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Executive Summary
This thesis presents relevant factors to consider when designing and analyzing an
accelerated reliability test, such as reliability test types, stress factors, stress level
calculations, resource allocation, data analysis and interpretation specialized for
drone motors. The theory and system analysis are used to explain three case-studies
for a concrete understanding of the subject which are composed based on the Alva
X60 type motor data and design. These case studies are analyzed with reliability
Python library and a reliability estimate is found accordingly.
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1 Introduction

Alva Industries AS (the name of the company will be referred as Alva or Alva
Industries through the rest of the report) has developed various electric motors for
aerial uses depending on their environment and it is certain that they will continue
to produce different versions of the motors, add new designs and technologies to
their catalog.

This quick change in the development and production requires adaptive reliability
test plans for the unique designs. The slow design of experiments can lead to declined
production or production of unreliable electric motors. At the best, poorly planned
tests can cause waste of time and money when no conclusion or wrong conclusions
are inferred.

1.1 Problem Description

Planning a correct reliability test in accordance with correct reliability goals can
be challenging and time consuming for a newly established company because the
resources are limited and prior information is missing for products that have state-
of-the-art technology.

Moreover, expectations from the product in terms of reliability can be very high
and these expectations can change rapidly for a company that has high adaptability
to new technologies such as Alva Industries. Developing ways to convert these
expectations into useful reliability goals and an adaptive technique to realize and
measure these goals are the demands from this study.

1.2 Objective and Scope

The objective of this study is to develop a reliability test framework for the use of
drone motors so that Alva Industries can use as a basis for designing and interpreting
accelerated reliability tests for new motor designs and technologies.

The scope of the study involves presenting different types of reliability tests that
can be useful for testing drone motors, the aims of each test; focusing on accelerated
lifetime testing to enable the engineers in Alva Industries to produce their own
experiments with providing steps to follow for designing the experiment and ways
to analyze the collected data with pieces of Python codes.

1.3 Research Questions

• How can sample size be estimated without any prior knowledge about the
data?

• What are the consequences of small sample size in analyzing the data and
getting accurate results?
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• How can the lifetime of the product during normal conditions be estimated
with the results of the reliability tests?

1.4 Approach

First, the types of reliability tests are categorized in terms of their speed of testing
and implementation to provide available information for further needs such as the
parameters that are going to be measured in each test. Accelerated lifetime test
(ALT) is highlighted because this type of test is the immediate need of the company
at this stage of production.

Then, the available stress types are presented for the drone motors and most critical
stresses are selected based on similar failure trends of complementary products.

After that, the application methods for the stress factors are developed in terms of
the duration, level, and the pattern of exposure. The related analytical and graphical
models are introduced to visualize and interpret the data. To simplify the analysis
of the system (drone motor) for ALT, the entity is divided into subsections and
parts. The types of life-stress relationships and data analysis methods are dedicated
to such divisions.

After an understanding of the behavior of the product during the test, case studies
are developed in such a way that Alva Industries can utilize during testing. Inter-
preting the data in terms of reliability along with how to present the product with
setting the right reliability goals are demonstrated.

1.5 Methods

The methodology used in this study involves utilization of books on topics handling
reliability tests, planning accelerated reliability tests, and statistical methods for
data analysis of accelerated reliability tests.

Prior to the study, research is conducted to find an appropriate platform to conduct
data analysis of completed tests with the criteria that Alva Industries can employ as
well as having a large community inside data analysis. After this research, Python
is decided to be used with an introduction to reliability library and its modules.

Another source type that are advanced through this report is journals with the
topic of aerospace and aviation to find relevant information about the functions of
the units, operation conditions, failure trends, mathematical models to describe the
physics of operation.

1.6 Limitations

The first limitation comes from the lack of prior failure data of the Alva X60 drone
motor. To find the correct sample size, which is an important step in reliability test

2



planning, the standard deviation and the distribution of the data should be known.
Since there is no failure data before this study, the distribution of the data and
its parameters should be estimated with engineering knowledge, which can be erro-
neous. The solution proposed in this study is to estimate the test duration instead
of the sample size considering the risks. However, this solution is also subjected to
high deviations resulting from unknown former data.

The missing former data makes it difficult to explain the analytically found solutions
because the engineers cannot visualize the meaning of the solutions without examples
on the real system. Thus, case studies from similar problems are presented with
random data.

The second limitation comes from the number of available samples for the reliability
test. Since Alva is producing the motors not as mass production, there is a limited
number of samples that can be allocated to the experiments. This makes estimating
the distribution and its parameter with graphical and analytical methods harder
because the variance of the results becomes quite high.
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2 Background Research

Background research consists of information about the system and the theory that
is needed to implement the objective of the study. To gather the essential informa-
tion, data sheets from Alva Industries and the manufacturer of the components are
utilized. Also, a literature review of fundamental information about reliability tests,
statistical methods for data analysis, and Python libraries is conducted.

First, a general framework for accelerated reliability tests is demonstrated. Then, a
review of the system is presented from the information retrieved from Alva Indus-
tries. After that, on the light of the system requirements, a review of the possible
methods to implement the framework is demonstrated. This review is sectioned
into four segments: possible reliability test methods, stress factors to use for the
reliability test, determination of the stress levels of these factors and data analysis
methods for a completed test.

2.1 Accelerated Reliability Test Framework

The need of this section comes from the necessity of a plan for reliability test and
data analysis. The aim here is to combine the test planning with the data analysis
plan.

The steps presented in this section are common phases of accelerated reliability test
plans and data analysis for every system and gathered as a cumulative knowledge
of other systems’ accelerated reliability test analysis and the needs for design of
experiments in this report.

Steps presented here are to be followed both before performing the accelerated reli-
ability tests and after the tests, which provide the basis for the following chapters
and taken as a framework.

Testing drone motors for reliability analysis is a comprehensive study that involves:

1. Defining what a failure means (complete failure, decrease in the performance,
failure of a unit etc.)

2. Finding the relevant stresses that can affect the lifetime, performance etc.

3. Finding the parts of the product that is affected by that stress (Failure mode
analysis)

4. Finding the level of the stress that will damage the product

5. Finding the level and duration of the stress that should be applied during the
test

6. Determining the term to measure reliability (Failure rate, mean time to failure
(MTTF), mean time between failures (MTBF) etc.)
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7. Choosing an inspection method (Periodic inspection, continuous inspection
and so on.)

8. Determining the sample size

9. Using a life-stress relationship

10. Determining the distribution type

11. Analyzing the data according to the distribution and life-stress relationship

A part of these items has been accomplished in the previous study (Mert, 2021) such
as items 1,2,3,4,5. These items were applied only to a stress type (temperature)
and their continuation in data analysis was missing as tests couldn’t be realized
due to the lack of material to test. In this study, a comprehensive approach to
implement reliability tests will be shown by introducing steps 6-11 and mentioning
the previous points to maintain the integrity of the process, so that the engineers in
Alva Industries can apply practically with following the flow in this report.

The next section presents the system components and their physics of failures to
determine the meaning of a failure for each component, which is the first step in the
framework.

2.2 Information About the System

Alva Industries AS has an ambition to reflect the state-of-the-art technology of drone
motors for multicopters to the field by planning the most affordable reliability test
to determine the lifetime of "X60" motor model. The reason behind this reliability
ambition is to use it for marketing and to determine the cost for repairs during the
warranty period.

Alva X60 type motor is taken as a reference for the rest of the study. Its components
are analyzed and statistical analysis is performed about its design and performance
parameters. It consists of four basic elements of housing, bearing, stator and rotor.
A Halbach rotor is used and the windings in the stator are fiberprinted, which is a
unique technique that Alva Industries developed to produce the stators. Also, the
windings are epoxy encapsulated to keep the windings away from damage, coiling
and wobbling. The bearing is SKF 61900-2RS1, which is a ball bearing with NBR
seals on both sides. Therefore, the system has high-end technology with high quality
equipment to increase its lifetime.

The reliability block diagram, which can be demonstrated with Figure 1, is a simple
series system where failure of a unit causes the failure of the system. The diagram
can be enlarged by adding the components of the subsystems to the diagram in a
series format. They are also presumed to be added to the series diagram because
the functions of these are components are rather the main function of the subsystem
or a protection function of the main unit. These units can be seen in Table 1.

The function of the winding is the same as function of the subsystem which is to
provide magnetic field. Back Iron enhances that magnetic field and epoxy protects

5



RotorBearingHousingStator

Figure 1: Reliability Block Diagram of Drone Motors

Table 1: Drone Motor Parts

Stator Rotor Bearing (Subsystem)
Winding Magnet Bearing
Back Iron Lamination Lubrication
Epoxy Seal

the winding from environmental effects and dynamic forces. The function of the
magnet is to create magnetic field which is the same as the function of the subsystem,
and the lamination protects the magnets by keeping them in place. The function of
the bearing is to support the rotor and transfer the load from shaft to the motor,
where lubrication and seal protects the bearing from damage. Lubrication also has
a function to increase the performance of the bearing and its gradual loss decreases
the performance but a more critical effect is to cause the wear out of the bearing.

Overall, in this study, only the critical failures of the drone motor are studied which
causes failure of the product during its objective mean lifetime. The next section
shows the reliability objectives and defining an effective reliability goal.

2.3 Requirement Analysis

The reliability goal of Alva from the X60 motor is to have a mean life of 1500 hours.
It is also important to observe the early failures to upgrade the product (assuming
these failures aren’t caused by burn-in period). The product life should be presented
with 95% confidence level and 20 samples can be allocated for the reliability test to
demonstrate a population of 2000 units.

Converting reliability the goals into requirements needs further information about
the system and the testing equipment, such as the inspection method that is going
to be used in the test setup. The inspection method is selected as a continuous
method for the test arrangement of Alva so that the failures can be detected as soon
as they occur. It is a crucial part of the test because realizing the failures after a
time in an accelerated test can mean huge time variations in normal conditions.

It is also important to know what is meant by the mean life. Mean time to failure
(MTTF) and mean time between failures (MTBF) are two commonly used terms
to describe the expected lifetime. There are also other terms such as mean time
between downing events (MTBDE), mean time between replacements and mean
time between scheduled replacements. The main differences are the type of the sys-
tem, categorized as repairable or non-repairable, and inclusion of the repair time (or
down time) in the calculations. MTTF is used for non-repairable systems and the
other terms are used for repairable systems. MTBF doesn’t include the down time
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in the calculations, where MTBDE takes the down time into account. The mean
time between replacements and mean time between scheduled replacements are for
systems with scheduled replacement programs. For mean time between replace-
ments, it is assumed that the system becomes as good as new after the replacement
and for the mean time between scheduled replacements, it is not assumed as such
(Hottinger Bruel Kjaer Inc, 2022c).

Alva Industries plans to provide a maintenance program for the customers that
encompasses the replacement of the components that are damaged after failure. It
is assumed that each subsystem is a non-repairable part of a repairable system.
Scheduled replacements aren’t considered by the company. Also, the down time
isn’t an important factor since failure of the system will not interrupt a continuous
operation of a safety critical system or a system reliant on a continuous operation
for economic reasons. Therefore, MTBF term is chosen to represent the reliability
of the drone motor. The MTBF of a product is calculated as:

MTBF(t) =
t

N(t)
(1)

where, the product is observed during time t and N(t) is the number of observed
failures during t.

Thus, the reliability requirement of the Alva X60 model motor is transformed into:
MTBF = 1500 hours under normal operation conditions where the normal operation
conditions are inclusive of the extreme users with the conditions below:

Table 2: Normal Operation Conditions of Alva X60 Motor

Minimum Temperature -15◦C
Maximum Temperature 40◦C
Temperature Cycling -15◦C - +5◦C
Maximum Load 37N

Moreover, the product is recently designed, and the failure modes are unknown,
observing the failure modes is essential to detect the problematic parts and the
cause of early failures. If a test is designed that can cause competing failure modes,
it will be hard to distinguish which failure mode occurred first and under which
condition. Therefore, a lifetime test should be performed with triggering only a
single failure mode. The next section reviews such tests.

2.4 Reliability Tests

The purpose of reliability tests can be divided into two categories:

1. Estimate the reliability parameters of the product (failure rate, MTTF, MTBF
etc.).

2. Improve the design flows and eradicate imperfections.
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For the first type of the test, the statistical theory and data analysis planning is the
key to success, whereas for the second type of tests, the importance is to improve
an already successful product to reach an ambition. Therefore, the first kind of
reliability test type is referred as the statistics-based reliability testing (SRT) and
the latter is mentioned as the engineering-based reliability testing (ERT) because
for the second one engineering experience has a value.

Throughout the life cycle of the production, ERT and SRT are used together in
different stages of the manufacturing process. As it can be seen on Figure 2, ERT is
mostly used in the design and production phase, while SRT is used in the integration
and the delivery phase. It is also important to know that for the SRT, the input
from the user can be utilized to collect data, besides for the ERT, only manufacturer
can create such a testing environment to collect data.

Because ERT has the objective to eliminate the design defects, it is more of an
advance study and requires large samples to analyze the data. On the other hand,
for SRT, the aim is to know the reliability properties of the product. Therefore, de-
pending on the usage conditions, failure modes, failure mechanisms, test equipment
and cost limits, SRT can be performed. Hence, asking the users about these factors
and observing the failed products have value for SRT.

Depending on the testing objective, the reliability tests branches into the reliability
growth test (RGT), reliability qualification test (RQT), reliability screening test
(RST), reliability acceptance test (RAT), and reliability determination test (RDT)
(Chen et al., 2018). RGT and RST are categorized as ERT methods. RQT, RAT,
and RDT are SRT methods. RQT and RAT are categorized together as verification
test because their statistical inference methods are the same, which is the hypothesis
test. It means that a data is checked whether it fits to a known distribution, where
the distribution and its parameters are known from the prior data. Besides, for the
RDT, the statistical estimation is accomplished with parameter estimation, where
the distribution is guessed but the parameters are unknown, which is suitable for
products with unknown prior data (Chen et al., 2018).

These tests can be accelerated if the test time is too long under normal operation
conditions. If ERTs are accelerated, the names of the tests become: accelerated
RGT, highly accelerated life test (HALT), and highly accelerated stress screening
test (HASS) (the last two are also called reliability enhancement test, RET). If
SRTs are accelerated, the new tests comprise of accelerated life test (ALT) and the
accelerated degradation test (ADT) depending on the stresses applied and their
effects on the system (Chen et al., 2018).
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Figure 2: Reliability Test Types
(Chen et al., 2018)

Alva X60 model motor is considered to be in the use phase of the product devel-
opment process, where the aim of the test is showing the reliability of the motor
by emulating the conditions that the customers may create. Also, there is no prior
data about the failure of the motor, which makes the test condition eligible for RDT.
Furthermore, since the product is designed to withstand the possible usage condi-
tions with a safety factor, which is assumed to endure at least 1500 hours on an
average, the test is subjected to acceleration. Therefore, an accelerated RDT should
be performed, which can be ALT or ADT. The type of test is to be determined by
the type of stresses that are going to be applied during the testing process, which
are shown in the next section.

2.5 Types of Stresses and Related Failure Mechanisms

To effectively use the stresses to estimate the reliability of a product, it is required
to know the possible failures of the simpler units and their causes. For such a
knowledge, the engineering experience in units’ materials, functions, and the physics
of stresses is important. To understand if a potential stress influences failure of the
product, a hypothesis test can be conducted with two levels of each stress (low
and high). An example of such a test can be ANOVA, where the null hypothesis
is that there is no effect of the stress factor on the lifetime of the product. The
suspected stress factors can be applied one by one at the low and high stress levels
with m repetitions. Then, their significance on the lifetime of the product can be
calculated by least squares method and be compared with the F-distribution value
to understand their significance. With this method, the effect of each stress factor
as well as the effect of interaction of factors can be seen on the lifetime. This is for a
qualitative understanding of the data but it can also be applied after a quantitative
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test. Also, it is important to note that this method assumes a normal distribution
for the failure of the samples.

It is essential to mention that the high level of the stress should not create such a
failure mechanism that wouldn’t happen for the normal operation conditions. If it
is hard to gather such physics of failure, HALT can be conducted to verify that the
high stress doesn’t cause a failure than expected (Dohi and Nakagawa, 2013).

The stresses and the stress levels to be applied at the reliability tests are not the same
for all the products of the company. For example, a standard design of experiment
cannot be developed because different products have diverse goals, and they are
designed accordingly to adapt to a new operation condition. The same experiment
cannot be used even the product is going to be operated in the same operation
conditions if a new version of the product is developed because it is apparent that
a new design is adopted, where the component usage limits and the interaction
between the components are not the same as before.

To ease the design of experiment process, types of stresses that are relevant for drone
motors can be introduced. The stresses can be categorized into three sections:

1. Mechanical Stresses

2. Environmental Stresses

3. Electrical Stresses

It is essential to get informed about the types of stresses that may affect the system
because for later stages, the stresses can be combined to emulate a similar model
for normal operation conditions or to accelerate the reliability tests further.

Mechanical
Stress

Shock Creep FatigueWear out

Caused by:
Increased

loads

Caused by:
Temperature

and
static/dynamic

loads

Effects:
Bearings
Caused

by: High
Impact

Effects:
Rotating

mechanical
com-

ponents
Caused by:

Cyclic
Loads

Figure 3: Mechanical Stresses, Their Effects and Causes
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Mechanical stresses can be visualized as in Figure 3. These stresses can induce
fatigue, creep, shock or/and wear out on the components of the product. Fatigue is
very common for rotating equipment where the material loses its strength gradually.
Thus, it can be measured and prevented by crack/stress propagation modelling in
the design stage of the product development. Fatigue can be measured by assessing
the ductility of the material over time because it is caused cumulative loading effects
of mechanical stresses such as cyclic loads (Wasserman, 2002). Fatigue can also be
induced with other types of stresses which are discussed further in this section.

Creep can occur when a product is subjected to elevated temperature levels and loads
(static/dynamic). It is crucial to test for drone motors since drones has components
where the temperature can increase due to high constant stress, such as the bearing.
Therefore, when a failure mode has a failure mechanism of creep, the reliability test
can be accelerated by increasing the time under high stress.

Wear out is a crucial failure mechanism for moving objects and the component
that is subjected to this mechanism is the bearing. Wear out can be observed and
accelerated by increasing the operational load on the motor. The operational load
can be increased by additional wind force against the moving direction of the drone.

Shocks are temporary loads with high amplitude and short duration. They are trans-
ferred as waves and lose their damaging effect as the waves enter cross mechanical
interfaces (Allen et al., 2018). A type of shock mechanism is impact shock which
can be relevant for drone motors. An example for this failure mechanism can be
the hard landing of the drone which has high amplitude and short duration which is
significant for the bearings of the motors. Shocks cannot be simulated as sinusoidal
waves but can be tested by rather emulating the same scenario for hard landing or
can be accelerated by increasing the amplitude of the load or repeating the load
after a random duration. A way to reduce the impact of shock failure mechanism is
to use a material that can consume the kinetic energy produced by the impact by
permanently deforming the material.

The failure mechanisms can be categorized by their immediate effect on the motors
and their frequency of appearance during normal operation conditions. For instance,
shocks can be categorized as critical by their immediate effect because its cumulative
loading can damage the motors during their stated lifetime. On the other hand, it
can be classified as user fault if the landing throttle level is specified on the product
manual.

When it comes to creep, which can be effective in bearing seals, its immediate effect
is not considered to alter the system critically. It means that if the bearing seal
fails with creep failure mode, if there no other environmental stresses such as fine
particle etc. its collapse won’t influence the system.

As a result, wear out and fatigue failure mechanisms can have a significant effect on
the drone motors during their stated lifetime.
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Figure 4: Environmental Stresses, Their Effects and Frequency of Application

Figure 4 shows the environmental stresses overall. The stresses other than the tem-
perature, humidity and fine particles are irrelevant for this study because they are
mostly applicable to space applications such as radiation. UV light is not significant
because it is particularly effective to elastomers which are under the metal housing
of drone motors. Sulfur dioxide, salt and fine particles/alpha rays are damaging to
RAMs or similar units which are irrelevant for drone motors (Dohi and Nakagawa,
2013).

Therefore, the significant environmental stresses are temperature, temperature cyc-
ling, fine particles, and humidity, which is a less common application. Humidity is
regarded as negligible because it takes long to damage units with the humidity of
the air even if it is accelerated because drone operation is considered as discontinu-
ous where humidity isn’t applicable continuously to create cumulative damage. The
continuous operation time of the drone motor is ≈ 30 minutes.

It is possible to mitigate the effects of humidity along with fine particles and sulfur
dioxide by storing the product properly. Therefore, users should be clearly explained
about how to store the product.

Temperature is a common application and relevant for drone motors because it
causes two types of failure mechanisms and three failure modes:

1. Fatigue for stator lamination (epoxy) which causes propagated cracks,

2. Fatigue for the glue in between stator lamination and back iron; causes crack
growth on the glue material or change of material properties such as ductility,

3. Creep for polymeric materials such as bearing seal etc.

Taking the most recorded failures as a reference, bearing and stator failures take
the lead for AC motors with overheating failure mechanism as the major source
(Holbert, Lin and Karady, 2006). Therefore, the reliability tests are designed for
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the stator and the bearing with temperature as the main stress factor in this study.
The stator’s stress levels are determined with the help of data sheets of the epoxy
and the copper wire considering their temperature limits. The stress levels for
the bearing are determined by inspecting the thrust forces of the motor for the
mechanical stress and with the data sheets that describes the traffic light concept
of the bearing greases for the temperature stress (Figure 5).

Figure 5: Traffic Light Concept for Standard Greases
(SKF, 2022)

Figure 5 shows the usage limits of the bearing greases with traffic light colors,
where green is the safe zone for operation, yellow zone is a risky region that the
usage duration should be limited and the red zones should be avoided. On the
yellow zones, the performance of the bearing decreases but on the red zone, the
functionality is affected because of the frictional torque (SKF, 2022). This concept
is used to emulate a failure scenario of the motor when the motor is started with
high payload on a cold day where the grease operation is represented with the red
zone which is also still in the range of temperature operation limits of the motor.
Another stress type is the electrical stress. It affects the electronic components of
a drone but it is not under the scope of this study. For the future need a flowchart
about it is attached in the appendix (Figure 17). For an overall view of stresses,
affected components, and failure modes Table 9 in Appendix B can be referred.
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Overall, the stress factors that are going to be applied to the accelerated reliability
test are determined. Now, the type of accelerated reliability test can be decided
as ALT because the stress factors are chosen to create a complete failure of the
drone motor; they are not chosen to create partial failures which are related with
performance degradation of the product.

After deciding on step 2 of the framework, next section discusses the approach on
stress level determinations for ALT tests.

2.6 Stress Level Determination for ALT

After determining the stress types that are to be applied to the products, next
stage is to discover the stress levels for the relevant failure modes. The levels are
selected with the level categories demonstrated in Figure 6. The specification limits
show the interval that the product should be used in normal conditions. This is the
level that the manufacturer recommends being used. The operating limits are the
levels that the product starts to lose its functionality which is reversible after the
stress is removed. Such an example can be the elastic limit on a stress-strain curve.
However, the destruct limits are the boundaries when the product is irreversibly
damaged. The examples for this limit can be the plastic deformation of a material.
When temperature is considered as the applied stress factor, it can be the phase
change of a material; when vibration is considered, the destruct limit is when a unit
breaks and so forth. (Wasserman, 2002).

Figure 6: Stress Levels for Accelerated Reliability Tests
(Wasserman, 2002)

When performing the ALT, it is assumed that:

• No new failure modes are introduced during the test via high stresses or com-
bination of stresses.

• The hazard rate of the failure distribution does not change.

• The shape parameter of Weibull distribution ,and the standard deviation of
(log)normal distribution does not change. (Wasserman, 2002)

Therefore, when determining the ALT stress levels, the stresses shouldn’t create an
effect that is not expected during normal operation conditions. Thus, the stress
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levels should stay in the region of lower and upper operating limits. For example,
such a test can be created with taking the low accelerated stress level as the upper
specification limit and high accelerated stress level as the upper operating limit
and this experiment can be executed several times. For stresses higher than the
operating limit is suitable for HALT where it is expected to create failure modes
different than normal operation conditions.

The simplification for the analysis of the data gathered from accelerated stress levels
comes from the constant β and σ parameters for Weibull and (log)normal distribu-
tion respectively. Weibull and lognormal distributions are selected in this study for
reasons explained in the next chapter in addition to the data analysis methods along
with the constant parameter rule introduced above.
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3 ALT Data Analysis

The previous chapters introduced the methods about design of experiment for ALT.
This section handles the data analysis part of the framework, where it is assumed
that ALT experiments are performed.

For the ALT to be understood, the data from the experiments should be inter-
preted properly. The data collected can be analyzed with parametric or non-
parametric methods. Non-parametric methods include Quantile-Quantile plot (Q-Q
plot), which matches the failure times of the normal and elevated stress levels on a
line. The problem with the Q-Q method with small sizes is that it is insensitive to
outlier points, it can include the outliers where it shouldn’t have included.

Parametric methods are more useful if the collected data is small as in the case of
ALT plan for drone motors. Parametric methods have two types, which are graphical
and analytic methods. The steps for analyzing the data with parametric methods
can be summarized as shown below:

1. Decide on the statistical distribution that the data best represents.

2. Make two empirical cumulative distribution (CDF) plots for both low stress
and high stress data in the same graph.

Using logarithmic scale for the life and probability scale for the cumulative
distribution makes the plot more interpretable because it linearizes the plot
and makes the iteration easier.

3. Use a stress-life relationship to iterate through normal operation condition’s
stress.

4. If the goal life is on the line or lies under the line, consider the goal has been
met.

5. If the goal life is above the line, check if the distance (error) is within the
confidence interval. If it is inside the interval, the error is not significant (the
goal has been met); if it is outside the interval, the goal has not been met.

The first challenge with the data analysis is to find an appropriate probability dis-
tribution for the data. It can be guessed by experience or with the goodness of
fit methods. A table presenting the common distribution types for different data
categories is shown in Table 3.

From Table 3, it can be inferred that for the focus of the drone motor technology at
Alva Industries, Lognormal and Weibull distributions can be used for data analysis
of ALT because both distributions can be utilized to apply for fatigue related failure
fitting. If it is uncertain which probability distribution should be used, goodness of
fit tests can be performed.

Goodness of fit tests are primarily applied to analytic data analysis methods because
they are hard to apply manually. For graphical methods, the correctness of the
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selected distribution is checked by observing the linearity and the parallelism of the
CDF plots in the life-stress model. Hence, the correctness of the plots can only be
revealed after fitting the model, which is not a very objective technique to assess
because the evaluation of the linearity of the data depends on the observation of the
analyst.

Both techniques have advantages and disadvantages. In the next two chapters the
applicability of graphical and analytic methods with the theory behind them is
discussed.

Table 3: Probability Distributions and Usage Areas

(Wasserman, 2002)
Distribution Properties

Normal Distribution

Generally used for symmetric data with cent-
ral tendency. It is used when the coefficient
of variation C = σ/µ is lower then 0.1. Tol-
erances are a common application of normal
distribution.

Lognormal Distribution

Mainly used for design for reliability applic-
ations. Common usage areas are data fitting
of fatigue related applications and stress-
strength visualization.

Exponential Distribution
Primarily used for data analysis of electronic
components. It is used for demonstration of
data with constant failure rate.

Weibull Distribution It is a versatile distribution to explain time-
to-failure of products.

Extreme-value Distribution
It is used for understanding the environ-
mental data from extreme conditions, such
as minimum rainfall, maximum load etc.

17



4 Theory Behind ALT Data Fitting

After deciding the distribution type, the data should be fit to the distribution to
estimate the parameters, which are further used to estimate the lifetime at the
normal conditions. In this chapter, the theory behind the ALT data fitting with
compatible distributions and models for drone motors is demonstrated. Theory
provides the basis for graphical and analytic methods for data analysis and the
formulae are referred in the following chapters.

4.1 Life-Stress Relationships

The chapter begins with life-stress relationships because they are the linkages between
the distribution at the accelerated stress levels and the normal operation stress levels.
In the next sections, the association of life-stress relationships with the relevant dis-
tributions are presented.

Analysis methods benefit from life-stress relationships to gain information about the
past and the future of the life of the product. Here, life can be represented with the
mean, median or distribution percentiles on the graph. It is easy to extrapolate with
life-stress relationships because they are transformed to logarithmic or other suitable
scales to fit a straight line. They are applied to accelerated tests with certain failure
mechanisms such as metal fatigue.

The life-stress relationship is not sufficient by itself to model the failure tendencies
of the product; it should be combined with the statistical distribution of life. Each
point on the life-stress relationship represents a percentage of failure of the product
with related stress as well as the life of each unit. This explanation can be visualized
with Figure 7, where the y-axis represents the life of the units (the time when
a sample fails), x-axis represents the applied stresses and the data points on the
graph represents the percent failure at that specified stress and time.

4.1.1 Arrhenius Relationship

Arrhenius relationship is a life-stress relationship used for products that have failure
modes involving temperature. Hence, temperature stress type is applied to the
product during ALT. It is widely used for insulation, plastic, grease, and lubrication
applications. Therefore, it is relevant for drone motor applications such as copper
winding insulation, bearing lubrication, and bearing seal. Arrhenius relationship
explains the nominal time to failure (mean or median of the statistical distribution
at that stress) with the Equation (2).

τ = A · eE/(k·T ) (2)

where;
A is a constant that is related with the product shape, size, manufacturing process,
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Figure 7: An Example Life-Stress Relationship Graph with Statistical Distribution
Function

(Nelson, 2009)

test method etc.
E is the activation energy of the reaction. When more than one failure mode is
observed during a test, each failure mode has different A and E values.
k is the Boltzmann’s constant, which is equal to 8.6171·10−5 electron-volts per ◦C.
t is the absolute temperature (in Kelvin).

As mentioned before, the life-stress relationships are useful because they can linearize
the relationship and help extrapolating. Arrhenius equation can be linearized by
taking the logarithm at base 10:

log τ = γ0 +
γ1
T

(3)

where,

γ1 = log e · E
k

= 0.4343 · E
k

Thus, log τ is linearly related with 1/T . Here, τ should represent the same life
parameter for all the stress levels, such as mean (63.2th percentile for Weibull),
median (50th percentile) or another specified percentile. Mean is preferred mostly
but median can be preferable when the data has outliers or when it is skewed
(Australian Bureau of Statistics, 2022). E is mostly in the range between 0.3 and
1.5 electron-volts (eV) but the exact number can differ even for the same material
for different failure modes (Nelson, 2009) .

Acceleration factor is an important value to calculate when accelerating tests because
it is used to estimate the parameters of the distribution in normal conditions.

The acceleration factor for the temperature relationship can be calculated with
Arrhenius model by Equation (4).
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K =
τ

τ ′
= exp

(
E

k
·
(
1

T
− 1

T ′

))
(4)

where, τ is the life at normal conditions, τ ′ is the life at the accelerated condition. T
is the temperature at normal conditions and T ′ is the temperature at the accelerated
condition.

Arrhenius plot can be drawn as in Figure 8 where, life is fit with log-scale on the
y-axis and linear inverse absolute temperature on the upper x-axis which has a
nonlinear Centigrade temperature on the bottom x-axis. This part of the plot is
the same for all probability distribution types. The linear percentiles are spaced
accordingly with lognormal cumulative distribution in this example.

Figure 8: Arrhenius Plot with Lognormal Percentile Lines on Arrhenius Paper
(Nelson, 2009)

Each percentile line determines the equation parameters: γ0 (logA) is the intercept
of the line to the highest temperature on the plot and E is the slope of the line. It
is important to note that the Arrhenius plot has a limit on the temperature axis,
which can be shown with the operational stress limit of the unit.

Rather than plotting the relationship with temperature on the x-axis, failure per-
centages can be placed there. Then, the grids should be generated according to the
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probability distribution as on Figure 9.

Figure 9: Arrhenius Plot with Lognormal Percentiles on the X-axis and Temperature
Lines

(Nelson, 2009)

Arrhenius-Lognormal Model. Here, the slope of the lines depict the standard
deviation σ, which is the same for all lines in the model.

Selecting the lognormal distribution with Arrhenius model depends on some as-
sumptions such as:

• At the absolute temperature, the product life is described with lognormal
distribution,

• The standard deviation is constant,

• The median and mean life can be depicted with linear equations:

Median : log[τ.50(T )] = γ0 +
γ′
1

T
(5)

Mean : µ(x) = γ0 + γ1x (6)

where, µ(x) is the mean of log lifes, γ1 = γ′
1/1000 and x = 1000/T .
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Fraction Failed at a Temperature. The fraction failed at a desired life for a
temperature can be found with the cumulative distribution function:

F (t, T ) = Φ

{
[log(t)− µ(x)]

σ

}
(7)

where, Φ is the standard normal cumulative distribution function.

Life at Percentile. At a chosen temperature, the life at 100P th percentile (P
fractile) for failure is given as:

τP (T ) = log−1[µ(x) + zpσ] = log−1[γ0 + γ1(1000/T ) + zpσ] (8)

where, zp is the standard normal percentile which determines the vertical positions
of the percentile lines in Figure 8. The following percentile for a goal life at a certain
temperature is given as:

ηP (x) = log [τP (x)] = µ(x) + zPσ (9)

The 50th percentile has a special case for the equivalent log life, where:

η.50(x) = µ(x) = γ0 + γ1x (10)

Using the Arrhenius relationship on Figure 8, the design temperature can be found,
the operation conditions can be renewed or more durable materials can be chosen
for design temperature. Using the lognormal model, the temperature is found as
follows :

T ∗ =
1000γ1

log(τP∗)− γ0 − zpσ
(11)

With a known design temperature, the mean/median life can be calculated by the
pursuit of τP . For the goal life, the required material temperature property can be
found with the pursuit of T ∗ (Nelson, 2009).

Arrhenius-Weibull Model. Some failure data related to temperature failure
mechanisms can be explained with Arrhenius-Weibull model. As it is with the
lognormal model, Arrhenius-Weibull model also has some assumptions:

• At a certain temperature, the life data should have Weibull distribution.

• Weibull shape parameter (β) is constant for all stress levels.
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• The natural logarithm of Weibull characteristic life (α) is linearly related with
(1/T ) as in Equation (12).

ln [α(T )] = γ0 +
γ′
1

T
(12)

where, γ0, γ′
1 and β are characteristic properties of the product and the test

(Nelson, 2009).

Figure 10: Arrhenius Plot with Weibull Percentiles
(Nelson, 2009)

Figure 10 is drawn with the same scale as Figure 8. The difference is the percentile
lines which demonstrate the characteristic life (α(T )), with the slope in Figure 10.

Fraction Failed. As for Arrhenius-lognormal model, the fraction failed at an
absolute temperature can be found. Unlike lognormal model, here, the cumulative
distribution function for the Weibull distribution is used:

F (t;T ) = 1− exp

[
− t

α(T )

]β
= 1− exp

{
− [t exp [−γ0 − (γ′

1/T )]]
β
}

(13)
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Life at Percentile. At a certain temperature, the 100P th percentile (P fractile)
failed is estimated with Equation (14):

τP (T ) = α(T )[− ln (1− P )]1/β = exp [γ0 + γ1(1000/T )][− ln (1− P )](1−β) (14)

To determine the life at the sought percentile, τP is pursued at the desired temper-
ature. To find the percentile of failure at a given stress and temperature, the inverse
exponential can be applied to Equation (16).

ηP (x) = ξ(x) + uP δ (15)

where, x = 1000/T , and uP = ln [− ln (1− P )].

τP (T ) = exp[ηP (x)] (16)

For the 63.2th percentile, τ.632(T ) = α(T ), η.632(x) = γ0 + γ1x.

Design Temperature When there is a goal life for a percentile such as mean/median,
the required design temperature can be found with Equation (17).

T ∗ =
1000γ1

ln {τ ∗P/[−ln(1− P )](1/β)}
(17)

4.1.2 Inverse Power Relationship

Inverse Power relationship is used for modelling the accelerated stress and life rela-
tionship of ball and roller bearings, which is useful for the drone motors. This is a
model that explains the life data of products that are subjected to constant stress.
The relationship between stress and life can be illustrated with Equation (18).

τ(V ) = A/V γ1 (18)

where, A and γ1 are dependent on characteristic properties of the product, its geo-
metry, manufacturing and test structure.

Coffin Manson Relationship. This relationship is used for describing the fatigue
failure of metal components caused by temperature cycling. It can also be used
for plastic encapsulants which is convenient for drone motors of Alva Industries
where the epoxy lamination of the motor stator is exposed to thermal cycling. The
relationship is explained with Equation (19).
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N = A/(∆T )B (19)

where, N is the total number of cycles to failure, ∆T is the temperature range of
the thermal cycle, A and B are the characteristic properties of the material. For
metals, it is mostly employed with lognormal distribution and B is approximately
2. For plastic encapsulants, B is approximately 5.

Coffin-Manson relationship and standard inverse power relationship is the same but
expressed with different stress factor.

The inverse power relationship should be linearized to ease the extrapolating for
normal use stress level. The linearized version of Equation (18) is shown below:

ln(τ) = γ0 + γ1[−ln(V )] (20)

The Coffin-Manson equation can be linearized with Equation 20 as well, where, V
is changed with ∆T and γ1 is changed with B.

Equation (20) can be presented as a straight line in Figure 11. This figure has time
on the y-axis and stress levels on the x-axis. It can be shown vice-versa for metal
fatigue and insulation applications. Also, the range of the life (time) axis may not
be enough for some applications which are fit according to the relevant range in
computer-based solutions.

Power Acceleration Factor The acceleration factor shows how much longer the
life (mean, median or at a percentile) of the product be compared to the accelerated
stress level. It is calculated for the power model as shown below:

K = τ/τ ′ = (V ′/V )γ1 (21)

where, τ is the life at normal operation conditions, τ ′ is the life at the accelerated
stress conditions, V is the stress at normal operation conditions and V ′ is the stress
at accelerated conditions.

Power-Lognormal Model. The accelerated stress failure of some products can
be demonstrated with lognormal distribution. These failures are mostly caused by
metal fatigue. There are some examples that this model can be used for other
materials’ fatigue failure mechanism (Nelson, 2009). There are some rules that
should be followed before using power-lognormal model:

• At each stress level, the failure times should be described with lognormal
distribution.

• The standard deviation, σ, of log-life is constant and independent from the
stress.
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Figure 11: Inverse Power Relationship on a log-log paper with Weibull Percentile
Lines

(Nelson, 2009)

• The median life τ.50 is the inverse power function of the stress:

τ.50(V ) = 10γ0/V γ1 (22)

Similarly, the mean of log-life at base 10 is linearized as Equation (23), where x =
− log V .

µ(x) = γ0 + γ1x (23)

Fraction Failed. The population fraction failed by age t can be found with the
cumulative distribution function of lognormal distribution as in Equation (7). For
this model, instead of T for temperature, V for stress level is used. Again, the
formula represents the straight lines on a lognormal probability paper as in Figure
9.

Percentiles. The life at a certain fraction and stress level can be determined with
the same function in Equation (8). When it is simplified, the equation looks as
follows:
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TP (V ) = (10γ0/V γ1) · log−1(zPσ) (24)

Again, the equivalent percentile for goal log-life can be found with Equation (9).
Here, the difference is how the x is defined:

ηP (x) = log[τP (V )] = µ(x) + zPσ (25)

For the median log life, z.50 = 0.

When deciding the warranty inclusion of stress levels, it can be useful to know the
stress at a desired percentile with desired life. Thus, it can be calculated accordingly
with Equation (26).

V ∗ = (1/γ1) · log−1[γ0 + zPσ − log(τ ∗P )] (26)

Since life-stress relationships are dependent on specimen geometry, characteristic
material properties, fabrication and test method, there is an uncertainty with the
life times. Thus, a safety factor should be defined to avoid this uncertainty. This
safety factor is 3 for airplane engine and frame design, where these parts are replaced
after τP/3, where τP is the time of use (Nelson, 2009). Therefore, engineers at Alva
Industries should consider implementing safety factors for proposing life time of the
product for marketing purposes. The safety factors are in the range of 1.2 to 4 with
an average of 2 (Wasserman, 2002). Since drone motors do not bear as much risk
as an airplane comparing their safety critical level, safety factor in the range of 1.2
to 2 can be used.

4.1.3 Power-Weibull Model

The stress-life relationships of some products follow Power-Weibull model. Some of
these products are:

• Ball and roller bearings when mechanical load is accelerated.

• Metal fatigue due to mechanical load; unlike lognormal model, where the ac-
celeration stress is the thermal cycling.

The assumptions of this model is the same with the Arrhenius-Weibull model, except
the last item. Here, the characteristic life is described with the power function:

α(V ) = eγ0/V γ1 (27)

The fraction failed at a certain time and stress is represented with the Weibull
cumulative distribution function. When the parameters are put for the power model,
the cumulative distribution function is as follows:

F (t;V ) = 1− exp
{
[−te−γ0V γ1 ]β

}
(28)
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As it is with the previous equations, γ0, γ1, β are related to material, test, manufac-
turing and shape properties of the product. This function can tell if a unit is going
to fail at a constant stress in a determined stress exposure duration. The cumulative
distribution lines are straight lines on Weibull probability paper (Figure 12). When
β is larger, the distribution lines are lined further.

Figure 12: Cumulative Distribution Lines on Weibull Paper
(Nelson, 2009)

At a certain stress level, the 100P th percentile (P fractile) is calculated with the
equation below:

τP (V ) = α(V )[ln(1− P )]1/β = [eγ0/V γ1 ][− ln(1− P )]1/β (29)

The percentile failed at an ln-life is given as:

ηP (x) = ln[τP (V )] = ξ(x) + uP δ (30)

where, uP = ln[− ln(1 − P )] and δ = 1/β. The life at 63.2th percentile is gathered
as:

τ.632(V ) = α(V ) = eγ0/V γ1 (31)

Accordingly,

η.632(x) = ξ(x) = γ0 + γ1x (32)

The stress level that can be utilized on the design phase can be calculated with
Equation (33).
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V ∗ =
{
eγ0 [− ln(1− P )]1/β/τ ∗P

}1/γ1 (33)

In the next chapter, the methods of analyzing the ALT data are discussed to choose
a technique to interpret the data in the following chapters.
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5 Graphical and Analytic ALT Data Analysis

To use the theory accurately, there are methods to accurately analyze the data. The
compatibility of the techniques depends on the sample size, engineering knowledge
and resources for analysis. Graphical and analytic methods are discussed briefly in
this chapter depending on the factors introduced above.

Graphical and analytic ALT data analysis methods both use the plots in the previous
chapter to interpret the data. They have advantages and disadvantages compared
to each other.

The advantages of the graphical method relative to the analytic method are as
follows:

• It is easy to "see" the effect of the stress.

• It can uncover unknown physical phenomena of the product such as competing
failure modes.

The determination of competing failure modes is an important factor for not to fit
the data to a wrong model. This is fulfilled by checking the linearity of the line on
the life-stress relationship plot. If the line is not straight, and a peculiar data group
is seen, it is understood that there is another failure mode during that stress level.
If the line is straight, but the slope of the line is different from the other lines at
different stress levels, it can be concluded that the stress level with a different slope
has a different failure mode than others. Therefore, graphical method is sensitive
detecting the different failure modes at a certain stress and between stresses. Besides,
analytic methods are only sensitive to different failure modes between the stresses.

Also, with the graphical method, it is easy to distinguish the outliers, whereas the
analytic method tends to include those data points which is decreasing the accuracy
of the fit.

The disadvantages of the graphical method relative to the analytic method are as
follows:

• The interpretation of the data is subjective because the analysis depends on
the observation of the analyst.

• Graphical method has a more basic approach on finding the plotting positions
of the data points, where they are fit by rank adjustments as it is the case for
analytic method but then, the positions are optimized for the analytic method.

Moreover, the sensitivity of graphical method about the outliers and different failure
modes among the same stress level is impractical when the sample size is small. For
example, when there are three data points, which resembles an outlier, it is hard to
find which point is the outlier. The analysis can continue with the assumption of
common slope and the line can be fit accordingly.
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Furthermore, the correctness of the model is tested with more basic methods. It is
checked by observing the linearity and parallelism of the lines. It can be a very simple
task with enough data and an experienced data analyst to detect the differences but
it can be erroneous with an inexperienced analyst and a small sample size.

With all these information along with the possible resources, the advantages of the
graphical method cannot be utilized for the ALT data testing of drone motors of
Alva Industries because the sample size is small.

Analytic method can be utilized for the ALT data analysis further in this study
because the data can be fit to a model with optimizers. The correctness of the fit
can be checked simultaneously while fitting with goodness of fit methods, and the
interpretation is not subjective. The downsides of this method are as follows:

• It is hard to follow up the method, when there is an error or mistake because
analytic method uses more complex computational techniques.

• The fit can have a large error because of the small sample size and inclusion
of outliers.

It is more coherent to use the analytic method for the data analysis of ALT plan in
this study despite its disadvantages because it is more appropriate to use for small
sample sizes and with the computational methods, it can be applicable to any ALT
data. Therefore, in the following chapters, the application of analytic method is
explained with the computational implementations.
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6 Reliability Library for Python

Reliability library is a useful addition for Python-based data analysis. It is a tool
that reliability engineers may need to use during test planning and data analysis
after test. It allows to fit a data to a specific distribution, selecting best fit for
the data, estimating distribution and model parameters, extrapolation to find the
life at normal stress or at a higher stress, test duration planning, test sample size
planning, choosing the best fit for ALT models and estimating parameters, and so
forth. Functions that are useful for ALT test planning and data analysis is explained
in this chapter with the theory behind them.

6.1 Sample Size and Test Duration

As it is shown in the reliability test framework, sample size determination is one of
the milestones of ALT planning and data analysis, it should be calculated accurately
because the rest of the analysis depends on the sample size. One of the provided
functions of the reliability library is "reliability_test_duration" which allows the
calculation of the test duration and sample size accordingly.

Sample size determination is an important part of reliability tests because large
sample sizes can be uneconomical to the company, but small sample sizes can be
inaccurate for quantitative methods. Therefore, sufficient sample size should be
allocated to the reliability tests.

Determination of the sample size depends on the type of test termination method.
If the test is planned to be terminated by the number of failed units, then the
required sample size is calculated by designating a maximum number of failed units
in a certain period of time. This type of tests is called success testing which can be
categorized into two segments:

1. Success (Bogey) Test: For this type of test, no failure is allowed in a particular
amount of time (bogey time). The reliability and confidence levels are prede-
termined before the test. It is based on binomial distribution and specifies if
a single unit is able to pass the reliability requirement during the bogey time.
This test determines how much test sample is required to reach that level of
confidence.

2. Success - Failure Test: This type of test is a form of success test where a
determined number of failures are allowed. This test is used for noncritical
systems which has low probability of occurrence and severity.

However, a different test termination is chosen in this study which is called test-
to-failure, where all units are waited until they fail and it is the recommended test
type because failure modes and distribution parameters to estimate the life can be
found (Wasserman, 2002). This type of test termination approach is chosen because
if success tests are chosen and failed, there would be no evidence on the reliability
and lifetime about the product.
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The "reliability_test_duration" module is dedicated to find the duration of reliab-
ility tests that are time terminated. It uses the following equation to perform its
function:

MTBF =
2T

χ2
(
1−CI

n
, 2F + p

) (34)

where,
MTBF is mean time between failures and assumes that hazard rate is constant
which is equal to MTTF,
T is the total test duration,
CI is the confidence interval, where only the lower bound is facilitated (one-sided
confidence interval is assumed),
F is the number of failure expected in the test,
n is a constant which is either 1 for one-sided test, or 2 for two-sided test,
p is a constant which is either 2 for time terminated tests, or 0 for failure terminated
tests.

The algorithm works in four steps:

1. One failure is assumed and plugged for F . MTBF is the goal life and CI is
1− Consumer’s risk.

2. At this step, number of failures is kept the same. Designed MTBF (assumed
life with the safety factor implemented) is used for MTBF . Using the test
time from the previous step, CI is sought. This CI is the producer’s risk and
it is compared with the intended value. This value should be higher than the
expected CI.

3. Steps 1 and 2 are repeated by increasing the number of failures and iterations
are stopped when the producer’s risk is lower than the sought value. Then,
the value from the previous iteration is used for the test duration.

After the determination of the sample size with the algorithm demonstrated in this
section, the reliability test should be performed with relevant stress factors and levels
explained in the previous chapters. After that, the data analysis can be performed
which is explained in the next section with the use of reliability module algorithm.

6.2 Fitting Model to Data

It is important to read the failure data as accurate as possible with least available
samples. It is recommended to use at least 4 samples for tests to be accurate but
in this study, with the determined failure mechanisms in the previous chapters, it
is not possible to allocate 4 samples for every test. Therefore, the accuracy of the
tests with less than 4 samples are going to be investigated.

The module "Fit_Everything_ALT" provides the functions for finding the appro-
priate life-stress model for the data with goodness of fit methods as well as finding
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the parameters of the model and the distribution it belongs to with maximum like-
lihood estimation.

The algorithm needs failure data in an array or list, the accelerated stresses in an
array or list, if there is, the fraction of the right censored life data, the stresses
belong to the censored life data, and the stress level at the normal usage conditions.
In this study, the right censored data is not applicable, so the fraction of it is taken
as zero, which can be seen in the code below (Reid, 2019):

from reliability.Other_functions import make_ALT_data
from reliability.ALT_fitters import Fit_Everything_ALT

ALT_data =
make_ALT_data(distribution='Weibull',life_stress_model='Exponential',↪→

a=7543.14,b=5.19e-8,beta=6,stress_1=[328.16,343.16],number_of_samples=3,
fraction_censored=0,seed=1)

Fit_Everything_ALT(failures=ALT_data.failures,
failure_stress_1=ALT_data.failure_stresses,
use_level_stress=313.16)

↪→

↪→

The piece of code that is used for fitting the randomly generated data for thermal ex-
posure test is shown above. Here, the failure data is created by "make_ALT_data"
module but Alva Industries is going to put failure times of the samples in both low
accelerated stress level and high accelerated stress level in a single array. Also, for
manual filling of the code, the stresses should be repeated to make the array have
the same number of elements with the life data array (Reid, 2019). The example
below can be followed by Alva Industries, where the numbers are random here:

from reliability.ALT_fitters import Fit_Everything_ALT
Fit_Everything_ALT(failures=[200, 231, 233, 500, 438, 568],

failure_stress_1=[200, 200, 200, 120, 120, 120],
use_level_stress=60)

↪→

↪→

The algorithm works as follows:

1. The data is fit to the module "Fit_Weibull_Exponential", which is presented
as the Arrhenius-Weibull model in the previous chapters.

(a) Perform least squares estimation which is accomplished as follows:

i. Plotting positions are found for the life-stress model of concern, for
example, Arrhenius.

ii. The model is linearized by taking the logarithm, and model para-
meters are identified on the linearized equation.
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iii. Linear regression is performed by taking the squares of errors of the
positions with respect to y-axis, which is called RRY. Then, these
squares are minimized with taking the derivative and equating to
zero.

iv. Model parameters are retrieved again from the optimized fitted line.
The gathered parameters are E/k and A.

(b) Divide the failure data into stress groups and fit to the distribution model
of concern, such as Weibull, for each stress level. It is fitted by running
another least squares estimation and using the information from that
estimation by calculating the probability of each data point occurring.
Then, the logarithms of the probabilities are summed, and a value arises.

(c) Try optimizers ’TNC’, ’L-BFGS-B’, ’nelder-mead’ is order and stop when
one of them returns a value. These optimizers perform this simulation
by putting new values each time for the distribution parameter in the
range of bounds which are predetermined. The gradient of each value is
calculated and the parameter value which returns the minimum gradient
is chosen (minimum slope), which means the position that returns zero
for the derivative of the distribution function.

(d) Gather the distribution parameters for each fitted distribution and find
a common parameter by taking the average. If it is Weibull distribution,
β is found with this method. If it is lognormal distribution, σ is found.

(e) The parameters gathered from previous items are put as an input to the
maximum likelihood estimation (MLE) to optimize the parameters. This
function is performed as follows:

i. Log-likelihood function of the life-stress relationship is fed into the
function "loglik_optimizer". An example is "Weibull-Arrhenius".
This function performs the goals of the "ALT_MLE_optimization"
module. It works as follows:
A. Log-likelihood function is of the life-stress model is taken (Weibull-

Arrhenius). It is minimized for each parameter (E/k,A, β by tak-
ing the derivative and equating the zero. For each minimization,
the parameters from the least squares estimation are used.

B. The result of the previous calculation replaces the values in the
log-likelihood function until the difference between the previous
function and the current function is less than or equal to 0.001
or when the simulation runs for 5 iterations.

ii. This process is repeated for each distribution and life-stress relation-
ship. When a life-stress relationship’s log-likelihood gives the highest
value, that distribution is selected with the parameters that return
the highest log-likelihood.

iii. Using the parameters, the life at the use stress is calculated. This
life is taken as the characteristic life parameter of the distribution
(α for Weibull distribution and µ for lognormal distribution) where,
the mean life of Weibull distribution can be different from 50th per-
centile. The mean life is calculated by fitting the distribution with
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the characteristic life and the common parameter of the life-stress
relationship.

The next chapters show the implementation of these modules in ALT tests planned
for Alva Industries-X60 motor. Also, the interpretation of the results in terms of
reliability requirements are discussed.
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7 Case Studies

In this chapter, the possible failure modes of the Alva-X60 motor are planned to
be stimulated with accelerated life tests that are realized with case studies. Each
case study is planned to trigger one failure mode. Therefore, it is not expected
to encounter competing failure modes. This chapter refers to steps 4,5,8 in the
reliability test framework. The next section shows the required test duration for the
sample size allocation of the case studies.

7.1 Test Duration

Determining the sample size is an important step before performing the ALT test
because with a planned sample size, the risks are acknowledged. Without the know-
ledge about the risks, the whole ALT test can be in vain because after the test, it
can reveal high risks for the customer, which makes the test results deceptive.

The test sample size is relevant for test planning of success-failure tests. In this
study, the scope is on testing to failure. For this test, rather than the sample
size, total time on test is important. The sample size can be decided by assigning
test duration to samples. For example, longer durations can be designated to low
stress units. If they fail before the determined duration, one more sample should be
used. It is important to note that same sample size should be allocated to the high
accelerated stress levels and low accelerated stress levels.

The test duration is calculated according to the consumer’s risk and the producer’s
risk. This is called the risk control approach. Producer’s risk is generated by reject-
ing a test when it meets the reliability requirements. Consumer’s risk is originated
from accepting a test while it fails the reliability requirements. Deciding on the con-
sumer’s and producer’s risk is upon the company. Regarding the confidence level
that Alva Industries prefer to demonstrate the reliability (lifetime) of their motors,
the consumer’s risk is specified as 0.05 (95% confidence level).

The test time and corresponding sample size can be reduced by increasing the pro-
ducer’s risk. There is a trade-off between increasing this risk (decreasing the test
time) and not meeting the reliability requirement where it should have been met
(false alarms). The producer’s risk can push the producer to reject the test and
end up with a new design of a product or a new test design, which is uneconomical.
To overcome the dilemma, a risk level that is higher than consumer’s risk in an
acceptable limit is chosen in this study (0.1).

Another factor that should be taken into account is the safety factor that the design
engineers use when designing the product. It is mentioned in the previous chapters
that safety factor should be implemented while designing the components consider-
ing the uncertainties of the reliability tests. It is acknowledged that safety factor
can be chosen between 1.2 to 2 for drone motors. Choosing the safety factor higher
requires less test time because there is more confidence for the product that it will
pass the test. To be on the safe side and to use less resources on testing, safety
factor of 2 is assumed to be used for designing. The following code in the reliability
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Python library is used to find the test duration with the factors explained above
(Reid, 2019):

from reliability.Reliability_testing import reliability_test_duration
import matplotlib.pyplot as plt
reliability_test_duration(MTBF_required=1500, MTBF_design=3000,
consumer_risk=0.05, producer_risk=0.1)
plt.show()

The code returns the test time and a graph of consumer and producer’s risks, which
are shown below:

Figure 13: Test Duration, Consumer’s Risk and Producer’s Risk

The test time is 36452 hours when the goal mean time between failures (MTBF) is
chosen as 1500 hours and the designed MTBF is chosen as 3000 hours. Thus, 25
units can be allocated in a non-accelerated test assuming they are going to fail at
1500th hour. For accelerated tests, the effective time on test is AF · t which is the
multiplication of acceleration factor with the test time (Wasserman, 2002). Thus,
for accelerated reliability tests, the same risk levels can be achieved with less test
duration because accelerated reliability tests are designed to emulate the operation
conditions in a short amount of time with the use of higher stresses. Therefore, to
estimate the required test time, acceleration factor should be estimated.
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According to (Modarres, Amiri and Jackson, 2017) the acceleration factors for mech-
anical units are at least between 2-4 for low stress accelerations and at most 40-50 for
high stress accelerations. However, the acceleration factors can only be estimated
with experimental work. Therefore, to simulate the similar scenarios with a real
ALT test setup, case studies are generated. Here, the acceleration factors can be
estimated with assumed values and sample size (test duration) can be determined.

However, the generate the case studies, the sample size should be known. In the
following examples, the maximum sample size requirement from Alva Industries is
used, where 20 units can be allocated for the ALT tests in total. The 20 units are
apportioned between the case studies in a way that the same number of samples are
assigned for low and high accelerated stress levels.

7.2 Case Study - 1: Thermal Exposure Failure of the Wind-
ing

This example aims to illustrate the failure mode of the motor caused by high tem-
perature exposure on the stator windings. This stress factor is chosen because the
temperature upper specification limit of the motor is expected to increase the stator
winding temperature to the upper specification limit of the manufacturer. Two
stress levels are decided to be used to limit the samples used. Also, there are three
repetitions of each level to be able to fit the data to a distribution.

The low and high stress levels are determined by choosing values that are under the
upper specification limit of the wire manufacturer because the specification limit and
the operating limit is very close (192◦C - 200◦C). The low level is selected as 55◦C
which will generate a temperature of 175◦C on the windings. For high temperature,
70◦C is chosen which generates 190◦C temperature on the windings.

After stress levels are determined, the acceleration factors are estimated using Arrhe-
nius model with an estimate of the activation energy of the winding insulation ma-
terial which is polyurethane. The acceleration factor for low accelerated stress level
becomes 3 and 8 for high stress level. This finding is in line with the estimate of
Modarres, Amiri and Jackson, 2017.

Then, the acceleration factors are used to estimate the lifetimes of the units allocated
for the test. For instance, for the samples that are accelerated with acceleration
factor of 3 are assumed have mean failure times close to 1500/3 = 500 and for
the acceleration factor of 8, the mean failure times are assumed to be close to
1500/8 = 187.5.

Using the "make_ALT_data" module, random failure times are generated assuming
they follow Weibull distribution. The module needs the assumed distribution type,
life-stress model, the accelerated stress levels in an array, the number of samples for
each stress level, an assumed β value, a value which is E/k for Arrhenius model,
and b value which corresponds to the constant A value for Arrhenius model. There-
fore, these values are fit to the code with the help of acceleration factor, assumed
accelerated lifetimes and assumed activation energy.
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However, the failure times of real units can follow a different distribution; using
"Fit_Everything_ALT" module reveals the distribution of the data and its para-
meters.

The accelerated stress levels and their generated failure times can be seen in Table
4. The presented stress levels are the values for the environment, so the outside
temperature of the test units should be elevated to these levels.

Table 4: Failure of the Stator Winding with Temperature as the Stress Factor

Temperature Failure Time
Normal Condi-
tions 40◦C Unknown

Accelerated Low
Stress 55 ◦C

309
488
526

Accelerated
High Stress 70 ◦C

117
163
155

The distribution fitting of the generated failure times to find the distribution para-
meters in the normal operation conditions is presented in the "Results and Discus-
sion" chapter.

7.3 Case Study - 2: Thermal Cycling Failure of Epoxy Lam-
ination

Epoxy around the stator windings can be subjected to rapid temperature changes
due to operational stress, load on the drone, and different environmental conditions.
Therefore, thermal cycling stress is chosen to be applied to trigger a fatigue failure
mode, which can be encountered during operation conditions of the drone motor. It
is important to know how much temperature cycling the motor can tolerate, which
can be found by the physics behind the failure. The physics behind the failure can
be explained with the following equation:

σ = ∆α · E ·∆T (35)

where, σ is the thermal stress, E is the elastic modulus, ∆α is the difference between
the thermal expansion coefficient of epoxy and steel (back iron) and ∆T is the
temperature change. When this stress is higher than the yield strength of the epoxy,
residual stress is left after the stress is removed (thermal cycling is stopped). When
the residual stress accumulates to the fatigue strength point, it causes failure of the
product. This phenomenon can be explained with the S-N curve (Equation (36))
and power relationship:

σn ·N = A (36)
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where, σ is the stress generated by thermal cycling, A is a constant, N is the total
number of cycles to failure and n is the fatigue resistance of the component which
is reliant on the frequency and amplitude of stress. The same equation can be
expressed with Equation (19).

The normal temperature cycle is chosen from the static reliability test that Alva
performed on X60 type motor. The outside temperature of the motor has increased
from 20◦C to 40◦C during a cycle. This difference is taken as a reference to demon-
strate the temperature level of the outside of the motor during the ALT test.

By using Equation (35), the thermal cycle level is determined. σ/E is taken as the
strain of the epoxy at break (1.5% -2.5%) because there is no information about the
elastic properties of the epoxy on its data sheet. At normal thermal cycling, the
stress level doesn’t reach to the strain values. The accelerated test is designed to
fail the units by achieving to the strain levels. The thermal expansion coefficient of
epoxy is 100·10−6/◦C - 120·10−6/◦C. The thermal expansion coefficient difference
between the epoxy and the steel is taken as 100·10−6/◦C with the assumption of the
thermal expansion coefficient of epoxy is 120·10−6/◦C, where the thermal expansion
coefficient of steel is around 20·10−6/◦C. Equation (35) is used by putting 1.5% and
2.5% for σ/E. The temperature differences for the epoxy are gathered from this
equation.

The outside temperature is found by a linear relationship of the temperature increase
rate of the motor housing and the temperature increase rate of the epoxy, which
means that the temperature increase of epoxy is 6 times of the motor housing when
used in normal operation conditions. For example, when the drone is started at
-15◦C and used at normal mechanical load that are specified on the data sheet of
the motor, the drone housing reaches 5◦C whereas, the epoxy reaches 105◦C.

To emulate the same condition of starting the drone at cold temperature, the outside
temperatures of the motor should reach the levels as in Table 5. The values are
found by using the strain of the epoxy and increasing the temperature using the
temperature difference, where the outside temperature increases 6 times slower.

The presented stress levels are the values for the environment, therefore, the outside
temperature of the test units should be elevated to these levels.

Table 5: Failure of the Epoxy Lamination by Thermal Cycling

Temperature Range
Outside Inside Failure Cycle

Normal Condi-
tions -15◦C - (+5◦C) -15◦C - (+105◦C) Unknown

Accelerated Low
Stress -15◦C - (+10◦C) -15◦C - (+135◦C) 609

961
1036

Accelerated
High Stress -15◦C - (+20◦C) -15◦C - (+190◦C) 132

175
184
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For generating the failure times, 3000 cycles are assumed for the normal life cycle be-
cause a normal flight duration is assumed 30 minutes by Alva Industries (2cycle/hr =
3000cycle/1500 hrs). The failure cycles are assumed to follow Weibull distribution
with β = 6 from Weibull properties of common components database (Wasserman,
2002).

"make_ALT_data" module from reliability library is used to generate life data.
Addition to β, a and n values are required to start the module. a is the A constant
in Equation (19). n is represented with 1/B in the same equation. B is chosen as 5
which is the recommended value for polymers so, n is 0.2. a is estimated by putting
the expected cycles (3000) in a normal temperature cycle (120 ◦C).

After providing these parameters into the module, it generates failure data on both
low accelerated and high accelerated levels which are shown in Table 5.

The interpretation of the failure data in the accelerated conditions to find the distri-
bution parameters of the life data in the normal conditions is discussed in the next
chapter.

7.4 Case Study - 3: Wear-out Failure of the Bearing

Best performance of the bearing can be obtained with bearing lubrication. The
performance of the lubrication changes with its viscosity and it is affected by the
temperature. When high loads are combined with high viscosity of the bearing,
failure can occur because of the friction. Friction can cause wear-out at the inner
surface of the bearing, this can create vibration and it can speed up the failure
process. This case study aims to emulate this scenario with increasing the payload
during a cold day. The method is to generate higher thrust on the drone when the
viscosity of the lubrication is higher, so that the inner surface of the bearing will be
cumulatively damaged.

The lower accelerated stress level is chosen by the following formula:

Payload Capacity = Motor Thrust · Number of Motors · Hover Throttle%
− The weight of the system

(37)

Motor thrust is chosen to be the maximum thrust force that a single motor can
generate, which is 93.9N. Number of motors is chosen as one because this test aims
to calculate the payload limit on one motor. Hover throttle is 0.78 which is the ratio
of the maximum throttle to the throttle value at hover thrust (37N). The weight of
the system is the weight of a single drone motor, which is 3.7N.

With the procedure above, the highest payload that a drone motor can carry is 69N.
This is the highest value that the drone can maneuver and hover as with no payload.
This value is chosen to be the low accelerated stress. The high accelerated stress is
chosen with the payload that the drone cannot maneuver but hover. This value is
90N and calculated with Equation (37) with a hover throttle ratio of 1.

Here, a flight cycle is assumed to be 30 minutes and the accelerated conditions will
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be generated during this cycle. The failure cycle values are randomly generated
with "make_ALT_data" module. The needed parameters are the same with the
previous case study. Here, module parameter n corresponds to −γ1 of the power
model (Equation (18)). It is guessed randomly as 2 and used for estimating the
a value. 3.5 is used for β by using the Weibull properties database (Wasserman,
2002). The generated failure times can be seen in Table 6.

Eight samples are allocated to this test differently from the previous examples be-
cause 12 out of 20 of the samples are expected to fail during the previous two
experiments. Also, four units can be fit to the drone frame to test on a dynamic rig.

Table 6: Failure of Bearing by High Load Cycle

Thrust Range Failure Cycle
Normal Condi-
tions 0 N - 37 N Unknown

Accelerated Low
Cycle 0 N - 69 N

380
712
831
944

Accelerated
High Stress 0 N - 90 N

237
382
418
779

The fitting of the accelerated stress failure data to a distribution to find the distri-
bution parameters in the normal conditions are presented in the next chapter.
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8 Results and Discussion

8.1 Results

The results refer to the steps 8-11 in the reliability test framework. Here, the gener-
ated data in the previous sections are analyzed with relevant life-stress relationships
and distributions to be fitted in the normal stress conditions.

8.1.1 Test Duration

Starting with the test duration, it is calculated by using the effective accelerated
test time, AF · t. Acceleration factor is estimated with the estimated constants and
accelerated stress levels by using Equations (4) and (21) for Arrhenius and power
models. The acceleration factors for low and high stresses for the case studies can
be seen in Table 7.

Table 7: Acceleration Factor of the Stresses

Acceleration Factor
Low Stress High Stress

Case Study 3 3.48 5.92
Case Study 2 3.05 14.55
Case Study 1 3 8.21

With the acceleration factors, the overall acceleration of the tests is found by taking
the mean of the acceleration factors, which is 6.20. By using t = AF/T as the test
duration, where T is the test duration when the test is not accelerated, t is the
accelerated test duration and AF is the acceleration factor, then the required test
time is 36452/6 = 5878 hours. However, the generated test times from the case
studies are 5648 hours. This means that two more test samples should have been
allocated, instead of one because the number of samples on one stress factor should
be the same for low and high accelerated stress levels.

On the other hand, the reason of the difference between the required test duration
and obtained one can be the uncertainty of the estimated β. The uncertainty is
dependent on the sample size, where the coefficient of variation increases as the
sample size decreases, which can be seen with the formula below:

Relative Bias =
(β̂ − β)

β
· 100 (38)

where, β is the value that has put into the simulation and β̂ is the value that comes
from the maximum likelihood estimation (MLE). The reason behind the relationship
of relative bias and the sample size can be explained with MLE, which is more
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accurate as the sample size increases (Hottinger Bruel Kjaer Inc, 2022b). The
reliance of relative bias on the sample size can be explained with the equation below:

Average Relative Bias (ARB) = 1.914n−1.032 (39)

Since four units are used for each accelerated test, ARB is 46%, which means that
the MLE can estimate the β̂ with 0.46 times different. The upper and lower β values
are calculated as such:

βU = β̂e
Ka

√
V ar(β̂)

β (40)

βL = β̂e−
Ka

√
V ar(β̂)

β (41)

where, the average coefficient of variance is calculated as:

Average

√
V ar(β̂)

β̂
= 1.4818n−0.654 (42)

It means that the life at the percentiles (Equation (14)) can be guessed with a
large variance, which can cause underestimation of the accelerated lifetimes. The
variation in β can be seen by running the fitting modules. For example, if Weibull-
Eyring model is shown as the best fit for the data, "Fit_Weibull_Eyring" module
can be run.

8.1.2 Simulation Results from Case Studies

As discussed before, "Fit_Everything_ALT" module calculates the mean life at
normal stress level. The results from the run case studies are as follows:

Table 8: Mean Life Data

Case Study 1 Case Study 2 Case Study 3
1612 hrs 4132·0.5 = 2066hrs 2711·0.5 = 1355.5hrs

The data means that the tests of case study 1 and case study 2 passes the requirement
while the test with the payload fails because the mean life is expected to be lower
than 1500 hours. However, it is important to note that this result comes from the
samples generated, not real data. Therefore, the significance level of the result on
the normal population size should be calculated. This can be realized by checking
the statistical significance of the difference with Kolmogorov-Smirnov (KS) test.

To run the KS test a null hypothesis should be set. It can set as "the 2000 randomly
generated data points with the parameters gathered from the "Fit_Everything_ALT"
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module comes from the same distribution with a characteristic life of 1500 hrs (3000
cycles)". Scale parameter (shape parameter for Weibull) of the accelerated stress
level that is closest to the normal stress can be chosen for the data generated with
a characteristic life of 1500 hours. The code below can be followed for case study 3
to understand the significance of the result (Reid, 2019):

from reliability.Distributions import Normal_Distribution
from reliability.Reliability_testing import KStest
import matplotlib.pyplot as plt

data = Normal_Distribution(mu=2711.186,
sigma=205.41).random_samples(2000)↪→

dist = Normal_Distribution(mu=3000,sigma=211.22)
KStest(distribution=dist, data=data)
plt.show()

The "KStest" calculates a critical value by using the significance level (0.05) and
the number of data points to find a critical value. Also, by comparing the empirical
cumulative distribution (CDF) and the fitted CDF, KS statistic is determined. If
this value is lower than the critical value, it is confirmed that the null hypothesis is
accepted, otherwise it is rejected.

For the example above, the null hypothesis is rejected with a statistic value of 0.51
and a critical value of 0.03. The difference between the two data plots can be seen
in Figure 14.

Figure 14: KS Test of Payload Stress Test
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The figure can also be used for finding the fraction of 3000 cycles corresponds to on
the empirical CDF. It can be seen that the value 3000 corresponds to 0.92th quantile
on the empirical CDF, which means that 92% of the units in the population (1840
units) are expected to fail by 1500 hours.

Considering the drone motor system as a series structure, where failure of a subsys-
tem causes the system to fail, rejection of the null hypothesis of "mean life of the
motor is 1500 hours" for a subsystem causes the rejection of the null hypothesis for
the whole system. Therefore, it can be concluded that the mean life of the Alva X60
motor under normal operation conditions is 1355.5 hours, which is the mean life of
the bearing subsystem.

On the other hand, the MTBF is different from the mean life. For instance, under
normal conditions, while one product is observed until the second bearing failure,
which is observing for 2711 hours, there will be three failures. First failure will
be at 1355th hour, after replacing the bearing, the second failure will be at 1612th
hour, after replacing the stator, the third will be at 2711th hour, which is the second
bearing replacement. Using Equation 1, the MTBF is found as 2711/3 = 904hours.

Rather than explaining the lifetime of the product with MTBF, the reliability at
the desired life can be found using the survival function because the mean life can
imply the failure of 20%-90% percentile of the population depending on the type
of distribution that the population failure represents. The reliability at a certain
position on CDF is calculated as shown below (Reid, 2019):

For Case Study 3:

from reliability.Distributions import Normal_Distribution
print(1-Normal_Distribution(mu=2711.186, sigma=205.41).CDF(3000))

For Case Study 2:

from reliability.Distributions import Weibull_Distribution
print(1-Weibull_Distribution(alpha=4131.95, beta=7.644).CDF(3000))

For Case Study 1:

from reliability.Distributions import Weibull_Distribution
print(1-Weibull_Distribution(alpha=1611.79, beta=7.643).CDF(1500))

The results are 0.08 for case study 3, 0.92 for case study 2, 0.56 for case study 1.
Since the system is shown as a series structure with all the basic units by Figure 1
and Table 1, and the reliability tests in the case studies trigger the failure modes of
different basic units, the reliability can be shown as:

R(1500hrs) = RTE(1500) ·RTC(3000) ·RP (3000) = 0.04 = 4% (43)
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So, the reliability at 1500th hour is 4% according to the data of the case studies.
It should be remembered that not all the components in Table 1 are tested in this
study but the reliability is dependent on the weakest chain of the system, where high
reliabilities of other components won’t affect this result significantly. Therefore, the
hypotheses of 1500 hours as the MTBF or demonstrating a reliability of at least
50% at 1500th hour has failed.

8.2 Discussion

Following the steps in the reliability test framework, reliability requirements are
defined, accelerated reliability tests are planned and data analysis of the tests are
performed assuming the planned ALT tests (case studies) are conducted. There
are expected and unexpected results originated from the data analysis part of the
test framework. The expected results come from the estimated mean life of the
data in normal conditions for case studies 1 and 2. The unexpected results are the
distribution and life-stress estimations of the case studies, the mean lifetime of the
data from case study 3 on normal conditions, and the type of failure mode that
brings the lowest mean lifetime estimation, which is the wear-out of the bearing.
This failure mode isn’t expected to generate the lowest mean lifetime because more
samples are allocated to that case study. The possible reasons for the unexpected
results are discussed in this section.

It should be noted that the distribution fitting and the parameter estimation depends
on the test design. It also means that it is as accurate as the correctly chosen
stress levels and allocated samples. Taking the case studies into account, after
generating random samples with a distribution and seeking the right distribution
to explain the random samples, the fitter returned a different distribution and/or
a different life-stress relationship than the default one. It was the case for the
case study 3; the fitter suggested Normal-Eyring model, where it should have been
explained with Weibull-Power model. For the other two case studies, only the life-
stress relationships were incorrect, which are mistaken with Eyring model again
instead of Exponential (Arrhenius).

The reason for these errors is the inadequate number of sample sizes. Graphically
thinking, since there are only three samples for a stress level and they are tried to
be fit to a straight line, it can be fit to any distribution easily. Analytically, the
distribution and parameters are chosen by maximizing the log-likelihood function;
the distribution and the parameters that maximizes this function is chosen as the
best fit. Since there are not enough data points to fit, too many parameters for a
distribution can be tried in the fitter because, small samples can be fit to almost
every distribution. Therefore, the simulation only fits the data with changing the
parameters limitlessly between the bounds. The stopping criteria is the number
of iterations, which is 5, or the variance between the current and the previous log-
likelihood function value. Since it is unknown which stopping criteria converged into
the selected parameters, it could be still an immature representation of the data.

A factor that is affecting the precision of the results is the goodness of fit test used
to rank the best match of distributions. Bayesian Information Matrix (BIC) is used
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for fitters in the reliability library. This test is useful in terms of fitting to a linear
model because it tends to simplify the fit. It is also better in excluding the outliers
but can be worse in noticing the competing failure modes.

Ability to reject the outlier may not be a good attribute in every situation. For
some conditions, it can lead to oversimplifying of the model, which is the matter
for case study 3. It fits the data to Normal-Eyring model where, it should have
been fit to Weibull-Power because of the closeness of the data points when fit to
the Normal-Eyring model. On the contrary, the data looks close even between the
stress levels with that model, which isn’t supposed to be that way. Weibull-Power
model is rejected because there is a noticeable difference between the fitted line and
empirical line. The difference between these lines can be because of the optimizer
chosen, where the default optimizer is used instead of trying with every optimizer
and selecting the best fitted one. The difference between these models can be seen
on Figures 15 and 16.

Figure 15: Weibull-Power Fit of the Case Study 3

Figure 16: Normal-Eyring Fit of the Case Study 3

Another reason of nonparallel fit data can be because of a different failure mode
at the high accelerated stress level. When the stress level is too high that doesn’t
follow any trend or that triggers the other components of the system to fail, fitted
lines don’t appear to be parallel. However, it is difficult to distinguish the competing
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failure modes for the case studies mentioned in this report because there are only
two accelerated stress levels. If there were three or more accelerated stress levels,
the incompatible stress level could be identified by checking if its scale parameter
(shape parameter for Weibull distribution) is different from others.

To conclude, accelerated reliability test planning and data analysis with small sample
sizes such as three and four for a stress level can give inaccurate results because of
the variation of the common parameter of the distribution that the data belongs to,
which is dependent on the sample size. Also, there is the contribution of the uncer-
tainty of fitting the data to a distribution, where maximum likelihood estimation
(MLE) is used. Since the accuracy of the MLE also depends on the sample size, the
error of the results can be quite high. Therefore, a sample size that is more than
the sample sizes allocated in this study should be used for design of experiment of
a single stress.
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9 Conclusion

In this study, the need of adaptive reliability tests for drone motors is handled. With
the pursuit of this problem, the basics of designing experiments and performing data
analysis of hypothetical case-studies with assumed failure modes are presented in
a framework. This study has found solutions to estimating the sample size for
reliability tests without prior knowledge and demonstrated the outcome of small
sample sizes with data analysis of three case studies. The data analysis of the
case studies revealed the lifetime and the distribution parameters of the Alva X60
motor at normal operation conditions. Analytic data analysis method is used for
fitting the data to a distribution and gathering the parameters with a Python library
called reliability. Graphical method is utilized while the discussion of the data and
parameters to acquire a better observation of the data.

When the data analysis considered, it revealed significant variations between the
lifetime of the case studies, which was a result of small sample sizes allocated for
each stress levels. Also, the solution for the estimation of the sample size was
estimating the test duration, where sample size could be found implicitly. This
solution gave reasonable estimates of the test duration, but as a result it revealed
that two more samples should be allocated for the ALT tests overall.

In conclusion, Alva Industries can utilize the case studies and theories in this study
as a framework, realize the experiments with allocating more sample sizes for each
test and continue with the further work.

9.1 Further Work

The design of experiments can continue with the acceleration of electrical stresses,
impact stress and vibration stress (sinusoidal stress) after gaining more informa-
tion about the vibration characteristics of the design during operation in normal
environmental conditions. The data analysis methods in this study can be used for
interpreting the results and further module in the reliability library of Python can
be utilized. After the critical tests are finalized, performance tests can be conducted
with accelerated degradation tests.
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Appendix

A Electrical Stress Factors for Future Use

Electrical
Stress

Electric
Field

Current
Density ElectromigrationPower

Cycling

Most Com-
mon/induces
failures in
short times

and its effect
is higher

Figure 17: Electrical Stress Types and Frequency of Use in Industry
(Dohi and Nakagawa, 2013)
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B Failure Modes and Stresses for Future Use

Table 9: Failure Modes, Related Components and Stresses

(Wasserman, 2002)

Failure Mode Acceleration
Stresses Related Products

Corrosion
Oxidation
Rusting

Temperature, Humid-
ity, Voltage, Residual
Stress

Oxidation of metal
surfaces, electrical
connections etc.

Creep and Creep Rup-
ture

Mechanical stress,
temperature

Plastics, welds, bonds,
joints, lubricants etc.

Diffusion Temperature, concen-
tration gradient

plastics, lubricants
etc.

Electromigration
Current density, tem-
perature, temperature
gradient

Electronic Circuits

Fatigue

Cyclic mechanical
stress, cyclic temper-
ature, frequency of
usage

Metals, plastics, com-
posite materials

Wear

Contact force, relative
sliding velocity, tem-
perature, lack of lub-
rication

Solid surfaces in con-
tact (for plastics and
metals), coatings
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C Guidance for the Test Engineer at Alva Industries

1. Refer to section 2.1 for to find what is needed to start.

2. If the planned tests in this study is going to be performed, execute case studies
one by one.

3. For case study 1, apply accelerated low stress level to the environment and
put three units to test until they fail and repeat the same procedure for the
accelerated high stress level.

4. For case study 2, apply the accelerated low stress cycle to the environment,
which is referred as outside. 3 units should be tested at that level. Each cycle
should be 30 minutes. Run the motors until they fail.

5. Repeat the previous step for accelerated high stress cycle.

6. For case study 3, put four motors into the test for accelerated low cycle. The
thrust range means that the motor should reach to the final level as fast as
possible and run for 30 minutes. The units should repeat this procedure until
they fail.

7. The same procedure is repeated for the accelerated high stress level.

8. After getting the results of the case studies, the data should be fit to the
"Fit_Everything_ALT" module as explained in section 6.2 for each case study.

9. The found mean lives for each case study should be put to Equation 1 as ex-
plained in section 8.1.2. The found solution is the mean time between failures.

However, it is recommended to read the report because the significance of the results
are planning new experiment designs are explained.
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