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Football player dominant region 
determined by a novel model 
based on instantaneous kinematics 
variables
Fabio Giuliano Caetano1*, Sylvio Barbon Junior2, Ricardo                 da Silva Torres3, 
Sergio Augusto Cunha4, Paulo Régis Caron Ruffino5, Luiz Eduardo Barreto Martins4 & 
Felipe Arruda Moura1

Dominant regions are defined as regions of the pitch where a player can reach before any other and 
are commonly determined without considering the free-spaces in the pitch. We presented an approach 
to football players’ dominant regions analysis, based on movement models created from players’ 
positions, displacement, velocity, and acceleration vectors. 109 Brazilian male professional football 
players were analysed during official matches, computing over 15 million positional data obtained 
by video-based tracking system. Movement models were created based on players’ instantaneous 
vectorial kinematics variables, then probabilities models and dominant regions were determined. 
Accuracy in determining dominant regions by the proposed model was tested for different time-
lag windows. We calculated the areas of dominant, free-spaces, and Voronoi regions. Mean correct 
predictions of dominant region were 96.56%, 88.64%, and 72.31% for one, two, and three seconds, 
respectively. Dominant regions areas were lower than the ones computed by Voronoi, with median 
values of 73 and 171  m2, respectively. A median value of 5537  m2 was presented for free-space 
regions, representing a large part of the pitch. The proposed movement model proved to be more 
realistic, representing the match dynamics and can be a useful method to evaluate the players’ tactical 
behaviours during matches.

Football is a team sport characterised as a sociomotor physical activity that involves cooperative (with team-
mates) and competitive (with opponents) interactions, as well as, environmental  uncertainties1. These relation-
ships among the players show a behaviour previously reported to animals on the ecological  approach2 applied 
in team sports to understand team  synergies3, in which they perceive the environment around them and adapt 
accordingly. The environmental  constraints4 in the case of football, for example, are the teammates or opponent 
players, the pitch, and the ball. Thus, players experience a perception–action process in which they make deci-
sions based on the actions of their neighbour players, as well as their actions also affect the neighbour  players5,6.

The interactions among neighbouring players are a relevant concept to evaluate the use of space by the teams 
and competition for the pitch regions because it has been used to compute the players’ dominant  regions7. The 
player dominant region is defined as the pitch region where he/she can reach before any other  player8 and is 
commonly determined based on Voronoi  diagram7. The Voronoi tessellations allows the decomposition of a 
space (e.g., the pitch) into cells (e.g., dominant regions) associated with each point (e.g., players)9. This method 
was applied to determine the players’ dominant region in the football considering the players’ positions and the 
distance between the players to the nearby  players10.Then, Filetti, et al.11 applied a different Voronoi  diagram12 
that resulted in dominant regions with rounded characteristics. However, the dominant regions determined by 
Voronoi  diagrams10,11 are associated with the players because they are the  closest13, and promote a static perspec-
tive that can be representative only of an instant.
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Therefore, researchers proposed the use of movement models defined as a set of displacement, velocity, and 
acceleration data used to represent the players’ movement  abilities8. Initially, a movement model was created 
considering the position, displacement, and velocity of the players improving the determination of the dominant 
region, making it more compatible with human physical  capacity8,14. Then, an improvement of the movement 
model was proposed, by adding a resistive force to avoid the velocity increase up to infinity, caused by the accel-
eration considered as a  constant15,16. However, the players’ dominant regions like other tactical behaviours in 
the football (e.g., distance between players, teams effective playing space) can be influenced by several match 
 situations13. Thus, a recent  study17 developed the probabilistic movement model based on the players’ positional 
data from an official match to determine the dominant regions with even more realism. The probabilistic move-
ment model  proposed17 considers the players’ position, displacement, and velocity to determine the dominant 
regions in a time-lag window of one second. Brefeld, et al.17 used the velocity discriminated into five different 
speed intervals (Stand, Walk, Jog, Run, and Sprint), considered the playing positions to generate the movement 
models and computed the probabilities of the players to reach a given position over time.

The studies using movement  models8,14–17 can capture the dynamical characteristics of human displace-
ment, elucidating the relevance of the players’ kinematic variables to determine their dominant regions. In the 
dominant regions, these studies represent the environment of dynamical changes that occur in a football match, 
previously neglected using the most straightforward Voronoi diagram. However, there is still an overestimation 
in the players’ dominant region, as Voronoi diagram, because all the pitch regions are associated with a player. 
For those literature  models8,14–17, every region of the pitch is dominated by a given player and there are no free 
spaces, which is a limitation of the proposals presented that can lead to unsuitable interpretations about the 
playing space analyses. Thus, proposals based on Voronoi illustration attribute huge players area, intuitively 
unreal for football players. Thus, our purpose was to determine a novel dominant region calculation based on 
a movement model that considers players’ positions, displacement, velocity, and acceleration vectors obtained 
from official matches data. The novelty of our approach is that it considers the pitch regions that the player is 
unable to reach in a specific time interval are considered free spaces and not as their dominant region. Our 
proposal promotes information about players dominant regions even more compatible with human physical 
capacity and makes visible the free spaces in the pitch. Furthermore, inspired by Taylor’s Formula of order two, 
this article improves previous approaches by considering the statistics of the second order of the kinematics 
variables, namely, the acceleration. We believe that displacements with different accelerations, such as positive 
and negative accelerations, cannot fit into the same movement model, then in our approach several movement 
models would be generated.

Thus, our proposal is grounded by probabilities models with real instantaneous kinematic variables as input 
to determine the dominant regions (Fig. 1). In addition, we evaluated the accuracy in determining the players’ 
dominant regions in different time-lag windows and computed areas of dominant regions and free spaces. Finally, 
we compared the area of the dominant regions determined by our model and Voronoi diagram. Our initial 
hypotheses were that (1) the greatest accuracy would be presented in the smallest time-lag window compared 
to bigger ones; (2) the area of the dominant regions determined through our model would be more realistic 
to represent the match dynamics and smaller than the dominant regions determined by the Voronoi diagram.

Figure 1.  Representation of dominant region framework of our approach, from positional data collection, 
movement models creation, probability models definition, until to players dominant region determination.
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Methods
Participants. A total of 109 Brazilian male professional football players was analysed in this study during 
four official matches of the 2014 Serie A2 of the São Paulo State league resulting in 15,112,163 positional data 
samples. The matches occurred in non-congested periods (at least 72 h after the previous match), with tem-
perature from 23.2 up to 35.2 °C, relative humidity from 34 up to 86% (according with the National Institute of 
Meteorology—INMET—Brazil). All matches were performed in accordance with Federation Internationale de 
Football Association (FIFA) rules, in official stadiums (natural grass, ~ 105 × 68 m). This study was conducted 
in agreement with ethical recommendations of the Declaration of Helsinki, informed consent was obtained for 
players data collection and was approved by the Research Ethics Committee of the University of Campinas of 
Medical Sciences (Protocol #299797418.2.0000.5404).

Data collection. Four digital video cameras recorded the matches’ images at a resolution of 640 × 480 pixels 
and an acquisition frequency of 30 Hz. The cameras remained fixed throughout the match at the highest points 
of the stadiums. After the matches, the video sequences were transferred to a computer and synchronised by 
identifying specific events in an overlapping region between the cameras.

The players’ positional data during the matches were obtained by videogrammetry (DVideo, v6.02, Campinas, 
Brazil, www. fef. unica mp. br/ fef/ labor atori os/ lib) using the basic automatic procedures of segmentation, splitting 
blobs, and  tracking18–21. The automatic tracking rate of DVideo software was 94% with the remaining processed 
frames solved manually by an experienced operator. The average error for determination of the player position 
and the distance covered was 0.3 m and 1.4%,  respectively18–20. The maximal estimated  error22 for velocity and 
acceleration was 1.4% and 2.8%, respectively. The reference coordinate system associated with the pitch was 
defined from bidimensional real-world coordinates, in meters, of 36 specific points on the pitch measured by 
a measuring tape before the matches. The image plane coordinates were determined through identification of 
the corresponding projections of these points in the image via the interface of DVideo software. The players’ 
bidimensional coordinates relative to the pitch’s coordinate system were obtained by the homography parameters 
of the image-object transformation calculated based on the direct linear transformation  method23. The players’ 
trajectories were filtered using a third-order Butterworth low-pass with a cut-off frequency of 0.4 Hz defined by 
spectral and residual analyses, based on a previously proposed  protocol18,24.

Data analysis. Movement models. The movement models were created based on the vectorial kinematics 
variables of the players obtained during three matches: the instantaneous displacement angles in relation to the 
longitudinal axis (θd; Eq. 1), velocities (v; Eq. 2), and accelerations (α; Eq. 3), derived from the players’ positions 
as a function of time.

where x and y are the bidimensional coordinates, i indicates the instant of time, n is the total number of frames, 
and t is the timestamp, in seconds.

We identified the position, displacement, velocity, and acceleration at each instant of time and registered the 
positions at the future points up to three seconds. The time window for the future positions was chosen based on 
an experiment with the notational dataset of three matches resulting 2948 passes analysed. This experiment was 
based on the players’ behaviour when performing passing actions. The player in possession of the ball perceives 
the environment (e.g., the displacements of other players) and sees the opportunity to pass the ball to a teammate. 
This phenomenon is described as  affordance2,3. The players try to perform a pass to a region of control to their 
teammate, commonly to where he/she is moving toward. Players estimate the region that their teammate can 
reach in a future time intuitively, a behaviour already described by motor control researches in the interception 
 tasks25. Only the successful passes were analysed, i.e., passes that reached the teammate, to ensure that situations 
which the players have the intention to intercept the ball or clearance actions are excluded from analysis. We 
identified the moment that the player performed the pass and the moment that his teammate received the ball. 
Next, we computed the time window between these instants for all passes. Finally, the distribution of these time 
windows was analysed, and the maximal future time window of three seconds was determined, which represented 
roughly 95% of the data. (n = 2948; 25th percentile = 1.03 s; 50th percentile = 1.40 s; 75th percentile = 1.86 s; 95th 
percentile = 3.16 s).

The displacement angles were rotated 90 degrees, translated to origin in 0 at x and y axis (θr and fp; Eqs. 4 
and 5), and the displacements were mirrored (Fig. 2) around the y axis to balance the curvatures in both sides 
(mfp; Eqs. 6).

(1)θd(i) = tan
−1

(

y(i+1) − y(i)

x(i+1) − x(i)

)

, i = 1, . . . , n− 1

(2)v(i) =

√

(

x(i+1) − xi−1

t(i+1) − t(i−1)

)2

+

(

y(i+1) − y(i−1)

t(i+1) − t(i−1)

)2

, i = 2, . . . , n− 1

(3)a(i) =
v(i+1) − v(i−1)

t(i+1) − t(i−1)

, i = 2, . . . , n− 1

(4)θr =

{

90+ abs(θd), θd < 0

90− θd , θd ≥ 0

http://www.fef.unicamp.br/fef/laboratorios/lib
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 where the x and y indicate the bidimensional coordinates, i refers to an instant of time, and x1 and y1 are the 
initial bidimensional coordinates.

The players’ positions considering different time-lags were stored in a matrix, i.e., each cell of this matrix is a 
movement model (Fig. 3) that correspond the specific combination of velocity (0 up to 10 m/s) and acceleration 
ranges (− 6 up to 6 m/s2) stepping by 1 m/s and 1 m/s2 (Fig. 4).

Probability models. The instantaneous displacement, velocity, and acceleration of players were identified, the 
respective movement model was recognized, rotated to displacement direction, and translated to actual position 
of the player (Fig. 5A). The probabilities of a player achieving any region in the pitch were calculated (pr; Eq. 7) 
by histogram function with probability density function normalisation (Fig. 5B).

(5)fp(i) =

[

cosθr −sinθr
sinθr cosθr

]

×

[

x(i) − x1
y(i) − y1

]

, i = 1, . . . , 90

(6)mfp =

[

fpx fpy
fpx

′ fpy

]

Figure 2.  Example of displacements with velocities from 5 to 6 m/s, acceleration from 2 to 3 m/s2, and angles 
rotated 90 degrees and translated to origin in 0 at x and y axis future positions at one-second time window 
generating a movement model (A) and the same movement model after mirroring process (B).

Figure 3.  Example of displacements with velocities of 1 m/s at initial instant and future positions at three-
seconds time window with accelerations from 0 to 1 m/s2 (A), from 3 to 4 m/s2 (B), and negative accelerations 
from 3 to 4 m/s2 (C).
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where i and j are respectively, the matrix’s rows and columns, c indicates the number of elements in the region, 
N is the total number of elements, and A is the area of the region.

The grid used to determinate the probabilities range to 0 up to 105 m (x) and 0 up to 68 (y) with a resolution 
of 0.1 m, generated a matrix (680 × 1050) in which each cell corresponds to probability value of specific region 
(0.01  m2) of the pitch. The matrix’s probability values were smoothed (Fig. 5C) using a 2-D Gaussian filter to 
reduce the discrete characteristics of the histogram results, improving the spatial coherence, similar to previously 
applied by Geerts, et al.26. The standard deviation (sigma = 20) of the filter was chosen by analyses of the results 
obtained for all the movement models with different sigma values, to ponder the region probability value from 
neighbouring regions, preserving the edges and boundaries. The probability models have values ranging from 
0 up to 1. Values below 0.001 were rounded to 0 to avoid an association with the very low probability regions 
with the players’ dominant regions.

Dominant regions. The dominant regions in each timestamp were determined by comparing the probability 
matrices of all players in each instant of time. Thus, each cell of the matrices was compared and registered to the 
player with greater probability value, resulting in a matrix representing the pitch with the player’s identifier as 
dominant of each region. The regions with probability values equal to 0 for all players were not associated with 
any player, and these non-associated regions were defined as free-spaces regions.

The accuracy on determination of the dominant regions was tested for a new dataset: 22 players during the 
first half of a match (1,856,030 position data samples) that was not used to create the movement models. We 
measured the accuracy by comparing the dominant region determined for the player at instant time (0.033 s) 
and the real position of this player at one (T1), two (T2), and three (T3) seconds lag. When the real positions 
coincided with a region associated with each player, we computed as a correct prediction and the relative fre-
quencies of corrects predictions were calculated. We calculated the areas of the dominant regions and free-spaces 

(7)pr
(

i, j
)

=
c(i,j)

N × A
, i = 1, . . . , 680, j = 1, . . . , 1050

Figure 4.  Matrix chart representation of the velocity and acceleration data samples that were used to create 
their specific movement models according to each range, the combination of velocity and acceleration ranges 
that generated a movement model are indicated by the gray cells.

Figure 5.  Example of movement model with velocity from 5 to 6 m/s, acceleration from 2 to 3 m/s2, and 
three-seconds future time window rotated and translated to player’s actual displacement at instant time (A), 
probabilities of the player achieving any region in the pitch calculated from this movement model (B), and 
probability model after smoothing process (C).
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with three seconds time-lag in the same dataset used for the accuracy test. The sum of the regions associated 
with each player resulted in each player dominant region area, as well as the sum of the non-associated regions 
resulted in the area values of the free-spaces regions.

Voronoi regions. The Voronoi diagram was previously proposed by  Kim27 to determine players’ dominant 
regions. Using the players’ bidimensional coordinates, the Voronoi polygons were defined containing the pitch 
regions that are closest to each player compared to anyone. The areas of the polygons were calculated to obtain 
the players’ dominant regions (Voronoi regions) at each instant of time. These procedures were performed using 
the same dataset that we calculate the areas of the dominant regions determined by our model to enable the 
comparison between the approaches.

Statistical analysis. The normality of data distribution was verified by Lilliefors test, then parametric or 
non-parametric statistics methods are applied accordantly. The percentage of correct predictions are presented 
in mean and standard deviation, and the dominant region areas are presented in median and interquartile range. 
Furthermore, we calculated the 95% confidence interval (CI) with lower limit (LL) and upper limit (UP) of 
means and medians. The Wilcoxon Rank Sum Test was used to compare the players’ dominant regions deter-
mined by our proposed model and players’ Voronoi regions, followed by the calculation of the effect size (r) 
according to proposed by  Rosenthal28 and classifications were adopted according to the proposal of  Cohen29. The 
statistical significance was set as P < 0.05.

Results
As reported before, the correct predictions were computed when the players’ real future positions coincided with 
a region associated with them. The means, standard deviations, and individual values of percentage of correct 
predictions for T1, T2, and T3 for all players are presented in Fig. 6. The greater values of correct predictions 
were obtained for the lower time window. The mean percentage of correct prediction found for T1 was 96.56% 
(95% CI: 0.62; LL: 95.94; UL: 97.17), for T2 88.64% (95% CI: 1.90; LL: 86.74; UL: 90.54), and for T3 72.31% (95% 
CI: 3.76; LL: 68.55; UL: 76.07).

Figure 6.  Representation of means (circles), standard deviations (bars), and individual values (dots) of 
percentage hits in determining players’ dominant regions (future positions coincided with a region associated 
with them) at different future time windows (one-, two-, and three-seconds lag).
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Figure 7 presents boxplots representing the area of dominant regions determined by our movement model 
(Fig. 7A) and Voronoi regions (Fig. 7B) of each player. The experimental results showed that the players’ dom-
inant regions areas determined by our movement model are lower than Voronoi regions (P < 0.01; r = 0.53; 
Medium). The median area of the players’ dominant regions determined by our movement model was 73  m2 
(95% CI: 0.04; LL: 73.09; UL: 73.17) and interquartile range of 35  m2 (P25%: 54; P75%: 89). The median area of 
the players’ Voronoi regions was 171  m2 (95% CI: 0.37; LL: 170.74; UL: 171.49) with the interquartile range of 
324  m2 (P25%: 88; P75%: 411).

Additionally, Fig. 8 shows an example of the dominant regions for all players determined at a given instant 
time by our movement model (Fig. 8A) and using the Voronoi diagram (Fig. 8B). Figure 8A makes it possible 
to visualize the free-spaces regions generated by our movement model. The area of these regions was computed, 
and the median area of free spaces was 5,537  m2 (95% CI: 1.85; LL: 5,535.11; UL: 5,538.81) and interquartile 
range of 342  m2 (P25%: 5,371; P75%: 5,712), with minimum of 4,677  m2 and maximum of 6,476  m2. Intuitively, 
from the model proposed in the present study, it is possible to visualize a more realistic space sharing among 
the players considering football as an invasion sport.

Discussion
The purpose of this study was to propose a novel model to calculate football players’ dominant regions based 
on players’ kinematics variables during real matches situations and present the area of dominant regions and 
free spaces on the pitch. We analysed the accuracy in the determining the players’ dominant regions in different 
time-lag windows (T1, T2, and T3) and compared the area of dominant regions determined by our movement 
model and Voronoi regions. The main findings demonstrated an overall high accuracy, but lower values for the 
dominant regions determined at T3 time-lag. Additionally, Voronoi regions presented greater area values. These 
results corroborate our initial hypothesis that suggested greater accuracy in the smallest future time windows 
compared to the largest and the smallest area values of the dominant regions determined using the proposed 
movement model than the Voronoi regions.

The accuracy of the players’ dominant regions determination enables to verify if the players were in the regions 
predicted. The main findings showed an expected reduction of accuracy when the time-lag window increases 
because predicting events that occur in the shortest time can be more precise. This behaviour possibly occurs 
due the dynamic nature of football, in which the actions of one player are influenced by the movements of the 
other players or balls  events30. Similarly, another study that analysed the elite South American players’ work-rate 
profiles during international football matches reported changes in activities approximately every four  seconds31. 

Figure 7.  Boxplots represent median (red bars), 25th and 75th percentile (blue boxes), minimum and 
maximum (black bars) of the dominant region areas  (m2) determined by our movement model (A) and Voronoi 
regions (B) of each player.
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Even though the lowest mean value of accuracy achieved was 72.31% for T3, which is a promising result. It was 
not possible to draw a parallel with related studies found in the literature because the authors did not report the 
accuracy of each method. Furthermore, there is no consensus regarding the time windows to create the move-
ment models, varying from two  seconds15,16, one  second17, and the shortest time to achieve a specific  point8,14.

When we analysed the players’ dominant regions areas, the main finding was that the experiment showed 
a higher median area value for Voronoi regions compared to dominant regions determined by our movement 
model. Only the study performed by Ueda, et al.16 presented dominant regions’ area values, however, the authors 
analysed the teams’ dominant regions instead of the players. On the other hand, the statistical significance and 
the effect size presented in our experiment suggest that the same behaviour may be found in further experiments. 
The lowest areas of dominant regions determined by our movement model are probably because this model con-
siders regions labelled as free space, which does not occur in the Voronoi regions (Fig. 8B). Our study included 
this concept to avoid that the regions without clear dominance were associated as players’ dominant regions. 
For instance, during a corner kick situation, the Voronoi regions consider that defenders of the offensive team 
have dominance of their defensive pitch once they are the closest players, but a fast attack after the corner kick 
may show that this controlled area is not real because players with greater velocity and acceleration may reach 
it after few seconds. That is the novelty of our model, showing that the defenders are not really “controlling” 
these regions that are associated with them following the Voronoi concept. It is important to highlight that the 
median area value of regions without dominance corresponds to approximately 77% of the pitch’s area, with a 
minimum close to 66% and maximum of 91%. This maximum value probably occurred during specific events of 
the matches, e.g., during a corner kick, almost all players share a small region of the pitch, with great proximity 
between opponent  players32.

Regions without dominance can be considered free spaces that are distant from the game concentration and 
physically impossible to be reached for a player in a short period, i.e., regions that are closer to the ball locations 
generally contain a greater number of players. This behaviour occurs because the ball works as an attractor during 
a football  match30. In a similar way, Narizuka, et al.33 evaluated the pitch regions, weighting each one in relation 
to the degree of sparsity and reported that the densest regions are almost located within the teams’ formation, 
considered as the standard deviation of players’ positions centroid. On the other hand, the regions without domi-
nance may represent key spaces that can be explored by the players to increase the chances of success in offensive 
attempts or prevent the opponent offensive attempts. A previous study reported that the space dominance on the 
attacking third of the pitch, computed using Voronoi diagram, was related with the number of goals scored and 
the probability of the winning the  match34. Using Voronoi diagram, Ueda, et al.16 found that teams presented nar-
rower dominant regions area values in successful offensive performance when the ball possession was acquired 
near the central region of the pitch. These studies demonstrated the relevance of the team’s dominant regions 
and their relationship with the performance during football  matches16,34. Therefore, teams’ spatial dominance 

Figure 8.  Example of the dominant regions for all players of the two teams determined at same instant time by 
our movement model with three-seconds future time window (A) and Voronoi regions (B), initial positions are 
represented by the numbers and displacement directions by the vectors.
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assessed by the dominant region analyses can be useful to professionals of sports, making it possible to determine 
the dominance in important regions of the pitch or during specific situations of the matches. Furthermore, the 
dominant region by our proposed model can evaluate the teams’ spatial dominance enabling the coaches to know 
the contribution of each player, directly related to their physical performance during the matches.

The findings of our study should be interpreted considering the future time window used because it influ-
ences the results, e.g., a larger time-lag to create the movement models can result in larger players’ dominant 
regions and smaller free-space regions. This limitation was previously pointed by Rico-Gonzalez, et al.7 that 
suggest caution when analysing dominant region values based on future time windows because the regions that 
the players reach do not depend exclusively on the physical fitness, but on the time interval used and other fac-
tors, such as players’ decisions making that occur during this period. Another relevant point is that studies with 
different future time windows definitions make the comparison difficult, as mentioned above in this discussion. 
Thus, can be interesting to standardize the future time window for advances in research with practical applica-
tion on this topic.

In conclusion, in the present study, we presented a new approach to football players’ dominant regions analy-
sis, based on a movement model created from their real positions, displacement, velocity, and acceleration vec-
tors. The data accuracy demonstrated acceptable values even at larger time-lag windows than the ones reported 
in the literature. The players’ dominant regions area values computed by our movement model were lower than 
Voronoi regions. In addition, we showed that the regions without dominance represented a considerable part 
of the pitch. These findings indicate that the proposed movement model is more realistic representing match 
dynamics and can be a useful method to evaluate the players dominance during football matches. Coaches can 
take advantage of the method to analyse opponent teams and to assist their own teams during interventions and 
planning tactical training.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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