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Abstract

Reservoir Computing (RC) is part of a forced paradigm shift as traditional com-
puting approaches arrive at the limits of physics with problems like the slowing
of Moore’s law and the power-wall. The unconventional computing framework,
RC, exploits the dynamics present in natural systems, dubbed reservoirs, exempli-
fied by the rippling surface of a bucket of water. Since many natural systems can
be considered reservoirs, RC also provides a systematic way to study emergence,
an intangible phenomena in nature. Furthermore, RC offers many advantages for
computing such as low energy consumption in a system that scales well.

However, there is a need for metrics to gauge the potential of reservoirs, so
that they can be selected or designed for a computational purpose. This thesis
will attempt to measure the Echo State Property (ESP), which is analogous to
short-term working memory; the amount of information temporarily present in
the reservoir system over time. The end-goal is to quantify this property in units
of bits by a metric developed in foundational work to the thesis, called the Echo
State Buffer (ESB) [1].

Recalling that RC can be a number of natural systems, the reservoir of choice
is an array of nano-magnets. The magnets are arranged on a flat grid, so that their
north-south poles are aligned with this plane. An example arrangement is a chess-
board, with each magnet glued to the center of each square in various directions.
The magnets are unusual in that their poles can switch without physical move-
ment, so the magnets poles reconfigure to avoid north-north, south-south clashes
to the best of their ability. Note the parallel with a water surface that is settling.
Having reduced clashes, the system enters one of many possible semi-stable steady
states, a natural physical phenomenon. By perturbing the system further, say by
flipping a single magnet, the system recommences its search for a stable configur-
ation. With other reservoirs, like a bucket of water, it is hard to pause and analyse
the reservoir response between perturbations as the system races towards a calm
surface. The magnet poles however settle in various configurations and stay that
way, without external stimulus. The reservoir is therefore ideal for applications
like intermittent computing, where interruptions are expected during computa-
tion.

At present, interacting and measuring the physical magnet system is time-
consuming, so the Spin Ice (SI) material will be simulated as an Artificial Spin
Ice (ASI) with software that captures the physics of the interactions between the
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magnets in the array. Simulations are relatively much faster to work with, but
somewhat limiting. Therefore, any given ASI is converted to a graph as a surrogate
model. The graph is a surrogate model, as it is a more succinct representation of
the steady states and leads to a more scalable experimental setup. Furthermore
the graph representation naturally allows for a discussion which borrows tools
and ideas from graph theory.

The first part of the thesis will focus on setting up a practical RC system with
the magnet reservoir with a non-linear function as a benchmark. With a more
theoretical focus, the second part will propose metrics for measuring the ESP.
The metrics are also evaluated by predicting the reservoir’s success on a practical
control system problem; balancing n-inverted pendulum on a cart, referred to as
the balancing benchmark/problem.

On the non-linear benchmark, several RC architectures where developed, with
the most accurate model achieving up to 67% accuracy on a challenging non-
linear dataset. The ESB metric could not reliably predict success or failure on the
balancing benchmark, but this was most likely due to a lack of experiment con-
trol. High accuracy’s were also achieved in the balancing benchmark, with up to
two balancing pendulums. Two pendulums was an insufficient amount of data-
points for nuanced comparison, but demonstrates potential for further develop-
ment. Aside from the benchmark performances, a number of tools and approaches
were developed that are relevant for further research. L.e., a promising method for
analyzing reservoirs as graphs was developed. Furthermore, insight was made as
to how a RC could be understood as a classifier, and how the RC system produces
its results.



Abstract (Norwegian)

RC er ein del av eit tvunge paradigmeskifte nar tradisjonelle datatilneermingar nar
fysikkens grenser med problem som nedbremsinga av Moores lov og kraftmuren.
Det ukonvensjonelle datahandsamingsrammeverktgyet, RC, utnyttar dynamikken
som finst i naturlege system, kalla reservoar, eksemplifisert ved krusningar pa
overflata i ei bgtte med vatn. Sidan ein kan sjd pa mange naturlege system som
reservoar, kan ein ogsa nytte RC for & systematisk studere emergens, eit uhand-
gripeleg fenomen i naturen. Vidare tilbyr RC mange fordelar for databehandling,
som til dgmes 1agt energibruk i eit system som lett kan skalerast.

Det er likevel eit behov for metrikkar som maéler potensialet til reservoar slik
at dei kan velgast eller utformast for eit berekningsferemal. Denne oppgave gjer
eit forspk pa a male ESP, tilsvarande arbeidsminne. Det kan ogsé skildrast som
mengda informasjon midlertidig tilstades i reservoarsystemet over ei kortare peri-
ode. Sluttmalet er & kvatifisere denne eigenskapen i biteiningar ved hjelp av ein
metrikk utvikla i forarbeidet til oppgéva, ESB [1].

Som nemnd kan RC gjere nytte av ei rekke naturlege system. I dette tilfellet er
reservoaret ei samling av nanomagnetar. Magnetane er ordna i eit flatt rutenett,
slik at nord-ser-polane er pa linje med gitt plan. Eit deme pa mogleg samanset-
ting av plasseing er eit sjakkbreitt, der kvar magnet er plassert i midten av kvar
rute med polane peikande i forskjellige retningar. Magnetane er atypiske, pa den
maten at polane kan byte plass utan fysiske rgrsler i magnetane. Dette fgrer til at
systemet kan unnga nord-nord og sgr-sgr samanstgyt etter beste evne. Her kan ein
sja likheitar med ei uroleg overflate av vatn som er i ferd med & roe seg. Etter 4 ha
redusert samanstgyt, gar systemet inn i ein av mange moglege halv-stabile steady
states, eit naturleg fysisk fenomen. Ved & forstyrre systemet enno meir, til demes
ved 4 snu ein enkelt magnet, byrjar systemet a sgke etter ein ny steady state kon-
figurasjon pa nytt. Med andre reservoar, som ei bgtte med vatn, er det vanskeleg &
sette systemet pa pause for a analysere reservoarresponsen mellom forstyrringane.
Magnetpolane finn dermed ein steady state, og blir verande i den tilstanden utan
ekstern stimulans. Reservoaret er difor ideelt for bruk som til dgmes intermittent
computing, der forstyrringar er forventa under berekning.

No er samhandling og maling av det fysiske magnetsystemet tidkrevjande,
s& SI-materialet vil verte simulert som eit ASI med programvare som fangar opp
fysikken til interaksjonane mellom magnetane. Simuleringar er mykje raskare &
jobbe med, relativt sett, men noko avgrensande. Difor vert ein kvar gitt ASI kon-
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vertert til ein graf som ein surrogatmodell. Grafen er ein surrogatmodell, sidan
har er ein meir kortfatta representasjon av stabile tilstandar og ferer til eit meir
skalerbart eksperimentelt oppsett. Dessutan opnar grafrepresentasjonen natur-
legvis for ein diskusjon som laner verktgy og idéar fra grafteori.

Fyrste del av oppgava til fokusere pa a setje opp eit praktisk RC system med
magnetreservoaret, med ein ikkje-linezer funksjon som referanse. Med eit meir
teoretisk fokus, vil den andre delen foresla metrikkar for 8 méle ESP. Berekningane
vert ogsa evaluert ved & fgreseie suksessen til reservoaret pa eit praktisk kontroll-
systemproblem; balanserande n-invertert pendel pa ei vogn, referert til som bal-
anseringsreferansa/problemet.

P4 den ikkje linezre referansa vart det utvikla fleire RC-arkitekturar, der den
mest ngyaktige modellen nadde opp til 67% ngyaktigheit pa eit utfordrande ikkje-
linezert datasett. ESB-berekninga kunne ikkje fgreseie suksess eller fiasko for bal-
anseringsreferansa pa ein palitelig méte, men dette var mest truleg grunna mangel
pa eksperimentkontroll. Hog ngyaktigheit vart ogsa oppnadd i balansereferansa,
med opp til to balanseringspendlar. To pendlar gav ei utilstrekkeleg mengd data-
punkt for nyansert samanlikning, men viser potensial for vidare utvikling. Sett
vekk ifra referanseresultata, vart det utvikla ei rekke verktgy og tilneermingar som
er relevante for vidare forsking. Det vil seie at det vart utvikla ei lovande metode
for & analysere reservoar som garfar. Vidare vart det oppnédd innsikt i korleis ein
RC kan verte forstatt som ein klassifikator, og korleis RC-systemet produserer sine
resultat.

- oversatt av Elise Skeide
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Chapter 1

Introduction

1.1 Disclaimer

This work is a continuation of a master’s project by the same author which can be
found in appendix C. Thus, there may be instances where portions of the thesis
recycle ideas, figures, or text from previous work. These instances will be marked
by a sentence like this one referring to the previous work and a citation [ 1]. Most of
the figures were originally made by the author, but some figures were manipulated
images from the Flatspin simulation library [2]. The textual content was compared
on www.prepostseo.com via their free online plagiarism tool to mitigate identical
text instances.

1.2 Reservoir Computing

Having been independently discovered in various fields, this unconventional com-
puting framework has taken on various pseudonyms, but has since the early 2000s
been dubbed Reservoir Computing (RC) [3]. Since a reservoir in RC is merely a
dynamic system, the theoretical framework presents an opportunity to study the
phenomena of emergence in natural systems. The idea is simple: the sum of a sys-
tem’s parts being greater than their individual worth. The theoretical framework
is quite flexible and shares many properties with systems in biology and physics.
E.g. a slime mould manages to solve mazes as a collective entity without possess-
ing anything remotely resembling a brain [4]. The intelligent behaviour seems to
emerge from the unicellular organism as a whole. This is in stark contrast to the
modular recipe for computation in classical computers, as described by the Von
Neuman architecture [5].

The reservoir in RC is exemplified in the material computing subfield, which
leverages the natural properties of materials for computation. As indicated by the
name, a literal bucket of water can be used as a material reservoir. When this
reservoir is perturbed, water waves arise on its surface, and can be interpreted as
a form of computation [6]. Identifying the inputs and outputs in the RC system:


https://www.prepostseo.com/plagiarism-comparison-search

2 Christopher M. Vibe: Practical RC & ESP Metrics

The perturbations represent a series of inputs exciting the water surface. Hence, a
mapping has occurred translating a low dimensional input to a high dimensional
water wave representation. The reservoir is now a representation of the inputs,
distorted and mixed in various ways. The next step is a readout layer applied to
the reservoir, which involves machine learning to recover information or extract
added meaning from the new representation.

RC is a subfield to Recurrent Neural Networks (RNNs), and has been use-
ful in solving various problems from learning melodies in Echo State Network
(ESN) [7] to solving differential equations [8]. However, applying machine learn-
ing techniques such as back-propagation to RNNs is notoriously difficult due to
their characterizing feedback property, where inputs can mix with previous out-
puts like feedback in a microphone near its speaker. The way RC gets around this
limitation is to outsource the computational strain to its reservoir, a natural dy-
namical process with inherent computational power. RC can offer solutions with
desirable characteristics found in biological evolution, such as low energy, paral-
lelism, or fault tolerance [9]. The classical RC model can be described as a three
step procedure as illustrated in figure 1.1.

Input Output
A )

\

® OO0
oY
~—0<—=OWVOD

Figure 1.1: The classical RC model: input layer (left), reservoir (middle), and out-
put layer (right). Note that the input has been mapped to a higher dimensional
representation, artistically shown by the mixing of prime colours, resulting in a
rich palette in the output layer. The reservoir is flexible; in this case, the inputs
are spatially multiplexed with three input nodes, but it can be also be temporally
multiplexed to a sequence of vectors, for example by feedback effectively con-
necting the output to the input. The output nodes are part of the readout layer,
and typically consist of a single linear machine learning layer. This figure was
directly taken from previous work [1].

Extreme Machine Learning (EML) [10] can be used as a way to understand RC
from a machine learning perspective. In machine learning, the idea is to copy the
connection strength of a biological neuron, as found in brains. Akin to real brains,
the neuron strength is emulated by a weight parameter which scale signals in
the systems as to favour desirable outputs. As opposed to learning an optimal
value for each weight, EML sets most of the weights to a random value. This is
because it takes great resources to learn satisfactory weight values through the
learning mechanism known as back-propagation. Instead, the machine learning
techniques are dedicated to the final layers in the neural net, reducing the amount
of trainable weights. RC differs from EML in that the former in arranged so that
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feedback connections are present. L.e., a reservoir’s response is a product of its
current and last state, just like in the aformentioned microphone example. EML
acts as if the input enters a pipe and exits on the other side without interacting
with the entry-point of the pipe; a feed-forward pipeline.

The randomly set weights in EML are surprisingly useful. Likewise, RC exploits
subtle properties in physical systems. Research involving an Field Programmable
Gate Array (FPGA), a massive programmable circuit, illustrates this well by Thom-
son [11]. The FPGAs were programmed with evolutionary algorithms to evolve
circuits that solve a given task. To the researcher’ surprise, he found that the FP-
GAs had been configured in non-sensical circuits, but that they performed well.
Adding to the confusion, applying a successful solution to other FPGAs, by means
of identical configuration, gave very poor results. The RC system had taken ad-
vantage of the underlying analog behaviours that are typically ignored during cir-
cuit analysis, which was tailored to the individual hardware of each FPGA. Thus,
the takeaway in many physical dynamical systems it is likely that there exists in-
herent useful computation. With some manipulation of the system the useful parts
can be synthesized.

1.3 Introduction Of The Chosen Reservoir

The chosen reservoir is an array of nano-magnets which belongs to a group of
materials called Spin Ice (SI). The SI will be simulated with simulation software
named Flatspin, and is therefore aptly named Artificial Spin Ice (ASI), a virtual
material used as a reservoir. Both SI, and ASI are further detailed in section 2.

The ASI reservoir has been chosen for several reasons, the most important
being that it is relatively easy to maintain experiment control, and saves time from
not having to interact with a physical setup. Furthermore, the dynamic system
state can be easily frozen in time, as opposed to a bucket of water, facilitating
analysis. Most practically, the ASI simulation allows for a deep dive into the topic
with minimal barriers to entry from a physical setup. Focusing on the properties
of SI, the reservoir seems to be a promising candidate for RC showing signs of
possessing the qualities discussed in section 1.4.

The reservoir simulations will be used to create useful graph abstractions of
the system. The graphs are made by exhaustively exploring the reservoir states
with a depth first search algorithm, and is thus a compressed version of all possible
combinations of inputs and steady states. The new representation conveniently
unlocks tools from graph theory in the analysis.

1.4 Identifying a Good Reservoir

Certain properties have been identified as desirable for a reservoir to be suitable
for computation. The reservoir must have numerous components, with non-linear,
local interactions, resulting in a highly dynamic response when perturbed. The
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response may be chaotic, but should not be random. Additionally, the system must
have a fading memory property, meaning the system must forget previous inputs
over time. This last idea was introduced as the Echo State Property (ESP) in the
ESN [7].

During the foundational work phase of this thesis [1], the idea was to explore
ways to measure the ESP. The approach was a direct extension of efforts by Jensen
et al. to uncover computational properties through two metrics: kernel quality and
generality [12]. Kernel quality is a measure of a reservoir’s ability to distinguish
temporal input, quantified by the rank of nxm matrix. The matrix is organized
so that the n rows represent the state of each of the reservoir’s magnets spins,
after perturbation from m unique input sequences. If kernel quality is high, then
different inputs should map to unique states. On the other hand, generality is a
measure of the reservoir’s sensitivity to similar inputs. The method for generality
is identical to kernel quality, except for the inputs, being sequences that are sim-
ilar instead of unique. A good reservoir is then identified by high kernel quality
and low generality. A high-scoring reservoir would then be capable of many clas-
sification categories simultaneously keeping similar inputs in the same category.
The metrics are a good way to evaluate the potential of a reservoir, but the ESP
remains difficult to quantify directly.

The goal of this thesis is to attempt the quantification of the ESP in the chosen
reservoir. This is a direct continuation from a previous exploration on the topic
where the concept of the Echo State Buffer (ESB) was introduced as a proposed
metrics for measuring the ESP [1]. Recalling that the ESP is the retention of tem-
porary information in a reservoir, the ESB attempts to quantify this property in
bits.

The following is a metaphor aimed at providing more intuition on the ESP,
as it is more fleeting than permanent storage memory. If you were to stand in an
empty church and clap your hands once, a reverberating echo would come from
the walls. If you were to introduce a pattern of clapping for a minute, then how
long of a clapping history could the echo’s temporarily store if it suddenly ceased?
This is the ESP, roughly measured by the claps you can count, from the moment
you stop the clapping pattern until the echos fade to silence.

As the sound waves reach your ears, they would have travelled various dis-
tances, despite coming from the same temporal origin at the moment of the clap.
Furthermore, the sounds come back distorted, with some being filtered of high
frequencies. The clap in this scenario can be thought of as an input to a RC sys-
tem, and the computation is a combination of the inputs experiencing distortions,
filters, and mixing. Since the ESP dictates how many claps are remembered at
a given time, it also determines how much input mixing is possible. Therefore,
the ESP acts like a form of working memory, and is fundamentally important in
identifying a good reservoir for useful computation. From a more academic per-
spective, the ESP should be tightly related to the upper limit of instantaneous
space complexity an algorithm can require of a given RC system.



Chapter 1: Introduction 5

1.5 Motivation for Metrics on the ESP

The thesis has two parts, a practical and theoretical chapter. Although the practical
chapter is the largest, the experiments conducted have the end goal of developing
metrics for the ESP. This is because the computational potential of a RC system
greatly relies on the ESP. Furthermore, any practical implementation could ar-
guably be a success or failure purely due to seemingly arbitrary design choices,
making it difficult to compare reservoirs. However, by developing metrics for the
ESP, it is possible to decouple the quality of a reservoir for a given task with any
other design choices that might come into play. Note that an intuition for the ESP
has been established, but there is no known baseline to compare to. Therefore, the
approach is to validate the ESB by its ability to predict performance on a bench-
mark where the ESP is essential for success.

Performance will be compared to simple graph properties such as nodes, edges,
cycles, as well as the ESB. Jump to figure 3.3 for an example of a graph consisting
of nodes representing states, and edges representing transitions. For the graph
related metrics, the method can be summarized by converting the reservoirs to
graphs, and borrowing analysis tools from graph theory. And for the ESB metric,
the method can be summarized as probing the reservoirs with repeated input se-
quences with special properties, and looking for patterns in the response. The ESB
metric measures how many times a sequence of information can be repeated as
input to a reservoir before the reservoir’s state response starts repeating as well. It
is argued that when the reservoir’s transitions start predictably repeating, a point
has been marked that indicates the system’s memory has been reset. Upon a re-
peated input, if the system state starts from a point it has already started from
sometime in the past, then it is as if the system has forgotten that this particu-
lar state has already been visited. The echo state property would influence how
long the state transition history could be in such a scenario as an outcome of fad-
ing memory. The ESB and reservoir to graph conversions are further explained in
sections 7.2 and 3.2, respectively.

The research is foundational, so priority is not primarily to produce a product.
Looking ahead however, the chosen reservoir should be able to perform with min-
imal energy expenditure. The reservoir is also a good candidate for intermittent
computing, due to an inherent property of SI, where the system state is frozen
in time without a need for external maintenance. With a broader outlook, the re-
search may aid in understanding many natural systems like the brain, as many of
them can easily be considered reservoirs.






Chapter 2

Background

2.1 Unconventional Computing

Beginning with conventional computing, the personal computer is an example of
top-down design with greatly engineered precision. Each component of the com-
puter is highly modular, with well-defined scope and function. On the other hand,
RC is an example of unconventional computing. The approach is bottom up, and
tries to exploit the inherit intelligence in a system. As mentioned in section 1.4, a
good reservoir has numerous components. Typically, each component is relatively
simple in such systems, and zooming in on a couple of them, one would think
the system would not have any potential of intelligent computation. The idea is
that intelligence emerges from the dynamic response of these components; the
intelligence of the system is greater than the contribution of each component in
isolation. This is something typically observed in nature, but somehow the mech-
anisms for how these systems become intelligent often elude scientists. Hopefully,
RC can be a more successful way to uncovering some of these mechanisms, with
fewer preconceptions as to how intelligence should look like.

2.2 Spin Ice

Before further delving into RC, this section will allude to the reservoir used in this
thesis. The reservoir is an array of magnets that is part of a group of materials
named SI. Essentially, a SI material contains many small magnetic particles that
are slightly loose. Specifically, the magnetic orientation of a particles north-south
poles may change in search of the configuration with the lowest potential energy.
This orientation is often referred to as the magnetic spin, and explains the first
letter in the acronym SI. With many such loose spins, the material can have many
possible unique configurations. Thus, by applying an external magnetic field to
such a reservoir, a complex response is formed, which can be regarded as a cal-
culation of sorts. This property is leveraged in RC and is elaborated on in section
2.3. The “I” in Sl is just a reference to water in the ice phase, one of the first places
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this molecular organization was observed [13].

The SI will be simulated with Flatspin, a GPU-accelerated simulation library in
python, developed by Jensen et al. [2]. As put in the documentation: "flatspin can
simulate realistic dynamics of millions of magnets within practical time frames."
Hence, the reservoir is virtual, an artificial Spin Ice (ASI). Flatspin and ASI will
be further discussed in section 2.3.

The SI reservoir is well represented both as a physically printed magnetic ar-
ray, or simulated in Flatspin as an ASI. Features such as spacing, magnet geometry,
and other properties can thus be engineered, and is henceforth referred to as the
geometry. Figure 2.1 showcases some examples of a magnetic ASI with different
geometries made with Flatspin. Note that the reservoirs discussed will be fre-
quently referred to by their size. E.g. in the both of the figure below, the size is
3x3, meaning the pattern is repeated over 3 rows and 3 columns. As such, the
description does not mean that there are 9 magnets in the array.
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(a) Square (b) Diamond Pinwheel

Figure 2.1: Standard geometries generated with tools from Flatspin and modified
from the cited: [2].

2.3 Spin Ice as a Reservoir

The scientific community has noticed SI for their special properties producing
phenomena such as emergence, quantum tunnelling, magnetic mono-poles, and
more [14]. Recently, in 2021, Giorgio Parisi was awarded the nobel prize in physics
from his study of spin glass, a close cousin to SI.

It may come as a surprise that all known materials have particles with mag-
netic poles. On a macro scale, this may not be intuitive, as magnetic properties
often cancel out. The cancellation occurs depending on if the internal orienta-
tion of a substance’s magnetic particles or spins. In a fridge magnet, the particle
spins are aligned on a micro scale, but they can also cancel out, like in a potato.
In SI materials, the spin orientations settle in semi-stable configurations. This is
because the magnetic particles are frustrated, meaning each magnetic particle
with a north and south pole wish to avoid north-north south-south clashes. This is
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simply because magnet poles with the same polarity repel each other. The concept
of frustration is also graphically explained in figure 2.2.

In natural dynamic systems, there is an ever present search for the lowest
energy level. The idea can be compared to a water surface that is settling. This
also holds true in SI, however, as the particles attempt to reduce frustration, there
are many ways for the magnetic particles to arrange themselves. This is because
physical circumstances in the substance partially limit the particles in their re-
arrangement. The substance is considered semi-stable because the spins of a SI
can be coaxed into various stable low energy states by external influences. Fig-
ure 2.3 illustrates two such configurations. Note how flipping the topmost middle
magnet leads to the same amount of overall frustration in the system, allowing for
many stable configurations. Flipping this top-magnet is unfavourable either way,
as flipping polarity costs energy. I.e. the system is not stuck between states, but
settles for one of them with indifference. Figure 2.1 shows examples of designed
geometries that can be explored to see if they also possess this type of behaviour.
In fact, some of these geometries have been manufactured, with figure 2.4 illus-
trating a real SI based on nanomagnets.

(a) Low frustration (b) High frustration

Figure 2.2: Two SI substrates exhibiting low and high frustration (left to right).
In this simplified system, the physical circumstances allow the magnetic particles
poles to flip, so north and south switch position, but restrict all other degrees
of freedom. The number of north-north or south-south clashes in the substrates
particles dictate both frustration and stability. Note that the high frustration case
would need an external force to remain in this state or it would quickly transition
to the low frustration state.
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(a) Configuration 1 (b) Configuration 2

Figure 2.3: Two of many semi-stable SI configurations with the same minimal
potential energy as well as frustration. In this simplified system, the physical cir-
cumstances allow the magnetic particles poles to flip, so north and south switch
position, but restrict all other degrees of freedom. Note that flipping the topmost
middle magnet in a) leads to b), but that the number of north-north south-south
clashes remains the same.

Figure 2.4: A physical reservoir: SI as a magnet array in a diamond pinwheel
configuration. Courtesy of the SOCRATES project at Norwegian University of Sci-
ence and Technology (NTNU). The black circle is a zoomed in area of the array,
revealing individual magnets as white rectangles at the nanoscale. This figure was
directly taken from previous work [1].
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Figure 2.5: Physical reservoir readout of a physical SI can be achieved with PEEM,
a photo-emission electron microscopy method. Courtesy of the SOCRATES project
at NTNU.
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Chapter 3

Method - Practical RC

This method chapter has hidden some numerical experiment parameters for clar-
ity. See appendix A.1 for parameters pertaining to the ASI models. See appendix
A.2 for parameters associated with section 3.3.

3.1 Simulating Spin Ice with Flatspin

This research will employ a virtual reservoir, a simulated 2D nanomagnet array,
dubbed ASI. The simulations will be carried out with the Flatspin simulator [2].
Jensen et al. [12], has previously examined this virtual reservoir with Flatspin for
properties needed for RC, demonstrating that they can be found after some tun-
ing. Tuning in this context is a general term including parameters such as magnet
spacing, magnet geometry, geometrical magnet arrangement, and more. The ex-
periment parameters were tuned identically to this preliminary exploration of RC
in ASIL.

This research borrows Jensen’s approach, using binary strings as input, which
in turn translates to magnetic field perturbations on the reservoir. The reservoir
model represents information based on concepts from mechanical computing [15]
with 1s and Os represented by magnet spins. The chosen reservoir models are
designed so that they are frustrated. As discussed in section 2.3, this is desirable
so that the systems behave dynamically as they attempt to reduce frustration.
See figure 3.1 for a rendering of a virtual ASI reservoirs employed. Note that the
figure features a diamond pinwheel geometry, as introduced in figure 2.1b. The
idun cluster at NTNU was used to convert reservoirs to graph by a depth first
search algorthim of the ASI reservoir [16].

3.2 A Reservoir as a Directed Graph
In RC, the impression of a given input or perturbation of a reservoir can be inter-

preted as traversing a directed graph. Each node would then represent a unique
2D matrix of spin states, and each edge a transition between these states for each

13
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Figure 3.1: A virtual reservoir: ASI with a 10x10 diamond pinwheel configura-
tion. Note that the small arrows define each magnet’s directional reference point
for their net magnetic spin. Their actual spin orientation is colourized based on
their North-East-South-West orientation. The small coloured arrows reveal re-
gions of frustration, as seen by the non-trivial colouring. The large black arrows
represent the global external magnetic field used to perturb the reservoir. This
figure was directly taken from previous work [1].

consecutive input. Such a graph is capable of a deterministic prediction of the
reservoirs state for all possible inputs and is exemplified by figure 3.3. Each node
in the graph is an array of spin states, as illustrated in figure 3.4. The graph repres-
entation is thus a more practical way to analyze the properties of the reservoir, and
can serve as a surrogate model of the ASI. Figure 3.2 shows the conversion from
the physical reservoir model to a directed graph. Larger directed graph examples
can be found in section A.5.

SI (physical) ASI (simulated) Graph (surrogate)

Figure 3.2: Reservoir conversion pipeline showing the relationship between fig-
ures 2.4, 3.1, and 3.3.

3.3 Experimental Setup

Recall from figure 1.1 that the classical RC model is quite flexible. A series of
architectures were devised to reveal how the RC system should be orchestrated.
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Figure 3.3: An ASI reservoir with a 11x11 diamond pinwheel configuration as
a directed graph. All possible unique spin states are nodes, with inputs as trans-
itional edges. See figure 3.4 for closeups of some node spin states. All Strongly
Connected Graph (SCG) sub-graphs are coloured by size and marked with a
double circle. The start node is also marked with a double circle.
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(a) Node "0" (b) Node "1" (c) Node "16"

Figure 3.4: Spin State representation of select nodes from figure 3.3. The magnet
spins are represented by black and white. Note that the inter-magnet spacing in
the pinwheel configuration is also white, thus the initial saturated state, node 0,
is just a white square. Compared to figure 3.1, there is less information, because
information about frustration between individual magnets is lost. On the other
hand, it is easier to see emergent patterns in the state response.

To compare the models, a non-linear 2D target image was selected as a benchmark
challenge, illustrated in figure 3.6. The idea was to perform a qualitative and
quantitative analysis of the model’s ability to predict the target image, revealing
insight into a good RC design. The quantitative analysis was made with a simple
accuracy metric defined in section 3.3.1. The qualitative analysis was made by
comparing the target image with a model’s predicted image.

The machine learning optimizer AdamW [17] was chosen in an effort to keep
the setup the same for all experiments, as it is known to perform well without too
much fine tuning of hyper-parameters. Furthermore, high values were chosen for
batch size, epochs, to reduce the chance of unfair comparisons.

3.3.1 Defining Accuracy

Accuracy can be defined in many ways for a predictive model, even for a single
value regression task. This metric was kept as simple as possible by defining a
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successful prediction as accepting a 5% error from its target value. See listing 3.1

Code listing 3.1: Definition of accuracy

def calc accuracy(model, x, y, tolerance=.05):

rr

Returns the accuracy over m data samples with n features.

Parameters:
model (torch.nn.module): Predictive model
X (torch.tensor) : Data samples to be predicted [mxn]
y (torch.tensor) : Target values [m]
tolerance (float) : Error tolerance
Returns:

accuracy (float): The fractional accuracy.
predictions = model(x)
deltas = torch.abs(predictions - vy)
correct = torch.sum(deltas < tolerance).item()
m = len(y)
accuracy = correct / m
return accuracy

3.3.2 Defining a Non-linear Target

A non-linear 2D target image was chosen such that few values on the image could
be determined with only one of its parameters. Furthermore, as seen in figure
3.6, the image has many gradients which makes it easier to qualitatively assess
fine-grained feature potential. The three large columns makes it possible to assess
more coarse grained features.

f(x,y)=—cos((x —0.1)y)? — xsin(3x + y)10

Figure 3.5: The non-linear target function. Visualized in figure 3.6.

3.4 Architectural Layer Definitions

Note that the input and output layers are linear for all tested architectures. This is
to ensure that all non-linear computation can be attributed to the reservoir layer,
and not solved in either of the input or output layers. This is strict, and not needed
for practical application, but provides this research with more experiment control.
Section 3.5.1 also aims to gain further experiment control in this regard.

Below is a quick definition of terms used to describe the method. A pipeline,
is a series of sequential steps applied to something like a factory line. Input goes
in the pipe on one end, and the pipe produces and output on the other end. A
more general term expressing the same concept of a pipeline in networks, is feed-
forward network, where information flows one way. Entanglement refers to which
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Non-Linear function
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Figure 3.6: A non-linear target image. Defined by equation 3.5

input variables have informational presence in a given reservoir. Le. if a reservoir
is not entangled with a variable, then the value of the variable cannot be inferred
by the reservoir’s state alone. The term can also be used in the case of encoding,
if there is no entanglement, it means the input variables were encoded independ-
ently, which makes it easier to allocate variables to separate pipelines.

3.4.1 Input Layer and Encoding

The input layer accepts a set of variables represented by normalized floating point
numbers in the range [0, 1]. It subsequently converts each number to a string of
1’s and 0’s. E.g with two variables and an encoding scheme consisting of multiply-
ing by 10, rounding, then translating to binary: {0.1,0.5} — {0001,0101}. Note
that the example indirectly introduces multiplexing as a concept, and is useful for
understanding the input layer. See the glossary for a definition.

The input layer introduces a upper-bound on the prediction image resolution.
If the input variables can maximally express s states, then they can maximally
produce an image with s2 pixels. Therefore, it was beneficial to have a binary
encoding in the input layer, as this is the encoding with the most combinations.
However, practical efforts so far with a binary encoding did not work well. There
are many self-references in the graph-input bits which can easily be "lost" in the
reservoir, and may partly explain why the binary encoding was difficult. When
translating a binary number to decimal, it is crucial to correctly read the leftmost
bits, while the rightmost bits are not as important. On the opposite side of the
spectrum, a tally encoding was introduced based on these experiences, defined
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below.

Introducing a tally encoding remedies this issue because each bit has equal
value, i.e. all equal to one upon conversion to decimal, e.g., 000111 = 3. A weak-
ness was introduced however as the state may get repeated after an input, due
to self-referencing edges. This can be quickly verified by traversing a graph, such
as 3.3, with any imaginary binary string. In other words, one should avoid too
many consecutive 0’s or 1’s. To remedy this a fixed shuffling technique was in-
troduced, so that the input encoding had a better distribution of 0’s and 1’s, e.g.
000111 — 100101. Note that some attempts were made to compromise these two
encoding methods with a cross between tally and binary encoding called distrib-
uted encoding. To lower the scope of this thesis it can be found in appendix A.1,
but will not be further discussed. Recall that the input layer introduces a upper-
bound on the prediction image resolution. If there are b bits per input variable,
then note that the tally encoding can only express b states, while the binary en-
coding could express b? states. This means the prediction image resolutions must
be bxb, assuming there is no multiplexing, as considered in section 5.2.4.

Many encoding schemes were tested, but none were as stable as the tally en-
coding. This property was critical to get sensible results from the various archi-
tectures. To ensure there was influence from all variables in the encoding the
variables where first encoded separately and concatenated. Subsequently the res-
ulting bit string was shuffled, in a fixed manner, and interleaved before moving
on to the reservoir layer, discussed in section 3.4.2.

3.4.2 Reservoir Layer

The reservoir layer accepts a single binary input string and outputs a high-dimensional
binary state that potentially represents the input. The layer represents the reser-
voir by a graph, as discussed in section 3.2. Hence, the reservoir response can be
emulated by processing one input bit at a time in a graph traversal. After the tra-
versal, the reservoir layer returns an end-state describing all the magnets spins,
just like in figure 3.4.

3.4.3 Output Layer

The output layer is the only part of the RC system that uses machine learning and
is a dense single-layer readout of a reservoir state. The layers’ purpose is to extract
meaning from the reservoir state automatically.

The linear readout transformation can be summarized by equation 3.7. Each
magnet state spin was encoded as {—1, 1}, because if they were encoded as the
more intuitive {0, 1}, then there would be no effect from multiplication with the
learned weights when the spin state is 0.
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O(R,W)= R;-W;+B;,  Rie{~1,1}

Figure 3.7: A mathematical definition of the output layer: the scalar multiplic-
ation of each reservoir magnet spin with a weight followed by the addition of a
scalar bias term. Both the weight and the bias term are floating point scalars set
by machine learning. Note that the operation can intuitively be thought of as a dot
product, overlaying the spin state image with a weight image. This is somewhat
inaccurate however, as the bias term should be added before summation.

3.4.4 Pooling Layer

The pooling layer is used to reduce the high-dimension of the reservoir states.
Such a reduction is needed to allow architectural connections between several
reservoir layers, and can be seen as an encoding of a reservoir state, as opposed
to encoding a normal decimal input variable. Imagine a grid superimposed on the
2D reservoir state. A pooling layer would take the average of the reservoir state
values for each rectangle in the grid and return a smaller matrix of values. Ideally
the pooled result preserves what is encoded in the reservoir state representation.

Note that all non-linear transformations should be attributed to the reservoir
layer, therefore some care was taken when choosing a linear reduction technique.
Other types of pooling, such as the max pool, is not a linear transformation. The
average pool reduction however, is linear transformation, and is therefore a good
candidate.
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(a) Before pooling (b) After pooling

Figure 3.8: A pooling layer example taken from a publication by Jensen et al.
[12], originally referred to as squinting. The figure was generated with tools from
Flatspin. Note that the numerical representation going from figure 3.8a to 3.8b is
a 2D matrix with reduced dimensions. There are many types of pooling in machine
learning, for this layer it is a simple average pool, with a simple grid just like in
the figures.
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3.4.5 Walk-through of a Basic RC Design

The following is a walk-through description of what happens in the three RC layers
in figure 1.1 for the simplest feed-forward design. In the input layer analog inputs
are scaled from O to 1, translated to binary strings, and finally, converted to a
sequence of global magnetic field perturbations.

In the the reservoir layer, the first magnetic field perturbation will force the
reservoir to find a new equilibrium with regard to the magnetic field. This may
cause a cascade of reservoir magnets to flip to adjust their state configuration
accordingly. The cascade effect is due to a tug of war of competing local magnets
simultaneously trying to reach the lowest energy state possible. Once a steady
state has been reached, depending on the encoding, the magnetic field will be
changed again, and the cascading flipping mechanism repeats.

Finally, with a single readout layer, the magnetic spins of the reservoir are read
as a binary -1 or 1 depending on their local reference direction. Each binary value
is then multiplied by its own weight parameter set by machine learning. Typically
the final layer is the sum of these multiplications, but this may be adapted to the
problem domain.

3.5 RC architectures

3.5.1 Vanilla Architecture

The term vanilla is an established term for the most simple version of something,
referencing an order at an ice cream store. The vanilla architecture is almost
identical to the description made in section 3.4.5. This was the starting point
and most basic configuration with regard to figure 1.1. The basic pipeline was
employed once for each of the variables, resulting in a parallel setup with no en-
tanglement of the variables in any given reservoir.

The architecture is illustrated in figure 3.9. Starting from the left, the archi-
tecture accepts two variables as input, each in the range of [0, 1]. The variables
are passed to the input layer, where the variables are encoded as a string of bits.
Next, these same bits are passed to the reservoir layer, where the input bits emu-
late a series of global magnetic fields perturbing a magnet array. Remember that
the dynamics behind the ASI has been replaced by a surrogate model in the form
of a graph. This means the reservoir layer is merely a graph traversal, returning
a set of spin states. Finally, a prediction is made in the output layer by perform-
ing a linear transformation of the spin states with trained weights set by machine
learning.

The purpose of this design was to investigate if a non-linear problem could
be solved without entangling information, i.e., the upper pipeline reservoir has
information about the first variable, but no information from the second variable,
and vice versa. This variable is marked in figure 3.9 by the superscript as either 0
or 1. If there is an entanglement, then this means non-linear properties can be in-
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troduced when the various output layers are summed to the final prediction value.
This would be problematic for experiment control, because it becomes difficult to
know if the non-linear properties of the system are attributed to the reservoir.

start —>‘—>

Figure 3.9: The Vanilla architecture. The superscript denotes the variable, while
the subscript denotes the encoding. Settings are identical in the input, reservoir,
and output layers, but the two variables are handled in parallel pipelines.

3.5.2 Unit Architecture

The unit architecture is almost identical to the vanilla architecture in section 3.5.1.
The main difference is that there is now only a single pipeline with information
from both input variables in one reservoir. Note that the vanilla architecture in
figure 3.9 has superscripts that denote information from both variable O and 1 are
dedicated to each their pipeline. In the unit architecture, however, the superscript
indicates that information from both variables is present in all the layers.

The purpose of this design was to see if a non-linear problem could be learned
when mixing the information from the variables. The architecture represents a
starting point to see how a reservoir may handle multiple variables.
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Figure 3.10: The Unit architecture. The superscript denotes the variable, while
the subscript denotes the encoding. The input layer encodes both variables and
merges them by interleaving before moving on to the reservoir layer.

3.5.3 Ensemble Architecture

Preliminary research for this thesis included investigating how others conduct RC.
A technique used by Appeltant et al. [18] inspired the following architecture en-
semble architecture. The researchers applied a random mask to their input, a tech-
nique also known as applying jitter. This means an input is used as input with some
redundancy and variation. E.g. if a single variable inputis 0.5 — [0.505, 0.498,0.509].
Theoretically, these values with jitter will all traverse the reservoir graph with an
almost identical traversal in the reservoir layer. Hence, many of them should be
neighbours. This should give the readout layer more options when considering
how to extract meaning from the reservoir state. As an extreme counter example,
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if all the inputs map to the same neighbourhood in the graph, it is difficult to
extract meaning.

A similar effect was achieved by making several parallel pipelines, but with
different encoding. In figure 3.10, the subscript indicates that the upper and lower
and pipelines have a different encoding. Note that the information from both input
variables is in both pipelines, as indicated by the identical superscripts.

Figure 3.11: The Ensemble architecture. The superscript denotes the variable,
while the subscript denotes the encoding. The input layer encodes both variables
and merges them by interleaving before moving on to the reservoir layer. Note
that the raw input is identical in both pipelines, but the encoding layers are dif-
ferent so that we get an ensemble of interpretations.

3.5.4 Pool Architecture

In the pool architecture, the first variable is confined to the top pipeline in figure
3.12, and spills over to the second pipeline through a pooling layer. As explained in
section 3.4.4, the reservoir state is represented by fewer numbers, and converted
to a string of 0’s and 1’s. This string is then fed into the reservoir layer in the
bottom pipeline together with the string representing the second variable. Thus,
the second pipeline has information from both variables starting from the reservoir
layer.

The pooling layer may seem awkwardly put together, seeing as the input in the
top pipeline is converted to a reservoir state, only to be pooled and fed as input
again in the bottom pipeline. Actually, the pool architecture is similar to the vanilla
diagram in figure 3.9. The variables start in separate pipelines, but are connected
by a pooling layer. The idea is to see if information from the first variable can be
transmitted to the lower pipeline, even after the reservoir and pooling layers. If
such an information transfer is possible, then this proves the pooling mechanism
can preserve information.

Practically, a limited amount of bits are available to encode the input. When
an input goes from being a string of bits to a reservoir state, the information is
represented with significantly more numbers. This makes it difficult to make archi-
tectural connections such as the one attempted in this architecture, with pooling
as a way to bridge the gap. If this architecture is successful, architectures as seen
in figure 3.13, should be possible.
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Figure 3.12: The pool architecture. The superscript denotes the variable, while
the subscript denotes the encoding. The first variable is handled in the upper
pipeline, leading to a pooling layer. The lower pipeline then accepts both the
pooling layer and the second variable input layer. These two input streams are
merged by concatenation, so that the pooled layer perturbs the preceding reser-
voir before the input layer.

3.5.5 Feedback Architecture

The feedback architecture focuses on introducing feedback into the system, which
implies connecting the output layer back into the input layer. The technique is a
common in RC, and was also used in the research aforementioned in section 3.5.4
[18].

Introducing feedback is not trivial, as the input layer dimension is much smal-
ler than the output layer dimension. The input layer dimension cannot be in-
creased, as this implies more bits being fed to the reservoir layer, and the reser-
voir layer has a finite number of states. The output layer dimension is set by the
number of magnets in each reservoir state, and should be a large dimension in a
good reservoir, as discussed in section 1.4. One solution to this issue is by passing
the reservoir state to a pooling layer as detailed in section 3.4.4.

Note in figure 3.13 that the pooling and input layers show bits entering their
respective reservoirs with some ambiguity. This is because the bits from these
sources were combined in two ways to reduce the effective input length. The first
way was by concatenation, with input bits followed by pool bits in a ratio of 1/4,
respectively. This seemed to be a good setup for early experiments. The second
method was performing a logical AND operation between the pool layer bits and
input bits before being applying to the reservoir layer.
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start —> start —> start —>

Figure 3.13: The Feedback architecture. The superscript denotes the variable,
while the subscript denotes the encoding. The input layers are identical in that
they encode the same input, with both variables, and merges them by interleav-
ing. They differ in that they only select a portion of a B bit input stream, distribut-
ing B/n bits over n input nodes. Each pool, input, reservoir, output layers can be
considered a module, identified by their subscript. Information propagates across
the n modules via the pooling layers from left to right in a daisy-chained fashion.
Each module is then fed by concatenated input and pool layers, in that order.
Note that reservoir initialization is done on the rightmost module by ignoring the
pool layer from the left. This allows use to evaluate the rightmost pooling layer
which feeds the leftmost reservoir layer, and so on.



Chapter 4

Results - Practical RC

4.1 Architecture Performance on Non-linear Function

In this section, the various architectures from section 3.3 will be quantitatively ex-
amined, followed by a qualitative analysis. Each model had the task of predicting
an image generated from equation 3.5. The idea is to gauge how the various ar-
chitectures performed in terms of accuracy, resolution, and qualitative patterns in
each model’s predicted image. The reservoir size was 20x20 for this experiment,
the largest size considered. This choice was made with the assumption that the
largest reservoir will perform the best, so that we could also qualitatively draw
conclusions. The insight gained from this would then be transferred to the tuning
and architecture of smaller reservoir. See appendix A.2 for training parameters
associated with this section. The 20x20 reservoir can also be found in appendix
A5,

Note that the predictive images below all have the same high resolution as the
target image, and yet there is a clear pixilation. This is an artifact from the input
layer, which only allows each variable n unique states. The term resolution will
be referred to below, and can be thought of as the effective image resolution of a
predicted image, limited either by the model or the encoding.

4.1.1 Quantitative Comparison

It is difficult to compare qualitative impression. It is therefore better to use the
quantitative score as summarized in table 4.1 to recognize this architecture as the
most optimal. The quantitative results are summarized in table 4.1 and indicate
that the most successful architectures are Feedback with 67% accuracy followed
by Ensemble with 64% accuracy. This should be a somewhat fair comparison,
considering that all parameters are equal except their architecture. Note that the
resolution of the feedback architecture is also higher than the ensemble architec-
ture.

25
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Table 4.1: Architecture comparison summary. Encoding legend: T=Tally,

S=Shuffle, I=Interleave.

Resolution Encoded Bits Encoding

Architecture Accuracy Readouts

Vanilla .33 2 40x40
Unit .34 1 20x20
Ensemble .64 8 20x20
Pool .59 8 40x40
Feedback-concat .67 8 40x40
Feedback-and .54 8 120x120

80b
40b
320b
640b
80b
320b

TS
TSI
TSI
TS
TSI
TSI

4.1.2 Qualitative Comparison

The various architectures form a story of incremental improvement in designing
a model architecture. The Vanilla architecture shows how keeping variables in
separate reservoirs for a non-linear problem is problematic, as it forces the model
to converge on a solution that focuses on only variable, see figure 4.1.

Parameter 1

0.0 0.2

0.4
Parameter 0

Vanilla Architecture

0.6 0.8

Figure 4.1: Vanilla architecture prediction image relative to figure 3.6. The resol-
ution is 40x40 due to the input layer. Note that the model has attempted to focus
on the three vertical bars in the target image, but parameter 1 has no effect on
the prediction. A similar result was obtained when rotating the target image by
90 degrees; horizontal bars with no effect from parameter 0.

The Unit architecture amends this issue by entangling the variables before
entering a single reservoir, see figure 4.2.

The Ensemble architecture improves on the Unit architecture by adding more
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Unit Architecture
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Figure 4.2: Unit architecture prediction image relative to figure 3.6. The resolu-
tion is 20x20 due to the input layer. Note that the model is starting to learn the
two most prominent columns, as well as the dark regions on the bottom left and
top right. It seems a single output layer is not sufficient to learn the target image
accurately.

parallel readout layers, where each output layer interprets a state stemming from
a different encoding, see figure 4.3.

The Pool architecture merely tests if pooling can be applied, while still pre-
serving reservoir state information, see figure 4.4.

Finally, the Feedback architecture leverages feedback using the pooling mech-
anism from the Pool architecture to solve dimension issues that arise when con-
necting the input (small) and output layers (big), see figure 4.5. The idea with
feedback is to act as an extra memory of previous states.
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Ensemble Architecture

w

Parameter 1
[=]
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-15

0.0 0.2 0.4 0.6 0.8 1.0
Parameter 0

Figure 4.3: Ensemble architecture prediction image relative to figure 3.6. The
resolution is 20x20 due to the input layer. The model is now essentially identical
to the target image, but is suffering from a low resolution. The image proves
that an ensemble approach, introducing various encoding schemes, is effective
for improving performance.
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Pool Architecture
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Figure 4.4: Pool architecture prediction image relative to figure 3.6. The resolu-
tion is 40x40 due to the input layer. The purpose of this experiment was merely to
prove that pooling a reservoir will preserve information transfer, coincidentally it
performed quite well. See the architecture in figure 3.12 to see how pooling must
preserve information considering both parameter O and parameter 1 effect the
image. If pooling didn’t preserve information, then the predicted image would be
similar to figure 4.1. Since the pooled reservoir representation of parameter 0 is
entangled with the input layer of parameter 1 by a logical AND operation, the
architecture allows for more bits compared to concatenation.
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Feedback concat Architecture
1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0

Parameter 0

Parameter 1

(a) Feedback-concat architecture prediction image relative to figure
3.6. The resolution is 40x40 due to the input layer, a restriction set by
the concatenation of bits from the input and pool layers, which must

sum to 40b.

Feedback_and Architecture

1.0

Parameter 1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Parameter 0

(b) The figure is the same as above, but with 120x120 resolution. The
figure demonstrates that the resolution can be increased at the cost of
accuracy. This was done by replacing the concatenation step
mentioned above with a bit-wise AND operation, which in turn allows
for many more bits in the input layer.

Figure 4.5: Feedback architecture predictions images.
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Discussion - Practical RC

5.1 Deciding on a Model

The purpose of having a practical non-linear function in equation 3.5 as a bench-
mark was to find a model suitable for RC. The idea is that once a good model is
found, it can be used on another benchmark used for validating ESP metrics. The
result from the non-linear function benchmark was that the feedback-concat and
ensemble architectures had the highest accuracy. Despite this, the feedback-and
model was chosen, as it is able to handle much more bits in the input layer, which
translates to more bits per input variable. This will be important for the next part
of the thesis as the benchmark changes to the n-inverted pendulum balancing
problem, where the variables increase from 2 up to 8. Henceforth, the feedback-
and architecture will be loosely referred to as the feedback architecture.

5.2 The Cooperation of Output Layers

5.2.1 Output Layer Signal Analysis

For all explored architectures, the output layers are summed to calculate a model’s
single prediction value for each pair of inputs. In figure 5.1, the output layer val-
ues are tracked individually as they produce a prediction, shedding light on their
cooperation mechanism. This was done by cross-sections of the non-linear target
image in figure 3.5. Thus, the system is placed in a signal theory context, with the
output layers as signals. The sum of the output layer signals is equal to the model’s
prediction value, a phenomenon known as superposition in a signal context.

The following is a walk-through for interpreting the cross-sections in figure
5.1. The cross-sections are horizontal slices of the prediction image, keeping vari-
able 1 constant, and varying variable 0. The figure’s left column is the ensemble
architecture, and the right column is the feedback architecture. Choose one of
them and proceed. The cross-sections have been arranged analogously to looking
left-right and down-up, as if one were looking at a 2D prediction image. Thus,
the x-axis of each sub-figure corresponds to looking left-right. Similarly, looking
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down-up the y-axis of the prediction image is like navigating sub-figures vertically,
noting that variable 1 changes.

Next are the contents of each subgraph, in the same figure 5.1. Per graph, the
filled lines are signals tracking the values of the output layers before summation.
The output layers are labelled by id, after their position in their respective archi-
tectures in figures 3.11 and 3.13, respectively. The dashed line is the architecture
prediction value, equals the sum of the signals, or superposition.
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(a) Ensemble architecture

(b) Feedback architecture

Figure 5.1: Cross-sections of the ensemble and feedback prediction images relat-
ive to figures 4.3, and 4.5, respectively. See the walk-through in section 5.2.1 to
learn how to interpret cross-sections in this layout. The solid lines are coloured
by their layer position in the architecture, and represent the values of each layer
prior to summation. The dashed red line is the sum of the solid lines, which is the
output value of the models.
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In figure 5.1 there are three things to note: The square quality of the superpos-
ition signals are due to encoding restrictions discussed in section 3.4.1, previously
referred to as resolution. The signals are relatively straight, with a tendency to stay
roughly parallel. And lastly, between a models cross-sections, the signals seem to
maintain somewhat fixed vertical ordering, with small vertical shifts up and down.

From figure 5.1, it is clear that the superposition of the ensemble architecture
is more coarse than the feedback architecture. The square quality of the superposi-
tion signals is due to encoding restrictions, as discussed in section 3.4.1, previously
referred to as resolution. Note that both the ensemble and feedback architecture,
in the left and right columns respectively, are trying to predict the same target
image, hence the dashed red line is similar.

Interestingly, the signals are relatively straight, with a tendency to stay roughly
parallel, and are shifted up and down between the cross-sections. This indicates
that the cooperation mechanism strategy is to dedicate each signal to a limited
range. One potential benefit of a relatively straight signal is that is easier to reduce
overlap with other signals. This may reduce contention among signals, effectively
assigning each output layer with a generalized role. Note that it is easier to reuse
the signals for different combinations when they are not specialized.

In the brain, there are many inhibitory mechanisms in place to prevent the
excess firing of neurons. Without this, the brain would quickly malfunction with
phenomena such as epilepsy. There seems to be a similar interplay between bal-
ancing a positive and negative gain among the output signals. The signals seem
to be evenly distributed between [—1, 1], although their target is always in the
range of [0, 1]. The negative signals and positive signals balance each other out,
and in some cross-sections the signals, even seem to mirror each other over the
neutral output layer axis (y=0).

5.2.2 The Reservoir as a Classifier

This section will focus on understanding the reservoir as a classifier. The same
architectures from section 5.2.1 will be compared. The core idea of this analysis
is to get an idea of how a model’s input and reservoir layer classify inputs without
influence from the output layer. Thus, one can assess how much potential there
is for the RC system as a classifier even before the final categorization from the
readout layer.

The states in figure like 3.3 are labelled based on their discovered order during
the depth first search mapping process converting the ASI to a directed graph. A
single reservoir can represent 2™ different categories with m magnets, but in this
analysis, we limit the number of categories to 128. This is due to the limitations
in resolution from the input layer in section 3.4.1, making 128 categories a reas-
onable choice, as the models cannot express more categories than their resolution
listed in table 4.1. To get a more objective state labeling, the various state spin
configurations were categorized via four unsupervised categorization techniques.

A single technique was not chosen, because boolean data is not ideal for typ-
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ical dimension reduction techniques like Principle Component Analysis (PCA), or
k-means. Labeling is a common image processing technique for giving pixels an
id from O to n, where each id is a group of pixels in a picture. The method was
modified by renaming the groups by the size of each group, and then normalizing
by the largest group found in the range [0, 1]. Corex reduces the boolean data by
optimizing an information goal function [19]. Metric Component Analysis (MCA)
is ideal for boolean data, and attempts to make a 2D plot where similar data form
clusters, which can be categorized with k-means. The details of how the categoriz-
ation techniques work are not important. The takeaway is that four quite different
automatic categorization techniques were used to see if an objective classification
of spin states could be achieved. The approaches are listen in table 5.1.

Table 5.1: Categorization techniques

id approach color control

i) MCA — K-means normalized cluster id as a hsv color

ii) Labeling — PCA 4 principal components independently control RGBA
iii) Labeling — K-means normalized cluster id as a hsv color

iv) Corex normalized binary number as a hsv color

There might be unwanted artifacts from the various objective categorization
techniques categories, but there is a clear agreeance among them, except Corex,
which had a very limited number of categories. To restrict the scope of this dis-
cussion, the focus is on the label-k-means approach.

Figures 5.1 and A.2 are closely related. Each square in figure 5.2b represents
one of the output signals in the cross-sections. Note how making a horizontal
slice in a classification sub-figure is equivalent to tracking an output signal in the
cross-section’s sub-figure. By making a scatter plot of random inputs and observing
which objective states they get mapped to, one can reveal what the readout layer
has to interpret with machine learning, expressed as the output signals in figure
5.1.

Figure 5.2b maps inputs to objective categories. Choosing a subfigure is equi-
valent to one of an architecture’s output layers, while choosing a point on the 2D
plane is equivalent to selecting a combination of two of its input variables. Thus,
for each output layer, a set of state mappings are produced for a given input.
The mappings reveal that there are well-defined, rectangular concentrations of
states. The concentrations are likely due to the self-references in the graphs, caus-
ing similar input to categorize similarly. The tendency for rectangular shapes can
be explained by resolution limitations in the input layer, as explained in section
3.4.1.

In the same figure, a set of state mappings is then a set of colours for each of the
architecture output layers. E.g. if one sets x = y = 0.4, one would get a classifica-
tion from each reservoir layer: pink, yellow,orange, blue, red, purple,orange, green.
Hence, the readout can be viewed as a repeated low-pass filter, accumulating con-
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tributions from each reservoir layer. A set of mappings could then uniquely define
a given output by combining the best contributions selected via the output layers,
effectively exploiting a kind of decentralized classification. Note that order is not
relevant during readout going from a set of mappings to a single output. A need
for a collaboration mechanism is needed to avoid contention between the map-
pings, f.e., if two collaborating reservoirs have significant informational overlap,
it would quickly lead to a double counting. This example makes it seem intuitive
to orchestrate signals by an averaging of outputs, especially for the ensemble ar-
chitecture. However, as discussed in section 5.2.1, both ensemble and feedback
architectures seem to use a similar collaboration mechanisms.

The mapping was also projected on the ASI graph as seen in appendix A.4,
and also shows that neighbouring nodes/states tend to be classified the same.
Within the ensemble architecture each row is a different encoding, while each
column has an inverted definition of 1 and 0. This inversion seems to transpose
the mapped images in the corex mappings in the aforementioned appendix, and
more generally seems to be an effective way to force different state responses
based on encoding.
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(a) Ensemble architecture

(b) Feedback architecture

Figure 5.2: Input to category maps for the 8 reservoir layers in the Ensemble
and Feedback architectures. Each point is a random combination of the two in-
put variables, which together represent the normalized XY plane. The colouring
indicates the reservoir state as categorized by labeling -k-means approach. The
little opaque boxes in the top left corners are unrelated to the categories, and are
the ratio of all mapped states to all possible states, cumulatively increased as each
reservoir layer expresses unseen states. This is a measure of how exhaustively the
reservoirs explore their potential state space. Note how making a horizontal slice
in a sub-figure is equivalent to tracking the signal from one of the eight lines in

the cross-section sub-figures in figure 5.1.
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5.2.3 Performance in Relation to a Lookup Table

A quick definition: A simple example of a lookup table is a phone-book, where a
name can be looked up, and you get a number. The idea can be generalized to any
problem with this input-output format. In this discussion, the speed of lookup is
not relevant, but rather the size of such a table. How big would a look-up table
be to memorize all the RC systems input to output mappings?

The highest performing model, in terms of accuracy, uses the feedback-concat
architecture in 4.1 with 40x40 resolution. The model uses a 20x20 reservoir with
840 magnets that can configure into 1540 unique states. This means that the RC
model readout layer has around 840 linear nodes, each made up of a weight and a
bias. This translates to 840x2 learned parameters, rounded to 1600 for simplicity.
Theoretically, if each of these nodes were set to represent a combination of input
using two variables, then you could store a 40x40 image in the readout layers
nodes. If one were to repurpose the RC models readout layer as a lookup table,
it would probably perform better than the model itself, due to the sheer amount
of trainable wights in the output layer. Thus, assuming perfect accuracy, a model
should achieve at least a 40x40 resolution with a single readout layer, if the RC
model should be competitive against such a theoretical lookup table. Comparing
this result with the results from section 4, they are not performing well enough
to beat a repurposed version of their readout layer as a lookup-table, leaving the
reservoir and input layers redundant.

On a more optimistic note, a lookup table will grow exponentially as it contains
more variables. The lookup table in the example is only for two variables, but this
already scales to many entries, ie., a resolution of 100 requires a 100 = 10000
size lookup table to capture all combinations. The reservoir may have the ability
to effectively compress such a lookup table, thus getting a spacial complexity ad-
vantage over a lookup table. Another way to reduce the size of the output layer
is by pooling the reservoir layer before readout, an idea referred to as "squinting"
in earlier work [12].

5.2.4 Resolution as a Heuristic for Multiplexing

The pigeon hole principle is a simple but powerful logical argument. The term
pidgeon hole is just a bird box. Imagine a group of holes and pigeons, and each
pigeon wants its own hole. If there are P pigeons and B holes, and P > B, then at
least one hole will have more than one pigeon. This same argument will be used
below. See the glossary for a definition of multiplexing.

Recall that several output layers may have to cooperate to produce mappings,
by the sum of their values. What would be interesting to know is if the inputs are
interpreted in the same way as they were encoded. I.e. "011"is 1+ 1 = 2 in tally
encoding, but 0x4+1x2+1x1 = 3 in binary. Depending on how the reservoir and
output layers collectively interpret the input, then it could allow for a much lar-
ger map space. Note that a tally can maximally express 3 states, while the binary
equivalent can express 23 = 8. By the pigeon hole principle, an achieved resol-
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ution can serve as evidence for this phenomenon called multiplexing. Consider
that n multiplexing output layers have their values set by an input string with b
bits. With a tally encoding, the input string could maximally express T states by
itself. As a binary encoding, however, it could maximally express B? states. The
binary encoding is a perfectly multiplexed, as discussed in section 3.4.1. Thus, for
encoding schemes like the distributed encoding, the input could express an D?
resolution, which is somewhere in-between these bounds.

Using these defined limits, if the resolution is higher than the T2 threshold
resolution, it has been proved that the output layers must be partially multiplex-
ing. In the aforementioned pigeon hole principle, each bit in the boolean input
string can be used to access a grid of holes, while the resolution achieved rep-
resents the pigeons. E.g., if input has two variables, both with 3 bits, they can
maximally form a 3x3 grid. On the other hand, if they multiplex completely, they
form a 23x23 grid. If there are more pigeons than holes, then this means that the
resolution will be higher than the T2 lower bound. In this case it would be proven
that the inputs are partially multiplexing. The T2 lower bound also marks an up-
per limit for all tested models in section 4.1, since values are set by tally encoding.
Qualitatively, the resolution seems to be equal to this limit, which indicates that
there is no multiplexing mechanism. For example, the input layer for the feedback
model in figure 4.5 has maximally 40 states per variable, and the prediction image
has 40x40 squares. Breaching this limit should not be possible with tally encod-
ing, but may be exemplified in the experimental distributed encoding in appendix
A3.






Chapter 6

Conclusion - Practical RC

Since RC is a relatively open framework for computation, an architectural invest-
igation was necessary before delving into testing the ESP metrics. By carefully
designed architectures, a robust RC was identified. The floating point inputs will
thus be converted to bits using the tally-shuffle-interleave encoding. Going for-
wards, it is perhaps most important to note that the practical RC exploration lead
to proceeding with the feedback-and architecture for the next part of the thesis.
This was not the highest performing model quantitatively, but qualitatively, it al-
lows for a much higher resolution. The high resolution means that more bits can
be encoded, which will be highly required in the next part of the thesis, when
the number of input variables increases. The non-linear benchmark was learned
reasonably well, with 54% of the model’s predictions within 5% of their target
values.

In addition to choosing an architecture and encoding, a thorough analysis of
the model and the reservoir was undertaken. The models output layers were ana-
lyzed as signals, examining their cross-sections as they predict the target image
in figure 4.5. Here, it was revealed that the output signals tended to be relatively
flat and parallel, manipulating their accumulative prediction signal through small
vertical translations. This behaviour was apparent for both architectures, so the
output layers probably function in a similar way. The relatively flat output signals
either meant that there were very few bit flips in the reservoir, or the readout layer
selectively prioritized stable reading configurations. Thus an examination of the
reservoirs themselves ensued, confirming that once a bit had flipped, it tended to
get stuck in its new state. Furthermore, automated classification techniques were
applied to the various reservoir states to see how various inputs might get classi-
fied by a RC system without a readout layer. This revealed qualitatively that the
reservoirs seemed to be classifying similar inputs expressed as patches of similar
classifications in figure 5.2. The connection was also made in how the reservoir
first classifies the input like a repeated low-pass filter, proceed by the superposition
of these values to produce a prediction.

In section 5.2.3, the reservoirs output layers were compared to lookup tables.
This comparison was possible, because the trainable weights in the output layer
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could theoretically be re-purposed as a lookup table. The comparison was made
to get an idea of how much of the computation could be realized without the
reservoir. The conclusion was that even the highest performing model would not
come close to beating a lookup table made out of the resources dedicated to its
output layer. On a more optimistic note, the reservoir should be able to compete as
the resolution and number of variables increases, as this would cause the lookup-
table to explode in terms of resources.

Lastly, in section 5.2.4, it was concluded that there was no multiplexing in the
predicted images with tally encoding by an argument based on the pigeon hole
principle and qualitative resolution. The key takeaway from this discussion point
is that the output layers could theoretically express a much higher resolution by
a multiplexed encoding. This would be yet another way to surpass the theoretical
lookup-table at producing useful input to output mappings.



Chapter 7

Method - ESP metrics

In section 7.1, it may seem like the topic strays from its purpose; describing a
method for measuring ESP metrics. The section is necessary, however, because it
describes how the graph metrics where chosen, as well as giving a background to
relate the metrics to.

7.1 Underlying Structure of the Reservoir

By converting the various sized RC systems into ASI graphs, it was discovered
that the graphs can be interpreted as having two distinct components when tra-
versing from the start node to its leaf nodes. Putting the graph on its side like in
figure 7.1, and traversing from left to right, the start is reminiscent of a random
forest, but near the graphs leaves, the structure is characterized by SCG regions.
In other words, the two regions represent a shift in graph topology from being
monotonically directed to randomly directed.

Based on this observation, it is intuitive that the top component may function
as a random forest classifier, while the bottom SCG regions could function as a
secondary, more fine-grained, classification. Recall that each node in the graph is
a unique state, and note that it is impossible to traverse from one graph branch to
another. A branch in this discussion is defined as a set of paths leading to the same
SCG. Most likely, this implies that certain state bits, or physical magnet spins, be-
come permanently set for a branch, effectively blocking inter-branch transitions.
Note that many of these branches are also similar in the graph topology, further
indicating that the difference between them is most likely a handful of state bits.
An intuitive analogy to this behaviour is the hardening of a melted solid in a dish
that is slowly cooling. Small solid islands form on its surface first, allowing only
the liquid parts to move. Slowly but surely, the whole material becomes solid,
shrinking the liquid regions as each solid island grows. In this analogy, a liquid
region is a magnet that can flip, while the solid region is a cluster of magnets that
collectively resist external stimuli, and are hence effectively fixed.

These observations were quantitatively verified by a logical AND operation of
all state bits within a SCG region. This operation produces a state matrix where
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Figure 7.1: An ASI reservoir with a 14x14 diamond pinwheel configuration as a
directed graph. See figure 7.1 for more description on how to interpret the graph.
All SCG sub-graphs are coloured by size and marked with a double circle. The start
node is also marked with a double circle. The turquoise nodes are reminiscent of
a random forest near the origin node (left), while the other colored regions are
the SCGs, often located near leaf nodes (right).

a zero means the bit has flipped at least once, and a one means the bit has never
been flipped. In fact, in the 20x20 reservoir, roughly half of the state bits are
fixed within a given SCG region. The random forest regions were also inspected
using the same logical AND operation, and it was confirmed that around half of
bits become fixed, after a few steps from the graph root. The amount of fixed
bits barely decreases upon traversing a branch before reaching its SCG region.
Finally, all status bits in the entire graph were compared, revealing that 37% of
all state bits are always fixed. In other words, a relatively small amount of state
bits are utilized to distinguish states both within branches and SCG regions. There
is a large redundancy in the state representation, since many state bits tend to be
fixed. The phenomenon is intuitively illustrated in figure 7.2 as bit state probability
maps.

Continuing with the aforementioned two component analysis, with the ran-
dom forest and SCG regions, it is argued that the random forest components are
an expression of the systems memory, while the SCGs components an expression
of the systems ESP. Consider a string of nodes as an example of a purely directed
graph. It would be easy to backtrack to the origin from the last node, and it could
be argued that the last node “remembers” the first. A way to see this is by inter-
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(a) Intra SCG (b) Inter SCG (c) All states

Figure 7.2: Bit state probability maps (left to right): within the largest SCG (node
count), between the top 5 SCGs, and for all states. The figure was made for the
20x20 reservoir by superimposing all state images (summing all values), and nor-
malizing. Note that the strong blue and green colors indicate regions that are
fixed, while the red end of the scale represents bits that are free to combine into
many states. Note that the "Inter SCG" and "All states" figures are almost identical.
The "Intra SCG" is different for a select few bits.

preting each node spin state as a kind of binary counter, as no states are repeated.
The counter may also just be based on a one-step increment from the last state,
but then the state is bound to repeat if no more unique states are possible. In this
case, the SCG arises, as the traversal runs out of unique states. Within a SCG it
is much more difficult to backtrack in the same manner. This is then an indicator
that the states “forgot” previous states, and allow for their repetition. The fad-
ing memory property of the ESP is therefore expressed in a reservoir graph’s SCG
regions. Furthermore, the ESP can then be discussed in terms of the number of
SCGs, their node connectivity, and their size measured in nodes.

7.2 The ESB

In previous work [1], the concept of an ESB was introduced to measure the ESP.
In short, the ESB metric perturbs a reservoir’s SCG with a repeated input until
there is a predictable cyclical state response from the reservoir. The length of the
transition, is the ESB, and should indirectly measure the ESP. As in the previous
work, when a repeated input leads to a predictable sequence of states, then it will
be referred to as saturation. The ESB is artistically exemplified in figure 7.3.

In figure 7.3, the ESB is defined as the transition length between two cyclic
responses. This implies that the random forest region cannot be chosen as the start
of the ESB, because cycles are not possible. On the other hand, SCGs are cyclic
graphs implying that the ESB must have its starting point in one of them.

The proposed ESB metric predicts that wave theory phenomena may be ob-
served in the reservoirs response to a varying input string lenghts. Wave phenom-
ena includes the existence of a fundamental input length. The idea is that certain
length input strings will resonate periodically with the system, just like pushing
a swing is best done at the natural frequency of the swing. This translates to op-



46 Christopher M. Vibe: Practical RC & ESP Metrics

timal performance at multiples of several fundamental input lengths, ie., with one
fundamental with B bits, it may resonate at, 2B, 3B, etc. In the in intuitive swing
example, the swing will respond strongly if you push at half its natural frequency.
This prediction will be looked for in figures such as 8.5.

Figure 7.3: Artistic illustration of ESB, a metric to quantify the ESP. Each vertical
color strip represents a reservoir state, i.e. if a color is repeated, a state is repeated.
A input sequence a is repeated until there is saturation; a predictable sequence of
state transitions. Upon saturation, a different input sequence 8 probes the reser-
voir until saturation a second time. The ESB is the the difference, measured in
bits. After a*, memory of the saturation fades incrementally, replaced by memory
of 3*. Px represents a optional warm-up input pattern, something which may be
needed to get to saturation type behaviour. This figure was directly taken from
previous work [1].
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7.3 Engineered Inputs as Probes

In previous work [1] the concept of engineered inputs was developed as a way
generate high information density bit strings. E.g., a bit string with no repeating
substring is harder to compress, and thus contains more information. The idea is to
probe the reservoirs with these engineered inputs, to help uncover properties like
the ESB. L.e., it was found that the balanced density bit strings, having an equal
number of 1s and Os, traverse to all tested reservoirs leaf nodes the fastest. The
engineered inputs will be limited to random and 50% density inputs as justified
in section 8.1.2.

7.4 Comparing Model Success with ESP metrics

In the previous method, in section 3, the performance metric was to emulate a
non-linear function. In this section, the performance will be gauged based on bal-
ancing a n-inverted pendulum on a cart, as illustrated by figure 7.4. Henceforth
the benchmark will be referred to as the balancing benchmark or dataset. This
task was chosen because it is a well studied benchmark for control systems with
feedback. A certain amount of short term memory is needed to efficiently balance
the inverted pendulums. Ie. If RC system is perfectly balanced with the exception
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of the top pendulum, but this parameter was fed to the RC system last, the in-
formation might be forgotten. Arguably, the benchmark can therefore be used to
validate findings related to ESP metrics. Note that the encoding was switched to
tally encoding for this section, as it seemed to work much better than tally-shuffle-
interleave, which was used during architecture development in section 5.1. This
encoding was very bad as discussed in 3.4.1, but the feedback-and entangles the
input with the pooling layer to achieve a good distribution of Os and 1s. See ap-
pendix B.1 for more details on the systems parameters.

/
° o

Figure 7.4: A benchmark for performance: N-inverted pendulum on a cart with
N=2. The idea is to balance the inverted pendulums by moving the cart left and
right, implying the system is 2D. The degrees of freedom of the system are illus-
trated by green circles as hinges, and blue circles as wheels. Mass is emulated as
point masses at each node, with the mass at the bottom node representing the
cart.

The balancing dataset was created based on an article featuring the SymPy
python package for dynamics [20]. The idea was to balance n inverted pendu-
lums, and log how a LQR controller pushed the cart left and right in response to
the system states. An LQR is a linear approximation of a non-linear system emu-
lating a spring model. The further a parameter goes from a equilibrium value, the
more it contributes to a sum, like pulling a spring. The systems state parameters
were comprised of the position and velocity of all the nodes, like in figure 7.4. In
supervised learning the idea is to copy a known solution to a problem, in this case
the LQR controller. Thus, by simulating the pendulum system balances by a LQR
controller, data could be generated for supervised machine learning with the cart
forces as the labelled data.

The initial conditions for pendulum balancing was set so that the task was dif-
ficult during training. All pendulum node angles were set to be within a reasonable
range determined by manual experimentation and intuition. For each simulation,
the angle and cart position was set by a uniform-random distribution. If the LQR
controller failed to balance the system, the simulation was reset, discarding the
data. The process was then repeated with a new initial condition until 2000 bal-
ancing acts were logged. The reason for making the initial conditions challenging
was to improve the robustness of the balancing, as it was anticipated that the RC
system might need to correct from difficult positions to compensate for potential
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mistakes.

To further increase the data quality and reduce computation time, the simu-
lations automatically stopped if one of two events occurred: balanced or fallen.
The balanced event was defined as when the absolute sum of angles was vertical
within a small error threshold. The fallen event was defined as when the base
pendulum was below the horizontal. This should be a fair definition as the prob-
lem changes character past this point and becomes a pendulum swing up problem
instead.

While creating the dataset, it was noticed that the pendulum simulations would
spend little time in the unbalanced position, and spend more time with micro-
movements striving towards a perfectly stacked system. To mitigate potential prob-
lems with an unbalanced dataset, the most common training samples were filtered
out in such a way that the kurtosis and skew where closer to a bell curve shape
to get a more balanced dataset. Kurtosis and skew are shape descriptors of a bell
curve.

In the N inverted pendulum balancing simulations the N was limited to 2,
as the number of variables are 2x(N + 1), where each node has 2 variables for
position and position rate. The first two representing the cart node, and the rest
representing the pendulum nodes. This translates to 2x(2 + 1) = 6 variables for
the most difficult balancing problem.

7.5 Configuration Sweep and Evaluation

Ideally the pass/fail distribution over the reservoirs should be evenly distributed,
so that it is easier to draw conclusions. Thus, the reservoirs were methodically
categorized as having passed or failed a balancing with a easier set of criteria
compared to training. The initial conditions were manually tweeked so that only
a handful of reservoir would fail, giving more information on how to compare
them based on their computing potential. The initial conditions are summarized
in appendix B.2.

A parameter sweep was made to reduce biases of configurations in the design,
as well as to uncover how the number of bits per reservoir effected performance.
The sweep parameters are summarized in appendix B.3. Furthermore, each bal-
ancing benchmark test was attempted with the top 5 scoring model configurations
from the sweep. Figure 7.5 is a sample training run from the sweep made to con-
figure the model parameters used for the balancing dataset. Note how there is a
clear gap in accuracy between the train and test data-sets as the curves begin their
asymptotic phase, indicating that there may be some over-fitting.
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Figure 7.5: Example training curves from one of many configuration in the sweep.
This run was for the one pendulum dataset with eight readouts, 20 bits per reser-
voir, a 10x10 reservoir size, and was able to balance. Note how accuracy and loss
are inversely related, and stabilize asymptotically as expected after 64 epochs of
training. The dashed epoch lines are the same as their solid counter-part, but are
sampled only at every epoch; each time a full pass is done on the train-dataset.






Chapter 8

Results - ESP Metrics

8.1 Predicting Performance on the Balancing Benchmark

In this section, the ESB metric will be compared with quantitative results from
the n-inverted pendulum on a cart balancing problem, or balancing problem for
short. The idea is to see if the ESB can predict success or failure, which would
validate the proposed metric. Other simple graph metrics were also calculated to
expand the discussion and facilitate the discovery of correlations. The balancing
benchmark proved to be more difficult than anticipated, so the highest number of
pendulums balanced was two. Since this is a limited way to make comparisons, the
number of pendulums balanced serves as a rough classification, and loss is used
for further comparison. The loss algorithm is the L2 loss, which is merely the nor-
malized difference between the target value and the predicted value. Therefore, a
comparison of loss values on the machine learning test-dataset is reasonable. The
results with both n=1, and n=2 for the balancing benchmark are in tables 8.1,
8.2, respectively. The listed entries are the first configuration to balance from the
sweep, as mentioned in section 7.5.

Note from appendix B.2 that the initial conditions were much harder for n=1
than for n=2. All the reservoirs could balance one pendulum, even with initial
conditions that were much harder than in the training environment.

In table 8.2 some reservoirs find the benchmark challenging and fail to balance
two pendulums despite trying five of the most promising configurations from the
sweep.
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Table 8.1: N=1 balancing benchmark

size balanced readouts bits-per-reservoir
10  True 8 3
11 True 8 3
12 True 8 4
13 True 8 3
14  True 8 4
15  True 8 16
16  True 8 31
17  True 8 3
18  True 8 32
19  True 8 3
20  True 8 5
Table 8.2: N=2 balancing benchmark
size balanced readouts bits-per-reservoir
10  True 8 7
11  False n/a n/a
12 False n/a n/a
13 True 8 27
14  False n/a n/a
15  False n/a n/a
16  True 8 33
17  True 8 25
18  True 8 22
19  True 8 5
20  True 8 30
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time =10.00 timg = 0.00

(a) 10x10 reservoir balancing 1 pendulum (b) 13x13 reservoir balancing 2 pendulums

Figure 8.1: Balancing animations. Note that the figures can be viewed as an-
imations with the following pdf readers: AcrobatReader, PDF-XChange, acroread,
and Foxit Reader. The simulations and animations were based on a blog featuring
SymPy, a symbolic maths library for python [20]
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8.1.1 Graph properties

In figure 8.2, there are six graph properties describing all the tested reservoirs. The
properties considered were the number of nodes in the graph, both for the entire
graphs, and in SCGs. For the node count in SCGs, there was placed a condition that
there had to be more than one node, excluding a large amount of self-referencing
nodes. The SCG node count is thereby a more accurate representation viewing the
graphs a combination of random forests followed by SCG regions in section 7.1.
The number of edges is directly related to the number of nodes, as each node has
the option of traversing the graph further by an input of either 1 or 0. Thus, the
edge count is double the number of total nodes. The self-referencing edges were
therefore excluded from the edges metric, to make a metric with new information
relative to the nodes metric. In section 7.1, it was pointed out that the magnets
could be compared to a solidification of a liquid over time, as only a handful of
magnets were flipping. This inspired a metric for the number of flippable magnets
in the whole graph and cumulatively in the SCG regions.
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Figure 8.2: Graph Properties

Since the metrics in figure 8.2 are cumulative, a more detailed visualization
was made for the actual distributions of SCGs in the reservoirs in figure 8.3. To
avoid the overlapping of points in the scatter-plot, the x-axis was made continu-
ous, despite the reservoir size being a discrete value. I.e., for the reservoir with
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size 10, all relevant points are in the continuous range [10, 11). The individual
size of each SCG can be read off the y-axis. As expected, there is a trend of growing
SCG sizes with higher reservoir sizes.
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Figure 8.3: SCG distribution over the various reservoir sizes. Note that the reser-
voir size is still discrete, but has been spread over a continuous range to avoid
the overlap of points.

8.1.2 ESB

As an attempt to measure the ESP, the ESB is the most important metric in regard
to the goals of this thesis. In previous work [1], where the metric was introduced,
the idea was to probe the reservoir engineered inputs, which will affect the shape
of the ESB curve. Only two of many proposed engineered inputs were chosen, due
to their simplicity and ease of producing numerous samples. The problem with the
other engineered inputs, is that they are meant to be unique, but with few bits, the
set of inputs is very small. Furthermore, the analysis would be more complicated
if all the engineered inputs were to be considered. Hence, only the random and
fixed density inputs are featured in the figures below. On the second axis to the
right of the plot, an overlay of the machine learning test-loss was plotted to see if
there was a correlation. A figure was made for each reservoir, and can be found

in appendix B.4.



56 Christopher M. Vibe: Practical RC & ESP Metrics

It is beneficial for the learning process in the output layer when the test-loss
is low. The top five lowest points in the plot are therefore the points where the
balancing benchmark was tested. It is difficult to comment on general tendencies
for all of the graphs, as many of them are quite different. There seems to be little
correlation between the plotted ESB and the loss curves. Some of the plots show
a positive relationship with increasing bits, while others show a negative relation-
ship. Surprisingly, in figure 8.4, the fixed density curve is almost flat. Nonetheless,
there are some trends. Note how the test-loss has many points of optimal perform-
ance along the n_bits axis, keeping in mind that a low loss is desirable. The loss
curves seem to make big fluctuations over small changes of input bits.
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Figure 8.4: ESB metric with random and 50% fixed density inputs for the 10x10
reservoir. The graph is an average over 10k samples. The start nodes are random
from within a SCG. On the second axis the loss from the test-dataset was plotted
for easier detection of correlations. Note that the n_bits axis represents the length
of the engineered input for the ESB metric, and the number of bits per reservoir
in the loss metric.
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Figure 8.5: ESB metric with random and 50% fixed density inputs for the 20x20
reservoir. The graph is an average over 10k samples. The start nodes are random
from within a SCG. On the second axis the loss from the test-dataset was plotted
for easier detection of correlations. Note that the n_bits axis represents the length
of the engineered input for the ESB metric, and the number of bits per reservoir
in the loss metric.
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Chapter 9

Discussion - ESP Metrics

It was discovered that when going from the non-linear benchmark to the balancing
benchmark that the architecture performed better with tally encoding as opposed
to tally-shuffle-interleave. This may be because the RC system is trying to emulate
a LQR controller, which functions like a dot product of scalar weights with the sys-
tems state vector. The dot product result is the force needed by the cart to balance
the system. The state vector holds the position and velocity information of each
node as shown in figure 7.4. A dot product may be easier to copy if the variables
in the RC system are kept separate, with minimal interaction between variables.
Thus, it could be advantagous to keep the variables less entangled across reser-
voirs, which is achieved by not interleaving input during encoding. The damage
cause by shuffling, however, is most likely because the feedback-and model en-
tangles its inputs with the pooling layer, which means that it already has a good
distribution of 1s and 0s. Too many consecutive 1s and Os were flagged as a prob-
lem in section 3.4.1.

There is a general lack of experiment control in regard to the balancing prob-
lem. For one, the metric was biased based on how well the machine learning
could be tuned for a particular reservoir. To counter this issue, a sweep was made
to search for various configuration candidates. However, the same issue can be
said of the encoding scheme, as the tally-shuffle-interleave mechanism may have
worked well as a general encoder, but some reservoirs worked better with other
encoding schemes. As mentioned above, this was the case, but the distributed en-
coding exemplified in figure A.1 may have worked even better. Having the model
and output layer as part of the assessment made it difficult to evaluate the qual-
ity of a given reservoir due to factors such as these. With this uncertainty, it was
difficult to correlate performance with the ESB.

Even assuming that the comparisons were fair, there is another issue. In sim-
ulations with the LQR controller it was possible to simulate up to five pendulums
with the parameters set in B.1. The analysis was capped at two pendulums, since
none of the reservoirs could balance more. The failure to balance more pendulums
was most likely due to the increasing amount of variables required, as noted in
section 5. The problem also becomes much more difficult for each added pendu-
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lum, so even the LQR controller could not balance five pendulums in attempted
simulations.

Next, consider the graph metrics. In section 7.1, it was noted that most mag-
net spins seem to be relatively fixed within their SCG. Revisiting figure 7.1 note
how there are nine leaf SCGs. Traversing between the SCGs is impossible by their
definition of being strongly connected, so this means that each of them could be
considered its own category. Thus, traversing this graph with a large amount of
input bits will always lead to one of these SCGs. Now, observe in figure 9.1, the
same graph, but arranged in a way that interesting substructures are exposed.
If the magnets where arranged in a less fixed manner, it is predicted that more
substructures will exist. Theoretically, by increasing the number of possible neigh-
bourhoods a traversal can end in, the graph should act as a better classifier. There-
fore, the number of dots in figure 8.3 for a given reservoir should be indicative of
the number of categories a reservoir can classify with the aforementioned mech-
anism. However, this did not function well as a predictor of success or correlate
with ESB.

EAS

Figure 9.1: 14x14 graph, identical to 7.1, but arranged so that its substructures
are exposed.

The ESB metric was introduced as measurement in bits, but on the left axis
of the ESB figures it is represented as cycles, as this is a more normalized expres-
sion. The bit representation is calculated by multiplying the cycles by the number
of bits. Several local optima seem to cluster around the transition of the ESB from
vertical to horizontal. It is hard to support this claim beyond a generous qualit-
ative assessment. A more tangible behaviour is that a small change in input bit
length leads to a large change in loss. In figure 8.5, the ESB and training test-loss
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are overlaid to facilitate the detection of cyclic performance, as predicted by wave
theory comparisons mentioned in 7.2. This pattern may have been detected in the
dramatic fluctuations of the loss curves shown for both loss curves with pendu-
lums set to n=1, and n=2. When the loss is low, the model performs better. Note
that in many plots the the curves for both pendulums respond fluctuate similarly,
indicating an expected indifference to the dataset. Further analysis is needed to
ensure that all these behaviour can be confirmed in a more systematic way. The
rest of the reservoir ESB plots are in appendix B.4.

The ESB has been simplified from 10k samples to an average, but it may be that
an average is not a good way to represent the ESB. This is mentioned because there
is no apparent correlation between the fluctuations and the ESB. However, it may
be that different engineered inputs can reveal how a reservoir classifies strings,
as pointed out by the flat fixed-density curve in figure 8.4. This was manually
verified in the reservoir graph, as there was concern it was due to a mistake.
Thus, the 10x10 reservoir can separate random inputs from fixed-density inputs,
despite it having a very small SCG node population.

Assuming that the ESB is not correlated with test-loss, then this may indicate
that the output layer may favour the random forest mechanism described in sec-
tion 7.1, where the ESB is argued to interact only with the SCG regions in a graph.
Furthermore, when searching for reasonable model and training parameters for
the sweep, it was noticed that the bits per reservoir setting was relatively small
compared to the depth of the graph. A sign that the training didn’t seek out the
SCGs at the leaf nodes of the graph, but rather focused on early traversal. The
sweep parameters are further justified in section B.3.

In section 5.2.3, it was argued that the reservoir was performing poorly, as
its output layer could out-compete it. From the bit state probability map in figure
7.2 and the graph metrics in 8 such as the flippaple magnets metric, it is clear
that many of the bits were actually fixed, very roughly estimated at a ratio of 1/4.
Furthermore, it would seem the spin states were highly determined by if their
last edge was a 1 or a 0 throughout the graph topology. This claim is suppor-
ted by automatically classified graphs in appendix A.4. This means most of the
reservoirs’ 2D area is not being used effectively. It is therefore impressive that the
results achieved where possible from only a handful of changing bits. Hence, the
flippable magnet metrics indicate the output layer signals may be multiplexing
their collective outputs; they effectively rely on a very small number of magnets
states to produce numerous outputs.






Chapter 10

Conclusion - ESP metrics

The ESP metrics could not predict success or failure on the balancing benchmark.
As discussed in section 9, there may be many reasons for this, including a gen-
eral lack of experiment control. Most notably, there were only two pendulums
balanced, which makes it difficult to rate the reservoirs on such a small scale. Fur-
thermore, there were too many ways for unwanted influence from the input and
output layers. And from the reservoir layer, it was discovered that the magnet spins
were relatively fixed. This may indicate the geometry wasn’t optimal, assuming
more dynamic magnet flipping is beneficial for performance on the chosen bench-
mark. The performance with tally encoding instead of tally-shuffle-interleave was
quite drastic for this benchmark. The results in section 4 make it clear that many
design features and settings could still have been adjusted to balance more pen-
dulums.

The analysis could not show how the graph metrics were related to the ESB
metric. Furthermore, neither the graph metrics nor the ESB could predict success
in the balancing benchmark. However, the main goal of the thesis was not the
practical task in itself, but rather testing the ESB as a metric for the ESP. From
figure 8.5, there seems to be several optimal bit lengths for reducing the test-
loss training in the output layer. The loss curves seem to behave as predicted in
section 7.2 by discussions of a fundamental input lengths. Whenever the input bit
length is a multiple of such a fundamental length it may lead to a large response.
The fluctuation over small input length may be an expression of this mechanism.
However, the ESB metric does not seem to correlate directly with the ESB curve.
Due to time limitations, a fourier analysis could not be conducted to uncover the
fundamental frequencies which might be expressed. It is suggested that this may
be due to the averaging of ESB values, effectively removing fluctuations in its
current representation.

The cyclical behaviour of the the loss curves may also be due to a lack of
experiment control, as other factors may play a bigger role than the ESB. More
investigation is needed to see if the engineered inputs from the ESB can be used as
a way to uncover how a reservoir classifies inputs as plots like figure 8.4 indicated
engineered input have this potential.
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Chapter 11

Conclusion & Future Work

The first part of the thesis focused on practical RC with the non-linear dataset. It
was relatively successful considering the design search space is huge. Many para-
meters had to be frozen to limit this design space, such as the reservoir size, geo-
metry, encoding, definition of inputs, etc. In this list of constraints to the design
was also the machine learning approach, which was set to supervised learning.
Regrettably, an unsupervised machine learning approach could not be explored
where the reservoir itself would have more opportunity to learn how to balance
the pendulums themselves. The machine learning would then take the form of
an indirect guidance with metrics like balance time, as opposed to imitating the
LQR controller. The techniques for converting reservoirs to graphs were also use-
ful, but there are many more interesting tools from this field which could not be
explored due to time restraints. I.e. a von-nueman entropy graph metric was to
be explored, which could potentially capture information about the quality of a
graph’s connectivity, but this will be left for future work.

The ESP can be intuitively understood, but there is no true baseline from which
results can be verified. This may give the impression of a weak conclusion. Hence,
future work hinges on the maturity of the understanding of the ESB as a baseline.
It was ambitious to correlate the ESB metric with the balancing benchmark, and
it may have been wiser to continue with well-defined functions instead, like the
non-linear dataset. The number of variables could have been increased before
switching to the balanced dataset, so that issues due to the increased number of
variables wouldn’t be a problem. However, the techniques and metrics developed
for evaluating reservoirs are still interesting for future analysis. The need for met-
rics on the ESP has not been satisfied by the investigation from this thesis, but
many approaches have been identified, including metrics from graph theory as
well as the ESB. Most interestingly is the supposition that SCG regions are intric-
ately tied to the ESP, an idea which should be investigated further.
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A.1 Experiment parameters

This description is taken from previous work [1]. The magnet geometry paramet-
ers are tuned to produce a rectangular stadium-shaped magnet, as used in [12].
Their geometrical meaning is defined in [2]. Note that the grid size is the num-
ber of geometry instances on the grid, not the number of magnets; i.ex. number
of pinwheel instances. Consult flatspin’s documentation for more parameters de-
fault to the PinwheelSpinlceDiamond class, which was used for all experiments,
and not listed below. To ensure the system was deterministic for experiment con-
trol, a random seed was set, as well as a deterministic “flip mode” mechanism
during simulation.

Table A.1: Experiment parameters

Parameter Value Comment

Gy [10:20] grid dimension sweep (nxn geometry instances)
H; 78mT input field strength

H, 200mT  coercive field strength

H, 7° anti-clockwise rotation of global field vectors
M; 220nm length of magnets

M, 80nm width of magnets

My, 20nm height of magnets

M, 1.02e-3 spacing of magnets (dipolar coupling strength)
b 0.41 magnet geometry parameter

c 1.0 magnet geometry parameter

p 1.5 magnet geometry parameter

Y 3.9 magnet geometry parameter

random_seed O random seed for flatspin++

flip_mode flipping mode in flatspin
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A.2 Architecture experiment parameters

The configuration settings below where the same for all architectures in section

3.3. Citation for AdamW: [17].

Table A.2: Architecture Experiment parameters

Configuration Value

reservoir size 20x20

learning rate le-4

optimizer AdamW

cost function L1 Loss

epochs 512

batch size 512

dataset size 20k (random values)
train/test/dev split .7/.1/.2
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A.3 Distributed Encoding

The following prediction image is a demonstration of how a cross between binary
and tally encoding may look like. The ensemble architecture, like in figure 4.3 was
used for this demonstration, copying its setup parameters. Each bit in this encod-
ing is a power of two: 1, 2, 4, 8, repeated, ie. (1011)(0100))dot(1248)(1248) =
(Ix14+0x2+ 1x4 + 1x8) + (0x1 + 1x2 + Ox4 + 0x8) = 13 + 2 = 15. The full
approach is not explained here, but note that it leads to several ways of encoding
the same number. The approach is not discussed further, as tally encoding was
much more stable for machine learning.

Ensemble Architecture

1.0

20
0.8

10
0.6
0.4

-10
0.2

-20
0.0

0.0 0.2 0.4 0.6 0.8 1.0

Parameter 0

Parameter 1
o

Figure A.1: Ensemble architecture prediction image relative to figure 3.6. The
resolution is approximately 32x32, and the prediction accuracy is 43%.
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A.4 The Reservoir Graph as a Classifier

The following graphs demonstrate automated classification techniques on the
20x20 reservoir. Each graph uses 32 colors to classify each state. The graphs are
three of four approaches as discussed in section 5.2.2. Observe the categorization
with label-k-means, mca-k-means, and corex, in figures A.2, A.3, A.4, respectively.
Note how many substructures are classified the same, this is because the differ-
ence in magnets spins is actually very small. There also seems to be separate sub-
categories depending if the last input was a 1 or a 0. The Labeling-PCA approach
was simply not graphed due to time restraints, as it controls RGBA independently,
while the other approaches use discrete categories.
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s @

Figure A.2: This 20x20 reservoir
graph has been coloured based on
the classification of the Label k-
means strategy discussed in section
5.2.2.
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Figure A.3: This 20x20 reservoir

graph has been coloured based on
the classification of the Label k-
means strategy discussed in section

5.2.2.
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Figure A.4: This 20x20 reservoir
graph has been coloured based on
the classification of the corex clas-
sification strategy discussed in sec-
tion 5.2.2.
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A.5 Additional Reservoir Graphs

Some of the graphs where very large, the biggest being the 20x20 ASI reservoir
with over 1500 states. This section will make space for some of them for the
interested reader.
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Figure A.5: An ASI reservoir with a
20x20 diamond pinwheel configur-
ation as a directed graph. All pos-
sible spin states are nodes, with in-
puts as transitional edges. All SCG
subgraphs are coloured by size.
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A.6 Bonus Material: Balancing 2 Pendulums with the 20x20
Reservoir

The following figures show a detailed plots related to balancing 2 pendulums
with the 20x20 reservoir just as featured in table 8.2. When reading the graphs,
remember that the bottom node is the cart labelled node 0. The pendulums are
the rest of the nodes. E.g. g0 is cart position, while u0 is cart speed.

Inverted pendulum on a cart

Cart Force [N]

Time [s]

Figure A.7: 20x20 balancing: cart force plot.

— () t3.00
5] — awo
— q2(t)

~
14
]

Cart displacement [m]
N
Pendulum Angle [radians]

time [s]

Figure A.8: 20x20 balancing: node displacements.
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Inverted pendulum on a cart

64 — uo(t)
— ul(t)
—_ u2(t)

-2 4

Cart speed [m/s] Angular velocity [radians/s]

Time [s]

Figure A.9: 20x20 balancing: node speeds.
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Figure A.10: 20x20 balancing: weights plot

20x20 balancing: weights plot at index 4 from layers [0,7].
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ESP Metrics

B.1 N-Inverted Pendulum System Parameters

The numbers summarized in figure B.1 were set by intuitive experimentation to
get the largest system that was still able to balance.

Table B.1: N-inverted pendulum system parameters. The numbering is from cart
to top pendulum, so NodeO corresponds to the cart. N is the number of inverted
pendulums in the system.

N Part Settings Value
1 NodeO mass .10kg
1 Penduluml length  3.0m
1 Nodel mass .10kg
2 NodeO mass .05kg
2 Penduluml length 1.5m
2 Nodel mass .05kg
2 Pendulum2 length 1.5m
2 Node2 mass .05kg
3  NodeO mass .03kg
3 Penduluml length 1.0m
3 Nodel mass .03kg
3 Pendulum2 length 1.0m
3 Node2 mass .03kg
3 Pendulum3 length  1.0m
3 Node3 mass .03kg
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B.2 N-Inverted Pendulum Initial Conditions

Since the system is naturally perpetually unstable, it was considered a fair test of
the reservoirs capabilities, even when the initial conditions were relatively easy
during the testing state. Furthermore, the criteria of balancing during training was
reduced to not falling for 10 seconds, a number set based on the collapse of the
system after roughly 1 second with no balancing controller. Note that all pendulum
and cart values in table B.2, are given as a the total range from a reference point.
E.g. .1 meter cart displacement means the cart is +- 0.05m from its reference
point. All unit are in base units: radians, meters and seconds.

Table B.2: N-inverted pendulum initial conditions.

n stage sampling pendulum (r) cart (m) end-condition (s)
1 training random uniform /6 1 balanced

2 training random uniform /6 A1 balanced

3 training random uniform /12 1 balanced

1 testing deterministic fixed /3 1 10 (not falling)

2 testing  deterministic fixed /128 .01 5 (not falling)

3 testing  deterministic fixed /256 .01 5 (not falling)

B.3 Balancing Problem Sweep Parameters

In table B.3 are the parameters for the sweep made to train for the balancing
benchmark. The parameters were selected based on experience from trial and er-
ror. As seen in an example training log in figure 7.5, the loss and accuracy stabilize
nicely and are relatively smooth at 64 epochs. The readout sweep was originally
[1, 8], but it was found that the sweep could be reduced to just 8 readouts, as
the optimal values were mostly this value. Similarly, the bits per reservoir were
originally from [1, 100], but the optimal values were usually more in the range
of [0, 50]. Note that the ranges were only reduced to save on compute time.

Table B.3: Balancing problem sweep parameters

Parameter Value/Range
Epochs 64
Readouts 8

Bits per reservoir [1-50]
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B.4 Additional ESB Graphs

In this section addition ESB graphs are included. In each graph the ESB metric is
plotted with random and 50% fixed density inputs. The graph is an average over
10k samples. The start nodes are random from within a SCG. On the second axis
the loss from the test-dataset was plotted for easier detection of correlations. The
graphs are discussed in more detail in section 9.
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Figure B.1: ESB metric and test training loss for the 10x10 reservoir.
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Figure B.2: ESB metric and test training loss for the 11x11 reservoir.
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Figure B.3: ESB metric and test training loss for the 12x12 reservoir.

89



90

Christopher M. Vibe: Practical RC & ESP Metrics

Engineered input pendulums
— 1
20- —k ==z
- 0.00014
18-
- 0.00012
16-
o
2 2
ES S
S
- 0.00010
14-
N
-
= - 0.00008
-
A
12- St
V\’\/-/v\,\/\\ Al
L/\l\ T Trr:
7 - 0.00006
10-
4 6 8101214161820 43638404 7072747678808 49698
n_bits

Figure B.4: ESB metric and test training loss for the 13x13 reservoir.
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Figure B.5: ESB metric and test training loss for the 14x14 reservoir.
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Figure B.6: ESB metric and test training loss for the 15x15 reservoir.
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Figure B.7: ESB metric and test training loss for the 16x16 reservoir.
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Figure B.8: ESB metric and test training loss for the 17x17 reservoir.
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Figure B.9: ESB metric and test training loss for the 18x18 reservoir.
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Figure B.10: ESB metric and test training loss for the 19x19 reservoir.
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Figure B.11: ESB metric and test training loss for the 20x20 reservoir.
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Master’s project

This is the master’s project which introduced foundations for the thesis like the
concept of the ESB. The work has been cited as [1] throughout the report, in an
effort to avoid self-plagiarism.
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Abstract—Reservoir computing is a lucrative field with great
potential in comparison to the the stagnation seen in more
traditional computing as exemplified by the slowing of Moore’s
law due to the so called power-wall. It is also a field enabling
the study of intangible phenomena in natural systems, such
as emergence. Although the field is young it is already clear
that the approach has several advantages, such as providing
useful computation with relatively low energy. The key properties
for a suitable reservoir are understood on a high-level, but
there is a need for metrics to assess the potential of a given
reservoir beyond common metrics such as generality, and kernel
quality. This paper focuses on metrics for the echo-state property,
which dictates the amount of memory available for computation.
Reservoir computing can be realized with an infinite number
parts or media, but for ease of analysis we employ a realistic
simulated reservoir of a dynamic nano-magnet array. Presented
is a two-stage method for tuning a reservoir to increase its
computing potential, followed by proposed metrics for measuring
the echo-state property. This is the foundation for a thesis, which
will be written in the next spring term, 2022.

I. INTRODUCTION

HE Reservoir Computing (RC) framework presents a

method for computation inspired by natural systems with
emergent properties. The paradigm is a sub-field of recursive
neural networks (RNN’s), and can be observed in many forms
from analog computers used to solve differential equations [3]
to learning melodies in echo state networks (ESN) [9]. RC has
been re-discovered in various fields, but has been unified to
RC in the early 2000’s [13]. The RC field is closer to how
biological systems perform computation through the emergent
properties of their environment, as opposed to the modular
formula for computation in classical computers, such as the
von Neuman architecture [2].

The RC reservoir is naturally exemplified in the material
computing sub-field, which focuses on leveraging the natural
properties of materials for the use of computation. A classical
example of RC with a material reservoir, is a literal bucket
of water that has been perturbed such that water waves form
on its surface [6]. The input in this system is the encoded
perturbations on the surface of the water and is hence mapped
from a low dimensional to high dimensional representation.
The reservoirs higher dimensional representation is then nor-
mally passed through a machine learning readout layer, to
produce more interpretative results. RNN’s are hard to train
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due to their feedback properties, so back-propagation based
training is limited to this layer. The idea is that the bulk of
computation is from the mapping to the new representation
but this is merely a natural process for the reservoir; free
computational power. As a natural extension of evolution RC
can provide solutions to problems with properties like low
energy, parallelism, or fault tolerance, intrinsic to the approach
[5]. Figure 1 summarises the classical RC model described
above as a three layer process.
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Fig. 1: Classical RC model: Input layer (left), reservoir (mid-
dle), and output layer (right). Note that the input has been
mapped to a higher dimensional representation, artistically
shown by the mixing of prime colours resulting in a rich
palette in the output layer. The reservoir is flexible; in this case
the inputs are spatially multiplexed with three input nodes,
but it can be also be temporally multiplexed to a sequence
of vectors. The output nodes are called the readout layer, and
typically consists of a single linear machine learning layer.

As a close cousin to RC, extreme machine learning (EML)
[8] inspires an intuitive example of a reservoir. Extreme
machine learning uses random weights that are largely frozen
to constrain costly back-propagation except in the final layers.
In EML the system acts as a feed forward network, which is
not characteristic of RC. However, one can introduce feedback
connections to the system, and the setup becomes suitable as
a reservoir in RC. The EML setup can then be thought of as a
million small circuits wired up randomly to each other, without
worrying about short-circuiting the system. Somewhere in the
system it is highly probable to find useful computation, and
all that remains is to synthesize the useful parts.

In order for a reservoir to be suitable for computation there
are a couple of properties that have been identified as desirable.
The reservoir must have a large number of components, with
non-linear, local interactions, resulting in a highly dynamic,



but not random, response when perturbed. Informally, the
system must also forget inputs over time. This last idea was
introduced as the echo state property (ESP) in the ESN [9].

Kernel quality and generality are existing tangible metrics
useful for evaluating a reservoir [11]. Kernel quality measures
how well the reservoir can separate temporal input by measur-
ing the rank of a nxm matrix. The n represents the dimension
of the output layer nodes after m unique input sequences.
Generality measures the reservoirs ability to react similarly to
similar input. The measurement process is identical to kernel
quality, with the difference being m similar inputs. A reservoir
should then have a large kernel quality with low generality
for non-trivial computation. The aforementioned properties
needed for computation are well represented by these two
metrics, but the idea of fading memory, or the ESP, is not
directly captured.

The intention of this thesis is to provide metrics for the
echo-state property in a reservoir, being the retention of
information in a reservoir used for RC. We will refer to
this informational retention as the echo-state buffer (ESB),
or buffer for short, defining the term in this context as the
amount of information, in units of bits, transiently stored in the
reservoir. In order to make a fair measurement the reservoir in
the reservoir is first tuned to increase its computing potential.
The need for tuning is due to energy topologies which may be
mutually exclusive in the reservoir, and is further explained in
section II.

As a metaphor for the ESB, if one sings in a room, the
degree to which sounds from different temporal origins can
be mixed will be limited by the length of the rooms echo.
The ability to create such a rich representation of input is the
motivation behind measuring the buffer size of a reservoir, and
is closely linked to space complexity in computational theory.
The echo-state property is therefore an analogy to conventional
computers with different working memory. Hence, measuring
the buffer size is fundamentally important to successfully
uncovering the potential of a given RC system.

II. BACKGROUND

Spin ice (SI) have attracted considerable attention in physics
due phenomena like: emergence, quantum tunnelling, mag-
netic mono-poles, and more [1]. In fact in 2021, the nobel prize
in physics was awarded to Giorgio Parisi, who utilized a close
cousin in the spin ice family, spin glass; a testament to the
interest of the scientific community in meta-stable materials.

Commonly, it is not known that all materials have particles
with magnetic poles, as only some of them display their
magnetic properties on a macro scale. This is due to the
internal orientation of their magnetic constituents or spins. The
spins can either align, as is the case for a fridge magnet, or
cancel each other out like in a potato. SI are materials with
semi-stable magnetic particles whose spins exhibit geometrical
frustration. In other words, physical circumstances prevent the
magnetic particle orientations from configuring in the lowest
energy level possible. Physically this means that the material
may exhibit many steady states with a number of non-trivial
“frustrated” spin configurations; a north-north or south-south

pole clash for a number of particles in the substrate. See figure
2 for a picture of a SI based on nanomagnets.

Fig. 2: A physical reservoir: SI as a magnet array in a diamond
pinwheel formation. Courtesy of the SOCRATES project at the
Norwegian University of Science and Technology (NTNU). In
the zoomed circle one can see individual white rectangles, each
a magnet at the nanoscale.

This works reservoir is a simulated 2D nanomagnet array,
an artificial spin ice (ASI) model [10]. It has been shown,
that When tuned correctly, this practical reservoir has prop-
erties needed for RC [11]. The employed reservoir stores its
information using concepts from mechanical computing [14]
with magnet spins to encode 1’s and 0’s. If one magnet in
the array is perturbed, all its neighbors will be perturbed,
causing a cascading dynamic effect until the system reaches
a steady state. See figure 3 for a visual representation of an
ASI reservoir.
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Fig. 3: A virtual reservoir: ASI with a 10x10 diamond
pinwheel configuration. Note that the small arrows represent
magnets and point in the direction of their magnets north-pole
field or spin. This spin is also colourized based on the North-
East-South-West orientation. The small coloured arrows reveal
regions of frustration, as seen by the non-trivial colouring. The
large black arrows represent the global external magnetic field
used to perturb the reservoir.



The impression of a given input or perturbation of a
reservoir in RC can be interpreted as traversing a 3D search
space. The search space in the ASI has two dimensions, one
for each input, and a third dimension for frustration energy.
The origin will be defined as the polarized state, which is a
ferromagnetic ordering. This same ordering is then also the
net zero energy state, while other more frustrated states have
a higher net-energy. This paper uses directed graphs to enable
the traversal of such landscapes. The 2D plan of this topology
is then representative of all possible inputs and are exemplified
by figure 4 and 12.

Fig. 4: An ASI reservoir with a 11x11 diamond pinwheel
configuration as a directed graph. All possible spin states are
nodes, with inputs as transitional edges. The strongly regions
are coloured by size.

In a ”good” reservoir, the energy topology is characterized
by many attractor states, or regions in the search space. In the
ASI model, energy is required from an external perturbation
to traverse this topology. Input is then an external dependency
which may cause the ASI to confine to a region in the search
space. Thus, the effective size of the reservoir may vary greatly
depending not only on the encoding, but unfortunately also on
the input sequence, as seen in figure 5.
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Fig. 5: Input energy bias: the first input bits may confine the
effective reservoir size by traversing to one of two regions; A
or B. Note how this phenomena relates to figures 4 and 12.
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Although a reservoir should be tuned prior to measurement
of an ESB this paper proposes a more robust two-stage
approach where the ASI is “warmed up” through input to guide
the effective search space to a more representative energy
region, and then measured. The result is a measurement with
reduced input energy bias as the input is more decoupled from
the reservoir’s computing potential. To address this issue, the
paper covers two approaches to reduce this input energy bias.
The first is designing a set of engineered inputs defined in
section III-A, and the second is a A* search algorithm with
frustration as a heuristic in section IV-B.

The engineered inputs are inspired by Kolmogorov com-
plexity, to avoid compressed representations of the input
[7]. Kolmogorov complexity is not a tangible metric, but an
abstract concept of how complicated a program needs to be in
order to produce a series of bits. Take a set of nodes at a given

attractor saturation state as an example, and let each attractor
be an edge in a graph and each node a memory cell for storing
a single bit. In this scenario, one could represent infinitely long
input patterns with just a handful of states. However, if the
Kolmogorov complexity is high, the number of nodes in the
graph should be forced to organize in sparely connected linear
edge networks. See figure 6 for an illustration of how a poorly
chosen input can easily be represented by a small number of
states. In essence the engineered inputs attempt to increase
the Kolmogorov complexity, so that the reservoir transitions
involve as many states as possible. By having this property the
traversal should also mitigate getting stuck in certain regions
of the search space.
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Fig. 6: Two graph traversals with input 0101, leading to highly
variable state discoveries.

Once an ideal reservoir region has been identified, it is time
for the actual measurement. The ESB measurement process
can be summarized by applying persistent input patterns,
until the system spin states cyclically transition between a set
of attractors. This condition will be called cyclical attractor
saturation or saturation for short. The measured ESB will then
be the number of transitions between two such saturations. An
example of a persistent input pattern is “O1” which becomes
“010101...”. In Jensen’s work exploring RC in ASI [4] it
is demonstrated that ASI can, if tuned correctly, represent
complex finite state machines, where each set of spin state
orientations define a unique state. This result means that even
if a input pattern where to be persistently repeated, it does not
necessarily lead to an easily predictable state change. The spin
configuration might converge to a point attractor end state, or
cycle between many attractors. The perturbation mechanism is
further detailed in section III-B and IV-C and the measurement
is artistically illustrated in figure 7.
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Fig. 7: Measuring the ESB by difference of saturation.

¢
(0011)(0011)(0011 0011 0011 |(0011

px o* Buffer Size

In the context of a 3D search space with a frustration energy
topology it is natural that some regions are more intercon-
nected than others. Furthermore, given that input translates
to a limited energy budget for traversal, it is predicted that
traversal may get irreversibly constrained to certain regions.
This idea will be followed up in sections IV-A and IV-B.



[II. METHOD

The method below is void of numerical values for clarity,
see appendix B if this is of interest.

A. Generating the engineered input:

The method outlined below is a proposed way to engineer
the inputs sequences so that they are ideal for probing the
buffer. We create a number of input sets categorized by both
length and properties. The properties are: bracelet, mirror,
internal repetition, and density:

e Bracelet, B: Having the property of a mathematical
bracelet, is that no two strings from our input set can be
equivalent if rotated n times f.ex: R(1100) = R(1001).
Since input patterns are cyclically applied, a rotation may
cause a pattern to be similar to another pattern in the input
set.

e Mirror, M: Patterns should not be mirrors of each
other. Combined with other properties this may lead
to unintended effects, f.ex with the bracelet property:
B(001101) # B(001011) but combined with mirroring:
M(001101) = 101100 = B(101100) = B(001011).

o Internal repetition, I: This property is to avoid having
similar inputs across the sets of various lengths. With
internal repetition, the pattern may be indistinguishable
to a new cycle. Using **’ as a repetition symbol, f.ex:
(01)* = (0101)*

e Density, D: We balance the number of 0’s and 1’s
in a pattern. We argue this may reduce energy biases
from the input encoding, producing a more normalized
pattern selection. The concept is experimentally explored
in section IV.

See appendix C for an example of chosen inputs for an eight
bit pattern.

B. Defining and perturbing the reservoir:

Efforts have been made to find optimal computing param-
eters in ASI [11]. The 1’s and O’s are encoded in the same
fashion as this previous work; diamond pinwheel geometry,
time extrapolated with a triangle wave, with two orthogonal
vectors to represent each binary state, vector magnitude H,
and a rotation of H, degrees to break symmetry. The input is
externally applied as a global magnetic field. See figure 3 for
a visualization of the reservoir.

C. Control and generality:

The configuration of the reservoir is referred to as the
geometry. The experiment geometry was varied by size from
n to N, where the numbers represents the dimension of a
square magnet array. Note that instead of dimensioning the
square by the number of magnets, it is expressed in units of
diamond pinwheel instances. Conducting the experiment with
several reservoir sizes was to investigate if the method could
generalize over many types of topologies. See figure 3 for a
visualization of the geometry.

D. Surrogate models:

The experiments place the reservoirs in a graph theory
context, with nodes as the unique spin states a reservoir can
express, and edges as the input needed to transition between
these states. Furthermore, in order to decrease the compute
time, the reservoirs where fully mapped out in flatspin, and
then converted to surrogate models as easy to traverse graphs.
See figure 4 and 12. The parameters in section B were
chosen with care to get a deterministic system, that allows for
conversion from reservoir to static graph; a reservoir graph.

IV. EXPERIMENTS AND RESULTS

The overarching method proposed in this paper is a two-
stage process of reservoir calibration followed by measure-
ments for the calculation of metrics. The intention of experi-
ment IV-A, and I'V-B, are to calibrate a given reservoir before
measuring the ESB in experiment IV-C.

Calibration success was evaluated by its ability to maximize
the number of nodes and or edges, as they both are indicators
of a reservoirs upper limit potential. The number of nodes is
an upper limit for the reservoirs memory, while the edges are
an indicator of connectivity. The number of nodes and edges
are therefore indicative of ideal reservoirs, as mentioned in
section I.

A. Calibration with engineered inputs

From qualitative observation of various reservoir graphs, it
was noted that there were many strongly connected graphs
(SCG) appearing as sub-graphs in the reservoir graph. Fur-
thermore, the largest SCG’s in the reservoir graphs tended to
be at the extremities or leaves. This observation was verified in
all reservoirs graphs used for the experiments but is yet to be
rigorously verified in a larger topology search. Based on this
tendency, we examined these leaf SCG regions, characterised
by cyclic attractor state changes, or saturation. The SGC’s
can be calculated from the reservoir graph with algorithms
like Tarjan’s algorithm [12]. From the SCG node sets the
leaf SGC’s were identified by checking if it was impossible
to traverse out of a given SCG. It is important to note that
the traversal of the reservoir graph tends to be irreversible
over time; the directed edges of the graph tend to move away
from the original starting node. Since the larger SGC’s seem
to congregate near the leaf, one can expect the reservoir to
naturally stabilize after warming up, and confine traversal to
a certain region. As the first step of the proposed process,
calibration is meant to guide the reservoir to a superior SGC.

In this trial the engineered inputs, as defined in section III-A,
were combined in all possible property combinations, with
random strings representing the empty set combination. The
experiment was comprised of traversing the reservoir graphs
for each combination, and comparing the length of the path
before reaching one of the leaf SGC node sets. The input
length was chosen over a range to cover the various sizes of
the reservoir graphs. In the case where the inputs were too
short to reach the leaf SGC’s, a new sample was drawn with
identical properties, until any leaf SGC was reached. In the
cases where the traversal required more unique samples that



there exists in a set, the samples were randomly re-calculated,
and therefore indirectly re-used.
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Fig. 8: Preliminary results: Traversing to leaf SCG’s (the
bottom of the reservoir graph) using 12 bit concatenated
engineering inputs on a 15x15 ASI over 1000 trials. The
boxplot are sorted by median and have outlier suppression.

Over the various topology sizes it was evident that the
density (D) property in the engineered inputs tends to reach
the leaf SGC’s quickly compared to random inputs. From
figure 8 this is clearly illustrated by a significantly lower
median and variance for all property combinations with the
density property. This tendency was invariant to the reservoir
size each tested with over 1000 trials, and is therefore both
statistically significant and generalized. Within the groups that
have the density property, there is not a statistically significant
difference across the topologies, further indicating that density
is what contributes to their performance, and not their other
properties. Note that all combinations outperform random
inputs, regardless of density, with lower variance and median
values. This supports the original idea of inputs with greater
Kolmogorov complexity relative to random inputs with regard
to minimizing the pattern size needed for calibration.

The quality of the leaf SCG’s was measured in the number
of nodes or edges. From figure 9 there seems to be an ad-
vantage to using the MI and DMIB combination of properties
to find larger SCG’s. This pattern was not clearly established
across the various topologies. The number of edges or nodes in
the SCG’s produces similar plots. The rest of the combinations
seem similar to the random category, more or less ending up
in either SCG evenly.

The length of the concatenated components can be consid-
ered large or small relative to the average depth of the reservoir
graph. Note that their length in figure 8 and 9 was 12 bits.
This was chosen based on a compromise between a larger
sample size and preserving the properties of the engineered
inputs. If the bit size was small, then there would only exists
a few instances per set, leading to indirect re-use of a set to
reach a leaf SGC. With small bits the differences between
the engineered combinations and random tended to increase,
indicating that there is a scaling issue. If the bit size was too
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Fig. 9: Preliminary results: Number of nodes at SCG after

traversal, using 12 bit concatenated engineering inputs on a

15x15 ASI over 1000 trials. The graph shows the probability

split of which SCG the traversal gets confined to.
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big, then the all engineered inputs performed roughly equally
to the random inputs, with the exception of the combinations
that had the density property, which remained invariant to this
change.

B. Calibration with A* search:

The underlying hypothesis for this experiment is that highly
frustrated reservoirs have more possible spin states. If this
is true one could calibrate the reservoir with a less compu-
tationally expensive calibration relative to experiment IV-A.
The idea is to use the A* algorithm with frustration as the
guiding heuristic. This is composed of first investigating if
larger SGC’s have more frustration, followed by an evaluating
of the algorithm if the hypothesis is true. The heuristic will
be calculated as the sum of norms of the di-polar field
experienced by each magnet on the array. The di-polar field is
defined in [10] and represents the net force that neighboring
magnets exert on a magnet.

The first part of this experiment will be to produce a graph
similar to figures 4 and 12, but coloured by frustration levels
instead of SCG size.

C. Measuring the ESB with engineered inputs:

To measure the ESB, we first had to establish two attractor
saturation states to take the difference from. The first attractor
saturation state will be referred to as state o™ and the second
attractor saturation state will be referred to as state 5*.

We go on to define the termination condition for the
persistent input, as when the spin state, after a full pattern has
been applied, is part of a set of previously seen starting states.
This approach is valid because the model is deterministic, so
if the model starts from a state A, it will always end in a state
B after the same input pattern. Thus, the input termination
condition guarantees saturation; the model will never discover
additional states or break the transition patterns between thee
cyclic attractors. The average number of transitions between



two saturations will thus be a measure for the ESB, and
is artistically shown in figure 7. In these preliminary stage,
the beta pattern will be (01)*, just as in figure 7, so as
to ensure that the SCG measured will always be the same.
This also decouples this experiment from the other calibration
experiments while the approach is still under development.

It is predicted that the reservoir will respond differently to
various length inputs, implying that a given reservoir system
also has an optimal input size if the intention is to maximize
useful computation. The engineered inputs will therefore be a
sweep of lengths so that this prediction can be verified. Figure
10 illustrates how the number of input bits may influence the
ESB.

Optimal input length Bits

Fig. 10: Placeholder graph: Finding the input bit size that
produces the largest ESB

Furthermore, it is predicted that for each set of probing bit
lengths the ESB measurement will exhibit properties similar
to resonant frequencies in standing waves. Like a musical
pipe resonating with wind currents with certain velocities, or
harmonics, the bit length is predicted to resonate at certain
base frequencies, with higher frequencies being a multiple of
this base. Leveraging this behaviour, the buffer length that best
represents the system per bit length can then be identified
based on this standing wave behaviour. Specifically through
resonance at predictable intervals, seen as dips in the number
of cycles needed where the probe length of the input bits are
a multiple of the length of the ESB. These intervals and may
be mathematically described by modulo(p, b), where p is the
bit length of the probe and b is the bit length of the ESB.
This is artistically shown in figure 10 as two spikes, where
the first is half the ESB length, and the second spike is the
ESB length. Other fractional patterns are not accurately shown
in the figure, such as when the probe is one third of the ESB
etc.

Part of the experiment is also to see if the results are
invariant with regard to engineered input properties. It is pre-
dicted that the ESB will be more optimistic and representative
than random inputs. This is because the persistently applied
engineered inputs are predicted to take graph traversals visiting
more nodes than random input will. The same logic applies
to edges. This is based on the idea that the Kolmogorov
complexity will be higher, and deter the reservoir from re-
using edges and nodes. The point is that larger network
coverage should lead to a smaller probability of saturation,
and hence, a larger ESB. This idea is further discussed in
section II and illustrated in figure 6.
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Fig. 11: Preliminary results: Probing the reservoir graph with
12 bit engineered inputs on a 15x15 ASI over 1000 trials.
The cycles are the number of times the pattern was repeated,
while the percentage is the probability of a pattern meeting
the termination condition at a given cycle (defined in section
IV-C)

The results in figure 11 are preliminary, but show how
there are higher intensity around certain cycle values. These
intensities will be placed in the context of resonant frequencies
in standing waves to identify an ESB value for each bit length.
This is visualized in figure 10.

V. DISCUSSION

Preliminary results from calibration experiment IV-A indi-
cate that a balanced density property leads to finding SCG’s
quickly. On one hand, considering the high number of samples
and agreement in all the topologies, the result seems to
generalize. On the other hand, the results stem from one ASI
geometry, with the exception of the size variable. For instance,
in figure 8, it may be that this effect from the density property
is merely a consequence of the square geometry.

There is no clear indication as to the quality of the SCG
across the topologies in terms of nodes and edges, but for the
15x15 size setup the MI and DMIB combinations seemed to
help calibrate the reservoir to a region with more nodes and
edges. Generality is again a concern, take figure 9, the MI and
DMIB combinations may excel due to some other topology-
specific property as opposed to a generalized result. In the case
that this experiment shows that engineered inputs are not an
ideal tool for calibration, it is still useful, as it justifies the use
of random inputs in the calibration phase or other techniques
like the one explored in experiment I'V-B.

Note that the density property in the engineered inputs is not
invariant to scaling like the other properties and random inputs.
For example a long string may have many repeated zeros or
ones in a region, compared to a short string. By forcing a fixed
density, one is also setting the maximum distance between
each zero or one in a string. With random inputs however,



two samples may not necessarily constrain this maximum
distance. The length of the bit strings may therefore have
properties that are unaccounted for. Furthermore, the use of
the engineered properties are not rigorously justified beyond
attempting to emulate Kolmogorov complexity, but should
suffice for a preliminary investigation.

Calibration experiment IV-B, has been defined, but has not
yet been implemented. It will be interesting to see if the
method is suitable for finding SCG’s with high node or edge
counts.

In experiment IV-C, the ESB measurements are predicted
to reveal an optimal input length to perturb the reservoir. This
is only possible however if an exact method for identifying an
ESB per input length is defined. From fig 11 the chances of
getting 3 cycles is the highest. The next step is to see if there
are resonant frequencies for a sweep of bits, to see if a standing
wave model is valid for predictions, and ultimately identifying
an ESB. This is artistically illustrated as a placeholder in graph
10.

Note that method outlined in experiment IV-C for capturing
the ESP might not be the best way considering that the
ESB is a probabilistic distribution and outlines a metric with
dependency on the inputs. For example, the ESB is a function
of the engineered input, and assumes inputs have a certain
discrete length. Another route would be to focus on the
SCG’s with graph focused metrics such as connectivity, or
von Neumann entropy. Such an approach could decouple the
metrics from inputs, but seems like a less direct measurement.
Going forward, both of these approaches will be employed as
part of the investigation.

VI. FUTURE WORK

One of this thesis hypothesis are that the the largest SCG’s
are at the leaf nodes of the reservoir graphs, based on empirical
observations. A more extensive investigation is required to see
if this is a generalized trend, or what conditions are needed
for this to be true.

Once a robust method has been developed for measuring
the ESP, it will also be necessary to experimentally verify if
the metrics can be used to solve real problems with varying
spacial complexity demands. This includes checking if the
ESB metric, or other metric for measuring the ESP, can predict
success.

Furthermore, it is equally important to understand the un-
derlying mechanisms that determines the size of a SCG, both
in the spirit of science and being able to manipulate the buffer
to fit the needs of an application.

The most obvious way to tune a reservoir in an application
focused context, is through its geometry. Note that there is an
indirect, but practical, outcome of the calibration approach;
The work may be used to guide research focusing on the tuning
of reservoirs with input. Once the foundations for calibration
with input have been better understood, they may lead to novel
methods for reservoir optimization.

Most importantly, for the credibility of future results for this
thesis, the proposed two step method for measuring the ESP
will need to be applied to a survey of geometries in ASI. In

the long term it would also be natural to expand these test to
reservoirs in other mediums.

VII. CONCLUSION

The proposed two stage method involves calibration, fol-
lowed by the measurement of the ESB as a metric for the
ESP. Two stages are proposed, because through calibration,
the metrics can capture the ESP in a more objective way,
considering that the reservoir graph can confine traversal to
regions of the graph with greatly varying properties.

Preliminary results reveal that balanced density inputs may
lead to rapid calibration, but that engineered properties for cal-
ibration for achieving large node or edge counts in the SCG’s
is still unclear. The frustration based calibration approach with
A¥* has not been implemented. The actual measurement of the
ESB after calibration has also not been completed, but early
experiments have been conducted, which will be used to verify
if the method has potential.

A strong theoretical foundation has been established, as well
as the development of tools needed for exploring the proposed
approach. Most importantly this includes the literature search
grounding the theoretical discussion, well defined experiments,
and an understanding of the ASI model with flatspin.
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APPENDIX A
DEFINITIONS AND GLOSSARY

ASI - Artificial SI (simulated material)

A* - The heuristic search algorithm

Bracelet - A string of 0’s and 1’s connected in a circle
Cycle - A full impression of a pattern on the reservoir
SI - Spin Ice (material)

SCG - Strongly connected graph

EML - Extreme Machine Learning

ESB - Echo state buffer

ESP - Echo state property

ESN - Echo State Network

Pattern - A unique string of 0’s and 1’s

Saturation - Cyclic attractor state condition

APPENDIX B
EXPERIMENT PARAMETERS

The magnet geometry parameters are tuned to produce a
rectangular stadium-shaped magnet, as used in [11]. Their
geometrical meaning is defined in [10]. Note that the grid
size is the number of geometry instances on the grid, not
the number of magnets; f.ex. number of pinwheel instances.
Consult flatspin’s documentation for more parameters default
to the PinwheelSpinlceDiamond class, which were used for all
experiments, and not listed below. To ensure the system was
deterministic for experiment control a random seed was set as
well as a deterministic flipping mechanism for the magnets.

Parameter Value Comment
Gg [10:15]  dimension of grid (geometry instances)
Gm 220 magnet count on array
H; 78mT input field strength
H. 200mT  coercive field strength
H, 7 anti-clockwise rotation of global field vectors
M, 220nm  length of magnets
My, 80nm width of magnets
My, 20nm height of magnets
Mq 1.02e-3  spacing of magnets (dipolar coupling strength)
b 0.41 magnet geometry parameter
c 1.0 magnet geometry parameter
B 1.5 magnet geometry parameter
o 39 magnet geometry parameter
random_seed 0 random seed for flatspin++
flip_mode max flipping mode in flatspin




APPENDIX C
INPUT GENERATION

Below is an example of generating inputs with the properties
DMIB. In column B are the unique bracelets for 8 bits. The
balanced density patterns are in column Bjg and, in some
cases, have been shortened due to internal repetition. Only the
inputs of length 8 in column By are valid for use as part of
the 8 bit subset of the engineered inputs due to the I property.
The M property has in this case been covered by the stricter
B property.

B Bso

1 -
o1111111 -
oor111tr - -
o1o111ir - -
o1101111 -
o111o11r - -
0oo11111r - -
oo1o01111 -
ooriortr - -
olo10111 -
o1o11011 -
00001111 00001111
00010111 00010111
00011011 00011011
00100111 00100111
00101011 00101011
00101101 00101101
00110011 0011
01010101 01
00000111 -
00001011 -
00010011 -
0oo10101 -
00100101 -
00000011 -
0oooo101 -
00001001 -
00010001 -
00000001 -
00000000 -




ol
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