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Abstract. The traveling salesman problem is a very popular combina-
torial optimization problem in fields such as computer science, operations
research, mathematics, and optimization theory. Given a list of cities and
the distances between any city to another, the objective of the problem
is to find the optimal permutation (tour) in the sense of minimum trav-
eled distance when visiting each city only once before returning to the
starting city. Because many real-world problems can be modelled to fit
this formulation, the traveling salesman problem has applications in chal-
lenges related to planning, routing, scheduling, manufacturing, logistics,
and other domains. Moreover, the traveling salesman problem serves as a
benchmark problem for optimization methods and algorithms, including
the genetic algorithm. In this paper, we examine various implementa-
tions of the genetic algorithm for solving two examples of the traveling
salesman problem. Specifically, we compare commonly employed meth-
ods of partially-mapped crossover and order crossover with an alternative
encoding scheme that allows for single point, multipoint, and uniform
crossover. In addition, we examine several mutation methods, including
twors mutation, centre inverse mutation, reverse sequence mutation, and
partial shuffle mutation. We empirically compare the implementations in
terms of the chosen crossover and mutation methods to solve two bench-
mark variations of the traveling salesperson problem. The experimental
results show that the genetic algorithm with order crossover and the cen-
tre inverse mutation method provides the best solution for the two test
cases.

Keywords: TSP · Genetic algorithm · Crossover · Mutation · Permu-
tations · Inversion sequence.

1 Introduction

The traveling salesman problem (TSP) is a very popular combinatorial opti-
mization problem in fields such as computer science, operations research, math-
ematics, and optimization theory. In its most basic description, the TSP consists
? This research was supported by the European Research Consortium for Informatics
and Mathematics (ERCIM).
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of a list of cities and the distances between any city to another, where the ob-
jective of the problem is to find the optimal permutation (tour) in the sense
of minimum traveled distance when visiting each city only once before return-
ing to the starting city. Moreover, the decision version of the TSP, where one
must deciding whether there exists any shorter tour than a given tour with some
distance belongs to the class of NP-complete problems, meaning that “it is pos-
sible that the worst-case running time for any algorithm for the TSP increases
superpolynomially (but no more than exponentially) with the number of cities.”1

Many real-world problems can be modelled to fit the TSP formulation and
hence, the problem has applications related to planning, routing, scheduling,
manufacturing, logistics, and many other domains. Moreover, the traveling sales-
man problem serves as a benchmark problem for optimization methods and al-
gorithms, including the genetic algorithm (GA).

The GA is an evolutionary algorithm for solving search and optimisation
problems and is inspired by elements in natural evolution, such as inheritance,
mutation, selection, and crossover (e.g., see [10]). A GA is robust, easy to im-
plement, and easily applicable for multiobjective optimization problems, e.g.,
[1,2,11]. The GA is generally attributed to Holland (1975) [15], with subsequent
popularisation by Goldberg (1989) [8], and is still a very popular optimisation
tool across many different disciplines. In our Cyber-Physical Systems Labora-
tory (CPS Lab),2 we have many years of experience utilizing the GA for a variety
of purposes, including adaptive locomotion of a caterpillar-like robot [18], au-
tonomous ships and dynamic positioning of tug vessels along the Norwegian
coast (e.g., [6,7,3]), and as a core part of a generic software framework for intel-
ligent computer-automated design (CautoD) [4], which was successfully applied
for optimized CautoD, or virtual prototyping, of offshore cranes and winches
(e.g., [13,14,5].

In this paper, we focus on solving the TSP using a GA implemented with a
set of different combinations of crossover and mutation methods. For crossover,
we use the partially-mapped crossover (PMX), order crossover (OX), single point
crossover, multipoint crossover, and uniform crossover methods. We also test sev-
eral mutation methods, namely twors mutation, centre inverse mutation (CIM),
reverse sequence mutation (RSM), and partial shuffle mutation (PSM). Each
combination of crossover and mutation methods are implemented and evaluated
for two benchmark problems called Western Sahara (29 cities) and Djibouti (38
cities) obtained from the TSP website of the University of Waterloo, California,
USA.3

We empirically evaluate the performance of the different GA implementations
for solving the two TSP benchmark problems. The experimental results show
that OX crossover with CIM mutation outperforms the other implementations.

The paper is organized as follows. Section 2 describes related work. Section 3
presents the various crossover and mutation methods used in the implementation

1 Wikipedia: https://en.wikipedia.org/wiki/Travelling_salesman_problem
2 https://www.ntnu.no/blogger/cpslab/
3 http://www.math.uwaterloo.ca/tsp
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of the GA for solving the two TSPs. Section 4 presents the results and an analysis
of these. Section 5 discusses the results and the analysis. Finally, Section 5.1
concludes the paper and provides possible future directions.

2 Related work

Several common approaches exist for solving TSP problems, e.g., employing a
GA [21], ant colony optimization [24], or artificial neural networks [20]. The TSP
can have real-world application, e.g., the author in [12] developed a GA-based
method for the TSP to find the optimal route for the Istanbul Electricity Tram
and Tunnel Operations (IETT).

Variations of the GA has proved to be very successful in obtaining good
results for solving TSPs (e.g., [17]). Authors in [11] employed a GA-based ap-
proach using several recombination operators, whilst Goldberg et al. [9] proposed
an approach to improve the GA using a PMX operator. In [22], authors present
a novel GA-based approach by introducing a new recombination operator to
produce new offspring, whereas authors in [19] proposed a new hybrid GA in
which the crossover operator is improved by utilizing the local search strategy.
In yet another study [23], the authors used an improved GA by combining ran-
dom crossover and dynamic mutation that provided better results as compared
to the conventional genetic algorithm for TSP problem.

A more recent paper by Abid Hussain et al.[16] modify the crossover operator,
examining PMX and OX and a new proposed operator. The authors apply the
three crossover operators using TSP datasets for 42, 53 and 170 cities. Finally, in
[25], Üçoluk proposed a method for alternative chromosome encoding that allows
the GA to be solved without using permutation crossover methods. According
to the author, this method is supposed to perform slightly worse than other
methods in terms of the solution but many times faster[25].

3 Crossover and mutation methods

In this paper, we have implemented two different types of crossover methods:
(i) two conventional crossover methods for permutation problems (PMX and
OX), and (ii) three ordinary crossover methods (single-point, two-point, and
uniform crossover) normally used for non-permutation problems enabled by the
alternative encoding scheme suggested by Üçoluk [25].

3.1 Conventional crossover methods for permuation problems

We have implemented the PMX crossover method and the OX crossover method,
both of which are standard crossover methods for GAs solving TSPs. Both meth-
ods introduce measures to avoid duplicates, which are not allowed in permuta-
tions.
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PMX crossover The PMX crossover method is used for crossover in permu-
tation problems. Being somewhat complex to explain purely in words, we resort
to an example of PMX crossover provided by Ücoluk in his paper [25], and re-
produced here in Fig 1. First, a single crossover point is randomly selected for

Fig. 1. Example of PMX crossover [25].

both parents, 5713642 and 4627315, corresponding to two permutations of cities
1 through 7. Next, beginning with a copy of the first parent, cities 462 before
the crossover point in the second parent will take up the same gene positions in
the first child. However, if merely copying these genes (cities), duplicates might
occur, which is not allowed in a permutation. Hence, if there is a duplicate in the
child occurring after the crossover point, this gene is replaced by the original city
of the child occurring before the crossover point. In the example, putting city 4
in position 1 of the first city in the first child will lead to a duplicate because
4 also occurs in position 6. Hence, city 5 originally at position 1 is moved to
position 6. Likewise for city 6 in position 2 and city 2 in position 3. The process
repeats for the second child but with cities before the crossover point from the
first parent (cities 571) taking up the same gene positions of the second child
and the same replacement procedure to avoid duplicates.

OX Crossover Order 1 crossover (often referred to as OX or order crossover) is
also a conventional crossover method for permutation problems. This method is
based on randomly selecting a section of genes within the parents, for example,
the 4 middle genes. Child 1 will then directly inherit these 4 middle genes from
parent 1 (into the same position in the child), while child 2 will inherit from
parent 2. The remaining genes are then filled with values from the other parent.
Again, since chromosomes represent permutations, it is important that there are
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no duplicate genes (values) in the child. Therefore, creating the child starts with
looking at the index of the first non-assigned gene in the other parent. If this
gene value does not exist in the child, it is copied into the child. If the value
already exists in the child, the procedure continues to check the next gene of the
other parent. The process can be illustrated with the example in Fig.2.

Fig. 2. Example of Order 1 crossover (OX).

Having generated one child, the process repeats with parent 1 becoming
parent 2 and vice versa.

3.2 Ordinary crossover methods enabled by alternative encoding

Whilst standard crossover methods such as n-point crossover or uniform crossover
do not take measures to avoid duplicate genes, they can still be used if chromo-
somes are encoded (transformed) using the encoding scheme presented by Üçoluk
[25]. Here, we first give a short revision of the alternative encoding scheme, which
enables use of the three ordinary crossover methods we have examined here,
namely single-point crossover, two-point crossover, and uniform crossover.

Alternative chromosome encoding As explained by Üçoluk [25], a permu-
tation can be represented by its inversion sequence.4 Most conveniently, and
different from the permutation itself, there is no restrictions on having dupli-
cates in the inversion sequence. As a consequence, ordinary crossover operations
can be applied to chromosomes encoded as inversion sequences, as long as the in-
version sequences are decoded back to permutations for which the tour distance
can be calculated.
4 E.g., see Wikipedia: https://en.wikipedia.org/wiki/Inversion_(discrete_mathematics)

https://en.wikipedia.org/wiki/Inversion_(discrete_mathematics)
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An example provided by Üçoluk [25] is presented in Fig. 3, which shows this
alternative chromosome encoding combined with single-point crossover.

Fig. 3. Example of single-point crossover for chromosomes encoded as inversion se-
quences (adapted from [25]).

Single-point crossover Single-point crossover is a standard method for non-
permuation problems, i.e., where duplicates are allowed. A random index point
in the two parent chromosomes is chosen and both parents are split into two
sections at this point. Child 1 takes the first section from parent 1 and the second
section from parent 2. Child 2 takes the first section from parent 2 and the second
section from parent 1. An example of single-point crossover in depicted in Fig. 4.

Fig. 4. Example of single-point crossover.

Two-point crossover Two-point crossover is similar to single-point crossover,
but for this method two points are selected. This means that each parent is
divided into three sections. The first child will then inherit the first and last
section from parent 1, and the middle section from parent 2. The second child
will inherit the first and last section from parent 2 and the middle section from
parent 1 [1]. The procedure is illustrated in Fig. 5.
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Fig. 5. Example of two-point crossover.

Uniform crossover Uniform crossover is different from the other methods
so far. This method goes through every gene, and determines if it should be
inherited from parent 1 or 2. If the probability is set to 0.5, each gene would
have equal probability of being from parent 1 or parent 2 [1]. An example is
shown in Fig. 6, where crossover is executed with a 0.5 probability.

Fig. 6. Example of uniform crossover.

3.3 Mutation methods

For the mutation operator, we have implemented four different mutation meth-
ods, namely twors mutation, centre inverse mutation (CIM), reverse sequence
mutation (RSM), and partial shuffle mutation (PSM).

Twors mutation Twors mutation is a mutation method that also can be
referred to as swap. Two genes are randomly chosen, and their positions are
swapped [1]. An example of twors mutation is shown in Fig.7, where gene num-
ber 3 and 5 are randomly chosen.

Fig. 7. Example of Twors mutation.

Centre inverse mutation (CIM) The CIM method chooses one random
point, which divides a chromosome into two sections. The two sections are flipped
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[1]. An example is shown in Fig. 8, where the random point is selected between
gene 3 and 4.

Fig. 8. Example of CIM method for mutation.

Reverse sequence mutation (RSM) The RSM method chooses two random
points in the chromosome and selects the section of genes in between. The gene
sequence inside the selected section is then reversed [1]. An example is shown in
Fig. 9, where index 3 and 6 are randomly chosen.

Fig. 9. Example of RSM method for mutation.

Partial shuffle mutation (PSM) The PSM method iterates through each
gene in a chromosome. Each gene uses the mutation probability to determine
if the gene should be swapped with another. If the gene is determined to be
swapped, the gene will swapped with another randomly chosen gene [1]. An
example is shown in Fig. 10, where genes number 2 and 6 were determined to
be swapped with genes 4 and 5, respectively.

Fig. 10. Example of PSM method for mutation.

4 Results and analysis

The optimal tour distances for the two different datasets Western Sahara (29
cities) and Djibouti (38 cities), are 27603 and 6656, respectively. Both these
datasets are freely available at the TSP website of the University of Waterloo,
California, USA.3

For simplicity we have used the same GA settings for all methods, which
we found empirically to work well: maximum number of generations: 1000, stall
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generation limit: 200, population size: 300, crossover probability: 0.7, mutation
probability: 0.05, and elitism ratio: 0.20.

We ran the GA on an ordinary laptop with each combination of crossover
and mutation methods presented previously, and each combination was run 10
times for each dataset to obtain the best tour distance (b.distance) and its
percentage deviation from the optimal distance (b.deviation), the best running
time in seconds (b.time), and the average percentage devation (avg.deviation)
and average running time in seconds (avg.time).

Tables 1–2 summarise the results for the Western Sahara dataset, whereas
Tables 3–4 summarises the results for the Djibouti dataset. Moreover, results
using the conventional crossover methods for TSP, namely PMX and OX, are
shown in Tables 1 and 3, whereas results using the alternative chromosome
encoding suggested by Üçoluk [25] that enables single-point (1p), two-point (2p),
and uniform crossover are shown in Tables 2 and 4.

4.1 Analysis

For the Western Sahara dataset with 29 cities and conventional crossover meth-
ods for TSP (Table 1), PMX crossover with all mutation methods but the Twors
methods resulted in the optimal solution, whereas OX crossover resulted in the
optimal solution for the CIM and PSM mutation methods. The average com-
putational running time ranged from 24 to 32 seconds for these combinations
of crossover and mutation methods. Using the alternative chromosome encoding
(Table 2), single-point crossover with all mutation methods apart from Twors
resulted in the optimal solution, as did uniform crossover with the PSM and
RSM mutation methods. The average computational time ranged from 56 to
110 seconds for these combinations of crossover and mutation methods.

For the Djibouti dataset with 38 cities and conventional crossover methods
for TSP (Table 3), PMX and OX crossover both resulted in the optimal solution
when combined with the RMS mutation method. The average computational
running time was 46 and 36 seconds, respectively, for these two combinations.
Using the alternative chromosome encoding (Table 4), single-point, two-point,
and uniform crossover all resulted in the optimal solution when combined with

Table 1. Western Sahara dataset with PMX and OX crossover.

Crossover Mutation b.distance b.deviation b.time avg.deviation avg.time

PMX TWORS 28864.92 4.37 32 19.68 24
PMX CIM 27603 0 36 2.80 30
PMX PSM 27603 0 28 15.78 32
PMX RSM 27603 0 34 1.80 28

OX TWORS 27748.71 0.52 29 11.52 23
OX CIM 27603 0 22 0.93 24
OX PSM 27603 0 20 8.05 30
OX RSM 27748.71 0.52 25 2.36 19
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Table 2. Western Sahara dataset with single-point, two-point, and uniform crossover.

Crossover Mutation b.distance b.deviation b.time avg.deviation avg.time

1p TWORS 28972.52 4.727 67 15.47 76
1p CIM 27603 0 118 8.32 85
1p PSM 27603 0 61 7.42 62
1p RSM 27603 0 51 1.95 56

2p TWORS 28373.51 2.7156 42 13.24 54
2p CIM 28256.09 2.3113 63 10.59 79
2p PSM 27748.71 0.525 66 16.8 69
2p RSM 27748.71 0.525 43 2.67 53

Uniform TWORS 28189.75 2.0814 67 8.84 63
Uniform CIM 27748.71 0.5251 134 8.55 89
Uniform PSM 27603 0 89 4.87 110
Uniform RSM 27603 0 89 2.45 110

Table 3. Djibouti dataset with PMX and OX crossover.

Crossover Mutation b.distance b.deviation b.time avg.deviation avg.time

PMX TWORS 8236.96 19.19 40 28.7 41
PMX CIM 6758.28 1.51 49 5.31 60
PMX PSM 7605.59 12.48 71 25.42 60
PMX RSM 6656 0.0 48 6.92 46

OX TWORS 7290.80 8.71 54 20.06 37
OX CIM 6656 0 54 1.80 42
OX PSM 7532.99 11.64 46 23.02 49
OX RSM 6656 0 34 3.26 36

Table 4. Djibouti dataset with single-point, two-point, and uniform crossover.

Crossover Mutation b.distance b.deviation b.time avg.deviation avg.time

1p TWORS 7415.21 10.24 109 25.97 112
1p CIM 9011.86 26.14 163 34.06 132
1p PSM 8134.72 18.18 166 24.31 144
1p RSM 6656 0 156 5.96 132

2p TWORS 7415.61 10.24 149 23.13 119
2p CIM 7594.54 12.36 143 24.46 150
2p PSM 7363.26 9.61 139 21.28 146
2p RSM 6656 0 119 3.01 140

Uniform TWORS 7688.32 13.43 154 21.87 119
Uniform CIM 7421.81 10.32 165 21.42 141
Uniform PSM 7313.06 8.98 166 21.70 161
Uniform RSM 6656 0 161 3.89 149
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the RSM mutation method. The average computational time was 132, 140, and
149 seconds, respectively, for these three combinations of crossover and mutation
methods.

The only combinations of crossover and mutation methods that found the
optimal solution for both datasets were (i) PMX, (ii) single-point, and (iii) uni-
form crossover with RSM mutation, and (iv) OX crossover with CIM mutation.
These four combinations had average running times of (i) 28 and 46 seconds, (ii)
56 and 132 seconds, (iii) 110 and 149 seconds, and (iv) 24 and 42 seconds. Their
average percentage deviation from the optimal distance for the 10 runs were (i)
1.80 and 6.92, (ii) 1.95 and 5.96, (iii) 2.45 and 3.89, and (iv) 0.93 and 1.80.

Hence, for the aforementioned GA settings used here, taking into account
both the ability to find the optimal solution and to find near-optimal solutions,
as well as running time, the OX crossover with CIM mutation appears to be the
best choice. Using PMX with RSM mutation is slightly worse when comparing
running times, and particularly also when comparing the average deviation for
the largest dataset, Djibouti.

The two combinations using the alternative encoding scheme have much
longer running times than the two best combinations (around 2–4 times higher),
and also higher average deviations for the West Sahara dataset. For the Djibouti
dataset, these two alternative encoding combinations yield better results than
PMX with RSM for average percentage deviation, but worse than OX with CIM.

The best routes found by OX crossover and CIM mutation with correspond-
ing cost function convergence plots for the two datasets are shown in Fig. 11.

5 Discussion and conclusions

It can be observed from the results above that when the dataset becomes more
difficult (more cities) fewer combinations of crossover and mutation methods
were able to find the optimal solution. When considering average percentage
deviation as well as average running time, the GA with OX crossover and CIM
mutation was the best choice. However, it is important to note that this claim is
only valid for the two datasets and the choice of GA settings described previously.
It may be that for other settings of population size, crossover and mutation
probability, and elitism ratio, different results may be obtained. Nevertheless,
we have examined by trial and error a number of other GA settings without
observing any clear counter-indications that the results do not generalise.

Regarding the alternative encoding scheme proposed by Üçoluk [25], we were
unable to reproduce the claim that this method should lead to a significant speed-
up whilst only slightly worse performance (in terms of finding optimal or near-
optimal solutions). On the contrary, we found the alternative encoding scheme
to be typically 2–4 times slower than using conventional crossover methods.
We have based our implementation (which was coded in Python 3) for finding
the inverse sequences and converting back to permutations on the pseudocode
provided by Üçoluk [25]. Still, there might be parts in the conversion process in
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Fig. 11. Best routes and convergence plots using OX with CIM.

our implementation that causes this particular operation to be slower than in
the case of Üçoluk.

5.1 Conclusions

The TSP is a popular NP-hard combinatorial optimization benchmark prob-
lem with many applications towards the real world. In this paper, we have ex-
amined using a GA implemented with various combinations of crossover and
mutation methods for solving two datasets with 29 and 38 cities. We examined
both conventional crossover methods for TSP (PMX and OX) and an alternative
chromosome encoding scheme using inversion sequences than enabled ordinary
crossover methods (single-point, two-point, and uniform crossover). All these
crossover methods were tested with four different mutation methods (Twors,
CIM, PSM, and RSM). For the two datasets and the population size, crossover
probability, and mutation probability that we tested, OX crossover with CIM
mutation was the best method.
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Going forward, it would be interesting to investigate whether our code can
be optimised (or not) regarding the alternative encoding, as well as examine
larger datasets for further comparisons of GA crossover and mutation methods
for TSPs.
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