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Abstract

To be able to utilize data sets containing sensitive information, they must be secure
and protected. Federated learning is a technique in machine learning which aims
to solve this problem. By bringing a global model to a local device, users can utilize
and learn from a shared model while at the same time keeping their data local.
However, due to being a relatively new concept, there are still some challenges
with the approach. Hence, federated learning alone is not always strong enough
to protect the data set. Therefore, it is often used in combination with differential
privacy (DP). This is a definition that provides privacy by injecting noise.

The original definition of differential privacy, (ε)-DP, is often too strict to use
in practice. Thus, many variations of the definition have been developed, and
the most common is the (ε,δ)-DP. This is a relaxation of the definition allowing
some leakage of information. Further, there are several mechanisms that provide
differential privacy. The Laplace mechanism and the exponential mechanism are
some of the most common approaches. Many machine learning classifiers, such as
linear and logistic regression, deep neural networks, and support vector machines,
can be adopted to provide differential privacy.

The privacy budget, ε, gives a trade-off between the performance of the model
and the privacy of the data set. Experiments reveal that the amount of trade-off
depends on the choice of e.g. data set, classifier, model, and approach. Some ex-
periments indicate no significant trade-off, while others indicate a severe trade-off.
In addition, there still exists some open questions about both federated learning
and differential privacy requiring further research.
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Sammendrag

For å kunne bruke et datasett som inneholder sensitiv informasjon, må det være
sikret og beskyttet. Federated learning er en metode innen maskinlæring som prøver
å løse dette problemet. Ved å bringe en global modell til en lokal enhet kan brukere
dra nytte og lære av en felles modell, samtidig som de beholder sin data lokalt.
Siden dette er et relativt nytt konsept derimot, er det fremdeles noen utfordringer
med metoden. Derfor er ikke federated learning alene alltid sterkt nok til å be-
skytte datasettet. Av den grunn brukes det ofte i kombinasjon med differensielt
personvern (DP). Dette er en definisjon som sikrer personvern ved bruk av støy.

Den originale definisjonen av differensielt personvern, (ε)-DP, er ofte for streng
til at det kan brukes i praksis. Derfor har det blitt utviklet mange variasjoner av
definisjonen, og den mest vanlige er (ε,δ)-DP. Dette er en avslappet definisjon
som godtar noe lekkasje av informasjon. Videre er det flere mekanismer som sikrer
differensielt personvern. Laplace mekanismen og den eksponentielle mekanismen
er noen av de vanligste metodene. Mange maskinlæringsklassifiserere, slik som
lineær og logistikk regresjon, dype nevrale nettverk og support vektor maskiner,
kan tilpasses til å sikre differensielt personvern.

Personvernbudsjettet, ε, gir en avveining mellom ytelsen til modellen og per-
sonvernet til datasettet. Eksperimenter avslører at graden av avveining er påvirket
av valget av for eksempel datasett, klassifiserer, modell og fremgangsmåte. Noen
av eksperimentene viser ingen betydelig avveining, mens andre viser alvorlige
avveininger. I tillegg eksisterer det fremdeles noen åpne spørsmål rundt både fed-
erated learning og differensielt personvern som krever videre undersøkelser.
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Chapter 1

Introduction

The purpose of machine learning (ML) is to gain knowledge from a data set and
predict the best output [1]. However, data may be revealed to the public when it
is collected and processed [2]. Today’s improvements in regulations have resulted
in it being more demanding to obtain data. Hence, central training approaches
may not fulfill requirements regarding privacy. Individuals might seek to train ML
algorithms only on their own data, however, this is often not an option since the
amount of data might not be sufficient. Ideally, solely removing the names of the
individuals in a study would be enough to anonymize the data [1]. Although, if
some other information is already held by an attacker, individuals can be identi-
fied.

To solve these problems, the concept of federated learning (FL) was proposed
[3]. With this approach, individuals can train their own data locally on e.g. their
smart phones enabling users to learn predictions from a shared model. This shared
model is controlled by a global server who obtains updates from all the users.
Since this is a fairly new concept and thus have some unsolved challenges, it is
often used in combination with the definition differential privacy (DP). This is a
definition where random noise is utilized to prevent leakage of information [1].
On that account, no individual will affect the data set if it is removed, hence the
attacker cannot with certainty gain knowledge about an individual.

One challenge with DP is that it might affect the performance of the training
[1]. Although by using large data sets, researchers have developed models that
can capture the distributions while differential privacy is guaranteed. Here, indi-
viduals or single samples cannot be heavily relied upon by the model to be able
to generalize the method. This will provide both usefulness and privacy without
the effects of individual samples.

By definition of differential privacy, there follows a privacy budget [4]. Every
time a network is trained, a part of this budget will be used. This budget is defined
by the parameter ε from the definition (ε)-differential privacy, which is the ori-
ginal and strictest definition of DP. Another way of improving the utility while still
perceiving a small privacy budget, is to slacken the interpretation of differential
privacy. Thus, a variety of definitions of DP has been proposed. The most utilized

1



2 : A Survey of the Federated Learning and Differential Privacy Techniques

definition in practice is (ε,δ)-differential privacy where a pre-defined amount of
accidentally leaked information, δ, is allowed.

The purpose of this thesis is to give an overview of the federated learning and
differential privacy field, as well as investigate how the privacy budget affects the
performance of the training by reviewing previous research. This thesis is struc-
tured as follows. Chapter two presents the federated learning concept, promises
and technical limitations, as well as different variations of the approach. Addi-
tionally, a brief overview of several types of attacks are presented. Chapter three
presents the differential privacy definition as well as the most common types of
mechanisms utilized to obtain DP. Furthermore, some variations of the definition
are introduced as well as the promises of DP. In chapter four some of the most
common machine learning classifiers are presented along with how they can adapt
to provide differential privacy. Three experiments from related work are presented
in chapter five. Here, their methods and choices are stated together with the res-
ults of their study. These experiments are among others used to discuss the issue
of this thesis in chapter six. Lastly, a conclusion and further work are presented in
chapter seven.



Chapter 2

Federated Learning

Google researchers McMahan and Ramage [3] introduced in 2017 the concept of
federated learning. By using data sets who are distributed over several devices, the
machine learning models can prevent data leakage. Hence, training data is kept
locally on the device while multiple users can learn collaboratively from a shared
global model. This is the main idea behind the concept. Instead of bringing the
data to a global model, the model is brought to the data.

With FL, the data does not have to be trained on a centralized machine, as
in the standard approaches in machine learning [3]. Several users can then share
a predicted model without sharing their own data. A server or cloud holds the
current model, which is downloaded by the users to their device. Data stored on
the device is used for local training to improve the model. All the changes are
summarized in an encrypted update sent back to the server. Updates from all the
users are averaged and used for improvement of the shared model. This ensures
that the data is kept local, and the server deletes all the updates from the devices
after the shared model is improved. An illustration of this is presented in figure
2.1 [3].

2.1 Definition

Federated learning can be defined as having N data owners F1, ...,FN with data
D1, ...,DN aiming to train a model M [5]. In traditional machine learning, D =
D1 ∪ · · · ∪ DN when all the data is used in model training. Instead, FL exploits
a shared model MF ED when an owner Fi seek to train their own data Di . The
concept of FL promises that the owner’s data is not exposed to any of the other
participants. Additionally, VF ED and VSU M symbolizes the accuracy of respectively
the federated model MF ED and the traditional model MSU M . Ideally, these two
accuracies should be equal. According to Yang et al. [5], the federated learning
algorithm obtains a δ-accuracy loss if

|VF ED − VSU M |< δ (2.1)

3
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Figure 2.1: Illustration of the federated learning process retrieved from McMahan
and Ramage [3].

holds. Here, δ is a real, positive number.
In a federated learning setting, the server collects and stores updates from sev-

eral users to improve the current model [6]. Once these updates have been used
to obtain an improvement of the model, they are no longer stored on the server.
Hence, the server will only hold information from the current training. Addition-
ally, there is no need for the server to have access to all the training data from the
users. There is still a possibility that the updates contain sensitive information,
which require trusting the server. Furthermore, the server’s job is to coordinate
the training.

2.2 Main Features

2.2.1 Iterative Learning

An engineer is typically the one who is operating the federated learning process to
obtain a model from a specific task [7]. The life cycle of such a process is depicted
in figure 2.2.

The typical workflow of the life cycle of a FL model can be divided into six steps
[7]. The first step is for the engineer to identify the problem. Next, several clients
with local training data are instrumented for the task. Optionally, a proxy data set
can be used for simulation prototyping. Step four contains the federated model
training, where alterations of the model are being trained by several federated
tasks. After sufficient training, the model evaluation is conducted by engineers and
analysts who selects good candidates. This analysis can be a federated evaluation,
or it can be evaluated on standard data sets. The final step is to launch the selected
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Figure 2.2: A sketch of the federated learning life cycle retrieved from Kairouz et
al. [7].

Table 2.1: Table of the order-of-magnitude of a typical FL application retrieved
from Kairouz et al. [7].

Total population size 106 − 1010 devices
Devices selected for one round of training 50-5000

Total devices that participate in training one model 105 − 107

Number of rounds for model convergence 500-10000
Wall-clock training time 1-10 days

model.

As mentioned, step four of a typical federated learning workflow is to train
a model. Assuming the Federated Averaging algorithm (which will be defined in
section 2.4), the process of federated training can be summarized in five steps
[7]. These steps are managed by the server until the training is completed. First
step is to select the clients from a set. In practice, this could be e.g. different
phones where only the connected ones are being picked. Second step is to send
the training program and the current model weights to the clients participating
in the process. Furthermore, every selected client perform training on their own
data locally and sends an update back to the server. In Federated Averaging, this
is done by running stochastic gradient descent (SGD) (which will be defined in
section 2.4) locally. The fourth step contains aggregation. Here, all the updates
from the clients are aggregated and collected by the server. At this point, if there
is an acceptable number of results from clients, the server may improve efficiency
by dropping clients who are struggling. This step can be done in different ways
e.g. lossy compression, noise adding and update clipping, or secure aggregation.
Last step is for the server to use the aggregated update from the current round
to update the shared model. The order-of-magnitude in a typical application of
federated learning for e.g., mobile devices, is given in table 2.1.
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2.2.2 Non-IID data

In a federated learning task, sampling has to be done twice [7]. First, the model
samples a client i ∼ Q, where Q is the distribution of all the clients available.
Then, from the local data distribution of that client, a sample (x , y) ∼ Pi(x , y) is
drawn. Here, x and y corresponds to respectively the features and labels in the
task.

Generally in federated learning, the data is not independent and identically
distributed (non-IID) [7]. For two clients i and j, this is defined as Pi ̸= Pj . By
using the definition of joint probability, Pi(x , y) can be written as Pi(x |y)Pi(y)
and Pi(y|x)Pi(x). Some of the most common ways where the data is non-IID are
given in the list below.

• Covariate shift: Even though Pi(y|x)Pj(y|x), the marginal distributions
Pi(x) might differ throughout the clients. E.g. when recognizing handwrit-
ing, there will still be small variations within one single persons writing.

• Prior probability shift: Even though Pi(x |y)Pj(x |y), the marginal distri-
butions Pi(y) might differ throughout the clients. E.g. the distribution of
labels may have a different range corresponding to the geographical loca-
tion of the client.

• Concept drift: Even though P(y) is the same for all clients, the conditional
distributions Pi(x |y) might differ throughout the clients. A variety of fea-
tures x can correspond to the same label y .

• Concept shift: Even though P(x) is the same for all clients, the conditional
distributions Pi(y|x) might differ throughout the clients. Equivalent to the
previous item in this list, a variaty of labels y can correspond to the same
feature x , due to personal preferences.

• Unbalancedness: The amounts of data held by various clients may be sig-
nificantly different.

2.2.3 Cross-Device vs. Cross-Silo

Federated learning can be divided into two different schemes: cross-device and
cross-silo, illustrated in figure 2.3 [8]. In cross-device FL the data is distributed
across mobile phones or IoT devices locally, while in cross-silo FL the data is dis-
tributed across e.g. organizations or data centers [7]. Hence, cross-device has a
large number of clients (up till 1010) with a smaller amount of data, while cross-
silo have fewer clients (usually 2-100) with a larger amount of data.

Another difference between the two types is that in cross-device FL solely a
few clients are accessible at once, while in cross-silo FL almost all clients can
be accessed at the same time [7]. In cross-device FL a major bottleneck is com-
munication. The reason for this is because the devices, or clients, often use wifi-
connections when performing computations. Sometimes even slower connections
are used. This might also cause a bottleneck in cross-silo FL, but not to the same
extent. Additionally, in cross-device the clients cannot be identified, whereas in
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Figure 2.3: Illustration of the two federated learning types: cross-device and
cross-silo, retrieved from Kholod et al. [8].

cross-silo the system can identify a client to specifically access it. Furthermore, in
cross-silo all the clients may engage in every round of training. In cross-device,
this is not the case. Here, it is more likely that a client only engages in a task
once. Then, in each round of training it can be assumed that only unseen clients
engage. However, the clients are highly unreliable because it is expected that at
least 5% of them will drop out. This happens when a device is disqualified due to
e.g. violation of network, battery, or idleness requirements.

Federated learning was originally presented as the cross-device type by Google,
and is the most commonly used [7]. Therefore, most emphasis is directed towards
this scheme throughout this thesis.

2.3 A Typical Federated Learning Algorithm

A typical federated learning algorithm is presented in table 2.2 given by McMa-
han et al. [9]. This is an example of the federated averaging (FedAvg) variation.
The server starts by initializing a model w0 with predefined parameters. These
parameters are the number of clients K , the size of the local mini-batch B, the
number of local epochs E, and the learning rate η. Every round, given by t, the
server decides the amount of clients who are going to participate. Here, C defines
a fraction multiplied with the total number of clients K , resulting in m amount of
clients. Additionally, the server randomly collects these clients, given by St . For
each client, the model is updated given the clients training data locally, providing
wk

t+1. When all the clients have updated their current model locally, the shared
model wt+1 is updated by taking the weighted average of all the local updates.
Here, nk represents the amount of data samples that client k has available for
training.

The client update is performed by taking one step of gradient descent [9].
This will be described later in section 2.4. On each client’s device, their training
examples, denoted by Pk, are divided into batches β of size B. A total number of
local epochs, E, runs, where for each epoch and each batch, the model is trained.
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Here, l(w; b) corresponds to a loss function. This results in an updated model w
which is returned to the server.

Table 2.2: A typical federated learning algorithm retrieved from McMahan et al.
[9].

Algorithm Federated Averaging. The K clients are indexed by k; B is the local
minibatch size, E is the number of local epochs, and η is the learning rate.
Server executes:

initialize w0
for each round t = 1, 2, ... do

m← max(C · K , 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1← ClientU pdate(k, wt)

wt+1←
∑K

k=1
nk
n wk

t+1

ClientUpdate(k, w): //Run on client k
β ← (split Pk into batches of B)
for each local epoch i from 1 to E do

for batch b ∈ β do
w← w−η∇l(w; b)

return w to server

2.4 Federated Learning Variations

Federated learning can be performed in different matters, and a selection of the
variations is presented below. The federated averaging (FedAvg) and the feder-
ated stochastic gradient descent (FedSGD) are the most common ones in practice.
Before defining some different federated learning variations, some background
on deep learning (DL) is provided.

2.4.1 Deep Learning

In deep learning, complex features are extracted from high-dimensional data for
the purpose of constructing a model with an input-output relationship [10]. This
relationship can be defined by for example classes. Usually, multi-layer networks
are used as architecture, and a classic neural network consisting of two hidden
layers is illustrated in figure 2.4. Here, the circles are called nodes, and each of
them models a neuron.

The first neurons, which are the black circles in figure 2.4, are bias nodes who
emits 1 to the neurons in the next layer [10]. Further, the neurons send their
output to the neurons in the next layer. When a neuron receives this as inputs, a
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Figure 2.4: Demonstration of a typical neural network retrieved from Shokri and
Shmatikov [10].

weighted average is computed and is called the total input. Using this total input,
a non-linear activation function is applied to compute an output. Given a layer k
with neurons, the output vector is given by

ak = f (Wkak−1), (2.2)

where the input signals contribution is regulated by a weighted matrix given
by Wk, and the activation function is given by f . Some commonly used activation
functions are listed as follows [10]:

• Hyperbolic tangent: f (z) = (e2z − 1)(e2z + 1)−1

• Sigmoid: f (z) = (1+ e−z)−1

• Rectifier: f (z) = max(0, z)
• Softplus: f (z) = log(1+ ez)
• Softmax: f (z j) = ez j · (

∑

k ezk)−1,∀ j

The softmax function is often used in the last layer when a finite number of
classes is used [10]. If so, neuron j’s output correlates to the probability that its
input corresponds to class j.

At each layer, features are extracted according to f and Wk [10]. From the
training data, the network can learn which parameter values, also called the
weighted matrices, that maximizes the purpose of the network. A major challenge
is to automatically engineer this in DL. Learning parameters can be achieved by
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supervised, semi-supervised or unsupervised learning.
Gradient descent, or a variation of it, is typically used to update the parameters

in supervised learning [10]. First, a random set of parameters are initialized for
the neural network. This is the starting point of the algorithm. The non-linear
functions gradient is computed in each step and is optimized. Further, to decrease
the gradient, the parameters are updated. When the algorithm converges to a local
optimum, this operation is stopped.

Computation of the gradient of the parameters is done through procedures
such as feed-forward and back-propagation [10]. Given the input data, the output
of the network is computed by feed-forward. Here, the error is calculated, and
represents the change from the true value of the function and the achieved output.
This error is used by back-propagation which propagates it backwards through
the network to compute the total error by inspecting every neuron’s contribution.
The neuron’s contribution to the error and its activation values are exploited to
compute the individual parameters gradients.

A simplification of gradient descent is stochastic gradient descent (SGD) [10].
This algorithm uses only a really small subset of the data set called mini-batches.
Some advantages by using SGD rather than GD are that it is less computationally
expensive and faster, which makes it able to performe training on larger samples
[11]. Additionally, SGD is stochastic in nature, this is not the case for GD which is
deterministic in nature.

2.4.2 Federated Stochastic Gradient Descent (FedSGD)

Optimization in deep learning relies almost entirely on different variations of
stochastic gradient descent [9]. In federated learning, calculation of a single batch
gradient can be performed in every communication round. To obtain a good model,
this approach requires a high amount of training rounds. In the setting of FL, hav-
ing a large batch is equivalent to involving more clients, which is not a huge cost
in time. A fraction of clients, C , is selected every round, and the gradient of the
loss is computed on the client’s data. C also controls the global batch size, where
a full-batch is used when C = 1. This is the federated stochastic gradient descent
algorithm.

2.4.3 Federated Averaging (FedAvg)

A generalization of the federated stochastic gradient descent is the federated av-
eraging [12]. In this variation, instead of updating the gradients, the weights are
updated. This is possible because the local nodes are allowed to use the local data
to utilize several batch updates, and not only one. Averaging the gradients or the
weights is analogous if the initialization is the same for all the local nodes. Hence,
a generalization of the FedSGD can be made by utilizing the weights instead of
the gradients. The algorithm for FedAvg is presented in table 2.2 in section 2.3.

FedAvg was introduced to solve the problem of limited bandwidth and latency
[3]. Deep networks can be trained with 10− 100 times less communication. In-
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stead of using simple gradient steps to compute updates, FedAvg utilizes the mo-
bile devices’ powerful processors to obtain updates with higher quality. To pro-
duce a good model, these high-quality updates require fewer iterations. Hence,
the training communication is much less. Random rotations and quantization are
utilized to compress the updates, reducing the cost of upload communication.

2.4.4 Federated Stochastic Variance Reduced Gradient (FSVRG)

In federated stochastic variance reduced gradient (FSVRG), each client distributes
stochastic updates, and only one computation of the expensive gradient is per-
formed centrally [12]. This stochastic update is executed by selecting a random
collection of the local data and iterating through it, resulting in each data point
performing one update. This variation of FL solely relies on one hyper parameter
called the step size h. The local step size hk for client k is given by hk = h/nk. Even
if nk differ a lot between clients, hk ensures that the amount of progress made for
each client should approximately be the same.

As in most variations of federated learning, the current model wt is sent to
the clients where they use their local data to compute the loss gradients [12]. The
server obtains a gradient by aggregating all the uploaded client gradients. When
the clients receive this gradient from the server, their step size hk and model wk

t
can locally be initialized. The gradient from the server, the local gradient, and
hk are all used to perform nk SVRG updates from a random permutation of the
client’s data. At last, the server collects all wk

t+1 from all the clients and creates a
new current model wt+1 based on them.

2.4.5 Federated Learning with Dynamic Regularization (FedDyn)

Acar et al. [13] introduced another variation of federated learning called feder-
ated learning with dynamic regularization (FedDyn). This method aims to solve
the issue that arises when heterogeneously distributed data sets are used. Con-
sequently, the global loss objective cannot in this case be minimized by minimiz-
ing the loss function locally by the clients. In FedDyn the total loss from all the
clients converges to the global loss by dynamically regularizing the loss function
at each client. This method aligns the local losses, which in turn ensures perform-
ing minimization on the client’s devices properly, as well as ensuring robustness
at different levels of heterogeneity.

2.4.6 Personalized Federated Learning by Pruning (Sub-FedAvg)

With the non-IID data that is often utilized in FL, good global performance can be
extremely difficult to achieve [14]. Therefore, Vahidian et al. [14] introduced Sub-
FedAvg which utilizes personalized models. This algorithm exploits both struc-
tured and unstructured pruning where the sub-networks of the clients are aver-
aged on the intersection. This means that the weight connections are removed in
the network for the purpose of decreasing the size of the storage in the model as
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well as increasing the speed [15]. Simultaneously, communication efficiency and
the accuracies of the personalized models are controlled [14].

2.5 Promises

Privacy of the data is the primary benefit of federated learning [3]. This approach
of machine learning keeps the data local and only exchanges encrypted paramet-
ers to a central server. Hacking the information in the data set is therefore in
theory more difficult. Additionally, to ensure privacy, FL also assures models that
are smarter, have lower latency, and have less consumption of power.

Unlike the traditional machine learning approaches, federated learning aims
to guarantee privacy of the data which fulfills the general data protection regula-
tion (GDPR) conditions [16]. The main aspects of GDPR is illustrated in figure 2.5
[17]. Protection of personal data is the aim of this regularization, and it is fully
described in 99 articles. Organizations in EU/UK then have detailed requirements
for how the personal data is supposed to be handled.

Figure 2.5: The essence of GDPR retrieved from Truong et al. [17].

The data protection framework can be divided into: Data Subject, Data Con-
troller, and Data Processor [17]. To process the data, the Data Subject must give
consent to the Data Controller. Full responsibility of the processing of personal
data is given to the Data Controller.

Storing and processing the personal data locally, as well as only exchanging
the parameters to the model, are some of the reasons why the GDPR holds in
federated learning [17]. Data privacy and security are also enhanced by applying
cryptography techniques to the aggregation and updating of the parameters. Cli-
ents’ personal data does not have to be shared with service providers to be able
to use the algorithm to implement applications or services. Therefore, the regu-
lations of data protection are followed. With FL, models can be trained on data
from different countries because there is no need to transfer the data to a central
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server. Additionally, the server does not have direct access to the local training
data or the local models in a FL system. Model parameters are aggregated and
updates the global model in such way that the privacy of the clients is minimally
impacted.

According to the GDPR, a Data Controller can only utilize data from clients
that is related to the claimed purposes [17]. This is a challenge in centralized
machine learning because it is often difficult to predict which data is essential for
the model training. However, in FL several local models, and not the original data
itself, are provided from the clients to obtain a global model. Therefore, FL can
ensure that the parameters from the local models are used for the only purpose
of updating the global model. In addition, since the updates from the clients are
aggregated, there are no sensitive information from any individual in the server.
Since the server does not hold any private information, there is nothing on the
server for any adversary to exploit.

2.6 Technical Limitations

Heterogeneous and enormous networks are often utilized when training in a fed-
erated learning setting [18]. This can cause some severe challenges, and four main
problems are presented below.

In federated networks a crucial bottleneck is communication [18]. Specifically,
a great amount of devices may participate in federated training, causing slower
network communication. Instead of waiting until the training process is finished
before the entire data set is sent, it would be more efficient to implement small
updates from the model during the training. By developing such communication-
efficient methods, it would be more straightforward to fit a model. Further, the size
of each message per round should be reduced as well as communication rounds
in total should be fewer.

Each device may provide different hardware, network connection, or battery
power, which may lead to providing different capacity within communication,
storage, or computation [18]. Further, the amount of devices that are active at
the same time are equal to only a tiny fraction due to limitations in systems or
the size of the network. Additionally, in any iteration of the training, a device that
is active may drop out because of connection or battery, as well as the reliability
of the devices may be low. Therefore, all federated learning methods should aim
to allow hardware that are heterogeneous, expect the number of participants to
be low, as well as being sturdy to devices that are dropped during the training
process.

Consider a task of next word prediction. Several users would write in their
own fashion providing variations in the language. Therefore, the collected and
generated data would be distributed non-identically over the network [18]. Ad-
ditionally, there may be a significant variation within the devices amount of data
points. Thus, IID data cannot be assumed in the distribution, which in turn could
increase the probability of devices struggling, as well as result in modeling, ana-
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lysis, and evaluation complexity. Such statistical heterogeneity can often be oper-
ated by utilizing device-specific or personalized learning.

One of the substantial concerns within federated learning is privacy [18]. By
sharing information from the gradients in updates rather than the raw data, FL
aims to protect the user’s private information. Although, experiments reveal that
the server or a third-party may pick up some sensitive information when commu-
nicating updates from the local models. An alternative to strengthen the privacy
is to combine federated learning with differential privacy. However, a theory is
that the performance of the model is reduced in this setting. Thus, a significant
challenge is to balance and understand the trade-off between privacy and utility.

2.7 Examples of Federated Learning Applications

Smart phones can typically be utilized as devices to perform FL applications [18].
For example, multiple mobile phones can jointly learn the behavior of the users, or
face and voice recognition can be applicated from statistical models. Nevertheless,
most users would not allow their private information to be shared with others.
Federated learning can possibly prevent private information to leak as well as
provide good user experience. An application like this is depicted in figure 2.6
[18].

Figure 2.6: A next-word prediction example of a federated learning application
on smart phones retrieved from Li et al. [18].

Other types of devices in FL can be institutions or organizations [18]. Pre-
dictive healthcare can for example be performed on several patients by hospitals.
Since hospitals require strict privacy preservation, it is important that the private
data is kept local. FL enables learning in a private manner among numerous or-
ganizations.

Nowadays, the internet of things (IoT) is all around us in smart homes, wear-
able devices, and self-driving cars [18]. These devices often consist of several
sensors which utilizes real-time data. In self-driving cars for example, it would
be essential to have up-to-date information about the surroundings to operate
safely. Federated learning can provide privacy for the users while at the same time
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provide systems with training models that adapt to the environment efficiently.

2.8 Attacks

As stated earlier, sensitive information could be revealed when updates are com-
municated to the server [19]. Information may be vulnerable to an adversary
server or third-party, illustrated in figure 2.7. Such an evil server could make ob-
servations over time of the updates provided from the different individuals, or
even interfere in the process of training. An adversary third-party could be an ob-
server who surveys the parameters held by the server and could further exploit this
information to change its own parameters before uploading them. Additionally,
such observers could create a backdoor to the server that is hidden.

Figure 2.7: Illustration of the federated learning procedure with an adversary
server and an adversary third-party retrieved from Lyu et al. [19].

One form of attack against the federated learning models are single attacks
[19]. A single individual may choose some inputs where the goal is to make the
model wrongly classify them confidently. Another form of attack is byzantine at-
tacks. Such individuals are hard to detect because they often have a random be-
havior and adapts their outputs in a fashion that provides the same distribution as
the non-adversary updates. Further, sybil attacks are also a form of attack against
the FL models. These attackers exploit fake individuals, or even take advantage
of individuals from the study with revealed identity, to attack the model.

Adversaries can perform attacks in two different settings: honest-but-curious
and malicious [19]. When attackers are honest-but-curious they aim to gain know-
ledge from other parties’ private states. Additionally, they only observe the gradi-
ent at the server who have already been aggregated or averaged, not other indi-
viduals’ data or gradients. In contrast, the malicious attackers aim to gain know-
ledge from other parties’ private states while diverging from the FL protocol. They
can alter or remove messages from other individuals to obtain destructive attacks.

Depending on if the attacker aims to attack in the training phase or in the



16 : A Survey of the Federated Learning and Differential Privacy Techniques

inference phase, they are called respectively poisoning attacks and evasion attacks
[19]. With poisoning attacks, the adversary can inject fake data to the training pool
to influence the outcome of the training. This data can either be injected in the
individual’s collection of local data, also called data poisoning, or into the training
process of the model, also called model poisoning. Figure 2.8 illustrates these two
types of poisoning attacks. With model poisoning, backdoors to the global model
can be inserted.

Figure 2.8: retrieved from Lyu et al. [19].

Evasion attacks aims to force the model to construct wrong outputs [19]. An-
other goal is to gather information about the characteristics of the model. There-
fore, the information available concerning the model controls the attacks effect-
iveness.
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Differential Privacy

The promise of differential privacy aims to gain knowledge about a population
without revealing any information about an individual [20]. If the conclusion of
a study remains the same, whether or not a specific individual is contained in the
data set, the promise of differential privacy holds. Regardless of an individual’s
contribution to the data set, any sequence of responses to queries should be ob-
tained with the same probability.

The main idea behind this definition is giving people opportunity to be a part
of a study and share their data without reviling any sensitive information. An
individual should not be affected or harmed by participating in an analysis. By this
definition, sensitive data such as in healthcare, can be utilized to obtain greater
knowledge within an important field.

In machine learning it is interesting to use data that contains a lot of informa-
tion to obtain good results [20]. For this reason, data needs to be anonymized as
well as remain useful for analysis. By using differential privacy, re-identification
of the data is neutralized because being differentially private is not related to the
information contained in the data set. In addition, the amount and type of queries
are also factors in the concern of safety. Neither answering questions about specific
individuals in the data set nor rejecting them can be done without compromising
the privacy.

3.1 Definition

A database D containing data from individuals, is held by a trusted curator [20].
Assuming that each row corresponds to one single individual’s data, the aim is
to protect each individual while at the same time be able to perform statistical
analysis from the database. To gain knowledge about the database D, queries can
be applied. These are questions asked to D by the data analyst. Previous responses
to queries are used by the model to decide which is the next query to pose. Further,
the best accuracy is obtained when all queries are given preliminary. Thus, when
the queries’ structure is known, noise can be correlated by the model. Therefore,
if the number of queries increases, the accuracy will decrease to ensure privacy.

17
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Dwork and Roth [20] defines differential privacy as in definition 1.

Definition 1 "A randomized algorithm M with domain N|X | is (ε,δ)-differentially
private if for all S ⊆ Range(M) and for all x , y ∈ N|X | such that ∥x − y∥1 ≤ 1:

P r[M(x) ∈ S]≤ ex p(ε)Pr[M(y) ∈ S] +δ (3.1)

" [20].

In definition 1, M is a random algorithm, X is the set of all database rows, S
is all possible outputs of M, x and y are respectively the entries in the database
and the parallel database, and δ is the probability of leakage of information [20].
As mentioned earlier, ε defines the privacy loss or privacy budget. Hence, given
a query on database (x) and (y), the maximum distance between these two are
defined as ε.

Given the definition of differential privacy, different algorithms will achieve
ε-differential privacy for a computational task [20]. The parameter ε defines the
amount of privacy and how much interaction with the database is allowed. A
smaller ε corresponds to a small amount of interaction with the database, hence
more privacy is obtained. Although, it can be difficult to find an algorithm for
the task with high accuracy when ε is small. Therefore, it is important to find a
balance between the amount of privacy and the accuracy of the task.

3.1.1 The SuLQ Framework

Some of the earliest applications of differential privacy was introduced by Blum
et al. [21] and is called the SuLQ framework. Consider a situation where the
aim is to gain useful knowledge by applying algorithms to a data set contain-
ing individual private information, as well as preserving privacy. Furthermore,
consider the sub-linear queries (SuLQ) output-perturbation framework where the
pair (S, f ) defines a query [21]. Given a database D, the function f maps S into
{0,1}. This results in a response containing noise defined as

∑

r∈S f (DBR). Assum-
ing that the number of database rows is sub-linear to the total number of queries,
only a small portion of noise is required to gain a solid type of privacy. This reflects
the framework term sub-linear queries.

As stated, a database can be defined as a domain D with elements (d1, d2, ..., dn)
[21]. Given T queries with answers and a predicate f : D→ {0,1} (while assum-
ing independence between the elements di), pi, f

0 and pi, f
T defines respectively the

a priori and the a posteriori belief that f (di) = 1. For all i′ ̸= i, all the rows will
have the value di′ . In addition,

con f (p) = log
�

p
1− p

�

(3.2)

defines the 1-1 mapping con f : (0, 1)→ R, which is monotonically-increasing
[21]. This means ideally that the probability should not increase from the a priori
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belief to the a posteriori belief. Hence, the user does not know any more inform-
ation about the data set after the analysis than before the query was applied.
Therefore, the individual in the database is not harmed by the analysis if nothing
is learned. The keynote of defining this privacy is to prevent the user from gaining
knowledge about the data set, but still be able to use the data for training. Fur-
thermore, by using con f to smudge the probabilities between 0 and infinity, the
system will not make any hard decisions.

Given a small ε and similar query inputs, results will give a similar output as
well [22]. That being the case, an adversary attacker will struggle to analyze the
results and therefore not be able to gain information. For that reason, the smaller
the ε, the higher level of privacy is obtained. ε may therefore be determined by
the user or analyst to condition the amount of privacy needed for the task.

3.1.2 (ε)-Differential Privacy and (ε,δ)-Differential Privacy

By definition 1, two different definitions can be formed: (ε)-DP and (ε,δ)-DP
[20]. (ε)-DP was defined first, but since δ = 0, no leakage is allowed. Therefore,
this definition is not always useful in practice because of its strictness. As a con-
sequence, the (ε,δ)-DP was defined. Here, a small amount of accidental leakage
is allowed with the intention of making the definition useful in practice.

With (ε,δ)-DP there is allowed some leakage, i.e. this is a relaxation of the
(ε)-DP definition [22]. This relaxation may be used due to larger database sizes or
higher sensitivity values. Such definition provides more flexibility and is therefore
used more often. The analyst has more freedom when designing, and the utility
trade-off is theoretically lower.
δ should be chosen such that δ < 1

∥x∥1
[20]. This means that the inverse of the

size of the database is bigger than the amount of leakage allowed. These values of
δ prevent outcomes where the privacy is violated, but does not prevent leakage
in other forms [23].

In view of the fact that (ε)-DP cannot guarantee privacy when the Gaussian
mechanism is utilized, (ε,δ)-DP was introduced [23]. The definition of the Gaus-
sian mechanism is provided in section 3.2.

3.1.3 Global vs. Local Differential Privacy

Differential privacy can be classified as either local DP or global DP depending on
where the noise is inserted [24]. Figure 3.1 retrieved from Fathima [24] illustrates
these two situations.

In local DP the noise is added to the input of the database, either directly or
to the data set of the individuals prior to the database [24]. Although, accuracy
will be lost by using averaged values. Then, the accuracy of the results will be
less if the privacy protection is high. An advantage of using local DP is that the
data curator does not have to be trusted by the client, i.e. the clients data is not
exposed and privacy is ensured. However, this will result in a larger amount of
noise in total because each client must add noise. As a consequence, to obtain
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Figure 3.1: Illustration of global and local differential privacy retrieved from Fath-
ima [24].

useful results, a great amount of clients would need to participate. Therefore, ε
tends to be high in practice to reduce this effect.

Local DP can be useful in practice and is used by different companies today
[24]. For example in RAPPOR which is Googles way of gathering information from
users. Another example is private count mean sketch which is Apples way of gath-
ering information from clients use of e.g. emojis and words.

When the output of the database is injected with noise, global DP is performed
[24]. Here, the data curator adds noise only once after the process. Moreover, the
curator has access to all the private information, and it has to be trusted by the
clients. This DP provides more accurate results, and only a small amount of noise
needs to be injected with a low ε to obtain reasonable results. However, when
collecting all the data in the same database, the consequences of an attack will be
significantly increased.

When the owner of the database is trustworthy, there is only one difference
between local and global DP, which is that the global DP obtains more accuracy
in the results [24]. Therefore, global DP should be utilized when the curator is
trustworthy. On the other hand, local DP should be used when the user cannot
share its private information with the curator.

3.1.4 Queries

Queries, or questions, are functions that can be applied by a data analyst to the
database in order to interact with the model [20]. Previous query responses are
observed to decide the order of the proceeding queries. The best accuracy is ob-
tained when a non-interactive model knows every query ahead of time. If not,
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every potential query must be answered by the model, which in turn causes chal-
lenges. In fact, when the amount of queries increase, the accuracy of the responses
will decrease in order to provide privacy.

3.1.5 Privacy Budget

As stated earlier, ε is also called the privacy budget [22]. All individuals in the
study have their own privacy budget. When a calculation of DP is performed on
an individual’s data, their privacy budget is decreased. This means that the pri-
vacy budget defines how much interaction with the data is allowed. Therefore, a
low ε means less interaction with the data, and a high ε means a lot of interac-
tion. However, a high ε may provide lower privacy depending on which queries
are asked. Additionally, a malicious server or a third-party may gain too much
information when ε is high.

3.2 Differentially Private Mechanisms

When a database, a universe X containing types of data, arbitrary bits, and a
group of queries, performs as inputs to an algorithm, then this algorithm can be
called a mechanism [20]. Given these queries, the goal is to decode the output to
construct considerably accurate answers.

Several mechanisms are developed to obtain differential privacy. Some of the
most utilized methods today are presented below.

3.2.1 The Laplace Mechanism

A fundamental database query is the function f : N|X |→ Rk, also called numeric
queries [20]. Here, the database is mapped by the query to k real numbers. The
accuracy of the answer to these queries are given by the sensitivity parameter l1.
This sensitivity is defined by Dwork and Roth [20], given in definition 2.

Definition 2 "The l1-sensitivity of a function f : N|X |→ Rk is:

∆ f = max
x ,y∈N|X |,∥x−y∥1=1

∥ f (x)− f (y)∥1 (3.3)

" [20].

This definition describes the maximal impact or change one single individual’s
data can have on the function f [20]. As a consequence, this also represents the
amount of uncertainty that has to be added in the response to not reveal the
individual’s participation in the study. In order to obtain privacy, this definition
provides an upper bound of how much the output needs to be perturbed.

When f has been computed by the Laplace mechanism, noise is added to
each coordinate to perturb the output [20]. This noise is modeled by the Laplace
distribution, defined by Dwork and Roth [20] in definition 3. The sensitivity of
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f /ε decides the calibration of the noise. Further, Dwork and Roth [20] defines
the Laplace mechanism as given in definition 4.

Definition 3 "The Laplace Distribution (centered at 0) with scale b is the distribu-
tion with probability density function:

Lap(x |b) =
1

2b
ex p
�

−
|x |
b

�

(3.4)

" [20].

Definition 4 "Given any function f : N|X |→ Rk, the Laplace mechanism is defined
as:

ML(x , f (·),ε) = f (x) + (Y1, ..., Yk) (3.5)

where Yi are i.i.d. random variables drawn from Lap(∆ f /ε) " [20].

Definition 4 of the Laplace mechanism provides the strongest form of privacy,
in other words, it ensures (ε)-DP [20]. This is one of the most common methods
in practice to obtain differential privacy.

Some of the drawbacks with the Laplace mechanism are that it is not that good
for queries with high sensitivity, and if there is need for a lot of queries, a large
value of epsilon is required [25]. Additionally, this mechanism only operates on
numeric queries.

3.2.2 The Exponential Mechanism

In some cases, adding noise to the output of the query can ruin the essence of the
data [20]. Therefore, the exponential mechanism was developed. Given a utility
function u : N|X | ×R→ R, where R defines an arbitrary range and the database
is mapped to utility scores by u, then the exponential mechanism can be determ-
ined in relation to this function u. It is preferred that the maximal utility score
is the output of R given a fixed database x . Ideally, every possible r ∈ R that
obtains a probability proportional to ex p(εu(x , r)/∆u) should be outputs of the
mechanism. Additionally, the privacy loss can be defined as:

ln
�

ex p(εu(x , r)/∆u)
ex p(εu(y, r)/∆u)

�

= ε [u(x , r)− u(y, r)]/∆u≤ ε (3.6)

If an individual is added in the database, some r would increase or decrease,
which is not taken into account by this intuitive view [20]. Therefore, a normaliz-
ation term is included in the definition of the exponential mechanism from Dwork
and Roth [20], given in definition 5. Equivalent to the Laplace mechanism, this
exponential mechanism also ensures (ε)-DP [20].

Definition 5 "The exponential mechanism ME(x , u,R) selects and outputs an ele-
ment r ∈R with probability proportional to ex p(εu(x ,r)

2∆u )" [20].
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An advantage of this mechanism is that it can handle both numerical and
categorical queries [25]. Additionally, this mechanism can provide precise answers
while at the same time ensuring differential privacy. This is the main difference
between the Laplace mechanism and the exponential mechanism. Here, a member
of R is always the output of the mechanism, which is especially useful when a
precise answer is necessary.

Despite all these advantages, there are some drawbacks of this mechanism
[25]. This is a truly general mechanism, which in turn provides looser bounds
and implementation can be complicated in practice.

3.2.3 The Gaussian Mechanism

Instead of adding Laplacian noise, it is possible to add Gaussian noise [20]. Here,
the l2 sensitivity is used to scale the noise. The Gaussian mechanism is defined
by Dwork and Roth [20], given in definition 6. In this mechanism, zero-mean
Gaussian noise is added in every k with a variance b.

Definition 6 "The l2-sensitivity of a function f : N|X |→ Rk is:

∆2( f ) = max
x ,y∈N|X |,∥x−y∥1=1

∥ f (x)− f (y)∥2 (3.7)

" [20].

Unlike the two other mechanism mentioned above, this mechanism is (ε,δ)-
DP [20]. In practice, this guarantee will not be experienced as a weakness if there
is a reasonably small δ. Indeed, the Gaussian mechanism can be utilized in every
way as the Laplace mechanism for real-valued functions [25]. However, this mech-
anism is not as accurate as the Laplace mechanism.

One of reasons why the Gaussian mechanism sometimes is used instead of the
Laplace mechanism is because the Gaussian mechanism can utilize both l1 and
l2 sensitivity [25]. Sometimes the l1 sensitivity can be significantly larger than
the l2 sensitivity. Then, by using the Gaussian mechanism with the l2 sensitivity,
considerably less noise can be added.

3.2.4 The Sparse Vector Technique

Occasionally, a great amount of queries have to be answered to obtain a good
study [20]. To guarantee privacy however, this is not possible in the other mech-
anisms mentioned above. Additionally, when it is only necessary to identify queries
greater than a given threshold, the sparse vector technique can be utilized. Here,
the queries below the threshold will be ignored. Simply put, this technique will
insert noise and only report the values that falls above the threshold. A huge differ-
ence from the other mechanisms is that instead of having the privacy degrade with
the total amount of queries, here it degrades solely with the amount of queries
that is greater than the threshold. As a consequence, if the total amount of queries
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is a lot higher than the amount of queries above the threshold, then this technique
can have enormously savings. In other words, this means that the answer vector
is sparse.

Given a known threshold, the queries that are above this value will reveal
a sequence of events [20]. Further, a vector will indicate which event that has
occurred or not. Noise will be added to the response of each query and compared
to the threshold. If the response has a value greater than the threshold, it will be
revealed.

This is a brief description of the sparse vector technique. There are a lot of
different variants of the sparse vector technique which will obtain various amounts
of differential privacy. Some of these are presented by Lyu et al. [26].

3.3 Variants of Differential Privacy

A motivation for developing new variations of (ε)-differential privacy is that when
multiple computations are utilized, it degrades smoothly and predictably [27].
Given k (ε)-differentially private computations, then the total computation will
be (kε)-differentially private. The most known variation is the relaxation (ε,δ)-
DP, which was described in section 3.1.

There exist several variations of differential privacy, and in this section three
of the most commonly used variations are presented.

3.3.1 Concentrated Differential Privacy

Concentrated differential privacy (CDP) is a relaxation of the (ε)-DP [28]. It be-
haves in the same way as the (ε,δ)-DP, yet the two relaxations are still very dif-
ferent. If equation 3.8 holds, then it is said that an algorithm is (µ,τ)-CDP. Here,
µ corresponds to the mean of the privacy loss random variable and ξ corresponds
to the resulting random variable. Further, τ is the standard of the sub-Gaussian ξ
[29].

Pr[ξ≥ x]≤ ex p

�

−
x2

2τ2

�

and Pr[ξ≤ −x]≤ ex p

�

−
x2

2τ2

�

(3.8)

From this equation, the privacy loss that can be expected with CDP is µ, and

e−
t2
2 is the bounded probability that the mean of the loss is exceeded with x = tτ

[28]. There are two advantages of CDP over (ε,δ)-DP. First and foremost, the
CDP provides improved accuracy. In fact, the privacy-utility-trade-off is improved
by a factor

p
2. Additionally, given a mechanism that satisfies (ε)-DP and a group

of size s, CDP satisfies (s2 ·µ, s ·τ)-concentrated differential privacy.
Dwork and Rothblum [28] defines (µ,τ)-concentrated differential privacy as

stated in definition 7. Here, DsubG(M(x)||M(y))means that M(x) and M(y) are
sub-Gaussian divergent. Given a mechanism with privacy loss that is sub-Gaussian
and has a small mean, this definition states that the mechanism satisfies concen-
trated differential privacy.
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Definition 7 "A randomized algorithmM is (µ,τ)-concentrated differentially private
if for all pairs of adjacent databases x, y, we have DsubG(M(x)||M(y)) ⪯ (µ,τ)."
[28].

3.3.2 Zero-Concentrated Differential Privacy

Bun and Steinke [27] presented zero-concentrated differential privacy (zCDP)
which is an alternative to concentrated differential privacy. They define it as stated
in definition 8.

Definition 8 "A randomized mechanism M : X n → Y is (ξ,ρ)-zero-concentrated
differentially private (henceforth (ξ,ρ)-zCDP) if, for all x , x ′ ∈ X n differing on a
single entry and all α ∈ (1,∞),

Dα(M(x)||M(x ′))≤ ξ+ρα, (3.9)

where Dα(M(x)||M(x ′)) is the α-Rényi divergence between the distribution of
M(x) and the distribution of M(x ′).

We define ρ-zCDP to be (0,ρ)-zCDP." [27].

In this definition, M : X n→ Y corresponds to a random algorithm [27]. Here,
X n is the data set and Y is the computational outcome. This definition is a relaxa-
tion of concentrated differential privacy defined in the previous section. Specific-
ally, a mechanism that is (µ,τ)-CDP is the same as being a (µ−τ2/2,τ2/2)-zCDP
mechanism. Both CDP and zCDP typically utilizes the Gaussian mechanism.

A difference between the two definitions is that the sub-Gaussian that bounds
the loss of privacy is centered around different values [27]. For zCDP it is centered
around zero, while for CDP it is centered around the mean. In practice, zCDP
often provides satisfying privacy guarantees, and the stricter definition, CDP, is
therefore most times not necessary.

For every value of δ > 0, zCDP ensures the same promises as (ε,δ)-DP [27].
Additionally, (ε)-DP provide (1

2ε(e
ε − 1))-zCDP. Actually, algorithms that satisfy

(ε)-DP, often also satisfy zCDP.

3.3.3 Rényi Differential Privacy

Another relaxation of DP is Rényi differential privacy (RDP) [23]. It provides a
definition which is stronger than (ε,δ)-DP, and is based on the Rényi divergence.
The definition of Rényi divergence is stated by Mironov [23] in definition 9.

Definition 9 "For two probability distributions P and Q defined over R, the Rényi
divergence of order α > 1 is

Dα(P||Q)
∆
=

1
α− 1

logEx Q

�

P(x)
Q(x)

�α

(3.10)

" [23].
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When α = ∞, there is an immediate relation between differential privacy
and the Rényi divergence. Therefore, the relaxation Rényi differential privacy is
defined by Mironov [23] as stated in definition 10.

Definition 10 "A randomized mechanism f : D→R is said to have ε-Rényi differ-
ential privacy of order α, or (α,ε)-RDP for short, if for any adjacent D,D′ ∈ D it
holds that

Dα( f (D)|| f (D′))≤ ε (3.11)

" [23].

When the outcomes are less likely, the privacy bound of the Rényi differen-
tial privacy is waeker [23]. In comparison with (ε)-DP, the RDP provides weaker
guarantee and is more difficult to use in practice. In spite of that, the RDP can
lead to bounds that are stronger for small values of δ as well as it is simpler in
analysis when comparing with (ε,δ)-DP.

3.4 Promises

Differential privacy promises that an individual should be protected and not be
harmed in any way by sharing their information with a private database x [20].
If an individual is harmed after the release of the results M(x), DP promises that
their participation in the study has not increased the probability of being harmed.
This promise of DP is practical because it is easier for an individual decide to share
their data. Indeed, the individuals main concern would be the probability of their
data being harmed by participating in the study. By this promise, an individual
can be certain that whether or not they participate in the study, the probability
that their data would be harmed would not change. Therefore, DP can be the
convincing factor for an individual to participate in the study.

When (ε)-DP is guaranteed, it is promised that a factor ex p(ε) ≈ (1 + ε)
is the upper limit of harm which an individual can expect [20]. For numerous
of individuals in the study, this promise holds simultaneously even though their
utility functions are entirely dissimilar.

DP promises to not reveal any information from the individuals data or the
identity of the individual itself [20]. However, it does not promise protection
against attackers. Unfortunately, in some cases it may be possible to conclude
from the results of the study some information from an individual. Observing that
a specific private attribute from a study and a public attribute correlate, does not
violate the differential privacy. That is, whether or not an individual participated
in the study, the probability of observing this correlation would be approximately
the same. DP only promises disclosure of an individual’s participation in the study,
as well as disclosure of the individuals data.
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3.5 Example of Differential Privacy Application

Given a person who is reflecting on whether or not to join a study, the main
concern of the person would often be the protection of their data and the con-
sequences of sharing information. Consider this being a study in a hospital where
they need several patients to join. By utilizing the promises of differential privacy,
patients could be certain that their sensitive information would not be exposed
or misused in any other way. Their data would be kept private, and therefore it
cannot be harmed. Hence, DP can convince more patients to join the study which
in turn would provide a more robust study. Without a definition like DP, such
studies might not be possible to perform because patients would not want to risk
their privacy.

3.6 Differential Privacy Compared with Other Privacy Pre-
serving Methods

Several other methods have been proposed to preserve privacy, for example l-
diversity [30], t-closeness [31], k-anonymity [32], and M-invariance [33]. In com-
parison with these methods, differential privacy guarantees strong privacy for the
individuals, and thus is reviewed as a model which provides well founded privacy
[34]. Additionally, the DP mechanism is truly robust against background attacks.
Even for attackers who aims to gain knowledge about any individual in the study,
the DP mechanism provides guarantees which are more efficient than any of the
other methods.





Chapter 4

Differential Privacy in Machine
Learning

Often in data analysis, machine learning is utilized [20]. Even though differential
privacy is a limitation, it is possible to perform several tasks of machine learning
with these conditions. Actually, both aims to learn from a data set. All in all, they
both wish to learn from a given data set at such extent that no single data point
is dependent on the learning. Therefore, the two of them are strongly related.

Some of the most used machine learning classifiers are linear regression, lo-
gistic regression, deep neural network, support vector machine (SVM), and ran-
dom forest. These models are defined below, as well as their adaptations to dif-
ferential privacy.

4.1 Linear Regression

Linear regression aims to learn from a combination of linear features, and then
visualize the results on a straight line [35]. A loss function is minimized to obtain
the regression results, e.g. mean square error. An illustration of the linear regres-
sion classifier is depicted in figure 4.1 [36]. Here, the best potential line of the
prediction is represented by the red line, while the blue dots represent the data
points.

Gong et al. [35] presents one way of performing linear regression with dif-
ferential privacy. Given a database, the features at the input are split by their
relevance into either strongly relevant or weakly relevant. Further, the calcula-
tions of the privacy budget of both the strong and weak features are based on the
input-output relevance. To obtain differential privacy, Laplacian noise is added
to the objective function’s coefficients. At last, the DP objective function can be
minimized to optimize the parameters. All in all, linear regression with differen-
tial privacy can be performed by first analyzing the relevance of the features, and
then based on this, perturb the objective [35].

29
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Figure 4.1: Illustration of the linear regression classifier retrieved from Nevrella
[36].

4.2 Logistic Regression

Another type of regression analysis is the logistic regression, illustrated in fig-
ure 4.2 [37]. In this example, the data is divided into two classes: diabetes and
non-diabetes corresponding to respectively the black circles and the white circles.
Given a person’s features, the analysis aims to predict if the person has diabetes
or not. This analysis results in a straight line, here represented by the bold, black
line. The points are placed based on their features, and points above the line cor-
responds to diabetes and points below the line corresponds to non-diabetes.

Figure 4.2: Illustration of the logistic regression classifier retrieved from Zhang
et al. [37].
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To obtain (ε)-differential privacy in logistic regression, the approach is the
same as for linear regression [37]. Basically, instead of perturbing the results of the
optimization problem, the objective function is perturbed. In this case, the results
ensures (ε)-DP. Zhang et al. [37] utilizes the functional mechanism to obtain DP.
This mechanism solves the problems of non-trivial noise injection and the fact that
some objective functions are not valid when noise is injected.

4.3 Deep Neural Network

A deep neural network is defined in section 2.4.1 where a typical deep neural
network is illustrated in figure 2.4. There are several methods to obtain differential
privacy in deep neural networks, but only some of them provides outstanding
methods.

Phan et al. [38] presented a model of a private convolutional deep belief net-
work and Phan et al. [39] introduced an algorithm of a deep private auto-encoder,
where both of them were constructed from the mechanism of perturbing the ob-
jective. To protect the training data, the functional mechanism can be utilized to
inject noise to a polynomial’s coefficients, which can be obtained by modifying the
objective function.

A method to gain knowledge from deep learning models without having to re-
veal any information was introduced by Shokri and Shmatikov [10]. This method
builds on perturbation of gradients and distributed selective SGD. Local mod-
els are trained on the training data held by the participants, and only perturbed
gradients are uploaded. Additionally, shared parameters can be downloaded to
their local models.

An algorithm with DP SGD was proposed by Abadi et al. [40]. Here, a ran-
dom training subset is utilized to construct a gradient, which in turn is clipped
according to the l2 norm. Further, noise is injected to a group of multiple batches
which holds the accumulated gradients. The cost of privacy is tracked by the mo-
ments accountant for the whole training procedure, thus the privacy loss bound
is improved.

Xie et al. [41] proposed a model of generative adversarial networks that was
differentially private. Throughout the process of training, the discriminator gradi-
ents can be injected with noise to preserve privacy.

Gong et al. [34] presented a deep neural network framework of adaptive dif-
ferential privacy preserving learning which builds on analysis of relevance. Based
on each neuron’s contribution to the output of the model, gradients are injected
with noise. Neurons who are less relevant in the output are injected with more
noise in their gradients in the backward propagation process.
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4.4 Support Vector Machine (SVM)

Given two classes, the support vector machine (SVM) aims to obtain a plane that
maximizes the margin [42]. The separation of the classes could be different types
of hyperplanes, depending on the number of features. Figure 4.3 illustrates the
SVM classifier. The blue circles and the red squares represent two different classes,
and the green lines represents different options for optimal hyperplanes. The dot-
ted green line represents the maximum margin. Here, the blue circle and the two
red squares that are filled represents the support vectors with most influence.

Figure 4.3: Illustration of the SVM classifier retrieved from Gandhi [42].

Over the years, many different approaches to obtain differential privacy for
support vector machines have been proposed. However, these approaches have
some problems [43]. Firstly, accuracy decreases when a large training set is util-
ized due to large time consumption and a large amount of noise is necessary.
Additionally, the approaches lead to the objective function being too limited, as
well as the solution being restricted to only particular types of the training set.
Zhang et al. [43] introduced an approach of achieving DP with SVM established
from the dual variable perturbation.

In the solution of solving the stated problems, Zhang et al. [43] utilizes the
sequential minimal optimization (SMO) [44], which is an algorithm that trains
support vector machines faster. First and foremost, the expectation of the support
vector’s true and estimated values is computed. Furthermore, all the support vec-
tor’s expectations were summed, and the ratio of this and all the support vector’s
expectations are computed. This ratio defines the amount of Laplacian noise that
is injected to the dual variables.

4.5 Random Forest

A classifier can be retrieved by sampling random vectors from an input vector
[45]. Such a classifier can be called a tree classifier, and by combining several of
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these classifiers, a random forest classifier can be obtained. Each tree will suggest
a class that is the most popular for the given input vector.

Figure 4.4 illustrates a differentially private random forest (DPRF) algorithm
[46]. To achieve differential privacy in the random forest classification, noise is
injected in all the decision trees.

Figure 4.4: Architectural diagram of the differentially private random forest al-
gorithm retrieved from Hou et al. [46].

Differential privacy is obtained by utilizing the Laplace and exponent mech-
anisms [46]. Firstly, a privacy budget is determined in the DPRF algorithm, then
Laplacian noise is injected in the query counting of the DPRF algorithm. In the
hybrid decision tree algorithm, the node splitting attribute is chosen based on the
gained information, called InfoGain. The ratio between this value and the value of
the continuous attribute splitting point is called the GainRatio. Further, by linearly
combining these two attributes, this output can be inserted to the DPRF algorithm.
In the query attribute in the DPRF algorithm, exponent noise is added. Lastly, a
DPRF classifier is obtained.

Two processes define the differentially private random forest algorithm: a ran-
dom forest is constructed and a test set classifier is developed [46]. Briefly, the
training data set is utilized to generate an algorithm of random forest that obtains
DP. From this algorithm, a test set can be classified, and for every sample of data,
the classification results are returned.





Chapter 5

Related Work

To examine the privacy-utility-trade-off, three papers are selected and presented
below. Their implementation choices and results are described here, and discussed
in chapter 6.

5.1 Paper: End-to-End Privacy Preserving Deep Learning
on Multi-Institutional Medical Imaging

Kaissis et al. [47] developed an open-source framework called privacy-preserving
medical image analysis (PriMIA) [48] and tested it on a real-life case study. A deep
convolutional neural network (CNN) was used on a data set containing chest X-
rays. The aim was to develop a differentially private federated model which could
be used as a classifier on medical images [47].

In the test scenario of the PriMIA framework, three hospitals were considered
as data owners, training their data on a deep neural network model [47]. For
the training phase, the threat against the model was assumed to be honest-but-
curious. As mentioned in section 2.8, this means that the attacker will try to learn
or gain private information from the data set, without tackling with the learning
protocol.

Both differential private stochastic gradient descent (DP-SGD) and securely
aggregated DP are used in the PriMIA framework [47]. In DP secure aggregation
the statistics of the training, also known as the mean and standard deviation,
are aggregated [47] 1. On each individual node, there is used a DP procedure of
query to avert leakage of private data. The value of ε determines the amount of
Laplacian noise added to the statistics and is defined by the user.

DP-SGD is performed with gradient descent in the neural network training
[47] 2. Two modifications are applied to obtain (ε,δ)-DP: the global gradient
norm is clipped and the bounded gradient is added with random Gaussian noise
before the gradient descent step is performed.

1Taken from the Supplementary Information to the paper [47].
2See footnote 1.

35
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The federated training process in the paper begins with an untrained model
which is distributed to the data owners to be used in local training [47]. When the
training converges, the local model securely averages, and an update is sent back
to the server. Subsequently, the global model preforms an update based on all the
data owners local training and redistribute the new current model. After all the
iterations of training is completed, a securely aggregated model is obtained in the
server.

It is assumed that for each training data set, patients are only included once
[47]. In PriMIA, local DP is implemented at each data owner to guarantee patient-
level privacy. The Rényi differential privacy accountant [49] is used to determine
the privacy budget of each node. Additionally, by using secure multi-party com-
putation (SMPC) [50], different parties may contribute to the training without
revealing any of their individual inputs [47]. This is depleted by using secure ag-
gregation on the weighted updates.

A pretrained model and a publicly available data set was used on the DP-
SGD algorithm to tune the parameters [47] 3. Transfer learning can be utilized to
freeze large amounts of the model, and fewer training steps are needed to reach
convergence. As a consequence, less noise can be added to the data. To avoid
depletion of the privacy budget, they have not used hyperparameter optimization
runs.

A data set containing about 100,000 chest X-rays was used in the study [47] 4.
Here, it is modified to classify "normal" and "abnormal" radiographs and divides
the test set into a validation set containing 11,211 images and a test set containing
14,384 images.

Accidentally leaked information, δ, is set to 1.9 × 10−4 while the privacy
budget, ε, varies between 0− 10 [47] 5. This means that when ε reaches 10, the
training stops automatically. Three different models were used in the training.
Firstly, the ResNet18 architecture [51] is trained from scratch. Then, the same
model is pretrained on ImageNet [52]. Thirdly, the ResNet18 model is pretrained
on the data set containing chest X-rays to converge.

Training utility based on different values of ε from 0 − 10 is presented in
figure 5.1. Here, the green curve represents the model trained from scratch, the
blue curve represents the model pretrained on ImageNet, while the purple curve
represents the model pretrained on the chest X-ray data set. The training utility
is represented by the Matthews correlation coefficient (MCC) [53]. If the value of
the MCC is equal to -1, it means that the prediction is completely wrong, and if it
is equal to 1, it means that the classification was completely right.

The results prove that the untrained model provides a lower utility, while the
model pretrained on the chest X-ray data set utilizes the highest utility. Specifically,
a MCC equal to 0.78 is achieved when ε is equal to 6 for the model pretrained on
the chest X-ray data set.

3Taken from the Supplementary Information to the paper [47].
4See footnote 3.
5See footnote 3.
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Figure 5.1: Results demonstrating the trade-off between utility and privacy
budget, ε, retrieved from the Supplementary Information from Kaissis et al. [47].

5.2 Paper: Evaluating Differentially Private Machine Learn-
ing in Practice

Jayaraman and Evans [54] utilizes both logistic regression and neural network
models to investigate the privacy-utility-trade-off. To obtain differential privacy,
they use empirical risk minimization for the logistic regression model, and non-
convex learning for the neural network model. Four different variations of DP is
implemented:

1. Naïve composition (NC)
2. Advanced composition (AC)
3. Zero-concentrated differential privacy (zCDP)
4. Rényi differential privacy (RDP)

To evaluate the accuracy loss of the model, they utilized a baseline model that
is non-private [54]. This accuracy loss can be defined as in equation 5.1.

Accuracy Loss= 1−
Accuracy of Private Model

Accuracy of Non-Private Model
(5.1)

An attacker holds 10,000 records from both the training set and the test set
[54]. The training set records are labeled members, while the rest is labeled non-
members. Given an input, the attacker will predict if the record is a member or a
non-member.

This paper utilizes the CIFAR-100 [55] data set. 10,000 images are randomly
selected for both the training set and the test set [54]. Further, the training ex-
ploit the l2 sensitivity, along with δ = 10−5. Since the inverse of 10,000 is larger
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than the value of δ, the requirements are satisfied. Gradient perturbation is im-
plemented to train the DP models, where the values 0.01− 1, 000 are used for ε.
Additionally, the training utilizes the ADAM optimizer and a learning rate set to
0.01.

Per-instance clipping is performed in the gradient perturbation [54]. This is
more efficient with respect to the privacy budget than batch clipping. The Tensor-
Flow Privacy framework [56] is implemented with a threshold C = 1.

For the logic regression baseline model, the accuracy of the training set and
test set reaches respectively 0.225 and 0.155 [54]. Figure 5.2 depicts the accuracy
loss for the different variations when the privacy budget, ε, varies for the logic
regression model. Since there are 100 classes in the CIFAR-100 data set, and the
naïve composition performs around 0.01 when ε equals to 10 or less, this means
that the NC is randomly guessing. This variation does not achieve zero accuracy
loss until ε is close to 1,000. When ε is 100 or more, too much noise is added
in the advanced composition to make use of it. For the zCDP and RDP much less
noise is necessary. Therefore, the accuracy loss is about 0 for zCDP when ε= 500
and for RDP when ε= 50.

Figure 5.2: Results demonstrating the trade-off between the accuracy loss and
the privacy budget, ε, for a logistic regression model retrieved from Jayaraman
and Evans [54].

The architecture of the neural network model includes an output layer as well
as two hidden layers [54]. A ReLU activation is used on the 256 neurons in the
hidden layers. A softmax layer is utilized as the output layer, consisting of 100
neurons representing each class label. For the neural network baseline model, the
accuracy of the training set and test set reaches respectively 1.000 and 0.168 [54].

Figure 5.3 illustrates the accuracy loss for different values of ε for the neural
network model. For all the values of ε less than 100, both the naïve composition
and the advanced composition are not useful at all. However, for the same values
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of ε, the accuracy loss of zCDP and RDP are around 0.24. In this setting, zero
accuracy loss is not accomplished for any of the variations.

Figure 5.3: Results demonstrating the trade-off between the accuracy loss and
the privacy budget, ε, for a neural network model retrieved from Jayaraman and
Evans [54].

5.3 Paper: Deep Learning with Differential Privacy

To examine the trade-off between accuracy and privacy budget, Abadi et al. [40]
utilizes the differential privacy stochastic gradient descent algorithm on both the
CIFAR-10 [57] and MNIST [58] data sets. TensorFlow [59] is utilized to implement
the algorithm with neural network models.

Given a set of parameters and an empirical loss function, the model is trained
by minimizing this loss [40]. A random subset of samples is selected for every step
of the SGD, and their gradient is computed and clipped. Further, the average is
computed, and noise is injected. Noise adding is performed by the Gaussian noise
mechanism. The privacy accountant is exploited to compute the privacy loss.

Each time the training data is accessed, it leads to a cost in the privacy which
can be computed by an accountant [40]. During the progression of the training,
the privacy cost is accumulated. Since the gradients are computed at multiple lay-
ers for each step in the training process, the privacy cost of all these gradients
needs to be accumulated by the accountant. Additionally, a sanitizer is implemen-
ted to clip the gradient norm and inject noise before the parameters of the network
are updated.

To capture the input data’s main features, the principal component analysis
(PCA) method can be utilized [40]. Although the use of PCA results in privacy
cost, the quality of the model is improved as well as the training time is reduced.
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For both of the experiments, Abadi et al. [40] chose δ = 10−5, while the pri-
vacy budget, ε, is computed as a function of E, which is the training epoch. The
first experiment exploits the MNIST data set containing 60,000 training samples
and 10,000 test samples. Here, a feed forward neural network is implemented
containing 10 classes in a softmax layer. Additionally, a ReLU unit is utilized as an
activation layer as well as an input layer consisting of a PCA. The baseline model
achieves after 100 epochs an accuracy of 98.30%.

Figure 5.4 depicts the results from the MNIST experiment, where figure 5.4a,
5.4b and 5.4c corresponds to the cases where ε is respectively equal to 0.50, 2.00
and 8.00. The figures illustrates that the accuracy achieves 90%, 95% and 97%
for these values of ε.

(a) Results when ε= 0.50. (b) Results when ε= 2.00. (c) Results when ε= 8.00.

Figure 5.4: Illustration of the accuracy results for different values of ε on the
MNIST data set retrieved from Abadi et al. [40].

The second experiment of Abadi et al. [40] exploits the CIFAR-10 data set,
which consists of 50,000 training samples and 10,000 test samples. A convolu-
tional neural network model is utilized involving two layers of convolution and
two layers that are fully connected. Additionally, a ReLU layer is utilized as well
as max pools. As a baseline, without obtaining privacy, this architecture achieves
around 86% accuracy in epoch 500.

For this experiment, pre-trained convolutional layers and fully connected lay-
ers are utilized [40]. Figure 5.5 illustrates the results from the CIFAR-10 experi-
ment. In figure 5.5a, 5.5b and 5.5c, ε has a value of respectively 2.00, 4.00 and
8.00. Here, there is a difference around 7% in accuracy between the baseline and
the DP model, while for the MNIST experiment the difference is around 1.3%.
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(a) Results when ε= 2.00. (b) Results when ε= 4.00. (c) Results when ε= 8.00.

Figure 5.5: Illustration of the accuracy results for different values of ε on the
CIFAR-10 data set retrieved from Abadi et al. [40].
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Discussion

6.1 Federated Learning

Today, federated learning is utilized in e.g. healthcare research and by service
providers. For example, FL was utilized by Google in 2016 to increase prediction
accuracy for keyboard inputs from Android mobiles in a private manner [2]. Ad-
ditionally, a multi-FL network was developed to collect real health data, which
hopefully can be utilized in the future by doctors. Other classification tasks are
performed with FL, such as detection of COVID-19, diagnosis of cancer, and aut-
ism spectrum disorder. Therefore, with FL patients can be treated earlier, which
is a huge benefit for doctors and enabling them insights in risks.

However, even though FL gives rise to several benefits in some areas, it is
still a relatively new discipline [2]. Multiple variations of FL have been developed
aiming to improve the approach, however, as stated in section 2.6, there exists
several challenges within the field. Indeed, federated learning is a current working
field, and some questions are not yet answered. Some of them are listed down
below.

• Required extent of communication
• Reduction of communication between federated training techniques
• Further study of asynchronous approaches and bulk synchronous techniques
• Prediction of federated networks’ amount of heterogeneity
• Further study of the limitations of mixed privacy
• Scalability, heterogeneity, and privacy problems beyond supervised learning
• Practical issues within FL production
• Improvement of benchmarking tools and implementations

One of the main concerns in FL is attacks. The approach per say might obtain
GDPR, however, there exists no defence mechanisms against attackers. Differen-
tial privacy mechanisms on the other hand, are more robust against attackers.
Therefore, by combining the FL approach with DP, it can be sturdier against ad-
versaries.
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6.2 Differential Privacy

When differential privacy is provided in machine learning, the privacy-utilization-
trade-off is affected by the choice of classifier and method. Results from Gong et al.
[35] reveals that when privacy is not preserved with a linear regression classifier,
the model achieves 86% accuracy. When ε = 1.6 and ε = 0.05, their privacy
preserving algorithm achieves an accuracy of respectively 85% and 83%. These
results indicates that even with a smaller ε, which means stronger privacy, the
utility of the model does not decrease significantly.

Another experiment with both linear and logistic regression achieves other
results. Zhang et al. [37] presents the differentially private m-estimators (DPME)
approach [60], the filter-priority (FP) approach [61] and the functional mechan-
ism. Here, it is clear that with decreasing ε, both FP and DPME achieves a larger
amount of errors. The main reason for this result is because a smaller ε corres-
ponds to more noise injection. Specifically, for ε = 3.2 the mean square error for
FM and the non-private approach is equal to 0.1, while for FP and DPME it is
equal to 0.15. However, when ε = 0.1, FM has approximately the same mean
square error, but FP and DPME has a mean square error equal to approximately
0.35. These results clearly reveal that the impact on the privacy-utility-trade-off
depends on the methods that are chosen. Even with the FM method, the mean
square error increases when ε decreases significantly, but not to the same extent
as the two other methods. Therefore, the choice of method is an important part
of the study.

Zhang et al. [43] found similar results when preserving differential privacy
with a support vector machine classifier. When ε = 1, their proposed algorithm
achieves 90% accuracy, which is the same as the non-private approach. However,
when ε = 0.05 and ε = 0.005, their approach achieves respectively 85% and
65%. Also, here the smaller the ε, the more Laplacian noise is added, resulting
in a lower accuracy. Clearly, this experiment reveals that to obtain an acceptable
performance of the algorithm, the privacy budget has to be large enough.

Unlike the other experiments, Hou et al. [46] found out that for a differentially
private random forest algorithm, the accuracy remains approximately steady for
the chosen values of ε. The results reveal that the non-private algorithm achieves
87.5% accuracy and the DP random forest achieves around 85%. Even though
there is a decrease in accuracy from the non-private to the privately preserved al-
gorithm, as well as the privately preserved algorithm does in fact increase slightly
in accuracy when ε increases, it appears that there is not a significant trade-off in
privacy and utility with this algorithm.

However, in the case of deep neural network models, Gong et al. [34] proves
that there exists a privacy-utility-trade-off. All the different approaches to obtain
DP stated in section 4.3 [10, 34, 38–41] was tested on five different data sets:
Adult, MNIST [58], CIFAR-10 [57], DCCC and MIMIC-III. This experiment reveals
that all the methods yield a high accuracy for larger values of ε, which correlates to
models with less noise injected. Results unveil that almost all the methods achieve
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accuracy over 80% on almost all the data sets when ε = 8. However, for ε = 0.2,
most methods decrease with around 10%.

From all these experiments, it is clear that the privacy-utility-trade-off truly
depends on the chosen algorithm. Some of the experiments implies that some
classification algorithms can achieve less trade-off. However, it is also revealed
that the approach chosen to obtain differential privacy with the classification al-
gorithm does play an important role. Additionally, these studies have chosen a
selection of ε ranging from as low as 0.0005 to as high as 8. This can impact
the results. For example, the study of the random forest classifier obtained results
showing that there was no significant trade-off between privacy and utility. How-
ever, they only used values of ε from 0.1 to 1.0. If they had used even lower or
even higher values of ε, the results might be different.

6.3 Experiments from Related Work

From the experiment presented in section 5.1 it is clear that a pretrained model
provides less trade-off between privacy and utility. The reason for this is that when
a model is trained from scratch, a large part of the privacy budget is consumed.
However, by utilizing a pretrained model, the budget can be used to only fine tune
the parameters.

A relatively high variation of values of ε is explored in the experiments from
section 5.2. It is demonstrated that some variations of differential privacy provides
higher utility with lower values of ε. However, for the logistic regression model,
only one variation obtains an accuracy lower than 20% with ε equal to around
10, while the other variations needs ε equal to around 100− 1000. This is quite
high values of ε which in turn will provide a lower noise injection. Therefore,
when utilizing such high values of ε, the model would be more vulnerable against
inference attacks [54]. For the neural network model, the results are even worse.
As a consequence, to gain an acceptable utility, a relatively high value of ε is
required.

The study from section 5.3 indicates that if it is possible to obtain a high value
of ε, the results can be approximately the same when privacy is preserved com-
pared with no privacy preservation. Only when ε decreases towards a low value,
the trade-off between privacy and utility becomes a problem. Again, this is due
to more noise being added as well as it depends on how the privacy budget is
utilized.

Even though several experiments prove the trade-off between utility and pri-
vacy, DP is applicated today by large companies such as Apple, Facebook, and
Amazon. Apple utilizes local differential privacy in order to gain knowledge about
the user community [62], Facebook gathers data from users’ behavior to advert-
ise targeted campaigns [63], and Amazon gathers shopping preferences from their
users [64]. This proves that many big companies spend time and money on pri-
vacy research, in specific differential privacy. Even though the methods are not
perfect today, they can still be utilized, and they are under constant development.
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Conclusion and Future Work

Although the concept of federated learning ensures privacy as required from the
general data protection regulation, it is clear that there still are some challenges
with the approach. However, in combinations with other privacy preserving al-
gorithms such as differential privacy, the FL approach can be useful. Therefore,
federated learning is an outstanding concept requiring further research.

Even though the definition of differential privacy has already existed for sev-
eral years, the mechanisms that obtains this privacy are fairly new. However, the
approaches are already utilized by big companies and are under constant develop-
ments. One of the main challenges in DP is that privacy can come at the expense
of utility. Previous research proves that the privacy-utility-trade-off is still an open
question today. Some studies reveal no trade-off, while other reveals a large trade-
off.

In general, it can be difficult to quantify which results are acceptable and not.
Additionally, a limit for acceptance may be chosen on beforehand by superiors,
such as the government. In some experiments values are arbitrarily chosen in hope
that they are suitable. Therefore, it is demanding to choose a general value of ε
which provides acceptable privacy. Because the mechanisms utilized to obtain DP
is relatively new, analysts have to try out different values to gain knowledge about
the consequences. Additionally, it has been proven that the values of ε obtaining
an acceptable amount of privacy really depends on the choices that are made
in the implementation. Further research should aim to improve the differential
privacy mechanisms in order to achieve less privacy-utility-trade-off.
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