run two iterations of the Development phase, capturing any
feedback received from interviews (Evaluation). The first iteration focus on the
process of extracting data from GitLab. On the visualization tool, work involved
iterations on different presentation strategies and discussing how to extract ac-
tionable insight from specific data. The second iteration focused on improving the
visualization tool based on student feedback and Teaching Assistants (TAs). This
allows us to resolve solvable problems and get higher-quality data from the final
round of interviews.

4) Evaluation examines the artifact to assess and determine its value. Section 4.4
describes the evaluation strategy in detail.

5) Conclusion consolidates results from the process and what knowledge has
been gained. Results from the interview are summarized in Chapter 6 and dis-
cussed in Chapter 7. Our thesis expects to have gained knowledge on RQ1 and
RQ2 after completion of this research process.

4.4 Data generation methods

To learn what visualizations are perceived as valuable for students (RQ1 and RQ2),
we favor qualitative data generation that allows for reflection from the partici-
pants and asking open-ended questions. Therefore, Semi-Structured Interviews is
selected as the primary Data generation method for its flexibility and efficiency
in extracting data on participants’ experience [44, 46]. However, Semi-Structured
Interviews have some limitations, particularly regarding the time required to tran-
scribe and analyze the results after each interview and the time required to plan
which topic to talk about properly and in what order.

The complete interview is structured as a Usability test [47, 48], with a pre-
interview and post-interview to get relevant feedback on what visualizations stu-
dents value and how to improve the usability of the prototype/product [47]. It
gives the participants first-hand insight into what a solution may look like, and
the thesis with observable insight into how each participant uses the prototype.
Considering usability testing is an exercise of observing target users use a prod-
uct in a covert or non-covert situation, it can be argued to have similarities with
the Observation Data generation method. Observations tell us what happened, not
why [44]. Similarly, the user testing tasks mainly tell us what the participant did
or did not do. Hence, the Data generation methods selected are a combination

26 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

of Interviews and Observations through usability testing. Subsequently, research
results should provide insight into how the participant used the prototype and
reflection on why the person did specific actions.

In this case, Observations have certain limitations that should be considered.
First, IT1901 are taught during the fall semester, preventing this thesis from ob-
serving students in a natural setting. Each participant is presented with a situation
and task similar to the project they worked with during IT1901. It is, however, still
a simulated situation.

4.4.1 Participants and Recruitment

The target was to conduct around 12 interviews, separated into two iterations,
where 80�85% of the candidates had the role of student. Students were selected
from the fall semester of 2021 that had taken the course IT1901. In addition, TAs
were included, even though students are the primary stakeholders because TAs
are expected to provide another relevant point-of-view to the student projects.

This target group represents a fairly homogeneous group. All study the same or
similar study and take similar courses. Given these similarities, the limited scope
and functionality of the prototype, and the strategy to run interviews in two it-
erations, we expect around 12 respondents should provide a sufficient basis for
our findings. Nielsen and Landauer [49] argue that 5 participants in usability test-
ing should be sufficient to uncover 85% of the problems, even though Spool and
Schroeder [50] argue that serious usability problems are typically found after 13
or 15 tests. However, these experiments tested systems with more functionality
requiring each participant to do more steps to complete a task. The prototype
presented to students and TAs in this thesis has less functionality and is focused
on one dashboard. Lastly, by splitting the interviews into two rounds, any fixable
usability problems could be resolved on the prototype before the last interviews,
better utilizing the responses. Different participants were used in each round, en-
suring no participants had any pre-existing knowledge or bias about the prototype.

Publishing was done through NTNUs Blackboard solution. Students that were
interested in participating were encouraged to contact us by email. Similarly, TAs
were contacted directly by email from a contact list given by the course staff.
To further incentivize participation, every participant was given a gift card worth
200NOK . All the interview participants and the interview leader and referee spoke
Norwegian as their primary language. The interviews were, therefore, all carried
out in Norwegian.

4.4.2 Interview guide

Summarized, the usability testing is composed of three main parts, 1) Pre-interview,
background information, 2) Usability task to test the prototype, and 3) Post-interview,
gather reflections and feedback of the prototype. Pre- and post-interviews are struc-
tured as Semi-Structured Interviews based on the guidelines from Oates [44] and

Chapter 4: Methodology 27

Adams [46]. The usability task follow the guidelines from [47, 48]. In total the
usability testing lasts between 30 to 45 minutes.

Students and TAs follow the same general structure during the usability test.
However, the TA usability tests are oriented around how the person counseled stu-
dent groups in IT1901, what challenges students typically had during the project,
and how the proposed tool could help simplify the guidance process. Appendix B
(written in Norwegian) show the original interview guide for TAs. Students’ us-
ability tests focus on their own and group’s experience from Software Engineer-
ing courses, with particular focus on IT1901, and how the proposed tool could
improve their product and learning process. Appendix A (written in Norwegian)
show the original interview guide for students.

Before the actual usability testing started, the interview guide was tested on
similar target audiences to verify the overall structure and flow of the Interview
guide. The flow should encourage natural conversation inside each part and avoid
abrupt changes in theme. Also, questions around benefits and limitations should
encourage the participant to explain its reasoning, be given in a natural order
[46], and avoid pressuring the participant to give a specific answer.

Part 1) Pre-interview

This part aims to help us understand the student’s pre-existing knowledge of Soft-
ware Engineering, either through practical work or previous courses. Additionally,
it presents insights into how they worked during the course IT1901, what features
of GitLab they used, and other notable aspects. Finally, this insight is used to val-
idate the general flow and structure of the prototype, which should resemble the
expected flow of the course and what functionality is used.

Part 2) Usability testing

Usability testing is the main Observation phase, where the prototype is tested.
Here we expect to discover problems with the Graphical User Interface (GUI),
ambiguous formulations, and finally, which features the student mainly highlights
when navigating. The design principles from Norman [51] are used as general
guidelines for what to look for when observing the participant. Additionally, we
expect a clearer idea of which metrics students perceived as valuable.

Respondents are presented with a fictional case, similar to an actual project
in IT1901. Their task is to look around the prototype (see Section 5.5 for screen-
shots) and identify what should be improved and why it should be improved. The
English-translated case presented to both students and TAs are:

You are part of a group with two other students working on creating
a site for hotel bookings as part of a university course. The project
is separated by three deliveries, and you use GitLab and Git as the

28 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

primary cooperation tools. The course assesses the code delivered and
how you have cooperated.

You have just completed your second delivery and are about to begin
the third and last one. The lecturer has published a message on Black-
board encouraging you to use a new tool to get an overview of your
project and identify where you can improve how you work and coop-
erate using Git and GitLab. You visit the tool from the browser, sign
in to your NTNU account, and start looking.

After the case and task were presented, the participant was given a computer
with the prototype ready (See Section 5.5), signed into a demo account, and en-
couraged to think aloud when interacting with the prototype. The demo account
has equal access to what a student account would have to limit the risk of confu-
sion and out-of-scope interactions.

Fictional data, constructed by real data from previous semesters of IT1901
and other relevant courses, is presented in the prototype. Examples include
a difference in contribution per member, difference in commit sizes and lengths,
varied practices of GitLab issues, Merge Request, and Milestones. The goal was to
show realistic behavior similar to an average group in IT1901. Alternatively, real
and anonymized data could give more realistic behavior. However, there would
be a risk that a participant could identify its own or other groups based on specific
data points or behavior. This could also become problematic in terms of privacy
and the approved NSD application2. Therefore, it was safer to use the former
approach.

The interview leader and secondary interviewer have two distinct roles dur-
ing the usability task. The leader observes the participant’s interactions directly
and asks open-ended follow-up questions to facilitate reflection from the partici-
pant. The secondary interviewer has a more silent role, focused on observing non-
verbal behavior that may hint at invisible elements, affordance mismatch, lack of
feedback, unnatural flow in the Graphical User Interface (GUI), or other problems
could be attributed to problematic design. In addition, through screen mirroring,
the secondary interviewer has visual access to what the participant does without
obstructing the participant and interview leader.

Part 3) Post-interview

When the usability task is done, the usability testing transitions to the post-interview.
This part focus on getting the respondents to reflect on the usefulness and limita-
tions of the information presented in the prototype and the prototype in general.

2NSD’s criteria for de-identified information: https://www.nsd.
no/personverntjenester/oppslagsverk-for-personvern-i-forskning/
hvordan-gjennomfore-et-prosjekt-uten-a-behandle-personopplysninger/ (only available in
Norwegian)

https://www.nsd.no/personverntjenester/oppslagsverk-for-personvern-i-forskning/hvordan-gjennomfore-et-prosjekt-uten-a-behandle-personopplysninger/
https://www.nsd.no/personverntjenester/oppslagsverk-for-personvern-i-forskning/hvordan-gjennomfore-et-prosjekt-uten-a-behandle-personopplysninger/
https://www.nsd.no/personverntjenester/oppslagsverk-for-personvern-i-forskning/hvordan-gjennomfore-et-prosjekt-uten-a-behandle-personopplysninger/

Chapter 4: Methodology 29

Additionally, we gather feedback on how they expect to use such a system if it
were available during their project in IT1901. Finally, questions are ordered in a
way that is perceived as natural for the participants [46] and to avoid pressuring
the participant to give a specific answer.

4.5 Interview transcription

Audio tapes were used to gather verbal data from each interview, giving a com-
plete record of everything that was said and allowing the interview leader to con-
centrate on the interview process [44]. Even though notes were taken in par-
allel by the secondary interviewer, these were focused on capturing non-verbal
notes and other notable insights discovered, which audio recording fails to cap-
ture. Video recording and eye-tracking systems were discarded because they were
considered too intrusive in the interviews without providing sufficient benefits. In
addition, as stated by Oates [44], many interviewees are reluctant to be filmed,
which could result in even fewer participants and negatively affect the validity.

Each recording was passed to a transcription tool in Microsoft Word, giving a
rough excerpt of the interview. Then the results were manually corrected, cleaned,
aggregated, and anonymized. Student respondents were labeled as Student<ID>,
such as Student1 and Student2. Similarly, TAs were labeled as TA<ID>. The inter-
view leader and referee were labeled by name.

4.6 Data analysis

To analyze the transcribed interviews, NVivo3 was used for manual coding of the
data and performing systematic analysis, following the guidelines from [44, 52].
NVivo is a software tool for qualitative data analysis, with advanced filters to query
the codes. Coding is a process of assigning and grouping different parts of the
data with codes(labels). The idea is to move from raw text to structured research
concerns in small steps [52].

A code was created for every metric on the dashboard, making it possible to
quickly get an overview of all remarks on a single panel on the Visualization tool.
In addition, codes were created for any expressions of how often the interview
objects reckoned they would use the Visualization tool during a project, general
positive or negative remarks, and potential for improvements.

3https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

Chapter 5

Prototype design

This chapter dive into the technical specificity of designing and building the proto-
type used to answer RQ1 and RQ2. Section 5.2 describes the overall architecture
of a Git and GitLab analysis tool. Section 5.3 describes how metrics from data
sources are aggregated and stored. Section 5.4 describes the design and evolu-
tion of the Visualization tool used in interviews, and Section 5.4.1 explores the
benefits and limitations of different third-party visualization software.

It should be noted that the solutions selected in this chapter are customized to
constraints specified in Table 5.1, relevant metrics from Chapter 2, and use cases
of IT1901 and its data sources. Even though the solution uses general-purpose
solutions with high customizability, other courses may benefit from using other
systems or existing data sources.

5.1 Constraints

Conventionally, tools used in university courses are restricted by privacy concerns
to protect students’ data and identity. Additionally, it is expected that a visualiza-
tion tool targeted toward students has to be easily accessible, requiring minimal
setup and configuration. Table 5.1 lists key constraints a visualization platform
should consider, using common Quality Attribute metrics as categorization.

5.2 Architecture

During the awareness phase, two distinct responsibilities were identified: 1) Load-
ing and storing metrics from data sources, such as GitLab, and 2) visualizing metrics
aggregated as insights for students.

Data loading and aggregating have entirely different sets of constraints and
expectations, requiring a different architecture when compared to a Visualization
tool. The latter is, in principle, a dashboard/statistics system, and the responsibil-
ity can mostly be resolved using existing third-party software (Section 5.4.1).

31

32 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Constraint Quality
Attributes

The visualization tool should not require students
to download any software

Usability

The visualization tool should support Single
Sign-On (SSO) authentication, to utilize students
university account

Usability, Security

Students’ access should be limited to see data
from their own group

Security

Course Staff should have access to all groups Usability

Should allow for an automated way to manage
users and access

Security,
Maintainability

Table 5.1: Architectural constraints
Constraints that the visualization tool should consider

The benefit of splitting these systems into two components is the flexibility to
replace one without drastically affecting the other components. It also prevents
architectural limitations of one component from limiting the other.

Figure 5.1 illustrate the general distinction of responsibilities and how the
overall system should interact. First, Data sources are any source of data that can
be used to give Consumers valuable insights into their project. For example, in
IT1901, GitLab is the primary data source, while another project may use Github
and Trello. Second, Producer are components that produce valuable insights to
Consumers based on data from one or multiple Data sources.

The primary interface between the two components was chosen as SQL using
a dedicated database (Figure 5.2). An alternative would be a REST-API. However,
it would limit which visualization tools to select. Coupling components at the
database level are generally anti-pattern. However, in this setup, the flexibility of
SQL outweighs the disadvantages. Furthermore, given that write access is exclu-
sively restricted to the Metric aggregator, this should limit the worst consequences
of database coupling.

5.3 Metric aggregator

Internally, the metrics aggregator consists of two systems: 1) The code sourcing
data and aggregating it, and 2) a database where the aggregated metrics are
stored.

Chapter 5: Prototype design 33

0HWULFb
DJJUHJDWRU

9LVXDOL]D��
WLRQ�WRRO 6WXGHQW

7HDFKLQJb
$VVLVWDQW��7$�

*LW/DE

'DWD�VRXUFH 3URGXFHU &RQVXPHU

*LWKXE

�����

3RZHU%Ζ

&XVWRPb
VROXWLRQ

3RVVLEOH�9LVXDOL]DWLRQ�WRROV

�����

Figure 5.1: Architectural overview of the primary responsibilities and their de-
pendencies

5.3.1 Database alternatives

This thesis selected PostgreSQL as a database solution for the prototype. It was
selected because it provided a flexible SQL interface and was easy to set up and
maintain while giving flexibility on how the data could be structured. Other al-
ternatives were considered, such as Elasticsearch, AWS Redshift, Spark, InfluxDB,
and Prometheus. However, all required more complicated infrastructure or were
more costly.

5.3.2 Metric aggregation architecture

Students expect fast feedback on changes to their projects, were waiting up to 24
hours or more is likely, not acceptable. Therefore, a software architecture that can
handle continuous updates of many student projects have to be designed. Simul-
taneously, the Metric aggregation component must consider rate limits from Git-
Lab. Each project in a course requires hundreds (approximately 300) of requests
to retrieve all information needed, resulting in a high risk of being rate-limited by
GitLab. Multiplying the number of requests per project with the number of projects
in a single course (around 80 for IT1901) Equation (5.1), we are guaranteed to
be rate-limited when every project is crawled simultaneously.

Approx imateNumberO f Requests = 300 · 80= 24000 (5.1)

To remedy rate limits, manage internal resource usage, and facilitate future
use cases, an event-driven architecture1 has been adopted. The internal logical

1https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven

34 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

JLWODE��PHWULFV��
FUDZOHU

JUDIDQD��
PDQDJHU

6WXGHQW

7HDFKLQJb
$VVLVWDQW��7$�

0DQDJH�'DVKERDUG��JURXSV
DQG�XVHUV

9LVLWV

9LVLWV

3URWHFWHG�E\

JLWODE�VWXG�LGL�QWQX�QR

&UDZO�IRU�PHWULFV
&UDZO�IRU�XVHUV��SURMHFWV�DQG�SURMHFWb
PHPEHUV

'%��SURMHFW��
PHWULFV

:ULWH��$JJUHJDWHG�SURMHFW�PHWULFV

9LVXDOL]DWLRQ�7RRO0HWULF�DJJUHJDWRU

4XHU\�SURMHFW
PHWULFV

64/�LQWHUIDFH

Figure 5.2: Diagram of architectural components. Drill down of Figure 5.1. This
figure presents the components and interfaces this thesis has used to implement
the prototype. GitLab is the Data source, a read-only PostgreSQL database pro-
vides an SQL interface to other components, and Grafana is used to provide statis-
tics and insights to users.

structure of the Metric aggregator is illustrated in Figure 5.4. A combination of
Publish-Subscribe (Pub-Sub) topics and message queues are constructed as a Fan-
out pattern2. This pattern decouples the producer and Metric Aggregators (con-
sumers) through a Pub-Sub topic. Additionally, the queues allow Metric Aggrega-
tors to "consume" messages in their tempo and retry failed jobs. If an aggregation
job fails because of rate-limiting, it can retry later by polling the same message
again. Figure 5.3 illustrates where rate-limiting may occur during aggregation of
GitLab issues, and how it is handled.

Additional strategies are caching of data, and retrieving only data that has
changed. Caching is excellent for reducing the number of requests when fetching
the same information. The most straightforward approach is in-memory caching

event-driven
2https://learning.oreilly.com/library/view/serverless-design-patterns/

9781788620642/3fa37b68-0490-4fa3-a749-13aa03eac59f.xhtml

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learning.oreilly.com/library/view/serverless-design-patterns/9781788620642/3fa37b68-0490-4fa3-a749-13aa03eac59f.xhtml
https://learning.oreilly.com/library/view/serverless-design-patterns/9781788620642/3fa37b68-0490-4fa3-a749-13aa03eac59f.xhtml

Chapter 5: Prototype design 35

to limit duplicated requests during a single processing run. However, long-term
caching requires a third-party solution, such as Redis3, or saving files on disk.
Furthermore, additional mechanisms to invalidate the cached data are required
to prevent stale data from being used. However, with a good cache invalidation
strategy, the system can store unchanged data for a longer duration limiting the
total number of requests to GitLab.

Retrieving changed data would ensure that only necessary requests are sent.
However, it does require a more complex setup. GitLab’s API has support for fil-
ters to receive only data that have been created or modified after a specified date
and time4. Although reducing the total results returned, there is no clear indica-
tion from the documentation that this mechanism handles Git rebase5 commands,
potentially resulting in modified commits never being updated in the aggregated
metrics.

An alternative strategy would be to listen for Webhook events6, such as Push
events. Then the metric aggregation can request details for only the changed
information. This strategy can give students more immediate feedback on their
changes, amplifying the feedback loop. Regarding load balancing, if updates are
only triggered when changes are made and requesting details for the changed in-
formation may distribute the total load over a longer duration, given the data is
received as a stream instead of in batches. However, the code must handle unex-
pected behaviors, such as Git rebase on old commits. In addition, some changes
are not published to webhooks, such as modified comments7 in an issue or Merge
Request.

Webhooks and long-term caching were considered out of scope for this project,
given that the data analyzed were not changing (the last code push was months
ago). However, in a productionized setup, the developers should consider using a
webhook to only trigger when changes are made.

The publisher’s (GitlabCrawler) responsibility is to determine which project
should be updated (re-crawled). This job is run regularly or can be triggered by
events from GitLab. This thesis went for the former approach because of its sim-
plicity. Projects that require an update are published to a Publish-Subscribe topic
that every aggregator subscribes to.

Each Metric Aggregator are responsible for a specific metric, such as GitLab
Issues or Commits, and are logically separated from each other. They own the
whole metric pipeline, from the Data source down to the specific database table.

3https://redis.io/
4https://docs.gitlab.com/ee/api/commits.html#list-repository-commits
5https://git-scm.com/docs/git-rebase
6https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html
7https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#

comment-events

https://redis.io/
https://docs.gitlab.com/ee/api/commits.html#list-repository-commits
https://git-scm.com/docs/git-rebase
https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html
https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#comment-events
https://docs.gitlab.com/ee/user/project/integrations/webhook_events.html#comment-events

36 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

*LWODE�ΖVVXH�DJJUHJDWRU

6WDUW

/LVW�DOO�*LW/DE�LVVXHVb
LQ�SURMHFW

5HWULHYH�FRPPHQWVb
IURP�DOO�LVVXHV

0HVVDJH�SROOHG
IURP�TXHXH $JJUHJDWH�DQG�VWRUHb

LVVXHV�LQ�'%

5DWH��OLPLWHG 5DWH��OLPLWHG

(QG

3XVK�PHVVDJH�EDFNb
LQ�TXHXH

5HPRYH�PHVVDJHb
IURP�TXHXH

$JJUHJDWLRQ�FRPSOHWHG

0HVVDJH�DYDLODEOHb
LQ�TXHXH

Figure 5.3: State diagram of rate-limiting
Simplified state diagram of how GitLab issues are aggregated, and how

rate-limiting is handled.

In a Microservice oriented architecture, the publish-subscribe producers and
consumers are often separate services 8. For simplicity, our prototype has both the
producer and consumers stored in the same system, using RabbitMQ9 as a pub-
sub broker. However, the proposed architecture is system and language agnostic,
meaning that any pub-sub and queue systems can be used and implementation
language and project structure.

5.3.3 Classifying code contribution for each student

The contribution classifier will, by best effort, look at which parts of the code each
developer contributes to, down to each file changed in a commit. Conventional
measurements are number of commits to a file, lines added/removed to each file
(Table 3.2). Similarly, it should classify the number of commits or lines added/re-
moved to tests, functional code, and documentation. However, as stated by Aival-
oglou and Meulen [43] measuring contribution is not a precise measurement.
Pair- and Mob programming will often only count contributions to one author,
even though multiple people contributed. Similarly, many students commit with
non-university emails, making it difficult to trace who the actual author is.

8https://aws.amazon.com/pub-sub-messaging/
9https://www.rabbitmq.com/

https://aws.amazon.com/pub-sub-messaging/
https://www.rabbitmq.com/

Chapter 5: Prototype design 37

*LWODE$SL&OLHQW

JLWODE�VWXG�LGL�QWQX�QR

+773

*LWODE&UDZOHU

5HWULHYH�SURMHFWV�WR�FUDZO

*LW&RQWULEXWLRQ��
$JJUHJDWRU

*LW/DEΖVVXH$JJUHJDWRU

*LW/DE0HUJH5HTXHVW��
$JJUHJDWRU

*LWODE0LOHVWRQHV��
$JJUHJDWRU

4XHXH��

4XHXH��

4XHXH��

4XHXH��

3XE�6XE�7RSLF�b
JLWODE��SURMHFW

3ROO

3ROO

3ROO

3ROO

)DQRXW�3DWWHUQ

*LW&RQWULEXWLRQ��
5HSRVLWRU\

*LW/DEΖVVXH5HSRVLWRU\

5HWULHYH�VRXUFH�GDWD

*LW/DE0LOHVWRQHV��
5HSRVLWRU\

*LW/DE0HUJH5HTXHVWV��
5HSRVLWRU\

'%��SURMHFW��
PHWULFV

7DEOH��JLWBFRQWULEXWLRQ

7DEOH��JLWODEBLVVXHV

7DEOH��JLWODEBPLOHVWRQH

7DEOH��JLWODEBPHUJHUHTXHVW

5XQ�RQFH�HYHU\�GD\

3XEOLVKHU 0HWULF�$JJUHJDWRUV '%�5HSRVLWRULHV

'DWD�VRXUFH

Figure 5.4: Diagram illustrating the internal flow of data inside the Metric aggre-
gator. Drill down of Figure 5.2. Show how components communicate with Data
sources and are written to the database. All metric aggregators are logically iso-
lated from each other.

To reduce the likelihood of having more contributors than group members in a
project, support for Git mailmap10 was implemented. Students in the file .mailmap
map their non-educational emails to the correct one, and the contribution classi-
fication will remap those.

Multiple contributors to the same commit are supported through Git’s11 co-
authoring functionality. The system is designed to give co-authors the same
amount of contributions. This is particularly valuable for pair programming, and
a key concern for students [1].

Contribution to code types, such at tests, functional code, documentation and
other, are done using knowledge about typical folder structures in the typical lan-
guages, and some educated guessing. Java based projects will store functional
code inside src/main/... and tests inside src/test/...12.

More educated guessing is required in JavaScript-based projects because no
strict folder regime exists. However, a convention in Jest13 is to store tests inside
the folder __tests__, or suffixed with .spec.js or .test.js. These can be used
as guidance to determine whether a file is part of a test or not.

10https://git-scm.com/docs/gitmailmap
11Example from GitHub: https://docs.github.com/en/pull-requests/

committing-changes-to-your-project/creating-and-editing-commits/
creating-a-commit-with-multiple-authors

12https://cs.lmu.edu/~ray/notes/largejavaapps/
13https://jestjs.io/

https://git-scm.com/docs/gitmailmap
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors
https://cs.lmu.edu/~ray/notes/largejavaapps/
https://jestjs.io/

38 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Documentation classification mainly look for markdown files, or files stored
inside a folder named doc or docs. The latter is a convention recommended in
IT1901.

5.4 Visualization tool

Part of this thesis (RQ2) is to consider how usable third-party visualization soft-
ware is to present insight to students. This involves exploring what third-party
software exists and comparing its pros and cons. Instead of prototyping and test-
ing every software, one will be selected, allowing us to focus on incrementally
improving the visualizations and metrics. Lastly, experience and feedback from
using the developed prototype are discussed (Chapter 7), referencing the other
third-party software.

5.4.1 Third-party Visualization software

Candidate software was found using a broad search on Google after statistics and
metrics visualization software and included some systems that were known be-
forehand.

• Kibana14

• PowerBI15

• Tableau16

• Grafana17

• Apache SuperSet18

• Cyclotron.io19

Kibana is a dashboard solution purpose-built to communicate with Elasticsearch,
with the ability to run ad-hoc queries, build and share the dashboard, and create
alerts. To automate user management, Kibana exposes a REST API. SSO is config-
urable through security assertion markup language (SAML) or OpenID Connect.
Kibana is limited to only Elasticsearch and no other data sources. In conjunction
with Elasticsearch, a complete stack become complicated to maintain.

PowerBI is Microsoft’s interactive visualization software. Customers can con-
nect to different data sources and create interactive dashboards. The features a
customer has access to are determined by which subscription they pay for. Cus-
tomers must have a Windows computer and the Power BI desktop program to cre-
ate dashboards. Dashboards are viewable from the browser, given that the data

14https://www.elastic.co/kibana/
15https://powerbi.microsoft.com/
16https://www.tableau.com/
17https://grafana.com/
18https://superset.apache.org/
19https://www.cyclotron.io/

https://www.elastic.co/kibana/
https://powerbi.microsoft.com/
https://www.tableau.com/
https://grafana.com/
https://superset.apache.org/
https://www.cyclotron.io/

Chapter 5: Prototype design 39

source is available. Data sets can be pre-processed and uploaded. However, this
requires the data to be regularly recalculated.

Tableau is proprietary software with similar capabilities as Microsoft PowerBI.
However, the desktop client is available on Windows, Mac OS, and Linux.

Grafana is an open-source analytics and visualization platform. Like Kibana,
the solution runs in the browser and supports SSO, giving the dashboard authors
and users flexibility. However, Grafana has the added benefit of supporting multi-
ple data sources. Administrators can chose to self-host Grafana, pay for managed
hosting, or utilize the hosted version inside GitLab20.

Apache SuperSet is an advanced open-source analysis tool comparable to Tableau
and PowerBI. It claims ease of use, support for many data sources, and rich visu-
alizations. Administrators can choose self-hosting or pay for a managed setup21.
Compared to Grafana, SuperSet provides a higher degree of flexibility at the cost
of complexity. Administrators need knowledge of Python and Flask22 to configure
a complete setup.

Cyclotron.io is an open-source dashboard solution with the ability to be ex-
tended with custom JavaScript and CSS. They claim this can be used to create
dashboards that do not look like regular dashboards. However, Cyclotron does
have some limitations: 1) requires a valid Highcharts license23, 2) It is not de-
signed to be exposed to the public internet as-is24, 3) supports only Lightweight
Directory Access Protocol (LDAP) and Active Directory as authentication solution,
4) does not support SQL databases as a data source, 5) Have little available doc-
umentation, and 6) the project have had no new releases since 2018.

5.4.2 Selecting a third-party visualization software

There is no definitive solution that is the most suitable for everyone. All listed
solutions have benefits and limitations, making them suitable for different situa-
tions. For example, if a course already has licenses and knowledge on PowerBI or
Tableau, these might be a better option. Similarly, if a course already uses Elastic-
search, then Kibana may be better.

In this thesis, low cost, easy maintenance, and fast prototyping were favorable,
in addition to the constraints in Table 5.1. Their cost and need to download a
program excluded PowerBI and Tableau. Kibana would require the setup of an
Elasticsearch cluster, therefore increasing the maintenance cost. Similarly, Apache

20https://docs.gitlab.com/omnibus/settings/grafana.html
21https://preset.io/
22https://flask.palletsprojects.com/en/2.1.x/
23https://shop.highcharts.com/
24https://www.cyclotron.io/faq.html#internet-use

https://docs.gitlab.com/omnibus/settings/grafana.html
https://preset.io/
https://flask.palletsprojects.com/en/2.1.x/
https://shop.highcharts.com/
https://www.cyclotron.io/faq.html#internet-use

40 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

SuperSet is designed for more advanced data analytics situations, which would
require a more complicated setup. Finally, Cyclotron.io is excluded because of
its limitations. Concluding, based on exclusion, Grafana was the most suitable
solution for further prototyping.

5.5 Prototype development

This section goes through the prototype development and how its structure changed
between the initial prototype and the second round of interviews (Chapter 6).

5.5.1 Initial prototype

Figure 5.5: Full page screenshot of the initial prototype design. This was pre-
sented to students and TAs in the first interview round

The primary focus of the initial prototype was determining which metrics to
include in the visualization. Screenshots are shown in Figure 5.5. Metrics from

Chapter 5: Prototype design 41

the literature review (Table 3.2) were used as inspiration, even though most of
the literature was used to evaluate students and was not necessarily directly valu-
able to them. In addition to metrics from literature, IT1901-specific metrics (Sec-
tion 2.3.1) and best practices regarding Git commits (Table 2.1), GitLab Issues
and Merge Request were included. Four categories of information were created,
named indicators: 1) Contributions, 2) Git commits, 3) Merge Requests, and 4)
GitLab Issues. Each should give an overall health indication for their respective
categories and visualize how something should be improved.

Contributions indicates how each student has contributed to a project. The
course staff wanted to see how each student has contributed over time and which
parts of the code. A Cumulative Line Graph, counting lines added, is used to visu-
alize the total contribution for each student (Figure 5.5). GitLab Milestones were
overlaid as purple boxes, providing context to how contribution changed over
time. In IT1901 students were encouraged to use Milestones to denote each de-
livery. This makes it easier to see whether certain students only contributed to one
delivery or whether most of the work was done close to the deadline.

The Pie charts show how many lines each student have contributed to 1) Docu-
mentation, 2) Functional code, or 3) Test code. These should help students discover
potential imbalances and what parts of the code each student contributes.

The colors used for contributions were neutral25 because the information was
strictly informational. Whether imbalance in the contribution is problematic de-
pends on the course and the goal of the student group. For example, in IT1901,
every student should contribute equally to all parts. However, having more ded-
icated roles in other courses is more natural. There is a risk of measuring the
wrong metric [20, p. 45], resulting in students focusing more on writing lines of
code instead of contributing to improving the project.

"Problems in commits" focus on easy-to-measure metrics that give students ac-
tionable feedback. From commit best practices (Table 2.1), developers should pre-
fer small single-purpose commits and keep the commit message length under 50
characters.

In Figure 5.5 commits that are likely too large or generic is visualized in the
panel "Large Commits". We have defined a commit as large when it either touches
many files or has added/removed many lines of code. The thresholds are 800 lines
of code or 26 files touched. Merge commits generated by GitLab will often be clas-
sified as large and are therefore ignored. However, these thresholds are imprecise
and often dependent on the project. More explicit language may, for example,
yield more lines added/removed compared to smaller scripting languages.

"Commits with long Titles" counts the number of Git commits messages con-
taining more than 50+ 10 characters (10 characters added as an error margin),

25Grafana’s Classical palette were used when denoting neutral colors. https://grafana.com/
docs/grafana/latest/visualizations/time-series/graph-color-scheme/

https://grafana.com/docs/grafana/latest/visualizations/time-series/graph-color-scheme/
https://grafana.com/docs/grafana/latest/visualizations/time-series/graph-color-scheme/

42 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

inspired by the commit message guidelines (Table 2.2). Merge commits are ig-
nored because GitLab’s auto-generated message often breaks this rule.

"Duplicated commit titles" attempts to indicate how many Git commit messages
that have exact duplicates. It can be argued that if a commit message is duplicated
multiple times, the commit’s purpose is not clearly defined, or the message is too
vague, violating two of the Git best practices (Table 2.1). Furthermore, a large
number of merge commits and "merge conflict" commits, as seen in Figure 5.5,
can indicate that the students use long-lived branches and do not push to trunk
frequently enough. This violates "Branch frequently, using short-lived branches"
(Table 2.1).

"Problems with Merge Requests" visualize usage of Merge Requests that has
the potential to become problematic. Such as Merge requests that have not re-
ceived any code review by team members, violating Table 2.1 and the require-
ments set by IT1901 (Section 2.3.1). Furthermore, IT1901 also expected Merge
Requests to reference either GitLab Issues or Milestones.

The panel "Without reviewers" indicates the lack of code review. "Merged by the
same person" is adopted for IT1901 that wanted to encourage the code reviewer to
merge the branch and not the author. In conjunction with these panels, "Average
time to first comment" and "Average time until merge" give an averaged indication
of how long the code review process takes in a group.

"Not referencing any Issues" and "Not referencing any Milestones" check the title
and description of Merge Requests for whether they contain references to issues
or milestones.

"Problems with GitLab Issues" look at practices that can become problematic
over time, typically in how a team manages their tasks. Issues with at most two
words in their title are assumed to be problematic because only two words will
rarely convey sufficient context and motivation for a task. "Issues with short titles"
counts the number of issues violating this assumption. Similarly, issues that do not
have a description likely lack enough context and information about what a task
attempts to solve. Such issues can be complex for someone on the team to work
on because they lack the necessary information to be autonomous. The presence
of description in issues is also expected in IT1901.

In GitLab, labels26 is the preferred way to manage prioritization, categoriza-
tion, and progress of issues, also allowing for the use of Workflow boards in Git-
Lab. Therefore, issues will, in practice, always contain at least one label unless
they have been forgotten. The indicator "Issues without labels" visualizes the num-
ber of issues that lack labels.

Lastly, "Closed issues without any assignees" look at the number of completed
issues that have not been assigned to a team member. Note that issues may have

26https://about.gitlab.com/handbook/marketing/project-management-guidelines/
boards/

https://about.gitlab.com/handbook/marketing/project-management-guidelines/boards/
https://about.gitlab.com/handbook/marketing/project-management-guidelines/boards/

Chapter 5: Prototype design 43

been closed because they were redundant, unnecessary, or out of scope, so it is
natural not to assign a person to them. Unfortunately, given the varying naming
convention and usages of labels, we have no way to discern between a completed
or closed issue properly.

A description is added to each panel as information boxes, helping students
understand the motivation behind each metric, with examples, shown in Fig-
ure 5.6. These information boxes are ideal for short and to-the-point descriptions,
which were sufficient for the current use cases. However, the button to show an
information box is small and blends into the panel itself, making it hidden from
people who do not already know they exist. We expect this to become a problem
during the interviews (Chapter 6), even though these boxes are the most suited
functionality in Grafana for this use case.

Figure 5.6: Grafana description box
Used to provide additional description to a Grafana panel. Becomes visible when

hovering over the "i" using their mouse pointer.

5.5.2 Second revision

The second revision was conducted between the first and second rounds of usabil-
ity testing. Screenshots of the revised prototype are shown in Figures 5.7 and 5.8.
Structural changes, removing redundant panels, updating the information of pan-
els, or formulation changes were done in this stage, based on explicit and implicit
feedback from Students and TAs. Explicit feedback was directly told to us during
the interviews or verbally expressed confusion. Implicit feedback was problems in
navigation and interpretation of the prototype, which we observed during the in-
terview. Examples include how much time a participant spends on a specific panel
or category.

The feedback was mainly related to improving the general readability and
structure of the graphical user interface. For example, multiple respondents were
confused about what each color code meant, while others wanted percentages
instead of numbers because it better conveys the actual severity. See Chapter 6
for details on the findings from the first and second rounds of interviews.

The revised layout is shown in Figure 5.8. Generally, each category is more

44 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

distinctly separated into sections27. In order to avoid overwhelming a user with
information when they first visit the dashboard, all the sections are minimized
by default. This is shown in Figure 5.7. In terms of language, each indicator is
no longer named "problem" because it confused the user on whether a value was
problematic or not. Percentages are favored as units on indicator panels after re-
sponses from interviews. A percentage indicates the actual impact better because
it considers the total number of merge requests, issues, or commits.

The dashboard header was refined with a short introductory description and
a hint to the "i"-button on each panel. Additionally, the color convention is illus-
trated in similar boxes, so the user clearly sees what each color represents.

"Merge Requests" . Indicators that are mainly informational have been moved
to the left side. "Total #" shows the total number of merge requests in their project,
giving users an overview of the impact of the other indicators.

"Open Merge Requests" has been colored blue to signify that it is strictly infor-
mational. Some students were confused by this indicator during the first round
because it used the yellow status color (Figure 5.5), signifying that it could be
better.

"Average time to first comment received" and "Average time until merge" are
highly related and have therefore been moved closer to each other.

"Merge by the same person", "Without assigned reviewers", and "Not referencing
Issues or Milestones" were converted to use percentages after feedback from in-
terview participants. Additionally, the information boxes have been reformulated
with better descriptions and examples.

"GitLab Issues". All indicators have been given more space, and the informa-
tional panel "Issues closed per week" was added. Although no directly actionable
feedback is given from this panel, it is meant to give a visual view of how much
they progress each week and encourage discussion.

"Git Commits" contains more significant structural changes. Commit messages
are named "commit message titles" to clearly distinguish them from the commit
body. The contribution panels from Figure 5.5 have been adjusted to count the
number of commits instead of lines added and grouped with other Git commit
panels. To avoid contributions and Git commits having too much focus, the entire
row has been moved to the bottom. The gauge panel "Average length of commit
message title" was added to visualize the average length of commit messages and
how far they were from the ideal length of 50 characters (Table 2.2). "Commits
with long commit message titles" and "Large Commits" received only minor adjust-
ments, such as using percentages instead of count. Even though not all users saw

27Rows in Grafana https://grafana.com/docs/grafana/latest/dashboards/dashboard-ui/
dashboard-row/

https://grafana.com/docs/grafana/latest/dashboards/dashboard-ui/dashboard-row/
https://grafana.com/docs/grafana/latest/dashboards/dashboard-ui/dashboard-row/

Chapter 5: Prototype design 45

a direct value of "Number of identical commit message titles", some did, during
the interview, reflect on the potential problems of having duplicated commit mes-
sages. We, therefore, decided to keep the table and decrease the threshold from
3 duplicates to 2 duplicates, such that more rows were shown.

Figure 5.7: Screenshot of the second prototype revision and what a user first sees
when visiting the dashboard.

46 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Figure 5.8: Full page screenshot of the prototype from the second revision, where
explicit feedback and observations during the user-testing were taken into ac-
count. Students participating in round two of the interview (Chapter 6) were
presented this prototype.

Chapter 6

Research Results

In total, 11 usability tests were conducted, consisting of 9 with students and with
2 Teaching Assistants (TAs). The testing was organized in two rounds, where 5
students and both TAs were interviewed in the first round. The second round was
approximately 2 weeks after the first, with 4 new students. Only the prototype
used during the usability task of the interviews was modified between the two
rounds. The rest of the interview was identical, following the interview guides
(Appendices A and B) discussed in Section 4.4.2.

All the usability testing was conducted in Norwegian, as it was the partici-
pants’ primary language. Therefore, the quotes presented in this section have been
translated from Norwegian to English. In addition, square brackets are used in the
quotations to convey context to the quotation and non-verbal expression lost in
transcription. I.e., a participant referring to a specific visualization by pointing at
it while talking.

This chapter presents and summarizes the findings from the interviews, where
Chapter 7 discusses the implications of the findings.

6.1 About the participants

The gender distribution of the participants was about half, with 55%(N=6) fe-
males and 45%(N=5) males. 5 of the students were studying Computer Science,
3 students Bachelor in Informatics and 1 Natural Science with Teacher Education.
All students took IT1901 (Section 2.3.1) in the fall semester of 2021. 8 of the stu-
dents were either in their 2nd year or between the 1st and 2nd year of their degree.
Both TAs had previously taken IT1901 as students and had the responsibility of
following up on an assigned list of student groups. Table 6.1 lists the anonymized
identifiers of the participants detailing which round of usability testing they took
part in. All of the participants have also taken, or are currently taking, the course
Software Engineering TDT4140 (Section 2.3.2), a similar course to IT1901. Addi-
tionally, 4 students mentioned that they had taken the course Web Technologies
IT2810.

47

48 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Of the participating students, 5 reported not having used Git before they took
IT1901, and 4 said they had used it to some small degree. None of the students
considered themselves notably experienced in Git.

Participant Id Round

Student1 (S1) 1

Student2 (S2) 1

Student3 (S3) 1

Student4 (S4) 1

Student5 (S5) 1

Student6 (S6) 2

Student7 (S7) 2

Student8 (S8) 2

TA1 1

TA2 1

Table 6.1: Anonymized student identifiers, and which round each participated
in.

6.2 Usability tests

This section presents the results of the usability tests and the following interview.
The results from the first and second round are divided into separate sections,
Section 6.2.1 and Section 6.2.2 respectively.

6.2.1 Usability tests first iteration

Table 6.2 shows an aggregated list of findings from the first usability testing round
labeled with the respective participants who discussed them.

Chapter 6: Research Results 49

Location Discussed topics Discussed by

Contribution
graphs

The contribution pie charts are valuable S1, S2, S3, S4,
TA1

Lines contributed to project might single
out individuals

S2, S4, S5

Lines contributed to project can cause
group conflicts

S4, S5

LoC can be a too simplistic metric S3, TA1, TA2

Contribution graphs should not be in
focus

TA2

Colored
indicator
panels in
general

The Indicator panels in general gave a
good overview of improvements

S1, S5,

The coloring of the Indicator panels was
intuitive

S1, TA1, TA2

The coloring of the Indicator panels was
confusing

S2, S3, S5

The Indicator panels should contain
total occurrences

TA1, TA2

Tried clicking the panels S2, S3, S4, TA2

Problems
with
commits

Problems with commits is valuable S1, TA1

Did not find value in Duplicate commit
titles

S2, S3, S4, S5,
TA1, T2

Did not see the title of Duplicate commit
titles

S4, S5

Long commit titles is not a problem S2, S5

Problems
with Merge
Requests

Problems with Merge Requests is valuable S1, S3, S5, TA1,
TA2

Confused by an indicator panel in
Problems with Merge Requests

S2, S4

Problems
with GitLab
Issues

Problems with GitLab Issues is valuable S3, S4

GitLab Issues is not applicable to all
groups

TA1

An Issue description is not necessarily
needed

TA2

General
notes

Noticed the information buttons S4, TA1, TA2

The information buttons should be
more eye-catching

ALL
PARTICIPANTS

Table 6.2: A summary of all the discussed topics from the first round of usability
tests and a mapping to who mentioned them

50 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Feedback on the contribution graphs

The contribution pie charts were generally well-received, with quotes like:
"Having this is golden" and "This was nice, easy to understand". The main rea-
soning behind liking the pie charts was that the graph was easy to understand
and gave a good insight into what each member contributed. Student2 liked the
contribution pie charts and indicated that it was a better and less revealing way
to visualize individual contributions than Lines contributed to project.

TA1 found the pie charts and the work distribution between documentation,
functional-, and test-code interesting. TA2, on the other hand, did not give much
attention to the pie chart metric. TA2 understood what the metric showed but
moved quickly to the other metrics.

Student1 was uncertain what the number values in the pie charts were, if it
was Lines of Code (LoC), commits, or something else. Student3 suggested adding
a fourth pie chart with an overview of the entire code base.

Lines contributed to the project were reported to have several challenges by
the respondents. Student2, Student4, and Student5 argued that those graphs
could result in some students being singled out if they have not visually con-
tributed to the project, regardless of whether that is true or not. Active use of
pair- and mob-programming could result in some students contributing more to
the code, even though all have contributed to the exact change.

Student4 said

"It is almost like a tool that has been made only to get frustrated on
your group members "

about the line chart. Student4 and Student5 pointed out that this could result in
personal annoyances or conflicts inside the student group because it looks like
someone does not contribute enough. However, if the entire group was using the
tool actively, Student4 said that the metric could make the group members aware
of how much each member works and motivate the least contributing persons to
contribute more.

The milestones durations marked as purple rectangular areas in the line chart
were emphasized negligibly by the participants. Two students were confused about
the milestone durations, but it was caused by the naming of the milestones being
different from what they were familiar with. They would probably have under-
stood the metric in a real-world situation where the milestones were based on
their GitLab milestones. When they understood the metric, they quickly moved
on to the rest of the prototype.

Student3 liked the line chart but suggested labeling the axis and editing the
date format from "mm/dd-format" to "dd/mm-format" to make it more readable.
Student5 was also confused by the date format.

Chapter 6: Research Results 51

General feedback on the contribution graphs. Both TAs argues that Lines of
Code (LoC) gives a too restricted view on individual contributions, to yield par-
ticular value to students. This metric was used in both the pie charts and the line
chart. Student3 had a similar concern and gave an example of how an automatic
code cleanup tool could result in thousands of edited lines of code. TA1 suggested
using Number of commits or Number of issues completed as metrics instead of LoC
but noted that these also had the same weaknesses. TA2 also discussed the possi-
bility of using commits, as this is used by GitLab on their analytics page. However,
TA2 noted that it could lead to an unwanted situation where students would spam
the repository with small commits to increase their commit count.

Regarding the contribution part of the dashboard, TA2 stated that

"I do not know to what extent this should be in focus, as there is much
focus on pair programming"

and suggested moving it to the bottom of the dashboard. Having it as the first thing
you notice on the dashboard might put focus too much on it. TA2 also pointed out
that active use of pair- and mob-programming could result in students not getting
credited for their work in the dashboard. However, this is taken into account in the
dashboard if the students use the GitLab functionality of tagging the other mem-
bers of the pair programming team with a co-author tag. Student2, on the other
side, assumed that the prototype took co-authoring into account. When Student2
was asked how they would use the prototype, they stated

" [...] if I were pair programming, I would sign it so that I would get
my name up "

referring to the co-authoring functionality in Git.

Colored indicator panels

The colored indicator panels are an important visualization on the dashboard used
13 times across Problems in commits, Problems with Merge Requests, and Problems
with GitLab Issues. The feedback on these metrics was mixed, were 3 of the inter-
viewed students misunderstood or were uncertain of what the coloring indicated.
Student2 misinterpreted the indicator panels thinking every panel was a problem
and that new panels would spawn when a new problem arose. Student3 and Stu-
dent5 both initially understood the coloring of the indicator panels but became
uncertain after browsing the dashboard. Student5 said:

"I do not quite understand the system of it, I kind of thought the green
at first meant that it was good, but now I start to think that it was
something else."

When asked what caused the uncertainty, Student5 replied that

"Because you use a green color under Problems in GitLab".

52 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

From this statement and later discussion, it was found that the confusing element
probably was the wording of the category titles. As the titles start with "Problems
in," it follows that everything is a problem.

Both TA1 and TA2 pointed out that having just the number of occurrences in
the indicator panels was insufficient to get a good overview. They both argued
that it was impossible to grasp the extent of a problem without knowing the total
number of the metric. TA2 gave an example:

"I do not know how many [merge requests] they have had. So maybe
it could have had a total. How much is 27 [merge requests without
reviewers] if they have 120 merge requests...then its not so bad, but
if they had 30... they could probably have become better at it".

When asked whether a percentage or total would be most helpful, TA1 said that
using percentage could work well and suggested also adding the total.

Multiple participants (Student2, Student3, Student4, and TA2) tried clicking
the indicator panels during the usability tests. When asked what they expected
to see, they all wanted to see more granular data of the respective chart: i.e.,
Student2 clicked on Merged by the same person, expecting to see which person
was in question. Student3 expected to see the open merge requests when clicking
on the Open merge request-panel.

TA2 remarked that the thresholds where the colors of the indicator panels
changed could be revised. That it sometimes should have been colored green and
not red. For example, in the indicator panels regarding issues, 3 issues without
description were harsh if there were a decent number of issues. TA2 also suggested
making the color thresholds more apparent to the user.

Problems in commits was the category most liked by the participants. The
main problem was the duplicated commit titles, which only Student1 fully under-
stood, stating:

"It is pretty lovely to have an overview of. It is not a thing you think
so much about, I think, that you should write a little better commit
titles ".

Student4 and Student5 did not see the chart’s title, assumed it was a list of the
most recent commits, and disregarded it. Others read the title, understood that it
was a list of duplicate commit titles, but did not know how or whether to act upon
that information. Student2 and Student5 were unsure why or disagreed that long
commit titles were a bad practice.

Problems with Merge Requests was well accepted by the participants. How-
ever, student2 and Student4 were both uncertain of what Without Reviewers meant,
and Student4 confused it with Merged by the same person. This may indicate that
the wording of the panel titles should be more precise. The information buttons
helped the users understand the indicator panels but could also be improved.

Chapter 6: Research Results 53

Problems with GitLab Issues were not as emphasized by the participants as
the other categories. All participants understood the panels, but only Student3
and Student4 explicitly mentioned that they were of any value. Student3 noted
that:

"This [Problems with GitLab Issues] can be a good tool for the group
because then you at least see ’It is 2 Issues where there is a problem’
and you can fix that instead of it getting messy in GitLab".

TA1 noted that of the groups under their guidance, one group was using Trello
instead of GitLab Issues. So for them, the GitLab Issues part of the dashboard
would be empty. TA1 suggested making the visibility of the different dashboard
parts togglable. TA2 argued that a GitLab description was not necessarily needed
if the Issue’s title was good enough.

General feedback on the prototype

The information buttons in the top left of the charts give further information to
the users on what the chart displays and how it is calculated. Both TAs noticed
the information buttons. Among the students, however, only Student4 noticed the
buttons. When the students who did not notice the information buttons were made
aware, they all responded that they were either too small or not eye-catching. Even
the ones who discovered the buttons suggested making them more visible. The
participants who found the buttons and used them when exploring them all found
them valuable. Student4 went from not understanding the duplicate commit titles
chart to understanding and liking it after reading the information. Some students
wished to add more information to the buttons and for more dashboard metrics
to have an information button. TA2 argued that the information was valuable but
could be more targeted towards guiding the users on how to resolve the problems,
thus making the tool more actionable.

6.2.2 Usability tests second iteration

The usability tests of the second iteration were done with a revised version of the
prototype. However, some of the metrics on the prototype remained unchanged.
The changes are described and justified in Section 5.5.2.

The topics discussed during the usability testing in the second round are sum-
marized in Table 6.3 and elaborated further in this section.

54 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Location Discussed topics Discussed by

Contribution
graphs

The contribution pie charts are valuable S7, S9

Commits contributed to project is
valuable

S6

Commits contributed to project might
single out individuals

Commits contributed to project can cause
group conflicts

LoC can be a misleading metric S9

Colored
indicator
panels in
general

The Indicator panels in general gave a
good overview of improvements

S6, S7, S9

The coloring of the Indicator panels was
intuitive

S6, S7, S9

Tried clicking the panels S7

Git Commits
section

Git Commit section is valuable S6, S7

Found value in Duplicate commit titles S6, S7, S8

Did not find value in Duplicate commit
titles

S9

Did not understand the Average commit
title length chart

S8

Merge
Requests
section

Problems with Merge Requests is valuable S6, S7, S8

GitLab
Issues
section

Issues section is valuable S7

GitLab Issues is not applicable to all
groups

An Issue description is not necessarily
needed

General
notes

Noticed the information buttons S6, S7

The information buttons should be
more eye-catching

S6, S9

Read the introductory information text S7, S9

Table 6.3: A summary of all the discussed topics from the second round of us-
ability tests and a mapping to who mentioned them

Chapter 6: Research Results 55

Git commits category

Commits contributed to the project received much less attention in the sec-
ond round than in the first. Student6 and Student9 were the only two who
made any remarks regarding the chart. Student6 found it valuable and suggested
using the metric to understand the group’s workflow and helping the person with
the least commits contributed. Student9 also liked the line chart:

"Here we get to see how fast your development speed is. So that is
handy".

The contribution pie charts were in general well received in interview round
two, but with some confusion as to whether it was based on Lines of Code (LoC)
or Number of commits. Student8 argued that the contribution pie charts are very
relevant and valuable for IT1901:

"But it is actually very relevant to the course, and it shows who has
done the most, and then you can think about whether it makes sense.
It often does. You know who has done the most. However, it makes
you talk about it ".

Later on, Student8 seemed confused as to whether the Commits contributed to
project and pie charts were based on the number of commits or LoC. Student9
was also uncertain of what the pie charts denoted when discussing that LoC is a
limited metric:

"The only problem is that there is a lot of code. So it depends on how
this[the pie chart metric] is made. But I feel that code is... you can
spend a long time on very little code... and then you can spend a
short time on a lot of code ".

Student9 also gave an example that the use of a Linter could bring substantial
changes to a repository when evaluated by the number of lines.

Duplicate commit titles were better understood by the participants of the
second round. Out of the 4 participants in the second round, 3 understood the
table and found it valuable. Student6 praised both Duplicate commit titles and
Commits contributed to project:

"You can get a lot of use for this one here[commits contributed to
project] eventually when everyone is more comfortable. And at least
the one with identical commit lines. Because then you can see how
you can improve it. Because these [panels] come automatically when
you have done something ".

Student8 was able to give a thorough analysis of problems in the group project
solely based on Duplicate commit titles. An example of the insight the student
found was:

56 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

"Okay, this is a little weird. That it is a branch that has been merged 3
times into master. It seems to have been merged into the master before
it is finished. And that is a little weird, so I would have considered it in
the next sprint: not to merge into the master until you are completely
done with an issue."

Student9 did not see any value in Duplicate commit titles, arguing that it was
reasonable to use duplicate commit titles and that using the default commit mes-
sages when merging branches is justifiable. Student7 mentioned that not everyone
might know what a Commit message title is.

Average length of commit titles. Student8 did not understand the Average
length of commit titles. The student thought the number in the gauge panel was
the total number of long commit titles, while it is the average length. Further, Stu-
dent8 argued that a short or long commit message title depends on the content
of the text and not its length. Finally, the student said:

"I would not say that I can say anything about whether it is good or
bad based on this ".

Merge Requests & Issues categories

The Issues section received, in similarity to the first round, little attention.
However, it seemed that the metrics were found understandable but maybe not
so actionable. Student8 remarked:

"I thought this was very good, because at least for that course[IT1901]
because there it was so important that you assigned yourself[to GitLab
Issues] and such. So it would have helped to see that you actually are
doing that ".

Student9 was unsure whether the metrics in the Issues section were based on
closed or open issues.

The Merge request section was understood by all the participants. After re-
marking that the issues section was very relevant for IT1901, Student9 continued
talking about the Merge Request section:

" [...] And same with merge request. You can see that it is not the same
person[creating and merging merge request] and is not reviewed...
Because people have probably not thought about it. I do not think we
did either. I never think we assigned reviewers[to merge requests]. So
it would be nice to be a little aware of that."

Student9 argued that having the same person merge and create merge requests
is not necessarily a bad thing:

Chapter 6: Research Results 57

"When you who make a merge request, then you know best what your
code does. So the others can go in and look over, but if there is a
merge conflict, you often should resolve it because you know best
what should be where. And the others do not necessarily know, so it
is not necessarily stupid that it is the same person who merges.

General feedback on the revised prototype

The introduction text was read by 2 of the 4 students in the second round.
Student6 noticed the introduction text immediately when opening the prototype
but did not bother reading it. Student8 did neither notice nor read the text. The
text informs the reader about the info buttons, but of the two students reading it,
only Student7 found them without assistance.

The information buttons were found without help by Student6 and Student7.
Between the two interviews, an effort to make the info buttons more aimed to-
wards guiding the students on how to fix the respective problems. Student7 com-
mented:

"On the info button, it says and how we can improve. Which is very
good ".

Student9 did not find the information buttons without help but found them
helpful when made aware of them. Student8 also had to be made aware of the info
buttons. When made aware, Student8 argued that the buttons’ principal value was
comprehending how the metrics were calculated. Student9 and Student6 both
suggested making the buttons more eye-catching.

The color coding of the prototype was commented by Student9, who liked it
but was also uncertain about the thresholds:

"It is very nice with the colors because they are the ones that indicate
what is good and bad on the page. But you can, of course, disagree
a bit with the colors... It depends a bit what you are assessed on, I
guess."

Getting more focused on graphs rather than code was argued by 3 students to
be a potential adverse side effect of the tool. Student1 and Student2 discussed
it during the first round of usability tests, and Student7 also brought it up during
the second round. Student1 said the following when asked whether there were
any problems with such a tool:

"That people stress a lot about getting all the squares to be green, and
then it might affect the group’s efficiency".

58 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Student2 mentioned a similar problem, but was more unsure to whether it was a
problem or not:

"Maybe you get too hung up on the graphs and not the actual code...
No, that can not be a problem.. Or I do not know... Maybe!"

Student7 noted that the tool could be used in an unintended way, just to improve
the graphs:

"I think I could have abused it and just [commited] lots of commits
just to bump it[the metrics in the prototype] up. And have an internal
competition, but that might also have increased the workload in the
course because you actually get to see how much you do ".

Having to learn a new system was argued by Student6 as a potential problem
with such a tool. When asked whether there were any downsides to such a tool,
Student6 answered:

"That it will be another tool to get acquainted with for those who are
not very comfortable with new tools. But it is also just statistics about
the code base, so I think I would use it personally." .

TA2 similarly argued that the tool’s value would depend on its implementation.
Whether the students needed to download the application to their computer or if
there was a struggle setting it up:

"One thing I think is how to use this tool. Will it be a browser exten-
sion?... do you have to download it?.... And are the students obliged
to use it? Or is it optional? I think these things have a bit to say about
whether people will bother to use something extra ".

When being told that with the current and intended architecture, the student only
needs to log on to a web page without any required setup, TA2 answered:

"Then I think there would have been effortless to do so[login to use
the tool]."

6.3 The perceived value of the tool

This section presents the results from both rounds of usability testing regarding the
tool’s value to the students and the Teaching Assistants (TAs). The students’ and
TAs’ expressions regarding positive and problematic values have been clustered
into 8 positive and 4 problematics. The positives are shown in Table 6.4, and
problematic values in Table 7.1 labeled with the students and TAs who discussed
it.

Chapter 6: Research Results 59

Proposed positive value Mentioned by

Gives a structured overview of the project S1, S2, S3, S5, S8, S9,
TA2

Gives concrete proposals for improvements S1, S4, S5, S6, S9, TA1,
TA2

Helps students learn recommended practices in
Git and GitLab

S2, S4, S7, S8, TA2

Helps project groups to work agile S3, S4, S6, S7

Encourages discussions around work culture S4, S7, S8

Motivates to follow recommended practices S2, S7

Makes TAs guidance preparations more effective TA1, TA2

Gives TAs better insight to groups’ work culture TA1

Table 6.4: The positive values discussed by students and TAs during both rounds
of usability testing

Getting a structured overview of the project was frequently mentioned as a
positive value of the tool. The participants expressed that getting an overview
of how well one and the rest of the group work and how structured the group
works is a valuable trait of the tool. Student2 argued that strictly following an
agile methodology could be problematic for him/her as an unstructured person,
but that the tool may make it easier to work agile:

"I do not know if I am structured enough to be able to work like that
[following a process methodology] because I have to concentrate on
the code. Such overall mess becomes a bit... Or maybe it is nice with
such a tool to make it a little easier" .

Receiving concrete proposals for improvements was another positive value
that many participants highlighted. Student1 argued:

I think it is beneficial to have such a tool to see what you should do
better. Because many who do not have that much experience with Git,
and such, do not quite know what to do.

Another trait mentioned by Student4 is that having a concrete list of things to
improve is valuable at the team meetings.

Student6: "But I do not think it[the tool] will be used very often, to begin
with, because there are so many other things to familiarize with."
Interviewer: "You think it would have been used more eventually?"
Student6:"Yes, when you get more experience in Git and GitLab".

60 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Helps students learn recommended practices in Git and GitLab was valued by
5 participants. They argued that Git and GitLab practices can be hard to grasp
and that the tool might be beneficial for students to learn the different practices.
Student2 said:

"It took a long time before I became proficient in Git, so maybe this[the
prototype] had helped me to see what is important, and what was the
best practices".

Similarly, Student8 said:

"It [the tool] might have made it easier in the beginning. Because in
the first sprint, there were many of these things [practices] we did
not do because we were unaware we should. But we found out in the
second sprint because we were instructed, ’Now you actually have to
do it.’ So if we had this[the tool] from the start, maybe we would have
understood what you should do earlier."

Student4 added that the tool could be used to guide the ones who had fallen
behind:

"In my experience, GitLab and its functionality can be confusing for
many in the beginning, so then [with the tool] you might see who
is not fully acquainted with it [GitLab and its functionality] and may
need guidance. There are many benefits".

Helps project groups work agile was a suggested value by 3 students. Stu-
dent3 stated:

"The value would possibly be to help, considering IT1901 at least,
then it will help the group and go a little more into that role-playing
game of being agile and scrum and such because eventually it could
become a bit messy and you lose a little focus on being structured
with commits and reviews.

Student6 argued that it would help groups during the retrospective of a sprint:

"It could have been beneficial, at least in retrospectives looking back
at what could be improved to the next release," and
"I think at least that would have made it easier for us to keep short
retrospectives" .

Student7 stated that the tool was valuable for the groups’ collaboration:

"So there is an excellent basis for improving the collaboration. Through
learning the conventions of Git, and collaboration in general "

Chapter 6: Research Results 61

Encouraging discussions around work culture was brought up by 3 students.
Student7 said:

"At least I had appreciated this during IT1901 so that you might get
a little more openness about how the group works together and what
you need to become better at. Then it becomes a little easier to put
your finger on it, whatever the problem is".

Student4 mentioned that the tool encourages a group to discuss their work culture
and align. Student7 said the following when asked what value the tool could give
students:

"I think it will be easier to communicate the working methods because
you get something concrete to refer to."

Motivates following recommended practices was a value mentioned by two
students. Student2 argues that the tool could motivate to follow the practices
it visualizes:

"It took a long time before I became experienced in Git, so maybe this
had helped me to see what is important or what was good practice.
And perhaps motivated to be more careful about using milestones and
issues so that it would look nice here" .

However, the intention to follow the practices seems to be more driven by making
the dashboard look nice. A similar pattern is found in a quote that already has
been referred to in Section 6.2.2 by Student7:

"I think I could have abused it and just [commited] lots of commits just
to bump it[the metrics in the tool] up. And have an internal compe-
tition, but that might also have increased the workload in the course
because you actually get to see how much you do ".

The tool’s value for counseling was discussed by both TAs. Both TA1 and TA2
stated that the preparations for the group guidance sessions were tedious, with
a random sampling of branches, commits, and issues at each GitLab repository
looking for very similar things to the prototype. TA1 would rather use the tool
and avoid the random sampling:

"And here you have all of the data gathered, so you do not have to
take random samples and actually see if they have done so. So I had
definitely used this as opposed to what I did ".

TA2 suggests that the tool would be brought up in every group guidance session:

I would probably bring it up at every meeting. Suppose I were to have
a meeting with them and had to go through how they are doing. It is
perhaps not so appropriate in the middle of [a sprint], but right after
a deadline, for example. Take a snapshot or something.

62 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

6.3.1 How students would use the tool

When asked how often they think they would have used the tool if they had it
during IT1901, all students responded that they would use it at least in-between
sprints in the retrospective or sprint planning. Two students said they would use
it weekly during team meetings. Student7 stated that the tool would be used daily
during the most intense phases, indicating that its usage could vary through the
project:

"If I had worked like we did last year, where we almost entirely did all
the work the last 2 weeks before submission, then I would not have
used the tool before those 2 weeks. But while working actively with
the subject, I think I would have used it daily. Almost like a social
medium. Where you go in to look for updates".

Some students also reckoned they would frequently use the tool before deliv-
eries to make necessary adjustments to their project. Student1 thought it would be
used frequently by students, especially towards deadlines. Student2 argued that
the tool would be more valuable to use along with the project rather than right
before the deadlines, saying:

"If we had not used it along with the project, I do not think I would
have used it before the deadlines either. Cause it would have been
like ’OH NO, we have bad practices, I do not want to know about that
now’".

Student2 also argued that the development process, being part of the grading,
was a prerequisite for the tool to be used:

"[...] and that I knew it in advance, that this was something which
was assessed[during grading]."

Student4 explained that it is essential to use the tool together in the groups:

"If you use it[the tool] only for yourself when you sit at home and
think, ’Holy f***, what a group I have’, then you just get frustrated at
it. Then we only make things worse. So you have to use it together
with the group."

Chapter 7

Discussion

In this chapter, we discuss how the findings from Chapter 6, in conjunction with
existing literature, demonstrates the value of a Git and GitLab Visualization tool
for Software Engineering students (RQ1), and limitations future uses should con-
sider. Lastly, the benefits and limitations of using third-party visualization software
in this context are discussed (RQ2) based on student feedback and limitations in
the underlying software.

7.1 RQ1 - Students value of the visualizations

The value of the prototype is documented through the 11 interviews summarized
in Section 6.3 and Table 6.4. In general, the students found the prototype valu-
able, with all students reckoning using it at least once during each sprint if they
had it available during IT1901. Some students even suggested they would use it
every week during every team meeting. However, some participants reported neg-
ative side effects, which should be considered. This section discusses the different
findings regarding students’ perceived value of the developed prototype and what
should be considered when creating such tools to maximize the students’ value.

1) Students value rapid feedback to changes made on their project. Getting
feedback with concrete proposals on how to improve their development processes
was valued by the participants. The students expected the feedback to be continu-
ous, instantly updating after a repository change was made. Some students were
also suggesting using the tool daily after making changes in GitLab, validating
that their actions were done satisfactorily (Section 6.3.1). Gustavsson and Bro-
hede [40] argued that weekly data updates were sufficient for their use, and Gary
and Xavier [41] chose a daily approach. A weekly approach may seem sufficient
based on the suggested use frequency from students (Section 6.3.1). Some met-
rics are possibly unsuited for continuous feedback and may need moderation from
course staff before it becomes available for students. However, in most situations,
updates should be near real-time to support continuous feedback where students

63

64 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

can make changes and use the tool for validation.

2) Students value having a visual overview of the project. This was together
with concrete proposals for improvement (Table 6.4) the most frequently mentioned
positive value during the usability testing. Part of it was related to getting an
overview of how one worked compared to the rest of the group. Such an overview
was argued to encourage group discussions and reflections (Table 6.4). However,
there were also concerns about the metrics singling out individuals, potentially
causing conflicts.

Eventually, how the groups approach the tool and insights seems crucial to
its perceived value. It can be envisaged that some pedagogical activities are built
on top of the insights to facilitate learning. If a group uses the insight to form
discussions, it might prove easier to act upon the insight and yielding value to the
group. Acting upon the insight is much harder if used individually, and the tool
might be more counter-productive than valuable. This is discussed and illustrated
by Student6 in Section 6.3.1.

3) Help students learn Git and GitLab practices. This was mentioned to be of
value to 5 of the participants. They argued that learning Git and GitLab in their
experience was difficult and that the prototype could help them in their learning
process. Some argued that some of the recommended practices were unknown to
many, particularly those unfamiliar with Git and that the tool could make it more
accessible.

It was also mentioned that the tool could help highlight who was struggling
with the concepts, which would make it easier to point out who needed addi-
tional guidance. A similar trait was found by Haugse and Aalberg [1], where it
was pointed out that their implementation could help detect problems earlier and
make the course staff able to act on the problems before it was too late.

4) Using the insights to improve student counsel for TAs. The TAs that par-
took in the usability tests mainly worked on helping students at the process and
team level, helping them in case of conflicts, confusion, or answering questions.
Giving the TAs a deeper insight into the groups’ projects and work culture makes
giving targeted feedback easier. The participating TAs were very positive towards
applying the prototype in guidance sessions. They both argued that the tool would
make their preparations more effective and, to some degree, more precise. TA1’s
preparations before meetings with students involved random sampling of the Git
repositories. This tool mitigated that randomness, making it more precise. How-
ever, with only two participants, further study is required to understand its value
to TAs and whether that is reflected in students’ perceived value.

5) Duplicate commit titles have potential value in future work. During the
interview with Student8, much time was spent analyzing the table of Duplicate

Chapter 7: Discussion 65

commit message titles. As a result, based on the table alone, Student8 was able
to discover and reflect on poor Git commit (Tables 2.1 and 2.2) and branching
practices. This was a surprising finding, as it was an even deeper insight than
what the duplicate commit message metric was intended to provide.

Git commit messages are, in general, likely data that can be used to give feed-
back on practices. However, as the commit messages are in a natural language,
extracting insight from this data is difficult. However, a simple aggregation of
duplicates seems to provide a way of extracting some valuable insight from the
commit messages. Unfortunately, from the interview rounds, the duplicate com-
mit message titles was proven challenging to understand, with a minority of the
participants understanding the table visualization. Therefore, finding better ways
of presenting the data is necessary to make the data source more valuable to stu-
dents.

7.1.1 Considerations affecting the value

Several concerns were discussed by the participants of the interviews in Chapter 6
which need consideration as they may affect the students’ value of the tool. These
concerns and who mentioned them are summarized in Table 7.1.

Concerns Discussed by

Presents an inaccurate measure of work load S3, S9, TA1, TA2

Getting more focused on graphs than code S1, S2, S7

Group members can easily get singled out S2, S4, S5

Cause conflicts/bad group atmosphere S2, S5, TA1

Table 7.1: The concerns discussed by students and TAs during both rounds of
usability testing

Lines of Code (LoC) and Number of commits do not tell the whole story and
are both argued by the participants to be too simplistic. However, there are no per-
fect way of measuring the value of contributions [29] as discussed in Section 3.2.2.
LoC was used on the first version of the prototype and was discussed by both TAs
and Student3. They were concerned with whether the metric could give a good
insight into contributions. Student3 gave an example that a quick code cleanup
could result in a disproportionate number of lines added. It was suggested by the
TAs that Number of commits and Number of completed Issues could be used for con-
tributions, but also pointed out that it had a similar problem as LoC. The concern
Presents an inaccurate measure of work load in Table 7.1 is grounded in the contri-
bution metrics being too simplistic. These results build on existing evidence that
LoC and Number of commits can be too simplistic or even misleading [36, 39, 43].

In the second revision of the prototype, Number of commits was chosen as the
metric for both the line chart and pie charts. Interestingly, in the second interview

66 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

round, Student9 raised a similar concern as the TAs, and Student3 did in the first
interview round, with LoC being too simplistic. However, in this interview round,
LoC was not used anywhere. Student9 assumed LoC to be the metric behind the
contribution charts, which might indicate how indoctrinated LoC is as a metric of
individual code contributions.

LoC and Number of commits have the problem that they are all too simplistic
to capture the complete task of quantifying individual contributions fully. Firstly,
by using LoC as a measure, students are measured in how many lines they write.
Secondly, writing many lines is by itself not a goal. It might even be counter-
productive as code quality is preferred over quantity [53]. Moreover, the difficulty
and effort put into a contribution are not reflected in the lines added. Similar ef-
fects are found in Number of commits. Having smaller commits is generally con-
sidered a good practice [14, 15, 17–19]. However, committing excessively to get
better feedback on the tool can become a problem. TA2 discussed this concern in
Section 6.2.1.

As an alternative, combining the metrics might be a better approach. By hav-
ing LoC and Number of commits work together, they give a broader insight and
can cancel out each other’s unwanted effects. For example, if a student were to
commit big commits rarely, it will be reflected in a high LoC and low Number of
commits. Similarly, committing smaller commits often is reflected in a higher com-
mit metric than LoC. Additionally, taking time and frequency into consideration
may be helpful to understand which students are consistent and distributes work
over time, such as Time Spent on a Project per day (Table 3.2). As a result, harmo-
nizing contribution metrics seems a more insightful way to visualize the health
and steadiness of contributions, which should be further researched.

The feedback visualized can alter the behavior of students. Although not a
new finding [35], it is still important to be aware of the implications of visual-
izing feedback to students. Forsgren et al. [20, p. 45] discuss the importance of
correct measurements in DevOps, and flaws of measuring the wrong outputs. Stu-
dent7 suggested that the visualization tool would be "abused" to get better-looking
statistics for their group, confirming these assumptions.

Looking at an example from the usability tests. In the first round, we observed
multiple students spending more time on the Contribution graphs and arguing
that these presented too simplistic a view of contributions (Table 6.2). Before the
second round of usability tests, contributions were moved to the bottom of the
dashboard and grouped closer to Git commits. This resulted in students focusing
much less on the contribution graphs in isolation, resulting in much less discussion
Table 6.3. Instead, it may seem that the students considered contributions part of
the total overview.

When planning which metrics to visualize and how to visualize them, it is
important to be aware of such constraints and consider how students may abuse
the metrics. Significantly, if the visualization tool shows students that their project
has little that requires improvement, it should not contradict the course goals.

Chapter 7: Discussion 67

Otherwise, students risk focusing on improving metrics that may negatively affect
their grades.

Students expected pair-programming to be reflected in the contributions.
Some participants, such as TA2, were concerned with whether a co-author’s con-
tribution was reflected in the visualization or not. Similarly, findings from Haugse
and Aalberg [1] noted similar concerns particularly in courses where pair pro-
gramming are encouraged. This possibly results in students being discouraged
from doing pair programming. The visualization tool in this thesis takes into ac-
count co-authoring during contribution classification (Section 5.3.3), assuming
the students have utilized the co-authoring functionality in Git by simply attribut-
ing the same commit to multiple authors. However, from feedback received dur-
ing the usability tests (Section 6.2.1), it seemed that the students were not sure
whether these were accounted for or not, indicating that how contributions are
summarized were not properly described. Future improvements to the visualiza-
tion tool should better inform the students that co-authors are attributed and
possibly describe how to assign co-authors in Git.

It is important to find the right degree of individualized performance metrics.
The visualization tool gives many insights into a group’s development process and,
to some degree, measure group individuals’ performance. With the data accessi-
ble, it is possible to make the prototype more focused on individual performance
and less. Displaying insight into how each group member contributes is, on one
side, intuitive, as a group’s effort is the sum of its member’s contributions. Seeing
how the different group members work can form the basis of fruitful discussions
regarding work culture and team dynamics, as pointed out by Student7 in Sec-
tion 6.3. On the other side, individualized performance metrics were questioned
by participants to make some individuals feel singled out and potentially cause
conflicts within the group.

The prototype implementation was consciously done with a careful application
of individualization. Despite this, 4 participants were concerned with individual-
ization making group members feel singled out or that it could cause conflicts.
Then again, the insight was found valuable by others. Interestingly, all the partic-
ipants who discussed this concern were part of the first round of usability tests.

The contribution charts were moved to the bottom of the page between the
rounds, as suggested by TA2. Consequently, after the revisions, no single partic-
ipant raised any concerns about the matter. From this, it seems that moving the
contribution charts out of the initial focus when loading the prototype made the
users put less emphasis on it. However, this is only indicative as there were only
4 participants in the second round.

The course requirements have to be reflected in the tools’ implementation.
The course requirements in Software Engineering courses can vary greatly, de-
pending on the objective of the course and what practices the course teaches. As

68 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

explained in Section 2.1.1, the strictness of different requirements varies with the
different practices. In order to use the prototype in a specific course, it should
be tailored to match the specific requirements of the particular course. This is
important to prevent the tool from motivating practices that conflict with those
taught and graded in the course. Additionally, it should be put down an effort to
implement any requirements that the course has, which is not reflected in the tool
to give the students a valuable overview of their project concerning the require-
ments. As discussed in Section 6.3, having a good overview of the project and
how to improve the project regarding the course requirements were recognized
as valuable for the interviewed students. If a mismatch between the prototype
and course requirements were to occur, it would probably lead to confusion and
significantly reduce the tool’s value.

7.1.2 Summary

After discussing the value of providing students with continuous feedback, we
should question where this tool should be positioned relative to other tools that
provide continuous feedback. In Software Engineering, receiving continuous feed-
back on changes has through empirical research on DevOps shown to be essential
[20, 25]. When comparing our visualization tool against typical Continuous Inte-
gration (CI) tools, such as Automated testing and code quality Linters, it should
not attempt to solve the same problems. Automated testing does a much better job
at validating that functionality works as intended and that the correct function-
ality is implemented and enforced as part of the project’s CI pipeline. Similarly,
code quality tools such as Linters and more advanced code quality software can
enforce styles as part of the CI pipeline or before any changes are committed.

The visualization tool proposed in this thesis may utilize data from such sys-
tems to enrich the insight and feedback given to students. We argue that the ideal
role of this visualization tool is to provide students with insights into the over-
all project, looking at the bigger picture and customized for the learning goals of
each course. It can more easily aggregate data over a longer duration and join
different but related information. However, the visualization tool cannot mark a
pipeline as failed without considerable work put into customizing the system to
different stakeholders’ needs and existing systems. Nor are all problems visualized
(Figure 5.8) bound to a Git commit or push. Therefore, it is not ideally suited to
enforce policies when students can ignore the problem or postpone it to a later
moment when the work has multiplied.

Most of the metrics in Table 3.2, and recommended Git practices Table 2.1
& Table 2.2 cannot easily be measured or verified as part of a CI & CD pipeline,
because they require historical data, data unrelated to code changes, or it is gen-
erally too difficult to place an enforceable number on it. In such situations an
analysis and visualization tool are more suitable.

We have seen that most literature has built tools targeted toward course staff
(Chapter 3). Although, feedback from students and Teaching Assistants (TAs) in

Chapter 7: Discussion 69

Software Engineering courses indicate that there is value in presenting students
with a visualization tool, focused on presenting them with continuous feedback
on Git and GitLab metrics, that existing tools do not solve already. What specific
metrics to present is likely dependent on the learning goals of each course and
its difficulty. Although, the metrics used in the prototype tested can be used as a
baseline, together with alternatives from Tables 2.1, 2.2 and 3.2. However, more
data is required to draw general conclusions, and the research would benefit from
a field study to test the tools in an actual course to gain knowledge of how it is
valued.

7.2 RQ2 - Using third-party visualization software

This section discusses the benefits and challenges of using the third-party software
Grafana to visualize Git and GitLab metrics (RQ2). It reflects on whether the other
third-party software would have fewer limitations after two rounds of Usability
tests or when a custom-built solution would be more suitable. Lastly, we discuss
where the third-party software is most suitable in this educational context.

7.2.1 Grafana as Visualization software for educational uses

Grafana was the third-party visualization software selected for further prototyp-
ing after considering the alternatives Section 5.4.1. This section summarizes the
experiences of using Grafana in this context, its benefits, and its limitations.

Benefits of using Grafana

The benefits of Grafana stated in Section 5.4.1 make it easy to connect multiple
data sources and start to build Dashboards. In addition, during the building of the
prototype, a tool that amplified the feedback loop allowed for more experimenta-
tion with different visualization styles and overall structure.

Several students noted that the criteria for using such a visualization tool are
that it should be easily accessible. This condition was expected before the inter-
views were conducted (Table 5.1). It can be argued that user-friendly authentica-
tion mechanisms, such as SSO through their university account, are criteria for an
easily accessible solution. A solution that requires many unnecessary steps to ac-
cess increases the threshold to visit it regularly. Therefore, reducing the usability
of the visualization tool. Given that Grafana can be visited from the browser and
supports SSO, it should be considered easily accessible by these criteria.

Limitations of using Grafana

After testing Grafana during prototyping and the Usability tests, several limi-
tations have been discovered that should be considered. These limitations are
mainly oriented around the Graphical User Interface (GUI), affecting how stu-
dents understand the visual presentations.

70 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

Users expect to click on a panel to see details. Several of the respondents
did during the interviews attempted to click on a panel because they wanted to
see which Git commit, GitLab Issue, or Merge Request was violating an indicator
panel. Unfortunately, Grafana has limited support for such functionality, requiring
workarounds and likely resulting in less user-friendly overviews.

The information box is too hidden. Even though the second revision added a
hint in the introduction text for the "i"-button, it had minor improvements to the
click rate. Unfortunately, the amount of effort necessary to modify the visibility
of information boxes was not feasible in the constraints of this project. An alter-
native would be to use dedicated panels of text. However, text panels had similar
restrictions, which would disrupt the user interface or be challenging to read. It
is worth noting that after users have seen the "i"-button, they start looking for
it during the user tests. However, the barrier of entry is too significant, and some
students did not find this information until we later pointed it out.

The panel and row names are too small. Panels and rows in Grafana are
mainly designed to show key metrics on a more specified measurement while
having room for many panels in a dashboard. However, multiple students were
observed being confused by a panel because they did not understand what it was
until they saw the panel title or it was pointed out.

Customizability of the visualization options in Grafana is limited. Grafana
has a wide variety of built-in visualization options, but they are all, to some degree,
limited. Therefore, during the development phase, visualizations had to be made
around what Grafana supported and not the other way around.

The dashboards had to be duplicated for each student group. To ensure that
a student group only sees data for their group, Grafana required each of these
groups to have a copy of the same dashboard. Without underlying changes to
Grafana, it is too resource-intensive to set a parameterized value based on which
student group (represented as Grafana Teams) the authenticated student belongs
to. Given that Grafana Dashboards are represented as JavaScript Object Notation
(JSON), duplicating dashboards and injecting custom parameters were straight-
forward. However, it still requires a custom script to run, which has pre-existing
knowledge of which student groups exist. This added complexity should be con-
sidered when considering the total cost of using third-party software. Similarly,
course staff must visit multiple dashboards to compare each group, which can take
considerable time in large courses.

Chapter 7: Discussion 71

7.2.2 Comparing the limitations of Grafana with the other third-party
software

Comparing the limitations of Grafana discovered during usability testing with the
other third-party software (Section 5.4.1), it is likely that some tools will not have
the same limitations. For example, PowerBI, Tableau, and Apache SuperSet are
designed as more advanced business intelligence tools and give more freedom
in visualizing dashboards, text, and graphs. These have, therefore, more alterna-
tives for how it can present information and likely avoid the problems of hidden
information boxes, and too small panel names. However, all tools are limited in
how to manage multiple dashboards and what each group has access to, which is
particularly problematic in courses with many groups.

7.2.3 Considering custom-built visualization software

Considering the limitations of Grafana and the other third-party software, a custom-
built visualization tool for students may be a better fit. At the expense of higher
development costs, students get a tailor-designed visualization purpose-built for
feedback and learning. Although, with modern front-end technology, libraries and
framework creating a visualization tool do not guarantee higher development
costs when compared to third-party solutions. JavaScript (JS) libraries such as
Highcharts1, Chart.js2, and others simplifies the complexity of interactively visu-
alizing data on a custom front-end. JS frameworks such as Vue.js3, ReactJS4, and
others significantly reduce the amount of work required to build and maintain in-
teractive websites. The developers fully control how students should interact with
the visualization tool. To customize dashboards for each student group in third-
party systems requires a custom script to generate every dashboard beforehand
with knowledge about each group.

7.2.4 Summary

Grafana shows several promising aspects in its use during a Software Engineering
course. Notably, it provides users with great flexibility in ways to visualize infor-
mation, creates dashboards and graphs on-demand, parameterized dashboards,
connects to multiple external sources, and uses Single Sign-On (SSO) through
University accounts. Such features are precious for Course staff who want to drill
down on specific per-project metrics or compare projects, as demonstrated by how
TA1 would use the visualization tool (Section 6.3). Furthermore, the possibility to
self-host, being open-source and basic Role-based access control (RBAC), makes it
easier to handle privacy concerns compared to the commercial solutions, PowerBI
and Tableau.

1https://www.highcharts.com/
2https://www.chartjs.org/
3https://vuejs.org/
4https://reactjs.org/

https://www.highcharts.com/
https://www.chartjs.org/
https://vuejs.org/
https://reactjs.org/

72 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

However, for the target of this thesis, the student groups, Grafana does not
seem to be the best tool for the job. Students expect more details and guidance
for each indicator, helping them understand what to correct or why it is essential.
In such situations, a custom-built solution will likely be worth the effort, even
though it may require more time initially to design and build the system.

Concluding, the limitations of Grafana and the other third-party visualization
software (Section 5.4.1) indicate that these may not be the best tool to use for the
guidance of students and to provide them with live feedback. In such cases, teach-
ing students how to interact with such tools and where to find more information
would require time. However, the usability limitations are likely not equally prob-
lematic for TAs, making the benefits of Grafana and similar third-party software
more noticeable.

7.3 Research limitations

This section presents and discusses potential limitations to the results of this study.

All participants have already learned about collaborative programming. A
limiting factor to the conducted interviews is that all the participants had com-
pleted the Software Engineering course IT1901, where they learned about the use
of Git and GitLab. During the usability tests, the participants could think back to
how the tool would have been for them as unfamiliar with Git and GitLab, but
only to a certain degree. Already familiar with GitLab functionality and -jargon
might influence the interviewee’s understanding of the prototype. On the other
hand, people without programming experience in teams might have a tough time
grasping and judging the utility of such tools and visualizations. In conclusion,
testing the tool’s usability is preferably performed on students without collabora-
tive programming experience, while validating the tool’s value is favorably done
after the participants have been through a similar course.

The usability tests are not tested in a natural environment. Ideally, a field
study of the prototype during the whole course track would present more realistic
data because it would enable the project to observe students using the prototype
in a natural environment as they gradually learn the course material. However, the
course IT1901 is only taught in the fall semester and was, therefore, unavailable
for this project. Alternatively, TDT4140 is taught in the spring semester, which
could have been possible to test. However, the time required to plan and build
the prototype and receive data processing approval from NSD would limit the
time available to run a good field study. Therefore, it was decided to instead focus
on running Usability tests, with pre-and post-interviews, with students that had
recently taken IT1901. The fictional case was constructed to resemble a project in
relevant courses. This approach required fewer resources to conduct these tests
while gaining knowledge on what feedback and indicators students appreciated,

Chapter 7: Discussion 73

including discovering any usability problems. Future work can build upon this
data to plan and run the field study.

A significant difficulty for the thesis was the recruitment of participants. A
cause was likely the overlap between usability tests, due dates, and exams, making
more students hesitant to dedicate time to participate. In addition, the processing
time to receive approval from Norwegian Centre for Research Data (NSD) pre-
vented us from conducting usability tests earlier. However, it is not likely that it
would have increased the participation percentage. Therefore, a strategy to mit-
igate the low participation count is to divide the usability tests into two rounds.
A key benefit is that usability problems from the first round can be mitigated,
reducing the number of usability problems in the second round.

Few Teaching Assistants (TAs) limit the validity of their feedback. The two
TAs provided this thesis with much insight into their process, valuable suggestions
for improvements, and future use cases. However, only two TAs that partook are
not sufficient to provide confident results. Only 2 out of 11 available TAs (group
supervisors) answered and agreed to participate in either of the interview rounds.
Options to increase the response rate could have been to contact TAs early in
the process to avoid interviews conflicting with other assignments and exams.
Alternatively, contact previous TAs from 2020. However, a more suitable option
is to conduct a field study, as mentioned in the previous paragraphs, and include
TAs as participants.

All participants were recruited from the same Software Engineering course.
Even though all participants also had taken the course TDT4140, and often com-
pared the value of the visualization tool for both IT1901 and TDT4140, the find-
ings are still not generalizable. IT1901 were selected because of their large partici-
pation counts, course difficulty, and use of group assignments. Direct recruitment
from TDT4140 or other similar courses may increase the diversity and partici-
pation count. However, this would also risk diluting findings or receiving more
contradicting responses because of different learning goals and course structures.

Participants receiving gift cards may have influenced the feedback of the
usability tests. Considerations should be made when using payment, such as
gift cards, to incentivize participation in interviews. This is particularly important
when the participants are a vulnerable group. For example, some participating
students and TAs could feel an obligation to answer positively due to getting a
payment, or if they thought their answers could affect their grades or chances to
become hired as TAs at a later semester. In order to mitigate such problems, every
participant is informed through an interview consent form (Appendix D) that their
participation had no implication to their relations with NTNU or its employees,
what so ever.

74 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

The thesis does not consider alternatives to visualization tools. Most related
work (Chapter 3) and similar tools (Section 2.4) use visualizations to provide
feedback to developers, students, and course staff. However, there is a possibility
that alternative systems can be more suitable. A tool integrated into a Continuous
Integration (CI) & Continuous Delivery (CD) pipeline for each project, or alert-
ing system, could potentially give students more direct feedback. In the course
IT1901 using CI & CD pipelines are optional. In this thesis, looking at alternatives
to visualization tools was considered out of scope.

Chapter 8

Conclusion and Future Work

Version Control Systems (VCSs) and supporting tools have become a central util-
ity for students in Software Engineering courses, for its relevance in the industry,
including its utility in collaboration with peers. For educators, such systems gen-
erate massive data and potential insights into how student groups collaborate and
solve problems. Existing research has found multiple uses of the data generated by
Git, GitLab and similar tools to help educators improve the course and assess stu-
dent contribution. However, few studies have investigated the value of this data
to the students directly.

This thesis explored how Software Engineering students would value a visu-
alization tool that gives them continuous feedback on their project by visualizing
their Git and GitLab usage. Over two rounds, a prototype was built and tested on
11 students and Teaching Assistants (TAs). The data collected are primarily qual-
itative, containing reflections from students and TAs and statements and themes
coded from audio transcriptions.

Two main contributions are made from the results of this thesis. 1) Gained
knowledge into how students in Software Engineering courses value continuous feed-
back of their Git and GitLab usage, through a visualization tool. 2) Increased knowl-
edge of the benefits and limitations of using third-party visualization tools, particu-
larly focusing on Grafana, in Software Engineering courses. Feedback from students
and our own experience working with the third-party visualization software in-
dicate that the effort required to customize it for use in student projects may be
too high. However, feedback from TAs show promises for the value of giving them
access to insights about student groups from third-party software to support im-
proved counseling of students. This should be researched further.

This knowledge can be used with existing research to design and build a com-
plete system that gives students continuous feedback on their projects based on
data generated from relevant data sources, such as Git and GitLab. Therefore,
supporting and streamlining students’ learning journey.

75

76 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

8.1 Future work

Future research should conduct a field study throughout the duration of a Soft-
ware Engineering course to observe students and Teaching Assistants (TAs) behav-
ior in a natural environment and with more participants. The findings from our
usability tests are based on what participants think they value after completing
the course. An interesting question is whether they would value the same infor-
mation during the learning process of the course or if other forms of feedback
are perceived to be valuable. Alternatively, if the Software Engineering course has
enough students, or the tool is planned to be used throughout multiple semesters,
running A/B testing could be considered a strategy to run experiments [54].

The field study may benefit from being tested in multiple different Software
Engineering courses and at different difficulty levels. Students likely value dif-
ferent forms of feedback based on the teaching goals of a course, the number
of people in each group, or what existing knowledge the students have. Most stu-
dents participating in the interviews in this thesis had little knowledge of Software
Engineering beforehand, resulting in the visualized metrics being tailor-made for
them. However, students in advanced courses likely appreciate other metrics or
consider the proposed visualization tool redundant.

Commit messages were discussed as a promising data source in Section 7.1.
However, as the data is based on unstructured text from developers, analysis of
the data is fairly complex, even though Git best practices favor some structure
and consistency. A simple count of duplicates was promising during the usability
tests, with some participating students being able to reflect on their group’s Git
commit practices. Conversely, the other participants generally found little value in
the data or did not find the visualizations understandable. Although inconclusive,
this shows that there might be potential in presenting students with the times
every commit message has been duplicated. However, more work is needed to
find better ways of mining the data and visualizing it.

The interviews with TAs revealed several benefits of using a third-party visu-
alization tool, such as Grafana, to help them analyze the progress and behavior
of student groups to counsel them better. The idea of using Git and GitLab data
for consultation is not new [1, 6, 39–41]. However, these mainly use custom-
built visualization tools or generated reports. A field study observing how Course
staff would utilize the third-party visualization tool during a Software Engineer-
ing course and what benefits or limitations it has could be interesting. Notable
questions would be how much time Course staff could save utilizing such tools
and how it affects the counseling process.

Bibliography

[1] Å. Haugse and T. Aalberg, “Git in an educational context,” eng, 2021, ISSN:
1892-0713. [Online]. Available: https://hdl.handle.net/11250/2991478.

[2] J. Chen, G. Qiu, L. Yuan, L. Zhang, and G. Lu, “Assessing teamwork perfor-
mance in software engineering education: A case in a software engineering
undergraduate course,” in 2011 18th Asia-Pacific Software Engineering Con-
ference, Dec. 2011, pp. 17–24. DOI: 10.1109/APSEC.2011.50.

[3] B. Oakley, D. Hanna, Z. Kuzmyn, and R. Felder, “Best practices involving
teamwork in the classroom: Results from a survey of 6435 engineering
student respondents,” Education, IEEE Transactions on, vol. 50, pp. 266–
272, Sep. 2007. DOI: 10.1109/TE.2007.901982.

[4] C. Ghezzi and D. Mandrioli, “The challenges of software engineering educa-
tion,” in Software Engineering Education in the Modern Age, P. Inverardi and
M. Jazayeri, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 115–127, ISBN: 978-3-540-68204-2.

[5] J. Hayes, T. Lethbridge, and D. Port, “Evaluating individual contribution
toward group software engineering projects,” in 25th International Confer-
ence on Software Engineering, 2003. Proceedings., 2003, pp. 622–627. DOI:
10.1109/ICSE.2003.1201246.

[6] H. Tarmazdi, R. Vivian, C. Szabo, K. Falkner, and N. Falkner, “Using learn-
ing analytics to visualise computer science teamwork,” in Proceedings of
the 2015 ACM Conference on Innovation and Technology in Computer Sci-
ence Education, ser. ITiCSE ’15, Vilnius, Lithuania: Association for Com-
puting Machinery, 2015, pp. 165–170, ISBN: 9781450334402. DOI: 10.
1145/2729094.2742613. [Online]. Available: https://doi.org/10.1145/
2729094.2742613.

[7] M. A. Busseri, M. A. Busseri, and J. M. Palmer, “Improving teamwork:
The effect of self-assessment on construction design teams,” Design stud-
ies, vol. 21, no. 3, pp. 223–238, 2000, ISSN: 0142-694X.

[8] S. Chacon and B. Straub, Pro Git, 2nd ed. Springer Nature, 2014. [Online].
Available: https://git-scm.com/book/en/v2.

77

https://hdl.handle.net/11250/2991478
https://doi.org/10.1109/APSEC.2011.50
https://doi.org/10.1109/TE.2007.901982
https://doi.org/10.1109/ICSE.2003.1201246
https://doi.org/10.1145/2729094.2742613
https://doi.org/10.1145/2729094.2742613
https://doi.org/10.1145/2729094.2742613
https://doi.org/10.1145/2729094.2742613
https://git-scm.com/book/en/v2

78 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

[9] N. N. Zolkifli, A. Ngah, and A. Deraman, “Version control system: A review,”
eng, Procedia computer science, vol. 135, pp. 408–415, 2018, ISSN: 1877-
0509.

[10] Stack Overflow, Stack Overflow Developer Survey 2021. [Online]. Available:
https : / / insights . stackoverflow . com / survey / 2021 # technology -
most-popular-technologies.

[11] University of Leeds, What is grey literature? https://library.leeds.ac.
uk/info/1110/resource_guides/7/grey_literature, Accessed 2022-
05-19, Apr. 2017. [Online]. Available: https://library.leeds.ac.uk/
info/1110/resource_guides/7/grey_literature.

[12] Conventional Commits, Conventional Commits, Accessed 2022-05-19, May
2022. [Online]. Available: https://www.conventionalcommits.org/en/
v1.0.0/#specification.

[13] P. Hammant, Trunk Based Development, https://trunkbaseddevelopment.com/,
Accessed 14.03.2022, 2017. [Online]. Available: https://trunkbaseddevelopment.
com/.

[14] L. Matos, Gitcommitbestpractices.md, https://gist.github.com/luismts/
495d982e8c5b1a0ced4a57cf3d93cf60, Accessed 2022-05-18, Jan. 2019. [On-
line]. Available: https://gist.github.com/luismts/495d982e8c5b1a0ced4a57cf3d93cf60.

[15] Perforce, 5 git best practices for git commit, https://www.perforce.com/blog/vcs/git-
best-practices-git-commit, Accessed 2022-05-18, Nov. 2019. [Online]. Avail-
able: https://www.perforce.com/blog/vcs/git-best-practices-git-
commit.

[16] cbeams, How to write a git commit message, https : / / cbea . ms / git -
commit/, Accessed 2022-05-18, Aug. 2014. [Online]. Available: https:
//cbea.ms/git-commit/.

[17] F. Matthew, Git commit messages: Best practices & guidelines, https://
initialcommit.com/blog/git-commit-messages-best-practices, Ac-
cessed 2022-05-19, Mar. 2022. [Online]. Available: https://initialcommit.
com/blog/git-commit-messages-best-practices.

[18] M. Tsitoara, “Git best practices,” in Beginning Git and GitHub: A Compre-
hensive Guide to Version Control, Project Management, and Teamwork for the
New Developer. Berkeley, CA: Apress, 2020, pp. 79–86, ISBN: 978-1-4842-
5313-7. DOI: 10.1007/978-1-4842-5313-7_6. [Online]. Available: https:
//doi.org/10.1007/978-1-4842-5313-7_6.

[19] GitLab B.V., What are git version control best practices? https://about.
gitlab.com/topics/version-control/version-control-best-practices/,
Accessed 2022-05-19, May 2022. [Online]. Available: https://about.
gitlab.com/topics/version-control/version-control-best-practices/.

https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://library.leeds.ac.uk/info/1110/resource_guides/7/grey_literature
https://library.leeds.ac.uk/info/1110/resource_guides/7/grey_literature
https://library.leeds.ac.uk/info/1110/resource_guides/7/grey_literature
https://library.leeds.ac.uk/info/1110/resource_guides/7/grey_literature
https://www.conventionalcommits.org/en/v1.0.0/#specification
https://www.conventionalcommits.org/en/v1.0.0/#specification
https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/
https://gist.github.com/luismts/495d982e8c5b1a0ced4a57cf3d93cf60
https://gist.github.com/luismts/495d982e8c5b1a0ced4a57cf3d93cf60
https://gist.github.com/luismts/495d982e8c5b1a0ced4a57cf3d93cf60
https://www.perforce.com/blog/vcs/git-best-practices-git-commit
https://www.perforce.com/blog/vcs/git-best-practices-git-commit
https://cbea.ms/git-commit/
https://cbea.ms/git-commit/
https://cbea.ms/git-commit/
https://cbea.ms/git-commit/
https://initialcommit.com/blog/git-commit-messages-best-practices
https://initialcommit.com/blog/git-commit-messages-best-practices
https://initialcommit.com/blog/git-commit-messages-best-practices
https://initialcommit.com/blog/git-commit-messages-best-practices
https://doi.org/10.1007/978-1-4842-5313-7_6
https://doi.org/10.1007/978-1-4842-5313-7_6
https://doi.org/10.1007/978-1-4842-5313-7_6
https://about.gitlab.com/topics/version-control/version-control-best-practices/
https://about.gitlab.com/topics/version-control/version-control-best-practices/
https://about.gitlab.com/topics/version-control/version-control-best-practices/
https://about.gitlab.com/topics/version-control/version-control-best-practices/

Bibliography 79

[20] N. Forsgren, N. Forsgren, J. Humble, and G. Kim, Accelerate : the science be-
hind DevOps : building and scaling high performing technology organizations,
First edition. Portland, Oregon: IT Revolution, 2018, ISBN: 9781942788331.

[21] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical study of
the impact of modern code review practices on software quality,” Empirical
Software Engineering, vol. 21, no. 5, pp. 2146–2189, 2016, ISSN: 1573-
7616. DOI: 10.1007/s10664- 015- 9381- 9. [Online]. Available: https:
//doi.org/10.1007/s10664-015-9381-9.

[22] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Modern
code review: A case study at google,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering: Software Engineering in Prac-
tice, ser. ICSE-SEIP ’18, Gothenburg, Sweden: Association for Computing
Machinery, 2018, pp. 181–190, ISBN: 9781450356596. DOI: 10 . 1145 /
3183519 . 3183525. [Online]. Available: https : / / doi . org / 10 . 1145 /
3183519.3183525.

[23] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of mod-
ern code review,” in 2013 35th International Conference on Software En-
gineering (ICSE), May 2013, pp. 712–721. DOI: 10 . 1109 / ICSE . 2013 .
6606617.

[24] H. Kniberg, Scrum and XP from the Trenches, 2nd ed. lulu.com, 2015, ISBN:
9781329224278.

[25] N. Forsgren, M. C. Tremblay, D. VanderMeer, and J. Humble, “DORA Plat-
form: DevOps Assessment and Benchmarking,” in Designing the Digital Trans-
formation, A. Maedche, J. vom Brocke, and A. Hevner, Eds., Cham: Springer
International Publishing, 2017, pp. 436–440, ISBN: 978-3-319-59144-5.

[26] C. Wohlin, “Guidelines for snowballing in systematic literature studies and
a replication in software engineering,” ACM International Conference Pro-
ceeding Series, pp. 1–10, May 2014. DOI: 10.1145/2601248.2601268.

[27] J. Kay, N. Maisonneuve, K. Yacef, and O. Zaïane, “Mining patterns of events
in students’ teamwork data,” in Proceedings of the Workshop on Educational
Data Mining at the 8th International Conference on Intelligent Tutoring Sys-
tems (ITS 2006), 2006, pp. 45–52.

[28] S. Hamer, C. Quesada-López, A. Martínez, and M. Jenkins, “Using git met-
rics to measure students’ and teams’ code contributions in software devel-
opment projects,” CLEI electronic journal, vol. 24, no. 2, 2021, ISSN: 0717-
5000. DOI: 10.19153/cleiej.24.2.8. [Online]. Available: http://www.
clei.org/cleiej/index.php/cleiej/article/download/502/409.

[29] K. Buffardi, “Assessing individual contributions to software engineering
projects with git logs and user stories,” in Technical Symposium on Com-
puter Science Education, ser. SIGCSE ’20, ACM, 2020, pp. 650–656, ISBN:
9781450367936. DOI: 10.1145/3328778.3366948. [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/3328778.3366948.

https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.19153/cleiej.24.2.8
http://www.clei.org/cleiej/index.php/cleiej/article/download/502/409
http://www.clei.org/cleiej/index.php/cleiej/article/download/502/409
https://doi.org/10.1145/3328778.3366948
https://dl.acm.org/doi/pdf/10.1145/3328778.3366948

80 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

[30] R. M. Parizi, P. Spoletini, and A. Singh, “Measuring team members’ con-
tributions in software engineering projects using git-driven technology,” in
2018 IEEE Frontiers in Education Conference (FIE), IEEE, 2018, pp. 1–5,
ISBN: 1538611740. DOI: 10.1109/FIE.2018.8658983.

[31] H.-M. Chen, B.-A. Nguyen, and C.-R. Dow, “Code-quality evaluation scheme
for assessment of student contributions to programming projects,” Journal
of Systems and Software, p. 111 273, 2022, ISSN: 0164-1212. DOI: https:
//doi.org/10.1016/j.jss.2022.111273. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0164121222000358.

[32] M. Macak, D. Kruzelova, S. Chren, and B. Buhnova, “Using process mining
for git log analysis of projects in a software development course,” Edu-
cation and information technologies, vol. 26, no. 5, pp. 5939–5969, 2021,
ISSN: 1360-2357. DOI: 10.1007/s10639-021-10564-6. [Online]. Avail-
able: https://link.springer.com/content/pdf/10.1007/s10639-021-
10564-6.pdf.

[33] L. Baumstark and M. Orsega, “Quantifying introductory cs students’ iter-
ative software process by mining version control system repositories,” J.
Comput. Sci. Coll., vol. 31, no. 6, pp. 97–104, Jun. 2016, ISSN: 1937-4771.

[34] P. G. Rein, T. S. Tefre, and G. A. Stoica, Creating a web application supporting
git in software development courses in higher education, Generic, 2021.

[35] D. T. Campbell, “Assessing the impact of planned social change,” Evaluation
and Program Planning, vol. 2, no. 1, pp. 67–90, 1979, ISSN: 0149-7189.
DOI: https://doi.org/10.1016/0149- 7189(79)90048- X. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
014971897990048X.

[36] C. Hundhausen, P. Conrad, A. Carter, and O. Adesope, “Assessing individ-
ual contributions to software engineering projects: A replication study,”
Computer Science Education, vol. 0, no. 0, pp. 1–20, 2022. DOI: 10.1080/
08993408.2022.2071543. eprint: https://doi.org/10.1080/08993408.
2022.2071543. [Online]. Available: https://doi.org/10.1080/08993408.
2022.2071543.

[37] Á. M. Guerrero-Higueras, C. Fernández Llamas, L. Sánchez González, A.
Gutierrez Fernández, G. Esteban Costales, and M. Á. Conde González, “Aca-
demic success assessment through version control systems,” Applied sci-
ences., vol. 10, no. 4, p. 1492, 2020, ISSN: 2076-3417.

[38] Á. M. Guerrero-Higueras, V. Matellán-Olivera, G. E. Costales, C. Fernández-
Llamas, F. Rodriguez-Sedano, and M. Conde, “Model for evaluating student
performance through their interaction with version control systems,” Pro-
ceedings of the Learning Analytics Summer Institute Spain, 2018.

https://doi.org/10.1109/FIE.2018.8658983
https://doi.org/https://doi.org/10.1016/j.jss.2022.111273
https://doi.org/https://doi.org/10.1016/j.jss.2022.111273
https://www.sciencedirect.com/science/article/pii/S0164121222000358
https://www.sciencedirect.com/science/article/pii/S0164121222000358
https://doi.org/10.1007/s10639-021-10564-6
https://link.springer.com/content/pdf/10.1007/s10639-021-10564-6.pdf
https://link.springer.com/content/pdf/10.1007/s10639-021-10564-6.pdf
https://doi.org/https://doi.org/10.1016/0149-7189(79)90048-X
https://www.sciencedirect.com/science/article/pii/014971897990048X
https://www.sciencedirect.com/science/article/pii/014971897990048X
https://doi.org/10.1080/08993408.2022.2071543
https://doi.org/10.1080/08993408.2022.2071543
https://doi.org/10.1080/08993408.2022.2071543
https://doi.org/10.1080/08993408.2022.2071543
https://doi.org/10.1080/08993408.2022.2071543
https://doi.org/10.1080/08993408.2022.2071543

Bibliography 81

[39] S. Eraslan, K. Kopec-Harding, C. Jay, S. M. Embury, R. Haines, J. C. Cortés
Ríos, and P. Crowther, “Integrating gitlab metrics into coursework consul-
tation sessions in a software engineering course,” The Journal of systems
and software, vol. 167, p. 110 613, 2020, ISSN: 0164-1212. DOI: 10.1016/
j.jss.2020.110613.

[40] H. Gustavsson and M. Brohede, “Continuous assessment in software engi-
neering project course using publicly available data from github,” in Pro-
ceedings of the 15th International Symposium on Open Collaboration, ser. Open-
Sym ’19, Skövde, Sweden: Association for Computing Machinery, 2019,
ISBN: 9781450363198. DOI: 10.1145/3306446.3340820. [Online]. Avail-
able: https://doi.org/10.1145/3306446.3340820.

[41] K. A. Gary and S. Xavier, “Agile learning through continuous assessment,”
in 2015 IEEE Frontiers in Education Conference (FIE), vol. 2015, 2015, pp. 1–
4, ISBN: 9781479984534. DOI: 10.1109/FIE.2015.7344278. [Online].
Available: https://ieeexplore.ieee.org/document/7344278/.

[42] T. Nguyen and C. Chua, “Predictive tool for software team performance,”
in 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), Dec.
2016, pp. 373–376. DOI: 10.1109/APSEC.2016.063.

[43] E. Aivaloglou and A. v. d. Meulen, “An empirical study of students’ percep-
tions on the setup and grading of group programming assignments,” ACM
Trans. Comput. Educ., vol. 21, no. 3, Mar. 2021. DOI: 10.1145/3440994.
[Online]. Available: https://doi.org/10.1145/3440994.

[44] B. J. Oates, Researching Information Systems and Computing, ser. Research-
ing Information Systems and Computing. SAGE Publications, 2006, ISBN:
9781412902243. [Online]. Available: https://books.google.no/books?
id=ztrj8aph-4sC.

[45] G. Kim, J. Humble, P. Debois, J. Willis, and N. Forsgren, The DevOps Hand-
book, Second Edition: How to Create World-Class Agility, Reliability, & Secu-
rity in Technology Organizations, 2nd ed. IT Revolution, Nov. 2021, ISBN:
9781950508402.

[46] W. Adams, “Handbook of Practical Program Evaluation,” in 4th ed. Jossey-
Bass, Aug. 2015, ch. Conducting Semi-Structured Interviews. DOI: 10.1002/
9781119171386.ch19.

[47] J. S. Dumas and J. C. Redish, A Practical Guide to Usability Testing, 1st. GBR:
Intellect Books, 1999, ISBN: 1841500208.

[48] J. R. Lewis, “Usability testing,” Handbook of human factors and ergonomics,
vol. 12, e30, 2006.

[49] J. Nielsen and T. K. Landauer, “A mathematical model of the finding of us-
ability problems,” in Proceedings of the SIGCHI conference on Human factors
in computing systems - CHI ’93, ACM Press, 1993. DOI: 10.1145/169059.
169166.

https://doi.org/10.1016/j.jss.2020.110613
https://doi.org/10.1016/j.jss.2020.110613
https://doi.org/10.1145/3306446.3340820
https://doi.org/10.1145/3306446.3340820
https://doi.org/10.1109/FIE.2015.7344278
https://ieeexplore.ieee.org/document/7344278/
https://doi.org/10.1109/APSEC.2016.063
https://doi.org/10.1145/3440994
https://doi.org/10.1145/3440994
https://books.google.no/books?id=ztrj8aph-4sC
https://books.google.no/books?id=ztrj8aph-4sC
https://doi.org/10.1002/9781119171386.ch19
https://doi.org/10.1002/9781119171386.ch19
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166

82 Melsom Lindhagen: Visualizing Data to Facilitate Feedback in SE courses

[50] J. Spool and W. Schroeder, “Testing web sites: Five users is nowhere near
enough,” in CHI ’01 Extended Abstracts on Human Factors in Computing
Systems, ser. CHI EA ’01, Seattle, Washington: Association for Computing
Machinery, 2001, pp. 285–286, ISBN: 1581133405. DOI: 10.1145/634067.
634236. [Online]. Available: https://doi.org/10.1145/634067.634236.

[51] D. A. Norman, The psychology of everyday things. Basic books, 1988, ISBN:
9780465067091.

[52] C. Auerbach and L. B. Silverstein, Qualitative data: An introduction to coding
and analysis. NYU press, 2003, vol. 21.

[53] R. T. Mercuri, “Security watch: Computer security: Quality rather than
quantity,” eng, Communications of the ACM, vol. 45, no. 10, pp. 11–14,
2002, ISSN: 0001-0782.

[54] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin, “From infrastructure
to culture: A/b testing challenges in large scale social networks,” in Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, ser. KDD ’15, Sydney, NSW, Australia: Association for
Computing Machinery, 2015, pp. 2227–2236, ISBN: 9781450336642. DOI:
10.1145/2783258.2788602. [Online]. Available: https://doi.org/10.
1145/2783258.2788602.

https://doi.org/10.1145/634067.634236
https://doi.org/10.1145/634067.634236
https://doi.org/10.1145/634067.634236
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1145/2783258.2788602

Appendix A

Interview Guide - Students

83

/ŶƚĞƌǀũƵŐƵŝĚĞ�^ƚƵĚĞŶƚĞƌ�
Informere om hva vi skal gjøre
Vi lager en analyse plattform hvor studenter i programvareutviklingsfag skal kunne logge inn
og få en bedre oversikt over hvordan de jobber og samarbeider med Git og GitLab.
Plattformen er spesielt tiltenkt IT1901 ʹ Informatikk prosjektarbeid 1, men er også egnet for
bruk i andre lignende fag, feks. Programvareutvikling eller Webutvikling.

Vi ønsker å vise frem en prototype av en slik plattform, la deg navigere litt rundt og gjøre
noen oppgaver og så stille deg noen spørsmål til slutt, slik at vi får oversikt over hvordan
plattformen skal være for å skape mest mulig verdi for studentene.

Litt formelt rundt personvern som vi må gå igjennom:
Vi kommer til å ta opp intervjuet på denne lydopptakeren fra NTNU. Kun vi to vil ha tilgang
til lydopptaket, som i etterkant blir transkribert og anonymisert. Taleopptakene blir slettet
når oppgaven er ferdig og i oppgaven vil alle referanser til intervjuene være anonymisert.
Hvis du skulle ønske å trekke tilbake ditt samtykke til å være med i prosjektet, kan du gjøre
dette ved å ta kontakt med en av oss to eller veilederen vår, George Adrian Stoica.

Bakgrunnsinformasjon:

Hvilken linje går du?

Hvilket studieår er du på?

Hva slags fag har du tatt med gruppebaserte programmeringsprosjekter?

- IT1901 - Informatikk prosjektarbeid 1
- IT2901 - Informatikk prosjektarbeid 2 (bacheloroppgave) / Kundestyrt
- IT2810 - Webutvikling
- TDT4140 ʹ Programvareutvikling
- Andre?

Hadde du noen tidligere erfaring med GitLab og Git før du tok et av disse fagene?

Hadde du noen erfaring med programmering før du tok IT1901?

- Var noe av dette programmering i gruppe?

- Hva slags erfaring hadde du med utviklingsprosess før faget? Feks. Scrum, kanban,
etc.

Overgangsspørsmål

Kan du fortelle om hvordan dere jobbet underveis i faget?

x Opprette Issues og milestones. Hvilke label dere satt på disse
x Hva prosess dere hadde for å tildele folk oppgaver
x Hva prosess dere hadde for Peer Review, som å lage Merge Requests, se over disse

og flette inn til master. (Få ut om dette var noe de begynte å gjøre senere i
prosjektet).

Hva prosess dere hadde ved Parprogrammering.

x Gjorde dere parproggrammering hele tiden, ble det gjort sporadisk eller begynt
senere i prosjektet.

x Brukte dere co-author funksjonalitet i Git/GitLab for å markere når flere bidro?

Hvilke utfordringer hadde dere med samarbeid i IT1901?

Hvilke utfordringer hadde dere med oppfølging fra studentassistenter/fagstabben?

x Var det tilbakemeldinger dere kunne fått tidligere.
x Måtte dere gjøre større omstruktureringer/revideringer etter tilbakemeldingene. I så

fall hvilke,
x og kunne de blitt oppdaget/påpeikt tidligere?

Hadde dere noen andre utfordringer under IT1901 som du tror kan være relevant?

Hvilke verktøy brukte dere i IT1901? Hvorfor var disse verdifulle / Hvorfor ikke?

Hvordan syntes du det var å lære bruk av samarbeidsverktøy som GitLab og Git?

Oppgave

Du er med på en gruppe med 2 andre studenter og dere jobber med å lage en hotell-
bookingside. Prosjektet er delt inn i 3 innleveringer gjennom prosjektet og dere bruker GitLab
og Git som samarbeidsverktøy. I faget vurderes ikke bare koden dere leverer inn, men også
måten dere samarbeider på. Dere er akkurat ferdig med andre innlevering i faget og skal i
gang med siste innlevering. Foreleseren deres har akkurat lagt ut en beskjed på Blackboard
om et verktøy som dere kan bruke for å få oversikt over prosjektene deres og se hvordan
dere kan utbedre måten dere samarbeider på i GitLab og git. Du går derfor inn på Grafana,
som verktøyet kalles.

Påpeik at alle tankar og poeng er relevante. Ikkje ver for kritisk

Gå inn på Grafana og få oversikt over prosjektet som ligger der.

Hva bør gruppa gjøre for å forbedre prosessen sin?

Gå igjennom de ulike panelene;

Panel Hva forteller denne visualiseringen
deg?

Hva tenker du må endres
for å score bedre på denne
metrikken?

Pie-chart

Lines contributed
to project

Problems in
commits

Problems with
Merge Requests

Problems with
GitLab issues

Spørsmål

Hva syntes du om plattformen?

x Hva var bra?
x Hva bør forbedres eller fjernes?
x Noe du ikke forsto?

Hva føler du mangler ved plattformen?

Hvordan hadde du brukt et slikt verktøy i et gruppearbeid?

Hva er verdien til en slik plattform?

x Hadde du brukt en slik plattform?
x Hvor ofte tror du hadde besøkt plattformen?

Hvilke utfordringer ser du ved en slik plattform?

Noe mer du vil legge til som du ikke fikk sagt?

Oppsummerende tanker (for intervjuere)
Nøkkelpoeng fra intervjuet, eventuelle forbedringer av selve intervjuet.

Appendix B

Interview Guide - TAs

89

/ŶƚĞƌǀũƵŐƵŝĚĞ�d�
Informere om hva vi skal gjøre

Vi lager en analyse plattform hvor studenter i programvareutviklingsfag skal kunne logge inn
og få en bedre oversikt over hvordan de jobber og samarbeider med Git og GitLab.
Plattformen er spesielt tiltenkt IT1901 ʹ Informatikk prosjektarbeid 1, men er også egnet for
bruk i andre lignende fag, feks. Programvareutvikling eller Webutvikling.

Vi ønsker å vise frem en prototype av en slik plattform, la deg navigere litt rundt og gjøre
noen oppgaver og så stille deg noen spørsmål til slutt, slik at vi får oversikt over hvordan
plattformen skal være for å skape mest mulig verdi for studentene.

Litt formelt rundt personvern som vi må gå igjennom:
Vi kommer til å ta opp intervjuet på denne lydopptakeren fra NTNU. Kun vi to vil ha tilgang
til lydopptaket, som i etterkant blir transkribert og anonymisert. Taleopptakene blir slettet
når oppgaven er ferdig og i oppgaven vil alle referanser til intervjuene være anonymisert.
Hvis du skulle ønske å trekke tilbake ditt samtykke til å være med i prosjektet, kan du gjøre
dette ved å ta kontakt med en av oss to eller veilederen vår, George Adrian Stoica.

Bakgrunnsinformasjon

Kan du fortelle litt om rollen du hadde i IT1901?

x Hvor lenge du har vært i rollen,
x dine ansvarsområder,
x Tatt faget selv som student?

Hoveddel

Hvordan veiledet du studentene i prosjektet?

x Hvordan var et veiledningsmøte organisert?
x Gjorde du noen forberedelser på forhånd?
x Gjorde studentene noen forberedelser før veiledningen?

Hva var typiske spørsmål/utfordringer studentene hadde?

Hva var typiske tilbakemeldinger studentene kunne få i løpet av prosjektet?

x Var det noen av disse tilbakemeldingene som kunne blitt fanget opp tidligere og rettet
av studentene?

Vise prototypen

Hvordan kan disse panelene hjelpe deg med å veilede studentene?

x Hvilke paneler fremstår som de mest nyttig?
x Er det noen fargeterskler som bør justeres på for å være mer nyttige?
x Er dette poeng som har blitt veiledet / undervist om?

Hvilke paneler tror du ikke vil være nyttige?

Hvilke andre paneler/grafer kan være nyttig for studentene?

Hvordan tror du studentene kommer til å bruke et slikt produkt? Og hvor aktivt?

Hvordan hadde du brukt dette verktøyet til å veilede/hjelpe studentene? (Eventuelt ikke
brukt)

Avslutning

Noe mer å legge til?

Oppsummerende notater (mellom intervjuere)
(Fri skriving rundt umiddelbare tanker eller noe vi bør rette på)

Appendix C

NSD Approval

93

Vurdering

Referansenummer
731360

Prosjekttittel
Masteroppgave med bruk av data fra Git og GitLab til å forbedre læringsutbytte i
IT1901

Behandlingsansvarlig institusjon
Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi
og elektroteknikk (IE) / Institutt for datateknologi og informatikk

Prosjektansvarlig
George Adrian Stoica

Student
Fredrik Førde Lindhagen

Prosjektperiode
31.03.2022 - 31.07.2022

Dato
05.04.2022

Type
Standard

Kommentar
Det er vår vurdering at behandlingen vil være i samsvar med personvernlovgivningen
så fremt den gjennomføres i tråd med det som er dokumentert i meldeskjemaet
05.04.2022 med vedlegg, samt i meldingsdialogen mellom innmelder og
Personverntjenester. Behandlingen kan starte.

TYPE OPPLYSNINGER OG VARIGHET
Prosjektet vil behandle alminnelige personopplysninger frem til 31.07.2022.

LOVLIG GRUNNLAG
Prosjektets formål er å undersøke hvordan studenter ved kurset IT1901 kan øke sitt
læringsutbytte av kurset og hvordan platformene Git og Gitlab kan gjøres så verdifull
som mulig. For å oppnå formålet vil prosjektet undersøke tidligere studenters
opplastede arbeid. Da studentene tok kurset samtykket de til at data fra kurset i form
av git og gitlab data kunne benyttes til forskningsformål etter endt kurs.

Informasjonen studentene mottok om denne behandlingen oppfylte ikke kravene til
informasjon i personvernforordningen, og det avgitte samtykke oppfyller dermed
ikke kravene i art. 6 nr. 1 a. Det avgitte samtykke kan sees som et forskningsetisk
samtykke. Prosjektet vil derfor behandle overnevnte kategorier av
personopplysninger med grunnlag i at oppgaven er nødvendig for å utføre en
oppgave i allmennhetens interesse og for formål knyttet til vitenskapelig forskning.
Lovlig grunnlag for behandlingen av alminnelige personopplysninger er dermed at
den er nødvendig for å utføre en oppgave i allmennhetens interesse, jf.
personvernforordningen art. 6 nr. 1 bokstav e, samt for formål knyttet til
vitenskapelig forskning, jf. personopplysningsloven § 8, jf. personvernforordningen
art. 6 nr. 3 bokstav b. Behandlingen er omfattet av nødvendige garantier for å sikre
den registrertes rettigheter og friheter, jf. personvernforordningen art. 89 nr. 1.

PERSONVERNPRINSIPPER
Personverntjenester vurderer at den planlagte behandlingen av personopplysninger
vil følge prinsippene i personvernforordningen: - formålsbegrensning (art. 5.1 b), ved
at personopplysninger samles inn for spesifikke, uttrykkelig angitte og berettigede
formål, og ikke viderebehandles til nye uforenlige formål - dataminimering (art. 5.1
c), ved at det kun behandles opplysninger som er adekvate, relevante og nødvendige
for formålet med prosjektet - lagringsbegrensning (art. 5.1 e), ved at
personopplysningene ikke lagres lengre enn nødvendig for å oppfylle formålet

DE REGISTRERTES RETTIGHETER
Så lenge de registrerte kan identifiseres i datamaterialet vil de ha følgende
rettigheter: innsyn (art. 15), retting (art. 16), sletting (art. 17), begrensning (art. 18) og
protest (art. 21). Vi vurderer at det er grunnlag for å unnta fra informasjonsplikten
etter art. 14 nr. 5 b), der personopplysninger ikke har blitt samlet inn fra den
registrerte. De registrerte består av studenter som tidligere har gjennomført kurset
IT1901 ved NTNU. Informasjonen studentene mottok om denne behandlingen da de
tok kurset oppfylte ikke forordningens krav til informasjon. Det vil likevel forsøkes å å
informere studentene om behandlingen ved å sende ut informasjon gjennom NTNUs
læringsportal Blackboard. Vi minner om at hvis en registrert tar kontakt om sine
rettigheter, har behandlingsansvarlig institusjon plikt til å svare innen en måned.

FØLG DIN INSTITUSJONS RETNINGSLINJER
Personverntjenester legger til grunn at behandlingen oppfyller kravene i
personvernforordningen om riktighet (art. 5.1 d), integritet og konfidensialitet (art.
5.1. f) og sikkerhet (art. 32). Microsoft Office er databehandler i prosjektet. Vi legger
til grunn at behandlingen oppfyller kravene til bruk av databehandler, jf. art 28 og 29.
For å forsikre dere om at kravene oppfylles, må dere følge interne retningslinjer
og/eller rådføre dere med behandlingsansvarlig institusjon.

MELD VESENTLIGE ENDRINGER
Dersom det skjer vesentlige endringer i behandlingen av personopplysninger, kan

det være nødvendig å melde dette til oss ved å oppdatere meldeskjemaet. Før du
melder inn en endring, oppfordrer vi deg til å lese om hvilke type endringer det er
nødvendig å melde: https://www.nsd.no/personverntjenester/fylle-ut-meldeskjema-
for-personopplysninger/melde-endringer-i-meldeskjema Du må vente på svar fra oss
før endringen gjennomføres.

OPPFØLGING AV PROSJEKTET
Personverntjenester vil følge opp ved planlagt avslutning for å avklare om
behandlingen av personopplysningene er avsluttet.

Lykke til med prosjektet!

Appendix D

Interview Consent form

97

Vil du delta i forskningsprosjektet

 ´�%UXN av data fra GitLab til å forbedre læringsutbytte i IT1901´?

Dette er et spørsmål til deg om å delta i et forskningsprosjekt hvor formålet er å utvikle en plattform
for å gi studentgruppene i IT1901 økt innsikt i hvordan de samarbeider på utviklingsprosjektene i
faget. I dette skrivet gir vi deg informasjon om målene for prosjektet og hva deltakelse vil innebære for
deg.

Formål

Forskningsprosjektet er del av en masteroppgave på Institutt for Datateknologi og Informatikk (IDI)
ved NTNU. Formålet er å kunne tilby studentene i faget IT1901 en plattform som gir dem bedre
innsikt i hvordan de som gruppe samarbeider med bruk av Git og GitLab. Plattformen er tenkt å vise
en rekke grafer og metrikker som blant annet skal gi gruppene innsikt i hvordan arbeid er fordelt i
gruppen og eventuelle forbedringspotensialer. For å gjøre denne plattformen så verdifull som mulig
trenger vi i innsikt i studenter og ansattes erfaringer fra ulike gruppearbeid i programmeringsfag. Vi
trenger særlig å få innsikt i hvilke visualiseringsteknikker og metrikker som er nyttige for
studentgrupper i programmeringsprosjekter.

Hvem er ansvarlig for forskningsprosjektet?

Forskningsprosjektet utføres av masterstudentene Fredrik F. Lindhagen og Sigurd M. Melsom med
veiledning av førsteamanuensis George Adrian Stoica ved IDI NTNU.

Hvorfor får du spørsmål om å delta?

Du er ønsket som deltager på dette intervjuet som følge av dine erfaringer som student med lignende
programmeringsfag eller har vært ansatt av NTNU i lignende fag.

Hva innebærer det for deg å delta?

Hvis du velger å delta i prosjektet, innebærer det at du deltar på et intervju. Det vil ta ca. 20-40
minutter. Intervjuet vil inneholde spørsmål om erfaringer relatert til programmering og samarbeid i
programmeringsprosjekter, samt en brukertest av en prototype. Vi tar lydopptak og notater fra
intervjuet.

Det er frivillig å delta

Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke samtykket
tilbake uten å oppgi noen grunn. Alle dine personopplysninger vil da bli slettet. Det vil ikke ha noen
negative konsekvenser for deg hvis du ikke vil delta eller senere velger å trekke deg.

Din deltagelse i dette prosjektet vil på ingen måte påvirke ditt forhold til NTNU eller dets ansatte.

Ditt personvern ± hvordan vi oppbevarer og bruker dine opplysninger

Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi behandler
opplysningene konfidensielt og i samsvar med personvernregelverket.

Det er kun masterstudentene Fredrik Førde Lindhagen og Sigurd Marius Melsom, samt veileder
George Adrian Stoica som vil ha tilgang til dataene. Lydopptak av intervjuene vil bli gjort på
lydopptakere eid av NTNU, og lagres på NTNU sin Office 365-plattform som er adgangsbegrenset og
beskyttet med tofaktorautentisering. Notater lagres også på denne plattformen.

I rapporten brukes anonymiserte koder som Student 1, Student 2 og lignende, når vi trenger å henvise
til konkrete tilbakemeldinger, og kan garantere at tilbakemeldingen ikke kan spores tilbake til en
bestemt person. For ansatte vil lignende praksis brukes, med Ansatt 1, 2, osv. Unntaket er når en ansatt
har samtykket til at vi kan henvise til ansattrolle.

Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet?

Opplysningene anonymiseres når prosjektet avsluttes/oppgaven er godkjent, som etter planen er innen
31. juli 2022. Etter dette vil lydopptak og personopplysninger slettes.

Dine rettigheter

Så lenge du kan identifiseres i datamaterialet, har du rett til:

- innsyn i hvilke personopplysninger som er registrert om deg, og å få utlevert en kopi av
opplysningene,

- å få rettet personopplysninger om deg,
- å få slettet personopplysninger om deg, og
- å sende klage til Datatilsynet om behandlingen av dine personopplysninger.

Hva gir oss rett til å behandle personopplysninger om deg?

Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra Institutt for Datateknologi og Informatikk (IDI) ved NTNU har NSD ± Norsk senter for
forskningsdata AS vurdert at behandlingen av personopplysninger i dette prosjektet er i samsvar med
personvernregelverket.

Hvor kan jeg finne ut mer?
Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med Institutt
for Datateknologi og Informatikk (IDI) NTNU ved:

- Førsteamanuensis ved IDI NTNU George Adrian Stoica ± stoica@ntnu.no

Vårt personvernombud:

- Personvernombud ved NTNU, Thomas Helgesen ± thomas.helgesen@ntnu.no

Hvis du har spørsmål knyttet til NSD sin vurdering av prosjektet, kan du ta kontakt med:

x NSD ± Norsk senter for forskningsdata AS på epost (personverntjenester@nsd.no) eller på
telefon: 55 58 21 17.

Med vennlig hilsen

George Adrian Stoica Fredrik F. Lindhagen og Sigurd M. Melsom
(Forsker/veileder) (Masterstudenter)

Samtykkeerklæring

Jeg har mottatt og forstått informasjon om prosjektet, og har fått anledning til å stille spørsmål. Jeg
samtykker til:

� å delta i intervjuet
� at opplysninger om min ansattrolle publiseres slik at jeg kan indirekte gjenkjennes ± hvis

aktuelt

Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet

--
(Signert av prosjektdeltaker, dato)

Visualizing Repository D
ata to Facilitate Feedback in SE courses

Fredrik F. Lindhagen, and Sigurd M
. M

elsom

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Fredrik Førde Lindhagen, and
Sigurd Marius Melsom

Visualizing Repository Data to
Facilitate Feedback in Software
Engineering courses

Master’s thesis in Master in Informatics
Supervisor: George Adrian Stoica
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Glossary
	Introduction
	Motivation
	Research objective
	Stakeholders
	Research Questions

	Findings
	Thesis Structure

	Background
	Version Control
	Git

	GitLab
	Software Engineering at NTNU
	IT1901 - Informatics, Project I
	TDT4140 - Software Engineering

	Existing analysis systems
	GitLab Analytics
	GitHub Classroom
	Pluralsight Flow
	Gitinspector

	Related Work
	Literature Review Process
	Use of Learning Analytics in Software Engineering courses
	Analytics to better understand students' development processes
	Analytics for evaluation of student contributions
	Application of analytics to improve student learning

	Summary of metrics from the literature

	Methodology
	Research process
	Research ethics
	Design and Creation strategy
	Conducting Design and Creation research

	Data generation methods
	Participants and Recruitment
	Interview guide

	Interview transcription
	Data analysis

	Prototype design
	Constraints
	Architecture
	Metric aggregator
	Database alternatives
	Metric aggregation architecture
	Classifying code contribution for each student

	Visualization tool
	Third-party Visualization software
	Selecting a third-party visualization software

	Prototype development
	Initial prototype
	Second revision

	Research Results
	About the participants
	Usability tests
	Usability tests first iteration
	Usability tests second iteration

	The perceived value of the tool
	How students would use the tool

	Discussion
	RQ1 - Students value of the visualizations
	Considerations affecting the value
	Summary

	RQ2 - Using third-party visualization software
	Grafana as Visualization software for educational uses
	Comparing the limitations of Grafana with the other third-party software
	Considering custom-built visualization software
	Summary

	Research limitations

	Conclusion and Future Work
	Future work

	Bibliography
	Interview Guide - Students
	Interview Guide - TAs
	NSD Approval
	Interview Consent form

