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Abstract
The sample library is a collection of digital sounds, known as samples, used by composers,
performers, and producers of music. The process of selecting sounds for an audio
production can be tedious and expensive, as it usually involves scrolling through large
corpora of sounds and buying other collections of audio in the search for “the right”
sample. Deep learning-based visualization tools have been developed to cope with the
difficult sample selection process, clustering similar sounding samples together in two-
dimensional maps. However, none of the existing visualization tools can generate new
sounds if a user does not have the desired sample in their collection. Recent machine
learning research has shown that generating audio in the waveform domain and learning
timbre from training data is possible. This thesis bridges the gap between sample library
visualization and generative audio modeling to create an interactive two-dimensional
map of audio samples that lets the user meticulously generate samples with desired
characteristics.

Considering this, a spectrogram-based system with a pipeline architecture was created.
The generative model in the system is a Variational Autoencoder (VAE) with Inverse
Autoregressive Flow which is responsible for learning and generating Mel spectrograms
of samples. By using the VAE encoder to create latent embeddings for the spectrograms
of the sounds in a sample library, these can be visualized in a two-dimensional map
by performing dimensionality reduction with Uniform Manifold Approximation and
Projection (UMAP). The system can generate a new latent embedding from any point
on this map with an inverse UMAP transform and use the VAE decoder to output a
new spectrogram. The Griffin-Lim algorithm is then used to reconstruct audio from the
generated Mel spectrogram.

The system was evaluated by its ability to generate diverse samples and the quality of
the generated audio. The system generated a wide variety of timbres from the samples in
the training data but struggled with learning the differences within each class of samples.
Overfitting the VAE to the training data resulted in a more local diversity and detailed
spectrograms. Finer-detailed spectrograms resulted in slightly better audio quality for
the reconstructed samples. However, the audio quality of most samples was considered to
be poor. The reduction in quality was considered a result of spectrogram reconstruction
limitations. The generated samples were limited to a fixed length of two seconds.

Examples of the generated samples can be found on https://tinyurl.com/4s4cwmaf,
and it is strongly suggested to listen to these ahead of reading this report. The code
repository can be accessed on https://github.com/EivindRebnord/SampleGenerator and
includes instructions for using the system.
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Sammendrag
Et sample-bibliotek er en samling av digitale lyder, kalt samples, og brukes av komponister,
utøvende musikere og musikkprodusenter. Prosessen der lyder velges til en lydproduksjon
kan være tidkrevende og vanskelig, siden det vanligvis innebærer mye leting og til og med
kjøp i jakten på den “riktige” lyden. Nye visualiseringsteknikker for sample-bibliotek
har blitt laget for å gjøre det lettere å finne lyder, blant annet ved å lage kart der lyder
med de samme karateristikkene samles i kluster. Ingen av disse visualiseringsteknikkene
er derimot kapable til å generere lyder som ikke finnes i lydbiblioteket fra før. Ny
forskning innen maskinlæring har på den andre siden vist at det er mulig å generere lyd
i bølgedomenet og å lære lydkarakteristikker fra treningsdata. Denne masteroppgaven
kombinerer visualisering av sample-bibliotek med generativ lydmodellering ved å beskrive
design og implementasjon av en interaktiv todimensjonal visualisering av samples som
kan brukes til å generere lyder med spesifikke karakteristikker.

Denne masteroppgaven implementerer et spektrogram-basert system med en modu-
lær arkitektur. Den generative modellen i systemet er en Variasjonell Autoencoder
(VAE) med invers autoregressiv flyt, og er ansvarlig for å lære og generere Mel spekt-
rogram av lyd. Ved å bruke VAE-enkoderen til å lage flerdimensjonale latentvektorer
av spektrogrammene fra lydene i biblioteket kan lydene visualiseres i to dimensjoner
ved å redusere dimensjonaliteten med Uniform Manifold Approksimasjon og Projeksjon
(UMAP). Systemet lager nye latentvektorer fra brukerdefinerte punkt på den todimensjo-
nale visualiseringen med en invers UMAP-transformasjon og bruker VAE-dekoderen til å
generere spektrogram. Disse spektrogrammene kan deretter rekonstrueres tilbake til lyd
ved hjelp av Griffin-Lim-algoritmen.

Systemet evalueres basert på hvor mange ulike samples som genereres og hvor god
lydkvaliteten er. Systemet genererte et bredt spekter av lydkarakteristikker fra tre-
ningsdata, men hadde problemer med å lære forskjellen på ulikhetene internt i hver
klasse. VOvertilpasning av VAE til treningsdata resulterte i bedre lokal variasjon og mer
detaljerte spektrogram. Mer presise spektrogram resulterte i bedre lydkvalitet. Til tross
for dette ble lydkvaliteten til mesteparten av de generte samplesene evaluert til å være
lav. Reduksjonen i lydkvalitet skyldes begrensninger i prosessen som rekonstruerer lyd
fra spektrogram. Lengden til de genererte samplesene var begrenset til to sekunder.

Eksempler av de genererte lydene finnes på linken https://tinyurl.com/4s4cwmaf
og det anbefales på det sterkeste å lytte til disse lydene før denne rap-
porten leses. Koden til det implementerte systemet finnes på lenken
https://github.com/EivindRebnord/SampleGenerator og inkluderer instruksjoner for
trening og bruk av systemet.
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1. Introduction
As music software such as digital audio workstations (DAW) has become more affordable,
so has the accessibility to sound libraries. Free sound sharing platforms like Freesound
(Font et al., 2013) and increasingly popular paid services like Splice and Noiiz give audio
creators access to an enormous amount of samples, which can pile up on their hard drives
in the number of thousands. Searching through a sample library can be an intimidating
and time-consuming task, as samples are, in the best case, often organized with high-level
descriptors such as “cow_bell”, “kick” or “atmosphere_1”. But how similar are sounds like
“atmosphere_1” and “atmosphere_2”? Various software development, such as XO 1 and
The Infinite Drum Machine 2, has been motivated by using audio similarity to navigate
large sound corpus. These sample library visualization techniques use dimensionality
reduction (DR) methods to project high-dimensional auditory features into 2D space for
visualization, as shown in figure 1.1.

These tools are handy for visualizing sample libraries, but they cannot generate audio
if the desired sound is not already in the existing library. Recent research, such as Latent
Timbre Synthesis (Tatar et al., 2020), has used deep learning to generate audio in the
waveform domain and has addressed the challenge of creating new sounds. However,
without any visualization of audio characteristics, it is hard to know the kind of timbre
generated.

1.1. Motivation

Deep generative models have never been combined with sample library visualizers before.
The lack of such a system expresses the motivations for this thesis, which are to investigate
how deep generative models in combination with visual representations of audio sample
libraries can be used to generate entirely new sounds with specific audio characteristics.
A use case of this would be that a user wants an open hi-hat sample that has the same
characteristics but sounds a bit different from the selected sample marked with a green
dot in figure 1.1. The user does not have any similar sample in their audio corpus but
can click at any point close to the green dot and get an entirely new sample generated
with the desired characteristics. Such a system would reduce the need for downloading
and buying expensive sample packs and possibly reduce the number of samples needed in
an audio corpus. The Infinite Drum Machine can ironically, given its name, only visualize
a finite number of samples. In contrast, the system developed in this thesis will have an

1https://www.xlnaudio.com/products/xo
2https://experiments.withgoogle.com/drum-machine
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1. Introduction

Figure 1.1.: The Infinite Drum Machine by Google is an experimental sound organizing
tool using the DR method t-SNE for visualizing sample libraries in 2D space.

Source: McDonald et al. (2017) with permisssion.

infinite number of points in a two-dimensional visualization that can be used to generate
new samples.

1.2. Goals and Research Questions

The driving force of this thesis is outlined by the goal, which is formulated in this
section. The goal includes investigating state-of-the-art generative audio modeling, audio
visualization, and reviewing evaluation methods for audio quality. The goal is more
specifically formulated as follows:

Goal Create a deep learning system with the capability of generating a diverse set of
high-quality audio samples from an interactive visual representation of a sample
library.

2



1.2. Goals and Research Questions

To be able to evaluate different aspects of the goal, different conditions were formulated
in table 1.1.

ID Conditions

C1 Deep learning based models are the basis for the developed system.

C2 Audio in the waveform domain will be output by the system.

C3 The system should work for any type of audio sample regardless of the
characteristics.

C4 The generated audio must be of high quality.

C5 The system should be able to generate a variety of samples that are not
already in the sample library.

C6 The new samples should be generated from an interactive visual representation
of the existing sample library.

Table 1.1.: Conditions that the system must fulfill throughout development.

In order to reach this goal, the following research questions will be answered:

Research question 1 How well can audio be generated in the waveform domain with
deep learning?

R1 Understanding the model’s domain is essential to understanding how well music and
sound can be generated with deep learning. Music can have different representations
when processed by the models. It is also essential to understand the work leading up to
the current approaches and why they have become the leading methods today.

Research question 2 How well can new sounds and timbres be generated from a visual
representation of a sample library?

R2 Understanding how to represent music’s timbre is crucial for a deep generative model
to learn such a high-level concept. Also, the representation of timbre should allow for a
visualization that lets the user of the system navigate between different types of sounds
in a sample library. Experimenting with different generative models and dimensionality
reduction algorithms is crucial to answering this research question.

Research question 3 How can the quality of generated samples be evaluated?

3



1. Introduction

R3 To answer this research question, various evaluation criteria must be defined based
on factors that determine audio quality. Defining these criteria should propose evaluation
metrics that, by themselves or as a part of an evaluation system, can indicate whether the
audio produced by the developed system is of high audio quality or not. The evaluation
methods needed to answer R1 will be provided by answering this research question.

1.3. Contributions
The most notable contributions of this thesis are:

• The creation of a system generating diverse audio samples from an interactive
visual representation of a sample library.

• An overview and evaluation of state-of-the-art deep generative models in the
waveform domain.

• An understanding and evaluation of how different metrics can be used to measure
the audio quality of generated samples.

• An evaluation of dimension reduction algorithms for sample library visualization.

1.4. Thesis Structure
The thesis will introduce and explain terminology and methods used in music and audio
processing in chapter 2, as well as the deep learning foundations for generative models
in chapter 3. These chapters provide the background theory for the systems described
in the subsequent chapters. Chapter 4 covers the state-of-the-art for audio generation
with deep learning and outlines the challenges of the different approaches. It also reviews
systems attempting to learn the concept of timbre, which is described in chapter 2. The
chapter also describes methods for evaluating audio quality. Chapter 5 describes the
datasets that were used throughout the development of the system and explains why they
were chosen. Chapter 6 gives an overview of the system architecture that was used when
implementing the system, in addition to an overview of the software tools that were used
during development. Chapter 7 describes the experiments conducted to make the final
architectural decisions as well as testing and evaluating the performance of the system.
Subsequently, chapter 8 evaluates the entire system based on the experimentation phase,
its limitations, and related work. Lastly, chapter 9 concludes the thesis by outlining the
work performed and recommended suggestions for how the work could be improved in
future systems.
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2. Music and Audio Processing
This thesis consists of techniques and terminology used across the fields of music and
signal processing. This section will explain concepts within music and audio processing
that are necessary for understanding mechanisms and decisions in the system developed
in this thesis, as well as the systems described in the literature review in chapter 4. The
following sections describe how audio and music can be represented by spectrograms and
how spectrograms can be reconstructed back to raw audio waveform. The conditions
C2 and C4 introduced in section 1.2 demand that the system outputs raw waveform
and that the generated audio is of high quality, respectively. The representation and
reconstruction methods described in this chapter were used throughout experimentation
with the developed system to meet these conditions. The following sections are based on a
preliminary specialization project (Rebnord, 2021); 2.1 and 2.2 with slight modifications.

2.1. Music Representations

To understand generative systems for music, it is essential to understand different repres-
entations of it and the challenges they represent. As an art form, music represents many
relationships that can be treated mathematically, such as rhythm and harmony. Emotion,
expectancy, and tension are other aspects that cannot be measured quantitatively. Music
can refer to a printed notation, performance information, or the resulting sound. Raw
waveforms and spectrograms are the only representations of music containing timbre
information. Research question R2 asked how well new sounds and timbres can be
generated. Answering this research question implies that the system must use one of
these representations. Therefore, the following subsections also include a dedicated
subsection about the concept of timbre, which is unique for these representations.

2.1.1. Symbolic domain

The traditional way of studying music has been in the symbolic domain, where the
representation can be a musical score, as shown in figure 2.1. Each note represents a
distinct pitch, which corresponds to a specific frequency. Different tuning systems have
different ways of mapping the notes to different frequencies, but the concept remains the
same; high pitches have high frequencies and short wavelengths.

Even though sheet music is the preferred way of transcribing music, the piano roll has
become a popular representation for music production. The original representation dates
back to the early 19th century when holes were punched into a paper roll, indicating
which note should be played. This representation was adapted into digital form and is
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2. Music and Audio Processing

Figure 2.1.: Musical notation.

commonly used in music production. Figure 2.2 shows how a MIDI, Musical Instrument
Digital Interface (Moog, 1986), file can be edited in a digital version of the piano roll
in the digital audio workstation (DAW) Logic Pro. The piano roll can represent most
aspects of piano performances with the three dimensions timing, pitch, and velocity.
Velocity determines how hard a note is pressed and usually corresponds to the amplitude
or loudness of a sound. This representation is, however, limiting the expressiveness of
other instruments.

Figure 2.2.: MIDI file edited in the piano roll visualization in Logic Pro.

2.1.2. Timbre

Pitch, time and amplitude are aspects of music that can be represented in different ways.
With timbre, what we are trying to represent is, according to Dannenberg (1998), still
not defined. When aspects of timbre are understood in isolation, like spatial location
and reverberation, they will be regarded as separate components, leaving timbre hard
to comprehend. Composer (Schoenberg, 1911) states in his Harmonilehre: "I think that
sound reveals itself by means of the timbre and the pitch is a dimension of the timbre.
The timbre is, therefore, the whole, the pitch is part of this whole, or better, pitch is
nothing more than timbre measured in just one dimension." Since the popularity of
synthesizers and digital sound design emerged, Risset and Wessel (1982) stated that it is
conceivable that proper timbral control might lead to entirely new musical architectures.
Today, several deep learning-based systems can modify and transfer the timbre of sounds,
utilizing latent representations to abstract the concept of timbre. Some of these systems
are discussed in the literature review in section 4.2.

The complexity of music further increases when compositions include more than one
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2.1. Music Representations

instrument. The concept of density refers to the number of sound elements or instruments
in a composition, where a dense or thick composition uses many instruments and vice
versa. Range is another concept referring to the difference between the highest and lowest
note used in a composition and is usually measured in octaves. For reference, the range of
a full-size piano is 88 notes making the range 7 and 1/4 octaves since there are 12 notes
in an octave in the western music scale. Benward and Saker (2009) introduce texture
as a concept that describes the overall quality of the sound in a composition, where the
most common are:

• Monophonic: A single melodic phrase is played by one or several instruments in
the composition.

• Homophonic: One prevalent melody dominates the composition, based on chords
moving together at the same speed.

• Polyphonic: Two or more independent melodies are played together simultaneously.

Homophonic textures dominate popular music, but the type of texture used in a single
composition can also intentionally be changed to increase production value.

2.1.3. Digital Audio

It is essential to understand the digital representation of audio, as the constraints of
the format determine how it should be processed. Analog continuous-time signals must
be represented as discrete-time signals in the digital domain. Pulse-code-modulation
(Bosi and Goldberg, 2002) is a method used to represent sampled analog signals digitally.
The amplitude of the signal is sampled at uniform intervals, where each sample will
be quantized to the range of digital steps, called bit depth, used by the format, which
is usually 216. A bit depth of 16 means that the dynamic range of the signal will be
theoretically limited to 96 dB, while the human hearing, in comparison, can perceive a
dynamic range of 120 dB.

The highest frequency component that can be captured by the digital representation
of an audio signal is given by the Nyquist Sampling Theorem (Cook, 2007), stating that
a continuous-time signal can be sampled and perfectly reconstructed from its samples
if the waveform is sampled over twice as fast as its highest frequency component. The
highest frequency fmax that can be accurately represented with sample rate fs is

fmax = fs/2 (2.1)

The highest frequency that can be sampled by CDs, which usually have a sampling
rate of 44.1 kHz, is 22.05 kHz. In comparison, the human hearing range is 20 Hz - 20 kHz.
Because of this, down-sampling is usually applied to the signal to reduce the amount of
information needed to represent it so that complexity and processing time are reduced.

The formats used for digital audio are usually divided into lossless formats that retain
the quality of an existing file and lossy formats that reduce the quality of an existing
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2. Music and Audio Processing

file by applying some form of lossy compression, which typically introduces artifacts.
An example of a format typically used with audio is the lossless format WAV, which is
also the format used for the audio in this project. Among the popular lossy formats, we
find MP3 (Brandenburg and Popp, 2000), used in section 4.3 to show how audio quality
degradation can be measured.

Digital audio has the highest information content of the different music representations
discussed and is said to be a dense representation of music. Musical notation and MIDI
contain a lower amount of information and are thus considered sparse representations of
music. Timbre is one of the features that cannot be represented in the symbolic domain
and is only present in denser representations like spectrograms and digital audio. Section
2.2 introduces digital signal processing and its application for analyzing and representing
music as spectrograms. A comparison of the different densities of the representations can
be seen in figure 2.3.

Figure 2.3.: Examples of sparse and dense representations of music.

2.2. Digital Signal Processing

Computational methods used for modification of audio signals are known as the field
of digital signal processing (DSP). DSP methods can extract features from the audio,
alter its representation and dimensionality, and reconstruct signals. Generating raw
digital audio requires generating a number of data points equal to the sample rate per
second. However, DSP methods can lower the temporal resolution and increase the
information needed per timestep. This section explains different types of processing that
are commonly used with audio signals and in generative systems for audio.

2.2.1. Fourier Transform

The Fourier transform is a tool for time-frequency analysis to measure the frequency
domain representation of a signal. The discrete Fourier transform, DFT (Heideman et al.,
1985), produces a finite trigonometric spectrum of a finite continuous signal divided into
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2.2. Digital Signal Processing

N components and is formulated as follows:

X(k) =
N−1∑
n=0

x(n)e−jωkn (2.2)

where the frequency of component k is ωk = 2πk
N . The Short-time Fourier transform

(STFT) performs the DFT across R timesteps, known as the hop-size. These chunks or
frames of the signal are multiplied with a window function of length R samples that is
only non-zero for a short period of time, ensuring that we perform the transform over a
continuous signal. STFT results in a two-dimensional representation of the signal, where
each frequency component is a complex number where the real part is the amplitude and
the complex part is the phase, for each point in time m and frequency k.

STFT (k, m) =
M−1∑
m=0

N−1∑
n=0

x(n)w(n − mR)e−jωkn (2.3)

Similarly, the inverse of the STFT can be computed simply by summing the inverse
transforms over all the frequency components. Computing the inverse is possible since
we have both the amplitude and phase information of the signal. When analyzing signals,
it is preferred to visualize the intensity plot of the frequencies over time in the form of
a spectrogram. A spectrogram can be made by looking at the magnitude components
of the STFT, which is done by taking the absolute value of the complex matrix. This
matrix of magnitudes is very difficult for humans to interpret, as seen in figure 2.4. Since
the spectrograms only contain the magnitude information, it is impossible to invert back
to the original signal.

Figure 2.4.: STFT with linearly scaled magnitudes.

9



2. Music and Audio Processing

(a) Short-Time Fourier trans-
form.

(b) Constant Q-transform (c) Phase

Figure 2.5.: Different representations of the note A3 played on a piano.

To obtain the spectrogram, as seen in figure 2.5a, the intensity of the frequency
component must be scaled in terms of decibels, which means that the magnitudes should
be log-scaled with equation 2.4.

Ydb = 20 ∗ log10(y) (2.4)

The phase of the signal is shown in figure 2.5c and illustrates how it is hard to obtain
useful information because of the cyclic nature of the angles. The phase is, therefore,
also usually discarded when making spectrograms.

2.2.2. Mel Spectrograms and Constant-Q Transform Spectrograms

Since the analysis window width of the STFT is the same for all frequencies, there will
be a trade-off between resolving low-frequency information (large window) and having a
good time resolution (small window) at the cost of low-frequency resolution. Multiple
logarithmic frequency scales have been introduced to fit how the human ear perceives
music. The Mel scale (Stevens et al., 1937), a subjective scale for the measurement of
the psychological magnitude of pitch, was introduced in 1937 and differs from both the
musical scale and the frequency scale, which are both objective. The Mel scale typically
assigns a perceptual pitch of 1000 Mels to a 1000 Hz tone. Equation 2.5 shows a popular
formula for converting f hertz into m Mels. Studies (Md Shahrin, 2017) has shown
that Mel scaled STFT representations outperformed linear STFT representations in the
classification of environmental sounds with deep learning.

m = 2595 log10(1 + f

700) (2.5)

The Constant Q-transform, CQT (Brown, 1991), was derived by Brown as a means
of creating another log-frequency resolution spectrogram, where the time resolution
is a function of the frequency range of interest. Logarithmic scaling of the frequency
lets the user choose a number of bins to represent each musical note instead of just a
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2.2. Digital Signal Processing

constant spacing between the frequency components, which is the case for the STFT.
The frequency values are geometrically spaced, so that ωk = 2

k
b · ω0 where k are the

frequency bins and b is the geometric separation between each bin. This leads to a
geometric spacing of δk = ωk+1 − ωk = ωk(2

1
b

−1). In contrast to the STFT, the window
length in the CQT-transform is a function of the frequency bin and is not a parameter
that the user can choose.

CQT (k) = 1
N(k)

N(k)−1∑
n=0

w(k, n)x(n)e−jωkn (2.6)

For example, setting b = 12 means that there will be one bin per semi-tone for the equal-
tempered scale, which is the scale that is used the most in popular and western music.
The log-frequency resolution of the CQT transform makes it a convenient representation
for music, as shown in figure 2.3. Since all octaves are scaled evenly, CQT has more
information in the lower octaves and less information in the higher octaves than the
STFT. A consequence of the scaling is that the CQT is not invertible since the transform
matrix is not a square. Pseudo-inverse approaches (Fitzgerald et al., 2006) have been
suggested, inverting C QT to DFT and then inverting the DFT back to the signal.

Another possible advantage of the CQT-transform is that it is possible to set w0 as a
frequency higher than 0, which means that it is possible to exclude the lowest octaves
that would usually not contain much information for musical notes. In comparison, the
STFT will always decompose the signal into N/2 frequency bins from 0 Hz up to the
highest frequency in the signal. The CQT-transform spectrogram of the piano note A3 is
shown in Figure 2.5b.

2.2.3. Audio Signal Reconstruction

Some reconstruction method is needed for time-frequency representations of audio, such
as spectrograms, to be converted back to audio without losing signal information in the
conversion process. Waveforms can be reconstructed by the inverse of either the CQT
and STFT if frequency, amplitude, and phase data are available (Velasco et al., 2011). As
the spectrograms used in audio processing usually involve the log-scaled STFT or CQT,
the amplitudes of the frequency components will represent the decibel scale. The phase
component of the signal is usually discarded, as only the magnitudes of the frequency
amplitudes are shown in the spectrogram. Discarding the phase information means
that such spectrograms cannot be reconstructed perfectly back into audio. Methods to
create an approximate signal from magnitude spectrograms exist and are discussed in
this section.

Griffin-Lim Algorithm With algorithm 1, missing phase information can be estimated
from the magnitude (Griffin and Lim, 1984). The Griffin-Lim Algorithm (GLA) randomly
guesses an initial phase ∠c0 for each of the frequency components of the magnitude
spectrogram. The inverse of this signal is computed so that a time series based on
only the amplitude is obtained. STFT is then applied to this initial approximation and
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2. Music and Audio Processing

Algorithm 1 Griffin-Lim algorithm (GLA)
Fix the initial phase ∠c0 ▷ spectrogram c

Initialize c0 = s · ei∠c0 ▷ s: magnitude of signal
Iterate for n = 1, 2, ...

cn = Pc1(Pc2(cn−1)) ▷ Pc: projection onto set of consistent spectrograms

Until convergence
x∗ = G†cn ▷ G† is inverse STFT

results in a complex matrix with some useful phase information. The magnitudes in
this new matrix are then replaced with the original magnitudes from the spectrogram
so that it now consists of unchanged amplitude information and some useful phase
information. The algorithm then performs the inverse and STFT operations until it
converges, which is done by minimizing the mean squared error between the target and
predicted spectrogram.

Audio signal reconstruction utilizing Griffin-Lim is not desirable when high-quality
audio is preferred due to its characteristic metallic-sounding artifacts when estimating
phase. Figure 2.6 shows the resemblance of the original waveform and the waveform
reconstructed with Griffin-Lim, compared to the inverse CQT transform without any
phase information.

Figure 2.6.: Reconstruction of audio.

Figure 2.7 compares the phase information estimated by the GLA after converging
versus after one iteration. Even though the algorithm will converge, it does not guarantee
that the estimation will be similar to the original phase. This is because the algorithm
does not have any prior knowledge of the original phase. The phase inconsistencies from
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the GLA can also be heard in the form of pre-echos preceding transient components, even
though extensions (Dittmar and Müller, 2015) of the algorithm have improved the issue.

(a) Converged estimation. (b) Estimated phase after one iteration of
the GLA.

Figure 2.7.: Estimated phase with the GLA.

Reconstruction with Deep learning Spectrograms are a useful way of representing
audio and have been the intermediate step for audio processing in many deep learning-
related tasks. As STFT spectrogram is the only representation capable of a lossless
reconstruction, the task of converting any time-frequency representation that is not STFT
back to audio will suffer from reduced audio quality. Reconstruction will be possible,
but due to the uninformed nature of Griffin-Lim, the result will not guarantee sufficient
quality. The STFT transform is not preferred for audio processing because it is not as
informative as its log-scaled counterpart. As discussed in Section 2.1, human hearing
also perceives frequency logarithmically, and the CQT is known to be preferred when a
sparse representation of the audio is needed (Cheuk et al., 2020).

The arguments for using other transforms than STFT outweigh the drawback of
not being able to reconstruct it perfectly, and other methods have been proposed for
reconstruction. Approaches include enhancing the time-frequency representation with
phase information and using generative adversarial networks to reconstruct the waveform,
while other approaches use vocoders to generate waveforms from the spectrograms. These
deep learning-based models are detailed in the literature review in chapter 4.
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3. Deep Learning
This chapter introduces concepts within deep learning employed by systems described
in the subsequent chapter. Deep learning is, by definition, simply a term for artificial
neural networks (ANNs) that have more than one hidden layer. Deeper networks with
more layers can learn higher-level concepts. Some of the applications for deep learning
are image recognition, computer vision, recommendation systems, natural language
processing, and, more recently, synthesis of music and speech in the waveform domain.
The very first approach to generating raw audio waveform was made by van den Oord
et al. (2016). It was built on the concepts of a convolutional neural network (CNN),
described in section 3.3. Since then, other generative deep learning models have been
applied to music and audio, such as the Variational Autoencoder (VAE), which is detailed
in subsection 3.4.1 and is used by the implemented system described in this thesis.
Additionally, section 3.5 describes different dimensionality reduction (DR) techniques
that were used for visualizing sample libraries, hence fulfilling condition C6 of the goal.
The following sections are based on a preliminary specialization project (Rebnord, 2021);
3.1 through 3.3, and 3.4 with slight modifications.

3.1. Feedforward Neural Networks

ANNs can be modified to obtain many properties, but the first variant that was introduced
was the feedforward neural networks (McCulloch and Pitts, 1943). A network of nodes is
set to computationally emulate the animal brain by learning how to predict an output
based on input through training. Feedforward neural networks are characterized by the
nodes forming a directed acyclic graph, meaning the computation is directed forward
towards the output. The nodes have activation functions and are connected via weights
to emulate the biological process of firing neurons. The weights are updated iteratively
through training on large amounts of data so that the network learns to approximate the
desired function. Figure 3.1 shows the structure of a feedforward neural network.

3.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are similar to feedforward neural networks but have
loops in the hidden layers, feeding each neuron with information from the previous
state, like working memory. RNNs are similar to chaining copies of feedforward neural
networks together. The concept of recurrent networks was introduced by Rumelhart
and McClelland (1987). Since RNNs can use information from previous states, they are
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Figure 3.1.: A simple feedforward neural network with one hidden layer.

helpful for sequence prediction problems. Different input and output configurations yield
different use cases. Examples of configurations are:

• One-to-many: An input observation is mapped to a sequence with multiple steps
as output.

• Many-to-one: Sequences are mapped to a class or quantity prediction. An example
is sound classification, where an input sequence of audio timesteps is classified into
a class.

• Many-to-many: Sequences are classified into multiple categories or classes.

One of the challenges with RNNs is that they are hard to train. Factors like choosing
the appropriate activation functions are essential for their performance. RNNs are
also prone to suffering from vanishing or exploding gradients during training unless
special mechanisms to regulate the information flow are implemented. The long-short
term memory (LSTM) (Hochreiter and Schmidhuber, 1997) architecture introduces
such mechanisms by using gates that decide whether a cell should remember or forget
information from the input states.

3.3. Convolutional Neural Networks
Convolutional neural networks (CNNs) are especially good at learning patterns in the
input, making them the desired approach for image processing. CNNs use matrices of
weights, known as kernels, to learn low-level features in the input, like, for example,
edges. The kernel is multiplied with the input data and summed to create a single value.
The kernel is then convolved across all input data, creating a smaller matrix known
as a feature map. If the CNN is fed a large input image, it may be computationally
expensive to perform convolutions. Strided convolutions can be performed to reduce the
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computational cost. Stride is the spatial distance between where the kernel is applied,
and when it is larger than one, we call it strided convolution, resulting in a smaller output
feature map the larger the stride is. The feature map typically goes through an activation
function to eliminate or reduce negative values so that it is easier to train (Nair and
Hinton, 2010). Stacking many convolutional layers makes the network learn higher-level
features of the input. Such use of CNNs is employed by WaveNet detailed in section
4.1.1. Pooling layers are used to reduce dimensions further and thus the complexity and
computation time. On the other hand, transparent convolutional layers can be used to
upscale a latent representation. These layers are typically used to upscale the latent
representation to a full-size image.

3.4. Generative Models

Given a dataset of examples x ∈ X independently drawn from an underlying distribution
pX(x), generative models are used to approximate this distribution pX(x), meaning they
can be used to generate new samples that look like they could have been a part of the
original dataset. Implicit generative models can only produce the new samples x ∼ pX(x),
but not infer the likelihood of that sample. In contrast, explicit generative models can
infer the likelihood, at least to some extent.

It is possible to control what kind of samples we draw from a distribution to make
generative models more practically useful. A conditional signal c can be introduced,
fitting the model to a conditional distribution pX(x|c) rather than pX(x).

3.4.1. Likelihood Based Models

The foundation for a likelihood based model is parameterizing pX(x). The parameters θ
are fit by maximizing the likelihood of the data under the model:

Lθ(x) =
∑
x∈X

log pX(x | θ) θ∗ = arg max
θ

Lθ(x). (3.1)

The direct parameterization of pX(x) makes it possible to infer the likelihood of any x,
making these models explicit. Several variants of likelihood-based models have proven to
be effective in generating music in the waveform domain.

Autoregressive Models Autoregressive models treat the examples x ∈ X as sequences
{xi}. The distribution can then be factorized into a product of conditionals:

pX(x) =
∏

i

p (xi | x<i) (3.2)

Since the model can be assumed to be stationary, the parameters can be the same for all
the factors in the product. Due to the sequential nature of digital audio, autoregressive
models are attractive since they capture the correlations between the different elements
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xi. They are fast for inferring pX(x) given x but slow to generate audio since sampling
must be done sequentially.

Variational Autoencoders (VAEs) Kingma and Welling (2014) introduced the VAEs
as a model that consists of two neural networks: an inference network q(z|x) that learns
to map examples x into a latent space probabilistically and a generative network p(x|z)
that learns the posterior distribution of the data conditioned on the latent distribution
p(z), also known as the latent space. Since the z’s are not observable in the real world,
they are called latent variables. The posterior distribution tries to explain how likely
a latent variable z is given the input x. Since the model cannot infer pX(x) from x, it
is trained by maximizing a lower bound on pX(x), called the Evidence Lower Bound
(ELBO), which is given in equation 3.3. The intuitive explanation of ELBO is that the
first part of the equation maximizes the log-likelihood, trying to make the generated
sample more correlated to the latent variable and thus more deterministic. The second
part of ELBO minimizes the divergence between the prior and posterior distribution,
making the distributions more similar while preserving the latent space. The second part
of the equation is also known as the Kullback-Leibler divergence (Kullback and Leibler,
1951).

ln pX(x) ≥ Eq(z|x)[ln p(x | z)] − DKL[q(z | x)∥p(z)] = likelihood − KL (3.3)

Variational Autoencoders are popular deep learning architectures for generative mod-
eling. One of the advantages of VAEs over GANs is that they will not suffer from
mode collapse. Mode collapse can occur in GANs when the generator learns to fool the
discriminator by generating only a few classes from the training data. In contrast, the
latent space of VAEs is built from all the samples in the training data. The objective
function of VAEs wires it to focus on all input classes. If the decoder somehow would
only focus on outputting one class, this would lead to inadequate recovery of the other
classes, leading to a huge loss. Many approaches using VAEs in music generation apply it
to learn a higher-level concept, such as timbre. Due to the VAE learning to average over
examples, it is a preferred method when diversity is desired in the generated output.

Normalizing flows In most VAEs, the prior and posterior distributions are modeled
as Gaussians since their derivative is easy and efficient to compute. Many real-world
distributions are more complex than Gaussians, and the concept of normalizing flows was
introduced to better approximate more flexible and complex distributions. Normalizing
flow layers shape a simple distribution into a more robust distribution by applying a series
of transforms in each flow layer. With k transformations, the latent vector z0 is sampled
from a simple distribution and goes through a series of k invertible transformations f(zi)
until it is shaped into a more complex distributed zk, which is then passed to the decoder.

Inverse Autoregressive Flow, IAF (Kingma et al., 2016), extends the concept of
normalizing flows to scale well to high-dimensional space. By using inverse autoregressive
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transformations that can be parallelized, the computational cost is reduced without losing
the flexibility of the resulting distribution. The mathematical details explaining IAF are
omitted from this section, and the reader is advised to inspect the original paper for more
information. The VAE architecture employed by the developed system in this thesis
utilizes inverse autoregressive flow layers to better approximate the posterior distribution.

3.4.2. Adversarial models

Goodfellow et al. (2014) introduced the generative adversarial network (GAN) architecture.
GAN consists of two neural networks, a generator G, and a discriminator D, that compete
against each other in an adversarial game. G has the task of generating a plausible
sample given the dataset, while D has the task of classifying whether a sample is from
the dataset or not. In essence, G is trying to fool D, and D is trying to determine if this
is the case.

G is given a noise vector z to generate a diverse range of samples. Therefore, a
generated sample can be represented as G(z). The objective of D is to maximize

log(D(x)) + log(1 − D(G(z)) (3.4)

which means maximizing log(D(x)) when x comes from the dataset, and minimize
log(D(G(z)) when a sample is generated by G. The objective of G is to minimize
log(1 − D(G(z))), which means fooling the discriminator. The immediate advantage of
the generator loss is that it is not dependent on any ground truth. The generator loss will
indicate whether the generated example could have been a part of the training dataset
or not without comparing it to the training examples. The independent behavior of the
generator and the discriminator does not allow the probability of the generated examples
to be computed. One of the disadvantages of GANs is that it is not possible to infer the
likelihood of an example, making it an implicit model.

Mode-seeking and Mode-covering Behavior When choosing a generative model,
it is crucial to determine if the behavior of the model should be mode-covering or mode-
seeking. Compromises are made when a model cannot capture the variability of the data.
If all examples should be likely under a model, a mode-covering behavior would lead to
the model overgeneralizing and interpolating between examples in ways that might not
be meaningful. If covering these examples is not a requirement, a mode-seeking behavior
could focus the probability mass on a subset of the examples. The two behaviors are
shown in figure 3.2. Since likelihood-based models maximize the joint likelihood of the
data, they have a mode-covering behavior. Adversarial models are usually mode-seeking.

The density of the domain representation usually determines if the generative approach
should be likelihood-based or adversarial-based. If a sparse representation of high-level
concepts is used, then diversity and a certain degree of "creativity" should be expected
from the model, meaning a mode-covering behavior is desirable. A dense representation
like waveform samples or image pixels will usually favor realism in the generated output
of a model rather than diversity. Blurriness is typically an artifact of mode-covering
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Figure 3.2.: Illustration of mode-seeking and mode-covering behavior in model fitting.
The blue density represents the data distribution, while the green density is
the single normal distribution representing the generative model.

Source: Lee et al. (2019) with permission.

approaches in image generation, as it tends to average over examples. Generating random
patterns is thus another weakness of mode-covering models.

3.5. Dimensionality Reduction Techniques

Visualization of high-dimensional datasets is challenging. The natural structure of the
data can be plotted when it is in two or three dimensions, but high-dimensional plotting
is not as intuitive. This section describes the basics of dimensionality reduction (DR)
techniques frequently used to visualize high-dimensional space. Considering different
methods for DR is essential as there tend to be trade-off qualities that one technique will
have over another. The computational properties of the following techniques were also
important for choosing the most suitable method for the developed system.

3.5.1. PCA

Principal Component Analysis (PCA), as defined by Hotelling (1933), is the orthonormal
axes onto which the variance under projection is maximal for a set of d-dimensional
data vectors. In other words, the objective of PCA is to find the axes of a dataset that
have the highest variance. The most significant advantage of PCA is also one of its
most prominent limitations and is the fact that PCA only defines a linear projection of
the data, not considering any underlying nonlinearities in the data. Its global linearity
yields efficient computation, and one of its implementations (Tipping and Bishop, 1999)
was experimented with for visualization in section 7.2.2. Page 61 shows how the latent
embeddings of one of the sample libraries used for experimentation spread out across the
axes in a PCA plot. Even though PCA suffers from not emphasizing local clusters in the
data, the plot shows the data’s dominating global structures, which can be interpreted
as the sample length on the x-axis and frequency on the y-axis.
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3.5.2. t-SNE

Manifold learning techniques can be regarded as an attempt to generalize linear frame-
works like PCA to be responsive to nonlinearities in the data. One of the popular
manifold learning techniques is t-distributed Stochastic Neighbor Embedding, t-SNE
(van der Maaten and Hinton, 2008). The algorithm creates a similarity matrix for each
data point in the high-dimensional space and a similarity matrix for each map point in
the reduced space, considering Gaussian distribution for the data points and t-Student
(hence t-SNE) distribution for the map points, respectively. The similarity matrices
are then optimized by reducing the Kullback-Leibler (KL) divergence between the two
distributions. Due to the heavier tail of the t-Student distribution over the Gaussian
distribution, for a given similarity of two data points, the two corresponding map points
have to be much further apart to minimize the KL-divergence between the distributions.
Typical hyperparameters for t-SNE are perplexity and number of iterations. Perplexity
defines the size of the neighborhood, while the number of iterations sets the number of
optimization steps, respectively.

t-SNE can produce effective visualizations of complex datasets, uncover hidden struc-
tures and expose natural clusters and nonlinearities in the data. There are, however,
several known disadvantages with t-SNE:

• On million-sample datasets, t-SNE is computationally expensive, with execution
times of several hours compared to minutes for PCA.

• To preserve a global structure, the points must be initialized with PCA, requiring
even more computation.

• The algorithm is stochastic and can result in different embeddings for the same
data.

Despite some drawbacks, t-SNE is still a widely used dimensionality reduction technique.
It is experimented with as one of the methods for visualizing the latent space of the
developed system in section 7.2.2.

3.5.3. UMAP

Uniform Manifold Approximation and Projection, UMAP (McInnes et al., 2018), is
a manifold learning technique that is competitive with t-SNE for DR and debatably
has better global structure preservation with a much lower computational cost. The
UMAP algorithm creates a graph with the shape of the high-dimensional data points.
Comparable to the similarity matrix of the t-SNE data points, the edge weights of a
UMAP data point correspond to the similarity measure to the other points. While t-SNE
optimizes the difference between two similarity matrices, UMAP compresses its graph
of the high-dimensional space into a lower dimension. The reduction in computational
cost with UMAP is due to its rough estimation of the high dimensional graph instead of
measuring every point.

There are mainly four parameters impacting how UMAP will compute the embeddings
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Figure 3.3.: An example of UMAP used for reducing the high dimensional latent embed-
dings of a sample library.

• The number of neighbors controls the balance of local versus global structure in the
dataset. A low value for the number of neighbors parameter forces the algorithm
to focus on locality, while high values will result in larger neighborhoods.

• Minimum distance determines how close each data point can be in the embedding
space. Low values result in tight clusters and vice versa.

• Number of components specify the number of dimensions of the reduced dimension
space.

• Metric decides how the distances are computed for the input data.

A visualization of the 64-dimensional latent vectors reduced to two-dimensional em-
bedding space with UMAP (number of neighbors=100, distance=0.8) from the sample
library used with the developed system is shown in figure 3.3. These were the preferred
visualization parameters from the experimentation conducted in section 7.2.2.

The UMAP library also supports inverse transformation, generating high-dimensional
data points from a specific point in the low-dimensional embedding space. Therefore,
it is possible to fit a dataset, such as the high-dimensional latent variables of a sample
library, to a UMAP transform and then generate new high-dimensional samples from the
embedding space. The fact that invertible UMAP methods are available was a deciding
factor for including it in the developed system.
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This chapter presents the three-part literature review conducted to answer the research
questions in this thesis. Section 4.1 describes state-of-the-art within generating music in
the waveform domain and builds the foundation to answer research question R1, asking
how well audio can be generated in the waveform domain. Section 4.2 outlines recent
attempts at learning the concept of timbre with generative models and is essential for
answering how well new sounds and timbres can be generated from a sample library, as
asked by research question (R2). Lastly, section 4.3 describes frequently used evaluation
techniques for audio quality and is the basis for answering how the audio quality of
generated samples can be evaluated (R3). The performed literature review is the
foundation from which the architectural decisions detailed in the following chapter have
been made.

4.1. Generative Models in the Waveform Domain

The two most common techniques of generating audio with deep learning are discussed
in this section. Section 4.1.1 details the very first generative approach of direct waveform
modeling, without any use of intermediate representations like spectrograms. Since the
initial attempts to generate music by directly modeling the waveform, there have been
suggested various other approaches for neural synthesis of music. Section 4.1.2 describes
state-of-the-art within neural audio synthesis methods conditioned on spectrograms. The
following subsections are based on a preliminary specialization project (Rebnord, 2021);
4.1.1 with slight modifications and 4.1.2 with modifications.

4.1.1. Direct Waveform Modeling

Directly modeling waveforms means generating audio as a discrete quantization of the
signal amplitude through time, as explained in section 2.1.3. The output will typically
be in an audio file format, such as WAV (.wav). Using "raw audio" as the conditioning
representation was initially motivated by rapid progress in the field of text-to-speech
synthesis, and these techniques got a head start compared to the methods described in
subsection 4.1.2.

Likelihood-based Synthesis WaveNet is an autoregressive model introduced in 2016
by van den Oord et al., initially targeted at generating speech. It appeared together
with SampleRNN (Mehri et al., 2017) as the first models to directly generate waveforms.
Before this, it was not seriously considered to model long-term correlations in thousands
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of timesteps of audio sequences. To deal with the long-time dependencies, WaveNet
introduced dilated causal convolutions to extend the receptive field of the model. Causal
convolutions ensure that the model cannot violate the ordering in which the data is
modeled, which means that the model will not use future timesteps to infer the next.
A dilated convolution is a convolution where the filter is applied over an area larger
than its length by skipping input values with a certain step. The process is equivalent
to convolution with a larger filter, where the original filter is dilated with zeros. Using
a dilated filter keeps the output the same size as the input, even though it practically
calculates the strided convolution. More layers, larger filters, and greater dilation factors
can be incorporated to increase the receptive field further. Figure 4.1 shows an example
of a stack of dilated convolutional layers.

WaveNet’s audio modeling capabilities were tested on multi-speaker speech generation,
text-to-speech (TTS), and music audio modeling. Applied to speech generation, WaveNet
improved the state-of-the-art, reducing the gap with human performance by over 50%.
It was able to capture characteristics of several different voices and the acoustics and
recording quality of the data from which it was trained. With a receptive field size of
240 milliseconds, it could also outperform the previous baseline models. Even though it
was able to synthesize natural-sounding speech, the relatively short receptive field was
not enough to learn which words to stress in a sentence, but further conditioning on
linguistic features solved this problem. The short receptive field was also the limiting
factor when applying the model to the music waveform domain. The authors trained
the model on 200 hours of different genres of music audio. Subjective evaluations of the
generated results found that further enlarging the receptive field to several seconds was
not enough to enforce long-range consistency across the generated music. By further
conditioning the model on a set of tags specifying genre and instruments, it was possible
to control the output.

Figure 4.1.: Visualization of a stack of dilated casual convolutional layers.

Source: van den Oord et al. (2016) with permission.

SampleRNN has a different architecture than WaveNet, as it utilizes a hierarchical
stack of recurrent neural networks operating at different temporal resolutions. The lowest
module is autoregressive and processes individual samples, while each module above

24



4.1. Generative Models in the Waveform Domain

increases the timescale, reducing the temporal resolution. The higher modules condition
the lower, eventually taking the longer-term dependencies into account on the output.
Even though SampleRNN performs excellent on TTS, it still suffers from the same issues
as WaveNet with capturing coherent long-term musical structures.

Adversarial Synthesis Directly modeling raw audio with GANs was first approached
by WaveGAN (Donahue et al., 2019). By training a GAN on single-word speech recordings,
bird vocalizations, individual drum hits, and short excerpts of piano music. Samples
with a duration of one second were generated with global coherence, and the model was
suggested for sound effect generation. The architecture was based on deep convolutional
GAN, DCGAN (Radford et al., 2016), but modified by the authors to output 128x128
pixel images.

One of the challenges of using GANs to model audio waveforms directly is the intrinsic
differences between audio and images. The principal components of images capture
edge characteristics, intensity and gradient, while audio forms periodic shapes. For the
DCGAN to exhibit periodicity, it needs a receptive field that is large enough to capture
a single cycle. Using a sample rate of only 16 kHz, the authors applied one-dimensional
kernels to capture the periodicity.

The authors also made SpecGAN, generating STFT spectrograms with DCGAN and
using Griffin-Lim to invert the spectrograms back to audio, with which WaveGAN was
compared. Only qualitative human judgment was used for evaluating the audio generated
by the models. The human judges were set to identify the audio examples presented with
a label from 1 to 9 and rate the quality of the audio from 1 (poor) to 5 (best). WaveGAN
achieved a mean accuracy of 0.58 for the labels, but better quality than SpecGAN, most
likely due to the shortcomings of Griffin-Lim. The authors explained that the slightly
better accuracy with SpecGAN could be that it might better capture the underlying
variance.

4.1.2. Spectrogram Reconstruction

The following section describes approaches to generating audio by using intermediate
representations in the form of time-frequency spectrograms. The representation of audio
with magnitude spectrograms has seen wide usage in discriminative audio models. The
field of automatic music transcription (AMT) has typically utilized various spectrograms
to analyze the onset and offset of notes for monophonic and polyphonic music (Cheuk
et al., 2020). Spectrograms are convenient as they are less dense than raw waveform
audio. Using spectrograms opens up possibilities for more efficient models with fewer
parameters. Section 2.2.3 specified how phase reconstruction with Griffin Lim degrades
audio quality since it is impossible to restore lost phase information perfectly. Numerous
deep learning methods for reconstructing audio from spectrograms have therefore been
suggested.
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Conditioning Generative Models on Spectrograms Shen et al. introduced
Tacotron 2 in 2018, suggesting a system for speech synthesis directly from text. The
system introduced a many-to-many RNN that mapped character embeddings to Mel
spectrograms and a modified WaveNet model (subsection 4.1.1 acting as a voice coder
(vocoder) to synthesize waveforms directly from those spectrograms. A vocoder is a term
for devices breaking the spectrum of a signal (typically the human voice) into several
sub-bands so that the resulting parametric representation easily can be manipulated
in different ways (Cook, 2007). Instead of applying traditional phase reconstruction
algorithms to the spectrograms, they modified the WaveNet to be conditioned on frames of
the spectrograms, where each frame had a hop size of 12.5 milliseconds. The conditioned
WaveNet model was an independent component in Tacotron 2, meaning that it did not
rely on other components in the system. The training was done simply by feeding the
model pairs of spectrograms and the original audio. The system was intended for TTS
and was trained on 24.6 hours of speech from a female speaker.

Using a WaveNet vocoder to generate audio from spectrograms, the authors reported
impressive results when evaluating it with human ratings. The system was evaluated
with a mean opinion score (MOS) of 4.53, comparable to 4.58 for professionally recorded
speech. MOS as an evaluation method is discussed in section 4.3. The authors also
mention factors that could lead to an inflated MOS since each human evaluation was done
on the examples independently instead of comparing each example. The evaluation set
also contained similar patterns and words as the training set, leading to a MOS that would
be better if the system was trained sentences generated from random words. Regardless
of possibly inflated MOS, Tacotron 2 was compared to its predecessor, Tacotron (Wang
et al., 2017), with Griffin-Lim, a WaveNet trained on linguistic features and parametric
and concatenative models that were previously used in production at Google, and
outperformed all of them.

MelGAN was introduced by Kumar et al. (2019) as an approach to directly model audio
in the waveform domain by inverting magnitude Mel spectrograms. Due to the popularity
of spectrogram representations of music but the difficulties of inverting spectrograms
without reducing audio quality, MelGAN appeared in 2019 as a less computationally
expensive option to invert Mel spectrograms back to audio. The generator architecture
takes an input spectrogram and upsamples this with a stack of layers that use transposed
convolutions and dilated convolutions, resulting in a sequence of raw waveforms on
the output. Three discriminators dissect the generated audio at different scales of
downsampling so that the generator more correctly models the high-frequency content. It
is difficult to estimate how MelGAN would perform when inverting music spectrograms
rather than speech spectrograms, as the original paper did not evaluate the model when
it was used with music. However, the authors state that the MelGAN can replace the
modules converting spectrograms to audio in existing systems and produce audio of
“decent quality”. When applied to Mel spectrograms of speech, the model was evaluated
with mean opinion scores (MOS) against several other methods, where WaveNet and
Griffin-Lim were some of them. On a scale from 1 (worst) to 5 (best), MelGAN performed
significantly poorer than the other approaches, except Griffin Lim, which introduces
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characteristic artifacts that reduce quality.

Alternative Spectrogram Representations An ideal alternative approach to mod-
eling waveforms directly would be to use invertible spectrograms. Section 2.2.3 explained
how phase information is necessary for a spectrogram to be perfectly invertible, but
also how hard it is to model phase due to its cyclic nature. In spectrograms, the phase
information will essentially be random as the magnitude tends towards 0, as shown in
figure 2.7. An important aspect of phase is, therefore, that the absolute value is not very
informative but that the relative phase differences over time matter perceptually.

Engel et al. (2019) introduced a new spectrogram representation by unwrapping the
phase, essentially adding 2π whenever a phase discontinuity is crossed, causing the phase
to grow linearly with time. The difference of the derivatives of the unwrapped phase
would then show the relative phase differences across each of the frequency components
in the spectrogram, defining what the authors called the "instantaneous frequency" (IF).
The relative phase information can be encoded into the spectrograms as the color on a
rainbow color map, where the magnitude determines the brightness, naming the resulting
representation “rainbowgrams”. Figure 4.2 shows the IF encoded in the rainbowgram of
a piano chord progression.

Figure 4.2.: Rainbowgram of a piano chord progression.

GANSynth produces audio by generating log-magnitude spectrograms and phases
directly and applying an inverse transform instead of directly generating a waveform
with strided convolutions. Based on recent success within progressive training methods
(Karras et al., 2017) for image generation with GANs, the authors generated audio spectra
of notes. The NSynth dataset, a collection of 305,979 musical notes from 1,006 different
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instruments, was used to train their model. Instead of just training the GAN on log-scaled
magnitude spectrograms, the authors also conditioned the model on pitch information by
appending a one-hot pitch encoding to the latent vector. They implemented an auxiliary
classification loss for the discriminator, predicting the pitch label so that the generator
would use the pitch information. They achieved independent control of pitch and timbre
by applying pitch information to the latent vector.

The performance of GANSynth was evaluated on variants of STFT and Mel spectrogram
representations of the dataset with 512 and 1024 frequency bins, where all of these
representations were tried by either separately generating the absolute phase or generating
the instantaneous frequency. When asking participants in a survey what sample they
thought had better audio quality, the reconstructed notes with a Mel spectrogram with
instantaneous frequency and 1024 bins were rated almost as high as the original audio
samples. Qualitative analysis of the generated audio was also phase-coherent, meaning
that the harmonics modulo the fundamental frequency align. If the harmonics of a signal
do not align, it will sound blurry. The authors chose WaveGAN (Donahue et al., 2019) as
one of the baselines for comparison, and it showed many phase irregularities. Due to the
sequential dependencies of autoregressive models, GANSynth could generate 4-second
long samples 54,000 times faster than WaveNet. GANSynth is limited to only generating
single monophonic notes despite providing efficient content generation with high accuracy.

Deep Griffin-Lim Iteration Another approach to phase reconstruction is to enhance
the existing Griffin-Lim Algorithm (GLA). Deep Griffin-Lim Iteration (DeGLI) was
introduced by Masuyama et al. (2019) by combining the original GLA with a deep neural
network (DNN). It is motivated by using information from intermediate representations
of an STFT spectrogram as its phase is reconstructed with the GLA. The GLA tries
to reduce the difference between the amplitude replaced spectrogram and the closest
consistent spectrogram, but the GLA does not use this information. The authors
recognized this as an optimization problem and tried to reduce this difference with
a DNN. The suggested model was only applied to speech audio and evaluated with
Perceptual Evaluation of Speech Quality, PESQ (Rix et al., 2001), a method for speech
quality assessment of telephone networks and codecs, in which it scored significantly
better than the reconstructions with only the GLA. However, this approach has not been
applied to reconstruct spectrograms of music despite its promising results. DeGLI was
investigated further in the audio quality experiment in section 7.1.

4.2. Learning Timbre

This section describes state-of-the-art deep learning-based systems that generate music,
samples, and audio and facilitate architectures for learning the concept of timbre. Most of
the following systems are based on the generative models in the previous section and tend
to be modular. Modularity seems typical for generative models in the waveform domain
that try to learn higher-level concepts. It allows a dedicated module to convert raw
audio into a less dense representation that the system can process before another module
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converts it to audio. The following subsections are based on a preliminary specialization
project in (Rebnord, 2021); 4.2.1 and 4.2.2 with modifications.

4.2.1. Jukebox

One of the more comprehensive likelihood-based systems for generating music in the
waveform domain is Jukebox Dhariwal et al. (2020). Jukebox is a WaveNet-based system
that generates music with singing in the raw audio domain. It captures the context of
the raw audio with three vector-quantized variational autoencoders (VQ-VAEs). VQ-
VAEs are similar to the standard VAEs described in section 3.4.1, except that the
latent representation is quantized. The Jukebox architecture is based on the latent
representation of three VQ-VAEs running at three different temporal resolutions to
capture different features of the input audio. The content generation itself is based on
a model that generates sequences of latent vectors. The latent content vector is fed to
the VQ-VAE decoder, transforming it into waveform audio. Each of the three VQ-VAE
decoder layers employs a WaveNet-style network with dilated convolutions to generate
the raw audio waveform. The system can generate diverse songs with coherence up to
multiple minutes, including singing when the model is conditioned on lyrics and was
trained for several months. The system was trained with a spectral loss calculated over
multiple STFT parameters. The authors reported artifacts in the form of missing and
blurry high frequencies, even with a model size of 5 billion parameters. The authors
evaluated Jukebox on coherence, musicality, diversity, and novelty. No audio quality
metrics were used. Subjectively listening to examples1 provided by the authors gave the
impression of an average quality similar to MP3-files with a bit rate of less than 100
kbps.

4.2.2. Differentiable Digital Signal Processing

Differentiable Digital Signal Processing, DDSP (Engel et al., 2020), is a very different
approach for generating audio in the waveform domain and is based on digital signal
processing and synthesizers with deep learning. A synthesizer typically uses oscillators to
continuously output waveforms based on parameters such as pitch and amplitude. Engel
et al. utilize the strong inductive bias of controlling the parameters of a synthesizer with
neural networks and avoid the challenges with neural audio synthesis by implementing a
fully differentiable synthesizer and audio effect architecture.

The DDSP modules are made differentiable by approximating the time-varying values
of synthesizer parameters with neural networks. The modules in the DDSP library that
generate audio are the additive synthesizer and the filtered noise synthesizer. A neural
network outputs values for the additive synthesizer module’s fundamental frequency,
amplitude, and harmonic distribution. For the filtered noise module, a neural network
predicts a vector used as the frequency-domain transfer function for a uniform stream of
noise. The outputs of these modules are typically combined to reconstruct the audio from

1https://openai.com/blog/jukebox/

29

https://openai.com/blog/jukebox/


4. Literature Review

an instrument. When used to reconstruct the audio of a violin, the additive synthesizer
generates the harmonic content, while the filtered noise synthesizer typically mimics
the bowing noises. Since the primary objective of the DDSP modules is to minimize
reconstruction loss, the absolute difference between the spectrograms of the original
audio and the spectrograms of the generated audio is backpropagated through the neural
networks of the modules.

DDSP can accurately model various instruments with high fidelity, without compre-
hensive autoregression or costly computations. Since the neural networks only predict
the parameters of the synthesizer modules instead of each audio sample, which is the
case for WaveNets, the authors could run the model at a rate of only 250 Hz and still
achieve realistic-sounding results. This improvement in computational efficiency allowed
a DDSP model to train for only a couple of hours on a V100 GPU on 13 minutes of
solo violin performance and still resynthesize violin performances very accurately. Audio
quality metrics were not used, but subjectively listening to the provided audio examples
confirmed that the resynthesized audio sounded like an authentic violin player, with
bowing noises, reverberation, and audio quality similar to the original dataset. The
DDSP authors specify in a comment2 that the fundamental frequency parameter is a
constraint of the model by construction, and therefore that the model is not appropriate
for modeling non-periodic signals such as experimental electronic audio samples.

4.2.3. Latent Timbre Synthesis

Latent Timbre Synthesis, LTS (Tatar et al., 2020), is a deep learning-based audio synthesis
method using Variational Autoencoders. LTS is intended to be used by composers of
electronic music better to explore the timbre space of their sample libraries. The authors
implemented a graphical interface for LTS, providing options for interpolating and
extrapolating between arbitrary audio excerpts rather than just timbres of instruments,
the latter being constricted to only pitched sounds.

The implemented system processes audio recordings as CQT-spectrograms and converts
the output spectrograms to audio with the Griffin-Lim Algorithm (GLA). The authors
built the LTS system on VAEs, as they allow for encoding audio frames to a latent space
and generate new audio frames from latent vectors. By combining multiple latent vectors,
the system can interpolate and extrapolate between timbres. LTS also allows for flexible
changing of the duration of the generated sounds, rather than only generating audio
excerpts with a fixed duration.

The authors utilized two different VAEs in series, where the first one was inspired
by previous work (Generative Timbre Spaces) that synthesized conventional musical
instrument timbres. The first VAE has a latent space of 256 dimensions, but the authors
added another VAE to generate a latent space of 8 dimensions while trying to maintain
reconstruction quality. The authors did not evaluate the audio quality but mentioned
that the artifacts from reconstructing the CQT spectrograms would result in artifacts
regardless of the deep model generating “perfect” spectrograms.

2https://openreview.net/forum?id=B1x1ma4tDr
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4.2.4. SampleVAE

SampleVAE (Frenzel, 2019) is a deep learning-based tool developed by Max Frenzel
intended to generate samples for music producers and sound designers. The tool consists
of a convolutional Variational Autoencoder (VAE) with normalizing flow layers designed to
be trained on user sample libraries. Since the model processes audio as Mel spectrograms,
it reconstructs the spectrograms to audio with the Griffin-Lim Algorithm (GLA). The
sample libraries used to train the model are thus converted into a dataset consisting of
fixed length spectrograms.

SampleVAE was intended for sample generation, classification, and similarity search.
After training on a dataset of spectrograms, SampleVAE is used as a generative model
by sampling the latent space and decoding the latent vector. Generating samples with
SampleVAE means that the decoded point from the latent space will resemble a realistic
example of a spectrogram from the training examples. SampleVAE allows for randomly
sampling the latent space, re-generating variations of a sound by modifying its embedding,
and averaging over multiple embeddings to combine the characteristics of multiple sounds.

The VAE architecture of the model is specified in figure 4.3. The author stated that
adding inverse autoregressive flow (IAF) layers qualitatively led to better overall results.
The idea behind IAF is based on normalizing flows (Rezende and Mohamed, 2015). It is
introduced to shape flexible posterior distributions by iterating over a series of invertible
transformations known as flow layers. These layers are simplified as the flow module in
figure 4.3, transforming the simple distribution z0 to the more complex distribution zk.
The concept of normalizing flows is explained in more detail in the chapter about deep
learning on-page 18.

Figure 4.3.: The SampleVAE architecture utilizes a Variational Autoencoder with Inverse
Autoregressive Flow layers.

The author did not conduct a rigorous evaluation of SampleVAE, and decisions for
architecture and hyperparameters are based on the intuition of the author. Furthermore,
the author suggests several improvement aspects for the model, including trying different
architectures for audio reconstruction, such as WaveNets. Using two dimensions for the
latent space to generate sounds from a 2D grid was suggested as an idea for further work
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and is similar to the system developed in this thesis. Compared to other state-of-the-art
systems, SampleVAE seems to be a robust framework for generating audio from a sample
library with great potential for experimentation.

4.3. Evaluating Audio Quality

There exists no single, consistent definition of quality, even though quality has an
understood meaning when applied to audio. Objective measurement techniques exist
for assessing audio quality but seek to identify the difference in quality between a gold
standard reference signal and a test signal that has undergone some destructive process,
like the effect of compression codecs. Other aspects than possible distortions from
down-sampling are essential for determining the quality of a produced piece of music.
This section outlines evaluation metrics and approaches to audio quality evaluation.

4.3.1. Mean Opinion Scores

Mean Opinion Scores (MOS) is defined by the International Telecommunication Union
(ITU) as “The value on a predefined scale that a subject assigns to his opinion of the
performance of the telephone transmission system used either for conversation or for
listening to spoken material”.

ITU presents MOS as a standardized system for evaluating telecommunication services
and recommends specifying what kind of frequency band the test evaluates and what
kind of audio material. Even though MOS is used mainly for subjective opinion, it is
also used for scores originating from objective models or scores that are estimated, and
ITU encourages specification of whether a listening test is subjective (S), objective (O),
or estimated (E). In addition, ITU states that factors like level, application, listening
device, and environment also impact the absolute MOS value and should be reported.
They state that general audio signals, such as music or mixed speech and music, should
not be used with objective models but can be used with subjective models of MOS. The
typical five-point Likert scale used with MOS is shown in table 4.1.

Value Opinion
1 Bad

2 Poor
3 Fair
4 Good
5 Excellent

Table 4.1.: Mean Opinion Score scale.

32



4.3. Evaluating Audio Quality

4.3.2. Perceptible Evaluation Metrics for Audio Quality (PEAQ)

An alternative system for evaluating perceived audio quality was suggested by the ITU
(Thiede et al., 2000) to simulate the audio quality rankings produced by humans. The
intention was to develop a system to respond similarly to a subjective listening test
comparing a reference and test audio signal. The test audio signal usually has undergone
perceptual coding or degradation in quality. Examples of perceptual coding are encoding
the test audio signal with a lower bit rate or sample rate, as discussed in section 2.1.3.
While PEAQ is intended for use in the broadcasting domain, it is also helpful as an aid
to subjective assessment. Employing such a system is motivated by saving time and
resources spent executing a listening test and calculating the mean opinion score (MOS).
The duration of the test signal should be about the same as if it was used in a listening
test, which is typically around 10 to 20 seconds. Such a listening test is, in general, based
on the Subjective Difference Grade (SDG), which is defined as:

SDG = GradeTest Signal − GradeReferenceSignal (4.1)

where the values range from 0 to -4, where 0 means the difference is imperceptible and -4
means that the impairment is considered very annoying. PEAQ defines the Objective
Difference Grade (ODG) in terms of the "judgment of impairment," and its corresponding
categories are shown in Table 4.2.

ODG Judgement of impairment
0 Imperceptible

−1 Perceptible but annoying
−2 Slightly annoying
−3 Annoying
−4 Very annoying

Table 4.2.: Audio reconstruction comparison.

As a reference to illustrate the sensitivity of the PEAQ metric, Salovarda et al. (2005)
conducted tests of various codecs from a reference audio clip in WAV format (16 bit, 44.1
kHz). They compared several degrees of audio degradation by reducing the bit rates
for the different codecs. Table 4.3 shows the resulting ODG values for the MP3 format.
PEAQ is used throughout the audio quality experimentation in section 7.1 for measuring
audio degradation between reference and generated audio.

4.3.3. Audio Quality in Music Productions

Determining the quality of recorded music is a highly disputed subject. Wilson and
Fazenda (2016) observed a difference in the perception of audio quality and liking of
the music from commercial CDs by measuring the subjective and objective reactions of
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Bit rate
Cut-off

frequency ODG File size

32 kbps 5 kHz -3.67 56kB
64 kbps 11 kHz -3.46 112kB
128 kbps 15 kHz -1.08 223kB
160 kbps 16 kHz -0.47 276kB
256 kbps 17 kHz -0.01 445kB
320 kbps 19.5 kHz 0.04 556kB

Table 4.3.: ODG values and file size for MP3 format on most common bit rates.

test subjects. The authors found that audio quality was perceived by characteristics of
signal features related to perceived loudness and dynamic range compression. The sonic
attributes that affected the subjective quality ratings were timbre, space, and defects.
What decided the subjects’ liking of the music was their familiarity with stimuli. Listener
expertise did not affect the result. It was also observed that the perceived quality of
popular music may have decreased over recent years, but like ratings were unaffected.

Another study, Wilson and Fazenda (2013) found that the listeners’ perception of audio
quality was linked to their emotional reaction to the sample. The emotional link meant
high-quality ratings were awarded to happy-sounding recordings, and low-quality ratings
were awarded to angry-sounding recordings. They further found that spectral features,
such as higher bandwidth, meaning audio with significant low- and high-frequency energy,
would result in the sample being perceived as high quality. Amplitude features, such as
having enough dynamic range, and spatial features, such as the perceived width, were
linked to the subjects’ quality assessment. Rhythmic features, such as a low tempo, were
associated with higher quality due to the space between notes to hear instrument details
and evaluate spaciousness.
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This section discusses the data that has been considered and used for experimentation in
chapter 7. For music producers, sound designers, and audio creators, the sample library
will be one of the factors that decide artistic style (Epworth-Sawyer et al., 2019). The
immediate advantage of this is that large amounts of data are available for the potential
users of the developed system. For example, my personal sample library consists of
roughly 100k sounds due to years of collecting sounds from other libraries, recording my
own samples, and processing existing ones. After all, the intended use of the system is
for the creator to extend their sonic palette. However, the drawback is that there are
almost no benchmark datasets that can be used for reproducible experimentation, as
audio creators possess different audio corpora. Even though the complete sample libraries
of audio creators are unique, and will be unique, there exist sub-libraries that are more
common than others.

5.1. Native Instruments Battery 4 Drums library
One of the sub-libraries that is common among audio creators is the Battery 4 Drums
library produced by Native Instruments 1. Native Instruments has been producing audio
technology for more than 20 years, including many sample libraries. Their audio software
is promoted towards amateurs and professionals, and their monthly user base counts more
than 1.5 million. They also claim that eight out of ten songs on the Billboard Top 100
feature Native sounds from Native Instruments. One of the popular sample libraries made
by Native Instruments is the drum sample library that comes bundled with their drum
machine Battery 42. This library comes with 10275 different sounds across 12 different
categories of drum hits, as shown in figure 5.1. Due to the popularity of the sample
library, a decision was made to use it as a dataset for training the generative model in the
experiment detailed in section 7.3. Another advantage of using this library is the diversity
of styles within each type of drum hit. Even though categories like cymbals, hi-hats, and
shakers are mostly non-harmonic and noise-based, categories like tom, hand drum, and
wooden usually have harmonic features. For this reason, constraining the system to be
trained on this dataset is an essential step in fulfilling condition C3, which demands that
the system should work for any audio sample regardless of the characteristics.

All samples have a sample rate of 44.1 kHz. The sample length varies from 8 ms to 40
seconds with a mean length of 1.214 seconds. The dynamic range varies from −158.4
dB to −1.7 dB measured in full scale (FS) decibels, where 0 dB is the maximum, and

1https://www.native-instruments.com/en/company/about-us/
2https://www.native-instruments.com/en/products/komplete/drums/battery-4/
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5. Datasets

Drum Hit n Mean Length

Clap 423 0.737 s
Combo 83 1.090 s
Cymbal 767 4.063 s

Hand Drum 142 0.852 s
HiHat 1934 0.811 s
Kick 1594 0.846 s

Mallet Drum 644 1.051 s
Metallic 643 1.450 s
Shaker 377 0.293 s
Snare 2596 0.859 s
Tom 918 1.962 s

Wooden 154 1.095 s

Table 5.1.: Drum hits in the Native Instruments Battery 4 Drums library varies in
numbers and lengths.

anything softer is negative. The acoustic properties of the sounds vary across the dataset
and within each sample category. This variation is evident when visualizing the different
sample categories in section 7.2.2, as there are several overlapping areas. This behavior
is expected, as long hi-hat sounds will have similar high-frequency dominant auditory
characteristics as a cymbal. Having a large variety of sounds in the dataset makes it very
appropriate for training the generative model of the developed system. The intention
is for the generative system to produce as many different sounds as possible, and the
training data should facilitate this. Therefore, the diversity was the main reason for
choosing the Battery 4 Drums library as the training dataset for the generative part of
the developed system.

Native Instruments claims that a valid license for their sample libraries allows for
commercial and non-commercial use in audio productions. Any usage of their samples
for creating sound libraries or sample-based instruments is strictly prohibited. Individual
samples cannot be distributed. Because of this, the datasets used with the developed
system only include magnitude spectrograms data and not any copyrighted raw waveform.

5.2. NSynth dataset

Just like datasets such as MNIST, CIFAR and ImageNet are typical baseline datasets
in the image domain, the NSynth dataset (Engel et al., 2017) was established as one of
the first benchmark datasets for audio in the waveform domain. The dataset consists of
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305, 979 notes from 1, 006 different instruments. Each note is 4 seconds long and has a
sample rate of 16 kHz. Each instrument has an average of 65.4 notes with 4.75 different
velocities per pitch. The dataset is also labeled based on a combination of human and
algorithmic evaluations determining each instrument’s source, family, and qualities.

Even though the NSynth dataset is not intended to be used for audio production, it
still represents a benchmark dataset for measuring audio quality and has been used by
several projects discussed in section 3.4.1. The primary motivation for experimentation
with this dataset is its establishment as a point of reference in other audio research. It
also has a large number of different timbres available. The dataset also includes a variety
of sound characteristics such as percussive and transient sounds, fast decaying sounds,
and sustained sounds. The NSynth dataset is also monophonic, just like a standard
sample library consisting of short sounds, making it appropriate for experimentation with
the audio quality of the system in section 7.1. Every note in the dataset has a pitch label
and a fundamental frequency, which is not necessarily the case for a typical experimental
electronic sample library with all kinds of dissonant and atonal sounds. The NSynth
dataset was used only for the audio quality experiment and not the other experiments
since it is less diverse than the Battery 4 Drums library.
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6. Architecture
This chapter details the fundamental architecture used to develop the system, including
the tools and frameworks used during experimentation and development. The
architecture serves as one of the main structures for reaching the project goal. The
system design is similar to the modular approach adopted by Tatar et al. (2020) in
the literature review in that the developed system includes an audio to spectrogram
module, spectrogram processing module, and a spectrogram reconstruction module. The
developed system also includes a sub-module for data visualization and interactivity.
All of these modules are independent processes and contribute to specific conditions
formulated in section 1.2 in order to reach the project goal.

The information flow of the system is shown in figure 6.1. An immediate advantage of
this modular approach is that alternatives for each module can be compared and changed
without affecting any of the other modules. The following section describes only the
architecture of the implemented system but mentions the options that were considered
for the different modules. Implementation details are specified in chapter 7. Section 6.5
gives an overview and justification of the software frameworks and tools that were used.

6.1. Audio to Spectrogram Module
The audio to spectrogram module is the first module in the system’s pipeline and is
responsible for transforming any audio input into a spectrogram representation. Con-
dition C3 demands the system to work for any type of audio sample regardless of the
characteristics. As any audio input can be converted to a spectrogram, condition C3 is
fulfilled. There are many advantages of converting an audio input to a spectrogram and
using this as an intermediate representation. From the literature review, there are many
takeaways:

• Spectrogram-based models are not necessarily dependent on having a fundamental
frequency constraint or pitched instrument on the input. In experimental electronic
music and sound design, working only with sounds having fundamental frequencies
can be limiting. The authors behind Latent Timbre Synthesis (Tatar et al., 2020)
justified their use of spectrograms given the fact that they wanted to be able to
generate any sound.

• There are few attempts at learning timbre with raw waveform, and the few existing
approaches have shown to be computationally expensive. The first WaveNet
architecture (Engel et al., 2017) attempted to learn the timbre of single musical
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Figure 6.1.: The system architecture.

notes with the NSynth dataset and trained for 250k iterations, using multiple days.
Jukebox (Dhariwal et al., 2020) used a different approach with raw waveform and
entire songs, using months to train. Techniques using spectrograms as intermediate
representations from the literature review were less computationally expensive
compared to models using raw waveform.

• Since there are many ways of reconstructing a spectrogram back to audio, the
system will be able to output audio. Condition C2 demanded the system to output
audio in the waveform domain and will thus be satisfied.

Using spectrograms as the intermediate representation affects all the succeeding modules
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in the system pipeline. The entire spectrogram reconstruction module is, in fact, a result
of this choice, and options for this were taken into consideration when deciding on the
architecture. Experimentation described in section 7.1 found that Mel spectrograms
reconstructed with Griffin-Lim yielded the highest quality audio results.

6.2. Spectrogram Generating Module

For the spectrogram generating system to fulfill the project goal, it has to be trained
on a sample library, learn representations for the different timbres, and generate new
timbres based on this representation space. The input for the system is the spectrogram
from the preceding module, while the output is a generated spectrogram going into the
spectrogram reconstruction module. The spectrogram generating system should be split
into two parts. The first part is the generative system, and the second part is the system
for visualizing the latent space of the generative system. The following sections elaborate
on the architecture of the two submodules, while specific implementation details are
given in the subsequent chapter.

6.2.1. Generative Sub-module

As a part of meeting the project goal, condition C1 was formulated in the introduction
demanding that the developed system must employ a deep learning-based generative
model. The system must learn the timbre of the input spectrograms from an entire
sample library dataset so that it can be used to generate new spectrograms from any
point in the latent space.

The literature review in section 4.2 discusses several deep learning-based systems
for audio that generate new sounds by interpolating over or transferring timbre. Even
though Jukebox seems capable of learning the timbres in a sample library, its large
number of parameters appears excessive for being used with relatively short excerpts
of monophonic samples. NSynth, GANSynth, TimbreTron, and DDSP are all using
a neural network architecture conditioned on pitch since they generate sounds from
various pitched instruments. A sample library typically has a variety of sounds that are
atonal or noisy and do not rely on any fundamental pitch. Latent Timbre Synthesis
(LTS) (Tatar et al., 2020) was able to generate a variety of sounds by training variational
autoencoders on spectrograms without any pitch information. A similar variational
autoencoder architecture was used by SampleVAE (Frenzel, 2019) to generate new sounds
based on a sample library. SampleVAE implements a more complex VAE architecture by
using flow layers to shape the latent space accurately and was adopted as the generative
system in the pipeline. The decision to use this architecture was based on preliminary
experimentation with a pre-trained model provided by the author. The model was trained
on 60,000 audio samples converted to Mel spectrograms and generated a variety of sounds
by converting the spectrograms to audio with the Griffin-Lim Algorithm. A more detailed
figure of the adopted VAE architecture is shown on page 54.
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6.2.2. Latent Space Visualization Sub-module

Condition C6 was formulated as a requirement for reaching the project goal in the
section 1.2 and demands that samples should be generated from an interactive visual
representation of the existing sample library. A dimension reduction algorithm is needed to
transform the high dimensional latent representations into two dimensions for visualization.
Also, the user should be able to select a point in this 2D visualization and invert this
back into a high-dimensional latent representation. The new latent representation will
then go through the decoder part of the VAE, which outputs a new spectrogram. The
requirement for a point in the 2D visualization to be converted to a latent vector implies
that the sub-module needs to employ an invertible dimension reduction algorithm.

The majority of the reviewed literature in section 4.2 uses different dimension reduction
algorithms for visualizing sample libraries such as PCA, t-SNE, UMAP, or combinations
of them. Visualization is subjective, and there is not necessarily one technique better
than the other. UMAP was chosen as the dimension reduction algorithm for the system
as it is invertible, computationally efficient, and provides flexible embeddings with few
parameters. The experiments in section 7.2.2 compare visualization results of dimension
reduction with PCA, t-SNE, and UMAP.

6.3. Spectrogram Reconstruction Module

Condition C2 demands that the system outputs raw audio waveform. As the spectrogram
generating module outputs spectrograms, a reconstruction module is needed for the system
to fulfill condition C2. Condition C4 demands that the system outputs audio of high
quality and is also very much dependent on the spectrogram reconstruction module, as
there is significant variance in audio quality between the different approaches. Section 7.1
also shows how the spectrogram resolution affects the audio quality. The literature review
mentioned several methods for inverting spectrograms back to audio, including the Griffin-
Lim algorithm (Griffin and Lim, 1984), WaveNet (van den Oord et al., 2016), and Deep
Griffin-Lim Iteration for better phase reconstruction of magnitude spectrograms. Based
on the results from the experimentation in section 7.1, Mel spectrograms with Griffin-Lim
as the phase reconstruction method was chosen as the module for reconstructing audio.

6.4. Information Flow

This section describes how information flows through the system during training and
sample generation. The complete system with all its modules is shown in figure 6.2. The
modules used during the system training are different from the modules used during
sample generation. Therefore, the following subsections will clarify how the information
flow differs depending on the usage of the system.
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Figure 6.2.: All modules in the complete system.

6.4.1. Information Flow During Training

The spectrogram generating module employs a VAE with inverse autoregressive flow
layers and comes after the audio to spectrogram system and before the spectrogram
reconstruction system. The VAE is trained on spectrograms in the form of two-dimensional
matrices representing images and, thus, outputs reconstructed matrices corresponding
to the input during training. Before training, the sample library is preprocessed by
truncating or padding the audio samples to a fixed length of two seconds. The audio files
are then transformed into Mel spectrograms which are input to the VAE in mini-batches.
Training details are included in section 7.3 as different hyperparameters are tested for
the system. During training, the input spectrograms are encoded into a high-dimensional
latent vector. The latent vector represents the space in which the model learns input
representations. The decoder of the VAE then applies transposed convolutions to the
latent vector. It shapes it into a matrix with the exact dimensions as the input, trying
to reconstruct the training input data as accurately as possible.

6.4.2. Information Flow During Sample Generation

The sample generating process of the system starts with the visualization of the latent
space. The user of the system selects a sample library such as the one described in
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Figure 6.3.: Modules used for generating new samples. The user can click on any point
on the sample library visualization. The result is the generation of an audio
sample with audio characteristics defined by the selected point on the map.

section 5.1. A trained VAE is a prerequisite for sample generation. The VAE encoder
must embed all the audio files in the selected sample library into its high-dimensional
latent vectors. UMAP can then reduce these vectors into a set of two-dimensional points,
which can be plotted for visualization. Figure 6.3 shows how a user can click on multiple
points of the visualization, marked on the map with a cross. The x and y coordinates are
transformed into high-dimensional latent vectors with the inverse UMAP transform. The
latent vectors can then be decoded into Mel spectrograms by the decoder part of the
VAE. Griffin-Lim is then applied to the spectrograms, and audio is output by the system.

6.5. Tools

In this section, all of the software used during the system’s development process is
documented. An explanation of how the different software frameworks were used and
why they were used is also given. Working with audio in combination with complex
deep learning models demand computational power, and many of the computational
tasks of the system were performed on the NTNU IDUN high performance computing
cluster (Själander et al., 2019). The cluster currently runs multiple nodes with two
Intel Xeon cores per node and up to 128 GB of RAM and has NVIDIA Tesla P100
or V100 GPUs with 16 or 32 GB RAM available. The nodes run with the CentOS
Linux distribution. Most of the experimentation phase was conducted through running
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interactive Jupyter Notebook sessions hosted on the IDUN servers from a home computer
using SSH tunneling.

• Python 3.7.7
– Anaconda 4.11.0
– TensorFlow 1.15.5
– Scikit-learn 1.0
– Librosa 0.9.1
– Pyacoustid 1.2.2 + Chromaprint
– FuzzyWuzzy 0.18.0
– Pysoundfile 0.10.3.post1
– UMAP 0.5.2
– Matplotlib 3.4.2

• gstPEAQ 0.6.1

• GNU Bash 4.4.20

6.5.1. Python

Python is not only a familiar programming language but a language offering a vast range
of machine learning, data visualization, and audio processing frameworks. The different
framework options available resulted in efficiency throughout the development process.
The majority of the frameworks covered by the literature review in chapter 4 were also
developed in Python. A discussion of the different libraries used with Python is given in
the following paragraphs.

Anaconda Anaconda (Anaconda Inc.) is an easy-to-use distribution platform and
package management system for Python and R programming languages for scientific
computing. The Anaconda distribution comes with more than 250 packages automatically
installed - many of which are mentioned in this section.

Tensorflow Tensorflow (Abadi et al., 2015) is an open-source software library initially
developed by researchers and engineers from the Google Brain team, providing tools
for deep learning and flexible numerical computations. The architecture is flexible and
intended to be used across a range of different processing units and devices. Tensorflow
1, the version used in the developed system, is based on defining the computational
graph for the model before running it, as opposed to Tensorflow 2, which uses an
immediate execution style. Both versions have advantages over the other, but as the
initial Variational Autoencoder model used Tensorflow 1, this was used throughout the
development phase.
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Scikit-learn Scikit-learn is a Python module for machine learning. The library provides
several tools for machine learning-related tasks, including file handling, preprocessing of
data, dimension reduction, data exploration, and evaluation. The evaluation and dimen-
sion reduction classes within Scikit-learn were used frequently during the development
process and are a frequent dependency among many of the projects detailed in chapter 4.

Librosa Librosa (McFee et al., 2022) is a Python framework for music information
retrieval systems that offer methods for audio loading, time-domain processing, spectral
representations, and phase recovery. The framework was frequently used in the early
experimentation phase for this thesis, especially in section 7.1 when comparing different
spectrogram formats and parameters, as well as spectrogram reconstruction methods.
Librosa was used in numerous of the studies mentioned in the literature review in chapter
4, where it was most commonly used as a framework for audio to spectrogram systems,
but also spectrogram reconstruction systems.

Pyacoustid and Chromaprint The Chromaprint-based web service Acoustid is a
high-quality, open-source acoustic fingerprinting system. Chromaprint is an FFT-based
algorithm with logarithmically scaled frequency bins known as a Chromagram (Bartsch
and Wakefield, 2005), indicating how much energy is in each of the 12 pitch classes.
Acoustid is an API written in C utilizing the Chromaprint algorithm for generating
compact fingerprints from audio files. Pyacoustid provides the Python bindings for
Acoustid and was used for fingerprinting audio throughout the development process.

FuzzyWuzzy Fuzzywuzzy provides an easy-to-use string matching library for many
languages, including Python. For evaluation of the generated audio, fingerprinting was
done. A standard metric for measuring the distance between the generated fingerprint
strings is Levenshtein distance. Fuzzywuzzy also offers a speedup option for more efficient
calculation of large fingerprints. Among the provided methods for distance calculation,
"Simple Ration was used.

SoundFile Librosa utilizes the Soundfile framework for handling read and write opera-
tions with audio files. It is built upon libsndfile, CFFI, and NumPy. Experiments involving
audio files and development involving input-output (IO) operations with different audio
formats were done using SoundFile.

UMAP Uniform Manifold Approximation and Projection (McInnes et al., 2018) is
a manifold learning and dimension reduction algorithm provided as an Anaconda and
Python library compatible with Scikit-learn. It is designed using the same API and is
intended to be used in the same manner as other dimension reduction algorithms provided
in Scikit-learn, such as t-SNE. UMAP has been used throughout the entire development
process for dimension reduction and produced the most desirable data embedding, and
used significantly less time and computer resources.

46



6.5. Tools

Matplotlib Matplotlib (Hunter, 2007) is a comprehensive plotting library for Python for
creating animated, interactive, and static visualizations. Static visualizations were used
not only for the main visualizations of the latent space but also for visualizing waveforms
and spectrograms through Librosa’s Matplotlib-based display functions. A third-party
package, mpl_point_clicker, was used for interactivity with the plot when generating
new samples with the system. This package conveniently changes the visualization map
into a user interface, facilitating the generative possibilities of the system.

6.5.2. GstPEAQ

Based on the PEAQ system, as discussed in Section 4.3.2, Holters and Zolzer (2015)
made an open-source implementation of the algorithm. Their implementation, GstPEAQ,
utilizes Gstreamer (Taymans et al., 2018), which is a versatile framework for creating
multimedia applications. Even though it does not compute all values within the allowed
tolerance for the test signals originally used by Salovarda et al. (2005), it still claims to
provide an alternative to listening tests. GstPEAQ is used as an evaluation metric in
all the reconstruction experiments in Section 7.1 and as an addition to Mean Opinion
Scores (MOS) for evaluating the complete system.

6.5.3. GNU Bash

As some of the development was conducted on IDUNs Linux-based operating system, GNU
Bash (Foundation, 2020) was an essential tool for automating and scripting command-line
tasks. Some projects discussed in the literature review, such as WaveNet (van den Oord
et al., 2016), offered several Bash script recipes for preprocessing, training, and audio
generation.
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7. Experiments and Results
The architecture defined in chapter 6 was chosen based on experimentation with available
options for each module conducted in this chapter. Therefore, experiments with the
entire system pipeline were conducted in section 7.3 after selecting the best options for
each module in the preliminary experiments.

The experimentation conducted in section 7.1 investigated the performance of different
spectrogram formats and reconstruction methods to find the best options for the first
and last module in the system shown in figure 6.1. Section 7.2.2 experimented with the
dimensionality reduction (DR) techniques detailed in section 3.5 by trying to find the
best way to visualize a sample library. Based on the results from the experiments, the
complete system pipeline was used for experimentation with sample generation in section
7.3.

7.1. Spectrogram Representation and Reconstruction
Experiments

The following experiment was performed as a part of meeting conditions C2 and C4,
which restrict the system to output audio of high quality. The literature review indicated
that Mel and CQT spectrograms are the most frequently used spectrogram formats
in systems that generate music since the logarithmic scaling of frequencies makes the
spectrogram more compact (Cheuk et al., 2020). Linearly scaled STFT spectrograms
need exponential times the pixels of a logarithmically scaled spectrogram to describe
the same number of details in all octaves, which results in higher computational cost
and inefficiency for a neural network. Despite not considering STFT as the spectrogram
format of choice for the system, STFT spectrograms were included in this experiment to
show how the audio quality metrics varied.

Subsection 7.1.1 details how the spectrogram representations were created and which
parameters were used. In addition, two deep learning-based reconstruction methods are
described, the first being a model based on WaveNet (subsection 4.1.1) and the second
being based on Deep Griffin-Lim Iteration (subsection 4.1.2). In subsection 7.1.2, the
resulting audio quality metrics are discussed.

7.1.1. Experiment Setup

Librosa (McFee et al., 2022) was used to create the STFT, Mel, and CQT spectrograms
from 16-bit .wav files with a sample rate of 16 kHz. The audio files used for this
experiment used a subset of the NSynth train set consisting of 4257 single note files of
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the note C4, which have a fundamental frequency of 261.6 Hz. One hundred four-second
samples of this subset were concatenated to one audio file, which was used as the reference
file for the rest of the experiment. The concatenated file was then transformed into
spectrograms. As the system was built to feed a two-dimensional spectrogram into the
subsequent pipeline module directly, it was unnecessary to save the spectrograms as
actual image files. The following code snippet shows the parameters used to generate the
spectrograms with Librosa.

import l i b r o s a
fmin = l i b r o s a . note_to_hz ( ’C1 ’ )
s , s r = l i b r o s a . load ( ’ concatenated . wav ’ , s r =16000)
mag_spec = np . abs ( l i b r o s a . s t f t ( s , n_f f t =512 , hop_length =128))
mel_spec = np . abs ( l i b r o s a . f e a t u r e . melspectrogram ( y=s , s r =16000 ,

n_f f t =512 , hop_length =128 , n_mels=128))
cqt_spec = np . abs ( l i b r o s a . cqt ( s , s r =16000 , hop_length =128 ,

n_bins=168 , bins_per_octave =24, fmin=fmin ) )

An essential aspect of the spectrogram is its size, as a larger spectrogram demands
more computational resources further down the pipeline than a smaller spectrogram.
Since the samples in the dataset were padded or truncated into a fixed length of two
seconds with a sample rate of 16 kHz, a hop size of 128 would result in 250 feature vectors
for each spectrogram. A window size of 512 would result in feature vectors with a size of
257 for the STFT spectrogram. The feature vectors of the Mel and CQT spectrograms
were set to 128 and 168, respectively, which were typical values used in the literature
review.

For reference, a reconstruction without any phase estimation algorithm was done with
the istft function from the Librosa library. For the phase estimated reconstructions
using the Griffin-Lim Algorithm, the functions griffinlim, griffinlim_cqt, and mel_to_-
audio were used to reconstruct the STFT, CQT and Mel spectrograms, respectively.
An open-source implementation of Deep Griffin-Lim Iteration (DeGLI) and WaveNet
was setup. DeGLI was designed to be used with STFT spectrograms. Even though
STFT spectrograms were not considered a format that the spectrogram generating
module should use, it is still an intermediate format for some Mel spectrogram functions
in Librosa. The mel_to_audio function is a convenience wrapper for the functions
librosa.feature.inverse.mel_to_stft and the griffinlim function. DeGLI was included in
the experiment to see if it would outperform the Librosa implementation of the GLA. If so,
DeGLI could replace the Librosa implementation when reconstructing Mel spectrograms.
The WaveNet was designed to be used with Mel spectrograms, and the same resolutions
for window size, hop length, and the number of Mels from the Librosa reconstructions were
used. DeGLI was trained for 50 epochs according to recommendations and configuration
details from (Masuyama et al., 2019) while WaveNet trained for 1 million steps according
to training recommendations provided by the open-source forum1. The WaveNet seemed
to converge after around 800 000 steps, as shown in figure 7.1.

1https://github.com/r9y9/wavenet_vocoder/issues?q=training

50

https://librosa.org/doc/0.9.1/generated/librosa.istft.html?highlight=istft#librosa.istft
https://librosa.org/doc/0.9.1/generated/librosa.feature.inverse.mel_to_audio.html?highlight=griffin%20lim
https://librosa.org/doc/0.9.1/generated/librosa.griffinlim_cqt.html?highlight=griffin%20lim#librosa.griffinlim_cqt
https://librosa.org/doc/0.9.1/generated/librosa.feature.inverse.mel_to_audio.html?highlight=griffin%20lim
https://librosa.org/doc/0.9.1/generated/librosa.feature.inverse.mel_to_audio.html?highlight=griffin%20lim
https://github.com/Sytronik/deep-griffinlim-iteration
https://github.com/r9y9/wavenet_vocoder
https://librosa.org/doc/latest/generated/librosa.feature.inverse.mel_to_audio.html?highlight=librosa%20feature%20inverse%20mel_to_audio#librosa.feature.inverse.mel_to_audio
https://librosa.org/doc/0.9.1/generated/librosa.feature.inverse.mel_to_audio.html?highlight=griffin%20lim


7.1. Spectrogram Representation and Reconstruction Experiments

Figure 7.1.: WaveNet training loss.

The same 100 four-second samples used for processing in Librosa were held out from the
training set for both DeGli and WaveNet. After training, these samples were reconstructed
and concatenated to one single file.

7.1.2. Experiment Results

Two metrics were applied to determine if the reconstructed audio was of high quality
and thus if condition C4 was fulfilled. Audio fingerprinting is a method that can
measure audio similarity objectively by creating a fingerprint for each piece of audio.
A fingerprint is typically a string acting as a digital summary of the main attributes
of the recording, such as intensity, frequency, and their anchor points in time. In this
setup, the similarity between two audio fingerprints was computed with the Levenshtein
distance (Levenshtein, 1966), with a score of 0 indicating different fingerprints and a
score of 100 indicating identical fingerprints. Additionally, gstPEAQ was used to measure
the Objective Difference Grade (ODG). ODG values were calculated using the original
audio as the reference and the reconstructed audio as the signal that had undergone
degradation. Table 7.1 shows the ODG and audio similarity results for the spectrograms
and reconstruction methods.

The results from the audio fingerprinting clearly showed that the GLA reconstructions of
CQT spectrograms were the most similar. After listening to the original and reconstructed
audio files, however, there were severe degradations in the high frequencies of the audio
with the CQT spectrogram. It is important to stress that audio fingerprinting is intended
to compare audio characteristics rather than measure audio quality. The ODG score for
the CQT spectrogram reconstruction seemed to account for the distortion of the high
frequencies.

The audio generated by the WaveNet produced the same pitch and occasionally the
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Reconstruction
Method Spectrogram Avg ODG

Avg Fingerprint
Similarity

No reconstruction STFT -3.506 57
Griffin-Lim STFT -0.585 63
Griffin-Lim Mel -1.966 61
Griffin-Lim CQT -3.326 69

Deep Griffin-Lim Mel -3.913 53
WaveNet Vocoder Mel -3.911 53

Table 7.1.: Reconstruction methods and spectrogram representations.

Figure 7.2.: Spectrograms produced by DeGLI. Z is the GLA estimated spectrogram.
The residual information is shown as the difference between the estimated and
the original spectrogram. The estimation F (X, Y, Z) is denoted by “DNN
output”, where X is the initial spectrogram, Y is the amplitude-replaced
spectrogram, and Z is the closest consistent spectrogram to Y.

same timbre as the audio files in the test set. The generated samples occasionally lacked
low and high frequencies and did not keep the same structure, as the timbre sometimes
seemed to change throughout each two-second sample. Based on the default parameters
recommended in the open-source implementation, the receptive field was 31.5 ms, which
is likely to cause fluctuations in the timbral structure. The relatively small receptive
field of WaveNets is a known limitation from the literature review, and the model was
discarded as a spectrogram reconstruction method for the system. DeGLI scored the
lowest on both the ODG and fingerprint similarity metrics. Figure 7.2 shows how the
DNN produced an inaccurate phase residual estimate for a sample in the test set. The
DNN appeared biased from training on a dataset of notes with the same pitch. The
solid horizontal lines seemed to overfit the typical harmonics produced by the middle C
note. A personal listening test revealed that DeGLI produced blurry high frequencies and
occasionally smeared out the audio transients. DeGLI was discarded as a spectrogram
reconstruction method for the system based on these results.

Evaluating audio quality is challenging as it is difficult for a single metric to evaluate
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all aspects of the audio. The experiment indicated that the Mel spectrograms achieved
the highest ODG and similarity scores among the logarithmically scaled spectrograms.
The subjecitve opinion of the author after listening to the reconstructions was that the
high frequencies were less distorted, and the blurry artifacts that the literature review
considered problematic for the GLA were not as prominent. Based on these results, Mel
spectrograms and reconstruction with the GLA were used as the system’s spectrogram
format and reconstruction method.

7.2. Spectrogram Generation Experiments

The second module in the system pipeline consisted of the generative sub-module, a
Variational Autoencoder (VAE), and a latent space visualization sub-module used to
select points in latent space from which Mel spectrograms were generated. Together
they form the spectrogram generating module, which is essential for answering research
question R2, asking how well new timbres can be generated from a visual representation
of a sample library.

7.2.1. Variational Autoencoder Experiments

The purpose of the generative sub-module in the system pipeline was to generate a
variety of samples that were not already in the sample library, which solves condition
C5. The sub-module had to be able to learn the concept of timbre and map out
audio characteristics from the training data across the latent dimensions to generate
a diversity of samples. Even though the sub-module output spectrograms, it was also
indirectly responsible for meeting condition C4 and ensuring that high audio quality was
output because imprecise and blurry spectrograms could introduce audio artifacts when
reconstructed. Thus, the objective of this experiment was to investigate architectural
decisions and hyperparameters to ensure that the generated results accurately captured
the diversity of the training data.

Experiment Setup Before setting up the model, the dataset of Mel spectrograms
was created from the 10275 samples in the Native Instruments Battery 4 sample library.
Based on the parameters that resulted in the highest ODG score in the audio quality
experiment, the samples were converted to 128x250 Mel spectrograms according to the
experiment. The spectrogram dataset was further divided into train, validation, and test
sets consisting of 80%, 10%, and 10% of the training data. Even though the model was
trained unsupervised, the dataset was split in a stratified manner, meaning that the class
representation in each split was similar. Stratification ensured that the model could be
properly tested by recreating all the drum hits in the test set.

The generative sub-module was initially set up with a Variational Autoencoder archi-
tecture based on SampleVAE (Frenzel, 2019) and is shown in figure 7.3. The encoder
used four convolutional layers that reduced the size of the input spectrograms to feature
maps of size 7x15 with 32 channels. A dense layer with 512 nodes and dropout was then
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Figure 7.3.: VAE architecture used for experimentation.

applied and passed through an activation function, from which the mean and standard
deviation was predicted to form the latent vector z0, concluding the encoder part of the
VAE. The hidden output, denoted by h in figure 7.3, was also fed into the following flow
layers. Inverse autoregressive flow (IAF) layers shaped the initial latent vector z0 into a
more complex distributed vector zk. Each of the IAF layers consisted of 64 non-linear
transformations. zk was input to the decoder, which was almost identical to the reversed
encoder architecture. A dense layer with dropout was passed through an activation
function, just like the encoder. Instead of max pool layers, the decoder used unpooling
layers and transposed convolutions to upsample the latent vector into a 125x250 size
spectrogram. All activation functions were set to ELU according to recommendations by
(Frenzel, 2019).

For the VAE to fulfill condition C5, it should be generating a latent space that
maintains both the similarity of sounds locally by making clusters, as well as a global
structure that ensures there are no sudden gaps between the clusters. The generated
spectrograms also needed to be very similar to the spectrograms in the dataset to ensure
that the system output audio of high quality and fulfills condition C4. Several models
were set up to investigate which configurations of the VAE would lead to the best
performance to meet these conditions. An overview of the models and the parameters
that were experimented with is shown in table 7.2. All parameters were kept the same as
the default setup in the open-source repository except the following:
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• Latent Dimensions The number of latent dimensions used in the open-source
repository was 64, but the author did not justify this number. Latent Timbre
Synthesis (Tatar et al., 2020) used its two VAEs, the first one with a latent space
of 256 dimensions, while the second VAE used only 8 dimensions. Three models
with 8, 64, and 256 latent dimensions were set up.

• Flow Layers The VAE architectures from the literature review managed to
generate spectrograms both with and without the use of flow layers. As the models
investigating the latent dimensions use 10 flow layers, two additional models with 0
and 20 flow layers were set up.

• Beta The original VAE paper (Kingma and Welling, 2014) describes the Kullback-
Leibler divergence (KL) term in the loss function as a regularizing term for the
model. The ELBO loss has two pulling forces; the reconstruction loss is responsible
for creating local clusters, while the KL term attracts the clusters to the center of
the latent space. The paper suggests multiplying the KL term by β = N

M , where N
is the size of the dataset and M is the batch size. A model named “Beta” in table
7.2 was set up to investigate the effects of scaling the KL term. For a training set
with N = 8220 and a batch size of M = 64, β was set to 128.

• Dropout To avoid overfitting, dropout was applied to the dense layers by default.
The model named “No Dropout” in table 7.2 was set up to investigate performance
without using dropout. Training this model was difficult as the loss frequently
exploded. As the model was rolled back to stable checkpoints upon divergence
several times, it was decided to train it for 10 thousand steps.

Model Name
Latent

Dimensions
Flow

Layers Trained Steps

8 dim 8 10 20k
64 dim 64 10 20k
256 dim 256 10 20k
0 flow 64 0 20k
20 flow 64 20 20k
Beta 64 10 20k

No Dropout 64 10 10k
Underfit 64 10 2k
Overfit 64 10 55k

Table 7.2.: Variational Autoencoder Hyperparameter Experiment Setup.
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Training The models were trained with the default parameters from the open-source
repository. These parameters included a learning rate of 0.001, batch size of 64, and
validation of every 100th step. Initially, training was performed with a dynamic learning
rate. If the validation loss did not improve within the next five validation steps, the
learning rate was divided by five until stopping if it reached a minimum learning rate set
to 0.00001. The generated spectrograms were blurry as the initial models converged at
approximately 2000 steps with a dynamic learning rate. Based on these initial results
and recommendations from the SampleVAE author to overfit the models to the training
spectrograms, the other models were trained for 20 thousand steps. After evaluating the
“64 dim” model at 20 thousand steps, it was further trained for 35 thousand steps to
investigate the results of extensively overfitting the training data. The setup and results
from the initial underfit model and the extensively overfit model are included in table
7.2 and table 7.3 under the names “Underfit” and “Overfit”, respectively. The training
times were effectively 1 hour for the underfit model and 13 hours for the overfit model
when trained on two Intel Xeon Gold 6132 processors with a total of 28 cores on the
IDUN HPC cluster (Själander et al., 2019). However, the training times were longer
as exploding losses occasionally required the training to be rolled back to the last valid
checkpoint.

Evaluation Metrics Evaluating generative models is problematic because it can be
hard to differentiate between how well the model performs and how good the quality of
the generated content is. Several metrics tend to be applied to measure different aspects
of a system. A set of metrics was set up to focus on different qualities of the model
performance to ensure adequate evaluation of the system. Each metric evaluated all
models, and the results are shown in table 7.3. The evaluation metrics were as follows:

• Frechet Inception Distance (FID) To measure how similar two groups of images
are, FID (Heusel et al., 2017) computes feature vectors for each set of images based
on how similar the computer vision features are. The metric summarizes the
distance between feature vectors from the Inception v3 model (Szegedy et al., 2015)
meaning that lower scores indicate that the groups are similar. Lower scores are
shown to correlate well with higher-quality images. For each model in table 7.2,
the FID score was calculated.

• Number of Statistically-Different Bins (NDB) This metric was proposed
by Richardson and Weiss (2018) as a way of measuring the diversity of generated
examples. The training and generated examples can be compared by clustering
the examples into k = 50 clusters, called bins, with the k-means algorithm. NDB
is then calculated as the number of clusters of the training examples significantly
different from the clusters of the generated examples by a two-sample Binomial test.
Even though NDB is mostly used to measure mode collapse in GANs, a problem
that should not occur for VAEs, this metric is included to assess the difference
between the real and reconstructed spectrograms. An open-source implementation
of NDB was setup. The spectrograms were resampled from 128x250 pixels to 16x32
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pixels due to a limit of 1000 features in the open-source implementation.

• PEAQ To measure how the spectrogram generating step affected the audio quality,
PEAQ-scores were used. This metric was used in the audio quality experimentation
with the outcome that the Mel spectrogram format reconstructed with the GLA
was selected as the spectrogram representation and reconstruction method. The
spectrograms in the test set were reconstructed by the VAE models and then
reconstructed to audio with the GLA to evaluate the system’s audio quality end-to-
end. The maximum amplitude was recorded for each sample so the reconstructed
samples could be correctly scaled to account for the differences in loudness. ODG
scores were then calculated between the original and reconstructed audio files. The
total average ODG scores were included in table 7.3 while both the average and
best ODG scores for each of the drum hits in the dataset are shown in table 7.4
for the “Overfit” and “Beta” models. As the gstPEAQ implementation needed a
certain quantity of information to evaluate audio quality2, each audio sample was
concatenated with itself, that is, doubled in length, for the gstPEAQ algorithm to
output valid numbers.

• Audio Fingerprinting As a means of measuring the similarity of the original
samples and the generated samples in the test set, the average similarity between the
fingerprints was calculated. The fingerprinting algorithm needed a certain amount
of audio information, as with gstPEAQ, and the same double-length samples were
used when estimating the ODG scores above.

Experiment Results The results in table 7.3 show that the images in the test set
were similar to the train set in terms of NDB. All models except “Beta” generated image
spectrograms with five or fewer statistically significant bins compared to the original
spectrograms in the train set. This behavior was expected since the inductive bias of
VAEs is to reconstruct all the classes in the training data. However, figure 7.4 shows
how “Beta” failed to produce some of the classes in the dataset entirely, as the higher
KL term seems to prohibit the latent space from being mapped out.

The FID scores seem to correlate with how overfit the models were. However, the
models with larger latent dimensions seemed to generate spectrograms with similar
features to the train set with less training. Another observation from the results was
that a lower FID score points toward a slightly higher ODG score. In terms of audio
quality, the average ODG scores place between annoying and very annoying, meaning
that the level of audio degradation was very high. Even when overfit, the models seemed
to average over the training examples. The reconstructed samples possessed essential
audio characteristics but lacked the specificity and variations unique to every sample.
The average fingerprint scores indicate that the reconstructed samples were not very
similar to the samples in the original samples from the test set.

The models with the highest and lowest average ODG scores are compared in table
7.4 and shows the number of samples from each drum category that could have ODG

2https://github.com/HSU-ANT/gstpeaq/issues/6
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Model NDB FID Avg ODG
Avg Fingerprint

Similarity

Test set 1 43.5 - -
8 dim 0 141.6 -3.742 47.1
64 dim 4 133.7 -3.687 47.0
256 dim 4 121.8 -3.682 47.2
0 flow 5 123.6 -3.688 47.1
20 flow 3 121.0 -3.668 46.9
Beta 11 163.0 -3.836 46.4

No Dropout 3 140.0 -3.713 46.9
Underfit 4 167.3 -3.801 46.8
Overfit 2 122.5 -3.645 47.2

Table 7.3.: Hyperparameter Experiment Results.

Figure 7.4.: NDB scores for the image spectrograms in the train set, test set, and the
set of examples reconstructed by the model “Beta”, the latter indicated by
orange bars. The model failed to reconstruct several bins, shown by the
orange bars falling outside the standard error of the train set.
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scores calculated by gstPEAQ, along with the average and best ODG scores. Despite low
average ODG scores for all models, some drum hits were more frequently reconstructed
with a higher score. An interesting observation for the “Overfit” model is that hi-hats
have a slightly higher average ODG score. The drum categories that had the best ODG
score placing within perceptible but annoying seem to be mid-range sounds with pitched
characteristics, which is the case for some snares, mallet drums, and metallic sounds.
Regardless of the occasional generation of good quality sounds, the system performed
poorly at fulfilling condition C4 as the overall audio quality, as measured with PEAQ,
was low. Since the “Overfit” model achieved slightly better ODG scores, it was used in
the subsequent experiments. The drum hit-specific ODG scores for the remaining VAE
models are shown in appendix A.

Model Overfit Beta

Drum Hit n Avg ODG Best ODG n Avg ODG Best ODG
Clap 23 -3.778 -3.481 10 -3.903 -3.871

Combo 1 -3.801 -3.801 2 -3.886 -3.884
Cymbal 68 -3.623 -2.747 63 -3.734 -3.146

Hand Drum 18 -3.705 -3.393 15 -3.885 -3.804
HiHat 154 -3.468 -1.575 158 -3.779 -2.202
Kick 133 -3.814 -3.506 130 -3.892 -3.818

Mallet Drum 73 -3.683 -1.381 54 -3.896 -3.818
Metallic 57 -3.604 -2.51 63 -3.822 -2.421
Shaker 16 -3.727 -3.267 21 -3.881 -3.448
Snare 203 -3.655 -1.118 160 -3.87 -3.325
Tom 91 -3.615 -1.333 91 -3.814 -2.632

Wooden 8 -3.714 -3.261 1 -3.906 -3.906
NaNs 182 - - 259 - -
Total 845 -3.645 - 768 -3.836 -

Table 7.4.: End-to-End Audio Quality Results.

7.2.2. Dimensionality Reduction and Visualization

Audio should be generated from an interactive visual representation of a sample library to
fulfill condition C5. Since the previous experiment showed that several of the implemented
VAE models could generate distributions of spectrograms similar to the training data,
dimensionality reduction (DR) algorithms could be applied to visualize all the samples
in the dataset. This experiment investigated which DR method would generate the most
meaningful local clusters while still preserving a smooth global structure. Additionally,
since the developed system was restricted to generating samples from an interactive
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visualization, the possible errors from applying a transform and inverting it was measured.

Experiment Setup Based on the results from the VAE experimentation, the “Overfit”
model was used due to the generated spectrograms having the most similar features as
the original spectrograms. Each sample in the dataset was encoded into 64-dimensional
latent vectors, as denoted by zk in figure 7.3. The respective drum hit labels were also
saved for later plotting. The following functions were used to reduce the high-dimensional
vectors to two dimensions:

• Principal Component Analysis (PCA) The scikit-learn function sk-
learn.decomposition.PCA was used with the default parameters and the number of
components set to two.

• t-distributed Stochastic Neighbor Embedding (t-SNE) The scikit-learn
function sklearn.manifold.TSNE was used with most of the default parameters.
Based on recommended values from the scikit-learn library, 2, 30, and 100 were
used as values for the perplexity parameter, setting the size of the neighborhoods.
For each of the values of perplexities, t-SNE embeddings were optimized for 250,
500, and 5000 iterations, generating nine embeddings.

• UMAP DR with UMAP was performed with similar values for the neighbor
parameter, this time using 10, 50, and 100 based on recommendations from the
UMAP documentation and the fact that the sample size of the NI Battery 4 Drums
dataset is 10275. The minimum distances between the data points were set to 0.1,
0.5, and 0.8 for each neighbor parameter value, resulting in nine embeddings.

For better readability the resulting two dimensional embeddings were scaled with the
scikit-learn function sklearn.preprocessing.MinMaxScaler to fit the outermost points
between 0 and 1 on the x- and y-axis. The scaled plots are shown below, with PCA in
figure 7.5, t-SNE in figure 7.6 and UMAP in figure 7.7.

Experiment Results Prior knowledge about the transformed data is needed to
determine which DR method provided the most meaningful local clustering while still
preserving a smooth global structure. Four of the most prominent clusters formed with
all DR methods were kick drums, toms, hi-hats, and cymbals. Kick drums and toms
typically contain low-frequency content, with toms usually having a longer amplitude
decay. Hi-hats and cymbals are high-frequency sounds typically with short, and long
amplitude decays. The PCA embedding seemed to encode the amplitude decay of the
sounds on the x-axis. At the same time, the y-axis appeared to show the frequency
content, from y = 0 indicating low frequencies to y = 1 indicating high frequencies. As
the other drum hits were grouped in the center in terms of frequency and amplitude
decay, there were few other distinct clusters in the PCA plot.

Both t-SNE and UMAP were able to cluster a fair amount of the other drum hits,
such as the categories for metallic, hand drum, shakers, and wooden sounds. t-SNE
focused more on preserving local structure even when perplexity was set to 100 than the
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Figure 7.5.: PCA showing the two components with the highest covariance.

UMAP plots. Of the three DR methods, UMAP with neighbors set to 100 and minimum
distance set to 0.8 seemed superior for embedding accurate local clustering and keeping
a smooth global structure.

Since condition C6 constrained the system to generate samples from an interactive
visualization, the DR methods needed to have some support for inverse transforms. Since
t-SNE produces local embeddings, finding a good inverse mapping is not feasible3. On
the other hand, the PCA and UMAP functions used in the experiment setup facilitate
inverse transforms. A reconstructed embedding was made by applying the DR transforms,
and their respective inverse transforms to quantify the accuracy of the DR methods. The
mean squared distance was calculated between the original and reconstructed spectrogram

3https://datascience.stackexchange.com/questions/34352/reconstructing-original-data-points-from-t-
sne-output
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Figure 7.6.: Embeddings generated by t-SNE.

embeddings. For PCA and UMAP, the mean squared distance was 0.22 and 0.59. For
perspective, the values of the original embeddings had a mean of 0 and ranged from -7.68
to 4.85.

The lack of invertibility discarded t-SNE as a DR method the system could use.
Regardless of this, it was included in the experimentation to show that the local clustering
capabilities of UMAP performed similarly. Despite having a higher reconstruction error
than PCA, UMAP was chosen as the DR method for the system due to its superior
performance in creating meaningful local clusters while still preserving a smooth global
structure. The following experiment employed UMAP as the latent space visualization
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Figure 7.7.: Embeddings generated by UMAP.

sub-module in the completed system pipeline.

7.3. Completed System Experiments

The experiments conducted in section 7.1 and section 7.2.2 investigated the performance
of the individual modules in the system pipeline. The audio to spectrogram module was
represented by the Librosa library creating Mel spectrograms in the completed system
pipeline. The spectrograms were then fed to the spectrogram generating system, which

63



7. Experiments and Results

Figure 7.8.: Visualization used to generate samples.

consisted of the VAE and UMAP transform in tandem. The generated spectrograms
were then converted to audio with the GLA. In this section, experimentation using the
completed system pipeline was conducted to qualitatively investigate how effectively the
system met condition C5 by generating diverse samples from an interactive visualization.

7.3.1. Experiment Setup

Interactivity was added to test the generative abilities of the system according to the
project goal and condition C5. The same UMAP plot from the previous experiment
was set up, with a neighborhood size of 100 and a minimum distance of 0.8 between
the points. To be able to select a point in the visualization of the sample library, the
Matplotlib (Hunter, 2007) extension mpl_point_clicker was used. The system could
record the coordinates of the clicked points using the clicker object in the library. The
user-generated points, such as the ones denoted by “x” marks in figure 7.8, were inverted
with the UMAP transform and decoded by the VAE decoder and output as spectrograms.
The resulting spectrograms were then reconstructed with the GLA to audio.

A grid with 100 points was spread across the map to test the limits of the UMAP
visualizations. Each corner point of the grid was estimated to cover most of the samples
in the visualization but occasionally fell outside, as seen for the upper and lower right
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corners in figure 7.9. All of the 100 points were then converted to latent vectors by the
inverse UMAP transform, decoded into spectrograms, and reconstructed to audio. As a
means to visualize the diversity learned by the system, the generated spectrograms from
each point across the grid are shown in a corresponding plot in figure 7.9. This process
was repeated for all the VAE models that were set up in section 7.2.1. The spectrograms
were resized only to show the first second of the sounds to better show details due to the
high number of sounds with a short duration across the latent grid.

7.3.2. Experiment Results

The latent grids with corresponding spectrograms are shown for the models “Overfit”,
“Underfit”, and “Beta” in figure 7.9, 7.10, and 7.11, respectively. A notable observation
from the figures of the latent grids is that there is a significant difference between the local
clustering of samples. The “Overfit” model enabled UMAP to create more clusters. The
global structure also seemed smoother, with few white gaps between the clusters, as it
seemed that the model managed to reconstruct a higher amount of examples for each type
of drum hit. The “Underfit” model enabled UMAP to create almost the same amount of
clusters, except for each cluster being slightly less spread out. The “Beta” model, on the
other hand, showed less prominent clustering and poor global structure. The model also
produced strange spectrograms with few variations. The spectrograms created by the
“Underfit” model were blurry, and the differences between each spectrogram were not
very drastic. However, the model did map out a diverse set of spectrograms across the
latent space that seemed to average over the typical drum hit for each class. The “Overfit”
model had a similar latent space, but the spectrograms were much more detailed, as
shown by the horizontal lines created by the “Metallic” cluster points. The latent grid
visualizations of the remaining models are shown in appendix B.

According to the spectrogram visualizations of the latent space, the models were
capable of learning a diversity of spectrogram types but struggled with learning the
differences within each class. The VAE seemed to average over most of the examples
within each type of drum hit. The effect of averaging over the training examples were
more apparent for the “Underfit” model, as each spectrogram in figure 7.10 transitions
smoothly into the surrounding spectrograms. The overfit model appeared to create a
more extensive palette of spectrograms with finer details. This is noticable in figure 7.9
as there are more sudden transitions between some spectrograms. The finer-detailed
spectrograms generated by the overfit model appeared to be a contributing factor to
the slight increase in audio quality in the experiment conducted in section 7.2.1. The
diversity shown by the “Overfit” model seemed more effective in meeting condition C5.
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Figure 7.9.: Generated spectrograms from a latent grid for the “Overfit” model.

Figure 7.10.: Generated spectrograms from a latent grid for the “Underfit” model.
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Figure 7.11.: Generated spectrograms from a latent grid for the “Beta” model.
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8. Evaluation and Discussion
Based on the results of the experiments, the system was evaluated with regard to the
research questions that were made and the conditions that were formulated as a part of
reaching the project goal. This chapter evaluates specific aspects of the system in the
following section. Section 8.2 assesses if the research questions have been answered, while
section 8.3 analyses whether the system reached the project goal or not.

8.1. System Evaluation and Discussion

The two aspects that have been fundamental throughout the development of the system
were audio quality and sample diversity, addressed in subsection 8.1.1, and 8.1.2, respect-
ively. Each aspect was discussed based on system performance during experimentation
and compared to the literature review results. The system’s limitations were analyzed,
and the limitations of the employed evaluation metrics.

8.1.1. Audio quality

Section 7.1 investigated the audio quality of spectrograms reconstructed with the Griffin-
Lim Algorithm (GLA), Deep Griffin-Lim Iteration, DeGLI (Masuyama et al., 2019),
and a WaveNet (van den Oord et al., 2016). The initial experiment showed that Mel
spectrograms with the GLA resulted in the least degraded audio quality among the
logarithmically scaled spectrogram reconstructions.

The motivation for including DeGLI as a reconstruction method in the initial experiment
was due to the better PESQ (Rix et al., 2001) scores compared to the GLA. PESQ is
different from PEAQ, and focuses on audio sharpness, background noise, and variable
latency in the audio, whereas PEAQ focuses more on distortions and the error in harmonic
structure. It was evident that DeGLI did not achieve the same results on PEAQ. The
intention of using the NSynth dataset with a limited amount of pitches was to force
DeGLI and WaveNet to learn the concept of timbre. Additionally, the NSynth dataset
facilitates for convenient reproducibility of the experiment. The choice of dataset might
have biased the ODG scores in favor of the GLA as only a limited range of frequencies
was tested. The Native Instruments dataset includes sounds with frequency ranges
across the entire human hearing range instead of the filtered NSynth dataset, with no
frequency lower than 261 Hz. Therefore, the limitations of Mel spectrograms to represent
information in the low frequencies compared to CQT spectrograms might not have been
sufficiently demonstrated in the initial audio quality experiment. The outcome resulted
in the Mel spectrograms and the GLA being used for the remaining experiments. The
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GLA was a limiting factor for the audio quality when reconstructing spectrograms from
the VAE models.

Neither Latent Timbre Synthesis (Tatar et al., 2020) or SampleVAE (Frenzel, 2019)
conducted any audio quality evaluation. MOS scores based on a Likert scale from 1 to 5
were used by the WaveGAN and SpecGAN (Donahue et al., 2019) authors to evaluate the
Speech Commands Zero Through Nine (SC09) dataset, with the results being 2.3 ± 0.9
and 1.9 ± 0.8, respectively. The authors stated that the poor qualitative ratings of
SpecGAN were primarily due to the lossy Griffin-Lim inversion and not the generative
procedure itself. One second samples were evaluated with MOS. Presenting listeners
with samples of such a short duration is not necessarily enough to let them get a broad
perspective of the quality. The short sample duration was also problematic for the PEAQ
implementation in this thesis because the generated samples had to be doubled in length
for the algorithm to give an ODG score. The developed system achieved ODG scores not
far from the SpecGAN results. The reduction in audio quality compared to SpecGAN
might be caused by the VAE averaging over training examples rather than favoring pixel
realism typical for GANs. The WaveGAN and SpecGAN authors evaluated only the
reconstructed output with MOS, while the ODG scores in this thesis compared a reference
with a reconstruction. Additionally, the frequency range of the audio evaluated in this
thesis is larger than the range in the SC09 dataset used by WaveGAN and SpecGAN.

GANSynth (Engel et al., 2019) implemented WaveGAN as one of many baselines for
evaluation. The authors presented human judges with two four-second long samples of
audio corresponding to the same pitch and asked them which sample had better audio
quality. Their best model achieved a similar amount of “wins” as the original audio
samples. WaveGAN performed worst among all the models in the comparison. It was
problematic to compare the audio quality results from the experiments in this thesis
compared to GANSynth and WaveGAN. GANSynth was restricted to only generating
pitched audio, and the MOS scores from WaveGAN were based on speech audio. Thus, it
is not that meaningful to compare the ODG scores of the audio generated by the system
developed in this thesis.

It is important to stress that the usage of PEAQ was not ideal for measuring audio
reconstruction quality for short audio samples, as the recommended input audio length is
between 10 and 20 seconds. The difference grade between an audio signal that a generative
model has reconstructed will be very different from a signal that has only undergone some
form of perceptual coding. Other alternative evaluation methods, like PEMO-Q (Huber
and Kollmeier, 2006), have been proposed instead of PEAQ. However, their approach
also provides a metric score to evaluate some possibly distorted test signals against a
high-quality reference signal. Additionally, the gstPEAQ implementation (Holters and
Zolzer, 2015) had to be given a certain amount of data to calculate a score. Since only
four-second audio samples were used during the PEAQ evaluation of the VAE models,
the algorithm propagated several NaN values, making the results less reliable.

In the past, identifying electronic sounds was difficult because of the digital audio
formats themselves. The same audio file would be opened, stored, or cataloged differently
depending on whether it was from an MP3 file or a .wav file. Audio fingerprinting was
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made to identify the sound’s attributes and create a virtual overview of the peaks and
points for these attributes. Using audio fingerprinting to measure audio quality in terms of
audio degradation can lead to misleading results unless the audio degradation drastically
alters and distorts the audio features and their timing. In other words, using audio
fingerprinting to evaluate the reconstruction quality of a series of short and monophonic
samples could lead to ambiguous results. Comparing the PEAQ results with the similarity
results shows that the latter metric fails to describe the audio quality for short excerpts
of monophonic audio.

8.1.2. Sample Diversity

Evaluating generative models in the waveform domain is challenging. Neither Latent
Timbre Synthesis (Tatar et al., 2020) nor SampleVAE (Frenzel, 2019) conducted any
metric-based evaluation of the sample diversity of Latent Timbre Synthesis or SampleVAE.
These models were not conditioned on pitch and are the most similar systems from the
literature review. Measuring sample diversity by comparing the generated samples
between models is difficult. The generated examples depend on the datasets used. The
lack of established benchmark datasets for sample libraries makes for less comparability
for these models. Instead, metrics like the Number of Statistically-Different Bins (NDB)
and Frechet Inception Distance (FID) measures how different the original and generated
distributions of samples are.

WaveGAN and SpecGAN (Donahue et al., 2019) measured the speaker diversity with
MOS. The training data used by the WaveGAN authors was also the most diverse
among the studies described in the literature review, ranging from single-word speech
recordings, bird vocalizations, individual drum hits, and short excerpts of piano music.
WaveGAN and SpecGAN achieved speaker diversity MOS scores of 3.2±0.9 and 2.6±1.0,
respectively. Unfortunately, these MOS scores can not be compared to the NDB and FID
scores used to measure the sample diversity of the system developed in this thesis.

GANsynth (Engel et al., 2019) evaluated model performance with several metrics,
including NDB and FID. The best GANsynth (Engel et al., 2019) models achieved NDB
scores of only 29.3 out of 50 bins, indicating that more than half of the clusters of
generated examples were statistically different from the original examples. Mode collapse
is a known problem for GANs, and the VAE models that were experimented with in
section 7.2.1 had low NDB scores as expected from the mode-covering behavior of VAEs.
Even the “Underfit” model achieved a low NDB score after training for only 1600 steps.
The latent grids shown in the completed system experiments in section 7.3 qualitatively
confirmed that the VAE models mapped out most of the drum hits to distinct areas
of the latent space. The completed system experiments also showed a difference in the
spectrogram fidelity, with the overfit models having finer details than the less overfit
models.

The FID metric captures the feature similarity of two distributions of samples indicating
that the overfit models lean towards lower FID scores. The superior GANSynth models
had FID scores of 104 and 167, while all the VAE models tested in spectrogram generating
experiment scored between 167 and 121. The metric appeared to correlate with how
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overfit the models were. A high FID score for the real examples in the test could result
from a substantial variance of audio characteristics for each drum hit. Compared to
the results from the evaluation of GANSynth (Engel et al., 2019), the test set used for
experimentation with the VAE was four times less similar to the train set in terms of
FID. Drawing a more similar test and train set would probably lower FID scores. Both
NDB, FID, and the qualitative analysis of the latent grids generated by the VAE models
indicate that the developed system could generate diverse samples.

8.1.3. Limitations

Several limitations were present throughout the development and experimentation with
the system. One of the constraints was the audio duration and the fact that the system
only works for audio samples with a length of two seconds. The limited sample length
was due to the fixed spectrogram size set in the dimensions in the input and convolutional
layers. The system would output errors upon a different input than 128x250 pixel
spectrograms. Despite the two-second audio duration limit, longer samples could be
generated by splitting them up and concatenating the generated results. Considering
that the mean length was less than two seconds for most of the drum hits in the dataset,
the impact of this limitation was less significant.

The system is also limited by depending on a labeled dataset for the visualizations to
make sense. If the plotted points of the UMAP visualizations all had the same color, it
would be impossible to determine which audio characteristics are present in each cluster.
The developed system demands the user to possess knowledge about the characteristics
of each drum hit in order to be able to navigate the visualization. Without some labeled
data points, visualizing the sample library has no purpose. An idea to cope with this
limitation is presented as future work in section 9.2.

Choosing only drum hits as training data limited the evaluation options, as the drum
samples’ quality was challenging to determine during experimentation. At the same
time, the typical sample library used by audio content creators consists mainly of short
samples. If the system had been modified to work with longer samples, the ODG and
similarity scores would be more reliable but at the cost of using samples that might not
represent the typical sample library used by audio producers.

Another limitation is the possible errors caused by the DR method employed by the
system. The UMAP and inverse UMAP transforms are stochastic. Applying the UMAP
transform on some high-dimensional vector followed by the inverse UMAP transform is
unlikely to reconstruct the original vector. The more data used to compute the parameters
for the initial transform, the less the resulting inverse will deviate on a qualitative level.
The error size is also dependent on the density of data in different regions. If a point is
inverted from a sparse region, it is more likely to have a significant round trip error. The
grid of spectrograms in the figure on page 66 covers points that fall within the UMAP
embedding space. If some of these points were to fall outside the bounds of clusters of
this space, the inverse transform could operate poorly, sometimes generating strange
results. An example of such results from points falling outside the UMAP embedding
space is shown in figure 8.1.
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Figure 8.1.: Limitations with inverse UMAP transform when trying to reconstruct points
that fall outside the embedding space. The generated spectrograms are very
different from the surrounding spectrograms.

8.2. Research Questions
After evaluating the system, the research questions were reviewed to assess how well they
were answered.

Research Question R1

How well can audio be generated in the waveform domain with deep learning?

Section 4.1 of the literature review described state-of-the-art within the field of deep
generative audio modeling. Several distinct deep learning techniques for generating
audio in the waveform domain were described. WaveNet (van den Oord et al., 2016)
and SampleRNN (Mehri et al., 2017) were mentioned as initial attempts motivated
by progress within Text-To-Speech (TTS) systems. Limitations for the methods were
short receptive fields resulting in poor audio quality and high computational cost during
training and sample generation. WaveGAN and SpecGAN (Donahue et al., 2019) were
mentioned as methods reducing the computational cost but still suffered from inadequate
audio quality.

Different approaches using intermediate spectrogram representations of the audio were
described. GANSynth (Engel et al., 2019) was introduced with an alternative spectrogram
representation unwrapping the phase onto the magnitude spectrograms and achieved
better audio quality scores. MelGAN (Kumar et al., 2019) achieved decent audio quality
results and fast inference times being trained on Mel spectrograms of audio. Tacotron
2 conditioned a WaveNet on Mel spectrograms and achieved exceeded state-of-the-art
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results within TTS. Additionally, Deep Griffin-Lim Iteration, DeGLI (Masuyama et al.,
2019), was proposed as a new method to reconstruct phase from magnitude spectrograms
better. The flexibility of using spectrograms as an intermediate audio representation
(supporting R2 along with the promising results of the conditioned WaveNet and DeGLI
caused them to be included in the audio quality experimentation in section 7.1. The
audio quality was measured by calculating Objective Difference Grade (ODG) scores and
fingerprint similarities to answer the research question precisely. Due to insufficiency
in the training data and DeGLI not performing as well with music as with speech, the
Griffin-Lim Algorithm was used in the pursuit of fulfilling conditions C2, C3, and C4.
Despite not using deep learning-based reconstruction methods in the final system, deep
learning was used to generate spectrograms inspired by Latent Timbre Synthesis (Tatar
et al., 2020) and SampleVAE (Frenzel, 2019) from the literature. In total, R1 was
considered to be answered while also contributing to the conditions above.

Research Question R2

How well can new sounds and timbres be generated from a visual representation of a
sample library?
Answering this research question was done in two parts. The first part considered how
new sounds and timbres were generated and was described in the literature review in
section 4.2. State-of-the-art deep learning-based systems learning the concept of timbre
were presented. Jukebox (Dhariwal et al., 2020) was mentioned as a system capable of
generating complete compositions of music but was discarded as an option for the system
due to high computational costs. DDSP (Engel et al., 2020) was presented as a novel
approach utilizing synthesizer components controlled by neural networks to learn the
timbre of monophonic pitched instruments. DDSP was not used in the developed system
due to its limitation of only generating pitched audio. LTS and SampleVAE were described
as flexible VAE-based systems capable of learning sounds with any characteristics. They
were both spectrogram-based and intended to be used with sounds from sample libraries
and were therefore investigated further during experimentation.

The second part of the research question included a review of dimensionality reduction
(DR) methods used in sample library visualization systems such as The Infinite Drum
Machine (McDonald et al., 2017). Three of the most common DR methods were presented
in section 3.5. The performance of the DR methods was further investigated during
experimentation in section 7.2.2. The round-trip error for the invertible DR methods was
measured along with how well the DR method could cluster data points while maintaining
a smooth global structure. From the experimentation, Uniform Manifold Approximation
and Projection (UMAP) was chosen as the DR method for the system. Answering the
research question was important for conditions C5 and C6 to be fulfilled. Based on the
above, R2 was considered answered and also contributing to the conditions above.
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Research Question R3

How can the quality of generated samples be evaluated?
The literature review discussed various evaluation methods as a part of answering this
research question in section 4.3. Mean Opinion Scores (MOS) were presented as an
essential metric to include during audio quality evaluation. Perceptible Evaluation Metrics
for Audio Quality (PEAQ) was mentioned as an alternative method trying to simulate the
results of human rankings. Using fewer resources than MOS, ODG scores were measured
with PEAQ throughout the conducted experiments. Further, subsection 4.3.3 presented
factors that affect subjective perceptions of audio quality in music productions.

Additionally, audio fingerprinting was used to determine the similarity of the original
and reconstructed samples. Despite using multiple metrics during experimentation, the
audio samples were problematic to evaluate due to their short length. Regardless, R3
was considered partly answered due to the shortcomings of the audio quality metrics on
the samples used during experimentation.

8.3. Project Goal and Conditions

Create a deep learning system with the capability of generating a diverse set of high-quality
audio samples from an interactive visual representation of a sample library.

In addition to the three research questions, six conditions were formulated as require-
ments that needed to be fulfilled for the project goal to be considered achieved. Five out
of the six conditions were considered to be met. Regardless of the system not being able
to generate audio of high quality, it still generated a diverse set of audio samples from an
interactive visual representation of a sample library. The insufficient audio quality meant
that the project goal was not fully met.

Condition C1

Deep learning based models are the basis for the developed system.
The completed system pipeline used a deep generative model in the form of a VAE with
Inverse Autoregressive Flow to generate spectrograms. By the definition of deep learning
formulated by Deng and Yu:

“A class of machine learning techniques that exploit many layers of non-linear
information processing for supervised or unsupervised feature extraction and
transformation and for pattern analysis and classification.”

Despite discarding the deep learning-based spectrogram reconstruction methods based
on the results from the audio quality experiment in section 7.1, the core of the system is
the VAE model. Thus, the condition was considered to be met.
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Condition C2

Audio in the waveform domain will be output by the system.
Spectrograms were chosen as an intermediate representation of audio. The spectrogram
format allowed for a flexible and modular pipeline to be built. A variety of audio to
spectrogram and spectrogram reconstruction modules could be experimented with without
affecting the spectrogram generating system. The developed system outputs audio with
a sample rate of 16 kHz and a bit rate of 16 bits after reconstructing spectrograms with
the GLA. Despite the system being limited to generating audio with a fixed length of
two seconds, this condition was considered met.

Condition C3

The system should work for any audio sample regardless of the characteristics.
Similar to condition C2, the use of spectrograms as an intermediate representation
of the audio in combination with not requiring pitch information for the VAE models
allowed the developed system to be used with any audio regardless of the characteristics.
This condition more explicitly constrains the system to accept pitched sounds with
fundamental frequencies and more experimental noise-based electronic samples typically
found in the sample libraries of audio creators. The condition was met considering this.

Condition C4

The generated audio must be of high quality.
The audio quality experiment conducted in section 7.1 limited the system to use Mel
spectrograms and the GLA for audio reconstruction. Evaluating the reconstructed audio
from the spectrograms generated by the system resulted in ODG scores indicating an
audio degradation between “annoying” and “very annoying”. Despite considering the
results from the PEAQ analysis less reliable due to the short length of the samples, the
audio quality could not be considered high. Due to this, the condition was not met.

Condition C5

The system should be able to generate a variety of samples that are not already in the
sample library.
This condition was intended to specify that the system should generate any sample not
already in the sample library and not necessarily samples with entirely new characteristics.
As the completed system experiment showed that the system produced audio with desired
characteristics, it was also evident that the system seemed to average over most training
examples, limiting the number of new samples generated. The system generated more
specific audio features by overfitting the VAE models. This condition was considered met
as the system could generate samples from clusters formed for almost all of the drum
hits in the sample library, and even express variations within most clusters.

76



8.3. Project Goal and Conditions

Condition C6

The new samples should be generated from an interactive visual representation of the
existing sample library.
By using UMAP as a DR method to visualize the latent vectors of a sample library
in two dimensions, the system used this visualization as an interactive map that could
generate samples. The completed system experiment described in section 7.3 showed how
samples were generated by selecting any point within the limits of the UMAP embedding.
Therefore, this condition was considered met by the system.
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This chapter presents the conclusion of the thesis and future work. Most of the future
work suggested for the developed system is based on its current limitations.

9.1. Conclusion

A goal of creating a deep learning system with the capability of generating a diverse
set of high-quality audio samples from an interactive visual representation of a sample
library was proposed in the introduction of this thesis.

A literature review was conducted in chapter 4 to investigate state-of-the-art generative
models in the waveform domain and deep learning-based systems attempting to learn
the concept of timbre. The literature review emphasized spectrograms as a flexible
intermediate representation of audio. Processing audio in terms of image spectrograms
facilitated separate systems converting audio to spectrograms and reconstructing audio
from spectrograms. The literature review described Variational Autoencoders (VAE)
as promising generative models for processing audio from sample libraries in terms
of spectrograms. An architecture using dimensionality reduction (DR) methods was
described to reduce the latent space of the VAE into two dimensions to realize an
interactive visualization of a sample library.

Mel spectrograms reconstructed with the Griffin-Lim Algorithm (GLA) were chosen as
the spectrogram representation and reconstruction method after initial experimentation.
The implemented system utilized a pipeline architecture of four processes. The first
process used Librosa (McFee et al., 2022) to generate spectrograms. A VAE with Inverse
Autoregressive Flow based on SampleVAE (Frenzel, 2019) was set up as the generative
model of the system. The DR method Uniform Manifold Approximation and Projection
(UMAP) was chosen due to being invertible and superior at clustering data locally while
preserving a smooth global structure. The VAE model and UMAP were set up as the
second and third processes in the system, while the fourth process consisted of the Librosa
implementation of the GLA.

The system was trained on a sample library converted to Mel spectrograms and used
the VAE encoder to create latent vectors for each spectrogram in the library. The high-
dimensional latent vectors were reduced to two dimensions with UMAP for visualization.
The system can generate a latent vector from any point on the visualization with the
inverse UMAP transform and use the VAE decoder to generate a new spectrogram. The
GLA is then used to reconstruct the generated spectrogram to audio.

Experiments were conducted to evaluate the diversity and quality of the generated audio.
Different combinations of hyperparameters were investigated for the VAE model as the
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model was evaluated by its ability to reconstruct unseen samples and construct a diverse
latent space. The audio quality of the reconstructed samples was measured in terms
of audio similarity and Perceptible Evaluation Metrics for Audio Quality (PEAQ). The
PEAQ metric measures the audio degradation of a reference signal and the corresponding
degraded signal. It is intended to be used with 10 to 20 seconds of audio, but a length of
only four seconds was used during experimentation, decreasing the reliability of the metric.
The diversity of the generated examples was evaluated with Number of Statistically-
Different Bins (NDB), Frechet Inception Distance (FID), and by qualitatively evaluating
the generated spectrograms from a grid across the latent space.

The system generated a wide range of timbres from the training data but seemed
to average over most of the samples within each class. Overfitting the VAE to the
training data resulted in more intra-class diversity and higher fidelity spectrograms,
generating audio with slightly better audio quality. Despite this, the overall audio
quality was considered low. The reduction in audio quality was considered a result of the
limitations of spectrogram reconstruction with the GLA. Additionally, the model seemed
to average over the training examples such that the reconstructed spectrograms obtained
the essential audio characteristics but not the per-sample uniqueness. Based on the poor
audio quality of the generated samples, the goal of the thesis was not considered fully
met as generating high-quality audio was specified as a condition for reaching the goal.

A review of the most notable contributions of this thesis include the following:

• The creation of a system generating diverse audio samples from an interactive
visual representation of a sample library.
This thesis describes the implementation background, conceptualization, and imple-
mentation of a deep learning-based system generating audio in terms of spectrograms.
The implemented system creates latent embeddings for the spectrograms of the
sounds in the sample library and visualizes them with dimensionality reduction
with UMAP. The system generates diverse spectrograms that are converted to
audio with the GLA.

• An overview and evaluation of state-of-the-art deep generative models in the
waveform domain.
This thesis conducted a literature review of state-of-the-art generative models in the
waveform domain and systems learning the concept of timbre. The most promising
methods were adopted and experimented with based on the project goal. Evaluation
of the models included measuring the diversity and audio quality of the generated
samples with several evaluation metrics.

• An understanding and evaluation of how different metrics can be used to measure
the audio quality of generated samples.
PEAQ and audio similarity were used as metrics to measure the audio quality
of the generated samples throughout experimentation with the developed system.
The discussion of the results included an assessment of the shortcomings of these
metrics. Insufficient sample length was considered to make the results less reliable.
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• An evaluation of dimension reduction algorithms for sample library visualization.
A two-dimensional visualization of a sample library was a part of the developed
system. Three dimensionality reduction algorithms were experimented with and
evaluated according to their ability to cluster data locally while preserving a smooth
global structure. The methods were also evaluated based on their invertibility and
reconstruction error.

9.2. Future Work
Additional spectrogram reconstruction methods could be explored in future work to
enhance the audio quality of the system. MelGAN (Kumar et al., 2019) was mentioned
in the literature review as a method to reconstruct audio from Mel spectrograms but was
not included in the audio quality experiment due to reporting lower audio quality than
WaveNet. Damen (2021) outperformed WaveGAN (Donahue et al., 2019) at generating
kick drums with a Progressively Growing GAN. Creating drum-specific generative models
might be an option for future work if audio quality is more important than the diversity
of the generated output.

One of the limitations present in the system is the need for labeled data to give
meaningful visualizations. A solution to using the developed system with an unlabeled
sample library would be to use an existing labeled sample library, such as Native
Instruments Battery 4, to display the name of each drum category by calculating the
center of gravity for each drum category. The clusters formed by the unlabeled sample
library would then have descriptors such as “Kick” or “Snare” in the places these would
occur for the labeled sample library.

Enhancing the user experience further by showing the sample names for some points
in the sample library would be helpful. The Infinite Drum Machine (McDonald et al.,
2017) is an excellent example of how the audio characteristics of a cluster are explained
by describing the sound. The pitfall of using DR on high-dimensional audio features for
visualization is that the axes are less informative if no labeling or information about the
samples is provided.

This thesis evaluated the generated samples to be diverse based on training on a sample
library with 12 drum hit categories. To further explore the diversity of the system, it
should be trained on larger datasets with a broader range of samples. A typical sample
library contains more than the 12 categories of drum hits used by the developed system.
Training on a dataset of a larger scale would allow for more diversity in the generated
output.

Another way of using the developed system to generate new samples more experiment-
ally could be to select multiple points on the map and perform arithmetic operations
with the latent vectors before converting them into spectrograms and audio. Such a
feature would allow for taking the mean of the latent vectors of a kick and a hi-hat and
end up with a completely different result. The difference between latent vectors could
also be calculated. Implementing an option for combining the selected points on the
sample library visualization would extend the sound design options of the system.
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A. Objective Difference Grade
Scores

The following table shows the drum hit-specific ODG scores for the VAE models not
included in the experimentation results in section 7.2.1. The average scores in this table
vary between the scores of the best model (“Overfit”) and the worst model (“Beta”).

Model 8 dim 64 dim 256 dim

Drum Hit n Avg ODG Best ODG n Avg ODG Best ODG n Avg ODG Best ODG
Clap 24 -3.848 -3.652 22 -3.8 -3.541 21 -3.786 -3.555

Combo 2 -3.877 -3.877 2 -3.821 -3.768 1 -3.747 -3.747
Cymbal 68 -3.659 -2.724 71 -3.588 -2.539 70 -3.625 -2.551

Hand Drum 18 -3.805 -3.478 18 -3.769 -3.449 18 -3.758 -3.42
HiHat 153 -3.597 -1.388 163 -3.518 -1.933 156 -3.56 -1.98
Kick 132 -3.869 -3.698 133 -3.855 -3.698 133 -3.832 -3.602

Mallet Drum 75 -3.798 -1.71 72 -3.774 -1.472 72 -3.738 -1.535
Metallic 61 -3.716 -2.876 57 -3.685 -3.171 57 -3.711 -3.094
Shaker 18 -3.833 -3.615 16 -3.778 -3.578 14 -3.809 -3.697
Snare 206 -3.776 -1.871 208 -3.703 -1.407 205 -3.661 -1.256
Tom 91 -3.693 -1.649 91 -3.641 -1.286 91 -3.633 -1.71

Wooden 7 -3.843 -3.764 8 -3.797 -3.696 7 -3.747 -3.369
NaN 172 - - 166 - - 182 - -

Total 855 -3.742 - 861 -3.687 - 865 -3.682 -

Model 0 flow 20 flow No Dropout

Drum Hit n Avg ODG Best ODG n Avg ODG Best ODG n Avg ODG Best ODG
Clap 18 -3.814 -3.64 23 -3.797 -3.51 21 -3.84 -3.73

Combo 1 -3.827 -3.827 1 -3.78 -3.78 2 -3.861 -3.838
Cymbal 68 -3.585 -2.779 67 -3.598 -2.501 68 -3.618 -2.729

Hand Drum 18 -3.777 -3.437 18 -3.746 -3.462 18 -3.825 -3.681
HiHat 158 -3.558 -1.799 162 -3.514 -1.988 162 -3.577 -2.223
Kick 133 -3.836 -2.984 133 -3.828 -3.559 133 -3.864 -3.582

Mallet Drum 74 -3.71 -2.235 72 -3.724 -1.364 75 -3.667 -1.827
Metallic 59 -3.698 -2.84 58 -3.637 -2.648 60 -3.72 -2.589
Shaker 16 -3.81 -3.653 19 -3.779 -3.425 21 -3.78 -3.449
Snare 206 -3.699 -1.554 207 -3.673 -1.17 209 -3.749 -1.307
Tom 91 -3.646 -1.468 91 -3.641 -1.409 91 -3.672 -1.446

Wooden 8 -3.789 -3.558 7 -3.79 -3.62 8 -3.836 -3.761
NaN 177 - - 169 - - 159 - -

Total 850 -3.742 - 858 -3.687 - 868 -3.713 -

Table A.1.: ODG scores for the VAE models for experimentation in section 7.2.1
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B. Latent Grid Visualizations
The following figures show the UMAP visualizations from the VAE models not included
in the results in the completed system experiments in section 7.3. The figures show
the spectrograms generated from the points in the latent grid mapped across each
visualization.

Figure B.1.: Generated spectrograms from a latent grid for the “8 dim” model.

Figure B.2.: Generated spectrograms from a latent grid for the “64 dim” model.
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B. Latent Grid Visualizations

Figure B.3.: Generated spectrograms from a latent grid for the “256 dim” model.

Figure B.4.: Generated spectrograms from a latent grid for the “0 flow” model.
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Figure B.5.: Generated spectrograms from a latent grid for the “20 flow” model.

Figure B.6.: Generated spectrograms from a latent grid for the “No Dropout” model.
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