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Abstract 

In this study, the stochastic dynamic response of a spur gear pair model under the 

excitation of filtered noise is investigated. The spur gear pair is modeled as a single degree 

of freedom (SDOF) system in which nonlinear and non-smooth backlash and time-varying 

mesh stiffness as well as stochastic excitation are concurrently considered. Four cases are 

addressed, based on how the noise is incorporated in the loading terms. A first order filter is 

employed to generate various filtered noises with the same energy but different power 

spectrum. The combination of the SDOF gear model and the shaping filter leads to a (3D) 

Markov model. The numerical path integration (PI) technique is adopted to obtain the 

probabilistic response of the gear model using an adaptive time-stepping method in order to 

increase the accuracy of the time integration. A 4D system is also considered by applying a 

second order filter to model a narrow-band noise. The results are verified by comparing with 

Monte Carlo simulations. The effect of the noise spectrum on the probabilistic response is 

evaluated for different loading cases. The response PDF is of key importance in relation to 

reliability assessment of gear systems.  
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1. Introduction 

Gears are widely used in different applications within a range of various industries. 

Investigation on the dynamical behavior of gears is fundamental for studying other fields of related 

research such as design, tribology, reliability assessment, etc. The first studies attempting to 

investigate the dynamics of gear systems originated in the early 20th century and the topic has 

continued to be a very active research area until now. Early gear models were linear, excluding or 

neglecting nonlinearities such as backlash [1]. Nonlinear, time-varying (NTV) gear models were 

developed and investigated in the 90’s [2–5]. More recently, researches have focused on multi-

degrees of freedom (DOF) modeling of the gear mesh system, which lead to more realistic and 

complicated models as well [6,7]. All those studies belong to the category of deterministic 

dynamics.  

Stochastic excitation may be prevalent in gear systems due to randomness in the external 

loading or within internal parameters. In some applications, such as wind turbine drivetrains, ship 

propulsions and automobile gearboxes, the effect of randomness is significant, which implies the 

necessity to conduct a stochastic analysis to obtain accurate and realistic results. Moreover, 

knowledge about the probability density function (PDF) of the response is of key importance for 

the purpose of reliability assessment and reliability-based design in such systems. This latter can 

be achieved by considering a stochastic component as part of the excitation. Under suitable 

modelling assumptions, this would typically lead to a stochastic differential equation (SDE). 

Although the simplest stochastic excitation is the Gaussian white noise (GWN), which is 

characterized by a uniform power across the frequency band, real stochastic loadings will 

invariably have varying spectral distributions. For instance, some wind loadings has a descending 

power spectral density (PSD) which can be approximated by a first order linear filter [8]. In this 

work, the random excitation is assumed to be a filtered Gaussian white noise, enabling us to express 

the SDE in the state space as an n-dimensional problem. The response of such systems is a Markov 

vector process and its transitional PDF is governed by the Fokker-Planck (FP) equation. However, 

the analytical solution of the FP equation is restricted to linear systems and a limited class of 

nonlinear models [9]. 
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The pioneering studies of Tobe et al. [10,11] considered random excitation in gear systems 

using a statistical linearization technique. They also experimentally verified their theoretical 

results. Based on the fact that using statistical linearization leads to inaccurate results for systems 

with discontinuous nonlinearities, Kumar et al. [12] adopted a direct integration technique to study 

the dynamic response of a gear pair. Similarly, Neriya et al. [13] investigated a helical gear system 

which included both backlash and time-varying mesh stiffness, and was also subjected to a random 

transmission error. The mean value and variance of the response were calculated by the piecewise 

linearization method. Pfeiffer and Kunert [14] evaluated the rattling problem for a gear system. 

Wang and Zhang [15] considered the effect of speed-dependent random errors on the stochastic 

vibration of the gear model. These contributions in the field of stochastic gear dynamics have been 

very valuable in terms of the relative impact and perspective they have given, regardless of their 

accuracy and efficiency.  

A numerical approach to approximate the solution of FP equations is provided by the path 

integration (PI) method. Among the first to apply this method was Wehner and Wolfer [16], who 

used it to solve simple, nonlinear FP equations. Subsequently, Naess and Moe [17], Lin and Yu 

[18], Zhu [19], and others, have applied and further developed the PI technique in order to evaluate 

several engineering problems. The application of the path integration method is limited to Markov 

systems subjected to multiplicative or additive noise. An efficient and accurate approach was 

applied by Naess et al. [20] for solving a SDOF non-smooth gear model under stochastic excitation 

caused by Gaussian white noise. The dynamical model was assumed as nonlinear time-invariant 

(NTI), neglecting the variation of mesh stiffness with contact status. They adopted a short time 

Gaussian approximation (STGA) to approximate the conditional PDF [21] and captured the 

evolution of the response PDF using a stepwise solution technique. Later, Mo and Naess [22] 

showed that the stochastic and deterministic attractors are very similar by comparing the response 

PDF with the Poincaré map of the deterministic system in Ref. [2]. In both papers, a fixed time 

step was used in general. However, in order to reduce numerical errors due to non-smooth 

dynamical behavior, a backward Runge-Kutta time-stepping algorithm combined with a Newton 

iteration method was used to split the fixed step into two sub-steps. This permits to accurately 

determine when the deterministic trajectory crosses the boundary between two regimes of 

nonlinearity. Another similar approach to account for the piecewise backlash function was 
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proposed by Wen et al. [23], who dealt with a linear dynamic model for each part of the state space. 

Although an important interaction between time-varying mesh stiffness and backlash nonlinearity 

in gear meshing systems was reported, a constant averaged stiffness was used in their model. 

Considering the stochasticity of the system, establishing the exact switching time between different 

regimes of the dynamical system is not meaningful since there is no deterministic trajectory. 

Therefore, the aforementioned approach may fail to be sufficiently accurate and efficient, a fact 

confirmed by the results obtained with Monte Carlo simulations. In order to decrease the 

calculation error, Hasnijeh et al. [24] applied a novel adaptive scheme time-stepping method. The 

main idea of this method is to determine the time-step length based on the amount of marginal 

probability at non-smooth boundaries. The authors demonstrated the efficiency of the adaptive 

relative to the fixed time-stepping for non-smooth systems. 

A point that is not always fully appreciated in the literature, is that the numerical solution of a 

SDE by necessity relies on discretization. This implies that the associated path integral (cf. Eq. 

(19)) represents the exact solution of the discretized SDE. The level of accuracy obtained in the 

representation of this exact solution, of course, depends on the numerical procedures implemented 

to calculate the path integral, cf. subsection 5.2. It is also worth mentioning, that in recent years 

efforts have been pursued to follow another line of approach to the path integral idea for stochastic 

structural dynamics [25,26]. It is  based on a functional representation of the path integral in the 

spirit of the Feynman path integral in quantum mechanics. 

Monte Carlo simulation (MCS) is the simplest and usually the most reliable approach to 

determine the response PDF of SDEs. In this approach, the response statistics are extracted from a 

large number of response realizations, which are generated using a stochastic integration method. 

Feng et al. [27] used MCS to investigate a stochastic spur gear model including the effects of sliding 

friction. It is worth mentioning that MCS is typically used as a verification tool for checking results 

obtained by other more efficient methods. In comparison, it is a rather time-consuming method if 

highly accurate results are needed, especially for low probability events. 

In the current study, the response PDF of an SDOF nonlinear, time-varying gear model under 

the excitation of a filtered noise is obtained. The NTV gear model includes both backlash 
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nonlinearity and time-varying mesh stiffness (TVMS). Three main sub-problems are addressed 

herein. The first assignment consists to prove the capability of the adaptive path integration (API) 

method to investigate non-smooth dynamical gear systems under the excitation of filtered white 

noise. A first order filter is used to generate filtered white noise, extending the Markov property of 

this second-order system to the 3D state space. The second goal pursued here is to evaluate the 

effect of uncertain loading parameters on the response PDF. For this purpose, the additive noise 

infiltration into the problem is categorized into four different stochastic loading cases. Finally, a 

parametric study is carried out to show the effect of the loading spectrum on different aspects of 

the response PDF. Three filtered versions of noises are applied with equal energies but different 

spectrum distributions. To assess the capability of the path integration method in dealing with 

systems of higher dimensions, a 4D system is also considered by using a second-order filter to 

generate a narrow-band noise. As well as for the 3D problem, the effect of the loading spectrum on 

different aspects of the response PDF is investigated. Results are verified by Monte Carlo 

simulations for all cases. To the best of the authors’ knowledge, the response PDF of a non-smooth 

gear model under filtered noise has not been investigated before. The response PDF contains a lot 

of raw information which can be utilized in different ways depending on the purpose of the analysis, 

such as mechanical design and reliability analysis. In addition, the effect of the input frequency 

spectrum on the response PDF is studied for each stochastic excitation case. 

2. Stochastic dynamical model 
A spur gear pair model is considered as shown in Fig 1. The corresponding equation of motion 

is given in dimensionless form and its derivation is briefly presented in the Appendix or through 

Ref. [24]. 

𝑞̈(𝑡) + 2𝜁𝑞̇(𝑡) + 𝑘ℎ(𝑡)𝑓-𝑞(𝑡). = 𝐹1 + 𝐹23 cos(𝛺𝑡) (1) 

𝑓-𝑞(𝑡). = 8
𝑞(𝑡) − 1												𝑞(𝑡) > 1											
0																								 − 1 < 𝑞(𝑡) < 1
𝑞(𝑡) + 1											𝑞(𝑡) < −1								

 (2) 
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Fig. 1. Gear pair model [24] 

In the dimensionless equation (1), 𝑞 is the difference between the dynamic transmission error and 

the static transmission error, 𝜁 denotes damping ratio, 𝑘3 is the time-varying mesh stiffness, 𝑓 

represents the nonlinear backlash function, 𝛺 is the excitation frequency, and 𝐹1 and	𝐹23 are the 

mean and alternating components of the loading, respectively. 

Equation (1) is a two-dimensional state space NTV problem and may have multi-solutions, 

depending on the parameter values. The deterministic solution of this system can include no-

impact, single-sided or double-sided impact cases, maybe with several subharmonics [2]. In the 

case of a multi-solution problem, the initial conditions will determine which deterministic solution 

would occur. As opposed to deterministic dynamics, the probabilistic response of the system may 

include both solution types simultaneously because of the stochastic essence of the excitation and 

also due to uncertain initial conditions [23]. In order to evaluate the effect of uncertainty in loading 

components on the dynamical behavior of the gear system, four separate cases are defined in the 

following based on an additive noise 𝐹? (with intensity 𝜆). 

Gear 
𝐼BC, 𝑑BC 

𝜃BC 

𝑇GBC(𝑡̅) 

Pinion 
𝐼BI, 𝑑BI 

𝜃BI 

𝑇GBI(𝑡̅) 

𝑐3  

𝑒̅(𝑡̅) 

𝑘G3(𝑡̅) 

Backlash 
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Case A: Uncertainty in the mean component of the loading which may arise from external 
torque fluctuation  

𝑞̈(𝑡) + 2𝜁𝑞̇(𝑡) + 𝑘3(𝑡)𝑓-𝑞(𝑡). = (𝐹1 + 𝜆𝐹𝑠) + 𝐹23𝛺3C cos(𝛺3𝑡) (3) 

Case B: Uncertainty in the alternating component of the loading that may be caused by 
manufacturing errors [28–30] 

𝑞̈(𝑡) + 2𝜁𝑞̇(𝑡) + 𝑘3(𝑡)𝑓-𝑞(𝑡). = 𝐹1 + (𝐹23 + 𝜆𝐹𝑠)𝛺3C cos(𝛺3𝑡) (4) 

Case C: Uncertainty in the frequency of the alternating loading due to manufacturing errors or 
vacillation in gear rotational speed  

𝑞̈(𝑡) + 2𝜁𝑞̇(𝑡) + 𝑘3(𝑡)𝑓-𝑞(𝑡). = 𝐹1 + 𝐹23𝛺3C cos-(𝛺3 + 𝜆𝐹𝑠)𝑡. (5) 

Case D: Uncertainty in the phase of the alternating loading that may arise from manufacturing 
error [28–30] 

𝑞̈(𝑡) + 2𝜁𝑞̇(𝑡) + 𝑘3(𝑡)𝑓-𝑞(𝑡). = 𝐹1 + 𝐹23𝛺3C cos(𝛺3𝑡 + 𝜆𝐹𝑠) (6) 

3. Filtered white noise 

3.1. First order linear filter 

The noise component is assumed to be a stationary process, allowing the use of the shaping filter 

techniques in order to generate it from a Gaussian white noise [31]. In this study, the stochastic 

excitation is considered to have a particular power spectral density (PSD) function which can be 

modeled as follows 

𝐹̇? = −𝛼𝐹? + 𝛾𝑁U  (7) 

where 𝑁U is the standard Gaussian white noise process and, 𝛼 and 𝛾 are filter parameters. Knowing 

that 𝑁U𝑑𝑡 = 𝑑𝑊(𝑡) [32] and defining	𝑥I = 𝑞(𝑡), 𝑥C = 𝑞̇(𝑡) and 𝑥X = 𝐹𝑠(𝑡), the state space form 

of equation (3) can be rewritten as 
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8
d𝑥I = 𝑥Cd𝑡																																																																																																	
d𝑥C = Z𝐹1 + 𝐹23𝛺3C cos(𝛺3𝑡) − 2𝜁𝑥C − 𝑘3(𝑡)𝑓(𝑥I) + 𝜆𝑥X[d𝑡
d𝑥X = −𝛼𝑥Xd𝑡 + 𝛾	d𝑊(𝑡)																																																																					

 (8) 

where 𝑊(𝑡) now denotes a standard Wiener process with stationary and independent increments. 

Similar forms will be obtained for Eqs. (4), (5) and (6). The power spectral density function for 𝐹? 

is considered as follows, 

𝑆(𝜔) =
𝛾C

2𝜋(𝜔C + 𝛼C)
 (9) 

3.2. Second order linear filter 

In order to evaluate the capability of the path integration method in dealing with non-smooth 

systems of higher dimensions, the gear model in combination with a second order linear filter is 

also considered. The filter equations are as follows [31] 

_𝐺?̇ = −𝛼𝐹?																		
𝐹?̇ = 𝐺? − 𝛽𝐹? + 𝛾𝑁U

 (10) 

𝛼, 𝛽 and 𝛾 are filter parameters. In the current study, the second order filter is only used for case 

A. Defining  𝑥X = 𝐺𝑠 and 𝑥b = 𝐹𝑠, the 4D state space model for equation (3) can be written as 

⎩
⎨

⎧
d𝑥I = 𝑥Cd𝑡																																																																																															
d𝑥C = Z𝐹1 + 𝐹23𝛺3C cos(𝛺3𝑡) − 2𝜁𝑥C − 𝑘3(𝑡)𝑓(𝑥I) + 𝜆𝑥b[d𝑡
d𝑥X = −𝛼𝑥bd𝑡																																																																																									
d𝑥b = (𝑥X − 𝛽𝑥b)d𝑡 + 𝛾	d𝑊(𝑡)																																																								

 (11) 

The power spectral density function for 𝐹? is obtained as follows, 

𝑆(𝜔) =
1
2𝜋

𝛾C𝜔C

(𝛼 − 𝜔C)C+(𝛽𝜔)C (12) 

4. The path integration method 

Equation (8) can be expressed by the standard Itô SDE form as follows, 
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d𝐱(𝑡) = 𝛂(𝒙, 𝑡)d𝑡 + 𝛃(𝑡)d𝐖(𝑡) (13) 

Since the main goal of the current study is to investigate 3D problems, the formulation is developed 

for a 3D state space model. The formulation can be easily generalized to higher dimensions. 

Therefore, 𝐱(𝑡) = (𝑥I, 𝑥C, 𝑥X)l is a 3D state space vector process, 𝛂(𝐱, 𝑡) is the drift vector and 

𝛃(𝑡) is the diffusion matrix and the vector d𝐖(𝑡) = 𝐖(𝑡 + 𝑑𝑡) − 	𝐖(𝑡) denotes the independent 

increments of a standard Wiener vector process. The SDE (13) has a unique solution in the strong 

sense for every set of parameter values [33]. This solution has a joint probability distribution of 

states for a specific time that can be calculated through application of the numerical PI method.  

The response of the dynamical system (13) is a Markov process and the transition probability 

density function (TPDF), 𝑝(𝐱, 𝑡|𝐱o, 𝑡o), satisfies the Fokker-Planck (FP) equation, which is written 

as follows 

𝜕
𝜕𝑥 𝑝

(𝐱, 𝑡|𝐱o, 𝑡o) = −q
𝜕
𝜕𝑥r

𝛼r(𝐱, 𝑡)𝑝(𝐱, 𝑡|𝐱o, 𝑡o)
X

rsI

+
1
2
qq

𝜕C

𝜕𝑥r𝜕𝑥t
-𝛃(𝑡). 𝛃l(𝑡).

r,t
𝑝(𝐱, 𝑡|𝐱o, 𝑡o)

X

tsI

X

rsI

 (14) 

In addition to several numerical methods presented for solving the FP equation directly, the 

probabilistic evolution of the state space vector process 𝐱(𝑡) can be captured based on the Markov 

property of the response using the basic equation of the PI method 

𝑝(𝒙, 𝑡) = v𝑝(𝒙, 𝑡|𝒙o, 𝑡o)𝑝(𝒙o, 𝑡o)𝑑𝒙o
	

𝜞
	 (15)	

where 𝚪 is the state space and 𝑑𝐱o = ∏ 𝑑𝑥roX
rsI . In fact, the method consists of evaluating the TPDF 

core thence determining the PDF 𝑝(𝐱, 𝑡) of the state space vector 𝐱 at time 𝑡 from the previous 

PDF 𝑝(𝐱o, 𝑡o) at time 𝑡o through equation (15). To implement the PI method, a discrete time 

approximation is needed. Naess and Moe [17] proposed a fourth-order Runge-Kutta-Maruyama 

(RKM) for the numerical solution of (13) as follows 

𝐱(𝑡) = 𝐱(𝑡o) + 𝐫(𝐱(𝑡o), 𝑡o, ∆𝑡) + 𝛽(𝑡o)∆𝐖(𝑡o) (16) 
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The deterministic part of equation (16) is the explicit fourth-order Runge–Kutta (RK4) 

approximation 𝐱(𝑡) = 𝐱(𝑡o) + 𝐫(𝐱(𝑡o), 𝑡o, ∆𝑡), which represents the time evolution of the 

deterministic part of (13) with a global error of order 𝑂(∆𝑡~), where ∆𝑡 = 𝑡 −	𝑡o. Numerical 

experiments predict that the approximation to the deterministic part outweighs other residues in 

terms of accuracy in the solution of Eq. (15) [32]. Thus, a fourth-order RKM is applied in the form 

of 	𝐫(𝐱(𝑡o), 𝑡o, ∆𝑡) for the deterministic part of equation (13). The Wiener process 𝐖(𝑡) has 

independent increments, hence ∆𝐖(𝑡o) = 𝐖(𝑡) −𝐖(𝑡o) is a Gaussian variable and the TPD 

𝑝(𝐱, 𝑡|𝐱o, 𝑡o) is a Gaussian PDF for every 𝑡o. For sufficiently small ∆𝑡, the time sequence {𝐱(𝑡r)}rs��  

becomes a Markov chain which can approximate the time-continuous Markov solution of the SDE 

(13). For the model given by Eq. (8), the conditional PDF 𝑝(𝐱, 𝑡|𝐱o, 𝑡o) follows a degenerate 

multidimensional Gaussian PDF [34],  

𝑝(𝐱, 𝑡|𝐱o, 𝑡o) = 𝛿-𝑥I − 𝑥Io − 	𝑟I(𝐱(𝑡o), 𝑡o, ∆𝑡).	𝛿(𝑥C − 𝑥Co

−	𝑟C(𝐱(𝑡o), 𝑡o, ∆𝑡))	𝑝�(𝑥X, 𝑡|𝐱o, 𝑡o) 
(17) 

where 𝛿(. ) denotes the Dirac delta function and 

𝑝�(𝑥X, 𝑡|𝐱o, 𝑡o) =
1

�2𝜋𝛾C∆𝑡
exp _−

(𝑥X − 𝑥Xo − 𝑟X(𝐱(𝑡o), 𝑡o, ∆𝑡))C

2𝛾C∆𝑡
� (18) 

in which 𝑟�(𝐱o, 𝑡o, ∆𝑡) 𝑖 = 1,2,3 are Runge-Kutta increments corresponding to each state.  If the 

initial PDF 𝑝�-𝐱(�). = 𝑝(𝐱, 𝑡�) is specified, equation (15) can be written in a stepwise format as 

follows 

𝑝-𝐱(�), 𝑡�. = v …v �𝑝-𝐱(r), 𝑡r�𝐱(r�I), 𝑡r�I.	𝑝�-𝐱(�).	d𝐱(�) …d𝐱(��I)
�

rsI

	

��

	

��
 (19) 

Equation (19) expresses the mathematical formulation of the PI technique as used in this study. A 

finite region of integration that covers almost the whole probability range of the response should 

be introduced for evaluating equation (19), with consideration that the computational time is 

dramatically influenced by the state space discretization resolution. If the region of integration is 

determined appropriately, the probability loss that arises would be negligible. The initial PDF can, 



11 

 

in principle, be chosen quite arbitrarily as long as there is nonzero variance in all spatial 

dimensions. This is necessary for the numerical algorithms to work properly. What determines the 

choice of the initial PDF depends on the specific problem investigated. For the purpose of this 

paper, the initial PDF is assumed to be Gaussian, as follows: 

𝑝�-𝐱(�). = 𝑝-𝐱(0), 𝑡0. =�
1

√2𝜋𝜎��
(�) exp

𝑛

𝑖=1
�−

1
2
�
𝑥r − 𝜇��

(�)

𝜎��
(�) �

C

� (20) 

where 𝜇��
(�), 𝑖 = 1,2,3 denote initial mean values and 𝜎��

(�)	(> 0), 𝑖 = 1,2,3 represent standard 

deviations.  

A challenging issue in the numerical calculations of non-smooth dynamics is the abrupt change 

in their behavior. In the deterministic problems, it can be overcome by identifying the transition 

point between two different dynamical regimes within a time step and splitting it into two sub-steps 

with different dynamics. However, in the corresponding stochastic dynamic analysis, there is no 

specific trajectory that would allow the transition points to be identified. In this study, a new 

adaptive time-stepping scheme is used in order to reduce both the numerical error and calculation 

runtime in comparison with the fixed time-step method [24]. The main idea behind this adaptive 

time-stepping method is to decrease the time step proportionally to the magnitude of the marginal 

probability density at the non-smooth boundaries. In the considered gear system, there are two 

boundaries 𝑥I = −1 and 𝑥I = 1 that separate three different dynamical zones. The mathematical 

formulation behind this approach can be written as follows 

∆𝑡r = 𝑡r − 𝑡r�I = max
	
 ��1 −

max
	
¡𝑝�¢(−1, 𝑡r�I), 𝑝�¢(1, 𝑡r�I)£

𝑝�¢
(¤¥¦) � ∆𝑡¤¥¦�	, (∆𝑡¤�§)¨ (21) 

where 𝑝�¢is the marginal PDF for the state variable 𝑥I and 𝑝�¢
(¤¥¦)is its maximum value. ∆𝑡¤¥¦ is 

the maximum time step, and a minimum time increment ∆𝑡¤�§ is introduced in order to avoid a 

zero length step when the marginal PDF approaches its maximum at the specified boundaries.  
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5. Results and discussion 

5.1. Deterministic dynamical behavior 

The deterministic dynamics of the model is investigated in order to compare probabilistic 

response with the deterministic results. A square-wave is considered as follows 

𝑘3(𝑡) = _
0.8					(𝑛 − 1)𝑡ª ≤ 𝑡 < (𝑛 − 1)𝑡ª + 𝑡ª 2⁄ .			𝑛 = 1.2.3⋯									
1.2					(𝑛 − 1)𝑡ª + 𝑡ª 2⁄ ≤ 𝑡 < 𝑛𝑡ª.			𝑛 = 1.2.3⋯																						 (22) 

where 𝑡ª is the gear mesh period. It has been reported that the interaction between time-varying 

mesh stiffness and backlash nonlinearity becomes more pronounced in the multi-solution zone and 

especially for heavily loaded systems [3]. As a dimensionless case of study, parameters 𝜁 = 0.05, 

𝐹1 = 0.3 and 𝐹23 = 0.1 are borrowed from references [2,3,23]. This is a heavily loaded gear pair 

system, since 𝐹® = 𝐹1 𝐹23⁄ = 3	[2]. For 𝛺3 = 0.65 there are two coexisting solutions, which are 

named by Kahraman [2] as the no impact and the single-sided impact solutions (Fig.2-Error! 

Reference source not found.a). The deterministic domain of attraction is shown in (Fig 2-b). The 

deterministic system will adopt one of the solutions depending on the initial condition. The initial 

distribution parameters in this paper are chosen as 𝜇�¢
(�) = 𝜇�²

(�) = 0, 𝜎�¢
(�) = 0.5 and 𝜎�²

(�) = 0.25 

which covers both basins of attraction, but mostly the single-sided impact solution. The difference 

between applying deterministic versus stochastic initial condition is illustrated schematically in 

Fig.2-b. 
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(a) (b) 

Fig. 2. a) Multi-solution system with limit cycles in phase plane 
b) Stochastic initial distribution versus deterministic initial condition in the domain of attraction of the system 

5.2. Stochastic dynamics of 3D Problems 

In order to investigate the effect of introducing noise spectrum on the probabilistic response of 

the gear model, three different stochastic excitations are considered here. The filter parameters for 

the three cases illustrated in Fig. 3 are specified in such a manner that the energy of the noise is 

kept constant. The intensity of noise for all cases of study is 𝜆 = 0.05. 

  
Fig. 3. Frequency spectrum for different noises  
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The first purpose of the current study is to show the capability of the adaptive path integration 

method to obtain accurate response PDF of a non-smooth random dynamical system under filtered 

noise. The evolution of the response PDF is captured via the PI technique with an adaptive time-

stepping approach. Comparisons of the marginal PDFs for 𝑡 = 10𝑡ª obtained by Monte Carlo 

simulations are shown in Figs 4-7 for cases A, B, C and D, respectively. The accuracy and precision 

of the method are confirmed qualitatively for all cases due to good agreement between the PI and 

MCS results. The difference between PI results and Monte Carlo simulations is more pronounced 

for cases C and D, since the variance of their PDF responses is smaller than cases A and B. 

Therefore, although our implementation of the path integration method in general seems to work 

very well, it may not be optimal for capturing with high accuracy the response of systems with very 

low variance.  

 
Fig. 4. Marginal PDFs of the response for case A after 10𝑡ª obtained by the PI method and MC simulation 
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Fig. 5. Marginal PDFs of the response for case B after 10𝑡ª obtained by the PI method and MC simulation 

 
Fig. 6. Marginal PDFs of the response for case C after 10𝑡ª obtained by the PI method and MC simulation  

 
Fig. 7. Marginal PDFs of the response for case D after 10𝑡ª obtained by the PI method and MC simulation 

In order to better evaluate both the effects of noise spectrum and loading uncertainty, the joint 

PDFs are also plotted in Figs 8-11. In contrast to deterministic dynamic systems which assume a 

unique solution, the stochastic system response will be characterized by a probability distribution 

influenced by a nondeterministic distribution of initial conditions as well as an additive stochastic 

excitation In this study, the initial distribution covers both basins of attraction of each solution. 

According to similar studies [18,23], it is expected that both no-impact solutions and single-sided 

impact solutions coexist. However, in case C, it is seen that the stationary solution contains only 

the no-impact solution. It can be concluded that the uncertainty in frequency of an alternating load 

can unilaterally affect the domain of attraction. As the effect of uncertainty in these four categories 

reveals quite different results, the necessity of investigating the source of stochastic excitation in 

such nonlinear dynamical systems becomes obvious. It is also seen that the spectrum shape of the 
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additive noise partly affects the probabilistic response in cases A and B, while no significant effect 

is seen in cases C and D. Fig. 10 shows that the uncertainty in the rotational speed of the gear pair 

may significantly affect the inherent multi-solution behavior of the system.  

The uncertainty in each component of the loading is basically due to external torque 

perturbations or manufacturing errors in the real system [28–30], but this matter is not pursued in 

the context of the current paper. The methodology and results that are presented in this study can 

have important implications in engineering applications of gear systems under uncertain excitation. 

The probability distribution function of the gear system response contains subtle information about 

the system, which is essential for the purpose of reliability-based design of such systems.  

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Stationary response Joint PDF of the problem case A under filtered noise excitation of a) 𝐹I, a) 𝐹C and c) 𝐹X 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Stationary response Joint PDF of the problem case B under filtered noise excitation of a) 𝐹I, a) 𝐹C and c) 𝐹X 



17 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Stationary response Joint PDF of the problem case C under filtered noise excitation of a) 𝐹I, a) 𝐹C and c) 𝐹X 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Stationary response Joint PDF of the problem case D under filtered noise excitation of a) 𝐹I, a) 𝐹C and c) 𝐹X 

5.3. Stochastic dynamics of the 4D Problem 

Considering 𝛽 = 0.5 and different parameter values for 𝛼 and 𝛾, the frequency spectrum of the 

equal-energy filtered noise is illustrated in Fig 12. These spectra can be considered as 

approximations of narrow-band noises with similar width but different peak. The intensity of the 

noise for all cases of this study is set to λ=0.05.  
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Fig. 12. Frequency spectrum of filtered noise with 𝛽 = 0.5  

The response PDF is calculated by the path integration method and compared with Monte Carlo 

simulations. Fig. 13-15 indicates marginal and joint PDFs of the response for 𝐹𝛼1, 𝐹𝛼2 and 𝐹𝛼3 at 

𝑡 = 10𝑡ª.  

 
 

  
Fig. 13. Marginal  and joint PDFs of the response for the 4D problem by the PI method and MCS for 𝐹³I 
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Fig. 14. Marginal  and joint PDFs of the response for the 4D problem by the PI method and MCS for 𝐹³C 

 

 
 

  
Fig. 15. Marginal  and joint PDFs of the response for the 4D problem by the PI method and MCS for 𝐹³X 
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Considering 𝛼 = 1.5 and different parameter values for 𝛼 and 𝛾, the frequency spectrum of the 

equal-energy filtered noise is illustrated in Fig 16. These spectra can be considered as  

approximations of narrow-band noises with similar peaks but different width. 

 
  

Fig. 16. Frequency spectrum of filtered noise with 𝛽 = 0.5  

 

 

The response PDF is calculated by the path integration method and compared with Monte Carlo 

simulations. Fig. 17-19 indicates marginal and joint PDFs of the response for 𝐹𝛽1, 𝐹𝛽2 and 𝐹𝛽3 at 

𝑡 = 10𝑡ª.  
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Fig. 17. Marginal  and joint PDFs of the response for the 4D problem by the PI method and MCS for 𝐹 I 

 

 
 

  
Fig. 18. Marginal  and joint PDFs of the response for the 4D problem by the PI method and MCS for 𝐹 C 
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Fig. 19. Marginal  and joint PDFs of the response for the 4D problem by the PI method and MCS for 𝐹 X 

Although increasing the dimensions of the problem raised the computational cost, the accuracy 

and precision of the results are satisfactory for the solution of this non-smooth 4D problem. This 

shows the capability of the path integration method in dealing with higher dimensional problems 

of this type. 

6. Conclusions 

In the current study, the probabilistic response of a spur gear pair under uncertain loading is 

investigated. The single degree of freedom gear model contains both backlash nonlinearity and 

time-varying mesh stiffness. Based on which component of the loading contains uncertainty, four 

different sub-problems are defined. The uncertainty is assumed to be represented by a first order 

filtered white noise, resulting in a 3D state space problem. An efficient numerical path integration 

technique in combination with a novel adaptive time-stepping scheme is applied in order to capture 

accurately the evolution of the response PDF. Marginal PDFs calculated via the PI method are 

compared with those obtained by Monte Carlo simulations for each of the cases that are studied. 

The comparisons confirm the accuracy and precision of the methodology. The effect of uncertain 

loading on the stationary response is quite different depending on its origin. This demonstrates the 

importance of identifying the stochastic source in investigating the dynamics of gear systems. The 

effect of spectra on the dynamic behavior is also studied by considering three noise representations 

with equal energies but different frequency spectrum in each case. In addition, an extension of the 

problem to 4D, combining the gear model with a second order filter is investigated to show the 

capability of path integration method in dealing with higher dimensional problems. Parametric 

studies are carried out for the 4D problem. The response PDF contains raw but qualitatively 

important information that needs further interpretations according to the application. 
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Appendix – Derivation of the equation of motion  

A semi-definite gear pair model with two degrees of freedom, as indicated in Fig. 1, is 

considered. The gears have rotary inertias and base circle diameters 𝐼Br and 𝑑Br respectively, and 

operate under input and output torques 𝑇GBr(𝑡̅), 𝑖 = 1,2. The equations of motion for this model are: 

𝐼BI
dC𝜃BI
d𝑡̅C +

𝑑BI𝑐3
2 µ

𝑑BI
2
d𝜃BI
d𝑡̅ −

𝑑BC
2
d𝜃BC
d𝑡̅ −

d𝑒̅
d𝑡̅¶ +

𝑑BI
2 𝑓̅ �

𝑑BI
2 𝜃BI −

𝑑BC
2 𝜃BC − 𝑒̅(𝑡̅)� = 𝑇GBI(𝑡̅) (A1) 

𝐼BC
dC𝜃BC
d𝑡̅C −

𝑑BC𝑐3
2 µ

𝑑BI
2
d𝜃BI
d𝑡̅ −

𝑑BC
2
d𝜃BC
d𝑡̅ −

d𝑒̅
d𝑡̅¶ −

𝑑BC
2 𝑓̅ �

𝑑BI
2 𝜃BI −

𝑑BC
2 𝜃BC − 𝑒̅(𝑡̅)� = −𝑇GBC(𝑡̅) (A2) 

where torques applied on the pinion and gear each includes three terms, namely, mean torque, 

fluctuating torque and additive noise: i.e., 𝑇GBI(𝑡̅) = 𝑇GBI1 + 𝑇GBI2(𝑡̅) + 𝑇GBI·(𝑡̅) and 

 𝑇GBC(𝑡̅) = 𝑇GBC1 + 𝑇GBC2(𝑡̅) + 𝑇GBC·(𝑡̅). The mesh elastic force 𝑓 ̅which is conceptually illustrated in 

Fig. 1, contains both time-varying mesh stiffness 𝑘3(𝑡̅)	and a nonlinear backlash function	𝑓-𝑞G(𝑡̅).. 

The damping coefficient 𝑐3 is assumed to be constant which is accurate enough [3]. Equations (A1) 

and (A2) can be reduced to a single degree of freedom equation in terms of 𝑞G(𝑡̅) which is defined 

as the difference between the dynamic transmission error 𝑥̅(𝑡̅) and the static transmission 

error	𝑒̅(𝑡̅): 

𝑞G(𝑡̅) = 𝑥̅(𝑡̅) − 𝑒̅(𝑡̅) =
𝑑BI
2
𝜃BI(𝑡̅) −

𝑑BC
2
𝜃BC(𝑡̅) − 𝑒̅(𝑡̅) (A3) 

𝑚¹I
dC𝑞G
d𝑡̅C

+ 𝑐3
d𝑞G
d𝑡̅
+ 𝑘3(𝑡̅)𝑓-𝑞G(𝑡̅). = 𝐹G1 + 𝐹G2º(𝑡̅) + 𝐹G23(𝑡̅) + 𝐹G»(𝑡̅) (A4) 
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𝑚¹I =
b	¼½¢¼½²

¾½²²¼½¢¿¾½¢²¼½²
   ,       𝑚¹C =

b¼½¢
¾½¢

   ,   𝑚¹X =
b¼½²
¾½²

 (A5a-c) 

𝐹G1 =
CºG½¢À
¾½¢

=
CºG½²À
¾½²

      ,      𝐹G2º(𝑡̅) =
C1Á¢ºG½¢Â(U̅)

1Á²
+

C1Á¢ºG½²Â(U̅)

1Á�
 (A6, A7) 

𝐹G23(𝑡̅) = −𝑚¹I
Ã²Ä̅
ÃU̅²
	         ,      𝐹G»(𝑡̅) =

C1Á¢ºG½¢Å(U̅)

1Á²
+

C1Á¢ºG½²Å(U̅)

1Á�
 (A8, A9) 

𝑓-𝑞G(𝑡̅). =
𝑓-̅𝑞G(𝑡̅).
𝑘3(𝑡̅)

= 8
𝑞G(𝑡̅) − 𝑏											𝑞G(𝑡̅) > 𝑏											
0																						 − 𝑏 < 𝑞G(𝑡̅) < 𝑏
𝑞G(𝑡̅) + 𝑏										𝑞G(𝑡̅) < −𝑏								

 (A10) 

where 2b is the backlash for the gears in the mesh. The dimensionless form of (A3) can be obtained 

by defining 𝜔� = �𝑘31 𝑚¹I⁄ , 𝑡ª = 1 𝜔�⁄ , 𝑞(𝑡̅) = 𝑞G(𝑡̅) 𝑏⁄ , 𝑡 = 𝜔�𝑡̅ and 𝜁 = 𝑐3 (2𝑚¹I𝜔�)⁄ , 

where 𝑘31 is the average mesh stiffness and is only used to non-dimensionalize the equation of 

motion. For the sake of simplicity, the external excitation 𝐹G2º(𝑡̅) is neglected. Considering 

dimensionless quantities for the mesh frequency 𝛺3 = 𝛺G3 𝜔�⁄ , the mean loading becomes 

𝐹1 = 𝐹G1 (𝑏𝑘31)⁄ , the fluctuating loading 𝐹23 = 𝐹G23 (𝑏𝑘31)⁄ , the stochastic loading 

𝐹»(𝑡̅) = 𝐹G» (𝑏𝑘31)⁄ , the time-varying mesh stiffness 𝑘(𝑡) = 𝑘3(𝑡̅) 𝑘31⁄  and the static 

transmission error 𝑒 = 𝑒̅ 𝑏⁄ . The following equation of motion is then obtained [2]: 

𝑞̈(𝑡) + 2𝜁𝑞̇(𝑡) + 𝑘3(𝑡)𝑓-𝑞(𝑡). = 𝐹1 + 𝐹23𝛺3C cos(𝛺3𝑡) + 𝐹»(𝑡) (A11) 

𝑓-𝑞(𝑡). = 8
𝑞(𝑡) − 1												𝑞(𝑡) > 1											
0																								 − 1 < 𝑞(𝑡) < 1
𝑞(𝑡) + 1											𝑞(𝑡) < −1								

 (A12) 
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