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Abstract

In recent years, solutions for electricity demand flexibility have become available for
residential households. Flexible assets paired with incentive based demand response
schemes can generate long term value for households.

This thesis presents an optimization model and algorithm for the optimal control of
flexible assets using a rolling horizon approach. This approach is based on the cost
minimization of a prediction horizon for each iteration. A Battery energy storage
system, (BESS), Electric vehicle (EV) with Vehicle to home (V2H) capability, as
well as Domestic hot water (DHW) were examined. The optimization model was
applied to a case study and the assets were simulated together with an inflexible
household load and input from a Photovoltaic system (PV). To capture the long-
term value of the flexible asset operation, each month of 2021 was simulated under
Real time prices (RTP), Time of Use (TOU) and Capacity Subscription (CS)
pricing schemes. Under this approach, use of BESS was found to reduce yearly costs
with 2% compared to a reference case, and flexible DHW provided up to 2.55%
yearly cost reduction. Smart charging of the EV yielded a reduction of 5.7%, and
6.1% if bidirectional V2H charging was applied. Some months yielded lower cost
savings with V2H enabled compared to ordinary smart charging. With the applied
charge/discharge efficiency, high price variations are required in order for V2H to
be profitable. In the case where all assets were present, yearly cost reductions were
7.93%. Although the grid tariff cost were reduced, a CS scheme with 5 kWh/h load
limit appeared to limit the flexibility potential of flexible assets, as large loads were
penalized regardless of the time of use.

i





Sammendrag

I nyere tid har løsninger for sluttbrukerfleksibilitet i etterspørselen etter strøm blitt
tilgjengelige for private holdninger. Sammen med incentivordninger kan fleksible
enheter generere langsiktig verdi for husholdningene.

Denne oppgaven presenterer en optimaliseringsmodell og algoritme for optimal
kontroll av fleksible enheter under en rullende horisont. Denne tilnærmingen er
basert på minimering av kostnader over en prediksjonshorisont som oppdateres
for hver iterasjon. Et batterisystem (BESS), elektrisk kjøretøy (EV) med mulighet
for toveis lading (V2H), samt fleksibelt varmtvann (DHW) ble undersøkt i denne
oppgaven. Modellen ble brukt på et casestudie der enhetene ble simulert i operasjon
sammen med en ufleksibel last og solkraft (PV). For å estimere den langsiktige
verdien av de fleksible enhetene ble hver måned i 2021 simulert under sanntids
strømpriser (RTP) og nettleie bestående av en kombinasjon av brukstid (TOU) og
abonnert effekt (CS). Under denne tilnærmingen ble det funnet at BESS reduserer
årlige kostnader med 2% sammenlignet med et referansecase, og fleksibelt DHW
reduserte årlige kostnader med opp til 2,55%. Smartlading av EV ga 5,7%, og 6,1%
hvis toveis V2H-lading ble brukt. Med den bruke ladeeffektiviteten kreves det høye
prisvariasjoner for at V2H skal være lønnsomt. Som følge gav noen måneder lavere
kostnadsbesparelser når V2H var aktivert sammenlignet med vanlig smartlading. I
tilfellet der alle enhetene var simulert i samtidig operasjon, var årlige kostnadsre-
duksjoner 7,93%. Selv om nettleiekostnaden ble redusert, konkluderes det med at en
CS-ordning med 5 kWh/t lastgrense virker begrensende for fleksibilitetspotensialet
til fleksible enheter, da store laster ble straffet uavhengig av brukstidspunkt.
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Abbreviations

SOC State of charge
DSO Distribution system operator
TSO Transmission system operator
NVE The Norwegian Water Resources and Energy Directorate
PV Photovoltaic
EV Electric vehicle
VTG Vehicle to grid
VTH Vehicle to house
DHW Domestic hot water
EWH Electric water heater
HL Household load
TOU Time of use
CS Capacity subscription
CH Control horizon
PH Prediction horizon
SH Scheduling horizon
BESS Battery energy storage system
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1 | Introduction

1.1 Motivation

The Norwegian power system will experience increased production and power
demand in the next two decades [1], attributed to the transition of the industrial
and personal transportation sector to battery electric vehicles and the electrifi-
cation of the offshore industries. The increase in production capacity is in large
part due to intermittent sources such as solar and wind. Increased penetration
of intermittent sources will cause increased fluctuations in electricity prices, both
daily, seasonally and yearly. In addition, increasing CO2 taxes and fuel prices will
affect the electricity prices. In periods of low solar and wind production, the price
of gas will determine the electricity price [1].

In order to meet the increasing fluctuations in prices, NVE expects domestic end-
users to implement flexibility solutions in order to balance their demand on the
power grid. Flexibility assets such as batteries can shift end-user load on the grid
away from the expensive power peaks to other hours of the day [1].

In addition to pure flexibility assets like batteries, other assets can contribute to
end-user flexibility by having their loads managed in an optimal manner. Such
units may include battery energy management systems (BESS) electric vehicles
(EV), and domestic hot water (DHW). Operation of these assets can play a key
role in reducing the financial burden of increased prices placed on the end-user.
However, to generate value in the long-term, these assets must be operated in a
cost-optimal manner. Electricity prices and grid tariffs determine the total cost of
electricity use, and the optimality of operation is subject to these price signals.

1



1.2. OBJECTIVE

1.2 Objective

The main objective of this thesis is to develop an optimization algorithm using a
rolling horizon approach, with the goal of optimal operation of flexible assets in
conjunction with inflexible household load. The flexible assets to be examined are
BESS, EV, EV-V2H and DHW, supplemented by a PV system. The algorithm will
be applied to a case household to investigate cost optimality and the long-term
value of said flexible assets.

1.2.1 Approach

The optimization model and algorithm will be developed in the programming
language Python 3.8 using the Pyomo optimization package. Rolling horizon
methodology will be used as framework for the algorithm. The assets will be
simulated both in individual and simultaneous operation for each moth of 2021.
Each asset configuration will be modeled as a linear program, and each day will
be solved separately as an iteration of the algorithm, using the variable inputs
gathered from the previous iteration. The strategy will be applied to a hypothetical
case study in the Norwegian price zone NO5 with obtained household load data,
PV data and prices.

1.2.2 Contributions

The contributions of this thesis are:

• Development of a rolling horizon algorithm and optimization model for
operation of flexible assets in conjunction with an inflexible household demand
load, using long-term electricity price signals and grid tariffs.

• Long-term value of operation of BESS, DHW, EV, and EV-V2H under the
simulated conditions, as well as interpretations of the benefits of these assets.

1.2.3 Scope and delimitations

This thesis will only consider the cost of operation of the simulated flexible assets.
The total investment cost of such a system will not be considered. Degradation

2



1.3. STRUCTURE

and temperature effects on the batteries are considered to be negligible, as the
operational period of the model is relatively short. Payback period, net present
value or depreciation calculations will not be performed.

1.3 Structure

This paper is divided into 6 chapters. In Chapter 2, the framework of the paper will
be presented. This includes the necessary background information on the Norwegian
power market and the relevant regulatory framework, as well as a literature review
on the operation of flexible assets. Chapter 3 presents the methodology behind
the optimization approach, as well as the formulation of the algorithm and the
optimization model. Chapter 4 contains a description of the case study, and in
Chapter 5 the results are presented and discussed. Finally, Chapter 6 contains the
conclusion. The script implementation is presented in Appendix A.

3



2 | Framework

This chapter introduces the relevant framework for the current power market func-
tions and pricing mechanisms. Additionally, flexible assets are presented along with
the relevant background material and literature review on the optimal operation
of such assets. The assets examined in this thesis are BESS, DHW, EV and EV-V2H.

The content in Section 2.1, 2.2, and 2.3 were originally part of the preceding project
thesis as presented in [2]. The content has been reviewed and modified in accordance
with the objectives of this Masters thesis.

2.1 The Norwegian power system and market

The Norwegian power market is a liberalized market that is subject to the market
forces. Since the restructuring of the Norwegian and Nordic power market following
the 1990 Energy Act, electricity has been regarded as a commodity which price
is determined by supply and demand. The reason for the restructuring was to
create a more efficient system based on market forces. This way, competition would
incentivize cost savings and decentivize unprofitable and oversized investments.
The price of electricity was to be determined by the market rather than political
institutions [3]. The market participants are presented in this section.

4



2.1. THE NORWEGIAN POWER SYSTEM AND MARKET

2.1.1 Production

Energy generation is provided by production companies that own and operate
power production assets, which are mostly hydropower plants. Most production
companies are owned by the municipalities and counties, and their operation is
based on maximization of social welfare [4]. The trade of power is facilitated by the
market coupling operator Nord Pool, which serves as the power exchange for the
Baltic and Nordic countries. Production companies place hourly bids and capacities,
which Nord Pool uses to determine the market price of electricity for each hour,
known as the spot price.

2.1.2 Distribution

The local distribution is handled by distribution system operators (DSO). These
companies are heavily regulated monopolies that operate based on area permits
granted by the NVE [5]. NVE is acting as the regulatory authority for all DSOs
through a department called the Energy Regulatory Authority (RME)[6]. DSO
companies are financed by the end-users through a grid tariff that, in 2022, consists
of a flat annual rate and a variable cost based on consumption, however changes
to this structure are due to be implemented and will be discussed further in
Subsection 2.2.2.

2.1.3 Retailing

Due to the complexities of trading power on the power exchange, retailing companies
have emerged as an intermediary between the end-user and the power exchange.
The retail companies buy power from the exchange, which is resold to the end-user
through a sales contract. Power retailing is heavily competitive, and customers
are free to choose the preferred company and whether to use the spot price or
utilize long-term fixed price plans. Consumes usually pay a monthly flat rate as
well as the set price of electricity paired with a markup. Retailing companies are
not involved in the physical transfer of electricity, as it is carried out by separate
DSOs. The DSOs report the consumption of end-users, which is used as a basis for
the electricity bill from the retail company to the end-user [3].

5



2.1. THE NORWEGIAN POWER SYSTEM AND MARKET

2.1.4 Transmission

The transmission of power is handled by the state-owned enterprise Statnett, which
is the transmission system operator (TSO) in Norway. The company has several
responsibilities, including operation of high voltage regional lines, handling import
and export to interconnected nations, security of supply of the power grid and
maintaining the system frequency [7].

Figure 2.1: Norwegian price zones [7]

6



2.2. CONSUMER PRICE OF ELECTRICITY

Since the domestic transmission system capacity is limited, the country has been
divided into five price zones, as seen in Figure 2.1. The price within each price
zone is determined by the bids of the producers, the expected demand load and the
available transmission capacity between the price zones. Due to relatively small
capacities on the domestic transmission network compared to the international
interconnections, large price differences between the price zones can occur. Price
zones NO1, NO2 and NO5 are often balanced at one price, while NO3 and NO4 are
balanced at another. This is mainly due to capacity limitations in the NO3-NO1
and NO3-NO5 connections [8], as well as higher demand in the southern zones.

2.1.5 Prosumers

Electricity consumers that also produce electricity up to 100kW are defined as
prosumers. Prosumers do not pay grid tariff for energy exported to the grid [9].
Examples of prosumers are end-users with installed PV systems, and these costumers
can enter into a PV sales contract with their energy retailer. Electricity produced
by the PV system that exceeds own consumption can be injected to the grid. The
sales price of exported electricity depends on the contract, but generally, the Nord
Pool sport price for the relevant price zone is offered [10].

2.2 Consumer price of electricity

In a liberalized market, the price of electricity is determined by supply and demand.
As several factors influence both demand and supply, the overall makeup of the
price is complex and makes price forecasting a problematic endeavor. Since Norway
is interconnected in the more comprehensive European energy grid, the price of
energy in Europe also affects the price in Norway, only contained by the capacities
of the international connections.

7



2.2. CONSUMER PRICE OF ELECTRICITY

2.2.1 The Day-ahead market and Real time pricing

The spot price of electricity is determined on the day-ahead market facilitated
by Nord Pool, where the market-clearing price for the next day is established
daily. The producers and retailers submit bids and bets to Nord Pool following the
publishing of available capacities on the grid and international interconnectors. The
hourly price in each price zone is optimized to intersect the supply and demand
price curves, taking network constraints into account. The market participants are
obligated to deliver or consume the agreed amount, and potential imbalances are
handled at a separate balancing market managed by the TSO [11].

In Norway, the supply is heavily influenced by the state of the reservoirs of the
hydropower plants. Since 90% of energy production originates from hydropower
[12], the reservoir water level is a significant factor. The production planning of
hydropower plant depends on the current and projected reservoir level. Reservoir
levels are in turn dependent on the inflow of water into the reservoir, the outflow
due to production, and potential spillage. During periods of lower reservoir levels,
production is limited, and water is saved for production during periods of high
prices, which in turn increases the prices due to lowered supply and reliance on
imports. Full reservoirs lead to high hydropower production in order to avoid
spillage and act as a reducing factor in the overall price. One example of this is
the effect on the prices during the relatively wet year of 2020. During the second
half of 2020, the average reservoir levels were record high, reaching a peak of
95.7% of total capacity in week 47, well above the median of 78.4% [13]. This was
reflected in the prices, and the average spot price for southern Norway was only 1.22
EUR/MWh, compared to 42.5 EUR/MWh for the same week one year previous [14].

Another significant factor is the import and export of electricity. Since all price
zones are connected to at least one other price zone, domestic or international, the
price in one zone is affected by the price in its connected zones. Market functions
ensure that power will always flow towards the more expensive zone. However, the
limiting factor is the capacity of the transmission lines. In periods of high demand,
transmission congestion can cause substantial differences between the zones.

8



2.2. CONSUMER PRICE OF ELECTRICITY

On the demand side, the main consumers of electricity are industry with 45.4% of
total consumption, services at 20.7% and households and agriculture at 34.1% [15].
The most important factors of the demand in households is heating, cooking, and
other household activities, as well as charging of EV if acquired. This is evident in
the price peaks that occur in the morning and evening, reflecting the consumption
pattern of the average household. Household demand is relatively inelastic, and
thus the demand is not very sensitive to changes in the price. The most significant
factor in the demand is the outside temperature, which influences the heating needs
of each household.

For households that wish to save on electricity cost by varying demand to take
advantage of low prices, a spot price contract is a viable option. Retailers offer
spot price contract to end-users based on the day-ahead market with mark-up that
includes of sales tax. This kind of pricing scheme is referred to as Real-Time Prices
(RTP) in this work. Under RTP, each hour has a different electricity price. The
average grid load is calculated over one hour and is charged at the price for the
corresponding hour. In addition to the spot price, the RTP contains a value added
tax (VAT) of 25%, which is added to the spot price and collected by the retail
companies on behalf of the government.

2.2.2 Grid tariff

DSOs charge their customers a tariff for the distribution grid based on consump-
tion. In general, the individual DSOs are free to set the grid tariff. However,
they are limited in the total revenue they can collect annually by the regulatory
framework of RME [6]. Government fees for electricity use are included in the
grid tariff, except for value-added tax collected by the Retailer. Before 2022, two
components constituted the grid tariff: one annual fee and one volumetric fee
based on consumption. In 2022, the grid tariff is due to undergo structural changes
to accommodate more efficient use of the grid, based on a proposal by the RME [16].

The purpose of the proposed changes is to redistribute the cost based on the
customers’ demand for power to better reflect the actual costs of using the grid.
The proposal seeks to contribute to a more efficient utilization and development of

9



2.2. CONSUMER PRICE OF ELECTRICITY

the grid, as well as fair distribution of cost. Today, 90% of the cost associated with
operation and maintenance of the grid are fixed cost that are not impacted by grid
use. Only 10% of the costs are directly related to the transmission of electricity
from the producers to the customers [16]. These costs are attributed to heat loss
due to resistance in the grid during transmission. This heat loss increases with
higher grid loads. As a result, grid operators must purchase more energy than they
are able to deliver to the customer in order to meet their contractual obligations.
Therefore, the most important cost driver is the momentary power consumption
and not the total energy use. The transmission and distribution grids needs to be
dimensioned after the maximum power demand, which increases as more demand
nodes connect to the grid. The proposal seeks to introduce incentives for customers
to redistribute the power consumption such that large investments in increased
power flow capacity can be avoided [16].

The new tariff structure consists of two components. The first component is a Time
of Use (TOU) charge, which is based on volumetric energy consumption and where
the rate changes based on the time of day. The proposed tariff suggests one rate
for daytime and nighttime use, where the nighttime rate is lower than daytime.

The second component is the measured peak (MP) tariff scheme. Under the pro-
posed MP scheme, the monthly cost is based on the magnitude of the peak load
imposed on the grid during the month. The cost is set at a level that is bounded
by a power limit set by the DSO. If the peak load exceeds a specific limit, the user
will advance into the next level, which increases the total charge which is billed at
the end of the month. The peak load is the highest average grid load recorded over
one or more hours. According to the DSO Elvia, their levels are 2, 5, 10, 15, and
20 kWh/h [17]. This type of tariff is currently in use for large industrial electricity
customers in Norway and thus a natural basis for a new domestic end-user tariff. In
the original proposal, the customer’s cost level was to be determined retroactively
after the end of the month, based on the peak load during the month. In a revised
proposal, the MP was the average of the highest peak loads on different days of the
month [18]. This makes the optimization problem more complex and challenging
to accurately model with the rolling horizon approach.
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The Capacity Subscription (CS) grid tariff was first formulated by Doorman [19]
and further developed by Pinel et al. [20]. Grid import below this level is charged
at one cost, and import that exceeds this cost is charged at a higher cost. In a
modeling sense, the advantage of this scheme is that the total cost for each hour
can be calculated consecutively rather than at the end of the billing cycle. That
makes it more suited for the rolling horizon approach. The SC scheme also has the
benefit of not excessively penalizing the end-user for exceeding the load limit in
one hour while at the same time incentivizing the end-user to maintain a modest
grid load.

2.3 Assets for household flexibility

In order to reduce peak loads, mitigate congestion, and avoid investments in in-
creased transmission capacity, power system flexibility can be a viable solution.
The IEA defines this as “the ability of a power system to reliably and cost-effectively
manage the variability and uncertainty of demand and supply across all relevant
timescales, from ensuring instantaneous stability of the power system to supporting
long-term security of supply”. [21]

Demand-side flexibility, also known as demand response, is the ability of the end-user
to manage electricity consumption through incentive or price-based programs [22].
Price-based programs can stimulate demand response through financial incentives
and motivate end-users to manage their consumption patterns. Price signals can be
incorporated into the grid tariff, as discussed in Subsection 2.2.2, and spot prices can
be offered by the retail companies instead of flat price contracts. RTP, TOU, and CS
are price-based programs that aim to facilitate demand response through different
load management methods. TOU facilitates a method called Valley-filling by incen-
tivizing the use of electricity at night in order to reduce the load difference between
peak and valley. Similarly, CS facilitates a method called Peak-shaving, which aims
to reduce the peak loads of the consumer by charging a higher rate for loads exceed-
ing a specific limit [22]. RTP employs both these methods and allows the consumer
to adapt to the market by shifting their load in accordance with the electricity price.
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In order to facilitate demand response in the domestic among domestic consumers,
every household in Norway is fitted with a smart meter, which allows for hourly
measurements of the electricity consumption of the household. The user can respond
to the price in the market by varying the demand, and users that are price sensitive
can significantly reduce their electricity cost.

According to Hofmann and Lindberg [23], at least 39% of Oslo households responded
to price signals by reducing their demand during peak hours. However, most end-
users are less price-sensitive, and some are more demand inelastic. Seasonal variety
also impacts the price elasticities, and one study shows that demand for the winter
months in Oslo is relatively inelastic [24]. In practice, this means that the majority
of households are not able to change the time of use of electricity due to an inflexible
schedule and heating requirements. This is evident in the average spot price of
electricity, which correlates to the time most end-users leave and arrive home from
work. As shown in Figure 2.2, these peaks occur on average around 08:00-0900 in
the morning and 16:00-18:00 in the evening, while the price is usually lowest at
03:00-04:00 in the morning.

Smart metering technology opens up new possibilities in smart control of power
consuming units, such that their operation may be regulated with respect to the
electricity price. Such units can be defined as flexible assets and include appliances
and systems such as electric water heaters, battery systems, interior space heating,
and electric vehicle smart charging control systems. In addition, roof-mounted PV
can contribute to the overall energy load by reducing the energy needed from the
grid at moments of sufficient solar irradiation. This energy can also be stored in
a battery for later use or sold back to the grid. Flexible assets allow households
with inflexible demand to shift their grid loads without changing their consumption
patterns, as flexible assets can offset the grid load at peak hours.

However, for flexible assets to enable load shifting, an intelligent control system
must be implemented to ensure optimal operation. The battery should charge at
night when the prices are low and discharge during peak hours. The EV should
charge at night when it is connected to the house. This simple operating strategy
results in an optimization problem where several variables need to be considered,
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including the battery efficiency, user load profile, price of electricity, and solar
irradiation if PVs are mounted to the roof. In addition, several questions around
optimal operation arise, such as whether it is beneficial to charge and discharge
every day, or wait or price opportunities.

2.3.1 PV systems

Although PV systems cannot be considered as flexible assets as they depend on
intermittent solar irradiation, they do serve a purpose in the overall effort to reduce
and shift the load imposed on the grid. PV systems allow the end-user to generate
power for self-consumption, reducing the load on the grid and supporting the use of
flexible assets. In addition, excess production can be sold to the grid, reducing the
overall energy cost. In recent years, PV systems are becoming more popular among
homeowners in Norway, and demand is increasing with reduced installation costs.

Figure 2.2: Average RTP overlaid on an average end-user load for each hour of
2021, in price zone NO5. Price data gathered from Nord Pool [14], load data from
the case study used in this thesis
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In the future, PV systems will be more prevalent on new public and residential
buildings, and the EU Commission has proposed to obligate installing PV systems
on new buildings [25]. Therefore, a high penetration of residential PV is to be
expected, and PV systems are naturally included when considering flexibility.

The power output of a PV array is highly dependent on its location and angle. The
PV power production data in this project is gathered from simulations provided
by the renewables.nija web platform [26], based on the work done by Pfenninger
and Staffell [27]. The application has two available source datasets, MERRA-2
and SARAH. In addition to containing more recent datasets, the MERRA-2 was
chosen over SARAH as the preferred dataset as it is more consistent on a long-
term seasonal basis, even though SARAH is more accurate at individual sites [27].
The MERRA-2 database is a global meteorological reanalysis that contains solar
irradiation data based on satellite observations. These data are used as inputs
in the simulation model to return estimated PV-power outputs with an hourly
resolution for any location. This is done with the use of the Global Solar Energy
Estimator to linearly interpolate between grid points to the given coordinates [27].

2.3.2 Battery Energy Storage Systems

One solution to the problem of introducing flexibility into an inflexible end-user
schedule is BESS. Batteries can supply some or all of the demand load in periods of
peak prices to then recharge during periods of price valleys. When coupled with a
PV system, the battery can also recharge using free solar energy instead of drawing
from the grid. The biggest challenge to BESS is the efficiency losses when charging
and discharging the battery. If the energy is provided by PV, the efficiency loss
is not a significant issue, but if the energy is drawn from the grid, the energy
lost to heat is already purchased from the grid and is, therefore, an economic loss.
In order to ensure cost-optimal operation of the battery, it is essential to ensure
that the cost savings from the price delta are more significant than the cost of
recharging the battery. If the prices do not vary significantly thought the day, a
rigid charge-discharge may not be optimal.
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In recent years, the cost of lithium-ion for residential applications has fallen dras-
tically. In 2021, the average cost of a Li-ion battery pack was 132 UDS/kWh, a
reduction of 89% from 2010, according to BNEF [28]. In addition, studies have
shown that battery packs from retired electric vehicles can receive a second life
application as residential energy storage, further increasing the battery service
lifetime. Such an application can, in certain conditions, be cost-effective [29] and
more environmentally sustainable [30] than a brand-new battery pack.

There are currently several residential BESS packs available on the market. The
most known is possibly the Tesla PowerWall with 14 kWh storage capacity [31].
There is also the Nissan xStorage with capacity options of 4.2, 6 and 10 kWh [32],
and SonnenBatterie with 5, 10 15 kWh capacity options [33]. Lately, emerging
BESS technologies at smaller portable scales, such as the EcoFlow Delta PRO
with 3.6 kWh are available [34]. Portable systems can lead to reduced installation
cost, greater potential for expandability and easy replaceability, which mean more
households may consider adding flexibility to their residence trough BESS.

The authors of [35] developed a two stage dispatch method with the objective of
maximizing user benefit using particle swarm optimization. The paper considered
a PV-BESS connected to a demand load and the grid, with consideration for
time-of-use price strategy and import and export of surplus power to the grid. It
was found that the strategy would be economically beneficial for the end user.

in [36] the value of a shared BESS was investigated under an MP tariff and NO3
spot prices from 2020. The study used a receding horizon optimization algorithm.
The examined battery had a capacity of 521 kWh and a charge/discharge limit of
200 kWh/h connected to two office buildings, a large PV installation and a heated
pedestrian bridge. The study considered 3 different months and examined the cost
reduction for each season. The study found that a shared BESS could generate
cost reductions 6-7% as well as reduce peak loads by 7-11% when measuring with
individual metering.

One challenge to BESS is battery degradation. All chemical battery cells degrade
due to the repeated chemical reactions that occur during battery charge cycles. Over
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time, these changes inhibit the battery’s ability to uptake electrons and therefore
results in reduction of the effective capacity. The extent of this reduction depend on
many factors, such as amount of completed cycles, depth of discharge of each cycle
and battery temperature to name a few [37]. The reduction in capacity over time
effects the economic utility of the battery, which is difficult to quantify. According
to [37], battery degradation is enhanced when the battery is charged all the way to
capacity, and discharged close to depletion. Good battery management is therefore
important, and the management system should limit the depth of discharge in
order to prevent unnecessary degradation. Another challenge to using BESS is the
upfront investment cost and payback time. The payback time of a battery varies
drastically based on the cost, annual energy consumption, and the energy and grid
tariffs used. According to one study [38], the payback time of a 7kWh battery with
a 2kW power rating coupled to a 3.8 kWp PV system was 15 years. The study
was conducted in the UK, and a TOU grid tariff was considered, as well as a fixed
price for energy export to the grid. The study only considered the cash flow in
the time period, and did not consider the degradation of the battery that occurs
after extensive use. The estimate of 15 yeas is therefore highly optimistic. Payback
period, net present value or depreciation calculations will not be performed in this
study, as it is considered out of scope.

2.3.3 Electric Vehicles

An EV is a type of car that is propelled by an electric motor and where the energy
is typically stored chemically in a lithium-ion battery, as opposed to a car with an
internal combustion engine using liquid fuel. As a result of government subsidies,
EV sales constituted over half of the total car sales in Norway in 2020 [39]. This is
expected to rise in the coming years, following the political guidelines stating that
all new vehicles should be EVs or in some way “zero-emission” by 2025. According
to the Institute of Transport Economics, the amount of active EVs is expected
to rise to 61.2% of the total vehicle fleet by 2040 [40]. As a result, a significant
number of households will possess an EV in the future, presenting an opportunity
for flexibility in households. According to NVE, over 90% of owners charge their
EV at home using charging points that deliver up to 3.6kW, 7.3kW, or 22 kW [41].
This makes the EV one of the units with the highest rated power of all household
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appliances. Thus, the EV is a significant contributor to total household power
consumption.

Like ordinary cars, the EVs main purpose to be a personal transportation vehicle.
Despite this, they are on average, parked at home 80% of the time and only on
the move 4% of the time [42]. When parked and connected to a charging station,
the EV can be considered to be a battery from the grid perspective. Flexibility
in EV charging can be achieved by controlling when the charging occurs. With
a smart charging system, the time and rate of charge can be controlled based on
price signals. Many such systems exist today, and one example is the Easee home
charging box which allows for optimized charging of the car during the lowest priced
hours of the day trough integrations with power retail companies [43]. According
to one study, an optimized charging schedule could potentially yield 67% cost
reduction compared to standard charging under RTP [44]. However, cost savings
heavily depend on the EV and what type of tariff and pricing scheme is considered.
The study found that the cost savings were more significant for EVs with higher
capacity batteries.

Expanding on the EV flexibility are the novel technologies of Vehicle-to-Grid (V2G)
and Vehicle-to-House (V2H).EVs outfitted with these technologies allow the battery
to supply energy back to the grid or the house through bidirectional charging. A
possible implementation of V2G is at private or public charging points or home
charging stations. V2G technology has been suggested as a solution to the problem
of large-scale storage of intermittent energy generation, as opposed to building
dedicated storage facilities using li-ion batteries. It has also received interest from
grid operators due to its ability to facilitate ancillary services such as load bal-
ancing and frequency regulation, thus alleviating some of the burden on the grid [45].

There are several challenges to V2G. One of these is the increased battery cycling
in the EV, which leads to accelerated degradation of the battery, reducing the
range and the resale value of the vehicle. This depreciation is hard to quantify,
mainly because it impacts the vehicle’s utility. The cost of degradation might
exceed the economic benefit of arbitrage but can be mitigated with the use of
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intelligent algorithms that optimizes battery cycling and minimizes degradation [45].

On a smaller scale, V2G also applies to the single user through V2H. The rationale
of V2H is based on the assumption that, during the two peaks in the morning
and early evening, the EV is parked and connected to the home, given that the
user follows a regular work schedule. If the EV is sufficiently charged, it could
supply part of the power demand during the morning peak by utilizing the battery
power and have sufficient energy to complete the daily commute. Upon return in
the evening, the battery SOC will be significantly reduced, but the EV will start
charging when the price lowers for the night, leaving the battery fully charged for
the following day. A lower boundary is needed for the allowed discharge in case
an unscheduled trip is required. The feasibility of such a scheme is dependent on
several variables, such as the capacity of the battery, the rated power of the charger,
the length of the commute, the energy use during the commute, and perhaps most
importantly, the range anxiety threshold of the user.

One of the benefits of V2H capabilities is that a high-capacity battery can become
available for use for flexibility purposes. It could potentially replace a dedicated
battery storage system. An EV can be used for energy storage and transportation,
making the upfront investment cost more acceptable as the transport utility of the
vehicle is necessary regardless of the V2H capability, making it an added benefit of
the vehicle. Another consideration is that the average battery of an electric vehicle is
50-60 kWh and rising, dwarfing most stationary battery storage options [46]. There-
fore, V2H capable EVs could become an attractive alternative to a stationary BESS.

There are several disadvantages to V2H. As mentioned, the cost of increased battery
degradation might diminish the overall economic return of bidirectional charging.
Another disadvantage is the inability of the EV to capture the solar energy produc-
tion that occurs during when the solar irradiation is the most intense, since the
EV is not connected to the building.

EV-V2H optimal charging schedule was explored in [47], where two different sta-
tionary batteries and V2H capable EVs were examined in the UK, supplemented
by a 3.5kWp PV system. The pricing strategies considered were a flat tariff, a TOU
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tariff and spot tariff. Similar to this work, a Pyomo optimization model with a
Gurobi solver was used to optimize the input data. The authors found that using
V2H enabled Nissan Leaf (38kWh) with a TOU tariff could reduce the electricity
cost by 85% compared to charging without V2H on a flat tariff. However, in the
study, the EV was available most of the time, except for a few short trips of 30min,
which does not reflect the habits of the average EV user, who leaves the house for
several hours for work. The driving pattern of the user can be unpredictable, which
significantly complicates the process of modeling optimized EV charging.

Iversen et al. [48] presents a rolling horizon stochastic dynamic programming model
for optimal EV charging, with a focus on accounting for the stochastic nature of
EV use. The model used a prediction horizon of 48h and a total scheduling horizon
of 2.5 months. The EV in question was a Nissan Leaf with a battery capacity of 24
kWh. Spot prices from the DK1 were used to calculate cost, and additional penalty
cost was added if the EV was unavailable due to low SOC when the user desired to
utilize the EV. No grid tariff was considered. A Markov decision process was used
to determine the state of the EV. Daily cost savings ranged from 19-47 % when
only utilizing optimal charging. In the study, V2G was also investigated, and it was
found that the user could not only reduce cost but also profit from an optimized
V2G scheme with a total cost reduction of 135% when the EV was always available.
However, since no grid tariff or taxes were considered, this profit is unlikely, and
quantifying the value of an unavailable vehicle is very subjective.

2.3.4 Domestic Hot Water

DHW refers to the preparation and use of hot water. In Norway, the hot water
used in most households is prepared in electric water heaters (EWH) installed in
each home. The energy consumption of each water heater depends on its volume
and temperature settings, however, the mean energy consumption is around 3000
kWh [49]. After space heating and EV, the EWH is the appliance with the highest
energy use in households [49]. Usually, the water is kept at a constant temperature
throughout the day, despite the majority of the hot water demand being concen-
trated at a few hours of the day, usually morning and early evening.
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Modern, well insulated water tanks can hold the temperature of the water at a
reasonably comfortable level for several hours after heating. Electric water heaters
represents a flexibility potential as the water can be heated before the price peak
hours, and thus decrease RTP cost. In addition, the water heater can be turned off
during periods of inactivity, such as during the night and the work shift.

Studies into DHW flexibility have mainly revolved around peak shaving. Flexibility
potential in the form of demand response was studied in [50], where a Norwegian
case study was examined. The authors simulated 1000 households, each with one
electric water heater capable of switching on and off based on DSO activation
signals. It was found that the highest average power flexibility potential was 53.9%
of total capacity at hour 8 of the day. However, the use of DHW flexibility cause a
considerable rebound of power use after the flexibility activation, if proper precau-
tions are not taken. Rebound could be reduced by optimally scheduling the DHW
activation.

Ericson [51] analyzed data from 475 Norwegian households where the water heaters
had been disconnected based on a signal during peak hours. The author found an
average load reduction between 0.18 and 0.59 kWh/h per household. Load control
of EWHs was found to be an effective tool in reducing peak load consumption.
However, the strategy was found to cause a significant rebound in consumption
after reconnection, up to 0.28 kWh/h, which increases the risk of a new peak in
demand if they were all switched on simultaneously.

These studies focused on demand response based on a signal sent from an external
actor. In this work, the control is based on optimal operation of individual units
in response to pricing schemes. One study [52] formulated a unit-commitment
algorithm for scheduling a EWH based on consumption and day-ahead price fore-
casts. The study considered a 24h horizon and found that the control scheme could
yield 20% cost savings without compromising user comfort. This was achieved by
lowering the temperature interval from 61°C - 71°C in the reference case to 54.5°C
- 65.5C°C in the time interval 13:00-17:00. This suggests that lowering the required
temperature can financially benefit the end-user.
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The Norwegian Institute of Public Health recommends that the minimum internal
temperature of a EWH is 70°C in order to minimize the risk of legionella con-
tamination. However, variations are acceptable if the water is regularly heated
to 70°C. The minimum temperature threshold set by the institute is 55°C [53].
The temperature limits can be set such that the water is heated to a comfortable
temperature in the morning and evening and relaxed to a low limit of 55°C during
the rest of the day, as done in [52].

2.4 Home Energy Management System

In order to schedule one or more flexible assets, a home energy management system
(HEMS) can be used to achieve cost-optimal operation with inputs such as price
signals and load forecasts. With flexible assets connected to the HEMS, their use
can be governed based on an optimal dispatch strategy that minimizes the total
energy cost associated with importing electricity from the grid. However, the input
signals are subject to uncertainty. The Nord Pool spot prices are only available
24 hours in advance, and price forecasts decrease in accuracy with increasing time
horizons. The loads from the house are subject to uncertainty as well. The heat-
ing demands are dependent on the outside temperature, which can be somewhat
accurately predicted by weather forecasts a few days in advance. Load demand
from the EWH is also challenging to forecast as it depends on stochastic user
demand. However, if the user sticks to a lifestyle of habitual use, it can be pre-
dictable. This is also true for the EV, which usually follows a set habitual time frame.

In addition to the references in the previous section, there are several works that
examine the optimal operation of flexible assets using HEMS. In [54], a HEMS
scheduling model is developed for controlling a BESS, heating, and home appliances,
using RTP and MP tariff schemes. Several flexible assets are included such as an
1.5kW air-condition, 8 kWh battery, 4kWp PV system, as well as ordinary household
appliances such as a coffee machine. The authors use a metaheuristic optimization al-
gorithm to solve a nonlinear objective function. The scheduling horizon considered is
24h and the control horizon is 10 minutes. The model is run over one month horizon.
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The study [54] found that the model was able to reduce the total cost of operation
in an Australian household by maintaining the grid load below the historical peak
and thus avoiding high MP tariff penalties. The BESS operation was able to secure
cost reductions under the RTP scheme. However, when disregarding the MP tariff,
the model was able to significantly reduce RTP costs but resulting in high peak
loads. Over one month, the HEMS was able to reduce the total cost by two-thirds
compared to no HEMS or BESS. One of the exciting relationships to study when
combining RTP and MP cost is whether the model prioritizes to reduce peak load
and thus the MP cost, or fully utilize RTP price differences to decrease RTP costs.
A defined constant was used to determine the weight placed on the RTP over MP
priority, but both low and high values produced nearly the same result, although a
larger weight on RTP yielded a slightly lower total cost. The long-term value of
operation was not explored further.

In [55] Thorvaldsen et al. examined the long-term value of the operation of a HEMS
and how flexible assets impacted the operation. The flexible assets considered
were EV, BESS and interior space heating. The horizon considered was the month
of January 2017. Each asset was investigated individually using electricity RTP
together with an energy-based tariff and an MP grid tariff. A backward stochastic
dynamic programming (SDP) algorithm calculated a piecewise-linear expected
future cost curve. The study found that all the flexible assets could reduce the
expected cost, the best being the EV with a 14.6% cost decrease compared to a
reference case where the other assets were passive in operation. The EV considered
was 24 kWh with a capacity range of 20-90%, with a departure requirement of at
least 60%. The EV was able to reduce the peak power import by 3.54kW, which
reduces costs under the MP grid tariff. The BESS considered were a 10 kWh and a
5 kWh, with a 2.5 kW inverter. Both assets were able to reduce costs by around
10%, but only a marginal difference in cost reduction was observed between them.
The 10 kWh BESS was able to cut the expected peak import by 2.5 KW, and the
5 kWh BESS by 2.2 kW, clearly bounded by the inverter capacity.

The key findings of [55] were that the potential for reducing cost was more signifi-
cant under the MP tariff as cost reductions could be obtained from a reduction in
peak load, as well as RTP gains from price differences. However, the total cost was
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more significant for all cases except the EV under an MP tariff compared to an
energy based tariff, using only RTP gains. This is due to the passive behavior of the
other assets, increasing the peak load and thus the MP costs. The prices used in
the paper were deterministic over the whole period, limiting variation in RTP prices.

The study in [55] did not examine the assets in simultaneous operation in order to
capture the impact of each asset. This approach does not consider the impact of
aggregated loads of the flexible assets under simultaneous operation, which is key
to lowering the peak load imposed on the grid. Simultaneous operation would also
reveal the ability of the assets to co-operate in reducing the peak load while also
respecting the constraints of each asset. This dynamic was addressed in [56], where
the operation of a BESS, EV, PV, and interior space heating was simulated with an
MP tariff over a one-month period, using a similar approach as the aforementioned
study [55]. The study found that the SDP algorithm reduced the cost by 36%
compared to a case where no action was taken to minimize the peak load. However,
the algorithm only reduced the cost by 0.3% compared to a strategy of daily peak
load minimization. The drawback of this SDP algorithm is the final and initial
conditions for the decision variables must be equal at the start and end of each day.
This forces the assets such as EV to be charged to a specific value that may not be
optimal when considering a longer horizon. This also limits the algorithm’s ability
to shift the load between the days, increasing the total cost. These studies will be
used as a foundation for this thesis. In this work, the simultaneous operation of
assets will be examined over a longer horizon and price signal, and the model will
determine the condition of the assets through the operating period.
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3 | Optimization

This chapter presents the optimization model built and implemented as part of
this thesis, as well as the background methodology regarding optimization and the
rolling horizon approach.

The optimization model presented in Section 3.3 is constructed on the foundation
presented in the preceding project thesis [2] and is further expanded in this work.
Additionally, the content in Section 3.1, 3.2 and 3.4 were originally part of the
project thesis. The content has been reviewed and modified following the objectives
of this thesis.

3.1 Linear programming

Optimization is a mathematical field that encompasses methods and models to
find the best outcome of a calculable situation. It is often used in decision-making
processes to analyze techno-economic systems to identify feasible solutions and
find the optimal solution [57]. Linear programming is a method of calculating the
optimal value of a mathematical model where the objective can be expressed as a
linear function which is limited by a set of linear constraints. The objective function
can be the maximization of profits or the minimization of costs [57].
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A linear programming problem can generally be written as:

min z =
n∑

j=1

cjxj

s.t
n∑

j=1

aijxj ≤ bi, i = 1, ...m

xj ≥ 0, j = 1, ...n

(3.1)

Where cj is the coefficient of the objective function for variable xj, aij is the
constraint for variable xj for constraint i. bi is the limiting coefficient for constraint
i. In addition, xj is limited by a non-negativity constraint [57].

The operation of a BESS is an example of a linear programming optimization
problem if the objective is economic dispatch concerning cost minimization. In the
short term, the operation of a battery is only constrained by its capacity and power
output. Economic dispatch seeks to charge the battery when the price is low and
discharge during times when the price is high. The objective function would then
be the hourly price times the hourly energy input or output. For more extended
operation, more constraints pertaining to battery degradation and temperature
limits can be applied.

3.2 Rolling Horizon Optimization

To simulate a realistic operation scenario, the model needs to be confined to a set
of parameters that govern the decision process. The spot price of electricity is one
of these parameters, which is revealed to the public by Nord Pool one day ahead.
This means that the decisions for the planning of the battery operation can only
be made for one day with respect to price certainty. The next day, a new dataset
is introduced, impacting the new optimal operation. Thus, a new iteration of the
optimization model must be performed to account for the new dataset parameters.
This logic also applies to the expected output of the PV system, as output is based
on the weather forecast, which is improved with more accuracy every day. The
expected household electricity demand is also subject to the weather forecast, as
colder temperatures increase the demand.
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Based on changing parameters, the optimal operation of flexible assets becomes
a reactive scheduling problem. In their paper [58], Kopanos and Pistikopoulos
formulate an optimization framework for the reactive scheduling of production sys-
tems. The rolling horizon method consists of different time horizons, the scheduling
horizon (SH), prediction horizon (PH), and control horizon (CH). The scheduling
horizon covers the overall operational period that is to be examined and is decom-
posed into discrete time intervals of equal size. The prediction horizon is based
on stochastic prediction data for the next few time steps, where the data within
the prediction horizon is considered deterministic. The length of the prediction
horizon is determined by the extent to which the prediction data can be considered
accurate for each consecutive time step. The control horizon has the same initial
conditions as the prediction horizon but with fewer time steps.

The CH values are determined using an optimization method that considers the
entire prediction horizon. The CH variables are then used as the initial condition
for the next time interval, and the procedure is repeated for the length of the SH.
An illustration of this process can be seen in Figure 3.1

The rolling horizon approach has, in several research papers, been implemented as
a strategy for the optimal operation of microgrids. The overall goals are different;
however, the objective is often to minimize the cost of operation. Thus, the strategy
can be carried over to battery energy storage operation concerning cost minimization.
Silvente et al. [59] applied a two stage rolling horizon framework to a microgrid
with different prediction horizon lengths, with the objective of minimizing cost.
They concluded that longer prediction horizons improve the optimal operation
under the assumption of accurate prediction data.

3.2.1 Rolling horizon algorithm

The first step in the algorithm is to define the system’s initial state. In this case,
the initial state variable is the BESS and EV SOC, as well as DHW tempera-
ture. The initial day is also used to determine the length of the SH, which is one
month. The CH is set to 24 hours, and the PH will be set to 72 hours. In previ-
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3.2. ROLLING HORIZON OPTIMIZATION

Figure 3.1: Rolling horizon framework. Adapted from [59]

ous work [2] 72 hours was found to be an acceptable PH for this scheduling problem.

For each iteration, optimization is carried out for the set PH. The variables ex-
tracted from the CH time step depends on the present assets. The available output
variables are the SOC of the BESS and EV, and the temperature of the DHW.
These variables are then used as input for the next iteration of the optimization
of the new PH. The PH forecast data will also be updated for the new horizon
time steps. This process is repeated until the final time step of the SH is computed.
Finally, the cost reduction for each CH is calculated and presented as the result for
the SH.

A diagram of the algorithm can be seen in Figure 3.2. The diagram represents
the iteration process for a given CH, PH, and SH, as well as given initial state
parameters. Even though the optimization is performed for the entire PH, only
the values pertaining to the CH will be used for the solution of the iteration. For
each iteration, the values used in the optimization is updated to account for new
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3.2. ROLLING HORIZON OPTIMIZATION

information and forecasting.

As the end of the scheduling horizon approaches, the prediction horizon will extend
beyond the scheduling horizon. Data from beyond the SH is considered to be
unavailable and can not be included in the optimization of the PH. As a result,
the PH must be reduced with the same number of time steps as extends beyond
the SH. At the final time step, the PH will have a length of one time step.

Opt im izat ion
For the current  PH, obtain 
opt imal values for the 
deicit ion variables 

Final 
t ime st ep 

in SH ?

No

Yes

R esult  for  SH

Solut ion
Obtain and save the 
variables for the current  
CH t ime step

U pdat e 
With the CH variables, 
update the inital state of 
the system and the PH 
with new uncertainty 
informat ion

I ni t ial izat ion 
Define the inital state of the 
system, the length of SH, 
PH and CH

N ext time step

Figure 3.2: Rolling horizon algorithm diagram
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3.3. MODEL DESCRIPTION

3.3 Model Description

This model describes the optimal operation of specific flexible assets in a local
household energy system governed by a HEMS. The model accounts for the inflexible
household load and load input from a local PV system and governs the charge and
discharge profile of the flexible assets examined in this work: BESS, EV, V-V2H,
and DHW. The load inputs and outputs in the system are governed by the energy
balance constraints formulated in Equation 3.3. Similarly, local energy balances
have been set up for the individual assets. The BESS energy balance is formulated
in Equation 3.4, the EV in Equation 3.9 and DHW in Equation 3.17. The objective
is to minimize the cost of electricity import trough operation of the flexible assets,
and the objective function is formulated in Equation 3.2

Sets:
T Set of time steps t

Parameters:
EBat,max Battery maximum storage capacity [kWh]
EBat,min Battery minimum storage capacity [kWh]
EEV,max EV battery maximum storage capacity [kWh]
EEV,min EV battery minimum storage capacity [kWh]
EEV,dep Minimum EV SOC at departure [kWh]
E0,Bat Initial state of charge of the battery [kWh]
E0,EV Initial state of charge of the EV battery [kWh]
ηBat Battery charging efficiency [-]
ηEV EV charging efficiency [-]
P PV
t PV energy production in hour t [kWh]

Tmin Minimum temperature in the water tank [◦C]
Tmax Maximum temperature in the water tank [◦C]
Tmin,dem Minimum temperature in the water tank [◦C]

during the high demand period
T dem
t Temperature decrease due to water demand [◦C]

and heat loss in hour t

tdem hour of high water demand
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3.3. MODEL DESCRIPTION

Cw Specific heat capacity of water [kJ/(kg K)]
mw mass of the water [kg]
P house
t Inflexible household demand in hour t [kWh]

pspott Electricity spot price in hour t [NOK/kWh]
cV AT Value added tax on electricity purchase [NOK/kWh]
cTOU
t Time of Use grid tariff for hour t [NOK/kWh]
cCS Base energy level tariff [NOK/kWh]
cEx Excess energy level tariff [NOK/kWh]
λ CS base load limit [kWh/h]
DEV EV discharge while driving [kWh]
tdep EV hour of departure [-]
δEV
t EV connected to the building [0,1] for hour t [-]
yBat,max Rated power limit of the BESS [kW]
yEV,max Rated power limit for the EV [kW]

Variables:
yBat,ch
t Battery energy charged in hour t [kWh]
yBat,dch
t Battery energy discharged in hour t [kWh]
yEV,ch
t EV battery energy charged in hour t [kWh]
yEV,dch
t EV battery energy discharged to the system in hour t [kWh]
EBat

t Battery state of charge in hour t [kWh]
EEV

t EV battery state of charge in hour t [kWh]
Twt
t Temperature of the water in tank in hour t [◦C]

T in
t Temperature increase due to load input in hour t [◦C]

Pwt
t Energy supplied to the water tank in hour t [kWh]

P grid
t Energy purchased from the grid in hour t [kWh]

P exp
t Energy exported to the grid in hour t [kWh]

PCS
t Grid load up to λ in hour t [kWh]

PEx
t Grid load above λ in hour t [kWh]

CTOU
t Grid cost associated with the TOU tariff in hour t [NOK]

CCS
t Grid cost associated with the CS tariff in hour t [NOK]
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3.3. MODEL DESCRIPTION

3.3.1 Objective function

The objective of the model is to minimize the cost associated with purchasing
power from the grid, with the inclusion of grid tariff. Export of power is considered
as a cost reduction. The objective function is as follows:

min C =
T∑
t

P grid
t · pspott · cV AT + CTOU

t + CCS
t

−
T∑
t

P exp
t · pspott

∀t ∈ T (3.2)

3.3.2 System energy balance constraint

The energy balance constraint states that, for all hours, the sum of energy inputs
and outputs to the system must be equal. The sum of energy purchased from the
grid, energy discharged from the stationary battery, EV battery and the energy
from the PV must equal the sum of the energy going into the house demand load
and the load resulting from charging of the battery, EV, and the DHW load.

P grid
t + P PV

t + yBat,dch
t + yEV,dch

t =

P exp
t + P house

t + Pwt
t + yBat,ch

t + yEV,ch
t

∀t ∈ T (3.3)

3.3.3 BESS energy balance

The battery is also subject to an energy balance constraint. The SOC of the battery
at hour t must be equal to the SOC of the previous hour in addition to the charged
or discharged energy during the hour, taking into account the efficiency ηBat. It may
be counterintuitive to have charging and discharging in the same equation. As the
efficiency is less than 1, the model does not charge and discharge the battery at the
same time. This approach removes the need for binary variables in the constraint.
The state of charge ESOC,Bat

t of the battery is carried over from the previous time
step and used as an input variable in the optimization. The energy balance of the
battery is defined as following:

EBat
t − EBat

t−1 = yBat,ch
t · ηBat − yBat,dch

t

ηBat
∀t\t ̸= 0 (3.4)
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3.3. MODEL DESCRIPTION

At the start of the model set, there is no data from the previous hour, so the
parameter E0,SOC that contains the initial state of charge of the battery is used in
place:

EBat
t − E0,Bat = yBat,ch

t · ηBat − yBat,dch
t

ηBat
t = 0 (3.5)

The state of charge ESOC,bat
t must always be within bounds of the capacity:

EBat,min ≤ EBat
t ≤ EBat,max ∀t ∈ T (3.6)

The battery load input yBat,ch
t and output yBat,dch

t cannot be negative or exceed the
rated power limit. It is assumed that both charge and discharge power rates are
the same.

0 ≤ yBat,ch
t ≤ yBat,max ∀t ∈ T (3.7)

0 ≤ yBat,dch
t ≤ yBat,max ∀t ∈ T (3.8)

3.3.4 EV energy balance

ESOC,EV
t − ESOC,EV

t−1 = yEV,ch
t ηEV δEV

t − yEV,dch
t

ηEV
δEV
t −DEV (1− δEV

t )

∀t\t ̸= 0 (3.9)
At the start of the model set, the parameter E0,EV is used, which contains the
initial state of charge of the battery.

ESOC,EV
t −E0,EV = yEV,ch

t ηEV δEV
t − yEV,dch

t

ηEV
δEV
t −DEV (1−δEV

t ) t = 0 (3.10)

The state of charge ESOC,EV
t of the EV battery must always be within bounds of

the battery capacity:

EEV,min ≤ ESOC,EV
t ≤ EEV,max ∀t ∈ T (3.11)

The EV SOC is required to be above a set minimum EEV,dep at a specified time of
departure tdep. This is to ensure that there is sufficient charge for the daily commute
of the vehicle:

EEV,dep ≤ ESOC,EV
t t = tdep (3.12)
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3.3. MODEL DESCRIPTION

The charge and discharge of the EV must be within the bounds of the rated power
limit. This limit is assumed to be the same for charge and discharge.

0 ≤ yEV,dch
t ≤ yEV,max ∀t ∈ T (3.13)

0 ≤ yEV,dch
t ≤ yEV,max ∀t ∈ T (3.14)

3.3.5 DHW energy balance

In this model, the electric water heated is treated as a single body with uniform
overall temperature. When warm water is used, cold water enters the tank and the
average temperature is reduced.

The model must ensure that the temperature of the water in the tank Twt
t at all

times stays within the bounds to prevent overpressurization of the tank due to
high temperature, and to limit the risk of bacterial growth by maintaining the
temperature above a lower threshold:

Tmin ≤ Twt
t ≤ Tmax ∀t ∈ T (3.15)

The increase in temperature T in
t of the water is determined by the amount of heat

added to the water tank each hour. Based on the heat transfer equation, the load
input to the water tank can be found using the mass of the water in the tank mw,
the heat capacity of water Cw and the desired increase in temperature T in

t . The
resistive heating element in the water tank converts all energy to heat, therefore
the load input is assumed to be equal to the heat output in the tank, without any
efficiency losses. Thus, the load input can be formulated as:

Pwt
t = CwmwT

in
t ∀t ∈ T (3.16)

The change in water temperature in hour t from the previous hour must be balanced
with the temperature increase resulting from the load input T in

t , as well as the
temperature change as result of water use and heat loss T dem

t .

Twt
t − Twt

t−1 = T in
t − T dem

t ∀t ∈ T (3.17)
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The minimum water temperature depends on the time of day. To ensure user
comfort, the water temperature must be at a satisfactory level during a period of
water demand when the user is home and awake.

Tmin,dem
t ≤ Twt

t t = tdem (3.18)

3.3.6 Grid Tariff

The approach used in this work is similar to the subscription based tariff presented
by Pinel et al. in [20], where imported electricity is penalized with a higher pricing
level than import below the subscribed capacity. The grid tariff in this study costs
has been decomposed into two components: the TOU and SC. The TOU tariff is
divided into daytime and nighttime tariffs. This hour based tariff is represented by
the parameter ct, ant the cost is represented by CTOU

t .

CTOU
t = cTOU

t · P grid
t ∀t ∈ T (3.19)

The second part of the grid tariff is the capacity subscription tariff. The cost is
based on the level of power drawn from on the grid for the hour. For all hours
when the average grid power demand is below the subscribed capacity level λ, the
capacity subscription cost cCS apply. For grid loads that exceed λ, the excess price
applies cEx to the excess grid load that is drawn from the grid above the subscribed
level. The grid load can be decomposed into the capacity subscription load PCS

t

and the excess load PEx
t :

P grid
t = PCS

t + PEx
t ∀t ∈ T (3.20)

The boundaries of the load variables are as follows:

0 ≤PCS
t < λ

0 ≤PEx
t

∀t ∈ T (3.21)

Capacity subscription charge CCS
t can be described as the sum of the grid load

below the subscribed level and eventual excess loads multiplied by their respective
tariffs:

CCS
t = PCS

t · cCS + PEx
t · cEx ∀t ∈ T (3.22)
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3.4 Computer implementation

The algorithm presented in Subsection 3.2.1 was implemented in the programming
language Python 3.8.8 using the optimization package Pyomo. Pyomo is a open-
source software package that supports a diverse set of optimization capabilities for
formulating, solving, and analyzing optimization models [60]. The actual calculation
was performed by a solver program. The solver used in this project is Gurobi with
an academic license provided by NTNU [61].

The script for running the algorithm is available in Appendix A. The algorithm
is constructed using a series of for-loops, starting with the month. Packages like
datetime and calendar were used to work more efficiently with dates and timestamp
values, since the input data was structured in a time series format. For each months’
iteration, the length of the month was found and used as the SH, which was divided
into time steps consisting of integer days. For the CH, the daily time step was
further divided into 24 hours, which was handled by the optimization function.

Functions for extracting the relevant input data for each day were added, with a
focus on easy scalability such that the function could be used for any given date
and asset. Each asset was given a binary state which could be toggled through
an input file, and the optimization model could include only the constraints and
variables of the active assets. When an asset is not enabled, the variables pertaining
to the asset are parameterized as 0, which allows the same equations to be used
in all asset configurations. With the relevant input data, the optimization model
could run through a separate function to return results. Inputs for the optimization
function were the initial day of the PH, initial SOC for EV and BESS, and the
initial temperature of the DHW. The returned state variable for the CH, in this
case the 24th hour, was used as input for the next day, while the optimization
results were stored and used for comparison to the reference cost. For the reference
cases, the static asset loads were simply added to the HL. A function for reducing
the PH was also implemented, which would check if the PH exceeded the SH before
the next iteration. This was done by comparing whether the month integer at the
final day of the PH was different from that of the current month in the SH, and
perform PH reduction if that was the case.
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4 | Case study

In this chapter, the model presented in Section 3.3 will be applied to a set of cases
using load data from a Norwegian household. The household is located in the NO5
price zone and has an average annual energy consumption of 21 MWh. The model
will simulate the grid consumption when flexible assets are present, as well as their
respective reference cases. Each month from January 2021 to December 2021 will
be evaluated, and the results will be presented in Chapter 5.

Figure 4.1: Spot price in NO5 over the course of 2021 [14]
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The load data of the household was gathered from elhub.no, and belong to a known
household in the Bergen area. PV data was gathered from Renewables.ninja [26].
The price data for NO5 was sampled from NordPool.no [14]. The prices in the NO5
price zone can be found in Figure 4.1. For most of the year, the prices are stable at
around 300 - 500 NOK/MWh, but large price peaks occur in February and October
trough December. In December, the prices are significantly higher than the rest of
the year, which is expected to result in high costs.

Figure 4.2: Grid load profile for the case household during 2021

The household load (HL) profile can be seen in Figure 4.2. On average, the HL
remains between 2 and 4 kWh/h, following the seasonal temperature which governs
heat demand. Loads are particularly high in Jaunary due to low temperatures. It
should be noted that the HL in this thesis already includes an EV and an EWH.
The total load is therefore higher than an ordinary household.

The model was implemented on a personal computer with 2.5GHz Dual-cure i5
processor with 8 GB memory. The runtime was 42 seconds to process one year.
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4.1 Case study parameters

4.1.1 PV system

The installed PV system is assumed to have a rated output of 3 kWp. The installation
is mounted on a slanted roof of 30◦and an azimuth angle of 220◦. The latitude of
the installation is 60◦42’ N. These inputs values, in addition to the location of the
household, were used in the Renewables.ninja [26] to extract PV production data.
In addition, a system loss of 10% was assumed. The suboptimal azimuth angle
results in an effective peak output of around 2 kW. The newest available PV data
was from 2019, and was adapted for this study. Excess PV power can be exported
to the grid at the relevant Nord Pool NO5 spot price.

4.1.2 BESS

The BESS considered is a 5 kWh battery with 95% charge and discharge efficiency
and a maximum charge and discharge rate of 2.5 kW, based on the SonnenBatterie
[33]. The upper SOC limit is set to 90% of the total capacity, and the lower limit
is set to 10% of the capacity. This is to prevent unnecessary degradation of the
battery, notwithstanding the lack of modelled degradation in the optimization
model. The overview of the BESS parameters is found in Table 4.1.

Table 4.1: BESS parameters

Parameter EV A Unit Comment

EBat,cap 5 kWh Storage capacity at 100 %
EBat,min 1 kWh Minimum SOC at all times (90%)
EBat,max 4.5 kWh Maximum SOC at all times (20%)
EBat,0 2.5 kWh Initial SOC (50%)
yBat,max 2.5 kW Maximum power capacity
ηBat 95 % Charging efficiency
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4.1.3 EV and EV-V2H

The EV considered in this study has an 85 kWh capacity battery pack, and is
capable of bidirectional charging. The EV is assumed to consume 1.02 kWh/h
when disconnected, based on [55]. The parameters apply for both weekdays and
weekends. Parameters for the EV can be found in Table 4.2

Table 4.2: EV parameters

Parameter Value Unit Comment

EEV,cap 85 kWh Storage capacity at 100 %
EEV,min 17 kWh Minimum EV SOC at all times (90%)
EEV,max 76.5 kWh Maximum EV SOC at all times (20%)
EEV,dep 42.5 kWh Minimum EV SOC at departure (50%)
EEV,0 42.5 kWh Initial EV SOC (50%)
yEV,max 7,2 kW Maximum power capacity
ηEV 85 % Charge and discharge efficiency
DEV 1,02 kWh/h Discharge during driving
tdep 8 hour of departure
tarr 17 hour of arrival

The reference case consists of the same EV parameters, but with charging starting
at EV arrival charging at maximum capacity until the SOC is at 100%. Since the
EV arrival pattern and commute does not change, the charged energy is always the
same. The energy used during the commute is 9.18 kWh. To restore the SOC to
100%, 7,2 kWh is charged the first hour and 3.6 kWh is charged the second hour,
given 85% charging efficiency.
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4.1.4 DHW

The EWH considered is a 200 liter water tank with a 2 kW heating element, based
on the OSO Saga S 200 [62]. The heating element is considered to be continuous,
and can provide between 0 - 2 kWh of energy each hour. The mass of the water
housed in the tank is 194 kg. It is assumed that cold water is refilled into the tank
at the same time as hot water is extracted, resulting in constant volume. Internal
temperature dynamics of the water tank are not considered, and the temperature
in the tank is assumed to be uniform. Temperature decrease is based on a demand
profile which includes losses, and temperature increase is based on load input. Since
the volume is assumed to be constant, the thermodynamic process of heating the
water is isochoric. The specific heat capacity of water is assumed to be constant,
and selected at 3.9252 kJ/kgK, which is the isochoric specific heat capacity of
liquid water at 70°C [63] .

Table 4.3: DHW Temperature bounds

Time interval Tmin Tmax,1 Tmax,2

06 - 10, 16 - 23 65°C 75°C 90°C
23 - 05, 11 - 15 55°C 75°C 90°C

The demand and load data for the EWH is based on the "Electricity Demand
Knowledge - ElDeK" research project by SINTEF Energy Research [64], which
examined the average load for each hour using measurements from 49 EWHs in
Norwegian households. In order to identify the temperature demand, Equation 3.16
was used to find the temperature increase resulting from the load input in each
hour. This is under the assumption that a conventional EWH seeks to maintain
the temperature constant at all times, and it is thus assumed that the increase
in temperature equals the temperature demand for all hours. The temperature
demand in this study is the same for weekdays as weekends. Initial condition for
the DHW temperature is 65°C.
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4.1.5 Grid tariff parameters

The TOU tariff rate is specified in Table 4.4. The TOU and CS rates are gathered
from the DSO Eliva [17], and reflect the prices that were intended for 2022 should
the new grid structure be implemented. The rates change based on season, and
this is also reflected in the implemented model. The capacity limit λ is set to 5

Table 4.4: TOU rates
Time interval November - March April - October

06:00 - 22:00 0.3735 NOK/kWh 0.4170 NOK/kWh
22:00 - 06:00 0.3110 NOK/kWh 0.2920 NOK/kWh

kWh/h. Based on the proposed rates by Elvia, the CS tariff rate is set to 190 NOK
for up to 5kW and 280 NOK for up to 10 kW. These rates are charged monthly.
Based on this, the CS rates used in this model are the Elvia rates for 5 and 10
kW adapted to hourly rates for CS and excess grid loads. The rates used in this
analysis are cCS = 0.26 NOK/kWh/h and cex = 0.38 NOK/kWh/h. This grid tariff
setup generates a load window of the lowest grid cost between hours 06 and 22,
and below 5 kWh/h. This is also the period when spot prices are lowest, thus the
flexible asset are expected to mainly utilize this load window.

4.2 Model Cases

This study scope is to examine the long term value of operation for a selection of
flexible assets. To that end, each asset operation is evaluated separately, as well as
operation of several assets simultaneously. An overview of the cases can be seen
in Table 4.5. Cases A-D evaluate one specific asset, while cases E and F evaluate
several assets. Case D will evaluate DHW with two different upper temperature
bonds, as well as examine the impact of PV on DHW operation. Case E evaluates
the load consuming assets, and case F evaluates all assets. Each case includes PV
input, and the reference case is run with the same PV input. Excess electricity
production is sold to the grid in accordance with the system energy balance.
The goal of the cases is to identify optimal operation patterns of each asset, and

to evaluate the long term cost of operation of each asset. In order to determine the
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Table 4.5: Model Cases
Case Asset Reference

A BESS
B EV Static EV operation
C EVV2H Static EV operation
D DHW Static DHW operation
E DHW, EV Static DHW and EV operation
F BESS, EVV2H, DHW Static DHW and EV operation

long term value of asset flexibility, the cost of operation will be compared to an
unflexible reference simulation.

4.3 Prediction horizons

In this study, the prediction horizon is set to 3 days. This is because of the difficulty
in creating accurate forecasts several days ahead. The prediction horizon is based
on average hourly prices from the past week. For each hour, the average value of
that hour is computed based on the previous week. These average values are used
for the prediction horizon, while the control horizon is using deterministic data.
Therefore, the average values only apply past the 24th hour. Since the forecast
is based on past values, the prediction will not be accurate. However, the PH is
expected to capture the trends, and therefore serve as an adequate approximation
for operational profiles.

42



5 | Results and discussion

In this chapter, the results from the case study will be presented and discussed.
Since the electricity bill is comprised of several components, the total cost for each
monthly cycle has been decomposed into RTP, CS and TOU cost components,
where the sum of these components constitutes the total cost. RTP is the cost
incurred by purchasing electricity from the grid at spot price, and includes VAT.
CS and TOU comprise the grid tariff. When measuring the cost reduction of each
component, the reduction is compared to the same component in the reference
simulation.

5.1 Case A: BESS

With a roof mounted PV installation, the user is able to cover some of their demand
using the generated electricity. However, most of the solar irradiation occurs during
the middle of the day when the demand is generally low. Similarly, when the demand
for electricity is high, such as morning and evening, the PV output is lower. There-
fore, the PV output can exceed the household demand for the most intensive hours,
creating an energy imbalance in the system. Two options present themselves. The en-
ergy can be stored in a battery for later use, or sell the excess electricity to the DSO.

In this scenario, the benefit of storing the excess energy generated by the PV
installation will be examined. To that end, the model was run with only PV
as input in addition to the house demand load. The results are compared to a
simulation without any assets other than PV.
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Figure 5.1: One iteration of the BESS load profile, aggregated loads and spot prices
for each hour of the prediction horizon

In Figure 5.1 an example of BESS operation can be seen, and consist of one iteration
of the optimization model when considering only BESS and PV with a predictive
3-day horizon. The figure consists of three subplots. The first subplot depicts bars
that represent the charged (green) and discharged (red) energy from the battery
each hour, modelled to the right y-axis. The SOC of the battery is modelled as
a line to the left y-axis. In the middle subplot, all the load inputs to the system
are modelled. Load that decrease the total grid load (battery discharge and PV)
are modelled negative, and load increases are modelled positive. The grid load is
modelled as a black line, and represents the total grid load. The final subplot is
the spot price of electricity and serves as a comparison for the model behavior, as
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it is the most important variable price signal.

Recall that only the first 24 hours of the PH are significant, and the following 48
hours is a predictive forecast to determine the optimal state of the decision vari-
ables for the next iteration. This particular iteration is characterized by large price
peaks, and the BESS is fully utilized to charge in between the peaks, and discharge
during the peaks. The battery discharges at full power of 2.5kW during the two
price peaks that occur at hour 8 and 17, which reduces the grid load correspondingly.

However, the discharge capacity is too low to cover the entirety of the demand, and
the battery is discharged to the lower SOC limit in two hours. This suggests that the
battery could be larger and could thus decrease the peak load demand even further.
Another observation is that the model tries to maintain the grid load to the CS
limit of 5 kWh/h by modulating the BESS charge and discharge rates accordingly.
By keeping the grid load below 5 kWh/h, the more expensive CS excess charge can
be avoided. Several situations can cause the battery to be unable to maintain the
grid load below 5kWh/h. It can be seen that the low SOC limit in hour 25 prevents
the battery from supplying enough energy to reduce the grid load to below 5kWh/h.

In other cases, the model prioritizes to utilize the stored energy during the price
peaks, as is evident in the discharge during hour 8 and 9, but not 7 when the
demand load is higher. On the other hand, The CS limit is usually maintained
during charging of the battery.

Figure 5.2 presents the total monthly electricity costs for a reference case with PV
input (Yellow column), and PV as well as BESS (Red column). The blue column is
the cost without PV or BESS, and serves to illustrate the effect of PV. The highest
reduction in cost was seen in July and August with 4.5% cost decrease compared
to the simulation with only PV. In the winter, the reductions in cost were 1.5-2%.

Figure 5.3 presents the reduction in each cost component compared to the reference
case. As can be seen, both CS, TOU and RTP cost follow the same path without
large deviations. Since PV alone does not provide any flexibility, low variations
between the different cost components were observed. During the summer months,
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5.1. CASE A: BESS

Figure 5.2: Total monthly electricity cost comparison of operation with no assets,
PV as the only asset, and with PV-BESS combined operation

the TOU savings are somewhat higher. This is due to the time of day the savings
occur. The TOU tariff is more expensive during the day when the solar irradiation
is most intense, leading to reduced grid loads during this time. The summer months
are characterized by low HL demand, which allows the BESS to better manage the
grid load and reduce CS costs. In the summer moths, particularly July, each cost
component was reduced with more than 6%, but the total cost reduction was 4.5%.
The reason for this is that the excess PV load is sold to the grid in the reference
case, thus generating income, while in the BESS case it is used to charge the battery.
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Figure 5.3: Monthly cost reduction of BESS operation compared to the reference
case

During the winter months, the TOU and CS costs reductions are not particularly
greater with the battery. This is unexpected given the battery’s ability to maintain
the grid load below the CS limit. Winter months are characterized by high HL
demand and low to no PV input, which limits the flexibility potential. However,
the RTP cost reductions stand out during the winter months, especially during
February, which observed large price peaks. These peaks are avoided by using the
BESS power to cover the household demand. Over the course of the year, the total
cost reduction was 2%, indicating that the long term value of the BESS does not
greatly exceed the value of simply exporting the excess PV to the grid.

5.2 Case B: EV dynamic charging

In this scenario, the benefit of flexible EV charging using the optimization model is
examined. For the reference case, a static charging pattern is used for the EV with
the same parameters. This charging pattern assumes that the user plugs in the EV
after arriving home, and lets the EV charge at full power until maximum SOC is
reached. The charging pattern found by the model is compared to a hypothetical
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daily charging pattern of a price independent user.

Figure 5.4: EV change profile on a day with clear price peaks and valleys, showing
the priorities of the model

An example of the EV charge profile can be seen in Figure 5.4. Like the case with
BESS, the model limits the charging profile to only utilize the available power
capacity up to the CS limit. Since the inflexible house load is high in this period of
the year due to heating demands, the leftover capacity is quite small, but sufficient
to charge the battery to the required SOC. The model prioritizes to maintain the
total grid load below the CS limit at the cost of charging during higher spot prices,
in order to reach the required departure SOC. In addition, the model tends to
charge the battery to the minimum SOC requirement at departure once a day. This
behavior is not universal. As can be observed in Figure 5.5, the model utilizes the
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5.2. CASE B: EV DYNAMIC CHARGING

Figure 5.5: EV charge profile in a day with large price differences

price valley at 04:00 and 05:00 to charge at full power and bring the EV SOC well
above the required level, even breaching the 5 kWh/h CS limit in order to do so.
The reason for this behavior is that the model expects the prices for the coming
days to be significantly higher than the current day, so the EV is charged such that
it will not need further charging the next two days. However, the optimality of
this strategy is uncertain, as the prediction horizon is based on the average of the
previous weeks prices. With the price reduction experienced on that day suggest
that the future prices may be declining. However, since it is assumed that the
HEMS control system does not have access to advanced price forecasts, nor that it
can predict the future prices, this strategy adequate in the face of uncertainty.
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Figure 5.6: Monthly cost reduction of using dynamic EV charging compared to the
reference case

In Figure 5.6 the cost reduction of EV smart charging can be seen. In this case, the
cost reduction is more sensitive to the variations in RTP, especially the difference
between nighttime and daytime prices. The cost reduction peaks in October with
7.9%, which was a month with very high variation in RTP. As a result of smart
charging during price valleys, the model was able to secure relatively large reductions.
Over a year, the total cost reduction when using dynamic charging was 5.7%. This
is interesting given the findings of other authors, such as in [48] where the author
found cost reductions of 19-47 %. This illustrates the limiting effect of the grid
tariff structure considered in this work.
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Figure 5.7: EV-V2H charge profile on a day with high price peaks

5.3 Case C: EV-V2H

When adding V2H capabilities to the EV, the ability to discharge power to the
system during times of high prices becomes available. As can be seen in Figure 5.7,
the battery can be discharged during price peaks like the ones occurring February
1st at 08:00 and 17:00, bringing the total grid load to zero during these hours. In
order to accomplish this, the EV must charge at full power for several hours, thus
violating the CS limit for these hours. However, the saved cost during the price
peaks is worthwhile, as the electricity price for that day is over 300% higher during
the price peak compared to the nightly valley in the first 24 hours.
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Figure 5.8: EV-V2H charge profile, showing EV discharge during a price peak and
subsequent recharge

It is evident that the model seeks to discharge the battery completely at the end of
the prediction horizon. This is simply the result of a lack of constraint to be fulfilled
at the end. Since the model is finding the optimum across the prediction horizon,
the battery is completely discharged to decrease grid load. This has no effect on
the overall operation of the scheduling horizon, as it is only the control horizon
that has any significance. A 3-day PH will therefore ensure that the behavior has
no effect on the long term operation of the asset.

In Figure 5.8, an example of afternoon discharge can be seen. The EV is in this
example able to completely supply the house load for six hours until the battery
SOC reached close to the lower limit. This was followed by a charging session
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Figure 5.9: Total cost comparison for each month of static EV charging, EV dynamic
charging, and EV-V2H charging

lasting 8 hours, and the charge was maintained such that the grid load was bounded
to the CS limit. This was achieved despite the SOC being at a relatively low at
arrival. Another observation is that the EV is not able to capture the PV energy
due to it being disconnected. This energy is used to supply the house load, and
excess energy is sold to the grid. PV is therefore not able to support the EV when
used as a flexible asset in this setting.

The total cost when using static charging, dynamic charging, and charging with
V2H can be seen in Figure 5.9. PV or other assets have not been considered in this
comparison. In Figure 5.10 the specific cost reduction in each cost component can
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be seen compared to the reference case. The model is clearly able to avoid the price
peaks by using the available flexibility and thus reduce the RTP cost. However, a
tradeoff between RTP and the grid tariff can be observed, as the RTP gains can
only be achieved by increasing the grid load between the price peaks, which in turn
limits the cost reductions in CS and TOU.
In Figure 5.10, it can be seen that the grid tariff cost component of CS and

Figure 5.10: Cost reduction using V2H compared to the reference case

TOU decrease in summer and increase in winter. This corresponds with seasonal
changes to the TOU price, as well as increase in HL during winter due to heating
needs. In summer, the HL decreases, allowing the flexible loads to utilize more load
capacity within the CS limit, and to take full advantage of the TOU nighttime
tariff discount. From March to September, (with the exception of May and August)
the CS provides the largest contribution to the total cost reduction, providing
around 6-7% reduction compared to the reference CS cost. The RTP cost reduction
vary between 8.9% and 2.4%. Across the year, the total cost reduction was 6.1%,
indicating a slight decrease in costs from the EV dynamic charging scenario. The
total costs reductions follow a pattern of increasing in the moths of substantial price
variations. Based on the CS and RTP cost reductions, the model is clearly able
to take advantage of the price differences to charge at cheap hours, and discharge
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during periods of high HL demand to bring down the grid load. However, in order
to meet the minimum EV requirements, charging has to occur regardless of the
prices if the SOC is too low, limiting the RTP gains somewhat.

It is clear from Figure 5.9 that using dynamic charging is somewhat beneficial,
however V2H does not offer any significant cost savings over dynamic charging in
this simulation. This was not expected, given the added flexibility of using the large
EV as a dischargeable battery. In Figure 5.10 it can be seen that the RTP cost
reductions are significantly higher in winter than in summer, and in turn the CS
and TOU cost reductions are lower. The reason for this is that the EV discharges
to maintain the grid load under the CS limit and reducing the excess CS cost, but
in doing so it consumes more energy from the grid, increasing the base CS costs.
The total grid load for each month was consistently higher with V2H, resulting
from the efficiency losses of the charge/discharge cycle. With the current efficiency,
the economic gains from V2H discharge does not exceed the gains from dynamic
charging only, unless the prices have significant differences between peak and valley.
As shown in Figure 4.1, such price differences are observed in January and February,
as well as September-December, while the rest of the year witness relatively stable
prices. This also corresponds to the period when V2H is more profitable than
smart charging, as the RTP gains exceed efficiency losses. During stable prices, it
may be more prudent to limit grid import and avoid discharging energy from the EV.

5.4 Case D: DHW

DHW was examined with and without PV input, and compared to inflexible
operation. The main difference between conventional and smart operation of an
EWH is the temperature variation and the distribution of the load needed to
maintain the temperature. Large changes in temperature requires large load inputs
to raise the temperature fast, while simply maintaining the temperature at a set
level requires smaller loads over more hours. Smart operation allows the temperature
to drop across the hours of high prices, and utilizing the cheap hours to heat the
water. It does not change the total energy used by the EWH, only the time it is
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used.

Figure 5.11: DHW operation with 55/65°C-75°C temperature bonds

As can be seen in Figure 5.11, the EHW behaves as intended and maintains the
temperature within the required intervals at the right times. In the morning, the
EWH heats the water up to the required temperature using the low price interval,
and maintains the temperature above 65°C throughout the morning demand period
(06-10) and turns off during midday. In the afternoon, it re-heats the water up
to 75°C for the evening demand period (16-23). During the evening period, some
additional load is required in order to maintain the temperature above 65°C. The
water temperature is not given time to drop to the minimum limit of 55°C, and
two full heating cycles are needed for each day
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One disadvantage to using fixed constraints for the water temperature is that
operation ensures that requirements are met, even if that entails drawing power
at times of suboptimal prices. This suggests that it may be more optimal to raise
the upper temperature threshold in order for the model to have the option to raise
the water temperature even further during the cheapest hours of the day. The case
EWH can have its temperature adjusted up to 90°C, so setting this as an upper
limit is feasible [62].

When the upper temperature is set to 90°C, the model will bring the water tem-
perature all the way to 90°C, operating at full power during the 3 cheapest hours.
This eliminates much of the need for re-heating the water during the evening, as
the water remains within the comfortable temperature range. At times when the

Figure 5.12: DHW operation with 55/65°C to 90°C temperature bounds
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PV input is greater than the house load, the excess PV load input is used to heat
the water, thus less load is needed in the morning to heat the water. As can be seen
in Figure 5.12, the model prioritizes using the excess PV load rather than selling
to the grid despite relatively high prices, suggesting that reducing the grid load
is more cost optimal than exporting. With a higher temperature bound, the load
profile suggest that one heating cycle in the early morning is enough to maintain
the temperature above 60°C for the whole day, with only slight heating inputs in
the evening. This depends on the initial temperature and the expected PV input.
As can be seen in Figure 5.12 the water temperature is only partially increased in
the first hours, in anticipation of PV input that could be used to provide free heat

Figure 5.13: Comparison of monthly total cost of static operation of a EWH, as
well as dynamic operation with a 75°C and 90°C upper temperature bound
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Figure 5.14: Monthly cost reductions of dynamic operation of a EWH with 90°C
upper temperature bound and supplemented by PV, compared to static operation

for the coming evening.

Figure 5.13 shows the total cost of dynamic DHW operation with PV input com-
pared to static operation with the same input. Both upper bounds of 75°C and
were simulated, and the result is a total cost reduction between 1.16% and 3.97%
with a 75°C upper bound, and between 1.4% to 4.8% with the 90°C. It is clear
that an upper bound of 90°C offers slightly more opportunity for flexibility, but
the overall differences in cost reductions are trivial.

Figure 5.14 shows the total cost reduction compared to the reference case. As can
be seen, the cost reduction follows a seasonal trend, with peak cost reduction of
4.8% in July. In winter, the cost reduction remain around 2%. In summer, it doubles
to 4%, clearly illustrating the benefit of using the PV input as energy source for
the hot water. With PV input, the total yearly reduction was 2.55% with 90°C
upper bound, and 2% with 70°C upper bound. Without PV the cost reduction was
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2% with 90°C bound.

These simulations disregard the temperature difference between the ambient air and
the water temperature. Higher differences between ambient and water temperature
leads to greater losses, which in turn leads to more energy needed to maintain the
temperature. This aspect has not been examined in this study, which is conducted
with assumptions of linear thermodynamic relationships. As such, the pressure
changes within the EWH and the resulting strain on the EWH is also not modeled
in this simulation. It is not known what the impact of this kind of operation is
on the longevity of the EWH. If the result is that the EWH is damaged or in
need of early replacement, all economic gains of smart operation could quickly be
eliminated. Another aspect that should be noted, is that the temperature demand
in this simulation does not correspond to the needs of this particular household,
but is rater extrapolated from an average. In this case, the data could be formatted
in such a way that the temperature demand would only consist of the estimated
heat loss without any water use during the hours that the EV is not connected to
the building. However, this was not simulated since the data represents an average
over the course of a day.

The energy consumption of the simulated EWH is based on simplified equations
and parameters, and is therefore only an approximation of the actual energy
consumption. The total yearly energy consumption of the DHW reference data is
2947 kWh. For both the 90°C and 75°C boundaries, the total energy consumption
of the simulated DHW was 2802 kWh. This shows that the energy consumption
of the DHW model is close to the reference data, with a difference of 5%. The
convention factor between load and temperature demand could therefore be slightly
higher in order to better match the reference energy use.

5.5 Case E: EV and DHW

This simulation represents the combined flexibility potential of the assets that
consume electricity without discharging to the system. The simulated assets are EV
and DHW with PV input, and the reference case is static EV and DHW operation
with PV. As can be seen in Figure 5.15, the model mainly utilize the night hours
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to charge the EV and heat up the DHW. This causes the available load capacity
under the CS limit to be partitioned between the assets. This results in the EV
charging at a lower power rate. Nevertheless, the model is able to fulfill both EV
and DHW requirements, using only the optimal load window.

Figure 5.15: Operation of a 85 kWh EV and EWH with 90°C upper temperature
bound and supplemented by PV

As can be seen in Figure 5.16, the cost reduction against the base case is around
4%-10% over the course of the year. The total cost reduction over the whole year
was 7.08% compared to static operation.
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Figure 5.16: Monthly cost reductions of dynamic operation of a 85 kWh EV and
EWH with 90°C upper temperature bound and supplemented by PV, compared to
static operation

5.6 Case F: BESS, EV-V2H and DHW

In this simulation, all assets are considered, including EV-V2H. The reference case
is the HL with PV, as well as static operation of EV and DHW. During simulta-
neous operation of all the assets, several similar model behaviors are observed. In
Figure 5.17, the operation of all assets can be seen. The model seeks to maintain
the grid load under the CS limit, and reduce the grid load during peak hours, as
observed in previous results. This impacts the loads of each asset, as the optimal
load window is congested. The assets with state requirements take precedence over
assets without state requirements. Most of the excess PV input is used by the
EWH in order to meet the evening temperature requirement, while the remaining
PV load is utilized by the battery. The EV also takes precedence over the BESS in
order to meet the minimum SOC at departure. This leads to a pattern of limited
use of BESS and EV-V2H discharge.
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Figure 5.17: Operation of all assets during high PV input

In certain situations, especially in winter, the price variations are extreme, which
allows the assets to be fully utilized for demand response. As can be seen in
Figure 5.18 the spot price tripled from 2073 NOK/MWH at hour 2 to 6124
NOK/MWH at hour 17, causing the model to prepare the assets in anticipation
of this peak. The BESS was charged to capacity and the EV was charged at full
power throughout the night. The resulting flexibility allowed the grid load to be
reduced to zero during four hours of the evening peak, as well as export to the grid
during the two peak hours. The battery initially provides reduction to the grid
load until the EV is available to cover the remaining HL demand. In addition, the
use of the EV-V2H during the peak depleted the SOC, which causes a rebound
in load during the next night for the EV to recuperate the SOC. This strategy
may have saved RTP cost, but the resulting grid loads during the night lead to
higher CS costs. The peak grid load exceeds 15 kWh/h which would have resulted
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Figure 5.18: Operation of all assets during high spot prices

in a high penalty cost from the DSO if this strategy had been implemented in
reality with the suggested MP grid tariff. It should also be noted that the extreme
price variation in December were unprecedented and highly irregular. If such events
should become more frequent in the future, due to both scarcity of energy resources
and permeation of intermittent renewables, it becomes clear that flexible assets can
become an important tool in protecting the end-user against extreme price peaks,
if an RTP contract is in effect.

In order to determine cost reduction with all assets in dynamic operation, it was
compared to the costs of static operation. The total costs can be seen in Figure 5.19.
The cost reductions follow a similar pattern as the earlier cases, with greater
reductions in the summer due to PV production, with a top reduction of 9.4%
in August. During the winter months, some interesting trends can be seen. In
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Figure 5.20, it can be seen that the RTP cost reductions were significant even
during winter, reaching 9.3% at the lowest in December, and 14.2% in February.
In December, the CS cost were greater than in the reference case, due to the high
amount of load subjected to the grid above the CS limit. Even so, the total cost
reduction amounted to 9% in December compared to the reference case, much
due to the avoidance of the price peaks. Overall, the yearly total cost reduction
compared to the reference case is 7.93%.

Figure 5.19: Total cost for each month, using dynamic operation of all assets
compared to static operation
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Figure 5.20: Cost reduction for each month, using dynamic operation of all assets
compared to static operation

5.7 Further discussion

The reference case for the EV involves charging of the EV at full power when
connecting to the house. This leads to higher loads and therefore higher costs due
to CS. In addition, charging often coincide with the evening RTP peak, leading to
further cost increases. This kind of charging pattern is highly unlikely to occur in a
real word setting. Firstly, an electricity costumer on an RTP contract would be
price sensitive since they have chosen the spot price contract over a flat volumetric
contract. Secondly, an EV with an 85 kWh battery would not need charging every
day, especially when the daily driving discharge is low. Finally, most modern EVs
have the possibility to activate planned charging from the car’s integrated system.
That means the car can be set up to charge during the night regardless of plugin
time, allowing the user to take advantage of the lower grid tariff even if no smart
system is implemented.

When utilizing dynamic charging, the charging profile is optimized to limit cost
through the different pricing mechanisms. Since there are no gains to be had by
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charging the EV more than necessary, the model mostly elects to charge to the
lower SOC limit required for departure. The battery is thus kept at a relatively
stable level, only charging around the same amount of energy as used during the
daily commute, represented by the declining SOC. The battery SOC is kept at
around 50% most of the time, a strategy that is beneficial for the longevity of
the li-ion battery pack. According to a study [37], battery capacity retention after
several thousand discharge cycles is higher if the battery is kept between 75-65%,
and significantly lower if the battery is charged to 100%. Therefore, the operation
of the battery is more optimal both in regard to short-term electricity cost, but also
in regard to long-term operation of the vehicle, even though battery degradation is
not simulated in his model.

Comparing the results of the individual asset operation against simultaneous asset
operation reveals some interesting findings. Individually, EV and DHW resulted in
yearly cost reductions of 5.7% and 2.5% respectively. In simultaneous operation,
EV and DHW achieved a cost reduction of 7.08%, showing the compound effect of
the assets. However, when adding the discharge capable assets of BESS and V2G,
the cost reduction is 7.93%, which is only 0.85 percentage points increase from
DHW add EV alone.

The CS tariff achieves its objective of facilitating demand response. The model
consistently tries to maintain the grid load below the CS limit unless irregular price
events occur, such that it becomes more optimal to charge up in preparation for the
price peaks. If the overall goal of the DSO is to rebalance the grid loads and reduce
price peaks, the CS tariff works well as a tool to rebalance the loads from the
consuming assets such as DHW and EV. However, once assets with more flexibility
potential are introduced, such as BESS and EV-V2H, the CS acts as a limiting factor
in the flexibility potential. Such assets, especially when operating simultaneously,
cause larger grid loads during the night. For the DSO, this is preferable to high day-
time loads, since the grid is less congested. However, the CS limit inhibits the assets’
flexibility by penalizing high grid loads regardless of the time of day. For flexible
assets to fully take advantage of RTP differences, their use should not be limited,
especially at night. A better grid tariff alternative could be a three step TOU,
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which could have a third and more expensive tariff during the hours of the peak load.

It is also evident that the gains from utilizing RTP differences is not always able
to recuperate the efficiency losses of the battery charge-discharge cycle with the
set efficiency. This study shows that the dischargeable assets only offered a limited
benefit over the non-dischargeable assets, and only for periods with high price
variations. Dischargeable assets are best suited to capturing the PV load that is
generated during the middle of the day. This limits the BESSs utility in the winter,
as the solar irradiation in winter is insufficient for generation of loads exceeding
self-consumption, especially since the heating needs are higher in winter. This
seasonal imbalance is something that short-term energy storage cannot address. In
this configuration, the EV-V2H is less suited as an energy storage device for the
residential household, since it is usually not connected to the house during daytime
and thus unable to capture the PV load. However, the EV has a large battery pack,
and is able to protect the household against occasional extreme price peaks trough
V2H discharge. However, in the long run, the results of this simulation suggest
that V2H operation has limited value compared to ordinary dynamic charging
under a capacity subscription based tariff. The results also shows that the excess
PV energy has flexibility potential in heating of DHW. For all the assets, the
RTP scheme consistently provided the greatest cost reductions. EV and DHW offer
flexibility in reacting to price variations and is thus able to generate long-term value.

5.7.1 Model limitations

The algorithm is built as separate Python files: one data file which contains ini-
tializes and updates the data for each iteration, one model file which contains the
optimization model, and one main file that execute the algorithm. These files are
available in the in Appendix A. It is also adaptable in the length of the scheduling
and prediction horizons. It is however built for one day control horizons, and daily
updates. The model can be run for any day and for any specified period, as long as
the foundational datasets are available. Input parameters can be specified in the
input file, and assets can be easily toggled on and off in the input file. However,
the model is built for hourly resolutions and cannot easily be scaled to smaller reso-
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lutions. One disadvantage with the implementation of the rolling horizon approach
is the optimization model itself has to be re-run for every CH with new input
information. The PH forecast values must be recreated and resubmitted to the
model. In this implementation, that consists of updating the input data dictionary,
which adds to the computational execution time. This approach works for hourly
resolutions, but for smaller resolutions such as minutes or seconds, the approach
would scale poorly.

One drawback of the implemented method is lack of accuracy in the prediction
horizon. Recall that forecasted loads and prices are comprised of the averages of
the past week. This gives the model an indication of what to expect such that the
decision input/output variables can be adjusted accordingly. In order to test the
effectiveness of the chosen method for generating the prediction horizon, another
simulation of all assets was conducted without prediction and relying entirely on
deterministic data. It was found that the deterministic simulation yielded 0.5%
reduction in cost compared to the situation with prediction, across the entire year.

Results also show that the variation in prices contribute to the profitability of
dischargeable assets such as BESS and EV-V2H. However, when the prices are
relatively stable, the efficiency losses can lead to increased cost compared to ordinary
smart charging. Even though the optimization model is free to choose the optimal
strategy for each iteration, it does not directly calculate the long term consequence
of utilizing dischargeable assets. For each iteration, the optimization model only
has information of the initial variable states and the prediction horizon ahead. If
a discharge strategy is optimal over a non-discharge strategy for one iteration, it
leaves the next iteration with a lower SOC. Since the new iteration has to be solved
with updated information, it can lead to a different outcome than what the previous
iteration anticipated. Over time, this strategy can lead to increased cost rather
than reduced. This operation under uncertainty is a fundamental characteristic in
rolling horizon approach. To solve this, a better price and load forecasting algorithm
should be implemented in order to improve the strategy. Another possible solution
could be to implement a function that measures the difference in peak and valley
prices. If the difference is satisfactory, a constraint that governs whether discharge
is allowed could be implemented.
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6 | Conclusion

In recent years, technological advancements have allowed energy consuming assets
in Norwegian households to be managed in a more optimal manner. With the goal
of facilitating demand response in households, financial incentives such as real time
spot prices and grid tariffs dependent on time and capacity have been proposed.
Using these price signals, this thesis has aimed to develop an optimization algorithm
to investigate the optimal operation of flexible assets in a residential household.

To that end, a rolling horizon optimization model was created to solve a linear
program governing the cost optimal operation of flexible assets. The model solved
each day of 2021 in an iterative process, using the output variables as inputs for
the next iteration. Several flexible assets were simulated and compared to their
respective reference case, with a focus on the long-term value of operation. The
simulated assets were an EV with bidirectional charging capabilities, a BESS and
DHW. Assets were supplementary PV system. The asset’s operational strategy was
based on cost-optimality in response to an inelastic household demand load and
long-term price signals. These signals were real time electricity prices and grid tariff,
consisting of a combination of capacity subscription and time of use. The assets were
simulated both separately and collectively to examine the value of flexible operation.

With the given electricity prices, grid tariff structure and household demand load,
the BESS could yield 2% reduction in costs over a year compared to a reference
case exporting the excess PV to the grid. DHW flexibility provided a 2.55% yearly
cost reduction when the upper temperature limit was set to 90°C. Smart charging of
the EV yielded a 5.7% reduction in cost, and 6.1% with bidirectional V2H charging
enabled. However, some months yielded lower cost savings when V2H was enabled
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compared to ordinary smart charging. With the applied charge/discharge efficiency,
high price variations are required in order for V2H to be profitable. In cases where
the price is stable, a strategy of limiting grid interaction may be more prudent. In
the case where all assets were present, yearly cost reductions of 7.93% were observed.

Cost reductions were decomposed to identify the individual contribution of each
component to the total cost reduction. Of these components, the RTP cost reduc-
tions were the largest for most months. Periods with large spot price variations
resulted in large reductions in RTP costs, while periods with stable prices resulted
in low RTP cost reductions. However, the flexibility potential of the assets was
limited by the CS load limit, which penalized high loads regardless of the time of
day. Seasonal variations also impact the cost saving ability of the flexible assets.
The summer months were characterized by high PV input and low household
heating demand, which allowed for grater flexibility potential. This was especially
evident for BESS and DHW, which were able to utilize the PV load to generate cost
reductions. The EV and EV-V2G were more sensitive to changes in the electricity
price.

The assets were able to reduce CS and TOU cost in most months. However, in
situations with high prices, the model tended to prioritize high grid loads in price
valleys in preparation of the price peaks. This resulted in lower CS cost reductions,
and increased CS costs in some cases. Nevertheless, the total cost were reduced
for all cases in all months of the year, illustrating the long-term value of optimal
operation of flexible assets.

6.1 Future work

The model should be expanded with a better forecast algorithm for the predicted
loads and prices. This could be an algorithm that compares historical weather and
load data to extrapolate the predicted PV production and household demand load
based on the weather forecast. Stochastic variables could also be implemented for
the EV availability and DHW demand in order to better reflect real world use. In
addition, a more accurate model of the EHW should be implemented such that the
loads can be more accurately modeled. Additionally, other thermostatic loads could
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be added, such as heat pumps and radiators. This would increase the flexibility
potential of the household. It could also be interesting to investigate the assets’
behavior under different grid tariff schemes, such as measured peak tariff or a three
stage TOU tariff.
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A | Script implementation

A.1 Optimization model script

1 from datetime import datetime , date , timedelta
2 import pyomo.environ as pyo
3 from pyomo.environ import value
4 from pyomo.opt import SolverFactory
5

6

7 def Optimization_model(Data , Bat_SOC ,EV_SOC ,DHW_temp , day):
8

9 model = pyo.ConcreteModel ()
10 model.day = day
11 """
12 Sets
13 """
14 model.T = pyo.Set(initialize = Data["Op. Period data"]["

hourlist for period"], ordered = True) # Time steps for the
model

15

16 """
17 Parameters
18 """
19 #Inflxeible Household load
20 model.House_load = pyo.Param(model.T, initialize = Data["Op.

Period data"]["Loads in period"])
21

22 #Electricity price
23 model.El_price = pyo.Param(model.T, initialize = Data["Op.

Period data"]["Prices in period"])
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24

25 """
26 PV
27 """
28 if Data["General"]["PV"] == True:
29 model.PV_prod = pyo.Param(model.T, initialize = Data["Op.

Period data"]["PV in period"])
30 else:
31 model.PV_prod = pyo.Param(model.T, initialize = 0)
32

33 """
34 Battery
35 """
36 if Data["General"]["Battery"] == True:
37

38 """ Parameters """
39 Battery = Data["Battery"]
40 model.Cap_Bat = pyo.Param(initialize = Battery["

Capacity"]) # Battery capacity [kWh]
41 model.Q_max_ch_Bat = pyo.Param(initialize = Battery["

Q_max_ch"]) # maximum charging power [kW]
42 model.Q_min_ch_Bat = pyo.Param(initialize = Battery["

Q_min_ch"]) # minimum charging power [kW]
43 model.Q_max_dch_Bat = pyo.Param(initialize = Battery["

Q_max_dch"]) # maximum discharging power [kW]
44 model.Q_min_dch_Bat = pyo.Param(initialize = Battery["

Q_min_dch"]) # minimum discharging power [kW]
45 model.SOC_bat_max = pyo.Param(initialize = Battery["

Threshold_upper"]) # Lower state of charge threshold [kWh]
46 model.SOC_bat_min = pyo.Param(initialize = Battery["

Threshold_low"])# Upper state of charge threshold [kWh]
47 model.eff_Bat = pyo.Param(initialize = Battery["

Charging_efficiency"])#
48

49 model.initial_SOC_bat = Bat_SOC #uses SOC state from
previous iteration as initial parameter

50

51 """ Variables """
52 model.SOC_bat = pyo.Var(model.T, within = pyo.

NonNegativeReals , bounds = (model.SOC_bat_min , model.
SOC_bat_max)) # Battery State of charge variable
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53 model.Q_ch = pyo.Var(model.T, within = pyo.
NonNegativeReals , bounds = (model.Q_min_ch_Bat , model.
Q_max_ch_Bat)) # Battery power charging varliable

54 model.Q_dch = pyo.Var(model.T, within = pyo.
NonNegativeReals , bounds = (model.Q_min_dch_Bat , model.
Q_max_dch_Bat)) # Battery power discharge varliable

55

56 model.Bat_eb_const = pyo.Constraint(model.T, rule =
Bat_energy_balance)# puttting battery energy balace constraint
into model

57

58 else:
59 model.Q_ch = pyo.Param(model.T, initialize = 0)
60 model.Q_dch = pyo.Param(model.T, initialize = 0)
61 """
62 EV
63 """
64 EV_data = Data["EV"]
65

66 model.Cap_EV = pyo.Param(initialize = EV_data["Capacity"])
67 model.eff_EV = pyo.Param(initialize = EV_data["

Charging_efficiency"])
68

69 model.Dep_high = pyo.Param(initialize = EV_data["
Departure_high"])

70 model.Dep_low = pyo.Param(initialize = EV_data["
Departure_low"])

71 model.Deptime_EV = pyo.Param(initialize = EV_data["EV
Departure"])

72 model.Arrivtime_EV = pyo.Param(initialize = EV_data["EV
Arrival"])

73 model.EV_load = pyo.Param(initialize = EV_data["Discharge
when disconnected"])

74 model.Q_max_EV = pyo.Param(initialize = EV_data["Q_max"])
75 model.Q_min_EV = pyo.Param(initialize = EV_data["Q_min"])
76 model.soc_max_EV = pyo.Param(initialize = EV_data["

Threshold_upper"])
77 model.soc_min_EV = pyo.Param(initialize = EV_data["

Threshold_low"])
78 model.Availability_EV = pyo.Param(model.T, mutable = True)
79
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80 model.inital_SoC_EV = EV_SOC #uses SOC state from previous
iteration as initial parameter

81

82 """ lists """
83

84 model.EV_connected = list(range(len(Data["Op. Period data"]["
hourlist for period"])))

85

86 for t in model.EV_connected:
87 if model.Deptime_EV < t < model.Arrivtime_EV:
88 model.EV_connected[t] = 0
89 elif model.Deptime_EV +24 < t < model.Arrivtime_EV +24:
90 model.EV_connected[t] = 0
91 elif model.Deptime_EV +48 < t < model.Arrivtime_EV +48:
92 model.EV_connected[t] = 0
93 else:
94 model.EV_connected[t] = 1
95

96 """ Variables """
97 model.SoC_EV = pyo.Var(model.T, within = pyo.NonNegativeReals ,

bounds = (model.soc_min_EV , model.soc_max_EV), initialize =
EV_SOC )

98

99 if Data["General"]["EV"] == True:
100 if Data["EV"]["Smart Charge"] == True:
101 model.Q_ch_EV = pyo.Var(model.T, within = pyo.

NonNegativeReals , bounds = (model.Q_min_EV , model.Q_max_EV))
102

103 if Data["EV"]["VTG"] == True:
104 model.Q_dch_EV = pyo.Var(model.T, within = pyo.

NonNegativeReals , bounds = (model.Q_min_EV , model.Q_max_EV))
105 model.EV_dischare_rule = pyo.Constraint(model.T,

rule =discharge_limit)
106 else:
107 model.Q_dch_EV = pyo.Param(model.T, initialize =

0)
108

109 else: #dumb charge
110 model.Q_ch_EV = pyo.Param(model.T, initialize =Data["

Op. Period data"]["EV in period"])
111 model.Q_dch_EV = pyo.Param(model.T, initialize = 0)
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112

113 """ Constraints """
114 model.EV_charge_req_const = pyo.Constraint(model.T, rule

= EV_Charge_requirement)
115 model.EV_enery_balace_const = pyo.Constraint(model.T,

rule = EV_energy_balance)
116

117 else:#No EV
118 model.Q_ch_EV = pyo.Param(model.T, initialize = 0)
119 model.Q_dch_EV = pyo.Param(model.T, initialize = 0)
120

121 if Data["General"]["DHW"] == True:
122 DHW_data = Data["DHW"]
123 model.inital_temp_DHW = DHW_temp
124

125 model.Heat_Cap_DHW = pyo.Param(initialize =
DHW_data["Heat Capacity"])

126 model.eff_DHW = pyo.Param(initialize =
DHW_data["efficiency"])

127 model.DHW_max_load = pyo.Param(initialize =
DHW_data["Load"])

128 model.DHW_loss = pyo.Param(initialize =
DHW_data["Loss"])

129 model.min_temp_DHW = pyo.Param(initialize =
DHW_data["Min temp low dem"])

130 model.morning_dem_start = pyo.Param(initialize =
DHW_data["Morning demand start"])

131 model.morning_dem_end = pyo.Param(initialize =
DHW_data["Morning demand end"])

132 model.evening_dem_start = pyo.Param(initialize =
DHW_data["Evening demand start"])

133 model.evening_dem_end = pyo.Param(initialize =
DHW_data["Evening demand end"])

134

135 model.DHW_temp_demand = pyo.Param(model.T,
initialize = Data["Op. Period data"]["DHW in period"])

136 model.high_dem_min_temp_DHW = pyo.Param(initialize =
DHW_data["Min temp high dem"])

137 model.max_temp_DHW = pyo.Param(initialize =
DHW_data["Max temp"])

138

85



A.1. OPTIMIZATION MODEL SCRIPT

139 model.Load_DHW = pyo.Var(model.T, within = pyo.
NonNegativeReals , bounds = (0, model.DHW_max_load))

140 model.temp_DHW = pyo.Var(model.T, within = pyo.
NonNegativeReals , bounds = (model.min_temp_DHW , model.
max_temp_DHW))

141 model.temp_increase = pyo.Var(model.T)
142

143 model.DWH_high_demand= list(range(len(Data["Op. Period
data"]["hourlist for period"])))

144

145 for t in model.DWH_high_demand:
146 if model.morning_dem_start < t < model.

morning_dem_end or model.evening_dem_start < t < model.
evening_dem_end :

147 model.DWH_high_demand[t] = 1
148 elif model.morning_dem_start +24 < t < model.

morning_dem_end +24 or model.evening_dem_start +24 < t < model.
evening_dem_end +24 :

149 model.DWH_high_demand[t] = 1
150 elif model.morning_dem_start +48 < t < model.

morning_dem_end +48 or model.evening_dem_start +48< t < model.
evening_dem_end +48 :

151 model.DWH_high_demand[t] = 1
152 else:
153 model.DWH_high_demand[t] = 0
154

155 Data["DHW"]["High demand"] = model.DWH_high_demand
156

157 model.DHW_temp_demand_const = pyo.Constraint(
model.T, rule = DHW_Temperature_demand)

158 model.DHW_temp_regulation_const = pyo.Constraint(
model.T, rule = DHW_Temperature_regulation)

159 model.DHW_temp_requirement_const = pyo.Constraint(
model.T, rule = DHW_Temperature_equirement)

160 else:
161 model.Load_DHW = pyo.Param(model.T, initialize = 0)
162 model.temp_DHW = pyo.Param(model.T, initialize = 0)
163

164 "Grid Tariff"
165
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166 model.VAT = pyo.Param( initialize = Data["Grid
tariff"]["VAT"])

167 model.tariff_day_summer = pyo.Param( initialize = Data["
Grid tariff"]["S_Day"])

168 model.tariff_night_summer = pyo.Param( initialize = Data["
Grid tariff"]["S_Night"])

169 model.tariff_day_winter = pyo.Param( initialize = Data["
Grid tariff"]["W_Day"])

170 model.tariff_night_winter = pyo.Param( initialize = Data["
Grid tariff"]["W_Day"])

171 model.CS_tariff = pyo.Param( initialize = Data["
Grid tariff"]["CS limit"])

172

173 #Variables for grid electricity and power flow into household
174 model.grid_load = pyo.Var(model.T, within = pyo.

NonNegativeReals)
175 model.grid_export = pyo.Var(model.T, within = pyo.

NonNegativeReals)
176

177

178 model.hourtariff = list(range(len(Data["Op. Period data"]["
hourlist for period"])))#, within = pyo.NonNegativeReals)

179

180 for t in model.hourtariff:
181 if model.day.month > 2 or model.day.month < 10: #Summer (

march - november)
182 if 6 < t < 22 or model.day.weekday () > 4:
183 model.hourtariff[t] = model.tariff_day_summer #

day or not weekend in "summer"
184 else:
185 model.hourtariff[t] = model.tariff_night_summer #

night or weekend in "summer"
186 else: #Winter (april -oktober)
187 if 6 < t < 22 or model.day.weekday () > 4:
188 model.hourtariff[t] = model.tariff_day_winter#day

or not weekend in "winter"
189 else:
190 model.hourtariff[t] = model.tariff_night_winter

#night or weekend in "winter"
191

192
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193 model.tariff_cost = pyo.Param( initialize = Data["Grid tariff
"]["CS rate"])

194 model.excess_cost = pyo.Param( initialize = Data["Grid tariff
"]["Excess rate"])

195 model.base_import_limit = pyo.Param( initialize = Data["Grid
tariff"]["CS limit"])

196

197 model.grid_import = pyo.Var(model.T, within = pyo.
NonNegativeReals)

198 model.base_import = pyo.Var(model.T, within = pyo.
NonNegativeReals , bounds = (0, model.base_import_limit))

199 model.extra_import = pyo.Var(model.T, within = pyo.
NonNegativeReals , bounds = (0, None))

200

201 model.grid_import_const = pyo.Constraint(model.T, rule =
Grid_Import_Const)

202

203

204 "Energy balance"
205

206 model.EB_const = pyo.Constraint(model.T, rule = Energy_balance
) # puttting energy balace constraint into model

207

208 ’’’
209 Objective function
210 ’’’
211 model.obj = pyo.Objective(rule = Objective , sense = pyo.

minimize)
212 opt = SolverFactory("gurobi_persistent")
213 opt.set_instance(model)
214

215 """
216 Results
217 """
218

219 results = opt.solve()
220

221 model.solutions.load_from(results)
222 global Result
223 Result = {}
224
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225 for v in model.component_objects(pyo.Var , active=True):
226 Result[str(v)] = {}
227 varobject = getattr(model , str(v))
228 for index in varobject:
229 Result[str(v)][ index] = varobject[index].value
230

231

232 Data["Result"][day] = Result
233 peak_load = max(Result["grid_load"]. values ())
234 daily_TOU_cost = sum(( Result["grid_load"][t] *model.

hourtariff[t]for t in range (24)))
235 daily_CS_base_cost = sum(( Result["base_import"][t] *model.

tariff_cost for t in range (24)))
236 daily_CS_excess_cost = sum(( Result["extra_import"][t]* model.

excess_cost for t in range (24)))
237 daily_export_gains = sum(( Result["grid_export"][t] *Data["Op

. Period data"]["Prices in period"][t]/1000 for t in range (24)
))

238 daily_spotprice_cost = sum(( Result["grid_load"][t] *Data["Op
. Period data"]["Prices in period"][t]/1000 for t in range (24)
))

239 daily_houseload = sum(Data["Op. Period data"]["Loads in
period"][t] for t in range (24))

240

241 Result["PV"]={}
242 if Data["General"]["PV"] == True:
243 daily_PV = sum(Data["Op. Period data"]["PV in period"][t]

for t in range (24))
244 for t in model.T:
245 Result["PV"][t]=Data["Op. Period data"]["PV in period"

][t]
246 else:
247 daily_PV = 0
248 for t in model.T:
249 Result["PV"][t]=0
250

251 if Data["General"]["DHW"] == True:
252 daily_DHW_load= sum(Result["Load_DHW"][t]for t in range

(24))
253 final_DHW_temp = model.temp_DHW [23]. value
254 else:
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255 daily_DHW_load = 0
256 final_DHW_temp = 0
257 Result["Load_DHW"] = {}
258 Result["temp_DHW"] = {}
259 for t in model.T:
260 Result["Load_DHW"][t]=0
261 Result["temp_DHW"][t]=0
262

263 if Data["General"]["Battery"] == True:
264 daily_BAT_ch = sum(Result["Q_ch"][t] for t in range (24))
265 daily_BAT_dch = sum(Result["Q_dch"][t] for t in range (24))
266 final_Bat_SOC = model.SOC_bat [23]. value # final soc state

to be used as input in next iteration
267 else:
268 daily_BAT_ch = 0
269 daily_BAT_dch = 0
270 final_Bat_SOC = 0
271 Result["Q_ch"] ={}
272 Result["Q_dch"] ={}
273 Result["SOC_bat"] ={}
274 for t in model.T:
275 Result["Q_ch"][t] = 0
276 Result["Q_dch"][t] =0
277 Result["SOC_bat"][t]=0
278

279 if Data["General"]["EV"] == True:
280

281 if Data["EV"]["VTG"] == True:
282 daily_EV_dch = sum(Result["Q_dch_EV"][t] for t in

range (24))
283 else:
284 Result["Q_dch_EV"] ={}
285 for t in model.T:
286 Result["Q_dch_EV"][t] =0
287 daily_EV_dch = 0
288 if Data["EV"]["Smart Charge"] != True:
289 Result["Q_ch_EV"] = {}
290 for t in model.T:
291 Result["Q_ch_EV"][t] = Data["Op. Period data"]["EV

in period"][t]
292
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293 daily_EV_ch = sum(Result["Q_ch_EV"][t]for t in range (24))
294 final_EV_SOC = model.SoC_EV [23]. value
295

296 else:
297 daily_EV_ch = 0
298 daily_EV_dch = 0
299 final_EV_SOC = model.SoC_EV [23]. value
300 Result["Q_ch_EV"] = {}
301 Result["Q_dch_EV"] = {}
302 for t in model.T:
303 Result["Q_ch_EV"][t] = 0
304 Result["Q_dch_EV"][t] =0
305

306 grid_import = sum(Result["grid_load"][t] for t in
range (24))

307 grid_base_import = sum(Result["base_import"][t] for t in
range (24))

308 grid_extra_import = sum(Result["extra_import"][t] for t in
range (24))

309 grid_export = sum(Result["grid_export"][t] for t in
range (24))

310

311 """I/O"""
312 Daily_Results = {"peak_load":peak_load ,
313 "daily_houseload":daily_houseload ,
314 "daily_spotprice_cost":

daily_spotprice_cost*model.VAT ,
315 "total_costs":daily_spotprice_cost*model

.VAT+daily_TOU_cost+daily_CS_base_cost+daily_CS_excess_cost -
daily_export_gains ,

316 "daily_CS_base_cost" :
daily_CS_base_cost ,

317 "daily_CS_excess_cost" :
daily_CS_excess_cost ,

318 "daily_TOU_cost":daily_TOU_cost ,
319 "daily_PV":daily_PV ,
320 "daily_DHW_load":daily_DHW_load ,
321 "daily_BAT_ch": daily_BAT_ch ,
322 "daily_BAT_dch": daily_BAT_dch ,
323 "daily_EV_ch":daily_EV_ch ,
324 "daily_EV_dch":daily_EV_dch ,
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325 "grid_import":grid_import ,
326 "grid_base_import":grid_base_import ,
327 "grid_extra_import":grid_extra_import ,
328 "grid_export":grid_export ,
329 "daily_export_gains": daily_export_gains

,
330 "inital_SoC_EV":EV_SOC ,
331 "initial_Bat_SOC:bat":Bat_SOC ,
332 "inital_DHW_temp":DHW_temp ,
333 "final_Bat_SOC ":final_Bat_SOC ,
334 "final_EV_SOC":final_EV_SOC ,
335 "final_DHW_temp":final_DHW_temp ,
336 }
337 return (Daily_Results ,
338 final_Bat_SOC ,
339 final_EV_SOC ,
340 final_DHW_temp) # extract model iteration results
341

342

343 """
344 Constrains and expressions
345 """
346

347 """ Grid tariff """
348 def Base_Grid_Cost(model ,t): #Determine the hourly cost of the CS

base tariff component
349 return model.grid_load[t]*model.tariff_cost
350

351 def Grid_Import_Const(model ,t): #balance the base and excess cost
agains the grid import

352 return model.grid_load[t] == model.base_import[t] + model.
extra_import[t]

353

354 def Penalty_cost(model ,t): #Determine the hourly cost of the CS
excess tariff component

355 return model.extra_import[t]*model.excess_cost
356

357

358 def TOU_Tariff(model ,t): # The Time -of -use component of the grid
tariff
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359 if model.day.month > 2 or model.day.month < 10: #Summer (
march - november)

360 if 6 < t < 22 or model.day.weekday () > 4:
361 model.hourtariff[t] = model.tariff_day_summer #

day or not weekend in "summer"
362 else:
363 model.hourtariff[t] = model.tariff_night_summer #

night or weekend in "summer"
364 else: #Winter (april -oktober)
365 if 6 < t < 22 or model.day.weekday () > 4:
366 model.hourtariff[t] = model.tariff_day_winter#day

or not weekend in "winter"
367 else:
368 model.hourtariff[t] = model.tariff_night_winter

#night or weekend in "winter"
369

370 return model.hourtariff[t]
371

372 """ System """
373 def Energy_balance(model ,t):# defining energy balance equation:

house load + battery charge = grid input + battery discharge +
PV

374 Input = model.grid_load[t]+ model.Q_dch[t] + model.PV_prod[t]
+ model.Q_dch_EV[t]# model inputs: grid load , battery discharge
with efficeny and PV production

375 Output = model.Q_ch[t] + model.House_load[t]+ model.
grid_export[t] + model.Q_ch_EV[t] +model.Load_DHW[t]# model
ouputs: battery charge with efficency and inflexible huse load

376 return (Input == Output)
377

378 """ BESS """
379 def Bat_energy_balance(model ,t): # defining battery enegy balance
380 if t == 0:
381 return (model.SOC_bat[t]- model.initial_SOC_bat == model.

Q_ch[t]*model.eff_Bat - model.Q_dch[t]/ model.eff_Bat) # if t =
0, use soc state from previus

382 else:
383 return (model.SOC_bat[t]- model.SOC_bat[t-1] == model.Q_ch

[t]* model.eff_Bat - model.Q_dch[t]/model.eff_Bat)
384

385
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386 """EV"""
387 def EV_energy_balance(model ,t): #EV energy balace. Used ragardless

of discharge is enabled
388 if t == model.T.first ():
389 return(model.SoC_EV[t] - model.inital_SoC_EV == model.

Q_ch_EV[t]*model.eff_EV*model.EV_connected[t]- model.Q_dch_EV[t
]*model.EV_connected[t]/model.eff_EV - model.EV_load *(1- model.
EV_connected[t]) )

390 else:
391 return(model.SoC_EV[t] - model.SoC_EV[model.T.prev(t)] ==

model.Q_ch_EV[t]*model.eff_EV*model.EV_connected[t] - model.
Q_dch_EV[t]* model.EV_connected[t]/ model.eff_EV - model.EV_load
*(1-model.EV_connected[t]))

392

393 def discharge_limit(model ,t): # Stops the model from discharging
when not connected

394 if model.EV_connected[t] == 0:
395 return(model.Q_dch_EV[t] == 0)
396 else:
397 return(pyo.Constraint.Skip)
398

399 def EV_Charge_requirement(model ,t): # Reqire the soc to be at at a
certain capacity at departure time

400 if t == model.Deptime_EV or t == model.Deptime_EV +24 or t ==
model.Deptime_EV +48:

401 return model.SoC_EV[t] >= model.Dep_low
402 else:
403 return(pyo.Constraint.Skip)
404

405 """ DHW """
406

407 def DHW_Temperature_demand(model , t): # Temperature discharge due
to household water use

408 if t == model.T.first ():
409 return(model.temp_DHW[t] - model.inital_temp_DHW ==

model.temp_increase[t] - model.DHW_temp_demand[t] )
410 else:
411 return( model.temp_DHW[t] - model.temp_DHW[t-1] ==

model.temp_increase[t]- model.DHW_temp_demand[t] )
412
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413 def DHW_Temperature_regulation(model ,t): # Electric load
controlling the water temperaure

414 return(model.Load_DHW[t] == model.Heat_Cap_DHW *(model.
temp_increase[t]))# + model.DHW_loss)

415

416 def DHW_Temperature_equirement(model ,t): # Water temperature must
be at a higer minimum level duruh high demand hours

417 if model.DWH_high_demand[t] == 1:
418 return model.temp_DHW[t] >= model.high_dem_min_temp_DHW
419 else:
420 return(pyo.Constraint.Skip)
421 """
422 Objective function
423 """
424

425 def Objective(model): # The objective is to minimize total cost of
puchasing enegy from the grid

426 Import = sum(model.grid_load[t]* model.El_price[t]/1000*
model.VAT #RTP

427 + model.grid_load[t]* model.hourtariff[t] #TOU
428 + Base_Grid_Cost(model ,t) #Base CS
429 + Penalty_cost(model ,t) #Excess CS
430 for t in model.T)
431

432 Export = sum(model.grid_export[t]* model.El_price[t]/1000
for t in model.T)

433

434 return (Import - Export)

Listing A.1: Data initialization
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A.2 Main algorithm

1

2

3 from datetime import datetime , time , date , timedelta
4 import pandas as pd
5 import numpy as np
6 import calendar
7 import Initialize as init # Data initialization and updating scipt
8 import Optimization_model as opt # optimzation model script
9 import matplotlib.pyplot as plt

10

11

12 def _main_ (): #main function
13 start = datetime.now() #use to see script runtime
14 print("Script started ",start )
15 global Data , Yearly_Results
16

17 Data = init.Intial_Data_dict () #Run the Data dict for the
first time for model input

18 print("Initialiization comlete",datetime.now() )
19 print("Preamble complete", datetime.now() - start)
20

21 monthrange = range (1,13 ) # for each month (1 to start at
january , 13 to include december)

22 initial_day = date (2021 ,1 ,1)
23

24 Yearly_Results = runmodel(Data ,initial_day ,monthrange ,)#Runs
the model for each month in the specifed month range

25

26 print("Script execution time", datetime.now() - start) #
examine toal runtime

27

28

29 def runmodel(Data ,initial_day ,monthrange):
30

31 """ initialization """
32 if Data["General"]["Battery"] == True:
33 Bat_SOC = Data["Battery"]["Inital SOC"]
34 else:
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35 Bat_SOC = 0
36 if Data["General"]["EV"] == True:
37 EV_SOC = Data["EV"]["Inital SOC"]
38 else:
39 EV_SOC = 0
40 if Data["General"]["DHW"] == True:
41 DHW_temp= Data["DHW"]["Inital temp"]
42 else:
43 DHW_temp= 0
44

45 Yearly_Results ={}
46

47

48 """ Run for the Scheduling Horizon """
49

50 for month in monthrange: #Runs for each month ,
51 monthname = calendar.month_name[month]
52 monthlength = calendar.monthrange(initial_day.year ,

initial_day.month)[1] # integer - lenght in days of current
month

53

54 Data["General"]["Scheduling Horizon"] = monthlength
55 N = Data["General"]["Prediction Horizon"]
56

57 Data["General"]["Prediction Horizon"] = N # restore the
model horizon after horizon reduction

58 Data["Daily Result"] ={}
59 day = initial_day
60 Daily_Results = {}
61

62 """ Day Run """
63 for i in range(1,Data["General"]["Scheduling Horizon"]+1):

#run for each day in the sheduling horizon (month)
64

65 Data = init.Update_Data_dict(Data ,day)# Update Data
dict

66

67 (Daily_Results[day],
68 final_Bat_SOC ,
69 final_EV_SOC ,
70 final_DHW_temp ,
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71 )= opt.Optimization_model(Data , Bat_SOC ,EV_SOC ,
DHW_temp , day) # Run model , extract results

72

73

74 Yearly_Results[day] = Daily_Results[day]
75

76

77

78 """ Prepare next iteration """
79

80 day += timedelta(days = 1) # prepare for running
for the next day

81 Bat_SOC = final_Bat_SOC
82 EV_SOC = final_EV_SOC
83 DHW_temp = final_DHW_temp
84

85 """ Horizon Reduction """# For horizon reduction at the
end of the month

86

87 horizon_reduction(Data , day)
88

89 """ End of day run """
90

91

92 initial_day = initial_day + timedelta(days =monthlength)
93 """"End of Month Run """
94 return Yearly_Results
95

96 def horizon_reduction(Data , day): #This function reduces the
prediction horizon when the end of the sheducling horizon is
about to be reached

97 horizon_last_day = day + timedelta(hours=len(Data["Op. Period
data"]["hourlist for period"])) # Finds the last day of the
predicion horizon

98 while day.month != horizon_last_day.month and len(Data["Op.
Period data"]["hourlist for period"]) > 24: #if the last day of
the horizon is in a different month than current month , reduce
the horizon , expept if the horizon is

99 horizon_last_day = day + timedelta(hours=len(Data["Op.
Period data"]["hourlist for period"]))

100 h = Data["General"]["Prediction Horizon"]

98



A.2. MAIN ALGORITHM

101 Data["General"]["Prediction Horizon"] = h-1 #reduce number
of days with 1 for each while iteration

102 init.Update_Data_dict(Data ,day) # update the dict with new
data , rund the while condition again to check

103

104 _main_ ()

Listing A.2: Data initialization
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A.3 Initialization

1 import pandas as pd
2 from datetime import *
3 import calendar
4

5 def read_PVdata(Data): #reads a file from renewables ninja to dict
form

6 filename = Data["General"]["PV file"]
7 d_parser = lambda x: datetime.strptime(x,"%Y-%m-%d %H:%M") +

timedelta (731)
8 pvdata = pd.read_csv(filename ,
9 skiprows = 3,

10 usecols = ["local_time", "electricity"],
11 index_col= ["local_time"],
12 parse_dates =["local_time"],
13 date_parser = d_parser ,
14 dtype={"electricity":"float64"},
15 )
16

17 pvdata["electricity"]= pvdata["electricity"]*Data["PV"]["
Installed PV capacity [kWh]"] # Scaling the base data (1kW)
with installed capcity [kWh]

18 pvdatadict = pvdata.to_dict () #convert to dict
19 return pvdatadict["electricity"]# drops parent dict
20

21

22 def read_electric_load(Data):
23 filename = Data["General"]["load file"]
24 electric_load= pd.read_csv(filename ,
25 usecols =["KWH 60 Forbruk","Fra"],
26 index_col= ["Fra"],
27 parse_dates =["Fra"],
28 #dtype ={" KWH 60 Forbruk ":" float64"},
29 #decimal=’,’,
30 #date_parser = d_parser
31 ).to_dict ()
32 return electric_load["KWH 60 Forbruk"]
33
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34 def read_elspot_price(Data): #This function assumes a NordPool
price file

35 # NB! Nordpool files are sometimes corrupt and unreadable!
36 filename = Data["General"]["Prices file"]
37 place = 12 #Select coloum for price region. Example Bergen =

12", trondheim = 14
38 d_parser = lambda x: datetime.strptime(x,"%Y-%m-%d %H:%M:%S")
39 elspotprice = pd.read_excel(filename ,
40 usecols =[0,1,place],
41 skiprows=2,
42 parse_dates =["Date"],
43 date_parser = d_parser ,
44 names=["Date","Hours","Elspot

Prices in NOK/MWh"])
45 elspotprice.set_index (["Date"], drop = False , inplace = True)
46 for i in range(len(elspotprice)): # fix the timedates so date

and hour is combined
47 hours = elspotprice["Hours"][i]
48 pd.options.mode.chained_assignment = None
49 elspotprice["Date"][i] = elspotprice["Date"][i] +

timedelta(hours = int(hours [:2]))
50 elspotprice = elspotprice.to_dict ()
51 return elspotprice["Elspot Prices in NOK/MWh"]
52

53 def read_dumb_DHW ():
54 filename = Data["General"]["DHW file"]
55 DHW_Weekday = pd.read_excel(filename ,sheet_name ="Data

",usecols =[3]).to_dict ()
56 DHW_Weekend = pd.read_excel(filename ,sheet_name ="Data

",usecols =[4]).to_dict ()
57 DHW_standby = pd.read_excel(filename ,sheet_name ="Data

",usecols =[5]).to_dict ()
58 dumb_load_weekday = pd.read_excel(filename ,sheet_name ="Data

",usecols =[0]).to_dict ()
59 dumb_load_weekend = pd.read_excel(filename ,sheet_name ="Data

",usecols =[1]).to_dict ()
60

61 DHW ={"Weekday":DHW_Weekday["Temp Ukedag [C]"],
62 "Weekend":DHW_Weekend["Temp helg [C]"],
63 "Standby":DHW_standby["Standby"],
64 "dumb_load_weekday": dumb_load_weekday["Ukedag"],
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65 "dumb_load_weekend": dumb_load_weekend["Helg"],}
66 return DHW
67

68 def daily_dumb_EV_load(Data):
69 cap = Data["EV"]["Capacity"]
70 arr = int(Data["EV"]["EV Arrival"])
71 dep = Data["EV"]["EV Departure"]
72 D = Data["EV"]["Discharge when disconnected"]
73 Q = Data["EV"]["Q_max"]
74 eff = Data["EV"]["Charging_efficiency"]
75 dur = arr -dep
76 SOC_ar = cap -dur*D
77 charge_duration= (cap - SOC_ar)/(Q*eff)
78 charge_duration_int= int((cap - SOC_ar)//(Q*eff))
79 rem=charge_duration -charge_duration_int
80 EV_loadlst = []
81 for i in range (24):#intialize load list
82 EV_loadlst.append (0)
83 for i in range(charge_duration_int +1):
84 if i < charge_duration_int:
85 E = Q #charge at full power untill the last hour
86 else:
87 E =Q*rem #charge at remaining power
88 EV_loadlst[arr+i] = E
89 Data["EV"]["Daily EV load"] = sum(EV_loadlst)
90 return EV_loadlst
91

92

93 def Daily_load(day ,electric_load): # returns a list of loads in a
24h period for any valid day

94 Daily_Load_list = []
95 for key in electric_load.keys():
96 if day == key.date():
97 Daily_Load_list.append(electric_load[key])
98 while len(Daily_Load_list) != 24: # in case there is something

missing in the data
99 Daily_Load_list.append (0)

100 Data["Deviations"] = {day:f"Load list appenend hour {len(
Daily_Load_list)+1}"}

101 return Daily_Load_list
102
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103 def Daily_price(day ,elspot_price): # returns a list of prices in a
24h period for any valid day

104 Price_list = []
105 for key in elspot_price.keys():
106 if day == key.date():
107 Price_list.append(elspot_price[key])
108 while len(Price_list) != 24:# in case there is something

missing in the data
109 Price_list.append (0)
110 Data["Deviations"] = {day:f"Price list appenend hour {len(

Price_list)+1}"}
111 return Price_list
112

113 def Daily_PV(day ,pvdata): # returns a list of PV load injections
in a 24h period for any valid day

114 PV_list = []
115 for key in pvdata.keys():
116 if day == key.date():
117 PV_list.append(pvdata[key])
118 while len(PV_list) != 24:# in case there is something missing

in the data
119 PV_list.append (0)
120 Data["Deviations"] = {day:f"PV list appenend hour {len(

PV_list)+1}"}
121 return PV_list
122

123 def Daily_DHW_load(day ,Data):
124 DHW_list = []
125 if Data["General"]["Dumb DHW"]== True:
126 if day.weekday () < 5:
127 DHW_list = list(Data["Yearly data"]["DHW"]["

dumb_load_weekday"]. values ())
128 else:
129 DHW_list = list( Data["Yearly data"]["DHW"]["

dumb_load_weekend"]. values ())
130 return DHW_list
131

132 else:
133 if day.weekday () < 5:
134 DHW_list = list(Data["Yearly data"]["DHW"]["Weekday"].

values ())
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135 else:
136 DHW_list = list( Data["Yearly data"]["DHW"]["Weekend"

]. values ())
137 return DHW_list
138

139 def Intial_Data_dict (): # Creates the data dict
140 global Data
141 Data ={} # create master dicionary
142 filename = "Inputs.xlsx" #define filename
143 General = pd.read_excel(filename , sheet_name = "General",

usecols = ’A:B’)
144

145 Data["Yearly data"]={}
146

147 General.set_index("Variable", drop=True , inplace=True)
148 General = General.to_dict ()
149 Data["General"] = General["Value"]#Variabel and value are

headers used to sort the indexing. Its is then dropped from the
dict

150 Data["General"]["Initial day"] = Data["General"]["Initial day"
].date()

151

152 GT = pd.read_excel(filename , sheet_name = "Grid tariff",
usecols = ’A:B’)

153 GT.set_index("Variable", drop=True , inplace=True)
154 GT=GT.to_dict ()
155 Data["Grid tariff"] = GT["Value"]
156

157 #if Data[" General "]["EV"] == True:
158 EV = pd.read_excel(filename , sheet_name = "EV", usecols = ’A:B

’)
159 EV.set_index("Variable", drop=True , inplace=True) # fix

indexing
160 EV = EV.to_dict ()# turn dataframe to dict
161 Data["EV"] = EV["Value"]
162

163 Data["EV" ]["Threshold_low"] = Data["EV" ]["Threshold_low"]*
Data["EV" ]["Capacity"] #Set Battery limits according to
specified nuber of batteries

164 Data["EV" ]["Threshold_upper"] = Data["EV" ]["Threshold_upper"
]*Data["EV" ]["Capacity"]
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165 Data["EV" ]["Departure_high"] = Data["EV" ]["Departure_high"
]*Data["EV" ]["Capacity"]

166 Data["EV" ]["Departure_low"] = Data["EV" ]["Departure_low"]*
Data["EV" ]["Capacity"]

167 Data["EV" ]["Start_end_soc"] = Data["EV" ]["Start_end_soc"]*
Data["EV" ]["Capacity"]

168

169 Battery = pd.read_excel(filename , sheet_name = "Battery",
usecols = ’A:B’) #imports exel sheet in a dataframe

170 Battery.set_index("Variable", drop=True , inplace=True) # fix
indexing

171 Battery = Battery.to_dict ()# turn dataframe to dict
172 Data["Battery"] = Battery["Value"]
173

174 Data["Battery" ]["Capacity"] = Data["Battery" ]["Capacity"]*
Data["Battery"]["Number of batteries"] #Set capacity according
to specified nuber of batteries

175 Data["Battery" ]["Threshold_low"] = Data["Battery" ]["
Threshold_low"]*Data["Battery" ]["Capacity"] #Set Battery
limits according to specified nuber of batteries

176 Data["Battery" ]["Threshold_upper"] = Data["Battery" ]["
Threshold_upper"]*Data["Battery" ]["Capacity"]

177

178 DHW = pd.read_excel(filename , sheet_name = "DHW", usecols = ’A
:B’)

179 DHW.set_index("Variable", drop=True , inplace=True) # fix
indexing

180 DHW = DHW.to_dict ()# turn dataframe to dict
181 Data["DHW"] = DHW["Value"]
182 Data["Yearly data"]["DHW"]= read_dumb_DHW ()
183

184

185 Data["Yearly data"]["elspot price"] = read_elspot_price(Data)
186 Data["Yearly data"]["electric load"] = read_electric_load(Data

)
187

188 PV = pd.read_excel(filename , sheet_name = "PV", usecols = ’A:B
’)

189 PV.set_index("Variable", drop=True , inplace=True) # fix
indexing

190 PV = PV.to_dict ()# turn dataframe to dict

105



A.3. INITIALIZATION

191 Data["PV"] = PV["Value"]
192 Data["Yearly data"]["PV data"]= read_PVdata(Data)
193

194 Data["Result"] ={}
195

196

197 return Data
198

199 def Update_Data_dict(Data ,day): # updates the data dict
200 N = Data["General"]["Prediction Horizon"]
201

202 days =[]
203 for i in range(N):
204 days.append(day+ timedelta(days=i)) # list of days in

model horizon
205

206 Data["Op. Period data"] = {}
207 Data["Op. Period data"]["hourlist for period"] = list(range(N

*24))
208

209 temp_Load_list = []
210 temp_Price_list= []
211 temp_PV_list = []
212 temp_DHW_list =[]
213 temp_EV_list =[]
214 Load_list = []
215 Price_list = []
216 Pv_list = []
217 DHW_list =[]
218 EV_list =[]
219

220 if Data["General"]["Prediction"]== True and day > date
(2021 ,1 ,7):

221

222 d = day
223 load_lst =[]
224 price_lst =[]
225 average_load =[]
226 average_price= []
227

228 for i in range (7):# get average values for the last 7 days
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229 d = day - timedelta(days=7-i)
230 price_lst.append(Daily_price(d, Data["Yearly data"]["

elspot price"]))
231 load_lst.append(Daily_load(d, Data["Yearly data"]["

electric load"]))
232 for hour in range (24):
233 average_price.append(sum(price_lst[day][hour] for day

in range (7))/7)
234 average_load.append(sum(load_lst[day][hour] for day in

range (7))/7)
235

236 for i in range(N):
237 if i == 0:
238 temp_Load_list.append(Daily_load(days[i], Data["

Yearly data"]["electric load"]))
239 temp_Price_list.append(Daily_price(days[i], Data["

Yearly data"]["elspot price"]))
240 else:
241 temp_Load_list.append(average_load)
242 temp_Price_list.append(average_price)
243

244 else:
245 for i in range(N): #Creates a list of list. Needs to be

reduced to a single list. Probably a better way to do this
246 temp_Load_list.append(Daily_load(days[i], Data["

Yearly data"]["electric load"]))
247 temp_Price_list.append(Daily_price(days[i], Data["

Yearly data"]["elspot price"]))
248

249 for i in range(N): #Creates values for operating period
250 Load_list += temp_Load_list[i]
251 Price_list += temp_Price_list[i]
252

253 Data["Op. Period data"]["Prices in period"]= {}
254 Data["Op. Period data"]["Loads in period"] = {}
255

256 if "PV data" in Data["Yearly data"]:
257 for i in range(N):
258 temp_PV_list.append(Daily_PV(days[i],Data["Yearly data

"]["PV data"]))
259 Pv_list += temp_PV_list[i]
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260 Data["Op. Period data"]["PV in period"] = {}
261

262 if "DHW" in Data:
263 for i in range(N):
264 temp_DHW_list.append(Daily_DHW_load(days[i],Data))
265 DHW_list += temp_DHW_list[i]
266 Data["Op. Period data"]["DHW in period"] = {}
267

268 if "EV" in Data:
269 for i in range(N):
270 temp_EV_list.append(daily_dumb_EV_load(Data))
271 EV_list += temp_EV_list[i]
272 Data["Op. Period data"]["EV in period"] = {}
273

274 for i in Data["Op. Period data"]["hourlist for period"]: # add
values to data dict

275 Data["Op. Period data"]["Loads in period"][i] = Load_list[
i]

276 Data["Op. Period data"]["Prices in period"][i] = Price_list
[i]

277 if "PV in period" in Data["Op. Period data"]:
278 Data["Op. Period data"]["PV in period"][i] = Pv_list[i]
279 if "DHW in period" in Data["Op. Period data"]:
280 Data["Op. Period data"]["DHW in period"][i] = DHW_list[i

]
281 if "EV in period" in Data["Op. Period data"]:
282 Data["Op. Period data"]["EV in period"][i] = EV_list[i]
283

284 if Data["General"]["Dumb DHW"]== True: # if dumb DHW , add to
load

285

286 for key in Data["Op. Period data"]["Loads in period"].keys
():

287 Data["Op. Period data"]["Loads in period"][key] = Data[
"Op. Period data"]["Loads in period"][key]+Data["Op. Period
data"]["DHW in period"][key]

288

289 if Data["General"]["Dumb EV"]== True: #if dumb EV , add to load
290

291 for key in Data["Op. Period data"]["Loads in period"].keys
():
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292 Data["Op. Period data"]["Loads in period"][key] =
Data["Op. Period data"]["Loads in period"][key]+Data["Op.
Period data"]["EV in period"][key]

293

294 return Data

Listing A.3: Data initialization
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