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Abstract

Multi-horizon time series forecasting poses fundamental challenges to machine
learning and statistics with applications in many domains. In direct multi-
horizon forecasting, the standard approach of neural nets is to either have
one output node per horizon or use a sequence to sequence method to achieve
solid forecasts. This thesis proposes a novel multi-horizon forecasting scheme
that only uses one output node for all horizons. The method achieves dif-
ferentiation of horizons by encoding and injection of horizon metadata into
the models. Furthermore, we introduce a multi-horizon time series adapta-
tion of the Vision Transformer. Moreover, we propose three different ways in
which to inject the horizon metadata for the transformer structure, yielding
rich representations per horizons and improved results compared to a mul-
tilayered perceptron baseline. In addition, we provide six different ways to
encode the different horizons into metadata. Lastly, we show that the correct
encoding structure for the horizon metadata allow the encoding of the time
series dynamics into the model. Ultimately, this allows the models to perform
interpolation tasks.
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1 Introduction

Time Series analysis and Multi-horizon time series forecasting poses fundamental chal-
lenges to machine learning and statistics with applications in many domains, for instance
finance, retail, healthcare and electricity. Forecasting is a data science task that is central
to activities within an organization and for society as a whole. Good multi-horizon fore-
cast allow for efficient allocation of scarce resources and goal setting where performance is
measured relative to a baseline. Producing forecasts of high quality is not easily achieved
for either machines or for most analysts. In multi-horizon forecasting, the learning ob-
jective is to produce predictions for multiple future horizons at any given time. In many
practical circumstances, multi-horizon forecasting is preferred, as it provides guidance for
resource scheduling and decision making over a longer period of time. As a motivating
example, consider a power production company that has to nominate the energy produced
by wind turbines for the next day in the day-ahead market. In this case, there is a direct
economical incentive for producing high quality forecasts. Any forecasting errors made
would have to be covered in the intra-day market, increasing the company’s economical
risk. Furthermore, in the face of late arrival of data, it would be beneficial for the model
to reliably forecast even further into the future, ensuring available predictions.

Classical time series forecasting approaches include Holt-Winters method (Holt, 2004;
Winters, 1960), ARIMA (Box and Jenkins, 1968) and newer contributions such as Prophet
(Taylor and Letham, 1960). While intuitive and more interpretable, these models are
ineffective at modeling nonlinear time series. Recent work applying deep learning to multi-
horizon time series has seen performance exceeding that of traditional statistical methods
(Salinas et al., 2017; Alaa and Schaar, 2019). The transformer structure (Vaswani et al.,
2017) is the most prevalently utilized in recent work on multi-horizon forecasting (Eisenach
et al., 2020; Lim et al., 2019; Li et al., 2019). However, the use of Recurrent Neural
Networks (RNNs), and the variant Long Short-Term Memory Networks (LSTMs), are
also frequently proposed for modeling complicated sequential data. The neural nets have
shown promise in computer vision (Dosovitskiy et al., 2021 ; Donahue et al., 2017), natural
language processing (Vaswani et al., 2017; Devlin et al., 2018; Sutskever et al., 2014) and
audio generation (Huang et al., 2018; Oord et al., 2016). All of these domains have time
series data. In neural net architectures that provide direct multi-horizon forecasts, the
common solution is to yield predictions for all horizons simultaneously. This is most often
achieved by creating one output node for each horizon, or using a sequence to sequence
(Seq2Seq) methods.

With a different approach, we propose a architecture with one output node, where the dif-
ferent horizons can be obtained independently through providing the model with horizon
specific metadata. Here, we use a time series adaption of the Vision Transformer (Doso-
vitskiy et al., 2021), referred to as Time Series Visiual Transformer (TSVIT). Moreover,
we also construct a multilayered Perceptron (MLP) as a baseline. In the present work we
aim at achieving a set of goals. We wish to (1) explore the possibility of producing good
independent direct predictions for an arbitrary number of horizons using the baseline MLP
and TSVIT architecture with the novel forecasting technique. Furthermore, (2) ascertain
the effect different structures of horizon metadata have on the performance of models.
Herein, (3) the ability of the metadata to encode time series dynamics able for use in both
interpolation and extrapolation tasks. In addition, (4) we have aimed at comparing the
performance of TSVIT and the baseline MLP, where each model is trained on several data
sets. These research questions are answered through a set of six experiments using both
simulated data sets and a real world data set.
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2 Background and Related Work

In this section the background behind the direct multi-horizon forecasting method are ex-
plored. Furthermore, we look into related work in the context of multi-horizon forecasting.
Lastly, related work with respect to attention mechanisms and transformer structures are
presented.

2.1 Multi-horizon Forecasting

Let Ft be the set of all information available up to and including some time t. For some
finite set of horizons, hi ∈ H, i ∈ {1, 2, · · · , n}, an example of a multi-horizon objective is
to minimize ∑

tj

L(ŷtj+h1 , · · · , ŷtj+hn , ytj+h1 , · · · , ytj+hn

∣∣ Ftj ), (1)

where L is some loss function. Similar to traditional statistical multi-horizon forecasting
methods, deep neural nets can be divided into two main categories based on how they
construct predictions for multiple horizons. Namely, iterative and direct multi-horizon
forecast models.

The iterative models usually perform one-step-ahead forecasts iteratively (Salinas et al.,
2017; Li et al., 2019; Rangapuram et al., 2018), using predicted values as input to again
predict for progressively larger horizons. One of the drawbacks of the iterative scheme is
that they only rely on the target changing for future data points. Hence, there are fewer
examples of iterative multi-horizon forecasting in the face of multivariate time series.
Another typically occurring phenomenon seen using these methods is the accumulation
of error for higher horizons, making the predictions diverge from the target. Hence, it
is most common to perform direct multi-horizon forecasting, or other statistical learning
methods when having to predict on distant forecast horizons.

Direct multi-horizon models jointly forecast at all desired horizons simultaneously (Eisen-
ach et al., 2020; Wen et al., 2018 ). The Multi-horizon Quantile Recurrent Forecaster (Wen
et al., 2018) uses Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)
or convolutional encoders to generate context vectors that are fed into MLPs. Temporal
Attention Learning (Fan et al., 2019) use a multi-modal attention mechanism with LSTM
encoders to construct context vectors for a bi-directional LSTM decoder. The MQTrans-
former (Eisenach et al., 2020) is another example of a model that can be used for direct
multi-horizon forecast. The model uses both a novel decoder-encoder attention mechan-
ism for context-alignment along with a modification to the positional encoding to allow
the model to learn context-dependent seasonality patterns. Temportal Fusion transformer
(Lim et al., 2019) is another attention based transformer using a LSTM encoder-decoder
alongside a more interpretable attention mechanism. To allow these models to forecast for
multiple horizons, they either have an iterative process occurring inside model, or have a
designated MLP head or an output node per horizon. On the other hand, the novel trans-
former structure explored in this thesis uses horizon tokens comprising metadata given to
the model to differentiate between horizons. This results in the same MLP head with one
prediction node being used for all horizons.
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2.2 Attention

The attention mechanism was introduced by Jordan and Jacobs (2001) in the context
of mixture of experts. Recently, Bahdanau et al. (2014) used Attention to lessen the
information bottleneck and solve sequence alignment problems in Seq2Seq architectures in
neural machine translation. Since then, the mechanism has commonly been incorporated
within models in the fields of natural language processing (NLP) and computer vision. It
also forms the backbone of the transformer structure.

Sukhbaatar et al. (2015) use the attention mechanism on the same sequence, introducing
the so-called self-attention. This was used within an auto-regressive model called end-
to-end memory network. Many other attention variants have been introduced, including
dot product attention and Talking-Heads attention(Luong et al., 2015; Cheng et al., 2016;
Devlin et al., 2018; Vaswani et al., 2017; Shazeer et al., 2020). One of the main differences
between using attention and convolutional layers, is the scope. While convolutional layers
have a local scope, the attention mechanism is often used with a global scope, allowing
models to attend to information much further out in the receptive field. In the present
work, the transformer structure presented uses both convolutional layers and the multi-
head self-attention mechanism. Using both allows the control of local scopes while still
attaining global processing.

2.3 Transformers

Transformer (Vaswani et al., 2017) structures are models that use the attention mechanism
to capture distant dependencies in the receptive field. Since their introduction, they have
been very successful in a wide range of applications, such as natural language processing
(Al-Rfou et al., 2018; Vaswani et al., 2017; Devlin et al., 2018) and multi-horizon time
series forecasting (Lim et al., 2019, Eisenach et al., 2020). Here, many are now surpassing
the former state-of-the-art models based on recurrent or convolutional networks.(Cheng
et al., 2016, Donahue et al., 2017, Dauphin et al., 2017). At their core, transformers use
the self-attention mechanism to efficiently form a vector representation where the most
relevant context from the input is gathered. Due to this, each layer can be trained to
update a latent vector representation of every element with information aggregated over
the whole input. This allows for information to flow long distances and to form rich data
representations.

A multilayer transformer encoder consist of interleaved self-attention and feedforward
sublayers. While the self-attention is often considered a key component of the transformer
structure, the feedforward sublayers are just as important. After all, the feedforward
layers comprise most of the parameters of the model. In the work of Lu et al. (2019), they
explore the transformer structure from a multi-particle dynamics point of view. Here, they
show that the transformer mathematically can be interpreted as an ordinary differential
equation. In particular, they relate the multi-head attention and the feedforward sublayers
of the transformer encoder to a diffusion and a convection step, respectively. For improved
performance, they propose adding another feedforward sublayer before the self-attention
sublayer attaining the so-called Macaron architecture. In another recent article from Press
et al. (2020), they propose that a reordering of the layers of the transformer encoder could
increase model performance. In particular, they propose the sandwich transformer. Here,
most attention layers are interleaved in the first sublayers, while the feedforward sublayers
are found deeper into the transformer endcoder.

3



Similary, in the work of Nguyen and Salazar (2019), they investigate the placement of layer
normalization within the transformer. The original overall architecture, and the present
work, use post-norm residual units, where the layer normalization occurs after the sublayer
output and residual addition. However, Nguyen and Salazar (2019) and Chen et al. (2018)
found that pre-norm residual units, where batch normalization occurs immediately before
the sublayer, made the backpropagation more efficient and the training process warm-
up free. In another related work, Zhang and Sennrich (2019) found that replacing the
layer normalization with a root mean square layer normalization achieved comparable
performance, but induced a reduction in training time somewhere within 7% to 64% for
their models. In the work of (Shazeer, 2020), gating in the feedforward sublayer is explored.
The author found that a simple gating with GELU activation of the residual connections
lead to significant improvements. In the current work, we employ a gating mechanism,
but not within the transformer encoder. Rather, we introduce a gating mechanism in the
residual connection between the last value of the input time series receptive field and the
model output.

Much related work has also been done in order to mitigate the mitigate the O(n2) com-
putational complexity of increasing the sequence size for self-attention mechanisms. Zhao
et al. (2019) propose the use of a Explicit Sparse Transformer, where the attention is
degenerated using top-k selection, preserving the k most contributing components of the
attention mechanism. The authors further claim that the sparcity has a noise reducing ef-
fect on the data, allowing the model to better generalize. In addition, the authors managed
to be comparable or outperform other sparse attention methods, while improving training
time. However, it is also possible to use convolutional layers locally, while employing a
sparse attention mechanism to do global processing (Li et al., 2019). Similarly, Dosovit-
skiy et al. (2021) adapts the transformer for use in a image classification. To make the
models more scalable, the images are partitioned into a grid of two dimensional patches
that in turn are transformed using a linear mapping. In our work, the receptive field is
also processed locally using a convolutional layer. We do, however, not employ a sparse
attention mechanism.

As time series exhibit seasonal trends, Eisenach et al. (2020) discourages the use of abso-
lute positional encodings in transformer structure. In the MQTransformer, the positional
representation is learned using temporal indicator variables that encode events relevant
to the application, for example holidays. A similar use of the transformer structure is
explored in the present work. The horizon metadata is used to enable different positional
representations per horizon in the data, allowing for per-horizon seasonality patterns. Fur-
thermore, for some of the models implemented in this thesis, the positional enbeddings
are allowed to be learned freely. when not made from horizon metadata provided. Lastly,
A rotary positional encodings was presented by Su et al. (2021). Here, a rotation matrix
encodes absolute position information, and if furthermore allows for a natural explicit
relative position dependency in the self-attention formulation. Using this positional en-
coding, the authors were able to achieve comparable or superior performance on many
NLP tasks.

.
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3 Methodology

In this section we present our TSVIT architecture, building upon the VIT framework
(Dosovitskiy et al., 2021). Furthermore, we elaborate on our method of presenting horizon
metadata to the model. We use the TSVIT in a multi-horizon time series setting, where
the different horizons are interpreted through providing the model with horizon metadata
embeddings, here referenced interchangeably as horizon tokens.

3.1 Time Series Adaptation of Vision Transformer

Latent Vector >

+ Positional
Embedding

Transformer Encoder

MLP Head

Conv1D

(a) Transformer overview.

Layer Norm

Attention

Layer Norm

MLP

+

+Block

(b) A block within the Transformer Encoder.

Figure 1: On the left is the Transformer overview. The time series window is transformed
into a patch embedding using a convolutional layer where the number of channels repres-
ents the size of the latent vectors. Next, BERT’s class token, a latent vector is prepended.
Then the positional encoding is added to the patch embedding. The class token is trans-
formed alongside the patch embedding. Finally the transformed latent vector is given to
the MLP head to make a final prediction. On the right is a block within the Transformer
Encoder showcasing the alternating Attention and MLP blocks, along with residual con-
nections.

A model overview is given in Figure 1. The transformer receives a receptive field of size
L, x0. Thereafter, a 1D convolutional layer projects the window into P patches each with
D channels,

z0 = Conv1D(x0), z ∈ RN×P×D.

The output channels represent the embedded vectors called the patch embedding. It is
common to make the Conv1D layer have equal stride and window-size, dividing the input
into independent segments, but this is not a necessity. The convolutional layer is meant
to decrease the dimensionality of the problem. If compute time is not an issue, then stride
and window size of one may be implemented. In this case, the transformer structure will
only have a linear mapping from the input to the patch embedding. Similar to the Vision
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Transformer (Dosovitskiy et al., 2021), a latent vector, b(0), often coined BERT’s (Devlin
et al., 2018) class token, is prepended to the patches. To learn positional relationships, a
learnable or fixed structured positional encoding, PE , is added to the patch embeddings,

z(0) =
[
b(0), z0

]
+PE , z(0),PE ∈ RN×(P+1)×D, b(0) ∈ RN×1×D,

where brackets are used to show a concatination. Thereafter, the tensor is encoded using
the Transformer Encoder (Vaswani et al., 2017). The Transformer Encoder consists of
B blocks. Between and inside all blocks, the transformer uses constant latent vector size
D to streamline the model, ease implementation and easier allow residual connections.
Each block consists of alternating layers utilizing multi-head self-attention and a simple
MLP. Both before all blocks, and also after residual connections in every block, layer
normalization is applied. Each block is a two-step process, namely

z̃(k+1) = z(k) +Attention(LayerNorm(z(k))), z̃(k+1) ∈ RN×(P+1)×D,

z(k+1) = z̃(k+1) + FeedForward(LayerNorm(z̃
(k+1)
cls )), z

(k+1)
cls ∈ RN×(P+1)×D.

After the patch embeddings are transformed using the Transformer Encoder, the trans-
formed latent vector, b(B), is given to the MLP Head to make a final prediction,

ŷ = MLPHead(b(B)).

The MLP Head consists of a hidden layer with GELU activation function and a linear
output layer with one node. This is purposely done to allow the model to obtain non-
linear relationships in the transformed latent vector.

Gating Mechanism

For all models, both TSVIT and baseline, a simple gating mechanism was introduced,
inspired by an unpublished paper by Espen Haugsdal and Erlend Aune. The mechanism
is presented in Figure 2. The gating mechanism uses the last available datapoint in the
model input window to make a residual connection with the model output. To allow
for higher model flexibility, the residual connection is multiplied by a learnable gating
parameter, α,

ŷ = FeedForward(x) + αxt.

Since a persistence model may be a good baseline for some time series, the gating parameter
is 1-initialized.

For the real world datasets, we alter the gating mechanism to make the model better
at cross-dataset generalization, and eliminate the need to do data normalization. Figure
3 illustrates the alteration. The model input and model output is scaled using the last
available datapoint in the receptive field,

ŷ = FeedForward

(
x

xt

)
xt + αxt.

Such a scaling is only possible when the data is positive. However, when presented with
non-negative data, with the possibility of zeros, the mean value of the last n values of
the receptive field can be used for scaling instead. When α = 1, a model using this
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scaling method is trained to predict the multiplicative difference from the last value in
the receptive field to the target. Other scaling methods, such as scaling and taking the
logarithm is also possible. In the current work, these other possible ways of transforming
the data given to the model are not explored. A possible benefit of using this gating
mechanism is that the learning rate of layers in the model can be self-regulated through
the gating parameter, α. During back propagation the first gradient passed backward
from a single sample will be

∂L

∂ŷ
= −(y − ŷ) = FeedForward(x) + αxt − y,

when the loss function, L, is the mean squared error loss function.

Model

Figure 2: The gating mechanism used for the models during simulations. The gating
parameter, α, is learnable and 1-initialized.

Model

Figure 3: The gating mechanism used for the models on real data with positive data-
points. The gating parameter, α, is learnable and 1-initialized. Furthermore, the model
is presented with data that is scaled using the last available time series data point in the
receptive field.

Horizon Metadata Injection

In the present work, we employ three methods to supply the TSVIT with horizon metadata,
where the term horizon metadata and horizon token are used interchangeably. Firstly,
BERT’s class token may be constructed using a learnable linear transfomation of the
horizon token,

b
(0)
h = AT h, A ∈ RD×dT h ,

where, Th is a vector encoding the horizon, h, to forecast for. This yields |H| different class
tokens, one per horizon. We designate the model using the horizon token to construct the
class token as TSVIT-CT. Secondly, we may let the positional encoding be learned from
a linear mapping of horizon tokens,

PE,h = BT h. B ∈ R(P+1)×D×dT h ,

yielding one positional encoding per horizon. The models using horizon tokens in this
way is denoted TSVIT-PE. Thirdly, both the positional encoding and the class token are
constructed from learnable linear mappings of the horizon token. A model incorporating
this will be called TSVIT-PECT. For the TSVIT-CT model, the positional encoding will
be a free parameter to be learned and constant across all horizons. Likewise, for the
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TSVIT-PE model, the inital latent vector prepended to the patch embedding will be a
learned parameter in the model, and the same across horizons.

There were two other methods for injecting horizon metadata considered. Firstly, the
horizon token may be concatenated onto the latent vector after it has been processed by
the Transformer Encoder. In that case, the result becomes

ŷh = MLPHead
([

b(B),T h

])
,

where Th is an encoded vector representing the horizon to forecast for. Since the positional
encoding and class token will be the same for all horizons, the latent vector has to store
information about all horizons. Hence, this method was dropped due to poor performance
during preliminary testing. The last method considered was to have each Multi-head Self
Attention matrix, Uqkv (Equation (4)), be a learned linear transformation of the horizon
metadata,

Ui
qkv,h = CiT h Ci ∈ RD×3Dh×dT h , i ∈ {1, . . . , B}.

However, since the attention mechanism constitute most of the model, this was considered
to be similar to having a separate model for each horizon.

3.2 Horizon Tokens

The models rely on metadata to yield a forecast for a specific horizon. The set of horizons,
H, is decided before training a model. Each horizon has a unique horizon token, Th ∈ T .
There are many ways of constructing such tokens, for instance sinusoidal encoding of
the horizon, using a MLP encoder, using learned tokens or using an iterated scheme for
constructing bigger and bigger horizons.

Dummy Encoding

Dummy encodings are binary vectors constructed from the position of the horizon in the
horizon set. An example of horizon tokens using hourly data, with which the model should
be able to yield hour-, day-, and week-ahead forecast would be

H = {1, 24, 168} T =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
.

Sinusoidal Positional Encoding

The sinusoidal positional encoding is of even length k. In order to attain the horizon
embedding for horizon h, Th, k/2 sinusoidal number pairs are generated using

Th,2i−1 = sin(
h

n2i/k
) Th,2i = cos(

h

n2i/k
) ∀i ∈ {1, · · · , k/2}. (2)

The number n is user defined, and often picked to be 10000, which is sufficiently large for
most purposes (Vaswani et al., 2017).
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MLP Encoding

The MLP encoder is a simple way to generate horizon metadata encodings. A small MLP
is inputted a single number, h, representing the forecast horizon, and produces the finished
horizon token Th of a predetermined dimension k.

Th = Encoder(h) (3)

In the present work, the MLP encoder will have depth of 3, a width of 10 and use GELU-
nonlinearity. An example of learned MLP horizon tokens can be seen in Figure 5.

Learned Parameters Encoding

Horizon tokens may also solely be learned from backpropagation. Each horizon token
Th ∈ T is in this case null or randomly initialized and separated throughout the training
phase. An example of this type can be seen in Figure 5.

Line Interpolation Encoding

Line Interpolation has two learnable horizon tokens, one at each end of the predetermied
set of horizons to forecast for. We denote these as Thmin

and Thmax . Any other hori-
zon token is found along the line connecting the upper and lower horizon tokens. The
calculation used is

Th = (1− θ)Thmin
+ θThmax , θ =

h− hmin

hmax − hmin
.

Iterated Encoder

The horizon tokens can also be produced using an iterated scheme. In this case we have a
step-ahead encoder that transforms an horizon token Th into Th+s. The only parameters
initialized in this case is the null-horizon token T0 for which to start the iteration from,
along with the parameters within the encoder. In this case, to ensure that all horizons
can be represented on regular time series data, one needs s to be on an harmonic form
s = 1/n. If s = 1/2, then two iterations of the encoder would be necessary to get the next
horizon token.

Encoder

Figure 4: The Iterated Encoder for generating progressively bigger horizons.

In the current work, the iterated encoder used is a MLP with two hidden layers of width
eight and GELU non-linearity. The output layer has a Softmax activation function. Fur-
thermore, the iterated horizon metadata encoder had a step size of s = 1 throughout this
thesis, to later be used for interpolation task. With this value, it had to make as many
as 99 iterations for some training horizons. Not unsurprisingly, it made models, for some
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experiments, unable to properly converge during the training phase. Perhaps a different
activation function, or contraining the output to lie on a predefined manifold could solve
this issue.

3.3 Interpolation Using Metadata

In Figure 5, the horizon tokens from TSVIT-PECT model using Learned horizon metadata
embedding and MLP horizon metadata embedding, each trained with horizon token vec-
tors of size 2. The blue circles are the actual horizon tokens found through training. While
there are intuitive ways to connect the dots for the MLP horizon encoder, there is no such
intuitive way for the Learned Embedding horizon encoder. The idea behind the interpol-
ation method, is that the model must, in a smooth way, transition from the prediction of
horizon h1 to horizon h2 when presented with horizon tokens between Th1 and Th2 .

The horizon types that does not allow interpolation to any extent are the Dummy encoding
and the Learned Embedding encoding. The MLP horizon metadata encoder, along with
Sinusoidal, Iterative and Line horizon metadata encoder may allow for interpolation.
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Figure 5: The horizon tokens from a TSVIT-PECT using Learned horizon metadata
embedding (left) and MLP horizon metadata embedding (right), each trained horizon
token vectors of size 2. The blue circles are the actual horizon tokens found through
training. They are labeled with the appropriate horizon. The models are trained on
electricity consumption data (Mulla, 2018)

3.4 Multi-head Self Attention

In our architecture we employed the commonly used qkv self-attention (Vaswani et al.,
2017), keeping the latent vector dimension constant across all self-attention layers used.
For every stack of N input vectors of dimension D, z ∈ RN×D, the attention is computed
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[
q,k,v

]
= zUqkv Uqkv ∈ RD×3Dh

A = softmax

(
qkT

√
Dh

)
A ∈ RN×N (4)

SA(z) = Av SA(z) ∈ RN×Dh ,

where Uqkv is a trainable matrix, and Dh the dimension of the keys and queries. Multi-
head self-attention is a generalisation of the above self-attention, where k attentions are
computed in parallel, and then their concatenated output is projected,

MSA(z) =
[
SA(z)1,SA(z)2, · · · ,SA(z)k

]
U U ∈ RkDh×D. (5)

It is usual to to have kD = Dh to keep computational time constant when changing the
number of heads, k.

3.5 Evaluation Metrics

Models are evaluated using mean absolute error (MAE), root mean squared error (RMSE),
mean absolute percentage error (MAPE) and symmetric mean absolute percentage error
(SMAPE), MAPE (mean absolute percentage error), RMSE (root mean squared error)
and RMSPE (root mean squared percentage error). The metrics may incorporate the
multi-horizon and multi data set setting. Let the forecast horizons be denoted as H.
Furthermore, let the D be the set of different datasets. Then we may formulate

MAE =
1

ns

∑
d∈D

∑
h∈H

∑
t∈Td,h

|yt+h − ŷt+h| , (6)

RMSE2 =
1

ns

∑
d∈D

∑
h∈H

∑
t∈Td,h

(yt+h − ŷt+h)
2 , (7)

MAPE =
1

ns

∑
d∈D

∑
h∈H

∑
t∈Td,h

|yt+h − ŷt+h|
|yt+h|

, (8)

SMAPE =
2

ns

∑
d∈D

∑
h∈H

∑
t∈Td,h

|yt+h − ŷt+h|
|yt+h|+ |ŷt+h|

, (9)

where Td,h is the number of available data points for the given horizon and data set
(larger horizons will have less available data), and the number of total samples ns =∑

d∈D
∑

h∈H
∑

t∈Td,h
1. Compared to the error metrics MAE and RMSE, the MAPE and

SMAPE are more robust in the face of multiple positive data sets with different orders of
magnitude. However, for target values close to zero, the MAPE grows to infinity, while
the SMAPE is drawn towards one. Hence, for data sets with small target values the MAE
and RMSE will be used.

3.6 Training and Test Sets

The simplest way to evaluate and tune the performance and hyperparameters of a Ma-
chine Learning model is to use separate training, validation and testing sets. However, in
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a setting with multiple data sets, we also want to set aside full data sets for testing the
generalization error for completely new samples of time series dynamics. In this case, the
model will be trained on the training sets. The validation sets can be used for hyperpara-
meter tuning and early-stopping along with general model performance. The good part
about having two different set of test data, is that it is harder to achieve look-ahead bias
through repeated model training. The two different test sets are good basis to compare
trained models, comprising out-of-sample and out-of-time test sets.

4 Experiments

Because of the novelty of using horizon metadata, the behaviour of the TSVIT models,
along with the baseline, was first compared using simulated data. The models should be
able to learn from data with varying periodic trends and data complexity. To simulate
such scenarios, we used sinusoidal, triangle and sawtooth waves. Each of these data
types were drawn from a family of distributions. In order to test generality, we used two
different parts of the family of distributions not before seen by the models. In order to
test the generalization of the model on real data, we took a collection of 12 electricity
consumption(Mulla, 2018) data sets and put 3 data sets away to be used for testing later.
Furthermore, each of the training data sets remaining were split into training, validation
and test data. The performance of the models on both the 3 independent test data sets
and the test splits within the training data sets were compared.

Thereafter, the goal was to see if the models were able to interpolate inside of the range of
horizons they were trained on. We used both the simulated data and real data to compare
the ability of different horizon metadata to interpolate. Thereafter we explored the models
ability to extrapolate outside the furthest trained forecast horizon. In the last experiment,
we down-sampled both the training data sets and the test data sets. Thereafter, we tested
to see if the models were able to learn the underlying time series dynamics that were lost
during the down-sampling.

4.1 Generalization

Because of the novelty of the multi-horizon forecasting scheme, the behaviour of the TSVIT
models and the baseline MLP was first compared in a controlled environment using three
different data generators. They were a sinusoidal, triangle and sawtooth wave pattern.
Thereafter, the models were tested on electricity consumption data (Mulla, 2018).

4.1.1 Simulated Datasets

The generators draws N functions from a family of periodic functions. Thereafter, each
is applied a normalizing weight, a random shift and an error term,

f(ti) =
N∑
j=1

ωjfj(ti − cj) + ϵi (10)

where the weights are drawn so that they sum to one,

ωi =
Ai∑N
j=1Aj

, Aj
i.i.d.∼ U(0, 1) ∀j ∈ {1, . . . , N}. (11)
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The domain, Ω, is the interval x ∈ [0, 2π] discretised into n equidistant points. In the
current work, the periodic functions considered are sinusoidal, triangular and sawtooth
waves. The sinusodial function is on the form

fj(xi; λj , cj) = sin (2πλj(xi − cj)) , (12)

where cj ∼ U(0, 2π) and λj ∼ U(Λl,Λu) with Λl and Λu describing the family of different
frequencies. The triangle waves are on the form

fj(xi; λj , cj) =
2λj

π

∣∣∣∣((xi − cj) mod
2π

λj

)
− π

λj

∣∣∣∣− 1, (13)

where cj ∼ U(0, 2π) and λj ∼ U(Λl,Λu). Lastly, the sawtooth wave is on the similar form

fj(xi; λj , cj) =
λj

π

∣∣∣∣(xi − cj) mod
2π

λj

∣∣∣∣− 1, (14)

with the same hyperparameters.

The data sets are injected with noise using three different methods, in which one of them
is picked at random each time. Firstly, regular gaussian error,

yi = f(xi) + ϵi, ϵi ∼ N(0, σ2
1), i ∈ Ω (15)

is employed. Secondly, multiplicative gaussian error is implemented, where the error is
calculated using

yi = f(xi)(1 + ϵi), ϵi ∼ N(0, σ2
2), i ∈ Ω. (16)

Lastly, grid discretisation error,

yi = f(xi + ϵi), ϵi ∼ N(0, σ2
3), i ∈ Ω, (17)

has been used to provide more complex noise. The discretisation error might cause a
vertical shift in the data. Hence, the generated data with this noise type is shifted to have
zero median.

Experimental Setup

Model training was split into cycles of repeated training and validation, where the models
were given 20 and 100 sampled datasets of size n = 500 respectively. The validation
sampler was the same as the training sampler, without the use of backpropagation. The
training was perpetuated until there were no improvement in validation loss, the mean
values of MAE and RMSE, in 10 consecutive training cycles. All TSVIT models, along
with the baseline MLP used the AdamW (Loshchilov and Hutter, 2017) optimizer with
parameters β1 = 0.9, β2 = 0.999 and a weight decay of λω = 0.01. The TSVIT models
and the baseline had learning rates set to 0.0001 and 0.001 respectively. To ensure proper
convergence, an exponential learning rate decay was utilized with a rate of r = 0.99 per
cycle. The loss function used was mean squared loss. Furthermore, all models were set up
to predict for horizons H = {1, 4, 8, 12, 16, 20}. Moreover, each horizon-token type tested
was of dimension 8, except dummy encoding, which had a dimension of 5. Each model
was given a big receptive field of size 256. The model was given an entire sampled data set
of size n = 500 for every batch. Hence, the resulting batch size was 1409, where there are
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slightly more training samples available for the shorter forecast horizons. The validation
loss are presented in Figure 6. Here, the difficulty of the data is showcased. The sinusoidal
datasets are easiest learned, followed by the triangle and sawtooth waves.
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Figure 6: The RMSE of several model training runs. It shows three different clusters
across 450 training cycles. The lower, middle and upper cluster are runs for sinusoidal,
triangle and sawtooth wave data sets respectively.

After training, the models were tested on 2 other disjunct parts of the family of distri-
butions. The parameters of the training and test distributions are presented in Table 1.
The noise parameters are excluded, since they differ for the different types of periodic
functions implemented. It was also considered to allow models to train on an interval

Use Λl Λu N n

train 7 13 2 500

test 3 7 2 500
test 13 17 2 500

Table 1: Parameters used for training and testing during simulation.

λ ∈ [a, b] ∪ [c, d], a < b < c < d and then test on the interval λ ∈ [b, c]. However, this idea
was discarded. To further elaborate, when two period functions with different frequen-
cies are added, they create a wave packet. Consider the two sinusoidal waves with equal
amplitude,

y1 = A sin k1x

y2 = A sin k2x.

When added together the resulting wave packet becomes

y1 + y2 = 2A cos

(
k1 − k2

2
x

)
sin

(
k1 + k2

2
x

)
. (18)

Since the high frequency component, (k1+k2)/2, may be similar for the two sets, this will
not be an ideal test for generalization. For the parameters presented in Table 1, the high
frequency component will vary more, while the low frequency component will be similar
between the test and training datasets. The low frequency component of a wave packet
can be seen in Figure 9.
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Model Setup

All TSVIT models were set up with the same overall architecture (Table 2). The patch-
embedding mechanism used a 128 channel output Conv1D layer having kernel and stride
equal to 64. Thus, the latent vector size was also 128. Furthermore, the sequence length
is P = L/64, where L is the size of the input receptive field. In addition, the transformer
encoder consisted of 4 blocks of alternating self-attention and MLP layers, where each
attention layer computed 16 heads in parallel. The MLP layers within each block had two
hidden layers, each of size 384, resulting in an MLP ratio of 3 with respect to the latent
vector size. The MLP head had a single hidden layer with dimension 128 and GELU
non-linearity.

Model kernel, stride Embed dim Blocks HAttn MLP ratio Width MLP head

TSVIT (64, 64) 128 4 16 3 128

Table 2: The paramets of the TSVIT architecture used. Hattn is is the number of self-
attention heads, Equation 4.

The baseline MLP consisted of 5 hidden layers, each having width 1024 and GELU non-
linearity (Table 3). The horizon tokens were appended onto the input time series window.

Model Input dim. Hidden dim. Act.

Baseline L+ |T (h)| 1024 GELU

Table 3: Parameters used for the baseline model.

Sinusoidal wave

Six samples from the training family can be seen in Figure 7. The noise levels were set
at σ1 = 0.07, σ2 = 1.5σ1, σ3 = 2σ1 and were found through trial and error. We tested six
different types of horizon metadata for each type of model. The achieved MAE training
error is presented in Table 4. In Appendix A, blox plots showing the MAE distribution
are found.

While error metrics are good indicators of the overall model performance, they do not
convey information about whether or not the models have learned the different seasonal
trends. Therefore, the predictions of the baseline MLP and TSVIT-CT on 4 samples from
both the families are compared in Figure 8. As there shown, both the baseline and the
TSVIT models are able to fully learn the training data.
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Figure 7: Six sinusoidal data sets from, each with 500 samples. The yellow lines are the
dataset without noise, while the blue is with noise.

Model/Token type Line MLP Dummy Learned Sinusoidal iterative

Baseline 0.053 0.052 0.059 0.057 0.051 0.058
TSVIT CT 0.056 0.055 0.059 0.058 0.053 0.061
TSVIT PE 0.054 0.053 0.056 0.055 0.051 0.058

TSVIT PECT 0.053 0.053 0.055 0.055 0.051 0.058

Table 4: The median MAE value for each model and horizon token type over 9 runs for
the training error for the family parameterized with λ ∈ [7, 13]. The models are listen
along the row, while the horizon metadata embedding method is listed along the columns.
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Figure 8: The predictions from both the baseline (upper) and the TSVIT-CT (lower) on
the training distribution, λ ∈ [7, 13]. Both the models used a MLP horizon metadata
encoder. The target is shifted so it aligns with its prediction.

In order to test the models’ ability to generalize in the face of new data, we test using
two closely related distributions of functions defined in Table 1. The two families have
similar characteristics as the training set. However, one has higher frequencies, while the
other has lower frequencies than encountered previously by the models. In Figure 9 four
samples from each of these distributions are presented.
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In Table 5, the median MAE across 9 runs of the different models along with different
horizon metadata tokenizations for the high frequency family are listed. As there shown,
the TSVIT models achieve significantly lower error compared to the baseline. In fact, the
best median error for the TSVIT model is 35% smaller than the best median error for
the sinusoidal wave. This suggests that either the baseline MLP has a higher tendency
to overfit the training data, or that the transformers have a greater ability to generalize.
Box plots of the MAE errors can also be found in Appendix A. The predictions of a
TSVIT-CT and a baseline MLP model, both with MLP horizon tokens, are presented
in Figure 10. The predictions are quite good for the forecasting horizon 1. However,
the predictions become progressively worse for higher and higher horizons. In data row
3, both models are able to successfully predict for most horizons, attaining the correct
periodicity for the forecast. This may be a consequence of the frequency being close to
the training frequencies for this sample. For all other rows the predictions are shifted with
respect to the target. Since the models have only previously seen lower frequencies than
in the data, they may overestimate at what time the sinusoidal wave enters a declining
phase, explaining both the right shifting and the overestimates done during the peaks.
The baseline MLP is in general overestimating much more than the TSVIT-CT model.
However, for row 1 the TSVIT-CT are unable to yield meningfull predictions for horizons
16 and 20.

In Table 6, the median MAE of the different models along with different horizon metadata
tokenizations for the low frequency test family are listed. As there shown, the TSVIT
models achieve lower error compared to the baseline MLP. There is a 50% error reduction
in median MAE for the best TSVIT model compared to the best baseline MLP. This
further suggests transformer models show more resistence to overfitting. The predictions
of a TSVIT-CT and a baseline MLP model, both using MLP horizon metadata encoding,
are presented in Figure 11. Similar to the high frequency test samples, the predictions
are quite good for the forecasting horizon 1. Furthermore, the error increases for bigger
forecast horizons. In data row 2, both models are able to make prediction with the same
frequency as the target. However, for the other samples, the predictions are left-shifted,
signifying that the models anticipate peaks with higher frequency. On all of these rows,
TSVIT-CT, unlike the baseline MLP, manages to not overly overestimate the amplitude
of the peaks. The baseline MLP is yielding forecasts with peaks with amplitude twice that
of the target.

In the sinusoidal wave experiment, the TSVIT-CT model achieves the best generalization
performance, especially on the low-frequency test data. However, it is from the training
error evident that the TSVIT-CT model achieved the highest error metrics, signifying
that the other models more easily overfit the training data. The TSVIT-CT model use a
different initial latent vector passed through the transformer encodoer for each horizon.
Meanwhile, the positional encoding stays the same for all horizons. On the other hand,
TSVIT-PE and TSVIT-PECT both use a different positional embedding per horizon.
Because of the seasonality of the data, the position of the most relevant data may change
with respect to the horizon at which to forecast. This may point towards the reason
why having a different positional encoding per horizon allow these transformers to achieve
lower training error. With respect to different ways to encode horizon metadata, there
were no significant trends in performance to suggest that one is superior to the others in
this experiment. Lastly, with regards to the research questions posed in the introduction,
this experiment suggest that both the TSVIT models along with the baseline MLP are
able to yield good direct multi-horizon forecast for a set of horizons. In addition, the
experiment also suggest that the transformer structures outperforms the baseline MLP.
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Figure 9: Four samples of both the higher frequency (right) and lower frequency (left) test
data sets with sinusoidal distribution described by parameters λ ∈ [3, 7] and λ ∈ [13, 17],
respectively.

Model/token Line MLP Dummy Learned Sinusoidal iterative

Baseline 0.619 0.652 0.726 0.737 0.728 0.703
TSVIT CT 0.417 0.405 0.429 0.415 0.420 0.450
TSVIT PE 0.471 0.509 0.476 0.479 0.517 0.494

TSVIT PECT 0.490 0.483 0.485 0.477 0.494 0.482

Table 5: The median MAE value for each model and horizon token type over 9 runs for
the test data from the high frequency test distribution, λ ∈ [13, 17].

Model/token Line MLP Dummy Learned Sinusoidal iterative

Baseline 0.723 0.737 0.778 0.751 0.855 0.705
TSVIT CT 0.396 0.376 0.408 0.385 0.398 0.396
TSVIT PE 0.450 0.447 0.394 0.393 0.418 0.436

TSVIT PECT 0.442 0.446 0.446 0.386 0.406 0.414

Table 6: The median MAE value for each model and horizon token type over 9 runs for
the test data from the low frequency test distribution, λ ∈ [3, 7].
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Figure 10: The predictions from both the baseline (upper) and the TSVIT-CT (lower)
on the high frequency sinusoidal wave distribution parameterized by λ ∈ [13, 17]. Both
models use the MLP horizon metadata encoder. The target is shifted so it aligns with its
prediction.

20



2

0

2

Sa
m

pl
e 

1

Horizon 1 Horizon 4 Horizon 8 Horizon 12 Horizon 16 Horizon 20

2

1

0

1

2

Sa
m

pl
e 

2

2

0

2

Sa
m

pl
e 

3

0 100 200
2
1
0
1
2

Sa
m

pl
e 

4

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

MLP [3, 7]

prediction
target

1

0

1

Sa
m

pl
e 

1

Horizon 1 Horizon 4 Horizon 8 Horizon 12 Horizon 16 Horizon 20

1

0

1

Sa
m

pl
e 

2

1

0

1

Sa
m

pl
e 

3

0 100 200

1

0

1

Sa
m

pl
e 

4

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

TSVIT_CT [3, 7]

prediction
target

Figure 11: The predictions from both the baseline (upper) and the TSVIT-CT (lower)
on the low frequency sinusoidal wave distribution parameterized by λ ∈ [3, 7]. Both
models use the MLP horizon metadata encoder. The target is shifted so it aligns with its
prediction.
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4.1.2 Triangle wave

Six samples from the training family can be seen in Figure 12. The noise levels were
set at σ1 = 0.07, σ2 = 1.5σ1, σ3 = 0.5σ1. Similar to the sinusoidal wave, all six different
types of horizon metadata encodings were tested. The different horizons of which to train
were set to H = {1, 4, 8, 12, 16, 20}. The achieved MAE training error is presented in
Table 7. Here, most models achieved similar MAE. However, for the iterative horizon
metadata encoder, there were several runs for the TSVIT-PE and TSVIT-PECT that did
not converge. In Appendix A a blox-plot showing the MAE distribution can be found. As
seen in Figure 13, the TSVIT-CT and the baseline MLP were both able to fit the data
well. In the four samples from the training distribution, the only data points that attained
either underestimates or overestimates were the sharp peaks and areas where interference
patters were present, such as in row 4. Here, the forecasted values were a smoothed variant
of the target.
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Figure 12: Six triangle data sets from the training distribution, each with 500 samples.
The yellow lines are the data set without noise, while the blue is with added noise.

Model/token Line MLP Dummy Learned Sinusoidal iterative

Baseline 0.085 0.085 0.091 0.090 0.097 0.090
TSVIT CT 0.084 0.084 0.091 0.086 0.093 0.092
TSVIT PE 0.083 0.082 0.084 0.086 0.089 0.122

TSVIT PECT 0.083 0.083 0.086 0.083 0.089 0.216

Table 7: The median MAE value for each model and horizon token type over 9 runs for
the training distribution parameterized by λ ∈ [7, 13].
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Figure 13: The predictions from both the baseline (upper) and the TSVIT-CT (lower) on
the training triangle wave distribution. Both the models used a Line horizon metadata
encoder. The target is shifted so it aligns with its prediction.
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In order to test the generalizing error of the models, the two test families of functions
defined in Table 1 were used. The two test function families have similar characteristics
as the training data. However, one of the test sets comprise data with higher frequency,
while the other contain lower frequency data. Much like the sinusoidal waves, the triangle
waves form wave packets. However, the data pattern has a higher degree of complexity.
In Figure 14, four samples from each of the test distributions are displayed. In Table
8, the median MAE across 9 runs of the different models along with the horizon token
type used for the high frequency family are presented. The best TSVIT model achieved
a median MAE 10% lower compared to the best baseline MLP. Box plots of the MAE
errors can also be found in Appendix A. The predictions of a TSVIT-CT and a baseline
MLP model, both with Line horizon token embedding, are presented in Figure 15. The
predictions are quite good for forecasting horizons 1 and 4. For the larger horizon, we see
an increased shift to the right. However, for the TSVIT-CT, the shifting is less severe than
for the baseline MLP, suggesting that the transformer has learned a more generalizable
representation of the time series dynamics. For the larger horizons, the baseline MLP is
more prone to overestimate. This is most clearly seen in rows 1 and 4.

For the low frequency test data, the achieved median MAE for the same models are presen-
ted in Table 9. As there shown, the TSVIT models even further outperform the baseline
MLP compared to the high frequency test data. The best TSVIT model outperformed
the best Baseline by 22%. Moreover, in Figure 16, the output of the same two models are
compared of 4 samples from the low frequency test data generator. In row 4, both models
attain good predictions on the data for all horizons. However, for the other 3 rows, the
predictions are left-shifted. Similar to the high frequency data, TSVIT-CT exhibits both
less shifting and extreme predictions than the baseline.

From Table 9 and Table 8, it is evident that TSVIT-CT model achieves the best gener-
alization performance, especially on the low-frequency data. This may, contrary to the
sinusoidal wave experiment, not be explained by a lower training error for TSVIT-CT.
With respect to the research question posted in the introduction, this experiment suggests
that all models are both able to perform direct multi-horizon forecasts. Furthermore, the
transformer structures outperform the baseline MLP is this difficult generalization exper-
iment. Especially, the experiment suggests that TSVIT-CT has the proper way to inject
encoded horizon metadata.
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Figure 14: Four samples of both the higher frequency (right) and lower frequency (left)
test triangle data sets parameterized by λ ∈ [3, 7] and λ ∈ [13, 17], respectively.
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Model/token Line MLP Dummy Learned Sinusoidal Iterative

Baseline 0.426 0.458 0.495 0.503 0.447 0.505
TSVIT CT 0.384 0.412 0.387 0.399 0.388 0.391
TSVIT PE 0.430 0.442 0.438 0.450 0.431 0.436

TSVIT PECT 0.417 0.448 0.435 0.450 0.416 0.411

Table 8: The median MAE value for each model and horizon token type over 9 runs for
the training distribution parameterized by λ ∈ [13, 17].

Model/Token type Line MLP Dummy Learned Sinusoidal Iterative

Baseline 0.472 0.467 0.531 0.524 0.489 0.553
TSVIT CT 0.385 0.373 0.343 0.348 0.359 0.356
TSVIT PE 0.421 0.420 0.369 0.409 0.389 0.381

TSVIT PECT 0.420 0.413 0.398 0.384 0.392 0.395

Table 9: The median MAE value for each model and horizon token type over 9 runs for
the training distribution parameterized by λ ∈ [3, 7].

25



1

0

1
Sa

m
pl

e 
1

Horizon 1 Horizon 4 Horizon 8 Horizon 12 Horizon 16 Horizon 20

1

0

1

Sa
m

pl
e 

2

1

0

1

Sa
m

pl
e 

3

0 100 200

1

0

1

2

Sa
m

pl
e 

4

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

MLP [13, 17]

prediction
target

1

0

1

Sa
m

pl
e 

1

Horizon 1 Horizon 4 Horizon 8 Horizon 12 Horizon 16 Horizon 20

1.0

0.5

0.0

0.5

1.0

Sa
m

pl
e 

2

1.0

0.5

0.0

0.5

1.0

Sa
m

pl
e 

3

0 100 200

1

0

1

Sa
m

pl
e 

4

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

TSVIT_CT [13, 17]

prediction
target

Figure 15: The predictions from both the baseline (upper) and the TSVIT-CT (lower) on
the high frequency triangle test family parameterized by λ ∈ [13, 17]. Both the models used
the Line horizon metadata encoder. The target is shifted so it aligns with its prediction.
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Figure 16: The predictions from both the baseline (upper) and the TSVIT-CT (lower) on
the low frequency triangle test family parameterized by λ ∈ [3, 7]. Both the models used
the Line horizon metadata encoder. The target is shifted so it aligns with its prediction.
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4.1.3 Sawtooth wave

Six samples from the training family can be seen in Figure 17. The noise levels were set at
σ1 = 0.07, σ2 = 1.5σ1, σ3 = 0.3σ1. Similar to the above two experiments, all six different
types of horizon metadata encodings were tested. The different horizons of which to train
were set to H = {1, 4, 8, 12, 16, 20}. The median achieved MAE training error across 9
runs is presented in Table 10. Most models achieved similar training MAE. However, for
the iterative horizon metadata encoder, there were again several runs for the TSVIT-PE
and TSVIT-PECT that did not converge. In Appendix A a blox-plot showing the MAE
distributions can be found. As seen in Figure 18, the TSVIT-CT and the baseline MLP
were both able to learn from the training data.
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Figure 17: Six sawtooth datasets from the training family, each with 500 samples. The
yellow lines are the dataset without noise, while the blue is with noise.

Model/token Line MLP Dummy Learned Sinusoidal iterative

Baseline 0.137 0.139 0.146 0.142 0.139 0.148
TSVIT CT 0.144 0.143 0.140 0.135 0.135 0.154
TSVIT PE 0.139 0.137 0.126 0.127 0.133 0.255

TSVIT PECT 0.137 0.132 0.126 0.128 0.131 0.254

Table 10: The median MAE value for each model and horizon token type over 9 runs for
the training error with sawtooth distribution parametarized by λ ∈ [7, 13].
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Figure 18: The predictions from both the baseline (upper) and the TSVIT-CT (lower)
on the training family parameterized by λ ∈ [7, 13]. Both the models used the Learned
horizon metadata encoder. The target is shifted so it aligns with its prediction.
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We test the generalization error of the models. In Figure 19 four samples from each of
the test distributions are presented. The two families have similar characteristics as the
training data. However, one has higher frequencies, while the other has lower frequencies
than before seen by the models. In Table 5, the MAE of the different models along
with different horizon tokens for the high frequency test data are listed. As shown, the
best TSVIT model achieve approximately 10% lower median error compared to the best
baseline. Furthermore, the best baseline MLP did not outperform the worst TSVIT model.
This highlights the ability of the transformer to generalize. Box plots of the MAE errors
are presented in Appendix A. The predictions of a TSVIT-CT and a baseline MLP model,
both with Learned Embedding horizon tokens, are presented in Figure 20. The forecasts
for TSVIT-CT are good across all horizons, only showing a little right shifting in the
predictions for higher horizons. However, the baseline MLP has trouble predicting well
for horizon 1 in all samples except row 4. Furthermore, the MLP show a significant higher
tendency to yield a right-shifted prediction compared to the transformer. Moreover, the
baseline MLP is showing tendencies to underestimate the amplitude of the peaks.

In Table 12, the median MAE of the different models along with different horizon metadata
tokenizations for the low frequency test family are listed. As there shown, the TSVIT
models achieve a 5−21% improvement in MAE compared to the best baseline MLP model.
Box plots of the MAE errors can be found in Appendix A. The predictions of a TSVIT-CT
and a baseline MLP model, both using Learned horizon tokens, are presented in Figure
21. Here, we see that for row 2 and 3 both models are able to make good predictions,
not showcasing much left-shifting for larger horizons. This may be explained by samples
being in proximity to the training distribution. On the other hand, both models struggle
on samples 1 and 4, providing examples of left-shift predictions compared to the target on
bigger forecast horizons. Compared to the baseline MLP, the TSVIT-CT model are able
to yield far superior predictions on horizons 1 and 4. This suggests that the transformer
has learned a much richer representation of the sawtooth time series dynamics from the
training data.

In the sawtooth wave experiment, the TSVIT-CT model achieves the best generalization
performance, closely followed by the other transformer models. Especially on the high-
frequency data, there were major improvements to be found in the use of a transformer
structure compared to using a MLP. The worst transformer outperformed the best MLP
for both the test data types. All in all, the transformers shows capacity to learn rich
representations of the time series dynamics in a way that is generalizable. Lastly, this
experiment concurs with the other experiments using simulated data with respect to the
research questions posted in the introduction. All models are both able to perform direct
multi-horizon forecasts. Furthermore, the transformer structures outperform the baseline
MLP.
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Figure 19: Four samples of both the higher frequency (right) and lower frequency (left)
test datasets with parameters found in Table 1

Model/token Line MLP Dummy Learned Sinusoidal iterative

Baseline 0.365 0.377 0.373 0.379 0.359 0.370
TSVIT CT 0.323 0.330 0.322 0.319 0.320 0.325
TSVIT PE 0.354 0.356 0.336 0.351 0.354 0.349

TSVIT PECT 0.350 0.358 0.340 0.354 0.354 0.352

Table 11: The median MAE value for each model and horizon token type over 9 runs for
the test error on the high frequency sawtooth distribution parameterized by λ ∈ [13, 17].

Model/Token type Line MLP Dummy Learned Sinusoidal iterative

Baseline 0.407 0.410 0.429 0.451 0.409 0.423
TSVIT CT 0.357 0.344 0.321 0.320 0.347 0.349
TSVIT PE 0.376 0.373 0.354 0.358 0.378 0.389

TSVIT PECT 0.380 0.376 0.358 0.367 0.378 0.379

Table 12: The median MAE value for each model and horizon token type over 9 runs for
the test error on the low frequency sawtooth distribution parameterized by λ ∈ [3, 7].
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Figure 20: figure
The predictions from both the baseline (upper) and the TSVIT-CT (lower) on the high
frequency sawtooth test family parameterized by λ ∈ [13, 17]. Both the models used the
Learned horizon metadata encoder. The target is shifted so it aligns with its prediction.
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Figure 21: The predictions from both the baseline (upper) and the TSVIT-CT (lower)
on the low frequency sawtooth test family parameterized by λ ∈ [3, 7]. Both the models
used the Learned horizon metadata encoder. The target is shifted so it aligns with its
prediction.
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4.1.4 Electricity Consumption

Both the TSVIT models and the baseline MLP were trained on electricity consumption
data (Mulla, 2018) provided by PJM Interconnection LLC, a regional transmission organ-
isation in the United States. The organisation is a partly or fully responsible for operating
the energy grid in aproximately 16 states in the USA. From the 12 available data sets, 3
data sets were set aside at random to be used for testing. They were PJME, NI, PJM. The
remaining datasets to be used for training were AEP, COMED, DAYTON, DEOK, DOM,
DUQ, EKPC, FE and PJMW. All data sets have units of the average power consumption
per hour in Megawatts (MW ). Each of the remaining data sets to be used for training
contain 6− 14 years of hourly data, comprising about 850000 hours, or approximately 94
years of data. The test data sets contain 235000 data points in total, or approximately
27 years of data. The last 15000 values (approximately 1 year 9 months) of the datasets
PJMW, DAYTON, DEOK and DOM can be seen in Figure 22.
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Figure 22: Four hourly electricity consumption datasets (Mulla, 2018) from November
2016 to September 2018 (left). A zoomed in representation of the data in July 2017
(right).

Training Setup

The 9 datasets available for training was split into a train, validation and test data sets
using a 60%− 15%− 25% relationship respectively. Because of memory constraints, only
three datasets were loaded into memory at the same time. After a full epoch, the data
set indexes were shuffled to mitigate biases during training. In addition, an exponential
learning rate decay with r = 0.96 was applied after each set of 3 data sets were done passed
through the model. This was applied to enforce convergence in training, and reduce biases
that might occur because of the order of data sets trained by the model. Each model
trained with a batch size of 1024. Furthermore, for every 800 batches, the validation loss
across all 9 datasets were calculated. Early stopping was implemented and executed when
there where no improvement in the average of MAPE and SMAPE over 15 consecutive
validation steps. The metrics MAPE and SMAPE are better suited than MAE or RMSE
because of the differences in scale across the data sets. The two former metrics are more
scale-robust.

All TSVIT models, along with the baseline MLP used the AdamW optimizer with para-
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meters β1 = 0.9, β2 = 0.999 and a weight decay of λω = 0.01. All models had learning rates
set to 0.0001. The loss function used was mean squared loss. Furthermore, all models were
set up to predict for the horizon setH = {1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99}.
Moreover, each horizon-token type tested was of dimension 8. Each model was given a
three week, L = 504, time series window input size, to hopefully be able to ascertain trends
in the data. That said, the electricity consumption is highly dependent on temperature
readings, making the data difficult without when temperature forecasts are not available
as a feature. In Figure 23, the training and validation errors can be seen for the models.
Here, the non-converging models all used the Iterated horizon metadata encoder.
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Figure 23: Training (left) and validation (right) SMAPE. Here, the models using the
iterative Iterative horizon metadata encoding that failed to converge are all clustered at
the top of each plot.

Model Setup

All TSVIT models were set up with the same overall architecture (Table 13). The recept-
ive field length used as input was set to L = 504 (three weeks). The patch-embedding
mechanism used a 128 channel output Conv1D layer having kernel and stride equal to 24.
This ensures that the patch embedding vectors contain a representation of an entire day.
The latent vector has a size of 128. Furthermore, the sequence length is P = L/24 = 21,
where L is the size of the input receptive field. In addition, the transformer encoder con-
sisted of 4 blocks of alternating self-attention and MLP layers, where each attention layer
computed 16 heads in parallel. The MLP layers within each block had two hidden layers,
each of size 384, resulting in an MLP ratio of 3 with respect to the latent vector size. The
MLP head had a single hidden layer with dimension 128 and GELU non-linearity.

Model kernel, stride Embed dim Blocks HAttn MLP ratio Width MLP head

TSVIT (24, 24) 128 4 16 3 128

Table 13: The parameters of the TSVIT architecture used for the electricity consumption
data. Hattn is is the number of self-attention heads, Equation 4.

The baseline MLP consisted of 5 hidden layers, each having width 1024 and GELU non-
linearity (Table 3). The horizon tokens were appended onto the input time series window.

Model Input dim. Hidden dim. Act.

Baseline L+ |T (h)| 1024 GELU

Table 14: Parameters used for the baseline model on the electricity consumption data.
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Results

The median test SMAPE metrics across 5 runs for all models using different horizon token
types are presented in Table 15. Here, the TSVIT-PECT using MLP horizon tokens
attained a 4% improvement over the best MLP baseline. However, unlike the simulated
datasets, the transformers did not consistently outperform the baseline MLP. For both the
Line and Sinusoidal horizon metadata encoding methods, the baseline MLP outperformed
the TSVIT models. Otherwise, the transformers are either on par, or outperforming the
baseline MLP. With respect to horizon metadata encoding, the MLP horizon encoding
method outperforms the other horizon metadata encoding types. There is no clear winner
with respect to model type, and both TSVIT-CT and TSVIT-PE attain good results using
the MLP horizon tokens. However, as seen in Figure 43 in Appendix B, the baseline MLP
has more variation in its test error, signifying a higher potential of overfitting. Hence, we
may say that the result of the TSVIT models are more reproducible.

Model/token Line MLP Dummy Learned Sinusoidal iterative

Baseline 6.820 6.757 7.264 7.623 6.815 7.142*
TSVIT CT 7.227 6.501 7.266 7.171 7.331 Fail
TSVIT PE 7.259 6.572 7.222 7.187 7.263 Fail

TSVIT PECT 7.293 6.492 7.295 7.126 7.277 Fail

Table 15: The median SMAPE value for each model and horizon token type over 5 runs
for the test data within the data sets used for training. The Iterative token type failed to
converge, and only converged once for the baseline MLP.

In Table 16, the median SMAPE errors on the data sets that were put aside before training
are presented. In this case, the achieved SMAPE metrics are lower than the metrics for
the test splits. The models that attained a good metric on the test splits are seen keeping
the same overall performance when compared with the other models. However, for the
dummy horizon token type, the TSVIT models show a greater ability to generalize to
the new data, compared to the baseline MLP. Using the MLP token encoder the TSVIT-
CT and TSVIT-PECT models show the best performance. While they both use the
same mechanism to attain one latent vector per horizon, TSVIT-PECT also has a unique
positional embedding for every horizon. This can allow the model to better differentiate
between forecast horizons. Having a different latent vector per horizon seems to provide
the richest data representations, when compared to having a different positional encoding
within the transformer structure.

Model/token Line MLP Dummy Learned Sinusoidal iterative

Baseline 5.958 5.838 6.520 7.008 5.892 6.394*
TSVIT CT 6.167 5.546 6.196 6.193 6.297 Fail
TSVIT PE 6.278 5.692 6.202 6.120 6.303 Fail

TSVIT PECT 6.254 5.536 6.200 6.209 6.349 Fail

Table 16: The median SMAPE value for each model and horizon token type over 5 runs
for the error on the data sets set aside before training. The Iterative token type failed to
converge, and only converged once for the baseline MLP.

The predictions made by a TSVIT-PECT and a Baseline MLP, both using MLP horizon
metadata encoding, are shown in Figure 24. Here, the data is taken from the test splits

36



within the data sets used for training. Furthermore, only a subset of the total number
of horizons are presented. A big difference between the baseline MLP and transformer
is seen in the 99-hour ahead forecast for COMED (Dataset 2), where the baseline is
overestimating the true consumption, and shows no sign of having learned the patterns
in the data. Otherwise, the two models show a good ability to yield forecasts for new
data, signifying that they have both attained good representations able to extrapolate to
out-of-time samples. For example, in the forecast for DEOK (Dataset 4), both models
have learned to anticipate the lower consumption occurring during weekends, seen in the
the consecutive cycles with lower consumption. This is not as clearly seen for the larger
forecast horizons on COMED (Dataset 2), where the prediction for the weekends does not
align with the target. In Figure 25, the predictions made on PJME (Dataset 1) and NI
(Dataset 2) by the same models are presented. As here shown, the models are able to
provide solid predictions for the test data sets. However, for these data sets, both models
were unable to hit the bottom of electricity consumption for NI (Dataset 2). Furthermore,
both models struggled when predicting the drop in consumption for the larger horizons
on PJME, while being able to for NI.

With regards to the research questions posted in the introduction, this experiment show-
cases that the both the baseline and TSVIT models are able to learn from real data and
make rich representations thereof. Furthermore, we have shown that these representations
have a good degree of generalizability. The best TSVIT model attained a 4% better me-
dian generalization error compared to the best baseline MLP. Thus, this experiment show
no significant improvement using a TSVIT model compared to a Baseline MLP, except
that the results were more reproducible, as showcased the box plots in Appendix B. In
addition, the experiment fund that using a MLP horizon metadata encoder showed sig-
nificant improvement of 7 − 10% in the use for TSVIT models. When compared to the
simulation data sets, the electricity consumption data showcase strong autocorrelation. A
autocorrelation function plot (ACF) of DEOK is presented in Figure 26. Here, the target
exhibits strong autocorrelation on both the daily and weekly lags. Unlike the simulated
data, this autocorrelation pattern is common across the data sets. The improvement using
TSVIT models compared to baseline MLP seen in the simulated experiments might be
caused by the models having to learn many different patterns of autocorrelation.
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Figure 24: The predictions from both the baseline (upper) and the TSVIT-PECT (lower)
on the test data from AEP, COMED, DAYTON and DEOK data sets. These data sets
were used for training. Both of the models used a MLP horizon metadata encoder. The
target is shifted so it aligns with its prediction. Furthermore, the figures show only the
forecasts for horizons 22, 43, 64, 85 and 99
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Figure 25: The predictions from both the baseline (upper) and the TSVIT-PECT (lower)
on the PJME (Dataset 1) and NI (Dataset 2) data sets. Both of the models used a
MLP horizon metadata encoder. The target is shifted so it aligns with its prediction.
Furthermore, the figures show only the forecasts for horizons 22, 43, 64, 85 and 99
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Figure 26: Autocorrelation function plot (ACF) of the data in DEOK. A simple one step
difference was performed to make the time series more stationary.

4.2 Interpolation and Extrapolation

The injection of metadata into the models allow for an unconventional method of inter-
polation. Several of the horizon tokens defined in Section 3.2 can in an intuitive way be
made to yield horizon tokens for horizons the model has not seen during training. Fur-
thermore, some horizon token methods may also provide tokens that might extrapolate
outside of the furthest forecast horizon. The method for generating an interpolation is to
provide the model with a horizon token not seen before. Imagine that a model is trained
to forecast on horizons h1 and h2, when presented with many horizon tokens Th, that
are generated between the two horizons h ∈ [h1, h2], the model will draw a line from its
prediction on forecasting horizon h1 to its prediction for horizon h2. Hopefully, this line
will be smooth, and have the underlying time series dynamics incorporated into it yielding
good interpolation forecasts.

This section will explore the ability of the models to do both interpolation and extra-
polation. Note that some of the horizon tokens may not in any natural way be used to
make horizon tokens for horizons not seen before. These include the Dummy and Learned
Embedding encoded horizon tokens. An example of Learned Embedding horizon tokens
can be seen in Figure 5, where a model using horizon token vectors of size 2 was trained on
the electricity consumption data sets. The horizon token types that can easily be used to
attain horizon tokens for other horizons are the Line encoded, MLP encoded, Iterated and
Sinusoidal encoded horizon metadata types. However, since the Iterative horizon token
encoding failed to converge for the electricity data sets, this horizon token type will not
be included.

4.2.1 Interpolation Evaluation Technique

The models trained in section 4.1.4 will be used to make predictions. They were each
trained on the horizon set H0 = {1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99}, and for
the interpolation they were scored on the horizon set HI = {i}99i=1. That is, all horizons
from 1-hour ahead to 99-hours ahead. For the extrapolation, the models were scored on
the 21 next horizons outside the maximum horizon, H = {i}120i=100.
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4.2.2 Results and Discussion

The median SMAPE for interpolation on test splits are presented in Table 17 and in Table
18 the interpolation results from the data sets put aside before training are shown. On
the test splits, the TSVIT models using MLP encoded horizon tokens attained 3% higher
error than the worst performing model in Table 15, where the models where tested on
only the trained horizons. Furthermore, for the Sinusoidal horizon embedding type the
TSVIT models performed better on the horizon set HI , when they had worse performance
for the training horizons H0 compared to the baseline. This suggests that the transformer
produces better interpolation lines between its trained horizons than the baseline MLP.

In Figure 27, 28 and 29, the interpolation and extrapolation of several samples taken from
PJM are presented. Here, the green line is the interpolation. Meanwhile, the orange
line and the blue circles represents the target and the values corresponding to a trained
horizon, respectively. As shown in the figures, the baseline MLP along with the TSVIT
models attain feasible and smooth interpolation forecasts in most cases. With regards
to the research question posed in the introduction, the models are clearly able to yield
interpolated forecasts for the MLP, Line and Sinusoidal horizon metadata encodings. In
Table 19 and Table 20, the extrapolation error of the models on the test and put aside
data sets are presented. As shown there, the models were clearly not able to predict
for horizons lying outside of the trained forecast horizon range. Moreover, in Figure 28
the extrapolation (red line) of the baseline MLP is diverging far from the target values.
Furthermore, the predictions of the TSVIT model show no sign of following the time
series seasonality. To conclude, the models produce unreliable extrapolated forecasts.
This answers the research question concerning the models’ ability to extrapolate.

Model/token Line MLP Sinusoidal

Baseline 8.05 8.60 10.6
TSVIT CT 8.89 7.93 9.56
TSVIT PE 8.64 7.96 9.4

TSVIT PECT 8.74 7.89 9.57

Table 17: The median SMAPE interpolation error for all models and token types across
5 runs. Here, the data set used is the test sets of the data used for training.

Model/token Line MLP Sinusoidal

Baseline 7.84 8.39 10.55
TSVIT CT 8.55 7.72 9.43
TSVIT PE 8.27 7.77 9.42

TSVIT PECT 8.48 7.65 9.41

Table 18: The median SMAPE interpolation error for all models and token types across
5 runs. Here, the data set used is the one set aside before training.
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Model/token Line MLP Sinusoidal

Baseline 27.8 17.2 17.8
TSVIT CT 17.6 17.6 16.0
TSVIT PE 17.9 19.3 17.6

TSVIT PECT 17.9 23.2 18.0

Table 19: The median SMAPE extrapolation error for all models and token types across
5 runs. Here, the data set used is the test sets of the data used for training.

Model/token Line MLP Sinusoidal

Baseline 28.0 17.4 18.3
TSVIT CT 17.9 18.3 16.4
TSVIT PE 18.3 19.7 18.0

TSVIT PECT 18.1 23.2 18.4

Table 20: The median SMAPE extrapolation error for all models and token types across
5 runs. Here, the data set used is the one set aside before training.
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Figure 27: Baseline MLP (left) and TSVIT-PE (right), using Sinusoidal horizon metadata
encodings. The blue lines are a truncated part of the three week receptive field the model
uses to make the forecasts. Furthermore, the interpolation is colored green, while the
extrapolation is colored red. The blue circles represents the target points the models are
trained to predict for, while the orange line are all the future targets.
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Figure 28: Baseline MLP (left) and TSVIT-PECT (right), using MLP horizon metadata
encodings. The blue lines are a truncated part of the three week receptive field the model
uses to make the forecasts. Furthermore, the interpolation is colored green, while the
extrapolation is colored red. The blue circles represents the target points the models are
trained to predict for, while the orange line are all the future targets.
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Figure 29: Baseline MLP (left) and TSVIT-PE (right), using Line horizon metadata
encodings. The blue lines are a truncated part of the three week receptive field the model
uses to make the forecasts. Furthermore, the interpolation is colored green, while the
extrapolation is colored red. The blue circles represents the target points the models are
trained to predict for, while the orange line are all the future targets.

4.3 Intra-granular Interpolation

This section will explore the ability of the models to perform inter-grain interpolation,
where the time series is interpolated between the data points. Consider the example
where a regular time series has a sample rate of 5h between consecutive data points. The
user of the model may be interested in the time series dynamics with finer granularity on
the hourly basis. In our case, we use a down-sampled version of the electricity consumption
Mulla, 2018 data for performing this experiment.

4.3.1 Training and Model Setup

The 9 electricity data sets used for training are first downsampled, obtaining time series
data sets with a sample rate of 7 hours. Thereafter, each were split into a train, validation
and test data set using a 60%− 15%− 25% relationship. The rest of the training details
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are the same as for Section 4.1.4. In this new context, all models were set up to predict
for the horizon set H = {0, 1, 2, . . . 14}. Note that the horizon 0 is included to allow for
interpolation for horizons 1 through 6 in the original (up-sampled) data. Moreover, each
horizon-token type tested was of dimension 8. In addition, each model was given the three
week equivalent , L = 72, time series window input size.

All TSVIT models were set up with the same architecture (Table 21). The patch-
embedding mechanism used a 128 channel output Conv1D layer having kernel and stride
equal to 4. This yields a latent vector size of 128. To keep it similar to the electricity
consumption models, the transformer encoder consisted of 4 blocks of alternating self-
attention and MLP layers, where each attention layer computed 16 heads in parallel. The
MLP layers within each block had two hidden layers, each of size 384, resulting in an
MLP ratio of 3. The MLP head had a single hidden layer with dimension 128 and GELU
non-linearity.

Model kernel, stride Embed dim Blocks HAttn MLP ratio Width MLP head

TSVIT (4, 4) 128 4 16 3 128

Table 21: The paramets of the TSVIT architecture used for the intra-granular experiment.
Hattn is is the number of self-attention heads, Equation 4.

The baseline MLP consisted of 5 hidden layers, each having width 1024 and GELU non-
linearity (Table 3). The horizon tokens were appended onto the input time series window.

Model Input dim. Hidden dim. Act.

Baseline L+ |T (h)| 1024 GELU

Table 22: Parameters used for the baseline model in the intra-granular experiment.

4.3.2 Results

In order to attain the results, the models were evaluated on the horizon set H = {i/7}98i=1

corresponding to a up-sampled data horizon set containing all forecast horizons from 1-
hour to 98-hour ahead. The horizon tokens types used were the MLP, Sinsoidal and Line
embeddings. Each model was run three times. The result on the test set and the data sets
put aside before training are presented in Table 23 and Table 24, respectively. Here, the
TSVIT models was on par or outperformed the baseline MLP on all horizon token types.

In Figure 30 and Figure 32, the predictions of the baseline MLP and TSVIT models
are shown for samples from the test set of DEOK. The plots shows the input of the
model (blue circles and line), the target points in the training horizon set (orange circles),
the inter-grain interpolation (green line) and the upsampled target points (orange line).
The models have clearly learned the underlying time series dynamics, despite having a
rough granularity of 7 hours. In Figure 31, an example where the MLP baseline using
MLP horizon metadata embeddings fails to perform intra-granulary interpolation is shown.
The cause of this might be explained by Figure 33. Here, the horizon tokens of a model
trained using token size 2 and MLP token type are shown. In this case, the blue line
shows interpolation tokens. If the blue line has an erratic behaviour, which is the case
for the baseline MLP in the figure, then the interpolation will not work. The overall
shown performance is lower than for the interpolation experiment (Table 17). However,
the models in this context have less data and a smaller receptive field. While the baseline
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MLP with the MLP horizon embedding was unstable and unsuitable to perform intra-
granular interpolation, the TSVIT models and the other horizon tokens types performed
well for all runs. The TSVIT models and baseline MLP are therefore considered to be
able to perform intra-granular interpolation, answering the reasearch question posed in
the introduction.

Model/token Line MLP Sinusoidal

Baseline 11.47 19.74 10.57
TSVIT CT 11.25 9.87 9.85
TSVIT PE 10.0 10.334 10.55

TSVIT PECT 9.96 10.606 10.8

Table 23: The median SMAPE value for each model and horizon token type over 3 runs
for the intra-granular interpolation error. Here, the data used were the test data within
the data sets used for training.

Model/token Line MLP Sinusoidal

Baseline 11.31 19.51 10.43
TSVIT CT 10.52 9.64 9.71
TSVIT PE 9.83 10.03 10.34

TSVIT PECT 9.81 10.23 10.65

Table 24: The median SMAPE value for each model and horizon token type over 3 runs
for the intra-granular interpolation error. Here, the data sets used were the ones set aside
before training.
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Figure 30: Baseline MLP (left) and TSVIT-CT (right), using Sinusoidal horizon metadata
encodings. The blue lines along with the blue circles represent the down-sampled test
sample the model uses to make the forecasts. Here, the inter-granular interpolation is
colored green, while the target is colored orange. The orange circles represents the target
points the models are trained to predict for. Hence, the green line should in an ideal
scenario come close to these points.
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Figure 31: Baseline MLP (left) and TSVIT-PECT (right), using MLP horizon metadata
encodings. The blue lines along with the blue circles represent the down-sampled test
sample the model uses to make the forecasts. Here, the inter-granular interpolation is
colored green, while the target is colored orange. The orange circles represents the target
points the models are trained to predict for. Hence, the green line should in an ideal
scenario come close to these points.

0 100 200 300 400 500 600

1400

1600

1800

2000

2200

2400

2600

2800

Baseline

0 100 200 300 400 500 600

1400

1600

1800

2000

2200

2400

2600

2800

TSVIT_PECT

Figure 32: Baseline MLP (left) and TSVIT-PECT (right), using Line horizon metadata
encodings. The blue lines along with the blue circles represent the down-sampled test
sample the model uses to make the forecasts. Here, the inter-granular interpolation is
colored green, while the target is colored orange. The orange circles represents the target
points the models are trained to predict for. Hence, the green line should in an ideal
scenario come close to these points.
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Figure 33: The horizon tokens from a TSVIT-CT (left) and baseline MLP (right) trained
using MLP horizon metadata encoder with embedded vectors of size 2. The blue circles
are the actual horizon tokens found through training, while the blue line represents the
path the horizon token takes when asked to interpolate. The orange line in the path the
next 50 next horizon tokens would take. The baseline MLP has learned an unfortunate
representation of the horizon tokens, if the goal is interpolation.

5 Future Work

The method presented for multi-horizon forecasting in this thesis may especially be suited
for use within irregular time series. The flexibility of which horizon to forecast for, allows
the training method to train on an arbitrary horizon. However, some challenges are still
present if the method were to be used with irregular time series. For example, especial
effort must be taken to include the time position information of the lagged input time
series values in the receptive field. In addition, this method for multi-horizon prediction
has not been used on data with multiple covariates. However, the transformer structure
has in other relevant work shown to yield promising results (Eisenach et al., 2020, Lim
et al., 2019) in this setting. There is no reason this method of horizon metadata injection
would not transfer when presented with several covariates.

6 Conclusion

In this thesis, novel direct forecasting methods were explored. Instead of building a model
architecture that forecasts at multiple horizons at the same time, or iteratively forecasts
for larger and larger horizons, we developed a framework in which models can forecast
at different horizons based on metadata provided. Furthermore, we examined different
ways the transformer structure could incorporate the metadata. We ended up testing six
different ways in which to encode the metadata provided the model. In total, four research
questions were formulated and answered through a series of experiments.

First, we proved that both a MLP baseline and a time series adaptation of the Visual
Transformer were able to utilize the metadata to forecast for all desired horizons. This
was shown through four experiments comprising three simulated data sets and one real
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data set.

Second, we aimed to ascertain the effect of different structures of horizon metadata. With
respect to the different horizon metadata encoding types, we saw no significant difference
on the simulated data sets. However, for the electricity consumption data, the MLP
horizon encoding outperformed the other methods by 8.5%. From a utility perspective,
the Line, MLP, Sinusoidal and Iterative horizon metadata embedding enables the models
to perform interpolation. However, the Iterative horizon metadata embedding was difficult
to train, and would require much tweaking. For the interpolation task, the best model
using the MLP horizon metadata encoder had 7.5 and 15 percent better SMAPE score than
the best models using Line or Sinusoidal horizon metadata encoders, respectively. For the
intra-granular interpolation, there were no significant difference between the MLP, Line
and Sinusoidal horizon metadata encoders. Hence, the recommended horizon metadata
encoder would be the MLP encoder.

Third, the ability of the TSVIT model to perform interpolation and extrapolation was
answered through experiments on the electricity dataset. For interpolation, the models
were tasked to forecast for all horizons between the training horizons. This resulted in a
best SMAPE of 7.65. Furthermore, the output from the models were visually inspected and
verified. The models were also able to perform intra-granular interpolation, showcasing
that it is possible to learn patterns in the data that are not observed. In this experiment,
the achieved SMAPE was 9.64. No horizon metadata embeddings were able to perform
sound extrapolation.

Lastly, we aimed to see whether or not the TSVIT models outperformed the baseline
MLP. For the simulated data sets the TSVIT models showed a better ability to general-
ize, and provided better results when provided with unseen test data. The best TSVIT
models achieved approximately 30%, 10% and 11% better MAE score compared to the
best baseline MLP model on the test data for the sinusoidal, triangle and sawtooth wave,
respectively. On the real data sets, the best TSVIT model outperformed the best baseline
MLP by 5% using the metric SMAPE on the data sets put aside before training. With
respect to the interpolation and inter-granular interpolation, the best TSVIT model out-
performed the best baseline MLP model by approximately 2% and 7%. Hence, we assert
that the TSVIT models do outperform the baseline MLP using this forecasting technique.
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Appendix

A Boxplots Generalization
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Figure 34: Box plot showing test MAE for the sinusoidal wave family with distribution
parameterized by λ ∈ [7, 13]. Each model and token type was run 9 times.
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Figure 35: ox plot showing test MAE for the sinusoidal wave family with distribution
parameterized by λ ∈ [3, 7]. Each model and token type was run 9 times.
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Figure 36: ox plot showing test MAE for the sinusoidal wave family with distribution
parameterized by λ ∈ [13, 17]. Each model and token type was run 9 times.
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Triangle Wave
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Figure 37: Box plot showing test MAE for the triangle wave family with distribution
parameterized by λ ∈ [7, 13]. Each model and token type was run 9 times. Any data
point that was not lower than 0.20 was removed in the making of this plot. Therefore, the
Iterative token type for TSVIT-PECT only contain one sample, and for TSVIT-PE there
are 4 samples.
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Figure 38: Box plot showing test MAE for the triangle wave family with distribution
parameterized by λ ∈ [3, 7]. Each model and token type was run 9 times.
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Figure 39: Box plot showing test MAE for the triangle wave family with distribution
parameterized by λ ∈ [13, 17]. Each model and token type was run 9 times.
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Sawtooth Wave

Baseline TSVIT_CT TSVIT_PE TSVIT_PECT
Model

0.12

0.13

0.14

0.15

0.16

0.17
M

AE

Token type
sinusoidal
iterative
learned_embedding
dummy
mlp
line

Figure 40: Box plot showing test MAE for the sawtooth wave family with distribution
parameterized by λ ∈ [7, 13]. Each model and token type was run 9 times.
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Figure 41: Box plot showing test MAE for the sawtooth wave family with distribution
parameterized by λ ∈ [3, 7]. Each model and token type was run 9 times.
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Figure 42: Box plot showing test MAE for the sawtooth wave family with distribution
parameterized by λ ∈ [13, 17]. Each model and token type was run 9 times.
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B Electricity
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Figure 43: Box plot showing the test SMAPE for the electricity data sets on the data
the models used for training. Each model and token type was run 5 times. The Iterative
horizon token type only has one run for the Baseline, and no runs for the TSVIT models,
due to failed convergence.
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Figure 44: Box plot showing the test SMAPE for the electricity data sets on the data
sets put aside before training. Each model and token type was run 5 times. The Iterative
horizon token type only has one run for the Baseline, and no runs for the TSVIT models,
due to failed convergence.

C Code

If you want access to the git repository used, you need only ask. Git repository: ht-
tps://github.com/GunGro/ml4its grotmol mthesis. File tsvit.py

import torch
import torch . nn as nn
from abc import abstractmethod
from copy import deepcopy

class PatchEmbed(nn . Module ) :
def i n i t ( s e l f , s e q s i z e , pa t ch s i z e , embed dim ) :

super ( ) . i n i t ( )
s e l f . s e q s i z e = s e q s i z e
s e l f . p a t ch s i z e = pa t ch s i z e
s e l f . n patches = s e q s i z e // pa t ch s i z e

s e l f . p ro j = nn . Conv1d (
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i n channe l s =1,
out channe l s=embed dim ,
k e r n e l s i z e=patch s i z e ,
s t r i d e=patch s i z e ,

)

def forward ( s e l f , x ) :
x = s e l f . p ro j ( x )
x = x . f l a t t e n ( s ta r t d im=2)
x = x . t ranspose (1 , 2)
return x

class Attent ion (nn . Module ) :
def i n i t ( s e l f , dim , n heads=12, qkv b ias=True , at tn p =0.0 , p ro j p =0.0) :

super ( ) . i n i t ( )
s e l f . n heads = n heads
s e l f . dim = dim
s e l f . head dim = dim // n heads
s e l f . s c a l e = s e l f . head dim∗∗−0.5

s e l f . qkv = nn . Linear (dim , dim ∗ 3 , b i a s=qkv b ias )
s e l f . a t tn drop = nn . Dropout ( attn p )
s e l f . p ro j = nn . Linear (dim , dim)
s e l f . p ro j drop = nn . Dropout ( p ro j p )

def forward ( s e l f , x ) :
n samples , n tokens , dim = x . shape

i f dim != s e l f . dim :
raise ValueError

qkv = s e l f . qkv (x )
qkv = qkv . reshape ( n samples , n tokens , 3 , s e l f . n heads , s e l f . head dim )
qkv = qkv . permute (2 , 0 , 3 , 1 , 4)

q , k , v = qkv [ 0 ] , qkv [ 1 ] , qkv [ 2 ]
k t = k . t ranspose (−2 , −1)
dp = (q @ k t ) ∗ s e l f . s c a l e
attn = dp . softmax (dim=−1)
attn = s e l f . a t tn drop ( attn )

weighted avg = attn @ v
weighted avg = weighted avg . t ranspose (1 , 2)
weighted avg = weighted avg . f l a t t e n (2 )

x = s e l f . p ro j ( weighted avg )
x = s e l f . p ro j drop (x )

return x

class MLP(nn . Module ) :
def i n i t ( s e l f , i n f e a t u r e s , h idden f ea tu r e s , ou t f e a tu r e s , p=0 .0) :

super ( ) . i n i t ( )
s e l f . f c 1 = nn . Linear ( i n f e a t u r e s , h i dden f e a tu r e s )
s e l f . act = nn .GELU( )
s e l f . f c 2 = nn . Linear ( h idden f ea tu r e s , o u t f e a t u r e s )
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s e l f . drop = nn . Dropout (p)

def forward ( s e l f , x ) :
x = s e l f . f c 1 ( x )
x = s e l f . act ( x )
x = s e l f . drop (x )
x = s e l f . f c 2 ( x )
x = s e l f . drop (x )

return x

class Block (nn . Module ) :
def i n i t ( s e l f , dim , n heads , m lp ra t i o =4.0 , qkv b ias=True , p=0.0 , at tn p =0.0) :

super ( ) . i n i t ( )
s e l f . norm1 = nn . LayerNorm(dim , eps=1e−6)
s e l f . attn = Attent ion (

dim , n heads=n heads , qkv b ias=qkv bias , at tn p=attn p , p ro j p=p
)
s e l f . norm2 = nn . LayerNorm(dim , eps=1e−6)
h i dden f e a tu r e s = int (dim ∗ mlp ra t i o )
s e l f . mlp = MLP(

i n f e a t u r e s=dim , h idden f e a tu r e s=h idden f ea tu r e s , o u t f e a t u r e s=dim
)

def forward ( s e l f , x ) :
x = x + s e l f . attn ( s e l f . norm1(x ) )
x = x + s e l f . mlp ( s e l f . norm2(x ) )

return x

class SuperTimeTransformer (nn . Module ) :
def i n i t (

s e l f ,
s e q s i z e ,
pa t ch s i z e ,
embed dim ,
depth ,
n heads ,
mlp rat io ,
qkv bias ,
p ,
attn p ,
horizon dim ,
ho r i z on proc e s so r ,

) :
super ( ) . i n i t ( )
s e l f . h o r i z on p r o c e s s o r = deepcopy ( ho r i z on p r o c e s s o r )
s e l f . patch embed = PatchEmbed(

s e q s i z e=s e q s i z e , p a t ch s i z e=patch s i z e , embed dim=embed dim
)
s e l f . alpha = nn . Parameter ( torch . ones ( 1 ) )
# must c r ea t e the c l s token
s e l f . c l s t oken , s e l f . i s c l s t ok en mapp ing = s e l f . c r e a t e c l s t o k e n (

horizon dim , embed dim
)
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# crea t e the p o s i t i o n a l embedding
s e l f . pos embed , s e l f . i s pos embed mapping = s e l f . c reate pos embed (

horizon dim , embed dim
)

s e l f . pos drop = nn . Dropout (p=p)

s e l f . b locks = nn . ModuleList (
[

Block (
dim=embed dim ,
n heads=n heads ,
m lp ra t i o=mlp rat io ,
qkv b ias=qkv bias ,
p=p ,
attn p=attn p ,

)
for in range ( depth )

]
)

s e l f . norm = nn . LayerNorm( embed dim , eps=1e−6)

h i dden f e a tu r e s = 128
s e l f . head = nn . Sequent i a l (

nn . Linear ( embed dim , h i dden f e a tu r e s ) ,
nn .GELU( ) ,
nn . Linear ( h idden f ea tu r e s , 1 ) ,

)

@abstractmethod
def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :

raise NotImplementedError ( ” Please implement c l s token cons t ruc to r ” )

@abstractmethod
def create pos embed ( s e l f , horizon dim , embed dim ) :

raise NotImplementedError ( ” Please implement pos embed cons t ruc to r ” )

def forward ( s e l f , x , ho r i zons ) :
hor i zon token = s e l f . h o r i z on p r o c e s s o r ( hor i zons )
x o r i g = x
n samples = x . shape [ 0 ]
x = s e l f . patch embed (x )

i f s e l f . i s c l s t oken mapp ing :
c l s t o k en = s e l f . c l s t o k en ( hor i zon token )

else :
c l s t o k en = s e l f . c l s t o k en . expand ( n samples , −1, −1)

i f s e l f . i s pos embed mapping :
pos embed = s e l f . pos embed ( hor i zon token ) . reshape (

n samples , 1 + s e l f . patch embed . n patches , −1
)

else :
pos embed = s e l f . pos embed . expand ( n samples , −1, −1)

x = torch . cat ( ( c l s t oken , x ) , dim=1)
x = x + pos embed

58



x = s e l f . pos drop (x )
for block in s e l f . b locks :

x = block (x )
x = s e l f . norm(x )
c l s t o k e n f i n a l = x [ : , 0 ]
x = s e l f . head ( c l s t o k e n f i n a l )
return x + x o r i g [ : , : , −1] ∗ s e l f . a lpha # l a s t va lue

class VIT( SuperTimeTransformer ) :
# example c l a s s to g e t the d e f a u l t v i t ( not made to ge t i n f o o f hor i zon )

def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :
return nn . Parameter ( torch . z e r o s (1 , 1 , embed dim ) ) , Fa l se

def create pos embed ( s e l f , horizon dim , embed dim ) :
return (

nn . Parameter ( torch . z e r o s (1 , 1 + s e l f . patch embed . n patches , embed dim ) ) ,
False ,

)

class TSVIT CT( SuperTimeTransformer ) :
def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :

s e l f . h o r i z o n t o k en t o c l s t o k en = nn . Linear ( horizon dim , embed dim )
return s e l f . h o r i z on t ok en t o c l s t o k en , True

def create pos embed ( s e l f , horizon dim , embed dim ) :
return (

nn . Parameter ( torch . z e r o s (1 , 1 + s e l f . patch embed . n patches , embed dim ) ) ,
False ,

)

class TSVIT PE( SuperTimeTransformer ) :
def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :

return nn . Parameter ( torch . z e r o s (1 , 1 , embed dim ) ) , Fa l se

def create pos embed ( s e l f , horizon dim , embed dim ) :
s e l f . hor i zon to pos embed = nn . Linear (

horizon dim , (1 + s e l f . patch embed . n patches ) ∗ embed dim
)
return s e l f . hor izon to pos embed , True

class TSVIT PECT( SuperTimeTransformer ) :
def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :

s e l f . h o r i z o n t o k en t o c l s t o k en = nn . Linear ( horizon dim , embed dim )
return s e l f . h o r i z on t ok en t o c l s t o k en , True

def create pos embed ( s e l f , horizon dim , embed dim ) :
s e l f . hor i zon to pos embed = nn . Linear (

horizon dim , (1 + s e l f . patch embed . n patches ) ∗ embed dim
)
return s e l f . hor izon to pos embed , True

class SuperNormalizingTimeTransformer (nn . Module ) :
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def i n i t (
s e l f ,
s e q s i z e ,
pa t ch s i z e ,
embed dim ,
depth ,
n heads ,
mlp rat io ,
qkv bias ,
p ,
attn p ,
horizon dim ,
ho r i z on proc e s so r ,

) :
super ( ) . i n i t ( )
s e l f . h o r i z on p r o c e s s o r = deepcopy ( ho r i z on p r o c e s s o r )
s e l f . patch embed = PatchEmbed(

s e q s i z e=s e q s i z e , p a t ch s i z e=patch s i z e , embed dim=embed dim
)
s e l f . alpha = nn . Parameter ( torch . ones ( 1 ) )
# must c r ea t e the c l s token
s e l f . c l s t oken , s e l f . i s c l s t ok en mapp ing = s e l f . c r e a t e c l s t o k e n (

horizon dim , embed dim
)

# crea t e the p o s i t i o n a l embedding
s e l f . pos embed , s e l f . i s pos embed mapping = s e l f . c reate pos embed (

horizon dim , embed dim
)

s e l f . pos drop = nn . Dropout (p=p)

s e l f . b locks = nn . ModuleList (
[

Block (
dim=embed dim ,
n heads=n heads ,
m lp ra t i o=mlp rat io ,
qkv b ias=qkv bias ,
p=p ,
attn p=attn p ,

)
for in range ( depth )

]
)

s e l f . norm = nn . LayerNorm( embed dim , eps=1e−6)

h i dden f e a tu r e s = 128
s e l f . head = nn . Sequent i a l (

nn . Linear ( embed dim , h i dden f e a tu r e s ) ,
nn .GELU( ) ,
nn . Linear ( h idden f ea tu r e s , 1 ) ,

)

@abstractmethod
def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :

raise NotImplementedError ( ” Please implement c l s token cons t ruc to r ” )
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@abstractmethod
def create pos embed ( s e l f , horizon dim , embed dim ) :

raise NotImplementedError ( ” Please implement pos embed cons t ruc to r ” )

def forward ( s e l f , x , ho r i zons ) :
hor i zon token = s e l f . h o r i z on p r o c e s s o r ( hor i zons )
x o r i g = x
n samples = x . shape [ 0 ]
# sca l e down
s c a l e = x [ : , : , −4 : ] .mean( ax i s=−1, keepdim=True )
x = x / s c a l e
x = s e l f . patch embed (x )

i f s e l f . i s c l s t oken mapp ing :
c l s t o k en = s e l f . c l s t o k en ( hor i zon token )

else :
c l s t o k en = s e l f . c l s t o k en . expand ( n samples , −1, −1)

i f s e l f . i s pos embed mapping :
pos embed = s e l f . pos embed ( hor i zon token ) . reshape (

n samples , 1 + s e l f . patch embed . n patches , −1
)

else :
pos embed = s e l f . pos embed . expand ( n samples , −1, −1)

x = torch . cat ( ( c l s t oken , x ) , dim=1)
x = x + pos embed
x = s e l f . pos drop (x )
for block in s e l f . b locks :

x = block (x )
x = s e l f . norm(x )
c l s t o k e n f i n a l = x [ : , 0 ]
x = s e l f . head ( c l s t o k e n f i n a l )
return x ∗ s c a l e [ : , 0 ] + x o r i g [ : , : , −1] ∗ s e l f . a lpha # l a s t va lue

class VITNorm( SuperNormalizingTimeTransformer ) :
# example c l a s s to g e t the d e f a u l t v i t ( not made to ge t i n f o o f hor i zon )

def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :
return nn . Parameter ( torch . z e r o s (1 , 1 , embed dim ) ) , Fa l se

def create pos embed ( s e l f , horizon dim , embed dim ) :
return (

nn . Parameter ( torch . z e r o s (1 , 1 + s e l f . patch embed . n patches , embed dim ) ) ,
False ,

)

class TSVIT CTNorm( SuperNormalizingTimeTransformer ) :
def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :

s e l f . h o r i z o n t o k en t o c l s t o k en = nn . Linear ( horizon dim , embed dim )
return s e l f . h o r i z on t ok en t o c l s t o k en , True

def create pos embed ( s e l f , horizon dim , embed dim ) :
return (

nn . Parameter ( torch . z e r o s (1 , 1 + s e l f . patch embed . n patches , embed dim ) ) ,
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False ,
)

class TSVIT PENorm( SuperNormalizingTimeTransformer ) :
def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :

return nn . Parameter ( torch . z e r o s (1 , 1 , embed dim ) ) , Fa l se

def create pos embed ( s e l f , horizon dim , embed dim ) :
s e l f . hor i zon to pos embed = nn . Linear (

horizon dim , (1 + s e l f . patch embed . n patches ) ∗ embed dim
)
return s e l f . hor izon to pos embed , True

class TSVIT PECTNorm( SuperNormalizingTimeTransformer ) :
def c r e a t e c l s t o k e n ( s e l f , horizon dim , embed dim ) :

s e l f . h o r i z o n t o k en t o c l s t o k en = nn . Linear ( horizon dim , embed dim )
return s e l f . h o r i z on t ok en t o c l s t o k en , True

def create pos embed ( s e l f , horizon dim , embed dim ) :
s e l f . hor i zon to pos embed = nn . Linear (

horizon dim , (1 + s e l f . patch embed . n patches ) ∗ embed dim
)
return s e l f . hor izon to pos embed , True
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File simplemlp.py

import torch
import torch . nn as nn
from copy import deepcopy

class HiddenLayer (nn . Module ) :
def i n i t ( s e l f , i n f e a t u r e s , ou t f e a tu r e s , p=0 .0) :

super ( ) . i n i t ( )
s e l f . l a y e r = nn . Linear ( i n f e a t u r e s , o u t f e a t u r e s )
s e l f . act = nn .GELU( )
s e l f . drop = nn . Dropout (p)

def forward ( s e l f , x ) :
return s e l f . drop ( s e l f . act ( s e l f . l a y e r ( x ) ) )

class SimpleMLP(nn . Module ) :
def i n i t (

s e l f ,
i n f e a t u r e s ,
horizon dim ,
h idden f ea tu r e s ,
h idden laye r s ,
ou t f e a tu r e s ,
ho r i z on proc e s so r ,
p=0.0 ,

) :
super ( ) . i n i t ( )
s e l f . s t a r t = nn . Linear ( i n f e a t u r e s + horizon dim , h i dden f e a tu r e s )
s e l f . act1 = nn .GELU( )
s e l f . hidden = nn . ModuleList (

[
HiddenLayer ( h idden f ea tu r e s , h idden f ea tu r e s , p )
for in range ( h i dden l ay e r s )

]
)
s e l f . end = nn . Linear ( h idden f ea tu r e s , o u t f e a t u r e s )
s e l f . drop = nn . Dropout (p)
s e l f . h o r i z on p r o c e s s o r = deepcopy ( ho r i z on p r o c e s s o r )
s e l f . a lpha = nn . Parameter ( torch . ones ( 1 ) )

def forward ( s e l f , x , hor i zon token ) :
”””Run forward pass .

Parameters
−−−−−−−−−−
x : torch . Tensor

Shape `( n samples , n pa tches + 1 , i n f e a t u r e s ) ` .

Returns
−−−−−−−
t o rch . Tensor

Shape `( n samples , n pa tches +1, o u t f e a t u r e s )`
”””
hor i zon token = s e l f . h o r i z on p r o c e s s o r ( hor i zon token )
y = torch . concat ( ( x , hor i zon token ) , dim=−1)
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y = s e l f . s t a r t ( y )
y = s e l f . act1 (y )
y = s e l f . drop (y )
for h idden l aye r in s e l f . hidden :

y = h idden l aye r ( y )
y = s e l f . end (y )
return y [ : , : , 0 ] + x [ : , : , −1] ∗ s e l f . a lpha

class SimpleMLPNorm(nn . Module ) :
def i n i t (

s e l f ,
i n f e a t u r e s ,
horizon dim ,
h idden f ea tu r e s ,
h idden laye r s ,
ou t f e a tu r e s ,
ho r i z on proc e s so r ,
p=0.0 ,

) :
super ( ) . i n i t ( )
s e l f . s t a r t = nn . Linear ( i n f e a t u r e s + horizon dim , h i dden f e a tu r e s )
s e l f . act1 = nn .GELU( )
s e l f . hidden = nn . ModuleList (

[
HiddenLayer ( h idden f ea tu r e s , h idden f ea tu r e s , p )
for in range ( h i dden l ay e r s )

]
)
s e l f . end = nn . Linear ( h idden f ea tu r e s , o u t f e a t u r e s )
s e l f . drop = nn . Dropout (p)
s e l f . h o r i z on p r o c e s s o r = ho r i z on p r o c e s s o r
s e l f . a lpha = nn . Parameter ( torch . ones ( 1 ) )

def forward ( s e l f , x , hor i zon token ) :
”””Run forward pass .

Parameters
−−−−−−−−−−
x : torch . Tensor

Shape `( n samples , n pa tches + 1 , i n f e a t u r e s ) ` .

Returns
−−−−−−−
t o rch . Tensor

Shape `( n samples , n pa tches +1, o u t f e a t u r e s )`
”””
hor i zon token = s e l f . h o r i z on p r o c e s s o r ( hor i zon token )
x o r i g = x
s c a l e = x [ : , : , −4 : ] .mean( ax i s=−1, keepdim=True )
x = x / s c a l e
y = torch . concat ( ( x , hor i zon token ) , dim=−1)
y = s e l f . s t a r t ( y )
y = s e l f . act1 (y )
y = s e l f . drop (y )
for h idden l aye r in s e l f . hidden :

y = h idden l aye r ( y )
y = s e l f . end (y )
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return ( y ∗ s c a l e ) [ : , : , 0 ] + x o r i g [ : , : , −1] ∗ s e l f . a lpha

File horizon processor.py

import torch
from torch import nn
from torch . nn . f un c t i o n a l import one hot
from torch import Tensor

from s r c f i l e s . models . simplemlp import HiddenLayer

def dummy encode (
inpt : Tensor , ho r i zons : Tensor

) : # code trans forms a (N, 1 , 1) to a (N, 1 , num horizons −1) array (dummy encoded )
ho r i z on s r ep = hor i zons . r epeat ( inpt . shape [ 0 ] , 1 , 1 ) [ : , : , 1 : ]
i np t r ep = inpt . r epeat (1 , 1 , ho r i z on s r ep . shape [ −1 ] ) . long ( )
return torch . eq ( hor i zons r ep , i np t r ep ) . f loat ( )

def s i nu s o i da l en cod e ( inpt : Tensor , ndim=20):
w = lambda i : 1 . 0 / (10000 ∗∗ (2 ∗ i / ndim ) )
# do the f i r s t by hand
output = torch . cat ( [ torch . s i n (w(1) ∗ inpt ) , torch . cos (w(1) ∗ inpt ) ] , dim=−1)
for i in range (2 , ndim // 2 + 1 ) :

output = torch . cat (
[

output ,
torch . cat ( [ torch . s i n (w( i ) ∗ inpt ) , torch . cos (w( i ) ∗ inpt ) ] , dim=−1),

] ,
dim=−1,

)
return output

class Hor izonProcessor :
def i n i t ( s e l f , ho r i zons : l i s t , p r o c e s s o r c on f : dict ) :

ho r i zon token type = p ro c e s s o r c on f . get ( ” token type ” , ” s i n u s o i d a l ” )
dim = pro c e s s o r c on f . get ( ”dim” , 16)
s e l f . dev i c e = torch . dev i c e ( ”cuda” i f torch . cuda . i s a v a i l a b l e ( ) else ”cpu” )
i f hor i zon token type == ” i d en t i t y ” :

s e l f . t rans form = lambda x : x
s e l f . extra arguments = False
s e l f . hor i zon token dim = 1

e l i f hor i zon token type == ”dummy” :
s e l f . t rans form = dummy encode
s e l f . extra arguments = True
s e l f . argument = {

” hor i zons ” : torch . t enso r ( hor i zons ) . reshape (1 , 1 , −1). to ( s e l f . dev i c e )
}
s e l f . hor i zon token dim = len ( hor i zons ) − 1

e l i f hor i zon token type == ” s i n u s o i d a l ” :
s e l f . t rans form = s inu s o i da l en cod e
s e l f . extra arguments = True
s e l f . hor i zon token dim = dim − (dim % 2)
s e l f . argument = {”ndim” : dim}

def ge t hor i zon token d im ( s e l f ) :

65



return int ( s e l f . hor i zon token dim )

def c a l l ( s e l f , h o r i z on s a r r : Tensor ) :
i f s e l f . extra arguments :

return s e l f . t rans form ( ho r i z on s a r r , ∗∗ s e l f . argument )
return s e l f . t rans form ( ho r i z on s a r r )

class LearnedHorizonProcessor (nn . Module ) :
def i n i t ( s e l f , ho r i zons : l i s t [ int ] , p r o c e s s o r c on f : dict ) :

super ( ) . i n i t ( )
s e l f . dev i c e = torch . dev i c e ( ”cuda” i f torch . cuda . i s a v a i l a b l e ( ) else ”cpu” )
s e l f . h o r i z o n l i s t = l i s t ( hor i zons )
s e l f . h o r i z on d i c t = { hor izon : i for i , hor i zon in enumerate( s e l f . h o r i z o n l i s t )}
s e l f . dim = pro c e s s o r c on f . get ( ”dim” , 8)
s e l f . embedding = nn . Embedding (

num embeddings=len ( hor i zons ) ,
embedding dim=s e l f . dim ,

)

def ge t hor i zon token d im ( s e l f ) :
return s e l f . dim

def c a l l ( s e l f , h o r i z on s a r r ) :
out = ho r i z on s a r r . expand (

ho r i z on s a r r . shape [ 0 ] , h o r i z on s a r r . shape [ 1 ] , s e l f . dim
) . c l one ( )
for h in ho r i z on s a r r . f l a t t e n ( ) . unique ( ) :

idx = ( ho r i z on s a r r == h ) . f l a t t e n ( )
i f h . item ( ) in s e l f . h o r i z on d i c t :

out [ idx ] = s e l f . embedding (
torch . t enso r (

s e l f . h o r i z on d i c t [ h . item ( ) ] ,
dtype=torch . long ,
dev i c e=s e l f . device ,

)
)

else :
l owe r ho r i zon = max( [ x for x in s e l f . h o r i z o n l i s t i f x < h . item ( ) ] )
upper ho i rzon = min ( [ x for x in s e l f . h o r i z o n l i s t i f x > h . item ( ) ] )
theta = (h . item ( ) − l owe r ho r i zon ) / ( upper ho i rzon − l owe r ho r i zon )
out [ idx ] = s e l f . embedding (

torch . t enso r (
s e l f . h o r i z on d i c t [ l ower ho r i zon ] ,
dtype=torch . long ,
dev i c e=s e l f . device ,

)
) ∗ (1 − theta ) + theta ∗ s e l f . embedding (

torch . t enso r (
s e l f . h o r i z on d i c t [ l ower ho r i zon ] ,
dtype=torch . long ,
dev i c e=s e l f . device ,

)
)

return out

class In t e rPo la t i onHor i zonProce s so r (nn . Module ) :
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def i n i t ( s e l f , ho r i zons : l i s t [ int ] , p r o c e s s o r c on f : dict ) :
super ( ) . i n i t ( )
s e l f . max horizon = max( hor i zons )
s e l f . min hor izon = min( hor i zons )
s e l f . range = s e l f . max horizon − s e l f . min hor izon
s e l f . dim = pro c e s s o r c on f . get ( ”dim” , 8)

s e l f . r i gh t t ok en = nn . Parameter ( torch . z e r o s (1 , s e l f . dim ) )
s e l f . l e f t t o k e n = nn . Parameter ( torch . z e r o s (1 , s e l f . dim ) )

def ge t hor i zon token d im ( s e l f ) :
return s e l f . dim

def c a l l ( s e l f , h o r i z on s a r r ) :
# ge t the horizonn i n t e r p o l a t i o n
return (

( h o r i z on s a r r − s e l f . min hor izon ) ∗ s e l f . r i gh t t ok en
+ ( s e l f . max horizon − ho r i z on s a r r ) ∗ s e l f . l e f t t o k e n

) / s e l f . range

class MLPHorizon (nn . Module ) :
def i n i t ( s e l f , in dim , hidden dim , out dim , depth , p ) :

super ( ) . i n i t ( )
s e l f . s t a r t = nn . Sequent i a l (

nn . Linear ( in dim , hidden dim ) ,
nn .GELU( ) ,
nn . Dropout (p ) ,

)

s e l f . hidden = nn . ModuleList (
[ HiddenLayer ( hidden dim , hidden dim , p) for in range ( depth ) ]

)
s e l f . end = nn . Linear ( hidden dim , out dim )

def forward ( s e l f , x ) :
x = s e l f . s t a r t ( x )
for l a y e r in s e l f . hidden :

x = l ay e r ( x )
x = s e l f . end (x )
return x

class MLPInterPolat ionHorizonProcessor (nn . Module ) :
def i n i t ( s e l f , ho r i zons : l i s t [ int ] , p r o c e s s o r c on f : dict ) :

super ( ) . i n i t ( )
s e l f . dim = pro c e s s o r c on f . get ( ”dim” , 8)
hidden dim = pro c e s s o r c on f . get ( ”hidden dim” , 10)
depth = pro c e s s o r c on f . get ( ”depth” , 3)
s e l f . mlp = MLPHorizon (1 , hidden dim , s e l f . dim , depth , p=0)

def ge t hor i zon token d im ( s e l f ) :
return s e l f . dim

def forward ( s e l f , h o r i z on s a r r ) :
return s e l f . mlp ( ho r i z on s a r r )
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class I t e r a t i v e I n t e rPo l a t i onHo r i z onPro c e s s o r (nn . Module ) :
def i n i t ( s e l f , ho r i zons : l i s t [ int ] , p r o c e s s o r c on f : dict ) :

super ( ) . i n i t ( )
s e l f . dim = pro c e s s o r c on f . get ( ”dim” , 8)
s e l f . s t e p s p e r ho r i z on = pro c e s s o r c on f . get ( ” s t e p s p e r ho r i z on ” , 1)
hidden dim = pro c e s s o r c on f . get ( ”hidden dim” , 8)
depth = pro c e s s o r c on f . get ( ”depth” , 2)
s e l f . nu l l t ok en = nn . Parameter ( torch . z e r o s (1 , 1 , s e l f . dim ) )
s e l f . mlp = MLPHorizon ( s e l f . dim , hidden dim , s e l f . dim , depth , p=0)

def ge t hor i zon token d im ( s e l f ) :
return s e l f . dim

def forward ( s e l f , h o r i z on s a r r ) :
maximum horizon = torch .max( h o r i z on s a r r ) . item ( )
memo tokens = {0 : s e l f . nu l l t ok en }
for i in range ( int (maximum horizon ∗ s e l f . s t e p s p e r ho r i z on ) + 1 ) :

memo tokens [ i + 1 ] = s e l f . mlp (memo tokens [ i ] )

out = ho r i z on s a r r . expand (
ho r i z on s a r r . shape [ 0 ] , h o r i z on s a r r . shape [ 1 ] , s e l f . dim

) . c l one ( )
for h in ho r i z on s a r r . f l a t t e n ( ) . unique ( ) :

idx = ( ho r i z on s a r r == h ) . f l a t t e n ( )
out [ idx ] = memo tokens [ round(h . item ( ) ∗ s e l f . s t e p s p e r ho r i z on ) ]

return out

File data generator.py

from typing import Sequence , Tuple , Dict
import matp lo t l i b . pyplot as p l t
import numpy as np
import torch
from torch . u t i l s . data import Dataset
from torch import Tensor , nn
from e inops import r ea r range
import pandas as pd
from random import cho ice , randint , random , uniform
from abc import abstractmethod
from t rans fo rmer s import AutoTokenizer

def rand between ( a : f loat , b : f loat , n per : int ) :
rng = b − a
return rng ∗ torch . rand ( [ n per ] ) + a

def get random s ines (
pe r i od s : Tensor ,
weights : Tensor ,
n samples : int ,
n o i s e t ype : str ,
s td : f loat

) −> Tuple [ Tensor , Tensor ] :
a s s e r t no i s e t ype in ( ” s i n ” , ” l i n e a r ” , ”mult” )
n pe r i od s = per i od s . shape [ 0 ]
s h i f t s = torch . rand ( n pe r i od s ) ∗ pe r i od s ∗ torch . p i ∗ 2
pts = rear range ( torch . l i n s p a c e (0 , 2 ∗ torch . pi , n samples ) , ”c −> c 1” )
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data = per i od s ∗ pts + s h i f t s
i f no i s e t ype == ” s i n ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std ∗ 2)
no i sy data = torch . s i n ( no i sy data )
no i sy data = torch .sum( no i sy data ∗ weights , dim=1)
no i sy data −= torch . median ( no i sy data )

data = torch . s i n ( data )
data = torch .sum( data ∗ weights , dim=1)
data −= torch . median ( data )
i f no i s e t ype == ” l i n e a r ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std )
i f no i s e t ype == ”mult” :

no i sy data = data ∗ (1 + torch . r andn l i k e ( data ) ∗ std ∗ 1 . 5 )
return r ea r range ( no i sy data , ”c −> 1 c” ) , r ea r range ( data , ”c −> 1 c” )

def c r ea te sawtooth ( data : Tensor , per iod ) :
return per iod / torch . p i ∗ torch . abs ( data % (2 ∗ torch . p i / per iod ) ) − 1

def get random sawtooths (
pe r i od s : Tensor ,
weights : Tensor ,
n samples : int ,
n o i s e t ype : str ,
s td : f loat

) :
a s s e r t no i s e t ype in ( ” s i n ” , ” l i n e a r ” , ”mult” )
n pe r i od s = per i od s . shape [ 0 ]
s h i f t s = torch . rand ( n pe r i od s ) ∗ torch . p i ∗ 2
pts = rear range ( torch . l i n s p a c e (0 , 2 ∗ torch . pi , n samples ) , ”c −> c 1” )
data = pts + s h i f t s
i f no i s e t ype == ” s i n ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std ∗ 0 . 3 )
no i sy data = crea te sawtooth ( no i sy data , pe r i od s )
no i sy data = torch .sum( no i sy data ∗ weights , dim=1)
no i sy data −= torch . median ( no i sy data )

data = create sawtooth ( data , pe r i od s )
data = torch .sum( data ∗ weights , dim=1)
data −= torch . median ( data )
i f no i s e t ype == ” l i n e a r ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std )
i f no i s e t ype == ”mult” :

no i sy data = data ∗ (1 + torch . r andn l i k e ( data ) ∗ std ∗ 1 . 5 )
return r ea r range ( no i sy data , ”c −> 1 c” ) , r ea r range ( data , ”c −> 1 c” )

def c r e a t e t r i a n g l e wav e ( data : Tensor , per iod ) :
return (

2
∗ per iod
/ ( torch . p i )
∗ torch . abs ( ( data % (2 ∗ torch . p i / per iod ) ) − torch . p i / per iod )
− 1

)

def ge t r andom tr i ang l e s (
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pe r i od s : Tensor ,
weights : Tensor ,
n samples : int ,
n o i s e t ype : str ,
s td : f loat

) :
a s s e r t no i s e t ype in ( ” s i n ” , ” l i n e a r ” , ”mult” )
n pe r i od s = per i od s . shape [ 0 ]
s h i f t s = torch . rand ( n pe r i od s ) ∗ pe r i od s ∗ torch . p i ∗ 2
pts = rear range ( torch . l i n s p a c e (0 , 2 ∗ torch . pi , n samples ) , ”c −> c 1” )
data = pts + s h i f t s
i f no i s e t ype == ” s i n ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std ∗ 0 . 5 )
no i sy data = c r e a t e t r i a n g l e wav e ( no i sy data , pe r i od s )
no i sy data = torch .sum( no i sy data ∗ weights , dim=1)
no i sy data −= torch . median ( no i sy data )

data = c r e a t e t r i a n g l e wav e ( data , pe r i od s )
data = torch .sum( data ∗ weights , dim=1)
data −= torch . median ( data )
i f no i s e t ype == ” l i n e a r ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std )
i f no i s e t ype == ”mult” :

no i sy data = data ∗ (1 + torch . r andn l i k e ( data ) ∗ std ∗ 1 . 5 )
return r ea r range ( no i sy data , ”c −> 1 c” ) , r ea r range ( data , ”c −> 1 c” )

class S inePer iods ( Dataset ) :
def i n i t (

s e l f ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
s e l f . l ow f r eq = low f r eq
s e l f . h i g h f r e q = h i gh f r e q
s e l f . max periods = max periods
s e l f . n samples = n samples
s e l f . s td = std
s e l f . n o i s e t ype = no i s e t ype

def g e t n o i s e t yp e ( s e l f ) :
i f s e l f . n o i s e t ype == ”random” :

return cho i c e ( ( ” s i n ” , ” l i n e a r ” , ”mult” ) )
return s e l f . n o i s e t ype

def g e t i t em ( s e l f , item : int ) −> Dict [ str , Tensor ] :
n pe r i od s = randint (2 , s e l f . max periods )
pe r i od s = rand between ( s e l f . l ow f req , s e l f . h i gh f r eq , n pe r i od s )
pre tws = torch . rand ( n pe r i od s )
weights = pre tws / torch .sum( pre tws )
no i sy data , c l ean data = get random s ines (

per iods ,
weights ,
s e l f . n samples ,
s e l f . g e t n o i s e t yp e ( ) ,

70



s e l f . s td
)

return {
” no i sy ” : no i sy data ,
” c l ean ” : c l ean data ,
” pe r i od s ” : per iods ,
”weights ” : weights ,

}

class SawTooths ( Dataset ) :
def i n i t (

s e l f ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
s e l f . l ow f r eq = low f r eq
s e l f . h i g h f r e q = h i gh f r e q
s e l f . max periods = max periods
s e l f . n samples = n samples
s e l f . s td = std
s e l f . n o i s e t ype = no i s e t ype

def g e t n o i s e t yp e ( s e l f ) :
i f s e l f . n o i s e t ype == ”random” :

return cho i c e ( ( ” s i n ” , ” l i n e a r ” , ”mult” ) )
return s e l f . n o i s e t ype

def g e t i t em ( s e l f , item : int ) −> Dict [ str , Tensor ] :
n pe r i od s = randint (2 , s e l f . max periods )
pe r i od s = rand between ( s e l f . l ow f req , s e l f . h i gh f r eq , n pe r i od s )
pre tws = torch . rand ( n pe r i od s )
weights = pre tws / torch .sum( pre tws )
no i sy data , c l ean data = get random sawtooths (

per iods ,
weights ,
s e l f . n samples ,
s e l f . g e t n o i s e t yp e ( ) ,
s e l f . s td

)

return {
” no i sy ” : no i sy data ,
” c l ean ” : c l ean data ,
” pe r i od s ” : per iods ,
”weights ” : weights ,

}

class Tr iang l e s ( Dataset ) :
def i n i t (

s e l f ,
l ow f r eq : f loat ,
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h i gh f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
s e l f . l ow f r eq = low f r eq
s e l f . h i g h f r e q = h i gh f r e q
s e l f . max periods = max periods
s e l f . n samples = n samples
s e l f . s td = std
s e l f . n o i s e t ype = no i s e t ype

def g e t n o i s e t yp e ( s e l f ) :
i f s e l f . n o i s e t ype == ”random” :

return cho i c e ( ( ” s i n ” , ” l i n e a r ” , ”mult” ) )
return s e l f . n o i s e t ype

def g e t i t em ( s e l f , item : int ) −> Dict [ str , Tensor ] :
n pe r i od s = randint (2 , s e l f . max periods )
pe r i od s = rand between ( s e l f . l ow f req , s e l f . h i gh f r eq , n pe r i od s )
pre tws = torch . rand ( n pe r i od s )
weights = pre tws / torch .sum( pre tws )
no i sy data , c l ean data = ge t random tr i ang l e s (

per iods ,
weights ,
s e l f . n samples ,
s e l f . g e t n o i s e t yp e ( ) ,
s e l f . s td

)

return {
” no i sy ” : no i sy data ,
” c l ean ” : c l ean data ,
” pe r i od s ” : per iods ,
”weights ” : weights ,

}

class SinePer iodsHor i zons ( S inePer iods ) :
def i n i t (

s e l f ,
hor izons ,
window size ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
super ( ) . i n i t (

l ow f req ,
h i gh f r eq ,
max periods ,
n samples ,
std ,
no i s e t ype
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)
s e l f . ho r i zons = hor i zons
s e l f . max horizon = max( hor i zons )
s e l f . window size = window size

def g e t i t em ( s e l f , item : int ) −> l i s t [ tuple [ Tensor , Tensor , Tensor ] ] :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
return s e l f . f o rmat da ta t o mu l t i ho r i z on ( data )

def f o rmat da ta t o mu l t i ho r i z on ( s e l f , data ) :
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [ : , s e l f . window size − 1 + hor izon : ] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon ∗ torch . ones ( (
s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)

x = torch . cat ( x l i s t )
y = torch . cat ( y l i s t )
hor i zons = torch . cat ( h o r i z o n l i s t )
return x , y , hor i zons

def g e t da t a s e t by ho r i z on s ( s e l f , item ) :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [ : , s e l f . window size − 1 + hor izon : ] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)
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return x l i s t , y l i s t , h o r i z o n l i s t

class SawToothHorizons ( SawTooths ) :
def i n i t (

s e l f ,
hor izons ,
window size ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
super ( ) . i n i t (

l ow f req ,
h i gh f r eq ,
max periods ,
n samples ,
std ,
no i s e t ype

)
s e l f . ho r i zons = hor i zons
s e l f . max horizon = max( hor i zons )
s e l f . window size = window size

def g e t i t em ( s e l f , item : int ) −> l i s t [ tuple [ Tensor , Tensor , Tensor ] ] :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
return s e l f . f o rmat da ta t o mu l t i ho r i z on ( data )

def f o rmat da ta t o mu l t i ho r i z on ( s e l f , data ) :
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [
: ,
s e l f . window size − 1 + hor izon :

] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)

x = torch . cat ( x l i s t )
y = torch . cat ( y l i s t )
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hor i zons = torch . cat ( h o r i z o n l i s t )
return x , y , hor i zons

def g e t da t a s e t by ho r i z on s ( s e l f , item ) :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [
: ,
s e l f . window size − 1 + hor izon :

] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)

return x l i s t , y l i s t , h o r i z o n l i s t

class Tr iang l e sHor i zons ( Tr i ang l e s ) :
def i n i t (

s e l f ,
hor izons ,
window size ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
super ( ) . i n i t (

l ow f req ,
h i gh f r eq ,
max periods ,
n samples ,
std ,
no i s e t ype

)
s e l f . ho r i zons = hor i zons
s e l f . max horizon = max( hor i zons )
s e l f . window size = window size

def g e t i t em ( s e l f , item : int ) −> l i s t [ tuple [ Tensor , Tensor , Tensor ] ] :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
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return s e l f . f o rmat da ta t o mu l t i ho r i z on ( data )

def f o rmat da ta t o mu l t i ho r i z on ( s e l f , data ) :
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [
: ,
s e l f . window size − 1 + hor izon :

] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)

x = torch . cat ( x l i s t )
y = torch . cat ( y l i s t )
hor i zons = torch . cat ( h o r i z o n l i s t )
return x , y , hor i zons

def g e t da t a s e t by ho r i z on s ( s e l f , item ) :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append ( data [

: ,
s e l f . window size − 1 + hor izon :

] . t ranspose (0 , 1 ) )
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)

return x l i s t , y l i s t , h o r i z o n l i s t
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File data generator.py

from typing import Sequence , Tuple , Dict
import matp lo t l i b . pyplot as p l t
import numpy as np
import torch
from torch . u t i l s . data import Dataset
from torch import Tensor , nn
from e inops import r ea r range
import pandas as pd
from random import cho ice , randint , random , uniform
from abc import abstractmethod
from t rans fo rmer s import AutoTokenizer

def rand between ( a : f loat , b : f loat , n per : int ) :
rng = b − a
return rng ∗ torch . rand ( [ n per ] ) + a

def get random s ines (
pe r i od s : Tensor ,
weights : Tensor ,
n samples : int ,
n o i s e t ype : str ,
s td : f loat

) −> Tuple [ Tensor , Tensor ] :
a s s e r t no i s e t ype in ( ” s i n ” , ” l i n e a r ” , ”mult” )
n pe r i od s = per i od s . shape [ 0 ]
s h i f t s = torch . rand ( n pe r i od s ) ∗ pe r i od s ∗ torch . p i ∗ 2
pts = rear range ( torch . l i n s p a c e (0 , 2 ∗ torch . pi , n samples ) , ”c −> c 1” )
data = per i od s ∗ pts + s h i f t s
i f no i s e t ype == ” s i n ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std ∗ 2)
no i sy data = torch . s i n ( no i sy data )
no i sy data = torch .sum( no i sy data ∗ weights , dim=1)
no i sy data −= torch . median ( no i sy data )

data = torch . s i n ( data )
data = torch .sum( data ∗ weights , dim=1)
data −= torch . median ( data )
i f no i s e t ype == ” l i n e a r ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std )
i f no i s e t ype == ”mult” :

no i sy data = data ∗ (1 + torch . r andn l i k e ( data ) ∗ std ∗ 1 . 5 )
return r ea r range ( no i sy data , ”c −> 1 c” ) , r ea r range ( data , ”c −> 1 c” )

def c r ea te sawtooth ( data : Tensor , per iod ) :
return per iod / torch . p i ∗ torch . abs ( data % (2 ∗ torch . p i / per iod ) ) − 1

def get random sawtooths (
pe r i od s : Tensor ,
weights : Tensor ,
n samples : int ,
n o i s e t ype : str ,
s td : f loat

) :
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a s s e r t no i s e t ype in ( ” s i n ” , ” l i n e a r ” , ”mult” )
n pe r i od s = per i od s . shape [ 0 ]
s h i f t s = torch . rand ( n pe r i od s ) ∗ torch . p i ∗ 2
pts = rear range ( torch . l i n s p a c e (0 , 2 ∗ torch . pi , n samples ) , ”c −> c 1” )
data = pts + s h i f t s
i f no i s e t ype == ” s i n ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std ∗ 0 . 3 )
no i sy data = crea te sawtooth ( no i sy data , pe r i od s )
no i sy data = torch .sum( no i sy data ∗ weights , dim=1)
no i sy data −= torch . median ( no i sy data )

data = create sawtooth ( data , pe r i od s )
data = torch .sum( data ∗ weights , dim=1)
data −= torch . median ( data )
i f no i s e t ype == ” l i n e a r ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std )
i f no i s e t ype == ”mult” :

no i sy data = data ∗ (1 + torch . r andn l i k e ( data ) ∗ std ∗ 1 . 5 )
return r ea r range ( no i sy data , ”c −> 1 c” ) , r ea r range ( data , ”c −> 1 c” )

def c r e a t e t r i a n g l e wav e ( data : Tensor , per iod ) :
return (

2
∗ per iod
/ ( torch . p i )
∗ torch . abs ( ( data % (2 ∗ torch . p i / per iod ) ) − torch . p i / per iod )
− 1

)

def ge t r andom tr i ang l e s (
pe r i od s : Tensor ,
weights : Tensor ,
n samples : int ,
n o i s e t ype : str ,
s td : f loat

) :
a s s e r t no i s e t ype in ( ” s i n ” , ” l i n e a r ” , ”mult” )
n pe r i od s = per i od s . shape [ 0 ]
s h i f t s = torch . rand ( n pe r i od s ) ∗ pe r i od s ∗ torch . p i ∗ 2
pts = rear range ( torch . l i n s p a c e (0 , 2 ∗ torch . pi , n samples ) , ”c −> c 1” )
data = pts + s h i f t s
i f no i s e t ype == ” s i n ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std ∗ 0 . 5 )
no i sy data = c r e a t e t r i a n g l e wav e ( no i sy data , pe r i od s )
no i sy data = torch .sum( no i sy data ∗ weights , dim=1)
no i sy data −= torch . median ( no i sy data )

data = c r e a t e t r i a n g l e wav e ( data , pe r i od s )
data = torch .sum( data ∗ weights , dim=1)
data −= torch . median ( data )
i f no i s e t ype == ” l i n e a r ” :

no i sy data = data + ( torch . r andn l i k e ( data ) ∗ std )
i f no i s e t ype == ”mult” :

no i sy data = data ∗ (1 + torch . r andn l i k e ( data ) ∗ std ∗ 1 . 5 )
return r ea r range ( no i sy data , ”c −> 1 c” ) , r ea r range ( data , ”c −> 1 c” )

class S inePer iods ( Dataset ) :
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def i n i t (
s e l f ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
s e l f . l ow f r eq = low f r eq
s e l f . h i g h f r e q = h i gh f r e q
s e l f . max periods = max periods
s e l f . n samples = n samples
s e l f . s td = std
s e l f . n o i s e t ype = no i s e t ype

def g e t n o i s e t yp e ( s e l f ) :
i f s e l f . n o i s e t ype == ”random” :

return cho i c e ( ( ” s i n ” , ” l i n e a r ” , ”mult” ) )
return s e l f . n o i s e t ype

def g e t i t em ( s e l f , item : int ) −> Dict [ str , Tensor ] :
n pe r i od s = randint (2 , s e l f . max periods )
pe r i od s = rand between ( s e l f . l ow f req , s e l f . h i gh f r eq , n pe r i od s )
pre tws = torch . rand ( n pe r i od s )
weights = pre tws / torch .sum( pre tws )
no i sy data , c l ean data = get random s ines (

per iods ,
weights ,
s e l f . n samples ,
s e l f . g e t n o i s e t yp e ( ) ,
s e l f . s td

)

return {
” no i sy ” : no i sy data ,
” c l ean ” : c l ean data ,
” pe r i od s ” : per iods ,
”weights ” : weights ,

}

class SawTooths ( Dataset ) :
def i n i t (

s e l f ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
s e l f . l ow f r eq = low f r eq
s e l f . h i g h f r e q = h i gh f r e q
s e l f . max periods = max periods
s e l f . n samples = n samples
s e l f . s td = std
s e l f . n o i s e t ype = no i s e t ype
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def g e t n o i s e t yp e ( s e l f ) :
i f s e l f . n o i s e t ype == ”random” :

return cho i c e ( ( ” s i n ” , ” l i n e a r ” , ”mult” ) )
return s e l f . n o i s e t ype

def g e t i t em ( s e l f , item : int ) −> Dict [ str , Tensor ] :
n pe r i od s = randint (2 , s e l f . max periods )
pe r i od s = rand between ( s e l f . l ow f req , s e l f . h i gh f r eq , n pe r i od s )
pre tws = torch . rand ( n pe r i od s )
weights = pre tws / torch .sum( pre tws )
no i sy data , c l ean data = get random sawtooths (

per iods ,
weights ,
s e l f . n samples ,
s e l f . g e t n o i s e t yp e ( ) ,
s e l f . s td

)

return {
” no i sy ” : no i sy data ,
” c l ean ” : c l ean data ,
” pe r i od s ” : per iods ,
”weights ” : weights ,

}

class Tr iang l e s ( Dataset ) :
def i n i t (

s e l f ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
s e l f . l ow f r eq = low f r eq
s e l f . h i g h f r e q = h i gh f r e q
s e l f . max periods = max periods
s e l f . n samples = n samples
s e l f . s td = std
s e l f . n o i s e t ype = no i s e t ype

def g e t n o i s e t yp e ( s e l f ) :
i f s e l f . n o i s e t ype == ”random” :

return cho i c e ( ( ” s i n ” , ” l i n e a r ” , ”mult” ) )
return s e l f . n o i s e t ype

def g e t i t em ( s e l f , item : int ) −> Dict [ str , Tensor ] :
n pe r i od s = randint (2 , s e l f . max periods )
pe r i od s = rand between ( s e l f . l ow f req , s e l f . h i gh f r eq , n pe r i od s )
pre tws = torch . rand ( n pe r i od s )
weights = pre tws / torch .sum( pre tws )
no i sy data , c l ean data = ge t random tr i ang l e s (

per iods ,
weights ,
s e l f . n samples ,
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s e l f . g e t n o i s e t yp e ( ) ,
s e l f . s td

)

return {
” no i sy ” : no i sy data ,
” c l ean ” : c l ean data ,
” pe r i od s ” : per iods ,
”weights ” : weights ,

}

class SinePer iodsHor i zons ( S inePer iods ) :
def i n i t (

s e l f ,
hor izons ,
window size ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
super ( ) . i n i t (

l ow f req ,
h i gh f r eq ,
max periods ,
n samples ,
std ,
no i s e t ype

)
s e l f . ho r i zons = hor i zons
s e l f . max horizon = max( hor i zons )
s e l f . window size = window size

def g e t i t em ( s e l f , item : int ) −> l i s t [ tuple [ Tensor , Tensor , Tensor ] ] :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
return s e l f . f o rmat da ta t o mu l t i ho r i z on ( data )

def f o rmat da ta t o mu l t i ho r i z on ( s e l f , data ) :
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [ : , s e l f . window size − 1 + hor izon : ] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon ∗ torch . ones ( (
s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
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1
) )

)
x = torch . cat ( x l i s t )
y = torch . cat ( y l i s t )
hor i zons = torch . cat ( h o r i z o n l i s t )
return x , y , hor i zons

def g e t da t a s e t by ho r i z on s ( s e l f , item ) :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [ : , s e l f . window size − 1 + hor izon : ] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)

return x l i s t , y l i s t , h o r i z o n l i s t

class SawToothHorizons ( SawTooths ) :
def i n i t (

s e l f ,
hor izons ,
window size ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
super ( ) . i n i t (

l ow f req ,
h i gh f r eq ,
max periods ,
n samples ,
std ,
no i s e t ype

)
s e l f . ho r i zons = hor i zons
s e l f . max horizon = max( hor i zons )
s e l f . window size = window size
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def g e t i t em ( s e l f , item : int ) −> l i s t [ tuple [ Tensor , Tensor , Tensor ] ] :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
return s e l f . f o rmat da ta t o mu l t i ho r i z on ( data )

def f o rmat da ta t o mu l t i ho r i z on ( s e l f , data ) :
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [
: ,
s e l f . window size − 1 + hor izon :

] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)

x = torch . cat ( x l i s t )
y = torch . cat ( y l i s t )
hor i zons = torch . cat ( h o r i z o n l i s t )
return x , y , hor i zons

def g e t da t a s e t by ho r i z on s ( s e l f , item ) :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [
: ,
s e l f . window size − 1 + hor izon :

] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1
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) )
)

return x l i s t , y l i s t , h o r i z o n l i s t

class Tr iang l e sHor i zons ( Tr i ang l e s ) :
def i n i t (

s e l f ,
hor izons ,
window size ,
l ow f r eq : f loat ,
h i g h f r e q : f loat ,
max periods : int ,
n samples : int ,
s td : f loat ,
n o i s e t ype : str ,

) :
super ( ) . i n i t (

l ow f req ,
h i gh f r eq ,
max periods ,
n samples ,
std ,
no i s e t ype

)
s e l f . ho r i zons = hor i zons
s e l f . max horizon = max( hor i zons )
s e l f . window size = window size

def g e t i t em ( s e l f , item : int ) −> l i s t [ tuple [ Tensor , Tensor , Tensor ] ] :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
return s e l f . f o rmat da ta t o mu l t i ho r i z on ( data )

def f o rmat da ta t o mu l t i ho r i z on ( s e l f , data ) :
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append (

data [
: ,
s e l f . window size − 1 + hor izon :

] . t ranspose (0 , 1)
)
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)
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x = torch . cat ( x l i s t )
y = torch . cat ( y l i s t )
hor i zons = torch . cat ( h o r i z o n l i s t )
return x , y , hor i zons

def g e t da t a s e t by ho r i z on s ( s e l f , item ) :
data = super ( ) . g e t i t em ( item ) [ ” no i sy ” ]
x l i s t = [ ]
y l i s t = [ ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# cons t ruc t y
y l i s t . append ( data [

: ,
s e l f . window size − 1 + hor izon :

] . t ranspose (0 , 1 ) )
x l i s t . append (

data [ : , :−hor izon ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
h o r i z o n l i s t . append (

hor izon
∗ torch . ones ( (

s e l f . n samples − hor izon − s e l f . window size + 1 ,
1 ,
1

) )
)

return x l i s t , y l i s t , h o r i z o n l i s t

File dataloader.py

import pandas as pd
import numpy as np
from torch . u t i l s . data import Dataset , DataLoader
from t o r chv i s i o n . t rans forms import ToTensor
import torch
from copy import copy
from math import f l o o r , c e i l

class BasicDataset ( Dataset ) :
def i n i t ( s e l f , x , y , h ) :

super ( ) . i n i t ( )
s e l f . x , s e l f . y , s e l f . h = x , y , h

def l e n ( s e l f ) :
return s e l f . x . shape [ 0 ]

def g e t i t em ( s e l f , idx ) :
return ( s e l f . x [ idx ] . c l one ( ) , s e l f . y [ idx ] . c l one ( ) , s e l f . h [ idx ] . c l one ( ) )

class Mult iDatasetHorizonDataset :
def i n i t (

s e l f ,
paths : l i s t [ str ] ,
hor izons ,
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window size ,
n da ta s e t s a t same t ime : int ,
t r a i n v a l t e s t s p l i t : tuple ,
s h u f f l e : bool = True ,
s t e p s t o s k i p =1,

) :
# super ( ) . i n i t ( )
s e l f . s t e p s t o s k i p = s t e p s t o s k i p
s e l f . t r a i n p e r c e n t = t r a i n v a l t e s t s p l i t [ 0 ]
s e l f . t e s t p e r c e n t = t r a i n v a l t e s t s p l i t [ 2 ]
s e l f . paths = paths
s e l f . s h u f f l e = s h u f f l e
s e l f . phase = ” t e s t ”
s e l f . ho r i zons = hor i zons
s e l f . window size = window size

s e l f . jump = n data s e t s a t same t ime
s e l f . index = 0
s e l f . maxindex = len ( s e l f . paths )
i f s h u f f l e :

s e l f . s h u f f l e ( )

def s e t pha s e ( s e l f , phase ) :
a s s e r t isinstance ( phase , str )
s e l f . phase = phase

def f o rmat da ta t o mu l t i ho r i z on ( s e l f , data ) :
x l i s t = [ ]
y l i s t = [ ]
data = data [ : , : : s e l f . s t e p s t o s k i p ]
h o r i z o n l i s t = [ ]
for hor izon in s e l f . ho r i zons :

# pr in t (”1” , data )
# pr i n t (”2” , data [ : , : : s e l f . s t e p s t o s k i p ] )

# cons t ruc t y
y l i s t . append (

data [ : , s e l f . window size − 1 + c e i l ( hor i zon ) : ] . t ranspose (0 , 1)
)
i f hor izon == 0 :

x l i s t . append (
data [ : , : ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
else :

x l i s t . append (
data [ : , : −c e i l ( hor i zon ) ]
. un fo ld ( dimension=−1, s i z e=s e l f . window size , s tep=1)
. t ranspose (0 , 1)

)
n = data . shape [ 1 ] − c e i l ( hor i zon ) − s e l f . window size + 1
h o r i z o n l i s t . append ( hor i zon ∗ torch . ones ( ( n , 1 , 1 ) ) )

# f i x based on ml phase

n = data . shape [ 1 ] − s e l f . window size + 1
lower = round( s e l f . t r a i n p e r c e n t ∗ n)
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upper = round( s e l f . t e s t p e r c e n t ∗ n)
i f s e l f . phase == ” t r a i n ” :

y l i s t [−1] = y l i s t [ − 1 ] [ : lower − hor izon ]
x l i s t [−1] = x l i s t [ − 1 ] [ : lower − hor izon ]
h o r i z o n l i s t [−1] = h o r i z o n l i s t [ − 1 ] [ : lower − hor izon ]

e l i f s e l f . phase == ” va l ” :
y l i s t [−1] = y l i s t [ −1 ] [ lower − hor izon : −upper ]
x l i s t [−1] = x l i s t [ −1 ] [ lower − hor izon : −upper ]
h o r i z o n l i s t [−1] = h o r i z o n l i s t [ −1 ] [ lower − hor izon : −upper ]

e l i f s e l f . phase == ” t e s t ” :
y l i s t [−1] = y l i s t [−1][−upper : ]
x l i s t [−1] = x l i s t [−1][−upper : ]
h o r i z o n l i s t [−1] = h o r i z o n l i s t [−1][−upper : ]

x = torch . cat ( x l i s t )
y = torch . cat ( y l i s t )
hor i zons = torch . cat ( h o r i z o n l i s t )
return x , y , hor i zons

def i t e r ( s e l f ) :
return s e l f

def n e x t ( s e l f ) :
i f s e l f . index >= s e l f . maxindex :

s e l f . index = 0
i f s e l f . s h u f f l e :

s e l f . s h u f f l e ( )

raise S top I t e r a t i on

x , y , h = [ ] , [ ] , [ ]
for i in range ( s e l f . index , s e l f . index + s e l f . jump ) :

i f i >= len ( s e l f . paths ) :
break

x i , y i , h i = s e l f . f o rmat da ta t o mu l t i ho r i z on (
torch . t enso r (

pd . r ead c sv ( s e l f . paths [ i ] )
. s e l e c t d t y p e s ( exc lude=[” ob j e c t ” ] )
. va lue s .T

) . f loat ( )
)
x . append ( x i )
y . append ( y i )
h . append ( h i )

x = torch . cat ( x )
y = torch . cat ( y )
h = torch . cat (h)

s e l f . index = s e l f . index + s e l f . jump
return BasicDataset (x , y , h )

def s h u f f l e ( s e l f ) −> None :
np . random . s h u f f l e ( s e l f . paths )

def l e n ( s e l f ) :
return s e l f . maxindex
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File trainer.py

from typing import Tuple
import pandas as pd
import torch
import torch . nn as nn
import numpy as np
from copy import deepcopy
from torch import nn
from torch . u t i l s . data import DataLoader
from datet ime import datet ime
from path l i b import Path
from copy import deepcopy

from s r c f i l e s . m l u t i l s import c a l c u l a t e e r r o r r unn i n g
from s r c f i l e s . da ta gene ra to r import SinePer iodsHor izons , SawToothHorizons , Tr iang l e sHor i zons

from torch . u t i l s . tensorboard import SummaryWriter

import datet ime as dt
from torch . optim . l r s c h e d u l e r import ExponentialLR

class BigNeuralNetTrainer :
def i n i t (

s e l f ,
epochs ,
ba t ch s i z e ,
l r ,
l o s s f n ,
opt imize r fun ,
da ta s e t s hand l e r ,
run time ,
model tag ,
do wr i t e = False ,

) :
s e l f . epochs = epochs
s e l f . b a t ch s i z e = ba t ch s i z e
s e l f . l r = l r
s e l f . l o s s f n = l o s s f n
s e l f . op t im i z e r fun = opt im i z e r fun
s e l f . dev i c e = torch . dev i c e ( ' cuda ' i f torch . cuda . i s a v a i l a b l e ( ) else ' cpu ' )
s e l f . d a t a s e t s hand l e r = deepcopy ( da ta s e t s hand l e r )
s e l f . e v a l d a t a s e t hand l e r = deepcopy ( da ta s e t s hand l e r )
i f do wr i t e :

s e l f . t r a i n w r i t e r = SummaryWriter ( l o g d i r=f ' l o g s /{ run t ime }/ t r a i n /{model tag } ' )
s e l f . v a l w r i t e r = SummaryWriter ( l o g d i r=f ' l o g s /{ run t ime }/ va l /{model tag } ' )

def f i t ( s e l f , model , model name = None , s t o p c r i t e r i o n : int = 15 , c h e c k p e r n i t e r = 800 ) :
s e l f . opt imize r = s e l f . op t im i z e r fun ( params = model . parameters ( ) , l r = s e l f . l r )
s e l f . s chedu l e r = ExponentialLR ( s e l f . opt imizer , gamma=0.95)
model = model . to ( s e l f . dev i c e )

s e l f . min loss , s e l f . t ime s ince min = 1e200 , 0 # s u f f i c i e n t l y b i g to s t a r t wi th
c oun t i t e r = 0
runn ing met r i c s = torch . z e r o s (4 )
datapo int s = 0
best model = deepcopy (model )
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for epoch in range ( s e l f . epochs ) :

s e l f . d a t a s e t s hand l e r . s e t pha s e ( ” t r a i n ” )
model . t r a i n (True )

for datase t in s e l f . d a t a s e t s hand l e r :
c u r r e n t d l = DataLoader ( dataset , s e l f . ba t ch s i z e , s h u f f l e = True , num workers = 8)

for x , y , hor i zon token in cu r r e n t d l :
n = x . shape [ 0 ]
x = x . to ( s e l f . dev i c e )
y = y . to ( s e l f . dev i c e )
hor i zon token = hor i zon token . to ( s e l f . dev i c e )

s e l f . opt imize r . z e ro g rad ( )
y hat = model . forward (x , hor i zon token )
l o s s = s e l f . l o s s f n ( y hat , y )
l o s s . backward ( )
s e l f . opt imize r . s tep ( )

met r i c s = c a l c u l a t e e r r o r r unn i n g ( y hat , y )
runn ing met r i c s = runn ing met r i c s + metr i c s
datapo int s += n
coun t i t e r += 1

i f c oun t i t e r % ch e c k p e r n i t e r == 0 :

metr i c s = {
”MAE” : runn ing met r i c s [ 0 ] / datapoints ,
”RMSE” : ( runn ing met r i c s [ 1 ] / datapo int s ) . s q r t ( ) ,
”MAPE” : 100∗ runn ing met r i c s [ 2 ] / datapoints ,
”SMAPE” : 200∗ runn ing met r i c s [ 3 ] / datapo int s

}
s e l f . t r a i n w r i t e r . add s ca l a r ( 'RMSE ' , met r i c s [ 'RMSE ' ] , c o un t i t e r )
s e l f . t r a i n w r i t e r . add s ca l a r ( 'MAPE ' , met r i c s [ 'MAPE ' ] , c o un t i t e r )
s e l f . t r a i n w r i t e r . add s ca l a r ( 'SMAPE ' , met r i c s [ 'SMAPE ' ] , c o un t i t e r )
s e l f . t r a i n w r i t e r . add s ca l a r ( ' alpha ' , model . alpha . data . item ( ) , c o un t i t e r )
runn ing met r i c s = torch . z e r o s (4 )
datapo int s = 0

print (
f ”Epoch : { epoch+1: 4d}/{ s e l f . epochs } , ”\
f ” i t e r : { c oun t i t e r : 4d} , ”\
”Phase : t ra in , ”\
f ”MAE: {metr i c s [ 'MAE ' ] : 8 . 3 f } , ”\
f ”RMSE: {metr i c s [ 'RMSE ' ] : 8 . 3 f } , ”\
f ”MAPE: {metr i c s [ 'MAPE ' ] : 7 . 3 f } , ”\
f ”SMAPE: {metr i c s [ 'SMAPE ' ] : 7 . 3 f } ”

)

model . t r a i n ( Fa l se )
best model , do stop , v a l me t r i c s = s e l f . v a l i d a t e (model , best model , s t o p c r i t e r i o n , model name )
model . t r a i n (True )
s e l f . v a l w r i t e r . add s ca l a r ( 'RMSE ' , v a l me t r i c s [ 'RMSE ' ] , c o un t i t e r )
s e l f . v a l w r i t e r . add s ca l a r ( 'MAPE ' , v a l me t r i c s [ 'MAPE ' ] , c o un t i t e r )
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s e l f . v a l w r i t e r . add s ca l a r ( 'SMAPE ' , v a l me t r i c s [ 'SMAPE ' ] , c o un t i t e r )
i f do stop :

return best model

s e l f . s chedu l e r . s tep ( )
# ca l c u l a t e the summ of metr ic s across a l l hor i zons

def v a l i d a t e ( s e l f , model , best model , s t o p c r i t e r i o n , model name ) :
s e l f . e v a l d a t a s e t hand l e r . s e t pha s e ( ” va l ” )
runn ing met r i c s = torch . z e r o s (4 )
datapo int s = 0
do stop = False
with torch . no grad ( ) :

for datase t in s e l f . e v a l d a t a s e t hand l e r :
c u r r e n t d l = DataLoader ( dataset , s e l f . ba t ch s i z e , s h u f f l e = True , num workers = 8)

for x , y , hor i zon token in cu r r e n t d l :
n = x . shape [ 0 ]
x = x . to ( s e l f . dev i c e )
y = y . to ( s e l f . dev i c e )
hor i zon token = hor i zon token . to ( s e l f . dev i c e )

y hat = model . forward (x , hor i zon token )

metr i c s = c a l c u l a t e e r r o r r unn i n g ( y hat , y )
runn ing met r i c s = runn ing met r i c s + metr i c s
datapo int s += n

epoch metr i c s = {
”MAE” : runn ing met r i c s [ 0 ] / datapoints ,
”RMSE” : ( runn ing met r i c s [ 1 ] / datapo int s ) . s q r t ( ) ,
”MAPE” : 100∗ runn ing met r i c s [ 2 ] / datapoints ,
”SMAPE” : 200∗ runn ing met r i c s [ 3 ] / datapo int s

}
print (

”Phase : val , ”\
f ”MAE: { epoch metr i c s [ 'MAE ' ] : 8 . 3 f } , ”\
f ”RMSE: { epoch metr i c s [ 'RMSE ' ] : 8 . 3 f } , ”\
f ”MAPE: { epoch metr i c s [ 'MAPE ' ] : 7 . 3 f } , ”\
f ”SMAPE: { epoch metr i c s [ 'SMAPE ' ] : 7 . 3 f } ”

)

c u r r e n t l o s s = sum( [ epoch metr i c s [ key ] for key in epoch metr i c s i f key in [ ”MAPE” , ”SMAPE” ] ] ) . item ( )
i f c u r r e n t l o s s < s e l f . m in l o s s :

s e l f . m in l o s s = c u r r e n t l o s s
s e l f . t ime s ince min = 0
# save the model
best model = deepcopy (model )

e l i f s e l f . t ime s ince min >= s t o p c r i t e r i o n :
print ( f ” s t o p c r i t e r i o n met . Stopping . . . ” )
s e l f . save ( best model . s t a t e d i c t ( ) , model name )
do stop = True

else :
s e l f . t ime s ince min += 1

return best model , do stop , epoch metr i c s
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def save ( s e l f , s t a t e d i c t , model name ) :
i f model name i s None :

return
path = Path ( ”data/ a r t i f a c t s /” )
path = path . j o inpath (model name )
path . parent . mkdir ( parents=True , e x i s t o k=True )
torch . save ( s t a t e d i c t , path )

def p r ed i c t ( s e l f , model ) :
s e l f . d a t a s e t s hand l e r . s e t pha s e ( ” t e s t ” )
#make sure t r a i n mode i s o f f
model = model . to ( s e l f . dev i c e )
model . t r a i n ( Fa l se )
p r ed i c t da tahand l e r = deepcopy ( s e l f . d a t a s e t s hand l e r )
p r ed i c t da tahand l e r . jump = 1

preds = [ ]
with torch . no grad ( ) :

for datase t in pr ed i c t da tahand l e r :
d l = DataLoader ( dataset , s e l f . ba t ch s i z e , s h u f f l e = Fal se )
hor i zon yhat = {}
ho r i z on g t = {}

for x , y , h in dl :
for hor izon in pr ed i c t da tahand l e r . ho r i zons :

idx = (h == hor izon ) . f l a t t e n ( )
i f idx .sum()==0:

continue
x h = x [ idx ] . to ( s e l f . dev i c e )
y h = y [ idx ] . to ( s e l f . dev i c e )
h h = h [ idx ] . to ( s e l f . dev i c e )

y hat = model . forward ( x h , h h )
i f hor izon not in hor i zon yhat :

hor i zon yhat [ hor i zon ] = [ ]
ho r i z on g t [ hor i zon ] = [ ]

hor i zon yhat [ hor i zon ] . append ( y hat )
ho r i z on g t [ hor i zon ] . append ( y h )

r e s u l t s p e c i f i c = {}
for hor izon in pr ed i c t da tahand l e r . ho r i zons :

r e s u l t s p e c i f i c [ hor i zon ] = ( torch . cat ( hor i zon yhat [ hor i zon ] ) . cpu ( ) , torch . cat ( ho r i z on g t [ hor i zon ] ) . cpu ( ) )

preds . append ( r e s u l t s p e c i f i c )

return preds

class SimulationNNTrainer :
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def i n i t (
s e l f ,
generator ,
l r ,
l o s s f n ,
opt imize r fun ,
model tag ,
run time ,
do wr i t e = False ,

) :
s e l f . l r = l r
s e l f . l o s s f n = l o s s f n
s e l f . op t im i z e r fun = opt im i z e r fun
s e l f . dev i c e = torch . dev i c e ( ' cuda ' i f torch . cuda . i s a v a i l a b l e ( ) else ' cpu ' )
s e l f . g enerato r = generator
i f do wr i t e :

s e l f . t r a i n w r i t e r = SummaryWriter ( l o g d i r=f ' l o g s /{ run t ime }/ t r a i n /{model tag } ' )
s e l f . v a l w r i t e r = SummaryWriter ( l o g d i r=f ' l o g s /{ run t ime }/ va l /{model tag } ' )

def f i t ( s e l f , model , model name : str , t r a i n d a t a s e t s : int = 20 , e v a l d a t a s e t s : int = 100 , s t o p c r i t e r i o n : int = 10 ) :
s e l f . opt imize r = s e l f . op t im i z e r fun ( params = model . parameters ( ) , l r = s e l f . l r )
s e l f . s chedu l e r = ExponentialLR ( s e l f . opt imizer , gamma=0.99)
min loss , t ime s ince min = 1e200 , 0 # s u f f i c i e n t l y b i g to s t a r t wi th
model = model . to ( s e l f . dev i c e )

epoch = −1
while True :

epoch +=1
t r a i n me t r i c s = s e l f . t r a i n r o t a t i o n (model , t r a i n d a t a s e t s )
s e l f . t r a i n w r i t e r . add s ca l a r ( 'MAE' , t r a i n me t r i c s [ 'MAE' ] , epoch , )
s e l f . t r a i n w r i t e r . add s ca l a r ( 'RMSE ' , t r a i n me t r i c s [ 'RMSE ' ] , epoch )
s e l f . t r a i n w r i t e r . add s ca l a r ( 'SMAPE ' , t r a i n me t r i c s [ 'SMAPE ' ] , epoch )
s e l f . t r a i n w r i t e r . add s ca l a r ( ' l r ' , s e l f . s chedu l e r . g e t l a s t l r ( ) [ −1 ] , epoch )
s e l f . s chedu l e r . s tep ( )
print ( f ”Epoch : { epoch } , Phase : t ra in , MAE: { t r a i n me t r i c s [ 'MAE ' ] : 8 . 3 f } , RMSE: { t r a i n me t r i c s [ 'RMSE ' ] : 8 . 3 f } , MAPE: { t r a i n me t r i c s [ 'MAPE ' ] : 7 . 3 f } , SMAPE: { t r a i n me t r i c s [ 'SMAPE ' ] : 7 . 3 f }” )
metr i c s = s e l f . e v a l r o t a t i o n (model , e v a l d a t a s e t s )
s e l f . v a l w r i t e r . add s ca l a r ( 'MAE' , met r i c s [ 'MAE' ] , epoch , )
s e l f . v a l w r i t e r . add s ca l a r ( 'RMSE ' , met r i c s [ 'RMSE ' ] , epoch )
s e l f . v a l w r i t e r . add s ca l a r ( 'SMAPE ' , met r i c s [ 'SMAPE ' ] , epoch )
print ( f ”Epoch : { epoch } , Phase : eval , MAE: {metr i c s [ 'MAE ' ] : 8 . 3 f } , RMSE: {metr i c s [ 'RMSE ' ] : 8 . 3 f } , MAPE: {metr i c s [ 'MAPE ' ] : 7 . 3 f } , SMAPE: {metr i c s [ 'SMAPE ' ] : 7 . 3 f }” )

# do un t i l s top c r i t e r i o n
c u r r e n t l o s s = sum( [ met r i c s [ key ] for key in metr i c s i f key in [ ”RMSE” , ”MAE” ] ] ) . item ( )
i f c u r r e n t l o s s < min lo s s :

m in l o s s = c u r r e n t l o s s
t ime s ince min = 0
# save the model
best model = deepcopy (model )

e l i f t ime s ince min >= s t o p c r i t e r i o n :
print ( f ” s t o p c r i t e r i o n met . Stopping . . . ” )
s e l f . save ( best model . s t a t e d i c t ( ) , model name )
return best model

else :
t ime s ince min += 1

def p r ed i c t ( s e l f , model , da ta s e t s ) :
model = model . to ( s e l f . dev i c e )
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model . t r a i n ( Fa l se )
r e s u l t s = [ ]
with torch . no grad ( ) :

for x l i s t , y l i s t , h o r i z o n l i s t in data s e t s :
r e s u l t s p e c i f i c = {}
for i in range ( len ( h o r i z o n l i s t ) ) :

x = x l i s t [ i ] . to ( s e l f . dev i c e )
y = y l i s t [ i ] . to ( s e l f . dev i c e )
hor i zon = h o r i z o n l i s t [ i ] . to ( s e l f . dev i c e )
y hat = model . forward (x , hor i zon )

r e s u l t s p e c i f i c [ int ( hor i zon [ 0 , 0 , 0 ] . item ( ) ) ] = ( y hat . cpu ( ) , y . cpu ( ) )

r e s u l t s . append ( r e s u l t s p e c i f i c )
return r e s u l t s

return y l i s t

def t r a i n r o t a t i o n ( s e l f , model , t r a i n s t e p s : int ) :
model . to ( s e l f . dev i c e )
model . t r a i n (True )
runn ing met r i c s = torch . z e r o s (4 )
running count = 0
for i in range ( t r a i n s t e p s ) :

x , y , hor i zon token = s e l f . g enerato r . g e t i t em ( i )
x = x . to ( s e l f . dev i c e )
y = y . to ( s e l f . dev i c e )
hor i zon token = hor i zon token . to ( s e l f . dev i c e )
s e l f . opt imize r . z e ro g rad ( )
y hat = model . forward (x , hor i zon token )
l o s s = s e l f . l o s s f n ( y hat , y )
l o s s . backward ( )
s e l f . opt imize r . s tep ( )
met r i c s = c a l c u l a t e e r r o r r unn i n g ( y hat , y )
runn ing met r i c s = runn ing met r i c s + metr i c s
running count = running count + y . shape [ 0 ]

return {
”MAE” : runn ing met r i c s [ 0 ] / running count ,
”RMSE” : ( runn ing met r i c s [ 1 ] / running count ) . s q r t ( ) ,
”MAPE” : 100∗ runn ing met r i c s [ 2 ] / running count ,
”SMAPE” : 200∗ runn ing met r i c s [ 3 ] / running count

}

def e v a l r o t a t i o n ( s e l f , model , e v a l s t e p s ) :
model . to ( s e l f . dev i c e )
model . t r a i n ( Fa l se )
runn ing met r i c s = torch . z e r o s (4 )
running count = 0
with torch . no grad ( ) :

for i in range ( e v a l s t e p s ) :
x , y , hor i zon token = s e l f . g enerato r . g e t i t em ( i )
x = x . to ( s e l f . dev i c e )
y = y . to ( s e l f . dev i c e )
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hor i zon token = hor i zon token . to ( s e l f . dev i c e )
y hat = model . forward (x , hor i zon token )
metr i c s = c a l c u l a t e e r r o r r unn i n g ( y hat , y )
runn ing met r i c s = runn ing met r i c s + metr i c s
running count = running count + y . shape [ 0 ]

return {
”MAE” : runn ing met r i c s [ 0 ] / running count ,
”RMSE” : ( runn ing met r i c s [ 1 ] / running count ) . s q r t ( ) ,
”MAPE” : 100∗ runn ing met r i c s [ 2 ] / running count ,
”SMAPE” : 200∗ runn ing met r i c s [ 3 ] / running count

}

def c a l c u l a t e p e r h o r i z o n e r r o r ( s e l f , model , e v a l s t e p s ) :
model . to ( s e l f . dev i c e )
model . t r a i n ( Fa l se )
r unn i ng e r r o r ho r i z on s = {}
runn ing count hor i zons = {}

with torch . no grad ( ) :
for i in range ( e v a l s t e p s ) :

x , y , hor i zon token = s e l f . g enerato r . g e t i t em ( i )
x = x . to ( s e l f . dev i c e )
y = y . to ( s e l f . dev i c e )
hor i zon token = hor i zon token . to ( s e l f . dev i c e )
y hat = model . forward (x , hor i zon token )
for h in hor i zon token . unique ( ) . f l a t t e n ( ) :

idx = ( hor i zon token == h ) . f l a t t e n ( )
met r i c s = c a l c u l a t e e r r o r r unn i n g ( y hat [ idx ] , y [ idx ] )
key = int (h . item ( ) )
i f key in r unn i ng e r r o r ho r i z on s :

r unn i ng e r r o r ho r i z on s [ key ] = runn ing e r r o r ho r i z on s [ key ] + metr i c s
else :

r unn i ng e r r o r ho r i z on s [ key ] = metr i c s
i f key in runn ing count hor i zons :

runn ing count hor i zons [ key ] = runn ing count hor i zons [ key ] + y [ idx ] . shape [ 0 ]
else :

runn ing count hor i zons [ key ] = y [ idx ] . shape [ 0 ]

for key in r unn i ng e r r o r ho r i z on s :
r unn i ng e r r o r ho r i z on s [ key ] = {

”MAE” : ( r unn i ng e r r o r ho r i z on s [ key ] [ 0 ] / runn ing count hor i zons [ key ] ) . item ( ) ,
”RMSE” : ( r unn i ng e r r o r ho r i z on s [ key ] [ 1 ] / runn ing count hor i zons [ key ] ) . s q r t ( ) . item ( ) ,
”MAPE” : (100∗ r unn i ng e r r o r ho r i z on s [ key ] [ 2 ] / runn ing count hor i zons [ key ] ) . item ( ) ,
”SMAPE” : (200∗ r unn i ng e r r o r ho r i z on s [ key ] [ 3 ] / runn ing count hor i zons [ key ] ) . item ( )

}
return r unn i ng e r r o r ho r i z on s
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