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A Semi-analytical Method for Channel Modeling in
Diffusion-based Molecular Communication

Networks
Mohammad Zoofaghari, Hamidreza Arjmandi, Ali Etemadi, Ilangko Balasingham,

Abstract—Channel modeling is a challenging vital step towards
the development of diffusion-based molecular communication
networks (DMCNs). Analytical approaches for diffusion channel
modeling are limited to simple and specific geometries and
boundary conditions. Also, simulation- and experiment-driven
methods are very time-consuming and computationally complex.
In this paper, the channel model for DMCN employing the
fundamental concentration Green’s function (CGF) is charac-
terized . A general homogeneous boundary condition framework
is considered that includes any linear reaction systems at the
boundaries in the environment. To obtain the CGF for a general
DMCN including multiple transmitters, receivers, and other
objects with arbitrary geometries and boundary conditions, a
semi-analytical method (SAM) is proposed. The CGF linear
integral equation (CLIE) is analytically derived. By employ-
ing the numerical method of moments, the problem of CGF
derivation from CLIE is transformed into an inverse matrix
problem. Moreover, a sequential SAM is proposed that converts
the inversion problem of a large matrix into multiple smaller
matrices reducing the computational complexity. Particle-based
simulator confirms the results obtained from the proposed SAM.
The convergence and run time for the proposed method are
examined. Further, the error probability of a simple diffusion-
based molecular communication system is analyzed and examined
using the proposed method.

I. INTRODUCTION

Diffusion-based molecular communication (DMC) is a
promising approach for realizing nanonetworks for vari-
ous applications, e.g., healthcare applications [1]-[3]. In
diffusion-based molecular communication networks (DM-
CNs), molecules are used to carry information from transmit-
ter(s) to receiver(s) via a diffusion channel [4]-[5]. Modeling
diffusion channels is a vital challenging prerequisite step
for analyzing, designing, and implementing a DMCN that
may include multiple transmitters, receivers, or other objects
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with arbitrary geometries and boundary conditions. In the
MC literature, three general approaches have been employed
to characterize the diffusion channel: analytical approaches,
simulation- and experiment-driven approaches [6].

To derive analytical models, the authors consider vari-
ous simplifying assumptions about the geometry, reactions,
and boundary conditions for the diffusion environment. Un-
bounded diffusion channel has been characterized based on
a variety of assumptions, e.g., the point source transmitter,
transparent spherical receiver, or the receiver covered by
ligand-receptor proteins, in the presence of medium flow
and/or degradation reaction [4]-[14]. Inspired by the geometry
of specific entities in the body, ideal cylindrical and spheri-
cal diffusion channels (environments) have been adopted for
DMC systems. In particular, a DMC system in a cylindrical
environment has been considered and characterized inspired
by the blood vessels and also microfluid channels [15]-[21].
Also, the diffusion channel in a spherical environment has
been analyzed in [22]-[24].

In the absence of analytical models, simulation- and
experiment-driven approaches can be employed to characterize
the diffusion channel. Based on the scale of the details pro-
vided, the simulation-driven approaches are categorized into
classes of continuum, mesoscopic, microscopic, and molecular
dynamics simulations [6]. The microscopic approach has been
the most common simulation method within the MC research
community in which the discretized time and continuous space
is employed [25]-[28]. Motivated by real-world measurement
data, experiment-driven approaches may be preferred. The
experiment-driven approaches are generally based on the adop-
tion of an appropriate parametric model and optimizing the
corresponding parameters to fit the measurement data [6]. Sev-
eral experimentally-driven testbeds have been introduced for
modeling both biological [29]-[31] and non-biological [32]-
[33] systems.

The analytical methods are restricted to the specific sym-
metrical geometries with simplifying assumptions. Moreover,
the analytical derivations may not be extendable when the
considered environment changes partially, e.g., by including
new transmitters, receivers, or obstacles. On the other hand,
simulation-driven approaches are computationally complex,
time-consuming, and non-reusable. Also, experiment-driven
approaches are usually expensive and difficult to implement.
This motivates the development of a semi-analytical approach
that reduces the computational burden and increases the flex-
ibility to consider arbitrary geometries and boundary condi-
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tions.
In this paper, we propose a semi-analytical method (SAM)

to characterize the diffusion channel for a DMCN including
multiple transmitters, receivers, and obstacles with arbitrary
geometries. A pure diffusion environment (diffusion with-
out flow) in the presence of degradation is considered. The
boundary conditions implied by the objects are assumed to
be adopted arbitrarily from a general homogeneous boundary
condition framework. This framework enables us to model any
linearly modeled process at the boundaries e.g., irreversible
and reversible first-order reactions, simplified biological pro-
cesses at the cell membrane like carrier-mediated transport and
transcytosis1.

The main contributions of this paper can be summarized as
follows:
• We show how the average received signal at a receiver

could be a sufficient statistic for characterization of the
communication channel between a pair of transmitter and
receiver in the DMCN. By applying the Green’s function
theorem, the relation between the average received signal
and the concentration Green’s function (CGF) of the
environment given the newly-introduced homogeneous
boundary conditions is derived.

• Based on Green’s second identity, we derive concen-
tration Green’s function linear integral equation (CLIE)
which analytically relates the CGF value at an arbitrary
point to the CGF values at the boundary points.

• To obtain the CGF values at the boundary points, we
employ the method of moments that expand the unknown
CGF in CLIE in terms of a set of basis functions with
unknown coefficients (moments) leading to an inverse
matrix problem. In the original form of this method, we
use the given CGF for the unbounded environment and
the unknown coefficients are obtained through the inverse
matrix problem.

• Further, we propose a sequential SAM algorithm which
is computationally less complex than the original form
based on the Green’s function for the unbounded envi-
ronment.

The proposed SAM method utilizes the analytical CLIE and
numerical method of moments. Compared to the simulation-
driven approaches e.g., finite-difference time-domain and finite
element methods, that mesh the whole space (surface and vol-
ume in 2-dimensional and 3-dimensional spaces, respectively),
the proposed SAM requires only meshing the boundaries (the
lines and surfaces, respectively), which is significantly less
complicated. Moreover, the proposed sequential SAM method
enables reuse of the Green’s function of the environment when
a new object e.g., transmitter, receiver, or obstacle is added to
the environment. Besides, the proposed analytical CLIE can
be employed to obtain CGF for special geometries in terms
of closed-form expressions, as we demonstrate in a simple
example. To evaluate the proposed SAM, we consider simple
scenarios and obtain the CGF from the proposed SAM and
Particle-based simulator (PBS). The PBS confirms the results

1Transcytosis is referred to a type of transcellular process responsible for
transporting various macromolecules across the interior of a cell.

TABLE I
SUMMARY OF THE NOTATION.

Variable Definition
Nb The total number of boundaries (objects)
NR

b Number of generalized Robin’s boundary conditions
ND

b Number of Dirichlet’s boundary conditions
∂D Entire boundary of the diffusion environment
∂Di The boundary of object i

Li and Di Linear differential operators at boundary i
Li(ω) and Di(ω) Fourier transform of Li and Di

D Diffusion coefficient
kd Degradation reaction constant
kf Forward reaction constant
kb Backward reaction constant
kv Internalization constant

c(r̄, t) Concentration function at point r̄ and time t
as the solution of diffusion problem (5)

C(r̄, ω) Fourier transform of c(r̄, t)
g(r̄, t|r̄′, t′) CGF for diffusion problem (14) given

the point source at r̄′ with impulsive release at t′

G(r̄, ω|r̄′, t′) Fourier transform of g(r̄, t|r̄′, t′)
h(r̄, t|r̄′, t′) CGF for unbounded environment given the

point source at r̄′ with impulsive release at t′

H(r̄, ω|r̄′, t′) Fourier transform of h(r̄, t|r̄′, t′)
Hi(r̄, ω|r̄′, t′) Fourier transform of CGF for the environment

in the presence of boundaries {1, 2, · · · , i}
Pm
i Pulse basis function over mth mesh of ith boundary

Um
i The unknown coefficient corresponding to Pm

i
Jm(·) Bessel function of order m
H(2)

m (·) Second kind Hankel function of order m

obtained from the proposed SAM. We examine the conver-
gence of the proposed method by defining a convergence error
measure. Further, the performance of a simple diffusion-based
molecular communication system is analyzed and examined
in terms of error probability employing the proposed method.

The paper is organized as follows. The system model
and the problem is described in Section II. The Green’s
function theorem is presented in Section III which leads to the
derivation of the CLIE for the DMCN environment. In Section
IV, the semi-analytical method is developed to numerically
solve the CLIE and obtain the CGF over the surface of the
incorporated boundaries. The simulation and numerical results
are presented in Section V. Finally, the paper is concluded in
Section VI. A summary of the notation used in this paper is
given in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Diffusion-based molecular communication networks

In DMCN, we have generally multiple transmitters and
receivers nanomachines in the diffusion environment where
the transmitter(s) release the molecules carrying information
encoded in the concentration, type, and/or release time of the
molecules. For any communication analysis, it is required to
characterize the information channel in terms of the received
signal at the receiver(s) given the release signal at the trans-
mitter(s). We assume independent trajectories in the DMC
environment and independent reactions at the boundaries for
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different information molecules.2 Given this assumption, the
average concentration function of received molecules versus
time could be sufficient to characterize different statistical
models for the received signal at the receiver. As an example,
we provide the following important model:

Example 1. Molecular Poisson Network [34]-[36]: Time is di-
vided into equal time slots. The transmitters and receivers are
assumed to be synchronized. The transmitter j, j = 1, · · · , Ntx
releases the molecules by the average rate Xj

k(r̄′, t′), r̄′ ∈ Ωj
mols−1m−2 in the environment at time slot k, where Ωj
denotes the set of boundary points of the transmitter. The
number of molecules that are released at r̄′ ∈ Ωj into the
environment at time slot k can be modeled as Poisson process
with rate Xj

k(r̄′, t′). From the thinning property of the Poisson
distribution, the received signal at the lth receiver, time t in
the time slot i (t ∈ [(i − 1)T, iT ]) from the transmitter j,
follows a Poisson process as follows

Y j,il (t) ∼ Poisson
(
yj,il (t)

)
, (1)

t ∈ [(i− 1)T, iT ], j = 1, · · · , Ntx, l = 1 · · · , Nrx,

which is characterized by its average, yj,il (t), which is pro-
portional to the average concentration of received molecules.
Also, the inter-symbol interference from the transmitter j and
interference from other transmitters are given as follows,
respectively,

Ijl (t) ∼ Poisson

(
i−1∑
k=0

yj,kl (t)

)
, (2)

t ∈ [(i− 1)T, iT ], j = 1, · · · , Ntx, l = 1 · · · , Nrx

Iml (t) ∼ Poisson

(
i∑

k=0

ym,kl (t)

)
, (3)

t ∈ [(i− 1)T, iT ],m = 1, · · · , Ntx,m 6= j, l = 1 · · · , Nrx.

The average concentration function of received molecules
depends on the concentration of information molecules dif-
fusing in the environment and the reception process over the
receiver boundary that produces molecules at the receiver
boundary. The concentration of information molecules can
be obtained by solving the diffusion equation subject to the
boundary conditions describing the environment. In the next
subsection, we describe the diffusion environment for DMCN
and formulate the problem.

B. Diffusion environment model for DMCN

Consider a continuous diffusion environment denoted by D
which is filled with a fluid medium facing Nb disjoint bound-
aries (objects). Each boundary may belong to a transmitter, a
receiver, or another object (obstacle) in the environment. The
ith boundary of the environment, i.e., the set of all points

2The assumption of independent trajectories holds when the intermolecular
interactions are ignored, which is inherent to scenarios with a low concen-
tration of molecules [44]. Also, the assumption of independent reactions at
the boundaries occur when there are a large number of receptors over the
boundary or the reaction over the boundary is very fast [24].

Fig. 1. Schematic diffusion environment with multiple transmitters, receivers,
and obstacles of arbitrary geometries.

over the boundary of ith object, is denoted by ∂Di. The
whole set of boundary points is denoted by ∂D = ∪Nb

i=1∂Di
which represents the geometry of the environment. Obviously,
∂D is empty for an unbounded environment. Noteworthy,
our derivations and discussions in this paper are generally
presented for an environment with any number of dimensions,
arbitrary geometry and shape, and are not limited to a certain
coordinate system. For the sake of generality, the location of a
point in the environment is denoted by a vector r̄, irrespective
of its dimension.

The information molecules are of type A whose diffusion
coefficient in the considered fluid medium is D m2 s−1. The
following degradation reaction is considered in the environ-
ment in which the (information) molecules A diffusing in the
environment may be transformed to another molecule type

A
kd→ Â, (4)

where kd is the degradation reaction constant in s−1. Given
the molecule source with release rate per volume of S(r̄, t)
(mol)s−1 m−3 and the degradation reaction (4), the molecular
diffusion is described by Fick’s second law [37]

D∇2c(r̄, t)− kdc(r̄, t) + S(r̄, t) =
∂c(r̄, t)

∂t
, (5)

subject to the set of boundary conditions implied by the
boundaries ∂Di, i = 1, · · · , Nb where c(r̄, t) denotes the
molecule concentration at point r̄ and time t.

For each ith object, irrespective of its role as a transmit-
ter, receiver, or obstacle and considering the mutual impact
between the information molecule and the boundary, general-
ized Robin’s boundary condition [39] and Dirichlet boundary
condition are considered

Di∇c(r̄, t) · n̂|r̄∈∂Di
= Lic(r̄, t) + Sib(r̄, t), i = 1, · · · , NR

b

(6)

c(r̄, t) = Sib(r̄, t), i = NR
b + 1, · · · , NR

b +ND
b , (7)

where (·) denotes the inner multiplication operator, n̂ is the
surface outward pointing normal (pointing towards the exterior



4

of diffusion environment) at the point r̄ ∈ ∂Di, Li and Di are
linear differential operators, NR

b and ND
b denote the number

of boundaries with generalized Robin’s and Dirichlet boundary
conditions, respectively, where NR

b +ND
b = Nb, and Sib(r̄, t)

for i ∈ {1, · · · , NR
b } and i ∈ {NR

b + 1, · · · , NR
b + ND

b }
is a source term over the ith boundary in terms of mol
s−1m−2 and mol m−3, respectively. Obviously, the boundaries
of transmitters may have nonzero source terms.

The generalized Robin’s boundary condition has been pro-
posed in [39] that suggests a general homogeneous bound-
ary condition framework characterizing any linearly reaction
system across the object boundary by the adoption of corre-
sponding differential operators Li and Di. In the following,
we provide some special boundary conditions:

Example 2. Assume boundary ∂D on which the diffusing
molecules A are exposed to the following chemical reaction

A + R
kf
kb

AR
kv ∅, (8)

where kf , kb and kv are forward, backward reaction constants,
and internalization rate in m s−1, s−1, and s−1, respectively.
It is obvious that kf = 0 corresponds to the pure reflective
boundary irrespective of kb and kv values. Also, kf =∞ and
kb = 0 corresponds to the pure absorbing boundary, irrespec-
tive of kv value. We note that this reaction approximates the
main processes of carrier-mediated transport across endothe-
lial cells at vessel walls as a first-order reaction [38], in which
the molecule hitting the inner (blood-facing) membrane may
bind to the carrier molecule and form carrier-target molecule
compound. The compound may be internalized into the inner
membrane and diffuses across the cell, breaks at the outer
membrane of the cell, and releases both the target molecule
and the carrier. Finally, the released carrier returns across the
inner membrane.

The first-order reaction chain (8) is described by

∂c(r̄, t)

∂t
= −kfc(r̄, t) + kbcAR(r̄, t), r̄ ∈ ∂D, (9)

∂cAR(r̄, t)

∂t
= kfc(r̄, t)− kbcAR(r̄, t)− kvcAR(r̄, t), r̄ ∈ ∂D.

(10)

Applying the differential operator of ∂
∂t + kv on both sides

of (9) and substituting ∂cAR(r̄,t)
∂t + kvcAR(r̄, t) from (10), we

obtain

−
( ∂
∂t

+ kb + kv
) ∂
∂t
c(r̄, t) = kf

( ∂
∂t

+ kv
)
c(r̄, t), r̄ ∈ ∂D.

(11)

On the other hand, the conservation identity is implied as
follows

∂c(r̄, t)

∂t
= −D∇c(r̄, t) · n̂, r̄ ∈ ∂D. (12)

Applying (12) to (11), we have

D
( ∂
∂t

+ kb + kv
)
∇c(r̄, t) · n̂ = kf

( ∂
∂t

+ kv
)
c(r̄, t), r̄ ∈ ∂D.

(13)

Therefore, this boundary condition corresponds to the gener-
alized Robin boundary condition (6) with L = kf ( ∂∂t + kv)
and D = D( ∂∂t + kv + kb).

The main problem is to obtain the average concentration
profile of the information molecules diffusing in the described
environment which is the solution of the partial differential
equation (5) subject to the set of boundary conditions (6) and
(7). Having this quantity, the concentration of other molecule
types including the molecules produced at receivers through
the boundary condition can be obtained. In the next subsection,
we show how this problem reduces to the Green’s function
problem in this environment.

III. GREEN’S FUNCTION THEOREM

In this section, we apply Green’s second identity to show
that the diffusion problem for any given volume or surface
molecule source is reduced to obtaining the concentration
Green’s function of the problem. The concentration Green’s
function is the response of the diffusion channel to an instan-
taneous point source (impulsive point source). By applying the
Green’s second identity, we relate the concentration function
for arbitrary sources to the Green’s function through a linear
integral equation.

In the described environment, assume the source S(r̄, t) is
a point source located at r̄′ ∈ D which has instantaneous
molecule release rate of δ(t − t′) molecule (mol) s−1 (δ(·)
is Dirac delta function). This impulsive point source is de-
scribed as the function Sim(r̄, t, r̄′, t′) = δ(r̄ − r̄′)δ(t − t′)
mol s−1 m−3. For instance, this impulsive point source in the
spherical coordinate system, can be represented by the function
Sim(r̄, t, r̄′, t′) = δ(r−r′)δ(θ−θ′)δ(ϕ−ϕ′)δ(t−t′)

r2 sin θ mol s−1 m−2,
where (r, θ, ϕ) denote radial, elevation, and azimuth coordi-
nates, respectively. Also, assume zero boundary sources, i.e.,
Sib(r̄, t) = 0, i = 1, · · · , Nb.

Given the impulsive source Sim(r̄, t, r̄′, t′) and the degrada-
tion reaction (4), and the zero boundary sources, the molecular
diffusion problem would be [37]

D∇2g(r̄, t|r̄′, t′)− kdg(r̄, t|r̄′, t′) (14)

+ Sim(r̄, t, r̄′, t′) =
∂g(r̄, t|r̄′, t′)

∂t
,

subject to the

Di∇g(r̄, t|r̄′, t′) · n̂|r̄∈∂Di
= Lig(r̄, t|r̄′, t′), i = 1, · · · , NR

b

(15)

g(r̄, t|r̄′, t′) = 0, i = NR
b + 1, · · · , NR

b +ND
b , (16)

where g(r̄, t|r̄′, t′) denotes the molecule concentration at point
r̄ and time t and is called the concentration Green’s function
(CGF) of diffusion for the environment D. The relation
between the concentration function c(r̄, t) and the Green’s
function g(r̄, t|r̄′, t′) is revealed by applying the Green’s
second identity in the frequency domain.

Let us define the Fourier transform of function f(t) as

F (ω) =

∫ ∞
−∞

f(t)e−jωtdt. (17)
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By replacing r̄ by r̄′ in (5)-(7) and taking the Fourier transform
of them and also (14)-(16) in terms of t, we obtain

D∇2C(r̄′, ω)− kdC(r̄′, ω) + S(r̄′, ω) = jωC(r̄′, ω), (18)

Di∇C(r̄′, ω) · n̂|r∈∂Di
= Li(ω)C(r̄′, ω) + Sib(r̄

′, ω),

i = 1, · · · , NR
b

(19)

C(r̄′, ω) = Sib(r̄
′, ω), i = NR

b + 1, · · · , NR
b +ND

b , (20)

D∇2G(r̄, ω|r̄′, t′)− kdG(r̄, ω|r̄′, t′) + δ(r̄ − r̄′)e−jωt
′

= jωG(r̄, ω|r̄′, t′),
(21)

Di(ω)∇G(r̄, ω|r̄′, t′) · n̂|r∈∂Di
= Li(ω)G(r̄, ω|r̄′, t′),
i = 1, · · · , NR

b

(22)

G(r̄, ω|r̄′, t′) = 0, i = NR
b + 1, · · · , NR

b +ND
b , (23)

where C(r̄′, ω), G(r̄, ω|r̄′, t′), Li(ω) and Di(ω) denote the
Fourier transforms of c(r̄′, t), g(r̄, t|r̄′, t′), and differential
operators Li and Di, respectively.

By considering Nb infinitely thin cuts, the boundaries
∂Di, i = 1, · · · , Nb can be connected together and form a
closed boundary denoted by ∂D. Considering that C(r̄′, ω)
and G(r̄, ω|r̄′, t′) are both twice continuously differentiable
functions on D, the Green’s second identity [41] holds and
we can write∫
D

(G∇2C − C∇2G)dV ′ =

∮
∂D

(G∇C · n̂− C∇G · n̂)dS′,

(24)

in which C and G shortly denote C(r̄′, ω) and G(r̄, ω|r̄′, t′),∫
D

and
∮
∂D

represent the volume and surface integrals over D

and the closed boundary (path) ∂D, respectively, and n̂ is the
outward pointing normal to the surface element dS over the
boundary. The right-hand side integral over the entire boundary
∂D can be written as the sum of the closed integrals over the
boundaries ∂Di, i = 1, · · · , Nb and integrals over the cuts
between them. The integrals over the cuts tend to zero for
infinitely thin cuts and we are left with the integrals over
∂Di, i = 1, · · · , Nb. Thereby, (24) can be rewritten as∫

D

(G∇2C − C∇2G)dV ′ = (25)

Nb∑
i=1

∮
∂Di

(G∇C · n̂− C∇G · n̂)dS′.

Also, by breaking the series into two series over NR
b gener-

alized Robin’s boundaries and ND
b Dirichlet boundaries, we

rewrite (25) as (26) at the top of the next page. Now, by
substituting ∇2C and ∇2G from (18) and (21) in the left side,
∇C · n̂ and ∇G · n̂ from (19) and (22) in the first term of the
right side, and C and G from (20) and (23) in the second
term of the right side, respectively, applying some simple
manipulations, (26) reduces to the linear integral equation (27)
at the top of the next page. Therefore, the diffusion problem
for any given volume or surface molecule source is reduced
to obtain the Green’s function of the problem.

Obtaining the Green’s function in a closed-form expression
is very challenging, but possible for some symmetric geome-
tries (boundaries) [21], [24]. In the next section, we provide the
method of moments approach to obtain the Green’s function
numerically in which the diffusion problem reduces to a linear
system of equations with unknown variables as coefficients of
a set of basis functions.

IV. SEMI-ANALYTICAL METHOD

Suppose that g(r̄, t|r̄0, t0) denotes the CGF for diffusion
in the environment D, i.e., the concentration of information
molecules at r̄ and time t given the impulsive point source
S(r̄, t, r̄0, t0) = δ(r̄ − r̄0)δ(t − t0) mol s−1 m−3, that satis-
fies the time domain diffusion equation (14) subject to the
boundary conditions (15)-(16) and corresponding frequency
domain equation (21) subject to the (22)-(23). In the following,
we relate the frequency domain CGF of G satisfying (21)
given the boundary conditions (22)-(23) to the known CGF
of the unbounded environment (the environment without any
boundaries) by employing the Green’s second identity leading
to a linear integral equation.

Now, consider the diffusion equations for the unbounded
environment given impulsive point source S(r̄, t, r̄′, t′) =
δ(r̄− r̄′)δ(t− t′) in the time and frequency domains, respec-
tively, as follows

D∇2h(r̄, t|r̄′, t′)− kdh(r̄, t|r̄′, t′) + δ(r̄ − r̄′)δ(t− t′)

=
∂h(r̄, t|r̄′, t′)

∂t
,

(28)

D∇2H(r̄, ω|r̄′, t′)− kdH(r̄, ω|r̄′, t′) + δ(r̄ − r̄′)e−jωt
′

= jωH(r̄, ω|r̄′, t′).
(29)

Considering that G(r̄, ω|r̄0, t0) and H(r̄, ω|r̄′, t′) are both
twice continuously differentiable functions on D, the Green’s
second identity [41] holds and we can write∫
D

(H∇2G−G∇2H)dV =

∮
∂D

(H∇G · n̂−G∇H · n̂)dS,

(30)

in which G and H shortly denote G(r̄, ω|r̄0, t0) and
H(r̄, ω|r̄′, t′),

∫
D

and
∮
∂D

represent the volume and surface inte-

grals over D and the closed boundary (path) ∂D, respectively,
and n̂ is the outward pointing normal to the surface element
dS over the boundary.

Similar to (26), we can break the integral at the right side
into individual boundaries and obtain (31) at the top of the
next page.

Now, by substituting ∇2G and ∇2H from (21) and (29) in
the left side, ∇G · n̂ from (22) in the first term of the right
side, and G = 0 from (23) in the second term of the right
side, respectively, applying some simple manipulations, (31)
reduces to the linear integral equation in (32) at the top of the
next page in which γ = 1 and 1

2 for r̄′ 6∈ ∂D and r̄′ ∈ ∂D,
respectively. We note that the coefficient γ = 1

2 appears for
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∫
D

(G∇2C − C∇2G)dV ′ =

NR
b∑

i=1

∮
∂Di

(G∇C · n̂− C∇G · n̂)dS′ +

Nb∑
i=NR

b +1

∮
∂Di

(G∇C · n̂− C∇G · n̂)dS′. (26)

C(r̄, ω)e−jωt
′

=

∫
D

G(r̄, ω|r̄′, t′)S(r̄′, ω)dV ′ +

NR
b∑

i=1

∮
∂Di

G(r̄, ω|r̄′, t′)Sib(r̄′, ω)dS′ −
Nb∑

i=NR
b +1

∮
∂Di

Sib(r̄
′, ω)∇G · n̂dS′. (27)

∫
D

(H∇2G−G∇2H)dV =

NR
b∑

i=1

∮
∂Di

(H∇G · n̂−G∇H · n̂) +

Nb∑
i=NR

b +1

∮
∂Di

(H∇G · n̂−G∇H · n̂)dS. (31)

H(r̄0, ω|r̄′, t′)e−jωt0 − γG(r̄′, ω|r̄0, t0)e−jωt
′

=

NR
b∑

i=1

∮
∂Di

G(r̄, ω|r̄0, t0)
(
H(r̄, ω|r̄′, t′)(DLi(ω)

Di(ω)
−∇H(r̄, ω|r̄′, t′) · n̂

)
dS +

Nb∑
i=NR

b +1

∮
∂Di

(
DH(r̄, ω|r̄′, t′)∇G(r̄, ω|r̄0, t0) · n̂

)
dS,

(32)

r̄′ ∈ ∂D since the concentration of molecules at one side
(inside) of the boundary is zero and then we have∫

D

G(r̄, ω|r̄0, t0)δ(r̄ − r̄′)dV =
1

2
, (33)

for r̄′ ∈ ∂D.
Eq. (32) is a second kind Fredholm integral equation [41]

and we refer to as concentration Green’s function integral
equation (CLIE).

Corollary 1. The CLIE suggests that the CGF at arbitrary
observation point r′ ∈ D, i.e., G(r̄′, ω|r̄0, t0) only depends on
the CGF and its gradient over the boundaries linearly, i.e.,

G(r̄, ω|r̄0, t0), r ∈ ∂Di, i = 1, · · · , NR
b (34)

∇G(r̄, ω|r̄0, t0), r ∈ ∂Di, i = NR
b + 1, · · · , Nb. (35)

In the next subsection, the numerical method of moments
is proposed to obtain these values at the boundaries. This
method can be employed for arbitrary geometries of environ-
ment. However, for some special geometries, CLIE can be
employed to obtain CGF in terms of closed-form expressions
by considering right choice of basis functions to represent the
Green’s function. In the following example, we obtain the
closed-form expression for CGF in a simple 2-dimensional
circular environment.

Example 3. Assume a circular environment with radius a and
Robin’s boundary condition given in (6). The polar coordinate
system is considered in which (r, ϕ) represent the radial
and azimuthal components of point location, respectively. The
integral

∮
dS in (32) reduces to a line integral

∫ 2π

0
(·)dϕ

over the circular boundary. To derive CGF in the circular
environment for an arbitrary point r̄′, G(r̄′, ω|r̄0, t0) from
(32), one needs to have the CGF at the boundary points
G(r̄, ω|r̄0, t0), r̄ ∈ ∂D, i.e., r̄ = ar̂ where r̂ is the radial unit

vector in the polar coordinate system. To obtain G(r̄, ω|r̄0, t0),
r̄ ∈ ∂D, the following series representation is employed

G(ar̂, ω|r̄0, t0) =

∞∑
m=−∞

gme
jmϕ, (36)

where,

gm =
1

2π

∫ 2π

0

G
(
ar̂, ω|r̄0, t0

)
e−jmϕdϕ. (37)

As the solution of (29), CGF for unbounded environment is
given by

H(r̄, ω|r̄′, t′) =
−j
4D

H
(2)
0

(
Q|r − r′|

)
e−jωt

′
, (38)

in which Q =
√
−jω/D. The series representations for

H(ar̂, ω|r̄′) in (38) and its gradient, ∇H(ar̂, ω|r̄′) · n̂, are ob-
tained as (39) and (40) at the top of the next page, respectively,
where Jm(·) and H(2)

m (·) are the Bessel and the second kind
Hankel functions of order m, respectively. Considering (32)
for the point r̄′ over the boundary, substituting H(ar̂, ω|r̄′)
and ∇H(ar̂, ω|r̄′) · n̂ from (39)-(40), applying (36)-(37), and
manipulating the two series in both sides of (32), lead to a
closed-form expression for gm given by (41) at the top of the
next page. For an arbitrary observation point r̄, utilizing (36)
in (32) yields the following expression for CGF in frequency
domain

G
(
rr̂, ω|r̄0, t0

)
=

∞∑
m=−∞

−gmH(2)
m (Qr)e−jmϕ(

−j
4D

Jm(Qa)L(ω) +
jQ

8D
(Jm−1(Qa)− Jm+1(Qa))

)
+
−j
4D
H(2)

0 (Q|r̄ − r̄0|).
(42)

Remark 1. Of note, the concentration of ligand-
receptor complexes over the boundary in Example
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H(ar̂, ω|r̄′, t′) =
−j
4D
H(2)

0

(
Q|ar̂ − r′r̂′|

)
e−jωt

′
=
−j
4D

∞∑
m=−∞

Jm(Qa)H(2)
m (Qr′)ejm(ϕ′−ϕ)e−jωt

′
, (39)

∇H(ar̂, ω|r̄′, t′) · n̂ =
−jQ
8D

∞∑
m=−∞

H2
m(Qr′)

(
Jm−1(Qa)− Jm+1(Qa)

)
ejm(ϕ′−ϕ)e−jωt

′
, (40)

gm =
−j
4DH

(2)
m (Qr0)Jm(Qa)ejmϕ0

γ + 2πa
(
−j
4DJm(Qa)H(2)

m (Qa)L(ω)− −jQ8D

(
H(2)
m (Qa)(Jm−1(Qa)− Jm+1(Qa))

)) . (41)

2, cARi(r̄, t|r̄0, t0)|r∈∂Di , can be obtained given the
concentration of information molecules A over the boundary
from (10) in frequency domain

CARi(r̄, ω|r̄0, t0)|r∈∂Di =
kf

jω + kb + kv
C(r̄, ω|r̄0, t0).

(43)

A. Obtaining unknown functions using method of moments

In this section, we employ the method of moments
to obtain the unknown functions, i.e., G(r̄, ω|r̄0, t0) and
∇G(r̄, ω|r̄0, t0), r̄ ∈ Di for a given ω in (32). The method
of moments expands the unknown functions in terms of a
set of basis functions with unknown coefficients (moments).
Applying this expansion to the CLIE (32) and adoption of
enough number of matching points of r̄′, we obtain a system
of linear equations of the unknown coefficients.

In CLIE given in (32), we define

B(r̄′) = H(r̄0, ω|r̄′, t′)e−jωt0 − γG(r̄′, ω|r̄0, t0)e−jωt
′
,
(44)

Ui(r̄) = G(r̄, ω|r̄0, t0), r̄ ∈ Di, i = 1, · · · , NR
b (45)

Ui(r̄) = ∇G(r̄, ω|r̄0, t0), r̄ ∈ Di, i = NR
b + 1, · · · , Nb,

(46)

and

Ki(r̄, r̄
′) = H(r̄, ω|r̄′, t′)

(DLi(ω)

Di(ω)
−∇H(r̄, ω|r̄′, t′) · n̂

)
,

r ∈ Di, i = 1, · · · , NR
b

(47)
Ki(r̄, r̄

′) = DH(r̄, ω|r̄′, t′), r ∈ Di, i = NR
b + 1, · · · , Nb

(48)
Therefore, (32) can be written as

B(r̄′) =

Nb∑
i=1

∮
∂Di

Ki(r̄, r̄
′)Ui(r̄)dS. (49)

Each boundary ∂Di is discretized (meshed) into Mi sub-
boundaries called meshes ∂Dmi ,m = 1, · · · ,Mi whose areas
are denoted by ∆Smi ,m = 1, · · · ,Mi. For sufficiently large
number of meshes (i.e., a sufficiently small areas of sub-
boundaries), Ui(r̄) is approximately constant at each mesh
∂Dmi . Thus, each mesh ∂Dmi ,m = 1, · · · ,Mi is represented
by point r̄mi ∈ ∂Di and Ui(r̄) value at the mesh ∂Dmi is

denoted by Ui(r̄mi ) = Umi . Therefore, Ui(r̄) can be expanded
in terms of pulse basis functions as follows:

Ui(r̄) =

Mi∑
m=1

Umi P
m
i (r̄), r̄ ∈ Di, (50)

where Pmi is the pulse basis function given by

Pmi (r̄) =

{
1 r̄ ∈ ∂Dmi
0 r̄ /∈ ∂Dmi

(51)

Substituting Ui(r̄) from (50), (49) is given by

B(r̄′) =

Nb∑
i=1

Mi∑
m=1

Umi

∫
∂Dm

i

Ki(r̄, r̄
′)dS. (52)

where Umi denotes the pulse function amplitude over the
mth mesh in the ith boundary. The integral in 52 can be
approximated by various quadrature rules like rectangular,
trapezoidal, Simpson’s and etc.

Based on (52), B(r̄′) and correspondingly G(r̄′, ω|r̄0, t0)
at arbitrary observation point r̄′ ∈ D can be computed, if the
coefficients Umi for all i = 1, · · · , Nb and m = 1, · · · ,Mi are
known. To obtain the unknown coefficients Umi for all i =
1, · · · , Nb and m = 1 · · · ,Mi, we can constitute independent
linear equations by matching the two sides of (52) at enough
number of observation points or test points r̄′ which is called
point matching technique.

To this end, we adopt
∑Nb

i=1Mi test points representing
the meshes, i.e., r̄lq , q = 1, · · · , Nb and l = 1 · · · ,Mq ,
where G(r̄lq, ω|r̄0, t0) and ∇G(r̄lq, ω|r̄0, t0) are (matches) our
unknown coefficients Uq(rlq) = U lq for q = 1, · · · , NR

b and
q = NR

b + 1, · · · , Nb, respectively. For each test point r̄lq ,
q = 1, · · · , Nb and l = 1 · · · ,Mq , we obtain the following
linear equation

B̃(r̄lq) =

Nb∑
i=1

Mi∑
m=1

Umi

∫
∂Dm

i

Ki(r̄, r̄
l
q)dS +

1

2
U lqe
−jωt′ ,

(53)
q = 1, · · · , Nb, l = 1, · · · ,Mq,

where B̃(r̄lq) = H(r̄0, ω|r̄lq, t′)e−jωt0 . We note that

U lq = 0, r̄ ∈ Di, q = NR
b + 1, · · · , Nb, (54)

since the Green’s function over the Dirichlet boundaries is
zero, i.e., G(r̄, ω|r̄0, t0) = 0 for r̄ ∈ Di as (23) implies. The
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matrix form of this linear equation system can be written as
follows

[B̃] =

(
[K̃] +

1

2
[I]e−jωt

′
)

[U ], (55)

where [B̃] and [U ] are vectors of length
∑Nb

i=1Mi whose
(
∑q−1
x=1Mx+l−1)th elements are B̃(rlq) and U lq , respectively,

[K̃] is a
∑Nb

i=1Mi ×
∑Nb

i=1Mi matrix whose ((
∑i−1
x=1Mx +

m − 1), (
∑q−1
x=1Mx + l − 1))th element is

∫
∂Dm

i
K(r, rlq)dS

and [I] is identity matrix of size
∑Nb

i=1Mi.
By solving the linear system of equations in (55), the

unknown coefficients Umi are obtained. Having the unknown
coefficients Umi , the Fourier transform G(r̄′, ω|r̄0, t0) can be
computed based on (32), for arbitrary observation point r̄′ for
each ω, given r̄0 and t0. Obtaining C(r̄′, ω|r̄0, t0) for all ω and
taking numerical Fourier transform inverse, the time domain
concentration g(r̄′, t|r̄0, t0) is resulted.

Example 4. Assume two objects (Nb = 2) in a 2-D unbounded
environment where each boundary is divided into two sub-
boundaries (M1 = 1,M2 = 1). The r̄1

1 and r̄1
2 represent the

meshes of objects 1 and 2, respectively, and the corresponding
surface areas are denoted by ∆S1

1 and ∆S1
2 , respectively.

Assuming the objects 1 and 2 have generalized Robin’s and
Dirichlet boundary conditions, respectively, (55) can be writ-
ten as (56) at the top of the next page.

Definition 1. Without loss of generality, we adopt t′ = 0
and define [K] = [K̃] + 1

2 [I] as the diffusion characteristic
matrix (DCM) for the considered environment which depends
on the Green’s function of the unbounded environment and the
geometry of the environment and independent of the source
location.

The DCM is independent of the source location. Thereby,
to obtain the unknown coefficients [U ] given any arbitrary
impulsive source δ(r̄− r̄0)δ(t− t0), the inversion of the DCM
does not need to be repeated.

Remark 2. The proposed SAM method utilizes both the
analytical and the numerical parts. The analytical CLIE
part relates the CGF value at an arbitrary point to the
CGF values at the boundary points. Thereby, the complexity
from n-dimensional diffusion environment reduces to the (n-
1)-dimensional boundaries. This makes the method signifi-
cantly less complicated compared to the simulation-driven
approaches that mesh the n-dimensional diffusion space. On
the other hand, the numerical method of moments provide
flexibility to take into account the arbitrary geometries and
number of objects in the DMCN.

B. Sequential semi-analytical method

In this subsection, we propose a sequential (step-by-step)
algorithm to obtain the Green’s function which is less com-
putationally complex than obtaining the Green’s function
in one step using the Green’s function for the unbounded
environment. To this end, we consider the inclusion of only
one boundary to the environment in each iteration until all
the boundaries are included. In this way, the large size matrix

inverse problem in (56) reduces to multiple small size matrices
which have lower computational complexity.

We consider a primary environment with some boundaries
with known Green’s function rather than the unbounded dif-
fusion environment considered in the previous subsection.
Consider diffusion environment denoted by D with some
boundaries (or obstacles) whose set of all points, is denoted by
∂D. Obviously, ∂D is empty for an unbounded environment.
Assume the Green’s function for this primary environment is
given by h(r̄, t|r̄′, t′) which satisfies (28) given its boundary
conditions on ∂D.

Assume H0(r̄, ω|r̄′, t′) is the Green’s function for the
unbounded environment we denote by E = 0. In the first
iteration i = 1, we consider the boundary i = 1 is added to
the environment E = 0 and form the environment E = 1
in iteration i = 1. Then, we constitute the matrix [K]
and compute its inverse which characterize the CGF for the
environment E = 1 in iteration i = 1 and provides the CGF
values over the meshes of boundary i = 1 based on (56).
Thereby, the CGF in the environment E = 1 at each arbitrary
observation point, H1(r̄, ω|r̄′, t′), can be obtained as linear
combination of the CGF values over the boundary i = 1. In
the iteration 2, the boundary i = 2 is added to the environment
E = 1 to form E = 2. The CGF for E = 2, H2(r̄, ω|r̄′, t′), is
obtained based on known CGF H1(r̄, ω|r̄′, t′). The algorithm
continues until all the Nb boundaries are included. Algorithm
1 represents this sequential algorithm.

Algorithm 1 Sequential SAM
Require: Set iteration number i = 0 and E = 0 as the

unbounded environment D0 = ∅ with CGF H0(r̄, ω|r̄′, t′),
1: while i < Nb do
2: i = i+ 1,
3: Consider environment E = i by including the bound-

ary i, Di, to the E = i− 1: Di = ∂Di−1 ∪ Di,
4: Constitute the matrix [K] and invert it,
5: Constitute the vector [B̃] by using the CGF
Hi−1(r̄, ω|r̄′, t′),

6: Compute the CGF over the meshes of the in-
cluded boundary Umi ,m = 1, · · · ,Mi which characterize
Hi(r̄, ω|r̄′, t′).

7: end while

Using this algorithm, the computational complexity signifi-
cantly decreases. Let us clarify this with an example. Assume
we have meshed Nb boundaries each with M meshes. Obtain-
ing the CGF in one step needs the inverse of the DCM of size
(the number of columns (rows)) (Nb×M) whose complexity
is of order O(N3

bM
3) by Gauss–Jordan elimination algorithm.

But, if we obtain the CGF in Nb iterations, we have broken
the problem into Nb inversion of DCM of size M where the
complexity is of order O(NbM

3).

Remark 3. The first step of the algorithm (i = 0) may start
from a bounded environment with closed-form expression for
its CGF. For instance, assume the transmitter(s), receiver(s),
and obstacles are in a tube-like environment whose CGF is
known [21]. Thereby, one can start the algorithm from this
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[
H(r̄0, ω|r̄11 , t′)e−jωt0

H(r̄0, ω|r̄12 , t′)e−jωt0

]
= (56)[

H(r̄11 , ω|r11 , t′)(Li(ω)−∇H(r̄11 , ω|r̄11 , t′) · n̂)∆S1
1 H(r̄12 , ω|r̄11 , t′)(Li(ω)−∇H(r̄12 , ω|r̄11 , t′) · n̂)∆S1

2
H(r̄11 , ω|r12 , t′)(Li(ω)−∇H(r̄11 , ω|r̄12 , t′) · n̂)∆S1

1 H(r̄12 , ω|r̄12 , t′)(Li(ω)−∇H(r̄12 , ω|r̄12 , t′) · n̂)∆S1
2

] [
G(r̄11 , ω|r̄0, t0)
∇G(r̄12 , ω|r̄0, t0)

]

Fig. 2. 2-dimensional diffusion environment with two elliptic objects (receiver
or obstacle) in the environment.

bounded environment and include other boundaries step-by-
step.

V. SIMULATION AND NUMERICAL RESULTS

As a proof of concept, we consider a diffusive molecular
communication system in 2-dimensional diffusion environ-
ment described in a Cartesian coordinate system where (x, y)
denotes the location of an specific point along the x−axis and
y−axis, respectively. Two elliptic objects are assumed in the
environment whose boundary points are given by all (x, y)
satisfying

(x− xu)2

b2u
+

(y − yu)2

a2
u

= 1, u ∈ {o, r, t}, (57)

where (xu, yu), au, and bu denote the center and the length
of semi-major and semi-minor axes of ellipse, respectively.
Each object may play the role of obstacle (o), receiver (r)
or transmitter (t) in different scenarios. Each boundary is
fully covered by the receptor proteins described in Example 2
characterized by

A + Ru
kuf
kub

ARu
kuv ∅, u ∈ {o, r, t}, (58)

We remark that the proposed results obtained in this paper
are independent of the number of dimensions and objects,
and the shape of objects. Hence, 2-dimensional environment
is leveraged as a proof of concept in this paper. For 3-
dimensional environment, the boundaries are surfaces that
require a more complex meshing compared to meshing for
line boundaries in 2-dimensional environment. Although, the
SAM has been proposed for any homogeneous boundary
conditions, we considered (58) for results section in this paper,
which is able to model some important types of boundaries
including reflective, fully absorbing, partially absorbing and
internalization processes, depending on the parameter values.
The diffusion coefficient of the information molecule A is
assumed D = 10−9 m2 s−1.

The rest of this section is organized as follows. We elaborate
the implementation of the proposed SAM and the PBS. Then,

we provide SAM and PBS results for the number of received
molecules (NRM) which is proportional to CGF in two
scenarios of single-object and double-objects in the diffusion
environment. Finally, we provide bit error rate results for
a simple on-off keying modulation scheme between elliptic
transmitter and receiver.

A. Implementation of SAM and PBS

SAM: We elaborate the SAM implementation for a simple
scenario where one elliptic object is located at the origin
and the point transmitter is located at r̄tx. When there are
multiple objects, the approach is similarly extended. As dis-
cussed in Section IV, given the point source at r̄tx, CGF
G(r̄′, ω|, r̄tx, t0) at an arbitrary point r̄′ is computed by (32) by
having G(r̄, ω|, r̄tx, t0) and ∇G(r̄, ω|, r̄tx, t0) for the bound-
ary points r̄ ∈ ∂D. G(r̄, ω|, r̄tx, t0) and ∇G(r̄, ω|, r̄0, t0) are
expanded in terms of pulse basis functions over the boundaries.
To obtain the unknown coefficients for these functions, the in-
tegral equation of (32) needs to be solved for some observation
points on the boundaries. This leads to the matrix equation
of (55) from which the vector of unknown coefficients is
computed.

To this end, the object boundary is meshed and the DCM
matrix is characterized. Corresponding each mth mesh, one
matching point (observation point) is considered whose loca-
tion (xm, ym) represents the midpoint of the mth mesh. For
the current 2D problem, the surface integral of (53) reduces
to a line integral and the element of mth row and nth column
of [K̃] (m 6= n) is approximated by the rectangular rule as3

K̃tmn ≈(L(ω)H(xm, ym|xn, yn)−DHx(xm, ym|xn, yn)nx

−DHy(xm, ym|xn, yn)ny)ln,
(59)

where ln is the length of nth mesh and

H(xm, ym|xn, yn) =
−j
4D
H(2)

0 (Qdmn), (60)

Hx(xm, ym|xn, yn) =
∂H(x, y|xn, yn)

∂x
|xm,ym

=
−j
4D

xm − xn
dmn

×H(2)
1 (Qdmn),

(61)

Hy(xm, ym, xn, yn) =
−j
4D

ym − yn
dmn

×H(2)
1 (Qdmn), (62)

where dmn =
√

(xm − xn)2 + (ym − yn)2. Considering the
obstacle whose center is located at the origin, the normal
vector at the boundary point (x, y) is given by

n̂ = nxx̂+ ny ŷ =
−x

a2

√
x2

a4 + y2

b4

x̂+
−y

b2
√

x2

a4 + y2

b4

ŷ, (63)

3The approximation approaches exact value for enough large number of
meshes.
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where x̂ and ŷ are unit vectors of coordinate system.
For (m = n) the Hankel function in (62) is singular and

we insert the small argument approximation of zero and first
order Hankel function to the line integral of (53) and perform
the integral analytically, which yields

[K̃]mm =
−j
4D

lm×(1−2j/π log(0.164Qlm)−jQ
2(l2m)

96
−jlm

π
.

(64)
Having DCM, [U ] is obtained from (55). By having [U ], time
domain CGF could be computed by taking inverse Fourier
transform from G(r̄′, ω|, r̄0) given by (32), for arbitrary ob-
servation point r̄′.

We note the frequency steps and the maximum frequency
to implement the proposed SAM in a convergent manner is
adopted ∆ω = 0.01 Hz and ωmax = 1000 Hz, respectively.

PBS: To confirm the proposed approach, a particle based
simulator (PBS) is implemented in MATLAB. In the PBS,
time is divided into time steps of ∆t s (seconds). In each time
step, the information molecule locations are updated following
random Brownian motion. The molecules move independently
in the 2D space. The displacement of a molecule in each
dimension over ∆t s is modeled as a Gaussian random
variable (RV) with zero mean and variance 2D∆t. Considering
the degradation reaction given in (4), a molecule may be
removed from the environment during a time step ∆t s,
with probability 1 − exp(−kd∆t) [43] that is approximated
with kd∆t for sufficiently small values of kd∆t . Based on
(58), if a molecule hits the boundary, the molecule may bind
with receptor type-Ru and produce complex type-ARu with
probability kuf

√
π∆t
D . We note that employing this probability

for simulating the boundary condition results in quantitatively
accurate PBS, when the simulation time steps or adsorption
coefficients are very small or the modeled system is kept well
mixed [44]. Each bound molecule has the chance to unbind
and return to the environment with probability 1 − e−k

u
b ∆t

or may be internalized to the boundary with probability of
1−e−kuv ∆t or remain in bound form. The number of molecules
released by the transmitter to perform the PBS (the number
of realizations) is NA ∈ {2× 106, 107} molecules.

B. Single-object scenario

We assume a single object in the environment whose center
is located at the origin and the point transmitter at r̄tx =
(−5, 0) µm. In order to evaluate the convergence of the SAM
in terms of number of meshes, we define an error function as
follows

Er(M) =
||
∫ ωmax

0
([U ]M − [U ]M−1)dω||

||
∫ ωmax

0
[U ]M−1dω||

, (65)

where [U ]M and [U ]M−1 denote [U ] obtained based on
meshing the object boundary with M and M − 1 meshes,
respectively, and || · || is the euclidean norm. Fig. 3 illustrates
Er(M) for circular object with different radius values ao, when
kof = 10−4 m s−1, kob = 20 s−1, and kov = 20 s−1. The method
is convergent with error ε, when there exist a number of
meshesM such that Er(M) < ε for all M ≥M. For example,
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Fig. 3. Convergence error (Er) and expected run time (ERT) versus number
of meshes for different obstacle radius.

we observe the convergence with error −10 dB occurs for
M ≥ 10 for all for ao values. As shown, the convergence
of the proposed SAM is fulfilled for the smaller number of
meshes, when the obstacle radius decreases.

Fig. 3 also includes the expected run time (ERT) versus
the number of meshes which is the same for different radius
values. It is observed that the ERT behavior is exponentially
increasing versus the number of meshes. However, it is still
very fast (around 100 s) even for the number of meshes
around 10. As mentioned before, the SAM is significantly less
complicated compared to the simulation-driven approaches
that mesh the n-dimensional diffusion space, since it requires
meshing the boundaries utilizing the analytical CLIE. SAM
method is even expected to be faster than the simulation-
driven approaches that use the discretized time and continuous
space as the most common simulation method within the MC
research community. For instance, the expected run time for
the PBS in the same computer in time interval [0, 0.15] s for
the same scenario is 2593 s and 12740 s when the number of
realizations are 2 × 106 and 107, respectively. The run times
are the same for different radius values. This is much larger
than the ERT for SAM which is around 100 s for 10 meshes
which gives the CGF in the time interval [0, 200] s.

Fig. 4 shows the NRM by a transparent receiver at (5, 0) µm
obtained from the SAM and PBS when the obstacle is
located at (0, 0) and the point transmitter is located at
r̄tx = (−5, 0) µm in a diffusive environment with kd =
20. The figure includes the SAM as well as PBS results
for partially absorbing obstacle (kof = 10−4 m s−1, kob =
20 s−1, kov = 30 s−1), fully-absorbing (kof = ∞) and fully-
reflective (kof = 0) boundary conditions when (ao, bo) ∈
{(2, 1) µm, (1, 1) µm}. As expected, increasing kof at the
obstacle leads to absorption of more molecules by the obstacle
which degrades the NRM at the receiver. Further, Fig. 4
enables capturing the effect of the obstacle shape on NRM.
Changing the shape of the obstacle from elliptic to circle
amplifies the NRM as expected. Also, we observe that the
degree of absorption at the obstacle (different values of kf )
does not change the peak time while the peak value changes
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Fig. 4. NRM at transparent receiver obtained from SAM and PBS when one
obstacle is in the diffusion environment with different boundary conditions
and geometries.
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SAM, r̄o = [0, 0], r̄r = [5, 0], ao = 2, bo = 1, ar = 1, br = 2
SAM, r̄o = [0, 0], r̄r = [5, 0], ao = 1, bo = 2, ar = 2, br = 1
SAM without obstacle, r̄r = [5, 0], ar = 1, br = 1
SAM, r̄o = [0, 0], r̄r = [5, 0], ao = 2, bo = 1, ar = 1, br = 1
PBS

Fig. 5. NRM at elliptic receiver obtained from SAM and PBS in the presence
(absence) of the elliptic obstacle for diffusion locations and geometries of
objects.

significantly. We observe that the SAM result for the special
case of fully-absorbing boundary, kf = ∞, has a minor
deviation from the PBS peak compared to the full match
in other cases. This slight deviation may arise from the
approximations in the numerical computations for the special
case of kf = ∞, e.g., computation of the self terms in the
DCM and the choice of basis functions.

C. Double-object scenario

In this subsection, we assume there are two elliptic objects
in the environment. First, consider one of the objects is the
receiver and the other one is the obstacle. The receiver is
located at r̄r with ar, br, and krf = 10−4 m s−1, krb =
20 s−1, krf = 20 s−1, when the fully-reflective obstacle is
located at r̄o with ao, bo, and the transmitter is located at
r̄tx = (−5, 0) µm. Fig. 5 illustrates the number of received
ARr molecules at the receiver for different locations and
geometries of the receiver and obstacle. For comparison, the
result for the scenario without the obstacle has also been
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SAM, Rx1, r̄r1 = [0, 0], r̄r2 = [5, 0]
SAM, Rx1, r̄r1 = [0,−2.5], r̄r2 = [0, 2.5]
SAM, Rx2, r̄r1 = [0,−2.5], r̄r2 = [0, 2.5]
SAM, Rx2, r̄r1 = [0, 0], r̄r2 = [5, 0]
PBS

Fig. 6. NRM obtained from SAM and PBS at two elliptic receivers located
at diffusion locations and with different geometries.

presented in this figure. We observe that PBS confirms SAM
results. The NRM obtained from SAM captures the effect of
the obstacle and see that the NRM weakens in the presence of
obstacle. Also, comparing the results in this figure for different
axes lengths of elliptical receiver and obstacle, reveals the
sensible affect on the NRM.

In Fig. 6, we have assumed two objects in the envi-
ronment as elliptic receivers with (ar1 , br1) = (1, 2) µm,
(ar2 , br2) = (2, 1) µm, kr1f = kr2f = 10−4 m s−1, kr1b =
kr2b = 20 s−1, kr1f = kr2v = 20 s−1, when kf = 10−4 s−1

and kb = 20 s−1 are considered for both receivers. This
figure depicts the NRM at the receivers whose centers are
located at two different configurations. In the vertical config-
uration, the receivers are located at r̄r1 = [0,−2.5] µm and
r̄r2 = [0, 2.5] µm and in the horizontal configuration they
are at r̄r1 = [0, 0] µm and r̄r2 = [5, 0] µm. As observed,
PBS follows accurately SAM results when there are also two
partially absorbing receivers in the environment. As expected,
it is observed that for vertical configuration, the NRM at both
receivers coincides. As observed, PBS follows accurately SAM
results when there are also two partially absorbing receivers in
the environment. As expected, it is observed that for vertical
configuration, the NRM at both receivers coincides.

D. Bit error rate

In this subsection, the average received signal at the receiver
obtained form SAM is used to compute the error probability
of diffusive molecular communication system between two
elliptic receiver and transmitter.

The transmitter is assumed to be an ellipse located at
r̄t = (0, 0) with (at, bt) = (2, 1) µm that releases molecules
uniformly over its boundary. Also, the boundary of the
transmitter reacts reflective against the molecules inside the
environment. The receiver is also an ellipse located at r̄r with
(ar, br) = (1, 2) µm. A simple on-off keying modulation
scheme is considered where 0 and 1 are represented by
instantaneously releasing 0 and Ntx molecules (on average) by
the transmitter, respectively. The receiver counts the number
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of ligand-receptor complexes ARr bounded over its surface at
sampling time ts which maximizes probability of observation
of the complex ARr by the receiver given the release of one
molecule from the transmitter in each time slot. We note that
a molecule released at any point over the transmitter boundary
may be observed at any point over the receiver boundary.
To derive the observation probability of a molecule at the
receiver, we average over the concentration Green’s function
for ligand-receptor complexes given the release points over the
transmitter boundary and also receiver boundary. Thereby, we
obtain

pobs(t) =

∫
r̄0∈∂Dt

∫
r̄∈∂Dr

CARr
(r̄, t|r̄tx, t0)dlrdlt

LrLt
, (66)

where Lr and Lt are circumference of the elliptic receiver
and transmitter, respectively, CARr

(r̄, t|r̄tx, t0) denotes the
concentration Green’s function of ARr complexes over the
receiver boundary point r̄ given the point transmitter at r̄tx
which is provided as the Fourier inverse of (43). The receiver
decides about the transmitted bit based on the observed
sample.

In each time slot t ∈ [0, T0], the release rate of molecules
can be modeled as a Poisson process [36] of Poisson(s(t))
given the average modulated signal s(t). Thus, the number of
the molecules observed at the receiver at time t ∈ [0, T0], i.e.
y(t), from the released molecules at this time slot follows the
Poisson process of y(t) ∼ Poisson (s(t)⊗ pobs(t)) where ⊗
denotes the convolution operator.

We employ a genie-aided decision feedback (DF) detector
in which a genie informs the detector of the previously
transmitted bits. Given the correct values of the previously
transmitted bits and equal probability of bits 0 and 1, the
Maxiumum-A-Posteriori (MAP) detector for a bit leads to a
threshold decision rule. Derivation of corresponding BER is
given in our previous works [21], [24].

Fig. 7 depicts the BER analysis versus time-slot duration
for different reception mechanisms (boundary conditions) at
the receiver krf ∈ {10−4, and + ∞} m s−1 and different
degradation constants kd ∈ {0, 20} s−1 when krb = 20 s−1,
krv = 20 s−1, ktf = 0, r̄t = (0, 0), r̄r = (0, 10) µm. As
expected, increasing krf , the NMR received at the surface of
the receiver increases which results in decreased BER. Also,
lower kd leads to a higher channel memory and then higher
inter-symbol interference in one hand, and in other hand, it
increases the channel gain. We observe that for this scenario,
the channel gain is dominant and decrease of kd from 20 to
0 leads to lower error probability. Fig. 8 demonstrates the
BER versus time-slot duration for different distances between
transmitter and receiver of {5, 7, 10} µm when kd = 20 s−1,
krf = 10−4 m s−1, krb = 20 s−1, krv = 20 s−1, ktf = 0, and
r̄t = (0, 0). As expected, the performance of the DMC system
significantly degrades by increasing the distance between
transmitter and receiver.

VI. CONCLUSION

In this paper, we proposed a semi-analytic method (SAM) to
obtain the fundamental concentration Green’s function (CGF)
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Fig. 7. Error probability for different boundary conditions at the receiver.
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Fig. 8. Error probability for different distances between the transmitter and
the receiver.

to model communication channels in the diffusive molecular
communication networks (DMCN) with multiple transmitters,
receivers, or other objects with arbitrary geometries and ho-
mogeneous boundary conditions. This method is significantly
less complex compared to the pure simulation approaches and
has higher flexibility for using in a wide range of geometries
and boundary conditions compared to the pure analytical
approaches. The proposed SAM relates the CGF at an arbitrary
point to the CGF values over the boundaries and the known
CGF for the unbounded environment through the concentration
Green’s function linear integral equation (CLIE). Using the
method of moments, obtaining the unknown CGF values over
the boundaries is reduced to the inverse of diffusion char-
acteristic matrix (DCM). The DCM elements are functions of
Green’s function for unbounded environment and the geometry
of the environment, independent of the source location and
observation point. Further, we proposed the sequential SAM
which includes boundaries to the environment sequentially.
Thereby, the overall computational complexity decreases by
transforming the inverse of a large matrix to the inverse of
multiple smaller matrices. Also, the sequential SAM method
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enables us to reuse the Green’s function of the environment
when a new object e.g., transmitter, receiver, or obstacle is
added to the environment. Provision of a simulator based on
the proposed method seems emergent for the area of molecular
communication which is left for the future.
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