
N
eural N

etw
orks on Low

-Rank and Stiefel M
anifolds

Cam
illa Balestrand Klem

etsen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Camilla Balestrand Klemetsen

Neural Networks on Low-Rank and
Stiefel Manifolds

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni
June 2022

M
as

te
r’s

 th
es

is

Camilla Balestrand Klemetsen

Neural Networks on Low-Rank and
Stiefel Manifolds

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

In the context of deep learning as optimal control, we investigate the effects
of training neural networks on the low-rank and Stiefel manifolds. Low-rank
and orthogonality is preserved through numerical geometric integration. In
this way, we formulated networks evolving on lower-dimensional manifolds.
This is based on the hypothesis that we do not need the entire dimension
of the input space to make a classification. We see that Residual Neural
Networks (ResNet) performs as well on a truncated singular value decom-
position of the data as the original. We show that the developed methods
perform as well, or nearly as well, as the original ResNet formulation in
terms of accuracy. One of the methods is also an order-reduction method,
which has fewer trainable parameters per layer. Furthermore, we show that
our methods are more robust in terms of adversarial Fast Gradient Sign at-
tacks, and we argue that this benefit is a result of the structure-preservation
during numerical integration.

i

ii

Sammendrag

I denne oppgaven ser vi på effekten av dyp læring som optimal kontroll på
mangfoldigheter. Vi utvikler og trener flere nettverk som bevarer lav-rang
og ortogonalitet i treningsprosessen. Bibetingelsen til optimal kontroll prob-
lemet er en ordinær differensialligning, og invariantene blir bevart igjennom
geometrisk numerisk integrasjon av denne. Vi utviklet disse metodene etter
å ha sett at Residuale Nevrale Nettverk (ResNet) klassifiserte like godt med
input som var trunkert med singulær verdi dekomposisjon som orginale data.
De utviklede metodene klassifiserer like godt, eller nesten like godt, som den
orginale ResNet formuleringen. En av methodene er også en redusert-orden
metode som har færre trenbare parametre per lag i nettverket. Til slutt, så
viser vi at våre metoder er mer robust mot såkalte "Adversarial Attacks",
og argumenterer for at dette har sammenheng med bevaring av struktur og
i all hovedsak ortogonalitet.

iii

iv

Preface

This thesis is the final project of my master’s degree in Industrial Math-
ematics at the Norwegian University of Science and Technology. The work
has been done in close collaboration with my supervisor Elena Celledoni,
and I want to thank her for inspiring me though our conversations, and for
including me in research group meetings and conferences. I want to thank
the participants at MaGiC for giving motivating talks and for nudging me
in the right direction.

I also want to give a thanks to my family and friends for the encouragement
and always believing in me, not only the past semester, but through all my
years studying. Especially to my dad who always knew the struggle I was
going through. A special thanks to Matteland and my classmates for the
invaluable companionship and joy.

Lastly, I also want to thank myself for coming this far. I would never have
believed I would be finishing a masters degree in mathematics ten years ago,
and I am immensely proud of myself. But I could never have done this alone.

Bergen, June 22nd 2022,
Camilla

v

vi

Contents

List of Tables xi

List of Figures xv

1 Introduction 1

2 The Manifold Hypothesis and Reduced-Order Models 3

2.1 Smooth Manifolds and Topology 3

2.2 The Manifold Hypothesis . 4

2.3 Reduced Order Models . 6

2.3.1 The Singular Value Decomposition 7

2.3.2 Dynamic Low-rank Approximation 9

2.3.3 Dynamical Tensor Approximation 11

2.4 Closing remarks . 14

3 Deep Learning as Optimal Control 15

3.1 Classification using Neural Networks 15

3.1.1 Neural Networks . 16

3.1.2 Training the neural network: 20

vii

viii CONTENTS

3.2 Residual Neural Networks and Neural ODEs 22

3.3 Geometric Integration . 25

3.3.1 Projection Methods 26

3.3.2 Lie Group Integrators 30

3.3.3 Advantages and Disadvantages 33

3.4 Adversarial Attacks . 33

3.4.1 Fast Gradient Sign Method (FGSM) 34

3.5 Closing Remarks . 34

4 Numerical Experiments and Results 37

4.1 Setup . 37

4.2 Investigating the data sets . 40

4.3 Rank Evolution . 42

4.4 Networks on Low-Rank and Stiefel manifolds 45

4.4.1 Low-Rank . 45

4.4.2 Low-Rank and Stiefel 47

4.5 Adversarial Robustness . 51

4.5.1 Low-Rank . 52

4.5.2 Low-Rank and Stiefel 52

5 Discussion and Future Work 59

5.1 Background . 59

5.2 Results . 62

5.3 Future work: . 68

6 Conclusion 71

A Appendices 83

CONTENTS ix

A.1 The Cayley map . 83

A.2 The MNIST data set . 85

A.3 The FashionMNIST data set 86

A.4 The CIFAR10 data set . 87

A.5 The SVHN data set . 88

A.6 Summary of results of MNISTvsFashionMNIST on deep net-
works. 89

x CONTENTS

List of Tables

4.1 Table of performance results for Standard ResNet with differ-
ent input. 44

4.2 Table of maximum training and validation accuracy for the
different networks on MNIST and FashionMNIST. N “ 5000, V “

1500, and the time taken on 30 epochs and the step size h for
each method. 48

4.3 Table of best training and validation accuracy for the different
deep networks, L “ 100, on MNIST and FashionMNIST, and
the time taken on 30 epochs. The size of the training data
set was increased to 5000. 49

4.4 Table of maximum training and validation accuracy for the
different networks on CIFAR10 and SVHN, time taken to run
30 epochs. 50

xi

xii LIST OF TABLES

List of Figures

2.1 1-dimensional manifold. 4

2.2 Illustration of the Tucker Decomposition of a tensor. 12

3.1 Map from an image of 28 ˆ 28 pixels to a real number. 16

3.2 Simple Neural Network. 17

3.3 Left: Naming convention for weights and and activations from
one layer to another, here input- to first layer. Right: Graph
to the left translated into the full equation in matrix-vector
form. 19

3.4 Simple Residual Neural Network with two hidden layers of
constant width. The orange arrow indicates the residual con-
nection. 22

3.5 The two numerical geometric integration approaches we will
consider. 26

4.1 Rank of the matrix plotted for each image in data set. Note
that CIFAR10 and SVHN are grayscale. 40

4.2 The singular values of each matrix in data sets plotted as
points. 42

xiii

xiv LIST OF FIGURES

4.4 Left: Convergence of ResNets-10 with unperturbed input com-
pared to ResNets-10 compressed with truncated SVD as input
on MNIST and FashionMNIST. Right: The evolution of the
ranks of the output through the layers of the trained networks. 44

4.5 Convergence of ResNets on MNIST and FashionMNIST for
networks of depths L “ 10 and L “ 100. 45

4.6 Convergence of ResNets on CIFAR10 and SVHN for networks
of depths L “ 10. 46

4.7 Left: Convergence of the three methods; ResNet, Projection-
Net (Proj.) and DynamicNet (Dyn.) on both data sets.
Right: Evolution of the average rank of the output for each
layer in the trained networks. 47

4.8 Orthogonality error in U and V for ProjectionNet and Dy-
namicNet on MNIST and FashionMNIST for each layer of the
trained network. 49

4.9 Convergence of the standard ResNet, ProjectionNet (Proj.)
and DynamicNet (Dyn.) on CIFAR10 and SVHN. 50

4.10 Orthogonality error for ProjectionNet and DynamicNet on
CIFAR10 and SVHN for each layer of the trained network. . . 51

4.11 Accuracy of attempted Adversarial FGS Attacks for each value
of epsilon. 53

4.12 Accuracy of attempted Adversarial FGS Attacks for each value
of epsilon. 54

4.13 Examples of generated adversaries for each value of ϵ for
MNIST. The numbers above each image represent the ori-
ginal class and the predicted class. 55

4.14 Examples of generated adversaries for each value of ϵ for Fash-
ionMNIST. The numbers above each image represent the ori-
ginal class and the predicted class. 56

A.1 Top row: Original samples of MNIST data set Middle row:
Compressed images using truncated SVD of order k “ 2. Bot-
tom row: Compressed images using truncated SVD of order
k “ 3. 85

LIST OF FIGURES xv

A.2 Top row: Original samples of FashionMNIST data set Middle
row: Compressed images using truncated SVD of order k “

2. Bottom row: Compressed images using truncated SVD of
order k “ 3. 86

A.3 Top row: Original samples of the CIFAR10 data set Middle
row: Compressed images using Tucker Decomposition of rank
r “ r3, 3, 3s. Bottom row: Compressed images using Tucker
Decomposition of rank r “ r3, 9, 9s. 87

A.4 Top row: Original samples of the SVHN data set Middle
row: Compressed images using Tucker Decomposition of rank
r “ r3, 3, 3s. Bottom row: Compressed images using Tucker
Decomposition of rank r “ r3, 9, 9s. 88

A.5 Summary of results of training deep networks L “ 100 on
MNIST and FashionMNIST data sets. 89

xvi LIST OF FIGURES

Chapter 1

Introduction

Youth is easily deceived because it is quick to hope.
– Aristotle

In recent years, we have seen an increased interest in machine learning and
neural networks, and for good reason. New research has shown neural net-
works to be flexible and powerful. We are able to use them on problems
from speech recognition and natural language processing. It can also be
used to predicting weather patterns, increasing precision in cancer treat-
ments, robots and self-driving cars and many more. Whether or not it
is fully justified, deep learning is a topic of interest to the industry [37].
However, from a mathematical point of view, neural networks are not well
understood. However, numerical experiments show promising results and it
would be naive not to try to understand them as mathematical objects.

We can describe the continuously learning system as a differential equation.
We control the learning by tweaking the parameters of the equation. Then,
the differential equation is solved by determining the functions satisfying it.
This is often called integrating the equation. In this way, we can determine
the optimal parameters of the differential equation such that the learning
problem is solved. This is deep learning as optimal control.

We can describe the continuously learning system as a differential equation.
We control the learning by determining the parameters in the equation solv-
ing an optimisation problem. In this way, we can determine the optimal
parameters of the differential equation such that the learning problem is
solved. This approach is a way of interpreting deep learning as an optimal

1

2 Introduction

control problem [62, 28, 26, 6, 21].

There are many ways to integrate ordinary differential equations (ODEs).
When the closed-form analytical solution cannot be found, we resort to
numerical solutions. Within numerical integration, structure-preserving al-
gorithms emerged from many different research areas. Areas such as mo-
lecular dynamics, mechanics, theoretical physics and other fields of compu-
tational science. They required the use of numerical methods preserving,
to high accuracy, fundamental geometric properties of the underlying sys-
tem. These methods showed improved qualitative behaviour compared to
traditional general-purpose methods [29]. Therefore, investigating which
properties these methods have in the field of machine learning is intriguing.

Artificial intelligence and machine learning algorithms are entering the real
world. We see classification algorithms, anomaly detectors, automation al-
gorithms in self-driving cars and many more. As these algorithms enter the
real world to relieve humans of tedious tasks we are also, therefore, relying
on these algorithms to be robust to changes and malicious attacks. For this
reason, a better understanding of these as mathematical objects may help
us on the path to more robust models.

In this thesis, we will use geometry to motivate structure preservation in
neural networks. In particular, the Manifold Hypothesis. This allows us to
formulate methods for conserving orthogonality and low-rank in the training
of the neural network. We will conduct experiments and show how the
performance does not deteriorate using these methods. Lastly, we also show
some promising results on adversarial attacks, where the developed methods
perform better than the traditional Residual Neural Network.

This thesis is structured as follows. Chapter 2 presents the Manifold Hypo-
thesis the and motivation behind the thesis. Methods for linear dimension-
ality reduction are presented and discussed. Chapter 3 gives an introduction
to the theory behind deep learning with neural networks for the classification
problem. More specifically we introduce the Residual Neural Network which
we use as a nonlinear transformation to learn image manifolds. In Chapter
4 we investigate and implement some of the theory and algorithms discussed
in the previous chapters on several data sets. We show and compare their
performance and test the methods’ robustness to adversarial attacks. In
Chapter 5 we examine and discuss the numerical results, and provide sug-
gestions for future work. Then we conclude our findings in Chapter 6.

Chapter 2

The Manifold Hypothesis and
Reduced-Order Models

Of course this is happening inside your head, Harry,
but why on earth should that mean it is not real?

– Albus Dumbledore, Harry Potter and the Deathly Hallows

In this chapter we will introduce the manifold hypothesis. This hypothesis
motivates the choice to look for and conserve underlying structures in data
sets. In particular, manifold structures. Then we proceed into reduced-order
models and illustrate why reduced-order models and the manifold hypothesis
share similar goals. This enables us to do a reduced-order coordinate change
where the goal is to preserve these structures. The models presented in this
chapter will be combined with the neural network in the next chapter.

2.1 Smooth Manifolds and Topology
When working with images or videos, these data types are represented by
matrices. The columns of a matrix A P S Ă Fn span a (linear) subspace
S, and the column rank gives the dimension of S. Thus, the gray-scale
image can be though of as a surface S Ă Rmˆn, where the dimension of the
image is pm ˆ nq pixels. Therefore, the set of all pm ˆ nq matrices forms a
vector space. Assume, for a moment, that the collected images are all full
rank. Then, this collection of images form a manifold [2]. A differentiable
manifold is a topological space with local coordinate patches that allow for
differentiability [60]. A 1-dimensional manifold is shown in Figure 2.1. The

3

4 The Manifold Hypothesis and Reduced-Order Models

Figure 2.1: 1-dimensional manifold.

blue line has zero volume and area, but the curve lives in the plane R2.
The manifold is locally Euclidean; it is homeomorphic to R1. Furthermore,
a 2-dimensional manifold, such as a sphere in R3, is locally a flat plane.
This concept is important as this allows us to work with derivatives and
continuous maps in the manifold setting. These local coordinate patches are
referred to as charts. A chart ϕ on the manifold M is a bijection of a subset
of M onto an open subset of the Euclidean space Rmˆn Ą M. If we can
cover the manifold with charts we form an atlas. If the charts making up
the atlas are diffeomorphisms, then the atlas is smooth and differentiable
[60]. The existence of tangents on the manifold is the single most important
property of the manifold. Consider the point p P Mk. For any curve Y ptq
such that p “ Y pt1q, the tangent vector to Y 1ptq|t“t1 is an element of TpMk.
For a manifold Mk, the collection of the tangent planes at all points p P Mk

is the tangent bundle of the manifold and it is a manifold in its own right.
Finally, a (tangent) vector field on M is is smooth function F : M Ñ T M
such that F ppq P TpM for all p P M [46]. These tangent vector fields now
allows us to discuss differential equations evolving on manifolds, but we will
continue this discussion later in the chapter.

Whether the set of all images of size m ˆ n form a manifold is not known.
But, we can argue that images of numbers or faces are related [63]. This
structured relation is quite far from the set of all matrices, which also con-
tains white noise. Random choices will not generate the structure we see
in images of faces. This could be an indication that some classes of im-
ages, which have this structure in common, lives in a subset of this higher-
dimensional Euclidean space.

2.2 The Manifold Hypothesis
Data is being produced at a fast rate. As technology improves, we make room
for data of higher quality. In practice, this results in matrices and vectors of
higher dimensions. When studying images or matrices X P Rmˆn, the mani-
fold hypothesis assumes these images naturally lie in a subspace M Ă Rmˆn,

2.2. The Manifold Hypothesis 5

an embedded sub-manifold in this higher-dimensional Euclidean space. If a
manifold M is embedded into RD there exists a homeomorphism from M
to RD [9]. A high-resolution image is just a high dimensional sample of the
underlying image manifold. Therefore, by a certain coordinate change to
a chart on the manifold, we need fewer parameters to represent the image-
matrix [2]. Indications of the manifold assumption to be true could be ob-
served as the images not being of full rank, i.e. the matrix does not span the
whole space or other properties inherent to the matrices. If this is the case
for all images in this class, it might be a strong indication for the manifold
hypothesis to be true. Finding this underlying structure may help us reduce
the complexity at hand, and we can apply more computationally efficient
techniques for image classification and so on. The manifold hypothesis can,
in some sense, explain why deep learning performs so well at classification
problems, making sense of large amounts of high dimensional data. It only
needs to focus on key features as the data lives in a subspace of the input
space [12].

There seems to be other motivating factors for learning the underlying man-
ifold. If we imagine the data manifold as a surface, where each point is an
image, traversing along the manifold and we get another valid sample, as
seen in [82]. In [34], they show that we might end up learning unwanted
traits if one introduced too much noise into the data set. For instance, there
might be a sub-manifold in the animal manifold which contains cats. Mov-
ing away from this, i.e. perturbing the image, we find animals that look like
cats but are not, or just noisy images.

The manifold hypothesis has a collection of theoretical and experimental
indications. Numerous papers have been produced to confirm the manifold
assumption using carefully constructed high-dimensional data sets, such as
in [19, 4, 70]. In these articles, the authors try to verify whether points
on a low dimensional manifold can be projected onto a higher-dimensional
manifold. They show that samples from a circle can be projected onto the
sphere.

We can argue that related data are close in space, as they share some of
the same properties and are therefore, in a sense, similar. This is the idea
behind clustering techniques such as K-means, where we assume each class
k P K is contained in a separate sub-manifold. Therefore, using the notion
of distance from topology and geometry is a natural tool to analyse various
kinds of data, as argued in [8]. In this paper, the author argues that we
should not restrict our attention to properties dependent on the choice of
coordinates, as these are not inherent to the data and do not carry meaning

6 The Manifold Hypothesis and Reduced-Order Models

themselves. Coordinates typically show the data from a point of view and
will not show the complete picture. Topology can shed light on this issue,
as topology studies geometric properties that are insensitive to metrics such
as curvature and thus are coordinate-free.

It is worth noting that the manifold hypothesis is not always true. However,
according to the Johnson-Lindenstrauss lemma [48], we can always construct
a lower-dimensional representation of our data, which preserves a desired
property, like the orthogonal projection. More accurately, a set of points
in a high-dimensional space can be embedded into a low dimensional space
such that distances are nearly preserved. This means that we can select
invariants in the data and embed them into lower-dimensional spaces. So
even if the manifold assumption breaks in our case, we could still hope to get
some value from our model. We will investigate data sets to see whether we
can find indications of a lower-dimensional structure, in particular low-rank
and orthogonality. This will allow us to train a network on these manifolds.

2.3 Reduced Order Models
Under the assumption of the manifold hypothesis; manifold learning aims
at finding these key parameters to reduce the dimension of the problem.
Dimension reduction and manifold learning are interrelated so that solving
one leads to the solution of the other [81]. Therefore, it is tempting to
use dimension reduction and manifold learning techniques such as Principal
Component Analysis (PCA) and multidimensional scaling (MDS), Isomap
and Local Linear Embedding (LLE), to name a few, as seen in [9, 15, 74]
for manifold learning. In our case, we will focus on dimension reduction
methods.

From geometry, if two objects have the same shape but are, i.e. rotated or
scaled, we say two objects are similar. In Euclidean spaces, a bijection from
the space onto itself that scales or rotates points in a fixed ratio is a similarity
or a similarity transformation. Such similarities preserve invariants [68]. We
are interested in similarity transforms for matrices. The matrix A P Rnˆn

can be expressed as a product of other matrices which share many properties
with A, but might have a more useful form.

Definition 2.1 We say that the matrices A,B P Rnˆn are similar if there
exists an invertible matrix M such that

B “ M´1AM. (2.1)

2.3. Reduced Order Models 7

The matrix M provides a similarity transformation from A to B. In the
case of M being unitary, we say A and B are unitarily equivalent.

Both Schur’s lemma and the spectral theorem present similarity transform-
ations for square matrices. In the more general case of rectangular matrices,
we need matrices M1 and M2 of different sizes to satisfy (2.1). In this case,
we encounter the eigenvalue decomposition and the Singular Value Decom-
position (SVD), which we will be working with throughout the thesis. We
will also consider a continous interpretation of the SVD, the dynamic low-
rank approximation.

2.3.1 The Singular Value Decomposition

Let A P Rmˆn, and assume m ě n for simplicity. As A is a rectangular
matrix, there exist rectangular and orthogonal matrices, U and V , such that
(2.1) is satisfied. The orthogonal matrices U P Rmˆm where UTU “ Im and
V P Rnˆn where V TV “ In such that

A “ UΣV T , (2.2)

where Σ P Rmˆn. The diagonal matrix Σ has entries called the singular
values σi of A. The singular values σ1 ě ¨ ¨ ¨ ě σn ě 0 has corresponding
right and left singular vectors ui P U and vi P V of A. See [24, 41] for details
and proof.

Every matrix admits an SVD. However, if A is a rank r ă n matrix, the
remaining pn´ rq singular values will be zero. Hence, the remaining pm´ rq

columns of U and pn ´ rq columns of V are superfluous, as they will be
multiplied by zero. Therefore, if A is not full rank, the SVD is not unique. To
see this, choose Ũ “ UP and Ṽ “ V Q where both P and Q are orthogonal
we loose uniqueness if S̃ “ P TSQ. This yields Y “ USV T “ Ũ S̃Ṽ T . As
a consequence, the matrices U , V and Σ can be truncated without loss of
information. We call this the truncated or thin SVD [24].

In fact, the leading singular values and vectors contain the most "informa-
tion" so that truncating the matrix can be done with minimal loss. Say we
have a matrix A P Rmˆn of rank r, and we want to find a low-rank k ă r
approximation Ak of A, that is

min
AkPMk

||Ak ´ A||F , (2.3)

where Mmˆn
k denotes the set of all m ˆ n matrices of rank k. In fact the

truncated SVD is the solution to (2.3); the best approximation Ak to A.

8 The Manifold Hypothesis and Reduced-Order Models

That implies that Ak is given by

Ak “

k
ÿ

i“1

σiuiv
T
i . (2.4)

This is known as the Eckart-Young-Mirsky theorem [18]. Another important
result from this theorem is that the error in the low-rank approximation is
given by the largest omitted singular value;

||A ´ Ak||F “ σk`1.

Moreover, the result also holds for matrix-valued functions Aptq, t P r0, T s

[52]. The solutions U and V of (2.3), (2.4) are optimisation problems on the
Stiefel manifold, where the constraint is orthonormal matrices embedded in
Rmˆk for U and Rnˆk for V [2]. We define the Stiefel manifold as follows

Stpn, pq “ tU P Rnˆp : UTU “ Ipu.

Given the Singular Value Decomposition (2.2), we have by inserting V ˚V

A “ UΣV ˚ “ U pV ˚V q
loomoon

“I

ΣV ˚ “ W
loomoon

UV ˚

P
loomoon

V ΣV ˚

,

the Polar Decomposition. As W is the product of two unitary matrices, W
is also unitary; W P Stpm,nq. Furthermore, as Σ is positive semi-definite,
P is as well. Given a matrix A P Rmˆn, the first factor from the polar
decomposition is the best orthogonal approximation to A [40]. This polar
factor W can be found either from the SVD or from iteration methods
proposed in [38]. We will get back to the polar transformation in the next
chapter.

The SVD is a linear transformation, and as we cannot assume the manifold
to be Euclidean, we need tools for non-linear dimension reduction. In this
thesis, one of the main methods we will use is the SVD combined with a
Residual Neural Network, presented in the next chapter. A similar approach
can be seen in a paper from 1993 [49]. The authors combined a five-layer
auto-associative network presented by Oja in 1991 [66] with PCA to produce
a local linear method for non-linear dimension reduction. PCA alone typic-
ally fails, as seen in [69]. The author argues that PCA does not reflect the
typical variation in a data set. One can suspect that SVD will have similar
flaws as a method on its own.

2.3. Reduced Order Models 9

We seek to reduce the dimension of the images A. If we consider the trun-
cated decomposition of A such that we have thin and wide Uk P Stpm, kq, Vk P

Stpn, kq and Σ P Rkˆk non-singular, we have achieved a dimension reduc-
tion. But in order to utilise this dimension reduction we are dependent on
our model to be able to handle the separate matrices. Lastly, this is the
minimal loss approach to the original matrix while maintaining the basis for
the subspace and other useful properties of A. A continuous extension to
the SVD will be presented in the following subsection.

2.3.2 Dynamic Low-rank Approximation

Instead of finding a low-rank approximation of the data A P Rmˆn, see
Equation (2.3), we can derive a low-rank approximation for the derivative
9Aptq. This method was proposed by Koch & Lubich in 2005 [52]. The

method exploits the fact that Aptq is time dependent. The approximation
is obtained using a factorised form solving the differential equation for the
three factors, U , Σ and V .

Assume there exists a differentiable matrix-valued image classification func-
tion Aptq P Rmˆn with respect to t, which is able to transform and clas-
sify the images correctly. The goal is to find a low-rank approximation
Y ptq P Mmˆn

k to this function. We reformulate the problem as

min
9Y ptqPTY ptqMk

|| 9Y ptq ´ 9Aptq||F . (2.5)

The low-rank approximation Y ptq P Mk can be determined from its de-
rivative 9Y ptq P TY ptqMk by integration with this approach. The low-rank
differential equation has a solution evolving on the low-rank manifold. One
can think of this as the continuous low-rank approximation of the classific-
ation function Aptq.

By a differential equation evolving on M we mean a differential equation of
the form

9y “ F pt, yq, t ě 0, yp0q P M, (2.6)

where F P X pMq is the set of all vector fields on the manifold. The flow of
F is the operator Ψt,F : M Ñ M such that

yptq “ Ψt,F py0q (2.7)

where yptq is the solution of(2.6). The flow is obtained by computing the
exponentiation of the vector field. Computation of the flow is a particular
example of an exponential map [46].

10 The Manifold Hypothesis and Reduced-Order Models

Therefore, (2.5) can be can be seen as the orthogonal projection of 9Aptq on
TY ptqMk with respect to the Frobenius inner product. This orthogonality
condition can be expressed as

x 9Y ´ 9A, δY y “ 0, @δY P TY Mk. (2.8)

where the time dependence of 9Y ptq and 9Aptq has been omitted for ease of
notation. To find Y(t) we need to solve an initial value problem of non-
linear ODEs on Mk, complemented with the initial condition Y pt0q “ Ak “
řk

i“1 σiuiv
T
i . We cannot expect Y ptq to remain close to Akptq, which is

obtained by performing the SVD at every time step [52], and this is also not
necessarily the goal. We will later compare the two methods, the dynamic
low-rank approximation solution Y ptq to SVD at every time step Akptq.

We seek a unique and continuous low-rank approximation factorised on the
form

Y ptq “ UptqSptqV ptqT , (2.9)

where Uptq P Stm,k and V ptq P Stn,k with orthonormal columns evolve on
the Stiefel manifold [29]. Lastly, S P Rkˆk as seen in (2.2) is a diagonal
matrix, but here it is only assumed to be non-singular. To circumvent the
issue of non-uniqueness in equation (2.9), as seen in the SVD, we choose
a unique decomposition in the tangent space. Taking the derivative of the
matrix Y “ USV T we find an expression for the tangent space δY P TYMk

δY “ δUSV T ` UδSV T ` USδV T , (2.10)

where δS P Rkˆk, δU P TUVm,r and δV P TV Vn,r. Lastly, by imposing
the orthogonality constraints UT δU “ 0 and V T δV “ 0, the matrices δS,
δU and δV are now uniquely determined by δY . Rewriting the equations
and using (2.10) together with the orthogonality constraints we obtain the
corresponding equations in Theorem (2.1). The argument is described in
detail in [52].

Theorem 2.1 (Dynamic low-rank Approximation)
For Y “ USV T P Mk with nonsingular S P Rkˆk and with U P Rmˆk and
V P Rnˆk having orthonormal columns, condition (2.5) or (2.8) is equivalent
to 9Y “ 9USV T ` U 9SV T ` US 9V T , where

9S “ UT 9AV

9U “ pI ´ UUT q 9AV S´1

9V “ pI ´ V V T q 9ATUS´1

(2.11)

2.3. Reduced Order Models 11

Proof. [52]

Theorem (2.1) and the method it proposes is related to other matrix-valued
differential equations, in particular the smooth SVD presented in [14, 47].

A natural extension to (2.5) is the so-called minimum-defect low-rank ap-
proximation [29]. The matrix-valued differential equation 9A “ F pAq can be
approximated by replacing 9A in (2.5) by the approximation F pY ptqq,

min
9Y ptqPTY Mk

|| 9Y ´ F pY q||F . (2.12)

The approach of (2.12) is what we will continue with in the next chapter.
There we will use the low-rank approximation to approximate a vector field
generated and trained by a neural network. There we will also present a
first order integration method for the system (2.11).

2.3.3 Dynamical Tensor Approximation

Until now, we have only considered matrices. If we desire to evaluate images
of colour, additional dimensions need to be added. Most commonly, images
in RGB (Red/Green/Blue) have additional dimensions, such that for each
colour channel there is a matrix of the image size. This leaves us in a
position where an extension to tensors is needed. An extension of the low-
rank approximation to tensors can be found in [53, 64]. The first reference,
whose title is shared with this subsection, is the one we will discuss.

Similarly to the Dynamic Low-Rank approach (2.5) and the minimum-defect
low-rank approximation, (2.12) one can ask if there exists a low-rank ap-
proximation for tensors. For a fixed tensor A P RI1ˆ¨¨¨ˆIN , there are many
possible decompositions and approximations [54]. One of these is the Higher-
Order Singular Value Decomposition (HOSVD), commonly referred to as
the Tucker Decomposition, as it was introduced by Tucker in 1963 [78]. The
Tucker decomposition is a low-rank approximation. However, determining if
this is the best low-rank approximation is not an easy task, we are not even
sure if it exists [54]. The tensor equivalent to matrix rank is NP-hard to
compute, as shown by Håstad in 1990 [33]. Therefore, there does not exist
an efficient algorithm to determine the rank of a tensor. Before we define
the Tucker Decomposition, we need to set some notation and vocabulary.
We will follow the definitions and notations from [54, 53].

Let Y P RI1ˆ¨¨¨ˆIN . The number of dimensions of a tensor is referred to as
the order or modes. The tensor equivalent to rows and columns are fibers; see
Figure 2.2 in [54] for good illustrations. The norm of a tensor is analogous

12 The Manifold Hypothesis and Reduced-Order Models

r3

r2

r1
S

r1

I1 U1 I2

r2U2

Y

I2

I1

I3

–

r3

I1
U3

Figure 2.2: Illustration of the Tucker Decomposition of a tensor.

to the Frobenius norm of a matrix. The nth unfolding (matricization) of
Y P RI1ˆ¨¨¨ˆIN is the process of reordering the elements of the tensor into
a matrix. The nth unfolding is denoted Y pnq P RInˆIn`1...IN I1...In´1 , where
we arrange the mode-n fibers as columns in the resulting matrix. Note
that for each mode of the tensor, there exists an unfolding. The n-mode
(matrix) product is the multiplication between a tensor and a matrix in
mode n. Let B P RJˆIn be a matrix. The n-mode matrix product of the
tensor Y and the matrix B is denoted by Y ˆn B. Each mode-n fiber is
multiplied by the matrix B and the result is of size I1 ˆ ¨ ¨ ¨ ˆ In´1 ˆ J ˆ

In`1 ˆ ¨ ¨ ¨ ˆ IN . This implies that the nth mode of the tensor must match
the second mode of the matrix. We are now ready to introduce the Tucker
Decomposition. The Tucker Decomposition decomposes the tensor Y into a
core tensor S P Rr1ˆ¨¨¨ˆrN and N -matrices, Ui for i “ 1, . . . , N , along each
mode, see Figure 2.2. Every tensor Y admits a Tucker Decomposition [11].
The Tucker decomposition is defined as

Y “ S ˆ1 U1 ˆ2 ¨ ¨ ¨ ˆN UN :“ S
N

ą

n“1

Un,

Un P RInˆrn , and are orthogonal if the algorithm used to compute the
decomposition is the SVD. The dimensions r “ tr1 ˆ . . . rNu is known as
the Tucker rank of the tensor. Just as we can choose a truncation k in the
SVD we choose the Tucker rank r in the Tucker Decomposition. To show
the relation between the Tucker Decomposition and the SVD, we can write
it in terms of the nth unfolding

Y pnq “ U pnqSpnqpU pNq b ¨ ¨ ¨ b U pn`1qU pn´1q b ¨ ¨ ¨ b U p1qq
T ,

:“ U pnqSpnq

â

k‰n

UT
pkq,

2.3. Reduced Order Models 13

where b denotes the Kronecker matrix product. Similarly to the SVD, the
Tucker decomposition is not unique [53].

Consider a time-dependent tensor Aptq P RI1ˆ¨¨¨ˆIN , for 0 ď t ď T . Let Mr

be the manifold of Tucker rank r matrices

Mr “ tY P RI1ˆ¨¨¨ˆIN : Y has Tucker rank ru.

We can finally state the minimisation problem, known as the dynamical
tensor approximation, where Yptq P Mr is determined from (2.13)

min
9YptqPTYptqMr

|| 9Yptq ´ 9Aptq||, (2.13)

by linear projection. Similarly as in the matrix case, we end up with a
system of N ` 1 non-linear ordinary differential equations on Mr, with the
initial condition Yp0q “ X p0q in low-rank Tucker format. The arguments
from the matrix case can be extended to tensors, as seen in [53]. We will
state the result here

Theorem 2.2 For a tensor Y “ S
ŚN

n“1Un P Mr with rank r “ tr1, . . . , rNu,
core tensor S P Rr1ˆ¨¨¨ˆrN and n-mode factors Un P RInˆrn having orthonor-
mal columns, condition (2.13) is equivalent to

9Y “ 9S
N

ą

n“1

Un `

N
ÿ

n“1

S ˆn
9Un

ą

n‰k

Uk,

where the factors in the decomposition satisfy the system of differential equa-
tions

9S “ 9A
N

ą

n“1

UT
n , (2.14)

9Un “ pI ´ UnU
T
n qr 9A

ą

n‰k

UT
k spnqS

†
pnq

, (2.15)

where S:

pnq
“ ST

pnq
pSpnqS

T
pnq

q´1 is the pseudo-inverse of the n-mode unfolding
Spnq of S.

Proof. [53]

14 The Manifold Hypothesis and Reduced-Order Models

2.4 Closing remarks
Throughout this chapter, we have motivated the manifold hypothesis and
methods which take advantage of it. Along with the methods mentioned
in this chapter and our neural network, there exist many methods which
deal with manifold learning and reduced-order models. In [9], the author
suggests that the primary reason for the many algorithms is due to difficulties
in evaluating their performance. In most cases, in order to evaluate a specific
algorithm, it is run on an artificial data set and see if the result is "intuitively
pleasing". The theoretical estimates are typically coarse and few. Lastly,
if we are able to study the data set on the lower-dimensional manifold we
hope that we gain some robustness to adversarial attacks.

Chapter 3

Deep Learning as Optimal
Control

In the twenty-first century, the robot will take the place
which slave labor occupied in ancient civilization.

– Nikola Tesla

The goal of this chapter is to introduce Neural Networks implementing the
methods from the previous chapter. First, we introduce and motivate neural
networks and the classification problem. Then we will draw the connection
between the Residual Neural Networks and the discretised ODE and formu-
late the continuous learning problem. From the continuous learning problem
we will present methods for geometric numerical integration of the methods
from the previous chapter. Three networks for matrices and tensors will be
presented. These are the main methods of this thesis. Lastly, we will discuss
adversarial attacks as a way to measure robustness of these methods.

3.1 Classification using Neural Networks
When we see a picture of a blurry cat or a number in funny handwriting, we
are often immediately able to tell that it is, in fact, a cat and what number
it is. This task seems easy for a human to solve, but the question has been
for decades if we can enable computers to . In Figure 3.1, the blurry number
8 is shown in a 28 ˆ 28 grid, where the numbered cells indicate colour. Can
we find a function, or a computer program, that will take grids as input
and output a number? In machine learning, the goal is to learn functions

15

16 Deep Learning as Optimal Control

0

1

2

3

4

5

6

7

8

9

f

Figure 3.1: Map from an image of 28 ˆ 28 pixels to a real number.

known as classifiers; i.e a function f : Rmˆn Ñ R, such that given inputs
are mapped onto a set of labels [6]. One could call this a function on the
grid determined by the positions pi, jq for i, j “ 1, . . . , 28 in the matrix,
corresponding to certain points pxi, yjq in Rmˆn. In this example, we use
the interpolated model found to generalise and extrapolate to unseen data.

3.1.1 Neural Networks

Neural networks constitute a broad and rich class of models that have be-
come standard in image classification, speech recognition and many other
applications [59]. The name, neural network, is inspired by the brain where
groups of neurons are connected. The definition presented by Fiesler in [20]
is broad enough to describe all artificial neural networks as well as biolo-
gical ones. When we discuss neural networks, we will imply artificial neural
networks only. We will now present an overview of neural networks.

A feed-forward neural network, also known as a multilayer perceptron (MLP),
is a collection of nodes and edges between them. We assume the edges do
not form cycles of nodes. Information travels only one way; forward [44]. A
simple neural network is shown in Figure 3.2. We cluster the nodes, often
called neurons, in L layers, where layer l is a collection of nodes drls [20]. In
Figure 3.2 the network is fully connected. With this structure every neuron
in the previous layer is connected to every neuron in the present layer; see
also Figure 3.3.

Let X rls denote a vector space for any layer l P t0, 1, . . . , L ´ 1u [10]. The

3.1. Classification using Neural Networks 17

Input
layer

Hidden
layer

Output
layer

Figure 3.2: Simple Neural Network.

input layer X r0s “ X , in green, takes in the input data. If the input is a
matrix in Rmˆn we require a minimum m ˆ n input nodes. We denote the
input data txiu

N
i“1 and the corresponding nodes as xj P xi. The hidden

layers X rls for 0 ă l ă L, are the layers in blue. We say we have hidden
layers if L ě 2, then the network is referred to as deep [37]. In Figure 3.2, we
only have one hidden layer. We can choose the number of hidden layers L´1,
called the depth of the neural network. One can also choose the number of
neurons in each layer drls, called the width of the layer. Lastly, we have
the output layer X rLs “ Y in red. The nodes in the output layer represent
labels. We have one node for each class k P K. We denote the output as
yi P RK . The transition function f describes how to propagate through the
network and combine the layers from the initial state. One could also view
the network as a combination of simple parametric functions between layers
or feature spaces. We can define the neural network as the iteration between
parameterised layers as follows

Ψ : X ˆ Θ Ñ Y,

px, θq ÞÑ yL,

f rls : X rls ˆ Θrls Ñ X rl`1s,

where Θrls is the set of possible parameter values for layer l. This combina-
tion is typically done using function composition [10]. Lastly, if the number
of classes is smaller than the dimension of the input, K ă m ˆ n, we need
to include a layer η : X Ñ Y [6]. The neural network can be interpreted
as a composition of layers yrLs “ f rL´1spyrL´1s, θq ˝ ¨ ¨ ¨ ˝ f r0spyr0s, θq where
yr0s “ x; simple functions that can represent complicated ones. And now

18 Deep Learning as Optimal Control

the we can write the neural network as an iteration of the form

yr0s “ x, (3.1)

yrl`1s “ f rlspyrls, θrlsq. (3.2)

We have some immediate restrictions on a neural network. We do not want
an infinite amount of neurons, and the neurons typically hold values between
zero and one; xi P r0, 1s. Hence, we have finite-dimensional Euclidean vector
spaces as layers in the network. The value of the neuron i at layer j is called
the activation y

rjs

i . In the case of Figure 3.1, the pixel value corresponds
to the activation in the input layer. For the output, the highest activation
can be thought of as the network’s "choice" of label or the probability that
the label is correct. The activation of all the nodes in the layer X rl´1s

determine the activations in layer X rls. This is true for all layers, see Figure
3.3. To determine the activation of a neuron in this layer, we multiply
the activation from the nodes in the previous layer with the weights of the
connections between them. The input layer, containing n nodes with the
activation xi “ tx1, x2, . . . , xnu, is connected to the first hidden layer by a
set of weights collected in the matrix W r0s “ rw1,w2, . . . ,wns P Rnˆdr1s .
The number of elements in each vector wi P Rdr1s is determined by the
number of neurons in the first hidden layer dr1s; see Figure 3.3 [21]. The
neuron’s activation measures of how positive the weighted sum is. Lastly,
we add a bias brls “ tb1, . . . , bdrlsu P Rdrls to the weighted sum. If the value
passes a threshold, it will be activated. Writing all the equations for the
neurons activation’s in matrix-vector from we arrive at the equation seen in
Figure 3.3. The activations in each layer can be expressed as

yr1s “ σpW r0sx`br0sq,

yr2s “ σpW r1syr1s ` br1sq,

...

yrLs “ σpW rL´1syrL´1s ` brL´1sq,

where the activation function σ acts component-wise. Note, however, that
we do not typically put a bias vector on the input layer, leaving br0s “ 0.
The activation function σ : R ÞÑ R maps the linear combination of the
activation from the previous onto the interval r0, 1s for each neuron. The
activation function σ is a non-linear transformation. With this added non-
linearity, we enable the network to work around the fact that linear models
can only separate the input space into simple regions easily separated by a

3.1. Classification using Neural Networks 19

x1

x2

x3

x4

xn

y
r1s

dr1s

y
r1s

3

y
r1s

2

y
r1s

1

w1,1w1,1

w1,2w1,2

w1,3w1,3

w1,4w1,4

w1,nw1,n

...

...

“ σ
´

w1,0a
r0s

0 ` w1,1a
r0s

1 ` . . . ` w1,Na
r0s

d ` b
r0s

1

¯

“ σ

˜

d
ÿ

i“1

w1,ia
r0s

i ` b
r0s

1

¸

¨

˚

˚

˚

˚

˝

y
r1s

1

y
r1s

2
...

y
r1s

d

˛

‹

‹

‹

‹

‚

“ σ

»

—

—

—

—

–

¨

˚

˚

˚

˝

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n
...

...
. . .

...
wd,1 wd,2 . . . wd,n

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

x1

x2
...
xn

˛

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˝

b
r0s

1

b
r0s

2
...

b
r0s
n

˛

‹

‹

‹

‹

‚

fi

ffi

ffi

ffi

ffi

fl

,

yr1s “ σ
´

Wr0sx ` br0s
¯

.

Figure 3.3: Left: Naming convention for weights and and activations from one
layer to another, here input- to first layer. Right: Graph to the left translated into
the full equation in matrix-vector form.

hyperplane [44]. This is crucial, as more complex problems such as image
and speech recognition require the network to be insensitive to irrelevant
input variations, such as noise. But sensitive to differences between a toy
cat and a real cat. This is the selectivity-invariance dilemma; we require
a selective model for patterns that are important for discrimination and
invariant to irrelevant details [44].

Equation (3.3) shows examples of activation functions to choose from;

logitpxq “
1

1 ` exp´x
, ReLupxq :“ maxp0, xq,

softpluspxq :“ logp1 ` expxq, tanhpxq :“ 2logitp2xq ´ 1.

(3.3)

Experiments have shown that the choice of activation function does not have
much of an impact on neural networks’ performance [21]. A paper from 2011
[23] on the ReLU function showed that very deep neural networks benefit in
computational speed if the ReLU function is used in supervised training.

Now, the network is taking form as a stack of pretty simple modules. Each
layer contains trainable parameters and non-linear maps that increase the
input’s selectivity and invariance. It is clear that with many layers, the rep-

20 Deep Learning as Optimal Control

resentation power is increased. This enables the network to learn intricate
functions that classify complex problems. This is the key advantage of deep
learning [59]. When the depth and width of the network increase, the num-
ber of trainable parameters also increases. In [73], the author showed that
standard network types always gain representation power when the number
of layers increase. However, this comes at the cost of enormous computation
power. Therefore, we seek smaller networks with fewer trainable paramet-
ers with equal performance. A natural question to ask is how to determine
the optimal width and depth of the network. These questions will not be
addressed in this thesis.

We will now leave behind the discussion of individual nodes in the network,
and use this notation to describe individual data points and images. With
input data xi “ x P Rn, where n P N. Now we have, dr0s “ n, and for all
layers l “ t0, . . . , L´1u where the weight matrix W rls P Rdrl`1sˆdrls and bias
brls P Rdrl`1s [21]. The forward propagation of the data through the network is
defined as (3.2), with linear layers f rlspyrls, θrlsq :“ σpW rlsyrls`brlsq. Consider
the classification problem with K classes; yi “ yrLs P RK . Now it is clear
that Equation (3.2) leads to an algorithm for feeding input through the
network. The algorithm produces output in yrLs P RK , when combined
with the layer η. Now we only lack the training procedure [37]. When we
say we are training the network we are essentially solving the optimisation
problem of finding the optimal weights and biases of the network for correct
classification.

3.1.2 Training the neural network:

Assume a training data set N :“ pxi, ciq
N
i“1 of size N P N consisting of

samples xi P Rd and labels ci P RK , where ci has the dimension of the
output layer and is thus comparable to the network’s output yi P RK [21].
This data set contains examples xi of a problem we want the network to
be good at solving, and also the true label ci such that the network can
verify if it predicted right or not. If the network did not predict correctly,
we will have to adjust the weights and biases such that next time it will
give a correct prediction given this exact input. If it did predict correctly, it
will strengthen the weights and biases such that given this input next time,
it will be even more confident of its guess. After the network has achieved
optimal parameters based on the training data, we feed the network with
validation data, V :“ pxi, ciq

V
i“1 of size V P N, and test how well it performs

on data it has never encountered before. We measure the accuracy, correct
total ,

for both the training set and the test set to get an idea of how good the

3.1. Classification using Neural Networks 21

overall performance is.

We start by initialising the parameters. The initial trainable parameters
are set to zero or sampled from a distribution. The choice of distribution
will impact the network’s training, as shown in [30]. Now, given input data,
the network will give a prediction in the output layer, but most likely, it
will be incorrect. The error can be measured using the residual sum of
squares (RSS) (3.5). We call this the cost function (3.4) where JpΘq : RP Ñ

R, where P is the number of trainable parameters in the network. We
want to minimise the error it makes and thus find the minimum of the cost
function as we adjust the weights and feed it training data. We formulate
the minimisation of the cost function as follows;

min
W,b

"

JpW, bq ` RpW, bq

*

, (3.4)

RSS JpW, bq “
1

N

N
ÿ

i“1

1

2
||ci ´ yrLs||22, (3.5)

Cross-Entropy JpW, bq “ ´
1

N

N
ÿ

i“1

`

ci ¨ logpyrLsq
˘

. (3.6)

The cross-entropy loss, Equation (3.6), is frequently used over RSS as it
penalises really bad estimates. We can also add a term RpW, bq as seen
in (3.4), called a regularisation function that will ensure more control and
regularity of the parameters W, b [6]. Two options for the regularisation
function are techniques known from statistics as Ridge regression and Lasso
[76], known in machine learning as weight decay [44]. The Lasso (Least
Absolute Shrinkage and Selection Operator) technique uses the L1 penalty
with a linear model. Regularisation is also a solution if our problem at hand
is prone to overfitting [37]. However, regularisation comes with a price,
as even for small terms R, the performance of the neural net deteriorates,
especially for the validation data.

The efficient computation of (3.4) is called backpropagation, and the method
is often stochastic gradient descent or the ADAM method [51]. We find the
derivatives with respect to the trainable parameters and minimise. We divide
and shuffle our data into mini-batches and then optimise the network for each
batch. We do this to minimise the network learning a sequential pattern, and
each mini-batch gives a good approximation and improves computational
speed. If the number of trainable parameters W rls, brls@l and the data set

22 Deep Learning as Optimal Control

Figure 3.4: Simple Residual Neural Network with two hidden layers of constant
width. The orange arrow indicates the residual connection.

N is large, the task of computing the gradient vector is costly. Hence, we
end up minimising a single random gradient representing the complete data
set. This is known as vanilla stochastic gradient descent, and there are
many ways to optimise and vary the method. Now, we have both network
architecture and a way to propagate, optimise, and train the network by
updating the parameters.

3.2 Residual Neural Networks and Neural ODEs
A new deep learning architecture was proposed by He et.al in 2016 [35],
called Residual Neural Networks (ResNet). These networks were introduced
to improve learning in very deep networks, for instance 100 layers [35]. They
introduced a residual connection, an identity map, between layers. It per-
forms well when the number of layers is high, and performs better than
traditional feed-forward networks, defined previously (3.2). These deep net-
works long performed much worse than shallower models. He et al. achieved
state-of-the-art results using ResNets with 152 convolutional layers on image
recognition. Arguably, the increased performance stems from the presence of
the identity mapping that gives improved performance in the backpropaga-
tion [36].

The ResNet architecture is made from stacked units; given initial data x “

yr0s P X 0, the Residual Neural Network Ψ : X ˆ Θ Ñ Y where Ψpx, θq “

yrLs P Y is defined by the iteration l “ t0, 1, . . . , L ´ 1u

yr0s “ x,

yrl`1s “ yrls ` σpW rlsyrls ` brlsq.
(3.7)

3.2. Residual Neural Networks and Neural ODEs 23

Comparing this new architecture (3.7) to the one we discussed earlier (3.2),
we immediately notice that the only change is the addition of the previous
layer yrls to the new layer yrl`1s; the identity map, see Figure 3.4. Note that
the number of neurons have to be equal in all ResNet layers.

The ResNet formulation can be viewed as the discretisation of a time- and
parameter dependent differential equation. To justify the relation of Equa-
tion (3.7) to ODEs, let y,W and b be the time discretisation of the continu-
ous variables yptq : r0, T s Ñ Rd,W ptq : r0, T s Ñ Rdˆd, bptq : r0, T s Ñ Rd.
Define fpyptq, θptqq :“ σpW ptqyptq ` bptqq, such that

yrl`1s “ yrls ` hfpyrls, θrlsq, (3.8)

where h “ 1 if L “ T and l “ t0, . . . , L ´ 1u is a partition of the interval
r0, T s. Let h :“ ∆t and yr0s :“ yp0q. Rewriting the equation (3.8), gives us

yrl`1s ´ yrls

∆t
“ fpyrls, θrlsq.

Let ∆t ÝÑ 0, and we arrive at the continuous forward propagation

dyptq

dt
“ fpyptq, θptqq “ σpW ptqT yptq ` bptqq, @t P r0, T s (3.9)

where T is the time corresponding with the output layer L. The model
parameters θ “ pW, bq are now required to match the introduced functions
at time tj “ jh, such that yptjq “ yrls and θptjq “ θrjs for layer and time
step j [6, 21]. We can analyse the continuous formulation of (3.9) in the
general ODE framework. The ResNet formulation (3.7) is now recognised
as the forward Euler discretisation of the general ODE

yp0q “ x

9yptq “ fpyptq, θptqq, t P r0, T s.

As a consequence, we can establish a connection between the ResNet (3.7)
and an optimal control problem. In optimal control, the goal is to optimise
a functional of a dynamical system, subject to an ODE constraint. A dy-
namical system is defined by a function f : Rd Ñ Rd. We define the optimal
control problem as

min
uPU

J py, uq s.t 9yptq “ fpyptq, uptqq, yp0q “ y0, (3.10)

where yptq is called the state of the system at time t. The control uptq is a
time- varying function, independent of y, altering the behaviour of f . The

24 Deep Learning as Optimal Control

goal is to minimise the cost functional J py, uq by determining u P U in a set
of admissible controls [71]. For existence and uniqueness of optimal control
problems on the form (3.10), see the book by Sontag [71]. We will assume
existence of solutions to the optimal control problem, and focus solely on
the numerical aspect of the problem.

We assume that the cost function is only dependent of the last time-state.
We summarise the deep learning optimal control problem

min
y,u,Ŵ ,b̂

N
ÿ

i“1

|CpŴy
rLs

i ` b̂q ´ ci|
2, (3.11)

subject to the constraint

9yi “ fpyi, uiq, t P r0, T s,

#

yip0q “ xi,

yipT q “ y
rLs

i

(3.12)

where u “ pW, bq, and C is the hypothesis function. The parameters Ŵ :
Rd Ñ K, b̂ : Rd Ñ K reduce the output from last layer into a size com-
parable to ci. The hypothesis function, typically the softmax (normalised
exponentional function), maps the output of the network to a probability
vector that can be compared to the class label ci [6].

From a numerical point of view, we can see the neural network as an ap-
proximation method or a function approximator. In numerical approxim-
ation schemes; the error will decrease if we decrease the step size. From
The neural net iteration, Equation (3.2). We will approach the deep learn-
ing optimal control problem from the view of numerical analysis. We have
the continuous optimal control problem, for details see (3.11), (3.12), and
need to discretise it to get our algorithm for the training problem. We can
either optimise then discretise, or discretise then optimise [6]. Typically, we
first dicretise then optimise, and this is the approach we will take in the
next subsection. Following this approach gives automatically the formulae
for back-propagation, and the gradient of the cost function as we discussed
previously, as seen in [6, 21].This allows us to use automatic differentiation.
Using the first optimise then discretise approach gives us explicit formulas
for the gradient, but this will not be considered here.

Before we move into the numerical procedure we include a remark on the
connection between topology and ResNets. In the ResNet framework we
are training a vector field to move data points such that the network can
classify them. The network recognises differences, and separates them in

3.3. Geometric Integration 25

the feature space. In the manifold setting presented in the previous chapter,
our neural network (vector field) is moulding our manifold in such a way
that it is capable of classifying parts of it. In topology, we use continuous
deformation as a tool to classify different objects. The topology of the
data may impose challenges to this simple idea and a paper presented by
Dupont [16] illustrates the limitations such continuous deformations have.
The trajectories of the vector field cannot cross, and therefore it will in
some cases have problems with classifying nested structures. An example
is linked tori, or nested circles as seen in [16], the authors prove that there
are functions the Neural ODEs cannot represent. Therefore increasing the
dimension of the feature space, and thus the vector field, will allow it to move
things from inside holes to the outside of the holes. How can we determine
the number of nested structures in our image manifold? Can this enable us
to determine the number of additional dimensions we need to modify the
feature space with? We will not consider feature space augmentation, but
will briefly discuss it in Chapter 5.

3.3 Geometric Integration

Given data pxi, ciq
N
i“1, where xi P Rmˆn or xi P Rsˆmˆn, is either a black and

white image or a colour image with s colour channels. The corresponding
data point has the label ci P RK . Suppose the classification problem can
be formulated as the continuous optimal control problem (3.11) subject to
the constraints (3.12). We want to restrict the optimal control problem to a
lower-dimensional manifold. This is the low-rank k manifold Mmˆn

k where
we assume k ă m,n,

min
9ziPTziMk

|| 9zi ´ fpyi, uq||F , (3.13)

zptq “ UptqSptqV ptq or zptq “ S
N

ą

n“1

Un, (3.14)

where we have chosen the coordinates of z to be the Singular Value De-
composition or the Tucker Decomposition (Higher Order SVD) in the case
of tensors, introduced in the previous chapter. This implies that the con-
straint is a matrix or tensor valued differential equation on the low-rank
manifold.

The minimisation problem (3.11) is solved using the ADAM method every
time we receive a new suggestion from the pair (3.12),(3.13). Therefore, the
numerical approach consists of solving the pair (3.12), (3.13) to obtain a
solution for (3.11). Computing the solution of the ODE (3.12) restricted to

26 Deep Learning as Optimal Control

M
z0

ỹ1

z1 ỹ2

z2

ỹ3

z3

(a) Standard projection approach.

M
z0

z̃1 P Tz0M

z1 z̃2

z2 z̃3

z3

(b) Local coordinates approach.

Figure 3.5: The two numerical geometric integration approaches we will consider.

the low-rank manifold (3.13) can be done numerically by a simple integration
method to approximate the solutions (3.12), (3.13) at times tj “ jh for
j “ 1, . . . , L when h “ T {L. Where the time-step j, corresponds to the jth
layer of the network.

Recall that components of the SVD and Tucker decomposition evolve on the
Stiefel manifold. As a consequence, we are interested in integration methods
which conserve invariants, in particular orthogonality of U rjs “ Uptjq and
V rjs “ V ptjq. Note that in our definition of the constraints (3.12) and
(3.13), the invariant is only weakly inferred through being a part of the low-
rank manifold, and not a property of the equation itself. We will discuss
two numerical integration approaches. The first is to consider a standard
projection approach where we will take a step with a general purpose method
before projection with Polar or SVD. The other approach is considering local
coordinates, and therefore the Dynamic Low-Rank methods.

3.3.1 Projection Methods

This approach is based on the idea from the standard projection method [29].
We apply a one-step method in Euclidean space, and then make a projection
onto the embedded space, see Figure 3.5(a). We will in this section not
always distinguish explicitly between SVD/HOSVD. The principles remain
to control the rank and the orthogonality of the orthogonal factors. The main
difference between the SVD and the HOSVD is the number of orthogonal
matrices, and their dimensions. The matrix S P GLkpRq in SVD is a diagonal
matrix and the core tensor S P GLrpRq in the HOSVD. We will distinguish
only between them when necessary.

The obvious choice of Euclidean integrator of Equation (3.13) is the ResNet
evaluation step; the Euler method. We can either apply the integrator dir-

3.3. Geometric Integration 27

ectly to 9z, and project onto the low-rank manifold, or we can focus on the
components of z; U, S and V T .

Low-rank using SVD Projection

We focus on the discretisation of 9z and therefore only satisfy (3.14) indirectly.
Assume initial data on the form X0 “

řk
i“1 siuiv

T
i . Now, xi P Mmˆn

k is
low-rank and therefore f : Rmˆn Ñ Rmˆn, from equation (3.12). After each
step of the Euler method, we project the intermediate step ỹrj`1s, which
we cannot guarantee to be low-rank. We ensure this by decomposing the
output z̃rj`1s as follows

z̃rj`1s “ zrjs ` hfpzrjs, uq, zp0q “ xi,

USV T “ z̃rj`1s,

zrj`1s “

k
ÿ

i“1

siuiv
T
i ,

(3.15)

where
řk

i“1 siuiv
T
i is the truncation of USV T . Now we are guaranteed that

zrj`1s P Mmˆn
k .

This is equivalent to taking SVD to ensure that we are on the low-rank
manifold at every time-step. Note that we are propagating the full matrix
but with reduced rank at every time-step. So in this algorithm there is no
benefit from hoped possibility of dimension reduction. Instead we add the
cost of computing the SVD and matrix multiplication in every layer. Lastly,
note that the procedure is easily extended to tensors and the tucker(HOSVD)
Decomposition. If X i P Rsˆmˆn the Tucker Decomposition of X i of Tucker
rank r “ rs, k, ks, yields a tensor of the desired Tucker rank r. Lastly, let
f : Rsˆkˆk, and the procedure follows.

We will later refer to the network implementing the procedure (3.15) as SVD
ProjectionNet.

Orthogonality via Polar Projection

Assume initial data on the form xi “ rUk, Sk, Vks, where Uk P Stpm, kq, Vk P

Stpn, kq and Sk P GLkpRq. In this method, the main focus is on the or-
thogonal matrices U and V , where we let the S move freely. Each factor
will be considered separately. We will first discuss the matrix case before
considering the tensor case.

Let f : Rmˆk Ñ Rmˆk when m ě n. We introduce a padding to the
orthogonal matrix V and the matrix S to augment the size. We add pm´nq

28 Deep Learning as Optimal Control

rows to V and pm ´ kq rows to S such that

V̂ “ pV T ,0, . . . ,0
looomooon

pm´nq

qT P Rmˆk, Ŝ “ pST ,0, . . . ,0
looomooon

pm´kq

qT P Rmˆk.

Note that this padding does not break the orthogonality of V. We now have
a system of differential equations for each matrix in the decomposition

Ũ
rj`1s

k “ U
rjs

k ` hfpU
rjs

k , uq, U
r0s

k “ Uk,

S
rj`1s

k “ S
rjs

k ` hfpS
rjs

k , uq, S
r0s

k “ Ŝk,

Ṽ
rj`1s

k “ V
rjs

k ` hfpV
rjs

k , uq, V
r0s

k “ V̂k,

U
rj`1s

k “ projStpm,kqŨk,

V
rj`1s

k “ projStpm,kqṼk,

(3.16)

Projecting the U and V matrices by the polar decomposition is the optimal
orthogonal replacement in the Frobenius norm and is a direct result from
the best approximation [38, 29]. Other projection methods can be used, i.e
the QR decomposition.

The tensor case is more tricky, and there are multiple ways to set up a system.
We will only present one setup here, and discuss other methods in Chapter 5.
The tensor X i P Rsˆmˆn can be decomposed using Tucker rank r “ rs, k, ks

into a core tensor S P Rsˆkˆk and three orthogonal factors U1 P Rsˆk,
U2 P Rmˆk and U3 P Rnˆk. Assume m ě n, s and let f : Rmˆk Ñ Rmˆk as
in the matrix case. A similar padding is applied to each orthogonal matrix,
as follows

Û1 “ pUT
1 ,0, . . . ,0

looomooon

pm´sq

qT P Rmˆk, (3.17)

Û3 “ pV T ,0, . . . ,0
looomooon

pm´nq

qT P Rmˆk. (3.18)

For the core tensor S P Rsˆkˆk, we unfold the tensor into a matrix. In this
case, where the the first mode represents the number of colour channels, we
choose a 1-mode unfolding. This creates a matrix of size pkˆskq. Assuming
sk ď m, we create a padding for this new matricisised tensor as well. If
sk ą m, we need to use the tensor as guide, and pad the orthogonal matrices.

S “ pSp1q,0, . . . ,0
looomooon

pm´skq

qT P Rmˆk

3.3. Geometric Integration 29

This results in the system of equations

Srj`1s “ Srjs ` hfpSrjs, uq, Sr0s “ S,

Ũ
rj`1s

1 “ U
rjs

1 ` hfpU
rjs

1 , uq, U
r0s

1 “ Û1,

Ũ
rj`1s

2 “ U
rjs

2 ` hfpU
rjs

2 , uq, U
r0s

2 “ U2,

Ũ
rj`1s

3 “ U
rjs

3 ` hfpU
rjs

3 , uq, U
r0s

3 “ Û3,

U
rj`1s

1 “ projStpm,kqŨ1,

U
rj`1s

2 “ projStpm,kqŨ2,

U
rj`1s

3 “ projStpm,kqŨ3.

(3.19)

Again, the projection operator projSt could be any desirable orthogonal
projection. We have chosen the Polar projection. There are many ways to
compute this projection, see [39].

Throughout the network we maintain the augmented size of the matrices,
S,Ui, such that they can be evaluated by the network layer f . After the final
layer, before applying the classifier, we truncate the matrices and multiply
the propagated factors to reassemble the image. The core tensor S is folded
back into a tensor, the matrices are truncated and multiplied together with
the core to reassemble the image. Then we apply η : Rsˆmˆn Ñ K and
softmax to normalise prediction. For the matrix case, this implies we require
a layer η : Rmˆn Ñ K before applying the soft max in the matrix case. The
matrix S and the orthogonal matrices U and V are also truncated back to
the original size before we reassemble the image.

In this case, we propagate three matrices separately. Therefore, we get the
added dimension reduction bonus. Also, by ensuring that the matrices U and
V are orthogonal and of dimension pm, kq we also ensure that we stay on the
low-rank manifold as their product has rank k. But this time, the low-rank
is only implicit and only formed after the last layer L. In this algorithm, no
restrictions were put on the diagonal Σ matrix. The main reason for this
was that we wanted to focus on the orthogonality constraints, but also that
we wanted an algorithm which is more similar to the Dynamic Low-Rank
algorithm we will see in the next section. It is possible to put restrictions on
the Σ quite easily by doing the factorisation S “ S̃S̃T {2, but this has not
been explored.

We will later refer to the network implementing the procedure (3.16) or
(3.19) as ProjectionNet.

30 Deep Learning as Optimal Control

Advantages and Disadvantages

The cost of computing the SVD and the polar decomposition on high-
dimensional matrices is expensive, even on GPUs. This is a major drawback
for these "hard constraint" projection method. However, this is by far the
easiest to implement. These methods require fewer matrix multiplications
than the Dynamic Low-Rank methods in the next section.

The SVD ProjectionNet, equation (3.15), will only be a theoretical exper-
iment as it does not lead to a reduced model. It is mainly interesting to
investigate how the performance is affected by truncating the output to low-
rank. We will also test this methods robustness to adversarial attacks, to
see if there are any benefits from preserving low-rank.

For the ProjectionNet, the padding of the tensors and matrices is done only
once, when setting up the data set. Lastly, the factors of the decomposition
are not dependent on each other. The dependent approach will be considered
in the next section.

3.3.2 Lie Group Integrators

We now return to the optimal control problem (3.11) subject to the ODE
constraint (3.12) restricted to the low-rank manifold (3.13). We now want
to use local coordinates to solve the ODEs.

One way to choose local coordinates, which does not require a specific struc-
ture of the manifold, is to use tangent space parametrisation. We can think
of this as propagating in the direction of the tangent space, and then pro-
jecting down onto the manifold, as seen in Figure 3.5(b). Recall from the
section on dynamic low-rank approximation in the previous chapter that this
is the approach taken to derive the system of equations for the evolution of
the low-rank approximation. We will now revisit the last two methods dis-
cussed previously; the dynamic low-rank approximation and the dynamic
tensor approximation. The systems will be solved and discretised using a
simple first-order scheme.

Dynamic Low-Rank Approximation

We are interested in the low-rank approximation to the matrix valued differ-
ential equation (3.13), which we approximate by the neural network F pYi, uiq “
9Y . This yields the minimum-defect low-rank approximation (3.13) with co-
ordinates (3.14). Recall the system om non-linear ODEs from Theorem 2.1.

3.3. Geometric Integration 31

We restate the equations for the components here

9S “ UT 9Y V

9U “ pI ´ UUT q 9Y V S´1

9V “ pI ´ V V T q 9Y TUS´1

(3.20)

We have chosen the ease the notation by writing 9Y instead of F pY, uq, but
in the implementation, we evaluate F pY, uq.

The system (3.20) can be rewritten on the form

9S “ UT 9Y V,

9U “ pFUU
T ´ UF T

U qU, FU :“ pI ´ UUT q 9Y V S´1,

9V “ pFV V
T ´ V F T

V qV, FV :“ pI ´ V V T q 9Y TUS´T ,

such that we can apply the Cayley transform instead of the exponential map
for efficiency. The Cayley transformation can be defined as follows

cay : Rmˆm Ñ Rmˆm, caypBq “

ˆ

I ´
1

2
B

˙´1 ˆ

I `
1

2
B

˙

.

It is well known that if B is a skew-symmetric m ˆ m matrix then caypBq

is an orthogonal matrix, see Appendix A for more details.

A simple first order integration method for the system of ODEs can take the
form of a forward (Lie-)Euler method for the system. This method is given
by yn`1 “ expphFynqyn, where Fyn is the tangent vector field at the point
yn. We use the Lie-Euler methods for the equations evolving on the Stiefel
manifold. The diagonal matrix S P GLk is integrated using classic Euler.
This yields the discrete system

Srj`1s “ Srjs ` hU rjsT 9Y rjsV rjs,

U rj`1s “ cay
´

hpFU rjsU rjsT ´ U rjsF T
U rjsq

¯

U rjs,

FU rj`1s :“ pI ´ U rjsU rjsT q 9Y rjsV rjsSrjsp´1q,

V rj`1s “ cay
´

hpFV rjsV rjsT ´ V rjsF T
V rjsq

¯

V rjs,

FV rj`1s :“ pI ´ V rjsV rjsT q 9Y rjsTU rjsSrjsp´T q.

(3.21)

We have chosen this somewhat cumbersome notation to ease the extension
to tensors in the next subsection, and also keep consistency.

32 Deep Learning as Optimal Control

Dynamic Tensor Approximation

Lastly, we are interested in the low-rank tensor approximation to the tensor
valued differential equation (3.13) with the coordinates (3.14). In the case of
tensor valued differential equations on the low-rank- and Stiefel manifolds,
we apply the same first order time integration method as in the matrix
case. Recall the evolution of the Tucker decomposition from the section on
dynamic tensor approximation in the previous chapter

9S “ 9Y
N

ą

n“1

UT
n

9Un “ pI ´ UnU
T
n qr 9Y

ą

n‰k

UT
k spnqS

†
pnq

,

(3.22)

with the pseudo-inverse S:

pnq
“ ST

pnq
pSpnqS

T
pnq

q´1 of the n-mode unfolding
Spnq of S.

We present the solutions for mode N tensors X P RI1ˆ¨¨¨ˆIN , for simplicity.
The system (3.22) can be rewritten on the form

9S “ 9Y
N

ą

n“1

UT
n ,

9Un “ pFUnUn
T ´ UnF

T
Un

qU,

FUn :“ pI ´ UnU
T
n qr 9Y

ą

k‰n

UT
k spnqS

:

pnq
,

(3.23)

where we again write 9Y “ F pY , uq , Y “ S
ŚN

n“1 Un.

We discretise the equations (3.23) and arrive at the system

Srj`1s “ Srjs ` h

˜

9Y rjs
N

ą

n“1

U rjsT

¸

,

U rj`1s
n “ cay

´

hpF
U

rjs
n
U rjsT
n ´ U rjs

n F T

U
rjs
n

q

¯

U rjs
n ,

FUj :“ pI ´ U rjs
n U rjsT

n qr 9Y rjs ą

k‰n

U
rjsT
k spnqS

rjs:

pnq
,

(3.24)

where we have N orthogonal matrices, one for each mode and one tensor
equation. Note that in this case the N is the total number of n-mode factors
in the tucker decomposition, and not the size of the data set in the neural
network.

3.4. Adversarial Attacks 33

We will later refer to the network implementing the procedure (3.21) or
(3.24) as DynamicNet.

3.3.3 Advantages and Disadvantages

Compared to the SVD projection method, solving these differential equa-
tions are cheaper than computing the SVD at each time step. However, the
many matrix multiplications are also very expensive. Both the dynamic low
rank and dynamic tensor approximations do not augment the size tensors
or the matrices. However, in order to evaluate the vector field F we need
to reconstruct the images st every time step. This is very time-consuming.
Furthermore, the differential equations give smooth solutions evolving on
the manifold, however, it is unclear which benefits this might have. One
could suspect that manifold traversal makes more sense on smooth mani-
folds. Lastly, these methods are not yet order-reducing, but it has potential.
And especially for tensors and the Tucker decomposition one can potentially
reduce the order by a large factor if the image tensor is large.

3.4 Adversarial Attacks
Machine learning models have proven to be extremely effective at certain
tasks. As these models enter the real world, one aspect that is often over-
looked is the security and robustness of the models, especially in the face of
an adversary who wishes to fool the model. Awareness of the security vul-
nerabilities of these machine learning models, will in the future, only become
more and more important. In particular, neural networks are vulnerable to
adversarial attacks. Two types of adversarial attacks are adversarial noise
and adversarial rotation. We can carefully create noise such that when ad-
ded to the image, the network will misclassify, while the naked human eye
cannot see any difference. Furthermore, given a specific rotation to an im-
age reproduce the same misclassification of the algorithm, while a human
understands that the content of the image is only rotated. Adding such im-
perceptible perturbations to an image can cause drastically different model
performance [45].

There exist many methods that seek to fool our network, each with a dif-
ferent goal and assumption of the attackers’ knowledge. Black box models
assume the attacker only has access to inputs and outputs of the model,
and in white-box models, where the attacker has access to everything; the
data and network structure and trained parameters. There are different
goals for the attack; misclassification and source/target misclassification. If
the adversary only cares for the prediction to be wrong, the goal is simply

34 Deep Learning as Optimal Control

misclassification. On the other hand, if the adversary wants the perturbed
image to be classified within a specific class, then it specifies as source/target
misclassification [45, 80].

There exist a plethora of algorithms with different assumptions and accesses.
We will discuss a very popular white-box model with the goal of misclas-
sification called the Fast Gradient Sign Method (FGSM). See [80] for an
extensive list of methods and properties and also suggestions for defence
strategies. In this paper, the authors also shed light on the need to estab-
lish methodologies for robustness evaluations and benchmark platforms for
comparison and reproducibility. As deep learning models are entering real-
world applications, this research is becoming more and more important to
understand and prevent attackers from hacking our models [58]. One can
only imagine the damage that can be done to self-driving cars and the traffic
system.

3.4.1 Fast Gradient Sign Method (FGSM)

Let x be the input data, and y be the output. By linearising the cost function
Jpθ, x, yq around the current parameters θ, we obtain the max-norm optimal
constrained perturbation of

ξ “ ϵsignp∇xJpθ, x, yqq. (3.25)

See [25] for details. We can add this perturbation to the original image to
generate an adversary input

x̃ “ x ` ξ. (3.26)

The algorithm starts with an image the network correctly classified. Then
it adjusts the input to maximise the loss based on the computed gradient.
This adjusted input is added on top of the original image, creating a new
perturbed image. For larger and larger ϵ, this adjusted input becomes more
and more visible in the perturbed images. The adversarial attack will be
easier to detect for a human, but more effective on the network. This method
will be used on fully trained models to see how robust they are to subtle
changes in input [25].

3.5 Closing Remarks
There are other ways to control the parameters of the network. Many papers
have shown great results by controlling the weights of the network [61, 31,
42, 1, 3]. This might be two sides of the same coin, and therefore, the

3.5. Closing Remarks 35

connection might be worth exploring. Also, in the analysis of convergence
of the ResNet proposed in [75], they used regularisation of the weights as a
necessary condition for convergence. Finding similarities between restricting
the evolution of the network and the evolution of the internal weight could
yield another approach to the convergence of ResNets.

We can in many ways relate Adversarial Attacks (3.26), (3.25) to stability
of ODEs [72]. In the recent paper by Kang et.al [50], the authors show great
improvement in adversarial robustness using Lyapunov stability in Neural
ODEs, tested with the FGSM. Furthermore, one can also discuss the well-
posedness of the problem, see [27].

By imposing weight regularity, Lipshitz regularity, orthogonality one might
preserve mathematical properties such as convergence towards the analyt-
ical solution, generalisability, stability and well-posedness. We can design
networks and methods which preserves a problem specific structure, see [10].

Let us turn back to the example with handwritten digits. After training
the network, we can give the network a random picture of white noise. One
would hope that the network would gove an uncertain prediction, but often
this is not the case. One way to explain this behaviour is that the network is
not expecting this type of input. This is essentially the wrong classifier for
the problem at hand. The example illustrates how inflexible neural networks
can be and that they are good at particular tasks. They do not know what
the digit "actually" looks like but have just learned ways to reproduce the
correct answer. We call this phenomenon memorisation [44].

Over-fitting is another such problem. Here, the network performs well on the
training data set but does not perform as well on validation data. The model
does not generalise to new data and we can suspect the network has focused
too heavily on noise and unimportant patterns in the training data. If we
cannot see an improvement in the accuracy on the validation data during the
training process, we can terminate the training by early stopping. A related
technique to regularisation is dropout. Here, a random neuron is removed
with probability p during optimisation.

Another obstacle is the notorious vanishing- and exploding gradient problem.
In the papers from 1994 [5] and 2010 [22], the authors detail how and why
the gradient descent method in very deep networks will impede convergence.
Here, the networks’ weights are updated with an error proportional to the
current weights in each iteration of training. Thus, in some cases, the gradi-
ent will be vanishingly small, such that the weight will not change. In the

36 Deep Learning as Optimal Control

case of exploding gradients, the error grows, leading the gradient to increase
exponentially. In both, the model is incapable of learning efficiently, and in
the latter, the model is unstable. Solutions have been proposed and listed in
[35]. One such method is gradient clipping, where we ensure that the norm
of the gradient does not exceed a given threshold. It has been shown that
ResNets do not have the problem of vanishing- and exploding gradients due
to the residual connection.

Chapter 4

Numerical Experiments and
Results

It’s all to do with the training:
you can do a lot if you’re properly trained.

– Queen Elizabeth II

In this chapter we present numerical experiments. In the first section we will
present the setup. In particular details on implementation and parameters.
In the second section we will investigate the data sets to see whether we can
find indications of a lower-dimensional manifold and choose a truncation for
the SVD and Tucker Decompositions. In the third section we will demon-
strate the need for specific methods to restrain the rank though the network.
In the forth section we will test our developed methods on a few chosen data
sets. Lastly, in section five we will investigate the robustness of the models.
In particular, the main result of this thesis which is that our methods are
more robust to adversarial FGS attacks, especially for deep networks.

4.1 Setup

The code1 used for the experiments has been implemented in Python, where
the machine learning architecture and networks have been built using PyT-
orch [67] and NumPy [32]. The code setup was inspired by the code from
[21]. When extending the code to tensors, we have relied heavily upon the
framework provided by TensorLy [55], which also contains an interesting

1https://github.com/Camilbk/Dynamic-Low-Rank-Network

37

38 Numerical Experiments and Results

framework for training weight tensors built upon PyTorch. All plots have
been produced using Matplotlib [43].

We construct a neural network as follows; we choose a fully connected struc-
ture of L linear layers on the form fpyrlsq “ σpW rlsyrls ` brlsq. We have
chosen σ :“ ReLu for all the experiments and networks. The width of each
layer is constant and defined by the dimension of the input layer X0. To
reduce the dimension of the final layer to the dimension of output layer, we
have chosen a linear classifier, which is complemented by softmax. The loss
criterion is categorical cross entropy and the optimisation method is set to
ADAM. We have no weight decay.

In our implementation of the neural network, a few decisions have been
made. First, we have decided to keep the width constant. The narrowing
and expansion of the width of the network might enhance the performance.
However, benchmark performance is not the goal of this thesis. When choos-
ing layers of constant width, this is to ensure that we keep most variables
constant. In that way we can be more certain about which behaviours stem
from what. The same argument can be used for convolutions. We know
that convolutional layers enhance the performance of the classification. We
choose a simple and more explainable model to make sure to remain in
control of most of the behaviour. Also, we have not augmented the fea-
ture space, even though we know this increases the flexibility and degrees of
freedom of the network.

We have chosen four data sets to test our networks on. Two of them are
black and white images, and therefore chosen for testing the algorithms on
matrices. These are the MNIST [13] and FashionMNIST [79] data sets. Both
of these contain p28 ˆ 28q-size images. MNIST is known to be easy to learn
for networks. To test the networks on tensors, we have chosen two coloured
data sets the: CIFAR10 [56] and Street View House Numbers (SVHN) [65].
Both CIFAR10 and SVHN are p3 ˆ 32 ˆ 32q. SVHN is similar to MNIST
in many ways as it contains images of digits. But it is a coloured data set,
which adds another dimension of difficulty. It is also more noisy compared to
MNIST, and contains pieces of other numbers as well. Three samples from
each data set and how they respond to SVD and Tucker Decomposition is
shown in Appendices A.2, A.3, A.4 and A.5. For shuffling and dividing up
the training and validation data sets we have used the framework provided
by PyTorch.

The only parameters we can and will control during training are the size
of the training data set N , the size of the validation data set V , the batch

4.1. Setup 39

size, number of epochs and depth L. In most cases we have chosen relatively
small training and validation data sets, N “ 1500, V “ 1500, to ease the
computation time. For all data sets we have chosen a batch size between
5 and 30. The number of epochs have been chosen in the specific case to
ensure that the methods have converged. Here we will test our methods on
L “ 10 and L “ 100, to see how the networks respond to more trainable
depth parameters. We will often denote the depth of the networks by an
acronym, i.e. ResNet-10. When plotting accuracy, the solid lines represent
the training accuracy, and the dotted lines represent the validation. If we
run with other parameters than stated in this section, we will explicitly state
the parameters and their value.

We have in total four networks, presented in the previous chapters.

1. The standard ResNet, which is defined by the propagation between
the layers as seen in equation (3.8). This network does not have any
additional properties, and is implemented for tensors and matrices.

Then we have discussed the Projection Networks. These networks are a
natural extension of the ResNet formulation.

2. The SVD Projection is defined by the propagation as seen in equation
(3.15) and where, after a propagation step, we take the SVD/HOSVD
of the output at every layer.

3. ProjectionNet is defined by the propagation as seen in equation (3.16)
for matrices, and also (3.19) for tensors. In this case we propagate the
factors of the decomposition instead of the full image. After a ResNet
step, we ensure that the matrices are orthogonal via a polar projection.

Lastly, we have DynamicNet which based on a continous formulation of the
SVD.

4. DynamicNet is based on the dynamic low-rank approximation formu-
lation for matrices, and the dynamic tensor approximation for tensors,
see equations (3.21) and (3.24) respectively. DynamicNet describes
the evolution of the factors of the decomposition on the manifold in a
continuous setting.

In DynamicNet, the factors are dependent on each other. This is not the case
in ProjectionNet. Another difference between these two methods is therefore

40 Numerical Experiments and Results

Figure 4.1: Rank of the matrix plotted for each image in data set. Note that
CIFAR10 and SVHN are grayscale.

evaluation of the vector field, the linear layer fpyrlsq. The ProjectionNet eval-
uates the components of the decomposition, while the DynamicNet evaluates
the restored image. Therefore, a ProjectionNet has the major advantage of
model order reduction. DynamicNet not only has to perform many matrix
and tensor operations, but also has to restore the image so that it can be
evaluated in the layer. For the ProjectionNet, the new input size is only
« 11% of the original matrix size, we have achieved a similar compression
with « 1% of the original tensor size.

4.2 Investigating the data sets
At the start of Chapter 1 we claimed that one way to investigate whether a
data set naturally belongs to a lower dimensional manifold is to investigate
the rank of the images. Therefore, we will investigate the rank of the images
in the various data sets.

As we do not have an efficient algorithm for calculating the rank of a tensor,
which is comparable to the rank of a matrix, we will first convert the col-
oured images into grayscale. In this way, the three colour channels are
projected down to one dimension, such that the tensors are now matrices.
The variation of ranks though the data sets can be seen in Figure 4.1.

Firstly; notice that FashionMNIST has a higher average rank than MNIST.
Note that some images have very low rank, especially in MNIST, and none
of the images are full rank. It is clear from Figure 4.1 that the rank of
grayscale CIFAR10 and SVHN have much less variation of ranks across the

4.2. Investigating the data sets 41

data set. The rank of the images are full or almost full in all cases. We
can suspect that the projection of the colour channels has increased the
rank of the matrices such that they are artificially high. Especially when
looking at samples from SVHN, Appendix A.5, the images have more in
common with MNIST, Appendix A.2, such as sparsity. Furthermore, by
looking at how much the ranks of images vary in the other two matrix data
sets, we can suspect that the rank of the grayscale image does not show
the complete picture. Therefore, it is a better measure to investigate the
error in the Tucker Decomposition, to get an idea of what the rank truly is.
But first we investigate the distribution of the singular values. With these
experiments we have build a certain confidence that our data sets live in a
low-dimensional manifold.

We shift our focus towards investigating the singular values of the data
sets, see Figure 4.2. When looking at MNIST and FashionMNISTs singular
values on the top row. The leading singular values have similar spreads. If
we choose the k “ 3 leading singular values in MNIST and FashionMNIST
we know from Eckart-Young-Mirskys theorem that the larges singular value
omitted gives the error in the low rank approximation (2.3.1). Therefore,
we end up with an error ||A ´ Ak||2 “ σk`1 P r0, 4s for both data sets.
It seems also that choosing only two terms in the truncated singular value
decomposition gives a reasonably good approximation, but we will use 3
terms for good measure, see Appendix A.2, A.3. Maybe more surprisingly,
the grayscale CIFAR10 and SVHN have a large leading singular value. It
seems from the bottom row of Figure 4.2 that there are not many significant
values needed to get a good approximation of the grayscale images. This is
slighty surprising in light of to the results in Figure 4.1. In grayscale, we can
easily pick two or three singular values and get a lower error in the low-rank
approximation of the grayscale than in the approximation for MNIST and
FashionMNIST.

If we turn our attention to the Tucker Decomposition of the tensors, see
Figure 4.3(a) and Figure 4.3(b), we notice similar results here. In these
Figures, we have plotted the error, ||Y ´ Yk||2, between the original tensor
and the Tucker Decomposition of Tucker rank r “ r3, k, ks for different ks.
Not surprising, the Tucker Decomposition using k “ 3 gives the highest
error in both data sets. Choosing k “ 9 in the case of CIFAR10 gives us a
maximum error of around 4. In the case of SVHN we can choose k “ 5 and
get a similar error, but we choose k “ 9 as well for simplicity.

We have now chosen a truncation for each data set, based on the error in
the singular values and error in the decompositions. To summarise, we have

42 Numerical Experiments and Results

Figure 4.2: The singular values of each matrix in data sets plotted as points.

achieved a maximum error of around four in all cases. With the truncated
SVD for MNIST and Fashion MNIST with k “ 3. The Tucker Decompos-
ition of CIFAR10 and SVHN with Tucker rank r “ r3, k, ks where k “ 9.
We could be more rigorous when it comes to estimate a suitable k. We
choose the rank based of visual impressions in the data sets, as seen in the
Appendix, and also on error. We will continue the discussion in the next
chapter.

4.3 Rank Evolution
In order to study the images on the low rank manifold we need to constrain
the rank using the methods proposed in the previous chapters. To illustrate
why we need these specific methods we will perform an experiment to see
how the ResNet is altering the rank of input.

We choose two standard ResNets. For one network we train and test on
original and unperturbed data, X0 P Rmˆn. For the second ResNet, we
input the truncated SVD, X0 “

řk“3
i“0 σiuiv

T
i “ Ak P Mmˆn

k . So as input,
one network starts with a full-rank input, and the other starts with a low-
rank. As previously mentioned, we do not have an efficient algorithm to
compute a comparable rank of tensors to the matrix rank. We will therefore
only do this experiment on MNIST and FashionMNIST. The accuracy of

4.3. Rank Evolution 43

(a) Error in CIFAR10 images using various Tucker Decompositions of Tucker rank r “

r3, k, ks.

(b) Error in SVHN images using various Tucker Decompositions of Tucker rank r “

r3, k, ks.

44 Numerical Experiments and Results

the trained networks and the rank through the layers can be seen in Figure
4.4.

Figure 4.4: Left: Convergence of ResNets-10 with unperturbed input compared
to ResNets-10 compressed with truncated SVD as input on MNIST and FashionM-
NIST. Right: The evolution of the ranks of the output through the layers of the
trained networks.

Original Compressed
MNIST FashionMNIST MNIST FashionMNIST

Training accuracy 100.0 96.53 100.0 95.40
Validation Accuracy 93.2 80.20 92.66 81.93

Table 4.1: Table of performance results for Standard ResNet with different input.

We ran 15 epochs, as this is sufficient to get an idea of how the rank evolves
though-out the networks. This is also sufficient to get an idea whether or not
there is a difference in performance when training on compressed vs. original
data. As we can see from Figure 4.4, the methods converge nicely. What is
interesting from both Figure 4.4, and the performance results shown in Table
4.1, is that the performance does not seem to deteriorate using truncated
input on these experiments. Furthermore, notice from Figure 4.4 how the
ranks of the data remain constant through the network. Notice, in particular,
that the rank of the matrix in the input layer is also 28. The reason for this
is that we apply weights to the input matrix. Due to PyTorchs’ linear layer
structure, we are essentially flattening the images and premultiplying them
with a matrix of larger size. It seems this increases the rank of the truncated
input image to full rank. This is true for all layers in the network, and for
this reason we need to restrict either the output after we modify with the
ResNet step or we need to constrain the weights and bias. We have chosen
to go for the first option and will now implement and perform experiments
to keep the rank low throughout the network.

4.4. Networks on Low-Rank and Stiefel manifolds 45

4.4 Networks on Low-Rank and Stiefel manifolds
Now, we will continue with experiments restricting the rank and orthogonal-
ity of the matrices and tensors throughout the training of the network. First
we will investigate only restricting the networks to the low-rank manifold
using SVD/HOSVD, and then we move to investigate the ProjectionNet and
DynamicNet, which also preserve orthogonality. We will split each section
into two, the first one focusing on the matrix case, and the second focusing
on the tensor case.

4.4.1 Low-Rank

In this section we perform experiments that restricts the output of each
layer to the low-rank manifold. We continue with the two methods from
last section; ResNet and Compressed ResNet, where compressed ResNet
signifies that the initial input images have been compressed via a truncated
SVD. We also include the SVD Projection methods, (3.15). This ensures
that the output of each layer is on the low-rank manifold. We will call this
method ResNet restricted, meaning that its evolution is restricted to the
low-rank manifold.

MNIST vs FashionMNIST We compare the performance of the three
methods on MNIST and FashionMNIST. The convergence plots for these
methods can be seen in Figure 4.5. From these convergence plots, we see

Figure 4.5: Convergence of ResNets on MNIST and FashionMNIST for networks
of depths L “ 10 and L “ 100.

that the methods restricted to the low-rank manifold are performing worse
that the other two networks. Note that in the plot to the right of Figure
4.5, "fashion-100 compressed" does not perform more than 5 epochs. This is
due to the fact that performing SVD in every layer will in some cases be nu-

46 Numerical Experiments and Results

Figure 4.6: Convergence of ResNets on CIFAR10 and SVHN for networks of
depths L “ 10.

merically unstable2. Even though all matrices admit an SVD, the numerical
procedure to compute the SVD fails if there are too many repeated singular
values. Exactly why there is a difference between MNIST and FashionM-
NIST is not known, but MNIST has a reputation for being a forgiving data
set. We also had similar experience with fashion-10 compressed, but in this
particular run it did not fail to converge. It is clear that this method is not
a good choice as we cannot rely on a method that in many cases fail to con-
verge. But apart from the method being numerically unstable, it seems that
the accuracy deteriorates only slightly when we force SVD at every layer.
Lastly, the experiment was performed with N “ 1500 and V “ 1500. For
this reason, we could expect that the results on Fashion could be improved
slightly by training and testing on larger data sizes. However, the instability
of the restricted methods are more visible with larger N,V so for this reason,
this was not done.

CIFAR vs SVHN We will compare the performance of the three methods
on CIFAR and SVHN. The convergence plots for these methods can be seen
in Figure 4.6. In Figure 4.6, it is clear that none of the methods have
sufficient convergence on the data set. It is clear that the standard ResNet
network is not able to the learn patterns for sufficient classification on these
data sets, and the networks are over-fitting. However, on a positive note,
both the networks with compressed initial images, and compressed initial
images restricted to the low-rank manifold perform as well as the standard
ResNet. For SVHN the results are better, and the validation accuracy is
following the training accuracy up to around 60%. We have chosen not to
run deep networks on CIFAR10 as the computation is very time consuming.

2https://pytorch.org/docs/stable/generated/torch.linalg.svd.html

4.4. Networks on Low-Rank and Stiefel manifolds 47

(a) (b)

Figure 4.7: Left: Convergence of the three methods; ResNet, ProjectionNet
(Proj.) and DynamicNet (Dyn.) on both data sets. Right: Evolution of the
average rank of the output for each layer in the trained networks.

4.4.2 Low-Rank and Stiefel

We will now investigate the methods which also evolve on the Stiefel man-
ifold. In both sections we will train the data sets on the standard ResNet,
the ProjectionNet, and lastly the DynamicNet.

MNIST and Fashion MNIST For the standard ResNet we use original
unperturbed data X0 P Rmˆn. For the ProjectionNet we apply an SVD to
every image matrix and sort them in a vector, X0 “ rU,Σ, V T s. We have
chosen to go for a large training data set N “ 5000 and validation data set
V “ 1500 in this experiment.

The input to the ResNet is, as previously mentioned, the full image. This
implies weight matrices of size W

rls
i P Rmˆn. The ProjectionNet has only

weight and bias matrices of size W
rls
i P Rmˆk, which results in fewer train-

able parameters. In DynamicNet we, unfortunately, need to evaluate the
vector field which we are approximating, which leads us to also having weight
matrices in W

rls
i P Rmˆn. Then we are ready to train and compare the net-

works, and the convergence can be seen in Figure 4.7(a). It is clear from
Figure 4.7(a) that all the methods converge quite well. The DynamicNet
has slower convergence, but the training accuracy is approaching 100%. It
seems that the ResNets and the ProjectionNets have similar training conver-
gence. However, from the plot, its seems like the ProjectionNets’ validation
accuracy have stabilised at quite a low accuracy. Significantly lower than
DynamicNet.

48 Numerical Experiments and Results

ResNet ProjectionNet DynamicNet
MNIST Fashion MNIST Fashion MNIST Fashion

Training Accuracy 100.0 98.66 99.80 99.44 99.96 91.72
Validation Accuracy 95.59 85.40 87.26 77.80 93.80 83.53

Time 1063s 1109s 974s 963s 1900s 1990s
Step size h 0.0784 0.0565 0.1400 0.1373 0.001 0.001

Table 4.2: Table of maximum training and validation accuracy for the different
networks on MNIST and FashionMNIST. N “ 5000, V “ 1500, and the time taken
on 30 epochs and the step size h for each method.

In Table 4.2, we see the maximum training and validation accuracy for the
networks. The performance of DynamicNet is almost as good as the per-
formance of ResNet. The same cannot be said for ProjectionNet, where we
have almost 10% difference in the validation accuracy. Lastly, note the time
taken for the networks to perform 30 epochs of these algorithms. The Pro-
jectionNet beats the ResNet significantly, so there is definitely something
to gain computationally by using ProjectionNet. It is worth noting that
these time experiments have not been rigorously done, and the time taken
for the networks should be taken with a grain of salt. However, they give
an indication of the computational costs of the algorithms. Lastly, the al-
gorithms have not been implemented in the most efficient way, as the focus
was readability and correctness rather than speed.

We also show numerical evidence of the orthogonality of U and V in both
ProjectionNet and DynamicNet, see Figure 4.8(a) and 4.8(b), and the rank
of the output at each layer, see Figure 4.7. From the orthogonality plots, the
matrices U and V remain orthogonal throughout the network. Even though
the orthogonality produced by the projection network does not vary by a
lot, it seems significant compared to the smooth variation produced by the
DynamicNet. The algorithms produce outputs on the low-rank manifold,
as is clear from Figure 4.7. The rank of the output from ProjectionNet is
computed by multiplying U , S and V of the trained network. Only the
standard ResNet has full rank output after each layer.

From table 4.2 we can see the trained step-sizes h from ResNet and Projec-
tionNet and the constant step size for DynamicNet. The step size is the same
for all layers. We have chosen not to train the step size of DynamicNet, as
it seemed to produce instabilities during the training process in most cases.
Therefore, we reduced it to 0.1{L. The reasons behind the instabilities have
not been investigated. In the case of ResNet and ProjectionNet we chose to
initialise the step size as 1{L. The final trained step size is very different

4.4. Networks on Low-Rank and Stiefel manifolds 49

(a) Average orthogonality error in U (b) Average orthogonality error in V

Figure 4.8: Orthogonality error in U and V for ProjectionNet and DynamicNet
on MNIST and FashionMNIST for each layer of the trained network.

ResNet100 ProjectionNet100 DynamicNet100
MNIST Fashion MNIST Fashion MNIST Fashion

Training Accuracy 99.98 97.70 99.70 99.62 99.98 94.73
Validation Accuracy 95.47 84.27 86.70 77.13 93.73 82.87

« Time 2800s 2900s 2500s 2500s 7400s 7900s
step size h 0.0173 0.0190 0.0411 0.0551 0.001 0.001

Table 4.3: Table of best training and validation accuracy for the different deep
networks, L “ 100, on MNIST and FashionMNIST, and the time taken on 30
epochs. The size of the training data set was increased to 5000.

for the two networks, but similar for the different data sets. The different
step sizes illustrate again how different the networks behave. We do these
measurements on the trained networks. Therefore it is not clear if there is
a difference between the errors in orthogonality during training and after.

Lastly, we provide a summary of results for trained networks on L “ 100,
see Table 4.3. There is a slight improvement when increasing the depth of
the network, as expected. Plots of the orthogonality errors are very similar
to the shallow networks, and these plots along with the accuracy and rank
evolution can be found in Appendix A.6.

CIFAR10 and SVHN We start by preparing the data sets. For the
standard ResNet we use original unperturbed data X0 P R3ˆmˆn. For the
ProjectionNet and DynamicNet we input a vector of the Tucker Decompos-
ition X0 “ rS, U1, U2, U3s of Tucker rank r “ r3, k, ks where we previously
chose k “ 9. This vector contains a tensor S P R3ˆkˆk, and three matrices

50 Numerical Experiments and Results

Figure 4.9: Convergence of the standard ResNet, ProjectionNet (Proj.) and
DynamicNet (Dyn.) on CIFAR10 and SVHN.

ResNet ProjectionNet DynamicNet
CIFAR10 SVHN CIFAR10 SVHN CIFAR10 SVHN

Training accuracy 99.46 83.87 100.0 99.80 57.93 31.46
Validation Accuracy 37.46 55.26 14.13 14.06 33.53 19.80

Time 2920s 3083s 377s 374s 1598s 1562s

Table 4.4: Table of maximum training and validation accuracy for the different
networks on CIFAR10 and SVHN, time taken to run 30 epochs.

of size U1 P R3ˆ3, U2 P Rkˆm and U3 P Rkˆn.

Then we initialise the networks. As the input to ResNet and DynamicNet is
the largest, this network also requires many more trainable parameters, we
have weight matrices of size W

rls
i P R3ˆmˆn. The ProjectionNet has only

weight matrices of size W
rls
i P R32ˆk by the wrapping procedure. Then we

are ready to train and compare the networks, and the convergence can be
seen in Figure 4.9. It is clear from Figure 4.9 that the methods behave very
differently. The DynamicNets have the slowest convergence, and the final
accuracy is low for both data sets. The convergence of the training accuracy
seem to be very similar for both ResNet and ProjectionNet. The validation
accuracies, however, are very low for the ProjectionNets and decent for the
ResNets.

4.5. Adversarial Robustness 51

(a) U1 (b) U2 (c) U3

Figure 4.10: Orthogonality error for ProjectionNet and DynamicNet on CIFAR10
and SVHN for each layer of the trained network.

In Table 4.4, we see the maximum training and validation accuracies for
the networks. The performance of DynamicNet on CIFAR is close to the
performance of ResNet, with only a few percent difference. The same cannot
be said for ProjectionNet. There is no doubt that the methods have been
implemented purely for readability and correctness rather than speed, which
again reduces the computational efficiency.

We also show numerical evidence of the orthogonality of U1, U2 and U3

in both ProjectionNet and DynamicNet, see Figure 4.10(a), 4.10(b) and
4.10(c). From the orthogonality plots, the matrices U1, U2 and U3 remain
orthogonal throughout the network, as expected. There is not much vari-
ation in the orthogonality through the layers.

This difference could be one of the differences between the continuous model
and the non-continuous.

4.5 Adversarial Robustness
Now we will continue with experiments on adversarial robustness, in partic-
ular the Fast Gradient Sign Method. The structure will follow the previous
section, first looking at only low-rank cases, and then also orthogonal re-
strictions.

The attack procedure is as follows. We choose a list of perturbations in the
data range ϵ P r0, 1s to run for all experiments. For illustrations purposes,
we choose to keep ϵ “ 0, as it represents the model performance on the test
set. We expect that for larger perturbations of ϵ the more noticeable the
noise is in the image, and also the more effective the attack will be in terms
of degrading the model performance [45, 25]. For each value of ϵ ą 0 we run
the test set through the network. If the network makes a correct prediction,
the FGSM will attack. The method creates a perturbed adversary. We run

52 Numerical Experiments and Results

the perturbed example through the network and check if this example is
adversarial. We keep track of the accuracy for each ϵ. This is done for each
network, and therefore we attack each networks vulnerabilities.

4.5.1 Low-Rank

Recall that we are now investigating the standard ResNet, and compressing
only input to the low-rank manifold, or restricting at every layer. Their
performance can be found in Figure . We compare and attack the three
methods. The results can be seen in Figure 4.11. On MNIST the restricted
and compressed networks have the largest drop in accuracy for ϵ “ 0.05. The
standard ResNet is not as badly affected as the other two methods for small
ϵ. At ϵ “ 0.01 the restricted-100 and the ResNet-100 performs the best.
Note how the restricted networks have flattened their drop in accuracy, and
restricted-100 is now the best performing network of all. For ϵ ą 0.1 the re-
stricted networks perform significantly better than compressed ResNet and
ResNet. The results are similar for FashionMNNIST but the differences are
not so prominent. Regarding the depths of the network, there might be a
slight improvement using deeper networks against adversarial attacks. For
CIFAR10 and SVHN the results are disappointing. The accuracy for these
networks is low, but also the accuracy of all attacks is almost zero. Note,
however, that restricted and ResNet on SVHN has slightly better accuracy
for ϵ “ 0.3. This could be insignificant. We can investigate the generated
perturbed examples, and we notice that they look like the generated ex-
amples the standard ResNet in Figures 4.13(a) (MNIST) and Figure 4.14(a)
(FashionMNIST).

4.5.2 Low-Rank and Stiefel

We now turn our attention to ResNet, DynamicNet and ProjectionNets
robustness towards the FGSM. However, as the results from the networks on
CIFAR10 and SVHN was not sufficient, we will not run this test on tensors,
as the methods has not found sufficient patterns for classification.

MNIST vs FashionMNIST The results of the FGS Attacks on MNIST
and FashionMNIST can be seen in Figure 4.12. It is clear that the accuracy
deteriorates rapidly for small perturbations to the image for all methods on
both data sets. Notice, however, that both ProjectionNet and DynamicNet
perform better for ϵ ě 0.15. In the case of ResNet, the accuracy drops to
below 10%. This suggests that the attacks are effectively fooling the network
into misclassification. This is not true for ProjectionNet and DynamicNet,
which have accuracy around and above 10% for all networks on both data

4.5. Adversarial Robustness 53

Figure 4.11: Accuracy of attempted Adversarial FGS Attacks for each value of
epsilon.

54 Numerical Experiments and Results

Figure 4.12: Accuracy of attempted Adversarial FGS Attacks for each value of
epsilon.

sets. ProjectionNet10 has the worst accuracy of all the methods, but is the
most robust to the attacks at least in MNIST. The effects of the attacks do
not seem to deteriorate the accuracy in a similar manner as in DynamicNet.
For DynamicNet10, the accuracy drops far lower than the rest of the methods
for small epsilon. There is also a slight difference between the deep and
shallow networks. It seems that the deeper networks are more robust to
adversarial attacks for all ϵ, this is visible in DynamicNet100. This is true
in general, but not for the shallow ProjectionNet-10. These experiments on
adversarial attacks should be performed a few times and averaged such that
we avoid the random effect. This was not done in these experiments, as the
procedure to run the attacks proved to be time consuming. It would also be
valuable to investigate the effects on size of training data sets and number
of epochs.

In Figure 4.13 we can see examples of generated MNIST adversaries by the
different networks. The examples generated by deeper networks look very
similar, if not identical. Investigating the adversaries generated by the Res-
Net, it is clear that FGSM is adding what we perceive as noise to the image
to successfully fool the network into misclassification. For each value of ϵ the
image becomes noisier. These generated examples stand in clear contrast
to the examples generated by the Projection- and DynamicNet. The ad-
versaries generated by these two methods are for ϵ ą 0 hard for a human to
classify. These images have been added more noise then the corresponding

4.5. Adversarial Robustness 55

(a) ResNet (b) ProjectionNet (c) DynamicNet

Figure 4.13: Examples of generated adversaries for each value of ϵ for MNIST.
The numbers above each image represent the original class and the predicted class.

56 Numerical Experiments and Results

(a) ResNet (b) ProjectionNet (c) DynamicNet

Figure 4.14: Examples of generated adversaries for each value of ϵ for FashionM-
NIST. The numbers above each image represent the original class and the predicted
class.

FGSM on ResNet. It is clear that for larger values of ϵ the FGSM is strug-
gling to add noise which does not completely modify the perturbed image
making it unrecognisable to a human. These generated adversaries are not
fooling the ProjectionNet and DynamicNet as with ResNet, as we can see
from Figure 4.12. However, it is not clear from these examples if this is a
pure benefit. There are still many misclassifications for ϵ ă 0.15.

We can see similar results for the generated adversarial examples by the
networks on FashionMNIST, see Figure 4.14. By looking at both Figures
4.13 and 4.14, it is clear that there is a certain structure to the "noise"
added by ProjectionNet and DynamicNet to the adversarial examples. This
structure can be seen as patches of smaller and lager squares in to the image.
The structured squares added by DynamicNet is larger than the structure

4.5. Adversarial Robustness 57

added by ProjectionNet. This difference is significant, yet why this difference
in structure occurs, and the magnitude of it is still unknown. Investigating
this structure, if it is high- or low-rank, orthogonality properties as well as
the weight and bias would give us an idea of what is happening internally
in the network.

58 Numerical Experiments and Results

Chapter 5

Discussion and Future Work

Throw up into your typewriter every morning.
Clean up every noon.
– Raymond Chandler

It goes without saying that many presented aspects deserve to be discussed.
For readability, we divide the discussion into three; background, results,
and future work. In the background, we will reflect on the methods used
and the pros and cons. In the results, we will discuss the results presented
in the previous chapter, focusing on the integration techniques, adversarial
robustness and regularisation. Then we discuss points for further work.

5.1 Background
We presented much motivation behind choosing the methods we have focused
on: the SVD, Polar Projection, Dynamic Low-Rank Approximation and Dy-
namic Tensor Approximation. There is, at the moment, no deep mathem-
atical understanding of the benefits of preservation of low-rank structure
or orthogonality. Some papers, such as [10], inspire us to try to preserve
structures in the development of neural networks. By structure-preserving
methods, we mean that the evolution of the is performed on the manifold.
In our case, the low-rank or the Stiefel manifold. The benefits of a par-
ticular invariant might be problem-specific. Even if we know an invariant
is essential to maintain, how do we enforce it? We can insist on low-rank
U and V by truncating them, leaving out the orthogonality constraint. Or
focus on the different integration techniques presented in ProjectionNet and

59

60 Discussion and Future Work

DynamicNet, illustrating the many ways to achieve the desired structure.
Each method with its implications, both at the network design level and for
robustness. Understanding simpler models like this linear network may be
a good starting point for gaining theoretical insights.

We argued in Chapter 1 that there might be reduced order benefits if we can
establish a connection between data sets and the lower-dimensional mani-
fold hypothesis. If we assume the existence of a lower-dimensional manifold
structure in the data, we have seen that it is not easy to determine whether
the approximation is a good enough representation. In the previous chapter,
we wanted to find a truncation k for the SVD and Tucker decomposition.
We quickly noticed that we had to make a choice of truncation k, which
was not rigorously justified. Which truncation to choose was primarily due
to the error we were willing to introduce into the images and subjective
differences between the truncated images. It is clear that finding this rep-
resentation of the underlying manifold, whether a coordinate change or a
low-rank approximation is difficult.

There is a possibility that the more restrictions are put on our network,
we increase the likelihood of deteriorating the speed of convergence and the
chance of recovering global minima. These restrictions are possibly changing
the optimisation landscape. It might be that structure preserving methods
are too strict when we require orthogonality and low-rank. However, when
it comes to orthogonality, many papers have seen an increase in the con-
vergence rate when keeping the weight orthogonal [61, 31, 42, 1, 3]. We
also know that the eigenvalues of orthogonal matrices are on the unit circle
[26, 50]. Thus, imposing orthogonality we can also aid in stability of the
methods, as we know that stable networks have negative real eigenvalues.
Also, low-rank projections are costly. But, we will tolerate an increase in
computation time if the methods have obvious benefits, like robustness. We
suspect that many standard image data sets can be well approximated by
their projection on low-rank spaces in neural networks, as demonstrated in
experiments.

The SVD has proven advantageous in many fields and is a safe first choice.
Another interesting approach would be to investigate the effects of a Four-
ier Transform or Fourier Expansion on the neural network’s data sets. The
Fast Fourier Transform is a popular tool in signal processing and is well un-
derstood.The generalised Fourier series form a complete orthogonal system.
It might be possible to combine the network with a Fourier transform to
only extract extract the essential signals in the image, which serves as an
orthogonal basis. Combining the SVD with a Neural Network, and in par-

5.1. Background 61

ticular, the residual neural network, we can learn and unfold the manifold
enabling the classification of its parts. However, in manifold learning, the
SVD and the related PCA are not popular choices, as linear transformations
have proven to not be capable of learning non-linear structures. Therefore, it
would be interesting to investigate methods such as Local Linear Embedding
and Isomap, as seen in [9, 15, 74].

Furthermore, it might not be necessary to project at every layer. Many
modern-day neural networks use a combination of linear and convolutional
layers and encoders and decoders as blocks in neural networks. Networks
such as encoders and decoders can be used to enhance the performance of
linear dimension reduction techniques [49]. It might be possible to benefit
structure preservation by combining blocks of the ResNet where preserve
the invariants.

Dupont [16] suggested feature space augmentation to overcome topological
challenges such as nested objects in the data sets. Apart from seeing how
feature space augmentation affects the networks’ performance, it would be
interesting to investigate the benefits. Can we find the number of nested
structures in our image manifold to determine a lower bound for the number
of additional dimensions we need to modify the feature space with? Is there
a relation between nested structures, ranks, holes, etc.?

Solving differential equations on manifolds is cheaper, in theory, than com-
puting the SVD at every time step. Koch and Lubich argue that we are
multiplying matrices with fewer columns in the case of Dynamic Low-Rank
[52]. However, it is clear from our results that the DynamicNets are many
times slower than ResNet and ProjectionNet, as seen in Table 4.2 and 4.3.
This makes it hard to believe that it is possible to gain speed past standard
ResNet for as long as we have an equal amount of trainable parameters and
the need to reassemble the image at every layer. However, when running
on CIFAR and SVHN we noticed that DynamicNet was a lot faster than
ResNet, see Table 4.4. This result is surprising. One explanation could
be that the methods have converged after few epochs. Therefore the cost
during backpropagation is minimal, as there are no further updates to the
parameters other than small changes as seen in the plot. Therefore, it is
less time consuming. It could still be worthwhile to investigate a more ef-
ficient way to represent, multiply and store the network’s matrices, such as
in ProjectionNet. The difference between the integration step in Dynam-
icNet and ProjectionNet is interesting from a mathematical point of view.
The Dynamic Low-Rank Approximation method might respect the flow of
the neural network, as this method yields continuous smooth evolution on

62 Discussion and Future Work

the manifold. If this is the desired behaviour is another question, but the
significant difference between the methods is worth pondering.

One of the main differences between ProjectionNet and DynamicNet is the
unique formulation of the equations 2.11 for DynamicNet. The Dynamic
Low-Rank approximation gives an optimal representation of the generated
vector field which is generated by the Network. The optimally is in the
Frobenius norm of the difference between the two vector fields. Whether
this is true for ProjectionNet is not known, and what the consequences are
for the method. We can also think of uniqueness and smoothness as struc-
tures that we might be keen on preserving, with their own properties. One
thing worth noting is that the initial condition is not unique, see PyTorch’s’
documentation1 . This means that a given image might have more than one
SVD and Tucker Decomposition, as stated in Chapter 2. Before training
starts the data sets are prepared, and thus images are truncated or factor-
ised. This is done every time we run a network, or other algorithms that
require access to the data. Consequently, with its different decompositions,
this image might have multiple trajectories in the network depending on its
decomposition.

When it comes to the implementation, we have experienced difficulties when
back propagating the inverse, especially the Cayley transform in deeper net-
works. Our solution was to perform the exponential maps instead. The
same care should be taken with SVD of the images, in the case of repeating
singular values. There is a possibility that these operations are not dif-
ferentiable. In [52, 29], Koch and Lubich investigated singular values and
discontinuities. Singular values and eigenvalues are essential for the stabil-
ity of the trained vector field. Thus, studying the evolution of the singular
values for DynamicNet and ProjectionNet could give further insights into
the differences between these methods.

5.2 Results
We have successfully trained three different networks on a compressed, trun-
cated, and even factorised form of the data, see Figure 4.4, Figure 4.6 and
Table 4.1. This can be viewed as an indication of a lower-dimensional struc-
ture in the data. However, we remain uncertain to what we should give
credit; the data or the method. It might be that the network is so good
at finding hidden structures that most of the pixels are superfluous, even if
there is not a lower-dimensional structure in the data.

1https://pytorch.org/docs/stable/generated/torch.linalg.svd.html

5.2. Results 63

MNIST and FashionMNIST The convergence of accuracy plot of MNIST
and FashionMNIST, Figures 4.7(a) and A.5(a) show the methods converging
nicely towards perfect training accuracy. In this plot the ProjectionNet has
a slow convergence, and the validation accuracy settles on a far lower ac-
curacy than the other methods. From Tables 4.2 and 4.3, it is intriguing to
see that DynamicNet performs as well as ResNet on the validation data on
both data sets and for both depths. This is not true for ProjectionNet, and
the validation accuracy has deteriorated by 5´ 10%. This significant loss in
accuracy is not straightforward to explain. The most apparent reason could
be the number of trainable parameters. ProjectionNet has only layers of
size 28 ˆ k, whereas ResNet and DynamicNet have full-size layers 28 ˆ 28.
This is not the whole truth, as the validation accuracy is poor without much
increase in the deeper network. This might still be the explanation if there
is a different contribution between width parameters and depth parameters.
We can suspect this to be true if we revisit the work by Dupont [16], where
he illustrates the benefit of augmenting the width. This is also very common
in convolutional layers, where we augment the number of channels. There
are also some minor differences due to random initialisation. To establish
the results, we need to verify for a few more data sets, do a few runs and av-
erage the results. However, this is just a suspicion, and we need to conduct
experiments on this to be sure. We will return to this after investigating the
results on CIFAR and SVHN.

The plots of orthogonality and ranks see Figure 4.7, 4.8(a), 4.8(b)and Fig-
ure A.5(b), A.5(c), A.5(d), are the only means of verifying that the data
is transformed within the desired manifold. The error in orthogonality is
typically between 1e ´ 6 and 1e ´ 7. As the orthogonality is not preserved
to machine accuracy, this could be the reason for the slight performance to
drop of DynamicNet compared to ResNet on MNIST and FashionMNIST,
as seen in Table 4.2 and Table 4.3. There might be benefits of reducing this
error.

Another big difference between ProjectionNet and DynamicNet is the re-
assembling of the image components at every layer. In DynamicNet, the
factors are propagated in the manifold and then reassembled. In Projec-
tionNet, the image is only assembled at the very last stage of the network.
This might be the crucial difference, both performance-wise and computa-
tionally. We could establish a hybrid method. Propagating the matrices
separately for a few layers before combining them to maintain accuracy.
Now that we know that there are certain robustness benefits, this approach
is interesting to explore.

64 Discussion and Future Work

CIFAR10 and SVHN The accuracy plot of CIFAR10 and SVHN, Figure
4.9, shows all methods are having trouble converging to the desired accuracy.
ResNets CIFAR10 and SVHN training accuracy converge slowly but steadily,
but their validation accuracy has settled much lower. We can also see the
ProjectionNets on CIFAR10 and SVHN are gradually converging towards an
acceptable training accuracy. However, the validation accuracy has settled
around 10%. For DynamicNet, both training- and validation accuracy has
converged to a disappointingly low performance. Taking a quick look at the
orthogonality plots, Figures 4.10(a), 4.10(b) and 4.10(c) the factors satisfy
the orthogonality constraint, as expected.

Increasing the number of epochs might increase the likelihood of escaping
from saddle points, especially when adding momentum to the optimiser.
This is perhaps more relevant in the case of MNIST and FashionMNIST.
This effect can give a few points the accuracy rate of MNIST and Fash-
ionMNIST, but we will not see methods becoming miraculously better in
the case of CIFAR10 and SVHN. There might be structures in the data sets
which are too complex for the linear layered networks to determine. It is
clear that DynamicNet performs as well as ResNet in the case of MNIST
and FashionMNIST. Therefore, we should expect the same behaviour here.
This is not the case. There are a few potential reasons for the bad per-
formance. Even if the orthogonal matrices evolve on the Stiefel manifold,
we have a considerable-sized component we do not control: the core tensor
S. This could potentially be the cause of the bad performance. A potential
fix for this will be discussed in the next section. Lastly, we also expec-
ted the ProjectionNet to be performing better. However, in MNIST and
FashionMNIST, the validation accuracy for ProjectionNet was significantly
lower than the other two methods. Also, recall that we had to construct
a padding around the Tucker decomposition in order to get the network to
handle the different sizes of matrices and tensors, (3.18) and (3.3.1). This
padding is potentially deteriorating the learning of the orthogonal matrix
U1. PyTorch is also flattening each channel of the core tensor into a vector.
The vector field defining the network is essentially handling each channel
of the core tensor S separately. Therefore, we could expect the method to
have a similar result here.

We are confident that changing the implementation of the tensor networks
can lead us to better performance. This is also due to the results on the
compressed and restricted data, see Figure 4.6. Where it seems that both
restricted and compressed are performing as well as ResNet.

Another big difference between ProjectionNet and DynamicNet is the re-

5.2. Results 65

assembling of the image components at every layer. In DynamicNet, the
factors are propagated in the manifold and then reassembled. In Projec-
tionNet, the image is only assembled at the very last stage of the network.
This might be the crucial difference, both performance-wise and computa-
tionally. Could we establish a hybrid method, propagating the matrices
separately for a few layers before combining them to maintain accuracy?

In the experiments, the truncation was chosen so that the error between the
original and truncated images would be roughly the same in all data sets.
We noticed that in the case of CIFAR10 and SVHN the ProjectionNet is
not performing nearly as well. So as the error in all truncation was roughly
the same, we can suspect that it is not a lack of information that makes the
network perform poorly. In the ProjectionNets, the truncation of the image
also indicates how many trainable parameters the network has, as already
mentioned. In a paper by Bubeck [7], one shows a measure of the number of
parameters needed in neural networks. The author also theoretically explain
the need for over-parametrisation, which is very common in deep learning
models. It is tempting to adopt their point of view and see if there is a lower
bound on how much we can truncate the input for ProjectionNet based on
the work by [7]. If so, the next question becomes; if we need more parameters
per layer than we provided in our ProjectionNet, what is the difference
between choosing a larger k and thus including more information back into
the image, or just padding with zeroes using a feature space augmentation?
How much "information" do we need to train a network?

Regularisation and Adversarial Robustness Recall the the plots of
only low-rank restrictions, Figure 4.11, to both low-rank and orthogonality
restrictions Figure 4.12. We see that on MNIST in 4.11, the compression and
restriction methods work well for larger epsilon. However, note that their
accuracy deteriorates fast for smaller epsilon. This is also true for FashionM-
NIST. Shifting our focus towards Figure 4.12 we see that the Dynamic and
ProjectionNet performs better than restricted and compressed for smaller ϵ.
The relative drop in performance for increasing ϵ is smaller than for ResNet
and restricted and compression. All of the methods conserving low-rank
are more robust to larger ϵ. Thus, we see that the latter are more robust
to adversarial attacks. The most obvious explanation is the orthogonality
restriction combined with the low-rank.

One benefit of having constant width networks, is that we can keep track
of the visual changes the networks do to each image. It could be intuitively
pleasing to investigate the visual changes, especially if it correlates with what

66 Discussion and Future Work

features the network enhances or not. However, one can expect the results
not to be so intriguing and that the differences between outputs at every
layer are relatively small. After all, the step size, and thus the modification
added to the identity map, is very small for each layer. However, there
might indeed be a particular structure to this modification, even if this is
not detectable to the naked eye, as in 4.13(a) and 4.14(a). This structure
difference might be the very thing that makes the Adversarial FGS Attacks
of ProjectionNet and DynamicNet very different from ResNet. Suppose we
perform SVD at every layer, and the output of each layer is a very similar-
looking image. In that case, we are, in some sense, training the network
on a variety of these very similar images. This idea works in the case of
standard ResNet and Projection- and DynamicNet. For each layer in the
network, the modifications done by the layer are seemingly random. But
the further we propagate the network through the layers, the more random
noise is added to the image. Therefore, the deep networks are more robust,
as they have seen more of this random noise in the training process. For
Projection- and DynamicNet, this added structure through the layers create
completely different weak points that the Adversarial FGSM can attack.
For this reason, the perturbed images look very different. For the FGSM to
maximise the loss function and create an effective adversarial attack, we see
that the FGSM must perturb the image to such an extent that it becomes
unrecognisable to the human eye. The attack is, in some sense, not working.
The perturbation to the image is not subtle, and the network is not fooled
into misclassification. Unfortunately, we do not have an explanation for this.
Fewer parameters will also make the options for weak nodes to attack in the
network smaller. Now the question becomes; which structure is least prone
to attacks? Before we can answer this, there are many questions we need
to answer regarding what we define as adversarial [80, 77]. Which types of
attacks are we expecting, and how should we deal with these attacks. It is
intriguing to investigate these generated examples’ rank and orthogonality.
If this is true, is it possible to restrict the function space in which the network
is trained, which again limits the possible adversarial examples we need to
handle?

Recall the generated adversarial examples by the networks, as seen in Figures
4.13 and 4.14. In ResNets we do not have to change the input much to
make the network misclassify. But in ProjectionNet and DynamicNet, the
perturbed images are remarkably different from the input. We can define
successfully adversarial attacks as fooling the network into misclassification,
but the generated example is noisy to a human. If this is the definition we
choose, then in the case of DynamicNet and ProjectionNet, the attacks fail

5.2. Results 67

for larger ϵ.

The results for the adversarial attacks on SVHN and CIFAR are not suffi-
cient, see Figure 4.11, and we need to boost the validation accuracy before
we can continue the discussion for tensors.

There seems to be a connection between the smoothness of networks, Lipschitz
regularisation, stability of ODES and Adversarial Attacks. Adversarial At-
tacks are closely related to the stability of ODES; a small change to input
should not result in large changes to the output. The way to measure Ad-
versarial Attacks via FGSM is just by determining examples where the net-
work, or the function, has particularly weak stability. Is there a connection
between Lipchitz regularisation of the model parameters, weight regularisa-
tion and regularisation of the output produced at each model layer? Could
it be that Low-Rank projections and/or orthogonality constraints induce a
Lipschitz regularity in the network? In that case, we can connect our res-
ults to the results of weight regularisation and the convergence of Neural
ODES. Recall that [75] used a regularisation term to show convergence to-
wards the continuous solution. If there is a relation between regularisation
and low-rank projections, then the results still hold.

We might suspect that the loss surface of the DynamicNet and Projection-
Nets are flatter if the result of the restriction to the manifold indeed has a
regularising effect, as the convergence is slower and we do not retrieve the
same local minima. In that case, we also might expect a difference between
the ResNet and the Projection- and DynamicNet’s loss function. This can
also be suspected by looking at the slower convergence of these methods.
Different optimisation landscapes provide different convergence rates. Also,
the same local minima do not exist. We have seen that low-rank input into
a ResNet finds the same local minimum as a high-rank input. However,
when we restrict the evolution of the vector field, we are also altering the
optimisation landscape, resulting in a more regularised loss function with
different local minima.

In [57] the author investigates what happens to the singular value, in particu-
lar the relative change in the singular values, when adversarial perturbations
are added. They find that the smaller singular values gain the most in rel-
ative change. And the adversarial perturbations tend to be full rank. They
also provide an explanation of why compression (SVD) reverses small ad-
versarial perturbations. This paper also argues that SVD compression aids
in adversarial robustness but is not enough to completely prevent it [17].
When truncating the images, we are, in some sense, removing noise and

68 Discussion and Future Work

high frequencies. However, this is not in accordance with our findings for
linear networks. In our case, both truncating the input and restricting only
to the low-rank manifold do not seem to improve the robustness to FGS
Attacks. The deep ResNet-100 restricted on MNIST is more robust, but
this is not true for shallow restricted networks and not for FashionMNIST.

As we have seen, the methods preserving orthogonality are more robust to
Fast Gradient Sign Attacks than ResNet. In MNIST ProjectionNet-10 is
clearly the best method, whereas in FashionMNIST DynamicNet-100 out-
performs the others, even for small perturbations. An important remark is
to notice the performance of DynamicNet-10 on MNIST, see Figure 4.12.
The accuracy of the method at ϵ “ 0 is worse than the accuracy after train-
ing, as seen in Table 4.2. This is very unexpected, and does not seem to
be the case for the deeper DynamicNet. This is sightly concerning, and we
dont have a good explaination for this.

As all of these networks have linear layers, they are naturally more prone
to adversarial attacks, as described in [25]. They demonstrate that linear
networks are more prone to adversarial attacks if the input has sufficient
dimensionality. ProjectionNet has fewer parameters to attack, making it
less prone to FGS attacks. Furthermore, it might seem that the deeper
networks are more robust to the attacks. The deep networks contain more
nonlinearities. Note however, that the shallow ProjectionNet outperforms
other networks on MNIST, so there might be other explanations for this
behaviour.

5.3 Future work:
When we input the images into PyTorch’s layers, the built-in method from
PyTorch is to flatten the image. This flattening has unknown consequences,
but intuitively this operation disregards the manifold structure treating
matrices and tensors simply as large vectors. This is in particular near-
ness between points. However, we can also establish that we humans do not
learn like neural networks. The networks have their way of finding structures
that enable classification, which is entirely different from humans. PyTorch
does allow for constructing self-made layers. This means we could build a
matrix layer and a tensor layer, which could potentially conserve these to-
pological structures. In this way, we can also avoid the padding introduced
in the Tucker decomposition. We can construct a stack of layers for the core
tensor S or the matrix Σ and a stack of layers specialising in the orthogonal
matrices. A way to combine them at the end is to have a linear classifier
that combines all the trained outputs from each parallel network and recon-

5.3. Future work: 69

structs the image. This might allow for more specialised networks, and also
potentially reduce some parameters. The idea behind training networks on
the decompositions is interesting, and there are still many directions to go.

ProjectionNet has some interesting abilities. It would be interesting to see
how the networks change behaviour by increasing the width. If it can be
augmented by simply padding the width with zeros, or if we must increase
the width by increasing the truncation k. Investigating this problem could
lead us to more certainty about what is required from input data and what
is required from the networks.

It would be interesting to see the results with adaptive step size, the vector
h P RL, where we train a step-size for each layer. Construct a separate
network for S and Sigma. This will reduce the wrapping in tucker decom-
position and hopefully provide better and more correct control of S and
Sigma.

The DynamicNet can also be inspired by ProjectionNet. Instead of reas-
sembling the image at every layer, we can input the factors to the vector
field as done in ProjectionNet (3.16). This might also mean that we do not
need the Dynamic Low-rank formulation and instead take the Lie-Group
approach on the ProjectionNet.

There seems to be potential regarding stability and adversarial robustness
by preserving orthogonality in this specific way, as seen in our experiments.
Studying the generated examples, the Lipschitz constant in the network,
and the singular values could be an interesting direction.

70 Discussion and Future Work

Chapter 6

Conclusion

After climbing a great hill, one only finds
that there are many more hills to climb.

– Nelson Mandela

In this thesis, we have considered deep learning as the continuous optimal
control problem. Two approaches to numerical geometric integration in
neural networks have been studied. These methods aim to preserve the
rank and orthogonality of the feature spaces through the network.

We started with the observation that truncating the image input of the data
sets did not result in a deterioration of performance in standard residual
neural networks. We hypothesised that the images could be well represen-
ted on a lower-dimensional manifold due to the low-dimensional Manifold
Hypothesis. Therefore, we started experimenting with methods that could
take advantage of the Singular Value Decomposition as coordinates on this
low-rank manifold.

We chose to conserve both orthogonality and low-rank of the SVD through
geometric numerical integration. Two integration approaches were con-
sidered, thus resulting in two different methods. One local-coordinates
approach and one Euclidean approach combined with a simple projection
method. The latter could also be an order-reduction method, aiming at
reducing the cost of the learning problem as well.

We found that the developed methods indeed work as well, or almost as
well, as the original ResNet formulation on matrices. The methods did not

71

72 Conclusion

show good results on tensors, but we are optimistic that this is mostly due
to the choices made during the implementation.

The methods show promising results regarding robustness to adversarial
attacks. The experiments show in particular that the manifold methods are
not fooled for larger perturbations to the input data. They also show that
some of the methods are more robust than ResNet for smaller perturbations
as well.

These results are intriguing and could be a step in the right direction,
not only to develop a better understanding of structure preserving meth-
ods within deep neural networks but also to increase robustness against
adversarial attacks.

Goodfellow et.al write in their paper, [25], on adversarial attacks: "These
results suggest that classifiers based on modern machine learning techniques,
[..], are not learning the true underlying concepts that determine the correct
output label. Instead, these algorithms have built a Potemkin village that
works well on naturally occurring data, but is exposed as a fake when one
visits points in space that do not have high probability in the data distri-
bution [25]". Hopefully, by studying and learning the data manifold, we
are not building Goodfellow’s Potemkin village. In the process, we are also,
dealing with valuable feature space maps that have a certain structure. This
structure can be utilised to ensure properties in the neural networks, such
as stability and convergence.

Bibliography

[1] Traian E. Abrudan, Jan Eriksson and Visa Koivunen. ‘Steepest Des-
cent Algorithms for Optimization Under Unitary Matrix Constraint’.
In: IEEE Transactions on Signal Processing 56.3 (2008), pp. 1134–
1147. doi: 10.1109/TSP.2007.908999.

[2] P.-A. Absil, R. Mahony and Rodolphe Sepulchre. Optimization Al-
gorithms on Matrix Manifolds. Princeton University Press, 2009. isbn:
9781400830244. doi: doi:10.1515/9781400830244. url: https://doi.
org/10.1515/9781400830244.

[3] Nitin Bansal, Xiaohan Chen and Zhangyang Wang. Can We Gain
More from Orthogonality Regularizations in Training Deep CNNs?
2018. doi: 10.48550/ARXIV.1810.09102. url: https://arxiv.org/
abs/1810.09102.

[4] Ronen Basri and David Jacobs. Efficient Representation of Low-Dimensional
Manifolds using Deep Networks. 2016. doi: 10.48550/ARXIV.1602.
04723. url: https://arxiv.org/abs/1602.04723.

[5] Y. Bengio, P. Simard and P. Frasconi. ‘Learning long-term depend-
encies with gradient descent is difficult’. In: IEEE Transactions on
Neural Networks 5.2 (1994), pp. 157–166. doi: 10.1109/72.279181.

[6] Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren
and Carola-Bibiane Schönlieb. Deep learning as optimal control prob-
lems: Models and numerical methods. 2019.

[7] Sébastien Bubeck and Mark Sellke. A Universal Law of Robustness
via Isoperimetry. 2021. doi: 10.48550/ARXIV.2105.12806. url: https:
//arxiv.org/abs/2105.12806.

73

https://doi.org/10.1109/TSP.2007.908999
https://doi.org/doi:10.1515/9781400830244
https://doi.org/10.1515/9781400830244
https://doi.org/10.1515/9781400830244
https://doi.org/10.48550/ARXIV.1810.09102
https://arxiv.org/abs/1810.09102
https://arxiv.org/abs/1810.09102
https://doi.org/10.48550/ARXIV.1602.04723
https://doi.org/10.48550/ARXIV.1602.04723
https://arxiv.org/abs/1602.04723
https://doi.org/10.1109/72.279181
https://doi.org/10.48550/ARXIV.2105.12806
https://arxiv.org/abs/2105.12806
https://arxiv.org/abs/2105.12806

74 BIBLIOGRAPHY

[8] Gunnar Carlsson. ‘Topology and Data’. In: Bulletin of The American
Mathematical Society - BULL AMER MATH SOC 46 (Apr. 2009),
pp. 255–308. doi: 10.1090/S0273-0979-09-01249-X.

[9] Lawrence Cayton. ‘Algorithms for manifold learning’. In: 2005.

[10] Elena Celledoni, Matthias J. Ehrhardt, Christian Etmann, Robert
I McLachlan, Brynjulf Owren, Carola-Bibiane Schönlieb and Ferdia
Sherry. Structure preserving deep learning. 2020. arXiv: 2006.03364
[cs.LG].

[11] Lieven De Lathauwer, Bart De Moor and Joos Vandewalle. ‘A Mul-
tilinear Singular Value Decomposition’. In: SIAM Journal on Matrix
Analysis and Applications 21.4 (2000), pp. 1253–1278. doi: 10.1137/
S0895479896305696. eprint: https://doi.org/10.1137/S0895479896305696.
url: https://doi.org/10.1137/S0895479896305696.

[12] DeepAI. Manifold hypothesis. May 2019. url: https://deepai.org/
machine-learning-glossary-and-terms/manifold-hypothesis.

[13] Li Deng. ‘The mnist database of handwritten digit images for machine
learning research’. In: IEEE Signal Processing Magazine 29.6 (2012),
pp. 141–142.

[14] Luca Dieci and Timo Eirola. ‘On Smooth Decompositions of Matrices’.
In: SIAM J. Matrix Anal. Appl. 20 (1999), pp. 800–819.

[15] R.O. Duda, P.E. Hart, P.E. Hart, P.E. Hart, D.G. Stork, Ebook Lib-
rary and John Wiley & Sons. Pattern Classification. A Wiley-interscience
publication poeng 1. Wiley, 2001. isbn: 9780471056690. url: https:
//books.google.no/books?id=YoxQAAAAMAAJ.

[16] Emilien Dupont, Arnaud Doucet and Yee Whye Teh. Augmented Neural
ODEs. 2019. doi: 10.48550/ARXIV.1904.01681. url: https://arxiv.
org/abs/1904.01681.

[17] Gintare Karolina Dziugaite, Zoubin Ghahramani and Daniel M. Roy.
A study of the effect of JPG compression on adversarial images. 2016.
doi: 10.48550/ARXIV.1608.00853. url: https://arxiv.org/abs/1608.
00853.

[18] Carl Eckart and Gale Young. ‘The approximation of one matrix by
another of lower rank’. In: Psychometrika 1.3 (1936), pp. 211–218.

[19] Charles Fefferman, Sanjoy Mitter and Hariharan Narayanan. Testing
the Manifold Hypothesis. 2013. doi: 10.48550/ARXIV.1310.0425. url:
https://arxiv.org/abs/1310.0425.

https://doi.org/10.1090/S0273-0979-09-01249-X
https://arxiv.org/abs/2006.03364
https://arxiv.org/abs/2006.03364
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://deepai.org/machine-learning-glossary-and-terms/manifold-hypothesis
https://deepai.org/machine-learning-glossary-and-terms/manifold-hypothesis
https://books.google.no/books?id=YoxQAAAAMAAJ
https://books.google.no/books?id=YoxQAAAAMAAJ
https://doi.org/10.48550/ARXIV.1904.01681
https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/1904.01681
https://doi.org/10.48550/ARXIV.1608.00853
https://arxiv.org/abs/1608.00853
https://arxiv.org/abs/1608.00853
https://doi.org/10.48550/ARXIV.1310.0425
https://arxiv.org/abs/1310.0425

BIBLIOGRAPHY 75

[20] E. Fiesler. ‘Neural Network Classification and Formalization’. In: Com-
puter Standards & Interfaces 16 (1994), pp. 231–239.

[21] Elisa Giesecke and Axel Kröner. Classification with Runge-Kutta net-
works and feature space augmentation. 2021. arXiv: 2104.02369 [cs.LG].

[22] Xavier Glorot and Yoshua Bengio. ‘Understanding the difficulty of
training deep feedforward neural networks’. In: Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statist-
ics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Proceed-
ings of Machine Learning Research. Chia Laguna Resort, Sardinia,
Italy: PMLR, May 2010, pp. 249–256. url: https://proceedings.
mlr.press/v9/glorot10a.html.

[23] Xavier Glorot, Antoine Bordes and Yoshua Bengio. ‘Deep Sparse Rec-
tifier Neural Networks’. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. Ed. by Geoffrey
Gordon, David Dunson and Miroslav Dudík. Vol. 15. Proceedings
of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR,
Apr. 2011, pp. 315–323. url: https://proceedings.mlr.press/v15/
glorot11a.html.

[24] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
2013. isbn: 9781421407944. url: https://books.google.no/books?id=
X5YfsuCWpxMC.

[25] Ian J. Goodfellow, Jonathon Shlens and Christian Szegedy. Explaining
and Harnessing Adversarial Examples. 2014. doi: 10.48550/ARXIV.
1412.6572. url: https://arxiv.org/abs/1412.6572.

[26] Eldad Haber and Lars Ruthotto. ‘Stable architectures for deep neural
networks’. In: Inverse Problems 34.1 (Dec. 2017), p. 014004. issn:
1361-6420. doi: 10.1088/1361-6420/aa9a90. url: http://dx.doi.
org/10.1088/1361-6420/aa9a90.

[27] Eldad Haber and Lars Ruthotto. ‘Stable architectures for deep neural
networks’. In: Inverse Problems 34.1 (Dec. 2017), p. 014004. doi: 10.
1088/1361-6420/aa9a90. url: https://doi.org/10.1088%5C%2F1361-
6420%5C%2Faa9a90.

[28] Eldad Haber, Lars Ruthotto, Elliot Holtham and Seong-Hwan Jun.
Learning across scales - A multiscale method for Convolution Neural
Networks. 2017. arXiv: 1703.02009 [cs.NE].

https://arxiv.org/abs/2104.02369
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://books.google.no/books?id=X5YfsuCWpxMC
https://books.google.no/books?id=X5YfsuCWpxMC
https://doi.org/10.48550/ARXIV.1412.6572
https://doi.org/10.48550/ARXIV.1412.6572
https://arxiv.org/abs/1412.6572
https://doi.org/10.1088/1361-6420/aa9a90
http://dx.doi.org/10.1088/1361-6420/aa9a90
http://dx.doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.1088/1361-6420/aa9a90
https://doi.org/10.1088%5C%2F1361-6420%5C%2Faa9a90
https://doi.org/10.1088%5C%2F1361-6420%5C%2Faa9a90
https://arxiv.org/abs/1703.02009

76 BIBLIOGRAPHY

[29] Ernst Hairer, Christian Lubich and Gerhard Wanner. Geometric nu-
merical integration. Structure-preserving algorithms for ordinary dif-
ferential equations. 2nd ed. Vol. 31. Jan. 2006. isbn: 3-540-30663-3.
doi: 10.1007/3-540-30666-8.

[30] Boris Hanin and David Rolnick. ‘How to Start Training: The Effect of
Initialization and Architecture’. In: Advances in Neural Information
Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi and R. Garnett. Vol. 31. Curran Associ-
ates, Inc., 2018. url: https://proceedings.neurips.cc/paper/2018/
file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf.

[31] Mehrtash Harandi and Basura Fernando. Generalized BackPropaga-
tion, Étude De Cas: Orthogonality. 2016. doi: 10.48550/ARXIV.1611.
05927. url: https://arxiv.org/abs/1611.05927.

[32] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Pi-
cus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Al-
lan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson,
Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weck-
esser, Hameer Abbasi, Christoph Gohlke and Travis E. Oliphant. ‘Ar-
ray programming with NumPy’. In: Nature 585.7825 (Sept. 2020),
pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.
org/10.1038/s41586-020-2649-2.

[33] Johan Håstad. ‘Tensor rank is NP-complete’. In: Journal of Algorithms
11.4 (1990), pp. 644–654. issn: 0196-6774. doi: https://doi.org/10.
1016/0196-6774(90)90014-6. url: https://www.sciencedirect.com/
science/article/pii/0196677490900146.

[34] Juncai He, Richard Tsai and Rachel Ward. Side-effects of Learning
from Low Dimensional Data Embedded in an Euclidean Space. 2022.
doi: 10.48550/ARXIV.2203.00614. url: https://arxiv.org/abs/2203.
00614.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep Resid-
ual Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV].

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Identity
Mappings in Deep Residual Networks. 2016. arXiv: 1603.05027 [cs.CV].

[37] Catherine F. Higham and Desmond J. Higham. Deep Learning: An
Introduction for Applied Mathematicians. 2018. arXiv: 1801 . 05894
[math.HO].

https://doi.org/10.1007/3-540-30666-8
https://proceedings.neurips.cc/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf
https://doi.org/10.48550/ARXIV.1611.05927
https://doi.org/10.48550/ARXIV.1611.05927
https://arxiv.org/abs/1611.05927
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/https://doi.org/10.1016/0196-6774(90)90014-6
https://www.sciencedirect.com/science/article/pii/0196677490900146
https://www.sciencedirect.com/science/article/pii/0196677490900146
https://doi.org/10.48550/ARXIV.2203.00614
https://arxiv.org/abs/2203.00614
https://arxiv.org/abs/2203.00614
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1801.05894
https://arxiv.org/abs/1801.05894

BIBLIOGRAPHY 77

[38] Desmond J. Higham. ‘Time-stepping and preserving orthonormality’.
In: BIT Numerical Mathematics 37 (Mar. 1997), pp. 24–36. url: https:
//doi.org/10.1007/BF02510170.

[39] Nicholas J. Higham. ‘Computing the Polar Decomposition—with Ap-
plications’. In: SIAM Journal on Scientific and Statistical Comput-
ing 7.4 (1986), pp. 1160–1174. doi: 10.1137/0907079. eprint: https:
//doi.org/10.1137/0907079. url: https://doi.org/10.1137/0907079.

[40] Nicholas John Higham. ‘MATRIX NEARNESS PROBLEMS AND
APPLICATIONS’. In: 1989.

[41] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University
Press, 2012. isbn: 9781139788885. url: https://books.google.no/
books?id=O7sgAwAAQBAJ.

[42] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang
and Bo Li. Orthogonal Weight Normalization: Solution to Optimization
over Multiple Dependent Stiefel Manifolds in Deep Neural Networks.
2017. doi: 10.48550/ARXIV.1709.06079. url: https://arxiv.org/abs/
1709.06079.

[43] J. D. Hunter. ‘Matplotlib: A 2D graphics environment’. In: Computing
in Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.
2007.55.

[44] Goodfellow Ian, Bengio Yoshua and Courville Aaron. Deep Learning.
Adaptive Computation and Machine Learning. The MIT Press, 2016.
isbn: 9780262035613. url: https://search.ebscohost.com/login.
aspx?direct=true&db=nlebk&AN=2565107&site=ehost-live.

[45] Nathan Inkawhich. Adversarial Example Generation. Aug. 2018. url:
https://pytorch.org/tutorials/beginner/fgsm_tutorial.html#
adversarial-example-generation.

[46] Arieh Iserles, Hans Munthe-Kaas, Syvert Norsett and Antonella Zanna.
‘Lie Group Methods’. In: Acta Numerica 9 (Jan. 2000), pp. 215–. doi:
10.1017/S0962492900002154.

[47] Drahoslava Janovska and Kunio Tanabe. ‘An algorithm for computing
the Analytic Singular Value Decomposition’. In: (Nov. 2008).

[48] William Johnson and Joram Lindenstrauss. ‘Extensions of Lipschitz
maps into a Hilbert space’. In: Contemporary Mathematics 26 (Jan.
1984), pp. 189–206. doi: 10.1090/conm/026/737400.

https://doi.org/10.1007/BF02510170
https://doi.org/10.1007/BF02510170
https://doi.org/10.1137/0907079
https://doi.org/10.1137/0907079
https://doi.org/10.1137/0907079
https://doi.org/10.1137/0907079
https://books.google.no/books?id=O7sgAwAAQBAJ
https://books.google.no/books?id=O7sgAwAAQBAJ
https://doi.org/10.48550/ARXIV.1709.06079
https://arxiv.org/abs/1709.06079
https://arxiv.org/abs/1709.06079
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2565107&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2565107&site=ehost-live
https://pytorch.org/tutorials/beginner/fgsm_tutorial.html#adversarial-example-generation
https://pytorch.org/tutorials/beginner/fgsm_tutorial.html#adversarial-example-generation
https://doi.org/10.1017/S0962492900002154
https://doi.org/10.1090/conm/026/737400

78 BIBLIOGRAPHY

[49] N. Kambhatla and T.K. Leen. ‘Fast nonlinear dimension reduction’.
In: IEEE International Conference on Neural Networks. Vol. 3. 1993,
pp. 1213–1218. doi: 10.1109/ICNN.1993.298730.

[50] Qiyu Kang, Yang Song, Qinxu Ding and Wee Peng Tay. Stable Neural
ODE with Lyapunov-Stable Equilibrium Points for Defending Against
Adversarial Attacks. 2021. doi: 10.48550/ARXIV.2110.12976. url:
https://arxiv.org/abs/2110.12976.

[51] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2014. doi: 10.48550/ARXIV.1412.6980. url: https:
//arxiv.org/abs/1412.6980.

[52] Othmar Koch and Christian Lubich. ‘Dynamical Low-Rank Approx-
imation’. In: SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434–454.

[53] Othmar Koch and Christian Lubich. ‘Dynamical Tensor Approxima-
tion’. In: SIAM J. Matrix Analysis Applications 31 (Jan. 2010), pp. 2360–
2375. doi: 10.1137/09076578X.

[54] Tamara G. Kolda and Brett W. Bader. ‘Tensor Decompositions and
Applications’. In: SIAM Review 51.3 (2009), pp. 455–500. doi: 10.
1137/07070111X. eprint: https://doi.org/10.1137/07070111X. url:
https://doi.org/10.1137/07070111X.

[55] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar and Maja Pantic.
‘TensorLy: Tensor Learning in Python’. In: Journal of Machine Learn-
ing Research (JMLR) 20.26 (2019).

[56] Alex Krizhevsky. ‘Learning Multiple Layers of Features from Tiny
Images’. In: University of Toronto (May 2012).

[57] Siddharth Krishna Kumar. A general metric for identifying adversarial
images. 2018. doi: 10.48550/ARXIV.1807.10335. url: https://arxiv.
org/abs/1807.10335.

[58] Alexey Kurakin, Ian Goodfellow and Samy Bengio. Adversarial ex-
amples in the physical world. 2016. doi: 10.48550/ARXIV.1607.02533.
url: https://arxiv.org/abs/1607.02533.

[59] Yann LeCun, Y. Bengio and Geoffrey Hinton. ‘Deep Learning’. In:
Nature 521 (May 2015), pp. 436–44. doi: 10.1038/nature14539.

[60] J. Lee and J.M. Lee. Manifolds and Differential Geometry. Gradu-
ate studies in mathematics. American Mathematical Society, 2009.
isbn: 9780821848159. url: https : / / books . google . no / books ? id =
QqHdHy9WsEoC.

https://doi.org/10.1109/ICNN.1993.298730
https://doi.org/10.48550/ARXIV.2110.12976
https://arxiv.org/abs/2110.12976
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1137/09076578X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.48550/ARXIV.1807.10335
https://arxiv.org/abs/1807.10335
https://arxiv.org/abs/1807.10335
https://doi.org/10.48550/ARXIV.1607.02533
https://arxiv.org/abs/1607.02533
https://doi.org/10.1038/nature14539
https://books.google.no/books?id=QqHdHy9WsEoC
https://books.google.no/books?id=QqHdHy9WsEoC

BIBLIOGRAPHY 79

[61] Mario Lezcano-Casado and David Martínez-Rubio. Cheap Orthogonal
Constraints in Neural Networks: A Simple Parametrization of the Or-
thogonal and Unitary Group. 2019. doi: 10.48550/ARXIV.1901.08428.
url: https://arxiv.org/abs/1901.08428.

[62] Qianxiao Li, Long Chen, Cheng Tai and Weinan E. Maximum Prin-
ciple Based Algorithms for Deep Learning. 2018. arXiv: 1710.09513
[cs.LG].

[63] Haw-minn Lu, Yeshaiahu Fainman and Robert Hecht-Nielsen. ‘Image
manifolds’. In: Electronic Imaging. 1998.

[64] Christian Lubich, Thorsten Rohwedder, Reinhold Schneider and Bart
Vandereycken. ‘Dynamical Approximation by Hierarchical Tucker and
Tensor-Train Tensors’. In: SIAM Journal on Matrix Analysis and Ap-
plications 34.2 (2013), pp. 470–494. doi: 10.1137/120885723. eprint:
https://doi.org/10.1137/120885723. url: https://doi.org/10.1137/
120885723.

[65] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu
and Andrew Ng. ‘Reading Digits in Natural Images with Unsupervised
Feature Learning’. In: NIPS (Jan. 2011).

[66] E. Oja. ‘Data Compression, Feature Extraction, and Autoassociation
in Feedforward Neural Networks’. In: Artificial Neural Networks. Ed.
by T. Kohonen, K. Mäkisara, O. Simula and J. Kangas. Vol. 1. Elsevier
Science Publishers B.V., North-Holland, 1991, pp. 737–745.

[67] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Ben-
oit Steiner, Lu Fang, Junjie Bai and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. 2019. doi:
10.48550/ARXIV.1912.01703. url: https://arxiv.org/abs/1912.
01703.

[68] D. Pedoe. Geometry: A Comprehensive Course. Dover books on ad-
vanced mathematics. Dover Publications, 1988. isbn: 9780486658124.
url: https://books.google.no/books?id=-U5TyIw15rUC.

[69] Robert Pless and Richard Souvenir. ‘Manifold learning for natural im-
age sets’. In: 2006.

[70] Hang Shao, Abhishek Kumar and P. Thomas Fletcher. The Rieman-
nian Geometry of Deep Generative Models. 2017. doi: 10.48550/ARXIV.
1711.08014. url: https://arxiv.org/abs/1711.08014.

https://doi.org/10.48550/ARXIV.1901.08428
https://arxiv.org/abs/1901.08428
https://arxiv.org/abs/1710.09513
https://arxiv.org/abs/1710.09513
https://doi.org/10.1137/120885723
https://doi.org/10.1137/120885723
https://doi.org/10.1137/120885723
https://doi.org/10.1137/120885723
https://doi.org/10.48550/ARXIV.1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://books.google.no/books?id=-U5TyIw15rUC
https://doi.org/10.48550/ARXIV.1711.08014
https://doi.org/10.48550/ARXIV.1711.08014
https://arxiv.org/abs/1711.08014

80 BIBLIOGRAPHY

[71] Eduardo Sontag. Mathematical Control Theory: Deterministic Finite-
Dimensional Systems. Jan. 1998. doi: 10.1007/978-1-4612-0577-7.

[72] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow and Rob Fergus. Intriguing properties
of neural networks. 2013. doi: 10.48550/ARXIV.1312.6199. url: https:
//arxiv.org/abs/1312.6199.

[73] Matus Telgarsky. Benefits of depth in neural networks. 2016. arXiv:
1602.04485 [cs.LG].

[74] Joshua B. Tenenbaum, Vin de Silva and John C. Langford. ‘A Global
Geometric Framework for Nonlinear Dimensionality Reduction’. In:
Science 290.5500 (2000), pp. 2319–2323. doi: 10.1126/science.290.
5500.2319. eprint: https://www.science.org/doi/pdf/10.1126/
science.290.5500.2319. url: https://www.science.org/doi/abs/10.
1126/science.290.5500.2319.

[75] Matthew Thorpe and Yves van Gennip. Deep Limits of Residual Neural
Networks. 2020. arXiv: 1810.11741 [math.CA].

[76] Robert Tibshirani. ‘Regression Shrinkage and Selection via the Lasso’.
In: Journal of the Royal Statistical Society. Series B (Methodological)
58.1 (1996), pp. 267–288. issn: 00359246. url: http://www.jstor.
org/stable/2346178.

[77] Yusuke Tsuzuku, Issei Sato and Masashi Sugiyama. Lipschitz-Margin
Training: Scalable Certification of Perturbation Invariance for Deep
Neural Networks. 2018. doi: 10.48550/ARXIV.1802.04034. url: https:
//arxiv.org/abs/1802.04034.

[78] Ledyard R. Tucker. ‘Some mathematical notes on three-mode factor
analysis’. In: Psychometrika 31.3 (1966), pp. 279–311. doi: 10.1007/
BF02289464. url: https://doi.org/10.1007/BF02289464.

[79] Han Xiao, Kashif Rasul and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. 2017.
doi: 10.48550/ARXIV.1708.07747. url: https://arxiv.org/abs/1708.
07747.

[80] Xiaoyong Yuan, Pan He, Qile Zhu, Rajendra Bhat and Xiaolin Li.
‘Adversarial Examples: Attacks and Defenses for Deep Learning’. In:
(Dec. 2017).

[81] Zhenyue Zhang and Hongyuan Zha. Principal Manifolds and Nonlin-
ear Dimension Reduction via Local Tangent Space Alignment. 2002.
doi: 10.48550/ARXIV.CS/0212008. url: https://arxiv.org/abs/cs/
0212008.

https://doi.org/10.1007/978-1-4612-0577-7
https://doi.org/10.48550/ARXIV.1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1602.04485
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://www.science.org/doi/pdf/10.1126/science.290.5500.2319
https://www.science.org/doi/pdf/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://arxiv.org/abs/1810.11741
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://doi.org/10.48550/ARXIV.1802.04034
https://arxiv.org/abs/1802.04034
https://arxiv.org/abs/1802.04034
https://doi.org/10.1007/BF02289464
https://doi.org/10.1007/BF02289464
https://doi.org/10.1007/BF02289464
https://doi.org/10.48550/ARXIV.1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://doi.org/10.48550/ARXIV.CS/0212008
https://arxiv.org/abs/cs/0212008
https://arxiv.org/abs/cs/0212008

BIBLIOGRAPHY 81

[82] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman and Alexei A. Efros.
Generative Visual Manipulation on the Natural Image Manifold. 2016.
doi: 10.48550/ARXIV.1609.03552. url: https://arxiv.org/abs/1609.
03552.

https://doi.org/10.48550/ARXIV.1609.03552
https://arxiv.org/abs/1609.03552
https://arxiv.org/abs/1609.03552

82 BIBLIOGRAPHY

Appendix A

Appendices

A.1 The Cayley map
For the efficient implementation of the network, we need to address the com-
putation of analytic functions of matrices B P Rmˆm given in the factorised
form

B “ CDT , C P Rmˆp, D P Rmˆp.

We are particularly interested in

caypBq “

ˆ

I ´
1

2
B

˙´1 ˆ

I `
1

2
B

˙

.

We want to exploit the fact that B “ CDT , is factorised and obtain efficient
implementations of cay, especially under the assumption that p is small.
Notice that in our numerical methods we compute the Cayley transformation
of B “ CDT

C “ rFU , ´U s, D “ rU, FU s,

with p “ 2k, and with UTU “ I, F T
U U “ 0.

Notice that for analytic functions ϕpBq “
ř8

i“0 αiB
i we have

ϕpBq “ α0I ` C
8
ÿ

i“1

αipD
TCqi´1DT “ α0I ` C

ϕpzq ´ 1

z

ˇ

ˇ

ˇ

ˇ

z“DTC

DT ,

and in our case

DTC “ rU, FU sT rFU , ´U s “

„

O ´I
F T
U FU O

ȷ

.

83

84 Appendices

When ϕpzq “ caypzq “
1`

z
2

1´
z
2
, ϕpzq´1

z “ p1 ´ 1
2zq´1 so

caypCDT q “ I ` CpI ´ 1
2D

TCq´1DT .

For an alternative method consider the QR-factorisation of D,

D “ rU, FU s “ rU, UKs

„

I O
O R2,2

ȷ

,

where rU, UKs has 2k orthonormal columns, and FU “ UK R2,2 is the QR
factorisation of FU . From this factorisation we can construct a useful fac-
torisation of C:

C “ rFU , ´U s “ rU, FU s

„

O ´I
I O

ȷ

“ rU, UKs

„

O ´I
R2,2 O

ȷ

By multiplying together the two decomposed factors we obtain

CDT “ rU, UKs

„

O ´RT
2,2

R2,2 O

ȷ

rU, UKsT ,

and from this it is possible to show that

caypCDT q “ I ` rU, UKsGrU, UKsT .

G “

„

O ´RT
2,2

R2,2 O

ȷ ˆ

I ´
1

2

ˆ„

O ´RT
2,2

R2,2 O

ȷ˙˙´1

A.2. The MNIST data set 85

A.2 The MNIST data set
Top row of Figure A.1 shows samples from the original MNIST data set.
The Second row shows truncated SVD performed with k “ 2. The third and
bottom row shows truncated SVD with k “ 3. There is a slight difference
between the compressed images. The number 7 has lost much shape when
k “ 2. It could be, perhaps in other similar cases, be difficult to distingush
the number 7 from the number 0. Therefore, as the compression is still quite
significant if choosing k “ 3, , and as we want to keep the most important
singular values 4.2, this is our chosen truncation.

Figure A.1: Top row: Original samples of MNIST data set
Middle row: Compressed images using truncated SVD of order k “ 2.
Bottom row: Compressed images using truncated SVD of order k “ 3.

86 Appendices

A.3 The FashionMNIST data set
Top row of Figure A.1 shows samples from the original FashionMNIST data
set. The Second row shows truncated SVD performed with k “ 2. The third
and bottom row shows truncated SVD with k “ 3. The difference between
the compressed images is almost not visible. The main difference is the dress
the the left, one can see the long sleeves more pronounced, which makes the
difference between the dress and the t-shirt to the right the most visible.
Therefore, visually it makes more sense to choose truncation k “ 3, and as
we want to keep the most important singular values 4.2, this is our chosen
truncation.

Figure A.2: Top row: Original samples of FashionMNIST data set
Middle row: Compressed images using truncated SVD of order k “ 2.
Bottom row: Compressed images using truncated SVD of order k “ 3.

A.4. The CIFAR10 data set 87

A.4 The CIFAR10 data set
Top row of Figure A.3 shows samples from the original CIFAR10 data set.
The Second row shows compressed images where Tucker Decomposition has
been performed with Tucker rank r “ r3, 3, 3s. The third and bottom row
shows compressed images using Tucker Decomposition of Tucker rank r “

r3, 9, 9s. The difference between the compressed images is almost not visible.
Only slight difference in pigmentation in certain cells. Therefore, visually we
cannot determine from these sample images which rank we should choose.
We will choose a truncation based upon the singular values, see Figure 4.2,
and the error in the Tucker Decomposition , see Figure 4.3(a).

Figure A.3: Top row: Original samples of the CIFAR10 data set
Middle row: Compressed images using Tucker Decomposition of rank r “ r3, 3, 3s.
Bottom row: Compressed images using Tucker Decomposition of rank r “ r3, 9, 9s.

88 Appendices

A.5 The SVHN data set
Top row of Figure A.4 shows samples from the original SVHN data set. The
Second row shows compressed images where Tucker Decomposition has been
performed with Tucker rank r “ r3, 3, 3s. The third and bottom row shows
compressed images using Tucker Decomposition of Tucker rank r “ r3, 9, 9s.
The difference between the compressed images is almost not visible. The
main difference is the dress the the left, one can see the long sleeves more
prononced, which makes the difference between the dress and the tshirt to
the right the most visible. We will choose a truncation based upon the
singular values, see Figure 4.2, and the error in the Tucker Decomposition ,
see Figure 4.3(b).

Figure A.4: Top row: Original samples of the SVHN data set
Middle row: Compressed images using Tucker Decomposition of rank r “ r3, 3, 3s.
Bottom row: Compressed images using Tucker Decomposition of rank r “ r3, 9, 9s.

A.6. Summary of results of MNISTvsFashionMNIST on deep networks. 89

A.6 Summary of results of MNISTvsFashionMNIST
on deep networks.

(a) Convergence of the deep L “ 100 net-
works on different data sets.

(b) Average rank of the output for each
layer in the trained deep networks.

(c) Average error in orthogonality in U
at every layer of the relevant trained net-
works

(d) Average error in orthogonality in V
at every layer of the relevant trained net-
works

Figure A.5: Summary of results of training deep networks L “ 100 on MNIST
and FashionMNIST data sets.

N
eural N

etw
orks on Low

-Rank and Stiefel M
anifolds

Cam
illa Balestrand Klem

etsen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Camilla Balestrand Klemetsen

Neural Networks on Low-Rank and
Stiefel Manifolds

Master’s thesis in Applied Physics and Mathematics
Supervisor: Elena Celledoni
June 2022

M
as

te
r’s

 th
es

is

	List of Tables
	List of Figures
	Introduction
	The Manifold Hypothesis and Reduced-Order Models
	Smooth Manifolds and Topology
	The Manifold Hypothesis
	Reduced Order Models
	The Singular Value Decomposition
	Dynamic Low-rank Approximation
	Dynamical Tensor Approximation

	Closing remarks

	Deep Learning as Optimal Control
	Classification using Neural Networks
	Neural Networks
	Training the neural network:

	Residual Neural Networks and Neural ODEs
	Geometric Integration
	Projection Methods
	Lie Group Integrators
	Advantages and Disadvantages

	Adversarial Attacks
	Fast Gradient Sign Method (FGSM)

	Closing Remarks

	Numerical Experiments and Results
	Setup
	Investigating the data sets
	Rank Evolution
	Networks on Low-Rank and Stiefel manifolds
	Low-Rank
	Low-Rank and Stiefel

	Adversarial Robustness
	Low-Rank
	Low-Rank and Stiefel

	Discussion and Future Work
	Background
	Results
	Future work:

	Conclusion
	Appendices
	The Cayley map
	The MNIST data set
	The FashionMNIST data set
	The CIFAR10 data set
	The SVHN data set
	Summary of results of MNISTvsFashionMNIST on deep networks.

