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Abstract 24 

Developing effective climate mitigation strategies under global warming requires a 25 
comprehensive understanding of the biophysical mechanism of how afforestation affects the 26 
climate and environment. The planted forests in southern China are an essential carbon sink. 27 
However, the impacts of radiative and non-radiative processes on land surface temperature 28 
caused by converting open land (i.e., grassland and cropland) and natural forests to planted 29 
forests remain unclear. We used satellite observations and intrinsic biophysical mechanism 30 
theory-based energy balance models to estimate the biophysical impacts of potential 31 
afforestation of open land and natural forests on surface temperature from 2000 to 2010 in 32 
Guangdong Province, southern China. Results showed that afforestation of open land had a 33 
consistent net cooling effect. Due to the afforestation of natural forests, the modeled results 34 
revealed that afforestation among all conversion types had a net warming effect of 0.15±0.5 K, 35 
which caused by the change in energy redistribution factor although uncertainty remains. While 36 
the most significant warming caused by converting natural forest to planted forests was also 37 
slightly affected by albedo. The afforestation's non-radiative and radiative processes led to a 38 
slight warming of 0.143±0.43 K and a cooling of −0.096±0.19 K, respectively. The non-radiative 39 
process dominates the effect of afforestation on the surface temperature, with the overall non-40 
radiative forcing index greater than 73%±0.59%. Our study highlights the need of protecting 41 
natural forests and provides a practical method for assessing the impacts of afforestation on the 42 
local climate and the effectiveness of climate mitigation efforts.  43 

Plain Language Summary 44 

Afforestation is an important tool for mitigating climate change. However, the land cover change 45 
induced by afforestation may affect the land-atmosphere balance of water and energy. Accurate 46 
estimation of surface temperature change in response to afforestation-induced surface energy 47 
change is challenging. From 2000 to 2010, afforestation activities in southern China were 48 
frequent, resulting in a significant increase in carbon sinks. Yet, how these land-use changes can 49 
affect the local climate is unclear. Here we prepared the high-resolution land cover data and 50 
utilized satellite observations and a physical-based method to estimate the impacts of 51 
afforestation on land surface temperature in southern China. This strategy can provide insights 52 
for designing rational afforestation policies in southern China and similar geographic areas. 53 

1. Introduction 54 

Afforestation is typically referred to as a human-driven process of seedling or planting 55 
new forests on land that has been absent from forests for at least 50 years in the past (Brown et 56 
al., 1986; Lund, 2006). Land use and land cover change (LULCC) driven by afforestation can 57 
affect the carbon budget and surface energy balance of local ecosystems through biogeophysical 58 
and biogeochemical processes, which will further influence the climate change from regional to 59 
global scales (Anderson et al., 2011; Bonan, 2008; Duveiller et al., 2018). In particular, the 60 
biophysical processes related to afforestation can control the land-atmospheric exchange of water 61 
and energy by altering the radiative (e.g. albedo) and non-radiative (e.g. evapotranspiration and 62 
roughness) characteristics (Alkama and Cescatti, 2016; Bright et al., 2017; Huang et al., 2020; 63 
Zhao and Jackson, 2014). This will further affect surface energy redistributions and exert 64 
warming or cooling effects on the local climate (Bright et al., 2017). For example, the non-65 
radiative effects of forest gains dominate the local response and lead to cooling in most regions 66 
experiencing disturbances across the world (Bright et al., 2017). However, a comprehensive 67 
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evaluation of how forest change affects regional temperature through the radiative and non-68 
radiative processes is still lacking in afforested areas, normally referred to as planted forests 69 
(PF). Accurate quantification of afforestation impacts on land surface temperature (LST) is also 70 
challenging due to the lack of long-term land records at high resolution for capturing the 71 
spatiotemporal distribution of afforestation (Li et al., 2016; Prevedello et al., 2019). Moreover, it 72 
remains unclear that  afforestation induces the surface temperature changes through which 73 
biophysical variables at a regional scale (Li et al., 2015; Peng et al., 2014; Prevedello et al., 74 
2019).  75 

The biophysical impacts of forest change on LST are typically evaluated using in situ 76 
meteorological observations, remote sensing data, or climate models (Chen and Dirmeyer, 2020; 77 
Li et al., 2022; Mahmood et al., 2014). Although in situ measurements provide direct and 78 
accurate observations for studying such impacts, they are limited in spatial coverages and lack 79 
mechanical explanations (Senior et al., 2017). Climate models can account for both biophysical 80 
and external atmospheric feedbacks, but their performances are affected by various types of 81 
uncertainties (He et al., 2015; Wickham et al., 2013; Yu et al., 2015). Empirical models with 82 
remote sensing observations have become a primary tool for analyzing the relationships between 83 
forest cover and climate at the regional and global scales (Li et al., 2016; Peng et al., 2014). 84 
Existing studies have explored the impact of afforestation on LST using various remote sensing 85 
datasets (Li et al., 2016; Prevedello et al., 2019; Shen et al., 2020; Shen et al., 2019b). For 86 
example, Ge et al. (2019) have analyzed the climate feedback of afforestation in China based on 87 
Moderate-Resolution Imaging Spectroradiometer (MODIS) land cover data. Yet, the coarse-88 
resolution MODIS land cover data may easily affect the results in heterogeneous areas with 89 
mixed land cover pixels (Novo-Fernández et al., 2018). Also, few studies have investigated how 90 
biophysical energy balance mechanisms, such as albedo radiation feedbacks and energy 91 
redistribution changes, drive afforestation-induced temperature change in southern China using 92 
high-resolution LULCC data.  93 

Energy balance models based on different physical theories have been developed to 94 
evaluate the impacts of LULCC on the climate (Li et al., 2020; Liao et al., 2018; Luyssaert et al., 95 
2014; Rigden and Li, 2017; Wang et al., 2018). Specifically, the intrinsic biophysical mechanism 96 
(IBM) theory is a commonly adopted method to quantify the biophysical impacts of land-use 97 
change on the LST (Lee et al., 2011). The energy balance model based on the IBM theory is 98 
capable of distinguishing between internal forcing and external feedback of LULCC and has 99 
been used to separate the effects of the radiative and non-radiative processes induced by 100 
afforestation on the LST (Lee et al., 2011). As in situ measurements, such as FLUXNET and 101 
meteorological observations, can provide accurate values of these intrinsic biophysical 102 
parameters, many researchers are trying to scale them to larger scales to study the non-radiative 103 
mechanisms induced by afforestation through the combination of energy balance models (Bright 104 
et al., 2017; Ge et al., 2019). Nevertheless, this method is limited due to the sparse distribution of 105 
in situ observations (Tang et al., 2018; Wang et al., 2018). This can be addressed by utilizing 106 
remote sensing data with spatial consistency. Thus, a combination of remote sensing 107 
observations, in situ measurements, and energy balance models can provide a new direction for 108 
assessing the impacts of forest changes and their biophysical characteristics on surface 109 
temperature (Bright et al., 2017; Ge et al., 2019).  110 

Afforested areas in southern China play a critical role in driving LULCC and restoring 111 
total vegetation carbon storage in China. Afforestation projects, such as converting from 112 
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croplands to forests, have been continuously increasing during the recent years. Economic 113 
demands have promoted substantial conversion from natural forests (NF) into commercial forests 114 
in this region, especially between 2000 and 2010 (Shen et al., 2018; Shen et al., 2019b). Driven 115 
by the market, fast-growing and high-yield tree species have commonly used in some projects as 116 
they can quickly grow into forests in a short-rotation period. As a result, the mixed forest species 117 
with NF areas have been gradually replaced by monospecific even-aged plantations in southern 118 
China, particularly Guangdong province. Nevertheless, the biophysical impacts of these 119 
afforestation practices on LST in southern China are still poorly understood.     120 

This study aims to estimate the biophysical impacts of afforestation on the local surface 121 
temperature from 2000 to 2010 across Guangdong Province, southern China. We quantified the 122 
response of LST to afforestation using both satellite observations and a physical-based method 123 
that integrates the energy balance model and IBM theory. We also assessed the radiative and 124 
non-radiative effects of afforestation in our study area. Specifically, we compared the differences 125 
between afforested areas and the NF, and assessed the afforestation impacts in open land areas, 126 
including cropland (CR) and grassland (GR). 127 

2. Materials and Methods 128 

2.1. Data preparation 129 

The distributions of PF, NF, and open land (CR and GR) areas in 2000 and 2010 in 130 
Guangdong Province were identified from two 30m land cover datasets: SGB-NDVI-based 131 
forest and non-forest (FNF) time series maps (Shen et al., 2019a) and GlobeLand30 data product 132 
(Chen et al., 2015). The accuracy of the SGB-NDVI-based FNF and GlobeLand30 ranged from 133 
83%-86% (Shen et al., 2019a) and 84%-89% (Chen et al., 2015), respectively. We first mapped 134 
the PF and non-forest areas using the dense time series SGB-NDVI-based FNF data. Here we 135 
defined the PF as the intersection between non-forest from the year before the current year (i.e., 136 
persisting non-forest or deforestation in 2009) and the forest in the current year (i.e., 137 
afforestation or post-deforestation reforestation in 2010) following previous studies (Shen et al., 138 
2019a,b). The GlobeLand30 data was then used to identify the NF (forest minus PF), CR and GR 139 
areas, as described in Shen et al. (2019b). The total area of the mapped PF is close to that from 140 
the National Forestry Yearbook of China (Shen et al., 2019b). To assess the impacts of the 141 
potential afforestation across space and time, the pixels that did not experience changes in land 142 
cover types between 2000 and 2010 were then used as reference pixels for comparisons. We 143 
further resampled the original values from 30m resolution to 1km using the nearest neighbor 144 
method to match the biophysical variables from the MODIS data.  145 

Biophysical and climatic variables were primarily obtained from MODIS products (Table 146 
1). We acquired the LST data from the 8-day MODIS MYD11A2 product, the albedo data from 147 
the MCD43B3 product, the MOD16A2 evapotranspiration (ET) data, the downward longwave 148 
surface fluxes from GLASS LW_modis data provided by the National Earth System Science 149 
Data Center (http://www.geodata.cn), and the downward shortwave surface fluxes from the 3-150 
hours MODIS MCD18A1 product. We then extracted the monthly and seasonal averages of the 151 
variables for all these datasets. The monthly air temperatures at 2m above the ground were also 152 
obtained from the China Meteorological Data service center (http://data.cma.cn/en) as a 153 
reference. These in-situ measurements covering 26 meteorological stations were interpolated 154 
using the random forest models developed by Shen et al. (2019b). The interpolated and observed 155 
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2m air temperature showed a strong correlation, with Pearson’s r values ranging between 0.8 to 156 
0.99 for the 2000 and 2010 data (Shen et al., 2019b). We then generated the daily, monthly, and 157 
annual averages of the LST and calculated the annual and monthly averages of the in-situ air 158 
temperature.  159 

 160 
Figure 1. Location of the study area in Guangdong Province, southern China. Distribution 161 

of the areas with no change in land cover type, including planted forest (PF), cropland (CR), 162 
grassland (GR), and natural forest (NF) from 2000 to 2010 and sample grids (5 × 5 km). The 163 
black, blue, and purple boxes indicate the functional sample grid cells for converting cropland, 164 
grassland, and natural forests to planted forests, respectively. 165 

Table 1. Remote sensing data used to extract biophysical and climate variables.   166 
Dataset Variables Resolution Time Reference 

MYD11A2 LST 1 km/8 days 2002–2010 (Wan, 2008) 
MCD43B3 Albedo 1 km/8 days 2000–2010 (Schaaf et al., 2002)
MOD16A2 ET 1 km/8 days 2000–2010 (Mu et al., 2011) 

MCD18A1 Downward shortwave 
flux 1 km/3 hours 2001-2010 (Wang et al., 2020) 

LW_modis Downward longwave 
flux  1 km/daily 2000-2010 (Cheng et al. 2017) 

2.2. Estimating biophysical effects of hypothetical afforestation on surface temperature 167 
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To understand the biophysical effects of afforestation on LST between 2000 and 2010 in 168 
Guangdong Province, we adopted a space-for-time substitution method (Zhao and Jackson, 169 
2014) to identify regions representing hypothetical afforestation and different conversion types. 170 
We then used the energy balance model and IBM theory to quantify the afforestation impacts on 171 
the LST.  172 

2.2.1. Space-for-time method 173 

The space-for-time method assumes that the adjacent pixels of PF and other land cover 174 
types have the same background climate. Hence, the local surface temperature differences are 175 
primarily driven by the land cover changes (Zhao and Jackson, 2014). Here the hypothetical 176 
afforestation refers to the forest change that has yet to happen in reality. By comparing the 177 
differences between adjacent pixel pairs of the PF and other land cover types, we can estimate 178 
the impacts of hypothetical afforestation in this area. 179 

We first created 5 × 5 km grids across the entire study area and sampled those including 180 
NF, CR, GR, and PF that have not changed from 2000 to 2010.To identify proper grids 181 
representing the conversions from no change NF, CR or GR to the hypothetical PF, we then 182 
selected them based on the 1km land cover data from Section 2.1 following the rule: the cover of 183 
PF ≥ 5% and the cover of NF or open land (CR or GR) ≥ 80% (Figure 1). Within each selected 184 
grid, we adopted a window searching method (Zhao and Jackson, 2014) to identify the 185 
hypothetical changes by pairing adjacent pixels of PF and other types (NF, CR, and GR).  186 

To assess the impacts of hypothetical afforestation on the local climatic and biophysical 187 
parameters, we calculated the multi-year mean values of LST, albedo, air temperature, and 188 
downward longwave and shortwave fluxes in the selected 5km grids. Then, for each conversion 189 
type, the afforestation induced changes were estimated by calculating the differences of these 190 
variables between the no change PF and the other types (NF, CR, or GR). Taking albedo as an 191 
example, the afforestation-induced albedo change (∆α) can be calculated as follows (Student’s t-192 
test: confidence interval (CI) is estimated by t-test at 95%, p < 0.05):  193 ∆α = α − α , (1) 194 

where α  is the albedo of the PF after afforestation, α  is the albedo of the CR, GR, or 195 
NF before afforestation, and i represents the CR, GR or NF. The differences in other biophysical 196 
and climate variables between PF and other types (NF, CR, and GR) were estimated in a similar 197 
fashion.  198 

2.2.2. Modeling LST change due to hypothetical afforestation using the energy balance 199 
model and the IBM theory  200 

The IBM theory assumes that the impacts of different land cover types on the LST are 201 
caused by local surface longwave radiative and energy redistribution induced by the 202 
aerodynamic resistance and Bowen ratio (Bright et al., 2017; Lee et al., 2011). The energy 203 
redistribution factor (f) reflects the surface energy balance of vegetation structure and 204 
physiology. Higher f values indicate that a vegetation ecosystem is more efficient  at dissipating 205 
surface energy through intrinsic biogeophysical properties (Chen and Dirmeyer, 2016; Lee et al., 206 
2011). The theory also assumes no differences in the low-atmosphere temperature between forest 207 
and open land (Winckler et al., 2017). The IBM theory is originated from the surface energy 208 
balance equation defined using Eq. (2) (Lee et al., 2011):   209 
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𝑆𝑊 + 𝐿𝑊↓ − 𝜎𝑇 = 𝑅 = 𝐻 + 𝐿𝐸 + 𝐺, (2) 210 

where 𝑆𝑊  is the net surface shortwave radiation (W m-2), 𝐿𝑊↓ is the incoming 211 
longwave radiation (W m-2), 𝜎 is the Stephan-Boltzmann constant (W m-2K-4), 𝑇  is the surface 212 
temperature (K), 𝑅  is the net radiation, 𝐻 is the sensible heat flux, 𝐿𝐸 is the latent heat flux and 213 𝐺 is the soil heat flux (W m-2). Lee et al. (2011) pointed out that 𝐻 and 𝐿𝐸 act as essential factors 214 
controlling the surface temperature (𝑇 ) in the surface energy balance equation, so 𝑇  can be 215 
estimated using Eqs. (3-5):  216 𝑇 = (𝑅∗ − 𝐺) + 𝑇 , (3) 217 𝑅∗ = 𝑆𝑊 + 𝐿𝑊↓ − 𝜎𝑇 , (4) 218 𝑆𝑊 = (1 − 𝛼)𝑆𝑊↓, (5) 219 

where 𝜆 = 1/(4𝜎𝜀 𝑇 ) (K (W m-2)-1) is the monthly mean temperature sensitivity of the 220 
longwave radiation feedback (𝜀  is the monthly mean surface emissivity, 𝜀 = 0.983 for 221 
cropland and grassland, 𝜀 = 0.989 for forest (Caselles et al., 2011), 𝑇  is the monthly mean air 222 
temperature (K), 𝑆𝑊↓ is the incoming shortwave radiation (W m-2), and 𝑅∗  is the monthly 223 
apparent net radiation). G is the monthly mean soil heat flux, which is estimated as 𝐺 =224 0.14(𝑇 , − 𝑇 , ) (n represents month as 1, 2, …, 12) following Fischer et al. (2021). It is used 225 
for the calculation of the reference evapotranspiration of reference surfaces based on Penmann-226 
Monteith equations and can be recognized. Then, we then modified Eq. (3) to estimate f from 𝑇 , 227 𝑇 , 𝑅∗ , and G: 228 𝑓 = (𝑅∗ − 𝐺) − 1, (6) 229 

where  𝑇  is the observed monthly surface temperature (K). Two equal values between 𝑇  230 
and 𝑇  are invalid. 231 

According to the IBM theory and the energy balance model based on Eqs. (2–5), several 232 
individual biophysical forcings induced by LULCC, including albedo, roughness, and ET, can 233 
affect the surface temperature changes (𝑇 ). Thus, the total change in the modeled surface 234 
temperature (∆𝑇 _ ) due to afforestation can be separated into three sections, including the 235 
changes in the energy redistribution factor (∆𝑓), radiative forcing (∆𝑅∗ ), and soil heat flux (∆𝐺), 236 
using the following equations (Bright et al., 2017):    237 ∆𝑅∗ = ∆𝑆𝑊↓ = −𝑆𝑊↓ × ∆𝛼, (7) 238 ∆𝑇 _ = ( ) ∆𝑅∗ + ( ) ∆𝐺 + ( ) (𝑅∗ − 𝐺)∆𝑓, (8) 239 

where 𝜆 , f, 𝑅∗ , and G represent the variables for the CR, GR, and NF before 240 
afforestation. To address the differences in the variables between PF and open land (CR and 241 
GR), the variables in Eq. (8) were modified based on Eqs. (1) and (7) but excluded the 242 
atmospheric feedback as follows: 243 ∆𝑇 _ =  ∆𝑇 _ + ∆𝑇 _ + ∆𝑇 _ , (9) 244 ∆𝑇 _ = ( ) (−𝑆𝑊↓ × (𝛼 − 𝛼 )), (10) 245 
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∆𝑇 _ = ( ) (𝐺 − 𝐺 ), (11) 246 ∆𝑇 _ = ( ) (𝑅∗ − 𝐺 )(𝑓 − 𝑓 ), (12) 247 

where ∆𝐺 and ∆𝑓 are the differences in the multiyear monthly mean soil heat flux and 248 
energy redistribution factor (f) between the PF and other land cover types (CR, GR, and NF) 249 
from 2000 to 2010, similar to ∆α in Eq. (1); while ∆𝑇 _  is the difference in the modeled surface 250 
temperature between the PF and other land cover types. This results from the joint contributions 251 
of the three parts in response to the temperature change caused by the forest change in Eq. (9). 252 
Specifically, ∆𝑇 _  represents the impact of the surface radiative forcing and albedo change on 253 
surface temperature; ∆𝑇 _  is the impact of the soil heat flux diffusion on surface temperature; 254 ∆𝑇 _  is the impact of the turbulent energy redistribution on surface temperature. Then, the 255 
modeled surface temperate change (∆𝑇 _ ) was estimated using Eqs. (9–12). Positive ∆𝑇 _  256 
values represent a warming effect due to afforestation, while negative values indicate cooling.  257 

2.3. Comparing modeled and observed LST changes induced by afforestation 258 

Then, we estimated ∆𝑇  using only MODIS data as the observed LST change (∆𝑇 _ ) 259 
caused by the hypothetical afforestation as a reference. The ∆𝑇 _  was obtained by comparing the 260 𝑇  values of the PF and other land cover types following Eq. (1). We compared the afforestation-261 
induced LST changes estimated with the two types of methods (∆𝑇 _  and ∆𝑇 _ ) and examined 262 
their linear relationships. We also assessed the relationships between ∆𝑇 _  and ∆𝑇 _ , ∆𝑇 _ , and 263 ∆𝑇 _  using the monthly and seasonal values for the PF, NF, and open land via linear regression.  264 

2.4. Identifying radiative and non-radiative effects of afforestation 265 

The contributions of the radiative and non-radiative effects of afforestation to the ∆𝑇  266 
were quantified and analyzed using the non-radiative forcing index (NRFI) (Bright et al., 2017):  267 NRFI (%) = ∆ _ ∆ _∆ _ ∆ _ ∆ _ × 100, (13) 268 

where ∆𝑇 _  is the albedo-driven LST change and represents the radiative effects of the 269 
afforestation-induced PF change; ∆𝑇 _  and ∆𝑇 _  refer to the 𝐺- and 𝑓-driven LST changes, 270 
respectively, and represent the non-radiative effects. A larger NRFI value indicates stronger non-271 
radiative effects due to afforestation. 272 

3. Results 273 

3.1. Afforestation impacts on surface biophysical parameters and land surface fluxes 274 

To evaluate the impacts of hypothetical afforestation on LST, 83, 30, and 84 5×5 km 275 
grids were sampled to represent the three conversion types, CR to PF, GR to PF, and NF to PF, 276 
respectively (Figure 1). For each conversion type, we calculated the ∆𝑓, ∆α, ∆ET, ∆𝑅∗ , and ∆𝐺 277 
based on the no change PF and the CR, GR, and NF pixels between 2000 and 2010. The 278 
student’s t-test revealed significant changes (p < 0.05) in the 𝑓, albedo (𝛼), net radiation (𝑅∗ ), 279 
and 𝐺 for all three conversion types. We also reported the monthly mean values of ∆𝑓, ∆𝛼, ∆ET, 280 ∆𝑅∗ , and ∆𝐺 induced by afforestation with their 95th percentiles (Figure 2). 281 
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The energy redistribution factor f generally increased after afforestation (∆𝑓 > 0), except 282 
for the afforestation on GR in summer and autumn and NF in autumn (Figure 2a). It can be 283 
observed across all seasons that the increases of f outweighed the decreases. Specifically, we 284 
found that the values of f after afforestation on CR showed a decreasing trend of 91.7% from 285 
spring to winter. The afforestation on GR in spring and winter also had positive ∆𝑓 values. For 286 
afforestation on NF, ∆𝑓 was positive (0.52) in summer, but became negative (−0.41) in autumn. 287 
Moreover, at the lower latitudes in Guangdong Province, the ∆𝑓 values between PF and open 288 
land (CR/GR) were slightly higher than those between PF and NF (Figure S1). For CR, 289 
afforestation at the mid-high latitudes in Guangdong Province decreased f in spring, while this 290 
decrease in f mainly occurred in winter for NF (Figure S1). 291 

 292 

Figure 2. Monthly differences in the (a) energy redistribution factor f (∆𝑓), (b) 𝑅∗  (∆𝑅∗ ), 293 
(c)albedo (∆𝛼), and (d) 𝑆𝑊  (∆𝑆𝑊 ) between the no change PF and CR, GR, and NF from 294 
2000 to 2010 in Guangdong Province, China. Each bar's vertical lines represent the 95% 295 
confidence intervals estimated using the Student's t-test. 296 

The annual variations in albedo were generally small and sometimes negligible. The 297 
highest and lowest negative ∆𝛼 values occurred when converting NF and CR to PF, respectively 298 
(Figure 2c). Spatial and temporal variations in ∆𝛼 existed for all three conversion types. We 299 
found a considerable decrease at the higher latitudes in Guangdong Province, except in summer. 300 
While a minor reduction was observed on the lower margins between the PF and CR, except for 301 
a more significant decrease in spring (21°N). A more significant reduction in ∆𝛼 occurred at the 302 
mid-latitudes between PF and GR, and at the low latitudes between PF and NF (Figure S1). 303 
Except for the more significant decrease in summer (21°30’N), albedo had little effect at the 304 
lower latitudes. For converting open land to PF, ∆𝛼 had the lowest value in winter. 305 

Moreover, PF was less sensitive than GR to strong seasonal fluctuations in 𝐺, especially 306 
in summer and spring (Figure S2a). Those that were less sensitive than CR occurred in the winter 307 
and autumn; and those that were more sensitive than NF were found in the spring, summer, and 308 
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autumn. We also found a negative relationship between the monthly 𝐺 and albedo due to 309 
afforestation on GR (Figure S3a), yet linear relationships were not found between the monthly 310 
mean ∆𝐺 and ∆𝑆𝑊  (Figure S3b). Additionally, for all conversion types, ∆𝑆𝑊  had an 311 
overall downward trend from winter to summer and an upward trend from summer to winter 312 
(Figure 2d). The highest ∆𝑆𝑊 value occurred when converting GR to PF.  313 

Interestingly, consistent negative ∆ET values were found among all conversion types 314 
throughout the year (Figure S2b). The ∆ET values were the lowest when converting CR to PF 315 
and the highest when converting NF to PF.  Yet the seasonal variations of ∆ET were not obvious. 316 
Moreover, the relationship between ∆ET and ∆𝑓 was less pronounced (Figure S3c).   317 

3.2. Impacts of afforestation on surface temperature   318 

We then calculated and compared the mean values of the modeled ∆𝑇 _  driven by the 319 
energy redistribution factor (𝑇 _ ), albedo (𝑇 _ ), and soil heat flux change (𝑇 _ ), as well as the 320 
observed 𝑇 _  (Figures 3 and S4). For the modeled 𝑇  changes, afforestation mainly had a net 321 
warming effects on NF, with annual ∆𝑇 _  values of 0.34±0.48 K. In contrast, a net cooling 322 
effect was found on CR (−0.17±0.87 K) and on GR (−0.02±0. 19 K). The spatial patterns of the 323 ∆𝑇 _  also vary across all three-conversion types. Converting CR to PF could lead to warming in 324 
northern and southwestern Guangdong, but cooling in the south (Figures 4a and S4), while 325 
afforestation on NF resulted in warming across all latitudes. A cooling effect occurred for 326 
restoring GR to PF in northern Guangdong.  327 

 328 
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Figure 3. Monthly mean values of the modeled 𝑇  change (∆𝑇 _ ), the observed 𝑇  329 
change (∆𝑇 _ ), the 𝑇  change driven by the energy redistribution factor change (∆𝑇 _ ), the 𝑇  330 
change driven by the albedo change (∆𝑇 _ ), and the 𝑇  change driven by the soil heat flux 331 
change (∆𝑇 _ ) for all three conversion types. Each bar's vertical lines represent the 95% 332 
confidence interval estimated using the Student's t-test.    333 

 334 

Figure 4. Monthly and latitudinal mean values of the modeled 𝑇  change (∆𝑇 _ , a) and 335 
the 𝑇  change driven by the energy redistribution factor change (∆𝑇 _ , b) for all three conversion 336 
types. The black dots represent the 95% significance level using the Student's t-test.   337 

Noticeable differences were found between the ∆𝑇 _  and ∆𝑇 _  induced by afforestation, 338 
particularly on NF. For the observed ∆𝑇 _ , afforestation caused a net cooling effect for all 339 
conversion types (Figure 3), with the strongest on CR (−0.72±0.007 K), followed by that on NF 340 
(−0.087±0.002 K), and GR (−0.043±0.008 K). The monthly trends of ∆𝑇 _  and ∆𝑇 _  were also 341 
inconsistent in general (Figure 3). For example, we found a warming effect in the warm seasons 342 
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and a cooling effect in the cold seasons due to afforestation on CR according to the ∆𝑇 _ . Yet, 343 
the observed 𝑇  change (∆𝑇 _ ) suggested consistent cooling effects for all conversion types 344 
during warm seasons. 345 

The modeled 𝑇  change driven by f (∆𝑇 _ ) led to warming effects of 0.066±0.71 K, 346 
0.001±0.17 K and 0.36±0.42 K when converting CR, GR, and NF to PF, respectively (Figures 3 347 
and S4). The annual, monthly, and latitudinal ∆𝑇 _  were more spatially and temporally 348 
consistent with the ∆𝑇 _  than with the 𝑇  changes driven by albedo (∆𝑇 _ ) and 𝐺 (∆𝑇 _ ; 349 
Figures S4–S7, 3–5). The contributions of albedo and the soil heat flux to the modeled 𝑇  change 350 
were also relatively small and negligible among all conversion types (Figures S4–S6, 3). 351 
Generally, the radiative process driven by the albedo change made small or negligible 352 
contributions to the modeled 𝑇  change (Figures S6–S7). Whereas, the non-radiative process 353 
associated with the change in f as one of the primary partition variables dominates the modeled 354 𝑇  change based on the strong linear relationship between ∆𝑇 _  and ∆𝑇 _  (Figure 5).  Among 355 
these, the contributions of afforestation on NF were an exception because of a slight albedo 356 
effect (Figure S7).  357 

 358 
Figure 5. The relationships between the monthly values of ∆𝑇 _  and ∆𝑓 (a), ∆𝑇 _  and 359 ∆𝑇 _  (b) for the three conversion types. The blue lines are the linear regression lines. The gray 360 

solid line indicates the 95% confidence intervals (CI lines) and the shaded confidence area for 361 
the predictions.    362 
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3.3. Contributions of radiative and non-radiative effects of afforestation to surface 363 
temperature change 364 

Afforestation had a warming effect of 0.143±0.43 K through the non-radiative processes 365 
and a cooling effect of −0.096±0.19 K via the radiative processes in Guangdong Province. The 366 
annual average of NRFI values were about 64.5%±0.79%, 80.2%±0.72%, and 75.3%±0.26% for 367 
converting CR, GR, and NF to PF, respectively (Figure 6). This indicates that the non-radiative 368 
processes contribute more than radiative processes to the 𝑇  change in our study area. The 369 
differences in the NRFI values of the conversion types exist across months and latitudes. For the 370 
afforestation of NF, GR, and CR, the largest NRFI values were 94.7%±0.14% in March, 371 
99.99%±0.002% in May, and 93.7%±0.32% in June; while the smallest NRFI values were 372 
8.9%±0.08% in September, 33.0%±0.96% in October, and 19.1%±0.66% in October, 373 
respectively. Most of the monthly average NRFI values were above 73%±0.59%. The northern 374 
part of Guangdong experienced stronger non-radiative effects due to afforestation than the other 375 
regions for all conversion types, particularly for afforestation of GR (Figure S8).    376 

 377 
Figure 6. Monthly values of the non-radiative forcing index (NRFI) for the three 378 

conversion types. Each bar's vertical lines represent the 95% confidence interval estimated using 379 
the Student's t-test.     380 

4. Discussions 381 

In this study, we found the impact of the hypothetical afforestation from 2000 to 2010 in 382 
Guangdong Province, southern China on the modeled land surface temperature using the surface 383 
energy balance model and IBM theory showed a slight warming effect. Afforestation on open 384 
land (CR and GR ) produced an overall cooling effect from north to south, which is consistent 385 
with the results of previous studies (Alkama and Cescatti, 2016; Li et al., 2015; Peng et al., 2014; 386 
Prevedello et al., 2019). Yet, the effects of afforestation on the land surface temperature when 387 
converting NF to PF obtained using modeled and observed results were contradictory, which can 388 
be explained from several perspectives. 389 

 Converting  natural forests to planted forests can have a warming effect on LST because 390 
the conifer forests have dark leaves and low albedo, thus can absorb more sunlight than 391 
underground, which is different from that of broadleaved forests (Popkin, 2019; Shen et al., 392 
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2019b). This could also explain the finding that the warming impact occurred in the warm 393 
seasons. Unlike the contradictory results mentioned above, converting CR and GR to PF resulted 394 
in cooling effects based on both the modeled and observed 𝑇  change, which is consistent with 395 
the results of previous studies (Bright et al., 2017; Ge et al., 2019), although the effect displayed 396 
by the observed results was stronger. Compared to grasslands and croplands, forests have a 397 
higher capacity to transfer latent heat and sensible heat to the atmosphere (Jackson et al., 2008). 398 
The roughness and aerodynamic conductance of the forest canopy are significantly higher than 399 
that of herbaceous vegetation and crop, leading to the forest canopy being cooler than the 400 
grasslands and croplands (Houspanossian et al., 2013; Kelliher et al., 1993; Lee et al., 2011). 401 
Moreover, the decrease in the shortwave radiation after afforestation on grassland can contribute 402 
to the temperature decrease as well (Yang, 1999). The warming effect of converting cropland to 403 
forest, especially irrigated cropland, occurs in northern and southwestern Guangdong, which is 404 
consistent with the studies from Ge et al. (2019) and Kueppers et al. (2008).  405 

In general, the biophysical mechanisms of the radiative and non-radiative processes can 406 
provide plausible explanations for the modeled 𝑇  change results due to afforestation across 407 
Guangdong Province. The combined effects of these processes drive the spatiotemporal 408 
variations in the surface temperature change due to afforestation. Afforestation can lead to 409 
warming due to a lower albedo of forests than open land; however, albedo does not play a 410 
dominant role in either method (Anderson et al., 2011; Betts, 2000). In addition, forests can lead 411 
to evaporative cooling. However, this was not revealed by the observed results because satellite 412 
observations do not consider the effects of the energy balance process. This suggests that the 413 
IBM-based method adopted in this study can provide more insights for investigating the impacts 414 
of afforestation on the local environment. It is also reasonable that the ET change did not 415 
dominate the afforestation effects since the higher evaporation loss from planted forests may lead 416 
to problems with water management and the local climate (Nosetto et al., 2005). Additionally, 417 
the change in 𝐺 had little effect on the overall results, which is consistent with Ge et al. (2019). 418 
Forests are typically less sensitive to 𝐺 than herbaceous species (Yang, 1999). Under a high solar 419 
radiation load, the land cover types with lower vegetation cover, such as rain-fed cropland and 420 
grassland, have higher 𝐺 values. The heat fluxes of these categories are nearly zero and 421 
negligible. 422 

The non-radiative effects of afforestation, particularly the ∆𝑓, are the major contributors 423 
to the warming effect in open land (cropland and grassland), and they explain more than 73% of 424 
the warming (i.e., the change in 𝑇 ) (Figures 5–6). The spatial and seasonal variations in the ∆f 425 
were also consistent with previous studies conducted on afforestation (Bright et al., 2017; Ge et 426 
al., 2019; Lee et al., 2011). However, the aerodynamic resistance-based f value may overestimate 427 
the impacts of the non-radiative processes on the surface temperature (Liao et al., 2018; Rigden 428 
and Li, 2017). As for natural forests, we did not observe obvious effects of some of the spatial 429 
inconsistencies compared to the results of previous studies. These anomalies could be caused by 430 
the higher resolution data we used to describe the spatiotemporal distribution of the afforestation. 431 
More studies on high-resolution land cover type identification are required, such as different 432 
forest species, irrigated cropland and rain-fed cropland (Kueppers et al., 2008; Prevedello et al., 433 
2019).    434 

Our study also suggested that the IBM-based method is more indicative for studying the 435 
biophysical effects of afforestation at a regional scale (Bright et al., 2017; Wang et al., 2020). 436 
Compared to Ge et al. (2019), we adopted different land cover data and parameters for the 437 
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energy balance model, which could lead to different results. Studies of afforestation in the arid 438 
regions of northern China also found opposite results using different approaches, such as 439 
regional climate models and site observations based on the IBM theory (Wang et al., 2019; 440 
Wang et al., 2018). It has been concluded that the former (Wang et al., 2019) considered the 441 
biophysical effects of afforestation based on the regional climate model and the effects of 442 
atmospheric feedback. Although we did not use climate models and concluded that the local 443 
climate feedbacks were consistent, our study thoroughly analyzed the biophysical impacts of 444 
afforestation on different land cover types using fine-identification data for afforestation as 445 
inputs to the model. 446 

The results we obtained using the physical-based method for afforestation of open land 447 
were consistent with those from satellite observations-based results and Ge et al. (2019), in 448 
which afforestation led to cooling. Yet, the total warning effect was inconsistent with those 449 
derived from the satellite observations in this study and with the findings of previous studies, 450 
which suggested a total cooling effect due to afforestation of open land and natural forest ( Peng 451 
et al., 2014; Shen et al., 2019b). Several factors could contribute to these differences. Firstly, our 452 
analyses were conducted based on hypothetical afforestation using the space-for-time method. 453 
Though this strategy has been commonly adopted (Chapman, 2020; Chilukoti and Xue, 2020; Ge 454 
et al., 2019; Peng et al., 2014; Zhao and Jackson, 2014) and produced comparable results of LST 455 
trends with the actual forest changes (Li et al., 2016), using the hypothetical afforestation for 456 
analysis could still induce uncertainties in results because it is not exactly the actual forest cover 457 
change. Secondly, though the non-local effects of atmospheric feedbacks on afforestation are 458 
typically less significant at small scales (Lee et al., 2011) and thus ignored in this study, 459 
afforestation can indirectly affect the local temperature through feedbacks from the atmosphere 460 
(Devaraju et al., 2018; Li et al., 2020). Also, uncertainties could be introduced by the input 461 
datasets through the resampling methods and some hypothetical parameter values that have not 462 
been independently validated as well as errors that exist in surface temperature driven by three 463 
biophysical parameters. Future work could incorporate more accurate biophysical or climatic 464 
variables and detailed land cover types, such as specific tree species and crop types, for 465 
developing an enhanced understanding of afforestation impacts on the local environment. The 466 
satellite and biophysical parameters used in this energy balance model were restricted to non-467 
overcast conditions, which could lead to an overestimation of the afforestation impacts on the 468 
surface temperature (Bright et al., 2017; Ge et al., 2019). The temperature effect of radiation 469 
difference caused by topography is also negligible (Lee et al., 2013; Hao et al., 2021).  470 

Forest changes can modify the thermal and hydrological cycles of local ecosystems 471 
through the radiative and non-radiative effects of biophysical processes, while the water 472 
resources, soil properties, and background climate affect the contributions of forests to climate 473 
(Anderson et al., 2011; Perugini et al., 2017). Further separation of the effects of the energy 474 
redistribution parameters such as the latent heat, sensible heat flux, and Bowen ratio on the 475 
temperature could provide more meaningful insights into the interactions between forest change 476 
and the local ecosystems. Furthermore, multi-source data such as high-resolution afforestation 477 
data and satellite observations, surface energy flux data, climate models, and in situ 478 
measurements can be integrated in the future to investigate the land-atmospheric interactions 479 
related to land cover changes (Perugini et al., 2017). Additionally, though afforestation is an 480 
important tool for mitigating climate change, restoring lost forest area and maintaining existing 481 
forests are critical for preventing further biophysical surface warming in local regions (Bright et 482 
al., 2017).    483 
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5. Conclusions 484 

In this study, we integrated satellite data and a surface energy balance model to 485 
investigate the biophysical impacts of afforestation on the land surface temperature in 486 
Guangdong Province, southern China.  This study proposes a framework for understanding the 487 
biophysical effects of forest changes due to afforestation on local surface temperature by 488 
integrating high-resolution land cover data and an energy balance model. Results from satellite 489 
observations and the physical-based model both suggested a cooling effect of afforestation on 490 
open land (CR and GR) across our study area. Nevertheless, we found that the annual warming 491 
impact of the afforestation of natural forest obtained using the modeled surface temperature 492 
change differed from the satellite observation-based results. The change in f dominates this 493 
modeled temperature result. In general, the non-radiative processes lead to warming, while the 494 
radiative processes lead to slight cooling. The most significant cooling and warming due to the 495 
non-radiative processes occurred over forests converted from open land and natural forest, 496 
respectively.  497 

Identifying detailed land cover types and selecting appropriate types for afforestation 498 
should be improved in the practical evaluation of the temperature response and the mitigation of 499 
regional increases in temperature. Our methods and findings can provide guidance for designing 500 
rational afforestation plans in southern China and similar geographic areas. 501 
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