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Abstract

In order to keep achieving higher performance and throughput, computers nowa-
days trend towards employing an increasing number of processing units. The
modern hardware architecture demands horizontal scalability by applications and
systems wanting to operate most efficiently. Within the ability to scale horizon-
tally lies the ability to operate concurrently, and in parallel. Database manage-
ment systems (DBMSs) are complex systems with a rich history, always seeking
to improve in ways that allows most efficient management of data, and handling
of requests. For the purposes of speeding up the very common DBMS task of
retrieving records in response to certain search conditions, additional auxiliary
access structures, called indexes, are created and made use of. The B/B+-tree is
a commonly used database index structure, with origins dating all the way back
to 1970, a time when most computers only had a single processing unit. There
are many attempts at making this structure better fit for the modern hardware
architecture, e.g. [1]–[5]. These attempts are varied in approaches and techniques
applied.

This master’s thesis makes its own attempt at parallelizing the already estab-
lished access methods of the B+-tree. The parallel B+-tree implementation is
sustained in-memory, makes use of a thread pool design pattern, and supports
batch processing of operations grouped by type, as well as so-called single key
operations. Futhermore, Bloom filters can optionally be enabled and essential
variables, such as order, the number of threads, and the number of base B+-trees,
can be configured.

The results obtained when comparing the parallel B+-tree implementation against
a single threaded B+-tree basline, show that opting to leverage parallel processing
capabilities will only ever be worthwhile, if the degree of parallelism is sufficient,
and the cost induced by task creation and managment becomes negligible com-
pared to task execution time. This motivates the use of parallel batch processing,
and application of cost-benefit analysis to determine when to execute in paral-
lel.
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Sammendrag

For å kunne fortsette å oppnå stadig større ytelse og gjennomstrømning, benytter
datamaskiner i dag et økende antall prosesseringsenheter. Den moderne maskin-
varearkitekturen krever horisontal skalerbarhet av applikasjoner og systemer som
ønsker å operere mest mulig effektivt. Det å kunne skalere horisontalt innbefat-
ter også evnen til å operere samtidig, og parallelt. Databasehåndteringssystemer
(DBMSer) er komplekse systemer med en rik historie, samt en konstant søken
etter forbedring på de områdene som muliggjør mest mulig effektiv håndtering av
data, og behandling av forespørsler. Med det formålet å forbedre responstiden på
den vanlige DBMS oppgaven som går ut på å få tak i poster som tilfredsstiller visse
søkebetingelser, opprettes og benyttes supplerende behjelpelige tilgangsstrukturer
kalt indekser. B/B+-treet er en ofte brukt databaseindeksstruktur. Denne struk-
turen ble først introdusert i 1970, en tid da de fleste datamaskiner bare hadde
en enkelt prosesseringsenhet. Det finnes mange forsøk på å tilpasse og modifisere
B/B+-treet slik at samspillet blir best mulig i møte med den moderne maskin-
varearkitekturen, f.eks. [1]–[5]. Disse forsøkene er varierte både i tilnærming og
teknikker benyttet.

Denne masteroppgaven gjør sitt eget forsøk på å parallellisere de allerede etablerte
tilgangsmetodene til B+-treet. Implementasjonen av det parallelle B+-treet som
presenteres opprettholdes i minnet, benytter “thread pool” designmønsteret, og
støtter batchprosessering av operasjoner gruppert etter type, så vel som enkelt-
operasjoner. Dessuten kan Bloom-filtre valgfritt benyttes og essensielle variabler,
som den øvre grensen av en nodes antall barn, antall tråder, og antall vanlige
B+-tree, konfigureres.

Resultatene som ble oppnådd på bakgrunn av å sammenligne ytelsen til den
parallelle implementasjonen av B+-treet, og grunnlinjen etablert av det vanlige
B+-treet som kun benytter en enkelt tråd, viser at beslutningen om å velge å ut-
nytte tilgjengelig parallell prosesseringskapabilitet, bare vil være verdt det dersom
graden av parallellitet er tilstrekkelig, og kostnaden indusert av oppgaveoppretting
og håndtering blir ubetydelig sammenlignet med oppgaveutførelsestiden. Dette
motiverer bruken av parallell batchprosessering og bruk av nytte-kostnadsanalyse
for å beslutte når parallell utførelse skal foretas.
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Chapter 1
Introduction

In 1965, Moore’s law [6] was introduced. It simply states that the number of
transistors on a dense integrated circuit doubles about every two years. For those
concerned with data technological advancements, and the ones wanting to get
the most out of their computers, the law for a long time yielded a simplistic
solution to problems only solvable by use of more processing power; wait for
some time, and then exchange the central processing unit (CPU) for a more
powerful CPU, once available. However, in the modern day and age Moore’s law
does not seem to keep up [7]. The decline has been known to come sooner or
later, seeing as, after all, there is a hard physical limit on how small a integrated
circuit’s architecture can become. Emerging from the realisation of the decline,
is the realisation that further performance improvements must largely be driven
by horizontal scaling. Thus, the modern hardware architecture employes multiple
processing units, and facilitates for high degree parallelism, in order to further
increase computer performance.

A database management system (DBMS) must also adapt to the modern hardware
architecture in the best ways possible. The management system will deal with
a lot of different tasks to manage the data it stores. Although these tasks are
diverse, the DBMS always tries to complete them efficiently. In this process a
index is often involved. Many of the traditional index designs which the DBMS
might rely on, were invented and first designed a long time ago. A time when
parallel processing was not widespread at all. One of these indexes is the B+-
tree. Its properties as a single entity is well-known, but when it comes to using
the structure in a parallel processing environment, less is known about the ideal
adjustments to make, and the ideal techniques to employ. Of course, commercial
DBMSs are among the entities utmost interested in index structure performance,
and therefore they continuously try to improve on designs and implementations,
but as is often the case with commercialization, there seems to be some secrecy
involved in their works.

1



2 Chapter 1. Introduction

Motivated by the modern hardware architecture’s demand on horizontally scalable
designs and implementations, this master’s thesis aims to study some of many
potential adjustments that can be made to the classical B+-tree index, in hopes
of effectively utilizing available parallel processing capabilities.

1.1 Research goals

The following research goals, formed on the basis of the introductory background
and motivation, have been established to set the master’s thesis scope:

1. Implement a standard, memory-resident B+-tree.

2. Design and implement a parallel B+-tree. That is, a version of the B+-tree
with parallelized operations.

3. Carry out performance evaluation of both B+-trees operations.

4. Compare the two, and in doing so identify bottlenecks and potential for
improvement of the parallel implementation.

5. Evaluate the parallel implementation’s suitability and potential in the mod-
ern computing environment.

1.2 Limitations

Some limitations constraining a project or thesis will always be present. In this
regard it should be noted that the master’s thesis has a timeframe of 20 weeks.
This of course implies that the workload undertaken is confined by the timeframe.
To avoid unneccessary diversions, keep the thesis consistent, and produce a thesis
report that digs deep into certain aspects, the chapters concerning implementation
and results (i.e. chapter 3 and chapter 4), thus focuses on a particular index
structure, namely the B+-tree. Even though, as is stated during the end of
section 5.2, it would in its own right be interesting to examine and attempt
parallelization of other classical index structures.

Furthermore, the specific results obtained pertain to the context in which they
were achieved. What is meant by this is that the diversity of computer configu-
rations, both in terms of hardware and software, will to the greatest extent affect
the results obtained. Nevertheless, an effort has been made to implement the
baseline B+-tree and the parallel B+-tree, such that their relative differences are
preserved accross different architectures which have parallel operability. Among
other things, this is done by use of the C++ programming language, which is
CPU architecture dependently compiled.
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1.3 Thesis structure

The remaining chapters that are to be presented, revolves around the following
topics and themes:

• Chapter 2: Background

Presents background information covering three key topics: index struc-
tures (what they are, their nature in general, and coverage of different
types), parallel programming (the idea, some distinctions, how it works,
and its potential), and concurrency mechanisms (the mechanisms allowing
for coordination and cooperation during stages of parallelization requiring
mutual exclusion). Additionally, some related work is presented at the end
of this chapter.

This chapter should establish common ground, as the reader is provided
with general knowledge of the domain explored in this master’s thesis. The
chapter is foundational, in that it makes the thesis’ undertaking more un-
derstandable, as well as makes the reader better equipped for reading the
ensuing chapters which dives deeper into certain aspects of parallelization
through hands-on implementation and evaluation.

• Chapter 3: Implementation

Describes and details the thesis’ programming work and development. A
standard B+-tree index has been implemented. Furthering this work, the
standard B+-tree implementation has been used as the core of a parallel B+-
tree design and implementation. The parallel implementation parallelizes
all operations in two distinct modes, termed single key operation mode and
batch operation mode.

• Chapter 4: Results and Discussion

Evaluates performance of the parallel B+-tree implementation in various
configurations. Throughput measured in operations per second is used as
the main performance evaluator, and comparison is done against represen-
tative single threaded B+-tree baseline configurations. The results obtained
are analyzed and discussed. Bottlenecks are identified and potential solu-
tions proposed. Supporting the performance measurements and the behav-
ior observed, the reader will find a profiling section, containing detailed
profiling results of two specific, representative of low and high performance,
parallel B+-tree runs.

• Chapter 5: Conclusion and Future work

Concludes the thesis’ by summarizing its work and key findings. Further-
more, some future work originating from the thesis’ entirety is put forward.

Some project work revolving around the same themes and topics as this master’s
thesis, was finished by this thesis’ author during fall of 2021 [8]. This master’s the-
sis is a continuation of the preceding body of work. Whereas the preceding project
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work lays the groundwork for this master’s thesis, first and foremost through lit-
erature study and practical domain exploration, the master’s thesis expands and
continues the work by presenting a complete parallel implementation, doing more
structured analysis and evaluation of results, as well as improve and present the
believed most relevant background knowledge and related work. The introduc-
tory parts of chapter 1, together with chapter 2, takes the most inspiration from
the preceding project work, and it is thus fitting to accredit them as being loosely
based on their respective, counterpart chapters found in [8].



Chapter 2
Background

This chapter serves to provide sufficent theoretical knowledge within the realm
of index structures and parallel programming. Additionally, a selection of related
work will be presented.

2.1 Index structures

What is a index, and what is its purpose? Well, data records will get stored in
some form of primary organization, say unordered, ordered, or hashed. An index
is an additional auxiliary access structure that has the main purpose of speeding
up retrieval of records in response to certain search conditions [9, p. 601]. These
secondary access paths will not affect the physical placement of the data records
on disk, but will enable efficient access to relevant records based on the indexing
fields used to create the index. Despite there being some overhead associated
with the creation and usage of an index, intelligent construction of indexes based
on identified common access patterns, will in general improve the performance of
a DBMS. Indexing structures are varied and come in a lot of different configura-
tions. For example there are single-field and multi-field indexes, single-level and
multi-level indexes, primary key and secondary key indexes, clustered and unclus-
tered indexes, and numerous other categories which one could describe indexes
by.

Throughout the years a multitude of different index structures have been pro-
posed. This section gives an overview over some of the most prominent ones that
continue to see widespread use, both in DBMSs and file systems.

5
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2.1.1 B-tree

The B-tree [10] is one of the most well-known index structures. It was invented
in 1970 as a generalization of the binary search tree, thus allowing for nodes with
more than two children. The nodes of a B-tree contains data records consisting
of the index key and its associated value(s). The keys of an internal node are
sorted in ascending order. Between the keys, pointers to nodes at the next level
are present. These keys in conjunction with the pointers guide searches through
the tree by acting as seperation values. For example if we are searching for the
data record with key k, we follow a pointer in an internal node if k1 < k < k2,
where k1, k2 are the keys on both sides of the pointer, and k2 > k1.

The order (branching factor) of the B-tree represents an upper bound on the
allowable number of children an internal node can have. Conversely the degree
of the tree represents a lower bound on the number of children an internal node
can have. The only exception to the lower bound is the root which has at least
two children if it is not a leaf. As formalized in [11], a B-tree of order m is a tree
that satisfies the following properties:

i) Every node has at most m children.

ii) Every node, except for the root and the leaves, has at least dm
2 e children.

iii) The root has at least 2 children (unless it is a leaf).

iv) All leaves appear on the same level, and carry no information.

v) A nonleaf node with k children contains k − 1 keys.

The only point that might need elaboration is the one specifying that leaves carry
no information. Leaves as defined in this source may by other authors be viewed
as the internal nodes one level above. In essence what is considered information by
this source is the information garnering the location of a record’s final destination,
as localized by the key, in the index structure. Thus, since the search terminates
in a leaf node, if reached, there is no more information to be found here. Viewed in
another way: no search path follows through a leaf. Figure 2.1 shows an example
of the B-tree structure.

12

4 6 9

1 2 3

5

8

10 11

19

30 42

33

50 55

Level 0: Root

Level 1

Level 2: Leafs

Figure 2.1: Example structure of a B-tree with order m = 4.
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At last it should be mentioned that the structure has both average and worst
case time complexity of O(log n) for operations such as insert, delete and search,
and with regards to space complexity the structure performs linearly O(n) for
both average and worst case. The structure’s maintained sorted order of keys
makes sequential traversing easy and the B-tree fit for applications having access
patters with reads and writes of large chunks of data with high locality. Accord-
ingly the B-tree has commonly been used in general purpose databases and file
systems.

2.1.2 B+-tree

When it comes to implementing and using a dynamic multilevel index, such as the
B-tree, most systems actually use a variation of the B-tree known as a B+-tree
[9, pp. 622–630]. This variation differentiates itself from the standard B-tree by
using a different structure for internal nodes and leaf nodes.

In the B-tree every key occur once along with its associated value(s), whereas
in the B+-tree all keys and their value(s) are stored in the leaf nodes. In the
B+-tree internal nodes hold copies of the keys in the leafs to guide search in the
same manner as the B-tree. Storing only keys in internal nodes has the benefit of
reducing the I/O cost when operating on the index. This is because more of the
nodes used for search can be present in main memory. Additionally the B+-tree
links the leaf nodes together, either as a doubly linked list or a singly linked list,
to even more effectively support broad range queries. The average case insert,
delete and search for the B+-tree is the same as for the B-tree, namely O(log n),
and the average space complexity preserved alike, that is O(n). Figure 2.2 shows
an example of the B+-tree structure.

60

19 43

10 12 15 19 22 43 55 58 60 62

66

66 67

Level 0: Root

Level 1

Level 2: Leafs

Figure 2.2: Example structure of a B+-tree with order m = 4. In
this case the leaf nodes are doubly linked.

2.1.3 Hash index

Hashing is a technique with many different areas of application. The concept of
hashing bases itself on the usage of a hash function. That is, a function that takes
input of arbitrary size and maps it to a domain of fixed-size values. In the case
of an index we define the hash function, h(k), where k ranges over the search key
values to be indexed [9, pp. 633–634]. To create the index the data records are
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iterated over and each record placed in the bucket given by the hash of its key.
Buckets are made up of pages of fixed size, as such overflow chains are possible.
This means that if a page becomes full, we link this page to a new page and
continue inserting records at this location for a given hash mapping. The hash
index is fairly lightweight since it only contains data pointers to storage locations
for the hashes that it has digested during creation and subsequent inserts, in
addition to the hash function itself.

To retrieve a record given its key value k, we simply evaluate h(k). h(k) gives
the location of the record’s bucket. We retrieve the bucket and search through it
until we find the record we are looking for. What should become apparent is that
the hash index will perform best, in terms of I/O cost, for single key lookups in
a hash index that is constructed on a key that gives limited amounts of overflow
chains. With a proper hash function locality of data is not preserved making
range queries highly inefficient. With regards to time complexity, insert, delete
and search operates at the order of O(1) average case, and O(n) worst case. Space
complexity is similar to that of the B-/B+-tree, that is O(n).

2.1.4 R-tree

Multi-dimensional data brings about problems for well established index struc-
tures such as the B-tree. Geographical coordinates is one type of such data. A
B-tree will not easily accommodate spatial access methods in the form of queries
such as “Locate all hiking destinations that are between 5 and 10 km away from
my current location”, the R-tree [12], however, will.

The R-tree resembles the B-tree in many ways. Both the R-tree and B-tree are bal-
anced search trees using pointers to navigate to the next level. The R-tree’s struc-
ture however, consists of minimum bounding boxes (MBBs) which groups together
nearby objects. In the case of two dimensions a MBB is called a minimum bound-
ing rectangle (MBR). This is in fact where the tree gets its name from; “R” for
rectangle. A MBR is defined by four coordinates: minx, maxx, miny, maxy.

The R-tree expresses the maximum extents of the objects that lies within it. Con-
versely this means the smallest rectangle that encompasses all required objects.
It should be noted that the construction of an R-tree is non-deterministic, and its
performance reliant on a good tree structure. The leaf nodes of the R-tree con-
sists of MBBs containing single objects and a parent MBB encompasses all child
MBBs. As such there is a guarantee that if a query does not intersect two MBBs,
none of their contained objects can intersect. This is the property that makes
the R-tree efficient when faced with queries concerning nearest neighbor searches,
containment and intersection. An example R-tree is shown in Figure 2.3.
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Figure 2.3: An R-tree with order m = 3 constructed from 2D
rectangles.

2.1.5 LSM-tree

Yet another tree-based index structure is the log-structured merge-tree (LSM-
tree) [13]. It stores key-value pairs in a way that makes it excel under write-heavy
workloads. The tree is structured into a set of components where one of these
components is kept in-memory and all others on-disk. Append of new records
are done to the in-memory component until it reaches its maximum size. Upon
reaching maximum size the entries are flushed and merged into the next compo-
nent through a rolling merge process. Updates can be done to the in-memory
component in-place, whereas updated to on-disk components are performed out-
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of-place. What makes the LSM-tree optimized for write-heavy workloads is the
batching of records in main memory. When a certain batch is merged into the on-
disk component, sequential writes are utilized to effectivly update the structure.
The rolling merge process can be found illustrated in Figure 2.4.

C1 tree C0 tree

Disk Memory

Figure 2.4: Depiction of the LSM-tree’s rolling merge process. Fig-
ure made to look like the original presented in [13].

2.2 Parallel programming

This section describes the concept of parallel programming and takes a look at
some important distinctions. Main sources for both subsection 2.2.2 and subsec-
tion 2.2.3 are [14] and [15].

2.2.1 The idea of parallel programming

The idea of parallel programming is in essence simple; distribute the workload
among many workers, get the job done faster. The problems arise when trying to
do this in an effective, maintainable and scalable way. Preventing simultaneous
access to a shared resource, so-called mutual exclusion, becomes important. A
program must be divided into independent task in a time-efficient manner and
producers and consumers of such tasks must work together in harmony. The
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saying “too many cooks spoil the broth” is often applicable in the context of
parallel programming.

Although there are challenges to overcome when trying to parallelize a program,
there are also rewards to be reaped by those who succeed. For example graphical
processing units (GPUs) heavily rely on single instruction multiple data (SIMD)
parallel processing (as well as single program multiple data (SPMD)) to quickly
transform thousands or millions of verticies in the same way [16]. This has in turn
made GPUs leading in applications such as video processing, artificial intelligence
and gaming.

Also in the world of databases parallel programming has contributed to perfor-
mance increase. An example is [17], which lists parallel execution as a way to
optimize performance in an Oracle Database deployed on a system with all of the
following characteristics:

• Symetric multiprocessors (SMPs), clusters, or massively parallel systems.

• Sufficient I/O bandwidth.

• Underutilized or intermittently used CPUs (for example, systems where
CPU usage is typically less than 30 percent).

• Sufficient memory to support additional memory-intensive processes, such
as sorts, hashing and I/O buffers.

When looking at index creation in major database systems (specifically Oracle
Database and PostgreSQL), it holds true that there is support for index creation
in parallel [18], [19]. However, none of the documentations listed make mention of
general bottlenecks when creating indexes in parallel, or elaborates in extensive
detail on inner workings of this operation.

2.2.2 Concurrency vs. parallelism

Concurrency and parallelism are terms decribing similar concepts, but they most
certainly differ. Parallelism in the current context describes the process of running
multiple copies of the same program simultaneously, but executing those programs
on different data. For example, parallelism can be used to print the words of a
document having two pages by starting two copies of the read-and-print program
and giving each copy one of the pages. During execution the programs will not
have to communicate with each other, but they are both running, executing the
same task independently of each other, in parallel.

On the other hand we have concurrency. Concurrency in this context describes
the process of running multiple copies of the same program simultaneously while
communicating with each other. The executing programs will overlap in task exe-
cution and thus communication is neccessary. Using the same document printing
example, we would be doing concurrent programming if we were to print the doc-
ument by having each copy of the program start in either end of the document
and print words until they met in the middle. The copies would print words at
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the same time, but they would need access to a shared memory location as to
know when to stop and not pass each other unknowingly. Figure 2.5 illustrates
the difference.

With parallel programming the primary goal is most often to improve throughput
through means of employing more workers, whereas concurrent programming is
more concerned with handling the complexity of a potentially non-deterministic
control flow. Concurrency is often simply viewed as running and completing
tasks at the same time, but not necessarily running the tasks at the same instant.
Concurrency in task execution can be achieved on a singlecore processor, but true
parallelism requires a multicore processor.

Figure 2.5: An illustration showing the difference between concur-
rent operation and parallel operation. Source: [14].

2.2.3 Multithreading vs. parallelism

In the same way that concurrency and parallelism often get mixed up, so do
multithreading and parallelism. Multithreading is the technique that allows for
concurrent execution of two or more parts of a program by effective utilization of
the systems CPU(s). In other words, multithreading is the technique of dividing
a program into threads. The threads might be run in parallel, but it is not
neccessary. In certain programming scenarios it might make perfect sense to
structure a program through means of creating threads. However, if one runs the
program on a single core machine, then one is simply doing multithreading and
not achieving parallelism.
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2.2.4 Parallelism at different levels

Following up on the contents of subsection 2.2.3 is a brief summary of the mapping
models that should be considered when creating a thread at the user-level. A
programming language that has some form of a thread application programming
interface (API), will at some point in time have to map those threads to kernel-
level threads for execution [20, pp. 183–190]. Invoking a function at the kernel-
level differentiates itself from the user-level in the way that an actual system call
to the kernel will be issued upon invocation. The underlying operating system
(OS) and hardware architecture will dictate this mapping. Its important to note
that true parallelism is only achieved if the kernel utilizes multiple threads spread
accross different cores during program execution.

The different mapping models between user- and kernel-level threads are illus-
trated in Figure 2.6. The alternatives are:

• Many-to-one: All user-level threads execute on one kernel-level thread.

• One-to-one: Each user-level thread execute on its own kernel-level thread.

• Many-to-many: For a given number, n, user-level threads, m kernel-level
threads are allocated for execution of these.

• Two-level: Same as the many-to-many model, but certain user-level threads
maps to single kernel-level threads, allowing for one-to-one execution in
these instances.

As should be clear from examining these models is that all models are able to
parallelize a single process’s tasks, in the form of threads, on a multicore system
architecture, except the many-to-one mapping model. In this model the kernel
simply views the process to which the user-level threads belong as a single unit
that occasionally makes system calls when the kernel-level thread is executed.
Traditional UNIX implementation favors the mapping one-to-one as stated in
[20, p. 188].

Two-levelMany-to-manyOne-to-oneMany-to-one

User-level
threads

Kernel-level
threads

Figure 2.6: Different thread mapping models available between
user- and kernel-level threads.
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2.2.5 Speedup potential and fallpits

As one gains access to parallel processing resources, and starts to realise its po-
tential, there are some fallpits and fundamental relationships one should be aware
of. Amdahl’s law [20, pp. 190–195] objectivly states that the speedup one can
hope to achive when moving from a single core processor to a multicore processor
and enabling parallelism, is dependent on the code that is inherently serial:

Speedup = time to execute program on a single processor

time to execute program on N parallel processors
= 1

(1− f) + f
N

Here f denotes the fraction of code that is infinitely parallelizable with no schedul-
ing overhead. Thus, (1− f) denotes the inherently serial code fraction. Drawing
a graph, as is done in Figure 2.7, illustrates that even a small portion of serial
code will severly degrade the achivable performance. The law does not take into
account additional communication, distribution and cache coherence costs, fur-
ther degrading performance at a certain level of processors in use, if not carefully
dealt with.
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Figure 2.7: Amdahl’s law.

The law on its own might give rise to some worries for those dealing with attempts
at speedup by parallel execution. However, as with all findings and attempts at
simplistically explaining reality, the law has undergone criticism. As eloquently
pointed out in a blog post [21]; the applicability of Amdahl’s law depends on how
well the workload fits the programming model assumed by the law’s model. How
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the critical code sections are structured, and how the tasks are scheduled and
executed on the architecture, will determine resulting performance even in pres-
ence of serial thread execution. For example in the producer-consumer scheme, a
single producer will only become the cause of a bottleneck if it cannot feed the
consumers quickly enough.

2.3 Concurrency mechanisms

In order to achieve concurrency in operation, and parallelism therein, it is common
to make use of a handful of standardised cocurrency mechanisms. Such mecha-
nisms could have hardware support, but this section describe the most common
OS and programming language mechanisms, due to them being most relevant
here. All the mechanisms to be described have in common that they can be used
to achieve mutual exclusion and enable synchronization between threads. [20,
pp. 244–270] is the main source used for the mechanisms described.

2.3.1 Semaphore

The semaphore was first introduced by Dijkstra in 1965 [22]. The idea is to use a
integer value to communicate between processes or separate execution contexts.
To do so, three atomic operations are permitted on the integer value: initialize,
decrement and increment. Initializing the semaphore means setting the integer
value to a value of 0 or more. The value chosen at this stage represents the
number of threads allowed to immediatly continue after their decrement test have
been issued on the semaphore. The decrement operation on its side is used to
test entry to the guarded code section. If the integer value becomes negative
by a thread issuing a decrement operation, the thread is blocked, otherwise the
thread is allowed to continue on. The increment operation is the opposite of the
decrement operation. When issued, the semaphore integer value is incremented,
having the following consequence: if the resulting integer value is less than or
equal to zero, then a thread that has been blocked by a decrement operation, if
any, is unblocked.

The semaphore description given above is often called a counting semaphore. A
more restrictive semaphore definition is that of the binary semaphore which makes
the integer value only allowed to be 0 or 1. In any case, using a semaphore to
guard resources means that the code section requiring access control is primitivly
guarded without knowledge of which resources are available, only how many are
free. Furthermore, semaphores can be classified as either strong or weak based
on the policy used to select the next candidate from the blocked queue upon
unblocking. If a policy (e.g. first-in-first-out (FIFO)) exist then the semaphore is
strong. Otherwise, if a policy is not present, the semaphore is weak.
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2.3.2 Mutex

The mutex, or mutual exclusion lock, is a similar concurrency mechanism to the
binary semaphore. It distinguishes itself from the latter by requiring that the
actor changing its value to 0 (locking the lock), must be the one to set its value
back to 1 (unlocking the lock). In many programming languages implementation
of the mutex, we find that the implementation contains two mutex variations;
one allowing for unique access, and one allowing for shared access, to the resource
they protect. This is in turn recognizable as the well-known access pattern scheme
comprising use of unique writer locks and shared reader locks.

Thread 1 Thread 2Time

Lock

Mutex

Lock

Unlock

Lock

Resource

(1)

(2)

(3)

(4)

Figure 2.8: The mutex concurrency mechanism in action.

When a mutex blocks a thread from entering, the blocking mechanism is com-
monly implemented using the spinlock policy. With such policy, the blocked
thread will execute a busy waiting loop that polls the availability of the lock.
This means that resources are tied up in a busy wait state. Another option is
to make use of a interrupt-based policy. Doing so requires an additional sleep-
queue, but has the benefit of not constantly scheduling the thread for execution
only to check state. Favorably, if blocking is known to last for a prolonged time
period, the process managing the blocking thread should block the thread at the
user-level as to not block the entire process.

Figure 2.8 shows how a mutex can be used to guard a shared resource. At (1)
Thread 1 wants access to the shared resource. It attempts to lock the mutex. The
operation is successful, thus granting Thread 1 access to the resource. Moving on,
at (2) Thread 2 also wants access to the resource. Thread 2 does not know that
Thread 1 is already accessing the resource when it issues its lock command on
the mutex. The mutex rejects Thread 2, putting it to sleep if the blocking policy
is interrupt-based. When Thread 1 finishes its work with the resource it issues
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unlock, which can be seen at (3). Upon the mutex being unlocked by Thread 1,
Thread 2 is awakened. Thread 2 immediatly issues the lock command and gains
access to the resource. This is seen at (4).

2.3.3 Monitor

Even though the concurrency mechanism described thus far provide sufficient
access control if utilized correctly, certain cases require better maintainability.
Scattering increment and decrement operations throughout code, or locking with-
out appropriate naming conventions, is likely to lead to code that is both hard
to read and maintain. This is what motivated the monitor’s creation. It was
first introduced by Hoare in 1974 [23]. Hoare’s definition of the monitor is the
one to be described here, although it should be mentioned that alternate models
of the monitor exist, e.g. Mesa monitor using notify and broadcast operations
[24].

In essence the monitor is an all-encompassing structure that can be applied such
that it locks entire objects at the programmers discretion. The structure is char-
acterised by three properties, of which the first two are easily implementable in
object-oriented programming languages:

• The monitor’s procedures are the only procedures that can be used to gain
access to the local data variables.

• Any process wishing to gain access to the “object” guarded by the monitor,
enters the monitor via one of the monitor’s procedures.

• The monitor should function such that only one process is allowed to execute
inside it at any time.

Placing a shared resource within a monitor guarantees mutual exclusion if the
monitor abides by these points. Additionally, synchronization mechanisms are
provided such that blocking, waiting, and transfer of access can happen. To do
so condition variables are in use. An overall view of the monitor’s structure is
shown in Figure 2.9. The cwait and csignal operations are the once used to
manage the condition variables.

2.3.4 Message passing

Message passing is the last concurrency mechanism described in this section.
In the current context, message passing is used to provide communication and
synchronization between threads and/or processes. As a general technique, mes-
sage passing can be found implemented in multiple different environments, e.g.
distributed system as well as centralized systems having uniprocessor or multi-
processor architecture. There are many different configurations enabling message
passing, but all of them, in some way or another, needs to define a pair of primi-
tive functions enabling send and receive. Furthermore, the participants in the
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Figure 5.18  Structure of a Monitor
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construct cond): notfull is true when there is room to add at least one character to 
the buffer, and notempty is true when there is at least one character in the buffer.

A producer can add characters to the buffer only by means of the procedure 
append inside the monitor; the producer does not have direct access to buffer. The 
procedure first checks the condition notfull to determine if there is space available 
in the buffer. If not, the process executing the monitor is blocked on that condition. 
Some other process (producer or consumer) may now enter the monitor. Later, when 
the buffer is no longer full, the blocked process may be removed from the queue, reac-
tivated, and resume processing. After placing a character in the buffer, the process 
signals the notempty condition. A similar description can be made of the consumer 
function.

This example points out the division of responsibility with monitors compared 
to semaphores. In the case of monitors, the monitor construct itself enforces mutual 
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Figure 2.9: Structure of a monitor. Source: [20, p. 259].

message passing scheme has to agree upon a message format and the tasks to be
coordinated. Since the entire concurrency mechanisms section mainly has con-
cerned concurrency mechanisms with a focus on mutual exclusion, this is also the
topic elaborated here, with message passing as the mechanism used to enforce
it.

There are many ways to enforce mutual exclusion by use of message passing. One
of the most basic ones, as described in [20, p. 268], uses a message box accessi-
ble by all participants. Figure 2.10 visualizes this mutual exclusion by message
passing mechanism. The message box is initialized with a message functioning as
a token that grants access to a protected code section. Only the process/thread
which holds the message in its possesion can enter the protected code section.
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Using blocking receive and nonblocking send on the message should make mu-
tal exclusion enforceable. A thread wishing to enter the protected code section
attempts to receive the message from the mailbox. If the mailbox is not empty,
the message is delivered promptly, and thereby the thread granted access. If how-
ever, the mailbox is empty, the thread is blocked and must wait for the message
to return to the mailbox. Upon exiting the critical section, the thread places
the message back in the mailbox using the send operation. Correctly enforcing
mutual exclusion this way presupposes that the message is delivered to only one
thread, if requested by multiple receive operations concurrently. When the mes-
sage has been delivered to one thread, all others should be blocked. Also, when
the message returns to the mailbox and multiple contestants have previously been
blocked, only one of them should be activated and given the message.
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Figure 2.10: Message passing; passing a single message functioning
as a token, in order to enforce mutual exclusion.
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2.4 Related work

While a lot of core functionality of index structures are old, there have been
many attempts at meeting shortcomings and adapting to a changing hardware
environment. This section presents some notable related work that tackles such
challenges.

2.4.1 PALM

PALM [1], is a technique that enables Parallel Architecture-Friendly Latch-Free
Modifications to B+ trees on many-core processors. What this means is that the
technique aims to provide a scheme supporting multiple concurrent queries on
in-memory B+-trees. The paper presenting the technique argues that reliance on
latches to avoid race-conditions and inconsistencies, in some cases forces serial-
ization of queries, which in turn results in poor scaling. The authors continues
on motivating their novel technique by pointing out how latch-based schemes can
result in difficult to maintain, complicated code. PALM however, operates with-
out use of latches in bulk synchronous fashion comprising four major stages. By
processing queries in bulk, PALM remains latch free through ensuring that the
tree is never modified until all searches have completed, and that a single node’s
modifications are the responsibility of only one thread.

Algorithm

A color coded visualization of the algorithm can be found in Figure 2.11. At a
high level, the algorithm that processes batch queries are as follows:

• Stage 1:

– Divide all queries among threads.

– Locate the leaves reached by each query.

• Stage 2:

– Redistribute work in order to eliminate any modification contention.

– Ensure ordering of queries.

– Carry out modification of leaves.

• Stage 3:

– Move up the tree one step at a time, modifying internal nodes and
redistributing work as necessesary, until root is reached.

• Stage 4:

– Modify the root using a single thread if necessesary.
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(e) Modify internal nodes; redistribute
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(f) Modify the root

Figure 1: A visual depiction of the PALM algorithm; four threads (their work identified by color here) cooperate to execute 8 queries on a B+-tree.
This shows only some nodes in a given tree.

3.2.1 Cooperation in REDISTRIBUTE-WORK

In REDISTRIBUTE-WORK, threads re-partition the work at the
current level based on the tree nodes to be modified; this ensures
that each node is modified by exactly one thread. Each query and
modification list affects a single node — the work is implicitly di-
vided based on threads’ ‘ownership’ of tree nodes in each stage.

Each thread i determines which subset L′i of the leaf nodes in Li
it will operate on. The protocol for determining L′i for thread i is
given by the following:

L′i = {λ ∈ Li|λ /∈ Lj , ∀ 0 ≤ j < i} (1)

that is, L′i for a thread i is all leaves that are in Li that are not in Lj
for threads j with index less than i. The procedure to re-partition
the work done on internal nodes Md into Md′ during the inter-
nal modification steps is the same as that given in Eq. (1); simply
substituteMd′ for L′ andMd for L. Eq. (1) gives lower-numbered
threads priority when multiple threads have updates that must occur
on a single node; in general, as tree sizes grow and queries become
more uniformly distributed, the likelihood of load imbalance due to
this protocol diminishes; see Sec. 3.3.

The key observation here is that there is no explicit communi-
cation; threads do not message one another about work they are
discarding or stealing — each thread determines its own work by
inspecting others’ and following an implicit protocol. We are as-
sured that the process is immune to race conditions by virtue of
synchronization points. In Sec. 3.2.5, we describe how this process
can be improved to further minimize communication.

3.2.2 Ensuring correctness with RESOLVE-HAZARDS

It is important that any parallel tree scheme obey the serializ-
ability rule; the results of any RETRIEVE queries returned by our
technique, as well as the final, updated database state, must be iden-
tical to the results of serially inserting each query in the input.

First, queries on distinct keys are independent of one another
with respect to the state of the database D; it is sufficient to ex-
amine queries affecting each key independently. Furthermore, all
queries on a given key are tied to a single leaf node, and this leaf

node will be modified by only a single thread by virtue of the
REDISTRIBUTE-WORK function.

Then each leaf λ resolves serializability concerns independently;
for each unique key k belonging to λ, we visit the sequence of
queries Ok = (oj (k, ·) , oj+1 (k, ·) , . . .) that reference k in the
order they appear in O and perform the query described; adding
tuples for each INSERT, removing tuples for each DELETE, and,
for each RETRIEVE, recording the state of the record in thread i’s
retrieval buffer Ri (see line 5 of Alg. 1).

The net result is that k may have been added to or removed from
D; the TD must be modified to reflect this — we mark k for inser-
tion (or deletion) to (from) λ inOλ. After all threads have finished,S
Ri will contain responses to all RETRIEVE queries in O.

3.2.3 Bulk node modification with MODIFY-NODE

PALM updates tree nodes using MODIFY-NODE; this can be
viewed as a generalization of the standard B+-tree algorithms for
key insertion (and deletion) in two aspects. First, that n ∈ N in-
sertions to (deletions from) a node can be handled at once, rather
than one, and second, that insertion and deletion queries to a sin-
gle node may be performed together. In particular, any number of
splits are permitted to accommodate inserted items and to satisfy
the tree conditions, but changes are not immediately inserted into
the relevant parent node.

There are three distinct outcomes from this function:

Split(s) The node experienced a net gain of elements, and its de-
gree now exceeds MAX-DEGREE; the node is split into two
or more nodes, each of which satisfies the MIN-DEGREE re-
quirement. A modification m is returned containing new
nodes and indicating the parent node to be updated.

Underflow The node experienced a net loss of elements that put
it under MIN-DEGREE; the node will be removed. A modi-
fication η is returned that indicates the node to be removed,
which parent it should be removed from, and all keys found
in descendants of η — these will be re-inserted in the tree
after PALM completes.

Figure 2.11: The PALM algorithm visualized. Source: [1].

Results

The paper reports the PALM scheme as having low response times when compared
against buffering methods. Additionally, PALM performs 2.3×-19.1× faster than
B-link trees [2] for a variety of configurations tested. Scalability, is also reportedly
good with 10×-11.6× scaling reported at a range from 1 to 12 cores.

2.4.2 Bw-tree

The Bw-tree [3] was introduced in 2013 by researchers at Microsoft. The basis
for its design is the recognition that multi-core CPUs mandate high concurrency,
and that good multi-core processor performance depends on high cache hit ratios.
Making the Bw-Tree latch-free and avoiding in-place updates deals with these
issues. The paper implements the design introduced and evaluates it in relation
to a pre-existing traditional B-tree architecture implemented in BerkeleyDB, and
to a latch-free skip list. In the performance results section of the paper the
Bw-tree is stated to achieve very high performance (backed by the researchers
performance evaluation). Figure 2.12 illustrates the classical atomic record store
architecture of the Bw-tree.

Compare and swap

In order to stay latch-free, state changes are carried out using the atomic compare
and swap (CAS) instruction. Being able to avoid blocking in most cases avoids
thread idle time and context switch costs. The only case where the Bw-tree blocks
is when it needs to fetch a page from stable storage, which is rare when the system
has a large main memory cache.
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random writes [8]. The Bw-tree performs log structuring it-

self at its storage layer. This approach avoids dependence on

the FTL and ensures that our write performance is as high

as possible for both high-end and low-end flash devices and

hence, not the system bottleneck.

C. Our Contributions

We now describe our contributions, which are:

1) The Bw-tree is organized around a mapping table that

virtualizes both the location and the size of pages. This

virtualization is essential for both our main memory

latch-free approach and our log structured storage.

2) We update Bw-tree nodes by prepending update deltas

to the prior page state. Because our delta updating pre-

serves the prior page state, it improves processor cache

performance. Having the new node state at a new storage

location permits us to use the atomic compare and swap

instructions to update state. Hence, the Bw-tree is latch-

free in the classic sense of allowing concurrent access

to pages by multiple threads.

3) We have devised page splitting and merging structure

modification operations (SMOs) for the Bw-tree. SMOs

are realized via multiple atomic operations, each of which

leaves the Bw-tree well-formed. Further, threads observ-

ing an in-progress SMO do not block, but rather take

steps to complete the SMO.

4) Our log structured store (LSS), while nominally a page

store, uses storage very efficiently by mostly posting

page change deltas (one or a few records). Pages are

eventually made contiguous via consolidating delta up-

dates, and also during a flash “cleaning” process. LSS

will be described fully in a another paper.

5) We have designed and implemented an ARS based on

the Bw-tree and LSS. We have measured its performance

using real and synthetic workloads, and report on its very

high performance, greatly out-performing both Berke-

leyDB, an existing system designed for magnetic disks,

and latch-free skip lists in main memory.

In drawing broader lessons from this work, we believe that

latch free techniques and state changes that avoid update-in-

place are the keys to high performance on modern processors.

Further, we believe that log structuring is the way to provide

high storage performance, not only with flash, but also with

disks. We think these “design paradigms” are applicable more

widely to realize high performance data management systems.

D. Paper Outline

We present an overview of Bw-tree architecture in Section 2.

In Sections 3 through 5, we describe the system we built.

We start at the top layer with in-memory page organization

in Section 3, followed by Bw-tree organization and structure

modifications in Section 4. Section 5 details how the cache is

managed. In Section 6, we describe our experiments and the

performance results of them. Section 7 describes related work

and how we differ significantly in our approach. We conclude

with a short discussion in Section 8.

Flash Layer

Bw-tree Layer

API

Cache Layer

Mapping Table

In-memory pages only

Tree-based search/update logic

Logical page abstraction for B-tree layer

Maintains mapping table, brings pages 

from flash to RAM as necessary

Manages writes to flash storage

Flash garbage collection

Fig. 1. The architecture of our Bw-tree atomic record store.

II. BW-TREE ARCHITECTURE

The Bw-tree atomic record store (ARS) is a classic B+-

tree [9] in many respects. It provides logarithmic access to

keyed records from a one-dimensional key range, while pro-

viding linear time access to sub-ranges. Our ARS has a classic

architecture as depicted in Figure 1. The access method layer,

our Bw-tree Layer, is at the top. It interacts with the middle

Cache Layer. The cache manager is built on top of the Storage

Layer, which implements our log-structured store (LSS). The

LSS currently exploits flash storage, but it could manage with

either flash or disk.

This design is architecturally compatible with existing

database kernels, while also being suitable as a standalone

“data component” in a decoupled transactional system [2],

[3]. However, there are significant departures from this classic

picture. In this section, we provide an architectural overview

of the Bw-tree ARS, describing why it is uniquely well-suited

for multi-core processors and flash based stable storage.

A. Modern Hardware Sensitive

In our Bw-tree design, threads almost never block. Elimi-

nating latches is our main technique. Instead of latches, we in-

stall state changes using the atomic compare and swap (CAS)

instruction. The Bw-tree only blocks when it needs to fetch

a page from stable storage (the LSS), which is rare with a

large main memory cache. This persistence of thread execution

helps preserve core instruction caches, and avoids thread idle

time and context switch costs. Further, the Bw-tree performs

node updates via ”delta updates” (attaching the update to an

existing page), not via update-in-place (updating the existing

page memory). Avoiding update-in-place reduces CPU cache

invalidation, resulting in higher cache hit ratios. Reducing

cache misses increases the instructions executed per cycle.

Performance of data management systems is frequently

gated by I/O access rates. We have chosen to target flash

storage to ease that problem. But even with flash, when

attached as an SSD, I/O access rates can limit performance.

Our log structure storage layer enables writing large buffers,

effectively eliminating any write bottle neck. Flash storage’s

high random read access rates coupled with a large main

memory cache minimizes blocking on reads. Writing large

multi-page buffers permits us to write variable size pages that

do no contain “filler” to align to a uniform size boundary.

The rest of this section summarizes the major architectural

and algorithmic innovations that make concrete the points de-

scribed above.

Figure 2.12: Architecture of the Bw-tree atomic record store.
Source: [3].

An actual update on a node by the CAS instruction is called a delta update. It
involves attaching the update to an exisiting page to reduce CPU cache invalida-
tion.

Mapping table

The mapping table is what enables use of the CAS instruction during so-called
delta updating. The mapping table maps logical pages to physical pages, i.e.
it defines a mapping between either a page identifier and a flash offset, or the
page identifier and a memory pointer. It severs the connection between physical
location and inter-node links, having the result that delta updating can occur in
main memory, whilst the physical location of a Bw-tree node can change every
time a page is written to stable storage.

Open source version

The aforementioned Bw-tree’s source code was not released, thus leading to other
researchers taking it upon themselves to implement an open version of the design
the researchers at Microsoft presented. In the paper “Building a Bw-Tree Takes
More Than Just Buzz Words” [4], further improvements were made, and missing
points in the Microsoft researchers original design document clarified. However,
despite this open implementation being able to outperform the one presented
by Microsoft, the researchers of this paper show that the Bw-tree still does not
perform as well as other concurrent data structures that use locks.

2.4.3 Adaptive radix tree

One of the state-of-the-art high performance concurrent data structures com-
pared against in the open Bw-tree paper [4], was the aptive radix tree (ART)
[25]. ART is unsurprisingly a radix tree, also known as a space-optimized prefix
tree. It is design for use in in-memory DBMSs. To improve cache efficiency the
tree uses four different node layouts depending on the number of non-null child
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pointers. The adaptive part of the radix tree comes from the structure adapting
the reperesentation of each inner node locally using these layouts, wich optimizes
global space utilization and access efficiency at the same time. An example of the
adaptively sized nodes can be seen in Figure 2.13.

The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases

Viktor Leis, Alfons Kemper, Thomas Neumann
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Abstract—Main memory capacities have grown up to a point
where most databases fit into RAM. For main-memory database
systems, index structure performance is a critical bottleneck.
Traditional in-memory data structures like balanced binary
search trees are not efficient on modern hardware, because they
do not optimally utilize on-CPU caches. Hash tables, also often
used for main-memory indexes, are fast but only support point
queries.

To overcome these shortcomings, we present ART, an adaptive
radix tree (trie) for efficient indexing in main memory. Its lookup
performance surpasses highly tuned, read-only search trees, while
supporting very efficient insertions and deletions as well. At the
same time, ART is very space efficient and solves the problem
of excessive worst-case space consumption, which plagues most
radix trees, by adaptively choosing compact and efficient data
structures for internal nodes. Even though ART’s performance
is comparable to hash tables, it maintains the data in sorted
order, which enables additional operations like range scan and
prefix lookup.

I. INTRODUCTION

After decades of rising main memory capacities, even large
transactional databases fit into RAM. When most data is
cached, traditional database systems are CPU bound because
they spend considerable effort to avoid disk accesses. This
has led to very intense research and commercial activities in
main-memory database systems like H-Store/VoltDB [1], SAP
HANA [2], and HyPer [3]. These systems are optimized for
the new hardware landscape and are therefore much faster. Our
system HyPer, for example, compiles transactions to machine
code and gets rid of buffer management, locking, and latching
overhead. For OLTP workloads, the resulting execution plans
are often sequences of index operations. Therefore, index
efficiency is the decisive performance factor.

More than 25 years ago, the T-tree [4] was proposed as
an in-memory indexing structure. Unfortunately, the dramatic
processor architecture changes have rendered T-trees, like all
traditional binary search trees, inefficient on modern hardware.
The reason is that the ever growing CPU cache sizes and
the diverging main memory speed have made the underlying
assumption of uniform memory access time obsolete. B+-tree
variants like the cache sensitive B+-tree [5] have more cache-
friendly memory access patterns, but require more expensive
update operations. Furthermore, the efficiency of both binary
and B+-trees suffers from another feature of modern CPUs:
Because the result of comparisons cannot be predicted easily,
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Fig. 1. Adaptively sized nodes in our radix tree.

the long pipelines of modern CPUs stall, which causes addi-
tional latencies after every second comparison (on average).

These problems of traditional search trees were tackled by
recent research on data structures specifically designed to be
efficient on modern hardware architectures. The k-ary search
tree [6] and the Fast Architecture Sensitive Tree (FAST) [7]
use data level parallelism to perform multiple comparisons
simultaneously with Singe Instruction Multiple Data (SIMD)
instructions. Additionally, FAST uses a data layout which
avoids cache misses by optimally utilizing cache lines and
the Translation Lookaside Buffer (TLB). While these opti-
mizations improve search performance, both data structures
cannot support incremental updates. For an OLTP database
system which necessitates continuous insertions, updates, and
deletions, an obvious solution is a differential file (delta)
mechanism, which, however, will result in additional costs.

Hash tables are another popular main-memory data struc-
ture. In contrast to search trees, which have O(log n) access
time, hash tables have expected O(1) access time and are
therefore much faster in main memory. Nevertheless, hash
tables are less commonly used as database indexes. One reason
is that hash tables scatter the keys randomly, and therefore only
support point queries. Another problem is that most hash tables
do not handle growth gracefully, but require expensive reor-
ganization upon overflow with O(n) complexity. Therefore,
current systems face the unfortunate trade-off between fast
hash tables that only allow point queries and fully-featured,
but relatively slow, search trees.

A third class of data structures, known as trie, radix tree,
prefix tree, and digital search tree, is illustrated in Figure 1.

Figure 2.13: Adaptively sized nodes of the radix tree. Source: [25].

OLC and ROWEX

Although performance evaluation of ART show that it is both fast and space-
efficient, it is often the case that lock-free data structures are difficult to imple-
ment and maintain. This motivated “The ART of practical synchronization” [26],
which suggest a middle ground between scalable lock-free structures, and its dif-
ficulty, and fine-grained locking that does not scale particularly well on modern
hardware, but has the benefit of consistency and ease of use. The paper does so
through synchronizing ART with two different locking protocols (that use lock-
ing sparingly), namely optimistic lock coupling (OLC) and read-optimized write
exclusion (ROWEX).

OLC is very simple, easily implementable and performs well when conflicts are not
too frequent. On the other hand ROWEX is more complex, generally requiring
changes to the data structure itself, but has the advantage that reads never block.
Most importantly, both these locking mechanisms are not as complicated as truly
lock-free mechanisms. Also, they perform consistent in that no indirection layer
is present, something which may cause additional cache misses, as can be the case
when using the Bw-tree.

Lastly, it is worth mentioning that the ART variant employing OLC as described
by [26], was in fact among the state-of-the-art in-memory data structures (along
with SkipList [27] and Masstree [5]) to beat the Bw-tree in performance on multi-
core CPUs as found by [4]. Contrary to previous claims of lock-free indexes being
superior to lock-based on such systems, the open Bw-tree paper [4] finds that
the Bw-tree’s indirection layer and delta records causes it to underperform the
mentioned lock-based indexes by 1.5×-4.5×.
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Chapter 3
Implementation

In this chapter the thesis’ programming work and development is described. The
main idea of the implementation is to approach the complex nature of parallel
programming in a simplistic way. What this means is that the robust mechanisms
of thread syncronization using locks is applied at a high level, and not highly
micromanaged. This is done for two main reasons:

(1) Keeping the design simple allows development to progress rapidly.

(2) Trivially locking impose restriction on the degree of parallelism that can be
obtained.

(1) is rather self-explanatory. (2) might not look favorable at first glance, but
it has the implication that results obtained when comparing against a single
threaded baseline are even more clear-cut if in favor of the parallel approach.

The two main components in the codebase is a fairly standard B+-tree implemen-
tation, and a parallel B+-tree implementation which uses the standard as part
of its core. Both will be covered in detail during this chapter. The repository
containing the codebase can be found at [28].

3.1 C++ programming language

The programming language chosen for the implementation was C++. C++ is
a mature programming language that extends the C programming language first
and foremost through use of classes. The language has a lengthy history and huge
areas of application. Backwards compatibility has been of utmost importance to
the language creators, resulting in a relatively huge standard compared to a lot
of other programming languages. This is evidently apparent by the last freely
available C++20 standard working draft [29], spanning 1857 PDF pages. The

25
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language offers abstractions at the programmers discretion following a object-
oriented programming paradigm, as well as low-level access if needed. Figure 3.1
briefly shows the main lines in development of C++ throughout the years, up until
the start of 2020. So-called technical specifications (TSes) were first introduced in
2012 leading to a slightly different development process, whereby adjustments and
modifications are allowed to occur within their own domain before being merged
into the standard.

Figure 3.1: Timeline of C++ development and releases. Source
[30].

3.1.1 Language of choice rational

The rational for choosing C++ is multifaceted. The language offers high perfor-
mance if managed correctly. It does so by means of allowing for manual memory
managment, and staying close to the hardware through CPU architecture depen-
dent compilation. Lastly, the language also offers some comfort in its object-
oriented approach which is familiar to the programmer.

Another compelling argument is that a related piece of work attempting to op-
timize the B+-tree for the modern hardware architecture, in a somewhat similar
fashion to what is done in this thesis, obtained unsatisfactory results due to a
large portion of overhead being incurred by Java’s garbage collector and the vir-
tual machine’s mapping of threads [31]. Among others, this body of work proposes
using C/C++ to achieve better results.
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3.1.2 Parallelism

The standard library of C++ offers a multitude of tools for working with concur-
rency and parallelism. Most importantly the std::thread [32] class allows for
creating separate execution contexts that, when provided access to the OS’ native
threading API, can be executed in parallel as kernel-level threads if the underlying
hardware architecture supports it. For example the Portable Operating System
Interface (POSIX) Threads execution model, known as pthreads, defines a set of
routines grouped by categories that does this. As it is a Unix family standard,
documentation is readily available. For example the FreeBSD manual page can
be found here [33].

Other than the bare-bones std::thread class. The C++ standard library also
provides tools such as atomic types, condition variables, mutexes and futures [34].
All of which aims to prevent data races, synchronize memory access and alleviate
the task of working asynchronously. There existis a host of locking wrapper
classes and the like, leaving the level of detail managment very much up to the
developer.

Of course thread creation incurs overhead. As such some time can be saved, in
applications relying heavily on dispatching tasks via a multithreaded workflow,
by creating a thread pool. That is, a design pattern that allows for task execution
on the same set of threads, while only paying for the cost of creating the threads
once. Although it is often common to want a thread pool, the C++ standard
library does not explicitly declare this design pattern. The reason seemingly being
that the type of work one might want to carry out can differ largely, and as such
one agreed upon set of specifications for the thread pool are hard to establish.
Additionaly, not providing tools for specific tasks at a certain high level of detail
seems to fit with the C++ nature that cater to giving the programmer a lot
of freedom. Nevertheless, a third-party C++ implementation was used in the
programming work as detailed in subsection 3.2.3.

3.2 Components of the parallel B+-tree

This section covers the individual central components making up the parallel
B+-tree. To aid the development process and keep focus on developing core func-
tionality from scratch, i.e. the B+-tree and parallel B+-tree, two third-party open
source libraries were used. The functionality and intended purpose of each library
in the programming work of this thesis will be described here. Additionally, as
is expected, the creators of the specific library implementations chosen are ref-
erenced. An architectural overview of the implemented parallel B+-tree can be
found in Figure 3.2.
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Figure 3.2: High level architectural overview of the parallel B+-tree
implementation.

3.2.1 B+-tree

The generic B+-tree has already been described in subsection 2.1.2. The imple-
mentation of this component was done from scratch in order to retain control over
how operations were implemented. The implementation stays close to the nature
of the aforementioned B+-tree description, using [35, pp. 344–364] as a guideline
when implementing the operations. In particular, when implementing remove
(one of the more complex operations), the source used as a guideline showed it-
self greatly beneficial. The tree is a memory-resident, clustered index with doubly
linked leaf nodes. Both keys and values are integers. A more rigourous block-and-
posts format storing arbitrary object could be implemented later by using C++
templates. Also, to not bite off more than one can chew, no key compression or
bulk-loading has been implemented as of now.

Having the B+-tree be memory-resident simplifies the implementation as there
is no need to deal with I/O management. Seeing as main memory have become
larger and larger by time, in-memory databases have seen more and more use.
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Thus, this simplifying choice might not be too far from the truth in certain use
cases.

3.2.2 Bloom filter

Bloom filters are applied to each plain B+-subtree of the parallel B+-tree. They
are intended to work as auxiliary structures enabling efficient reads, removes and
updates by providing lookahead functionality for the keys in question.

A Bloom filter is a probabilistic data structure that tests whether a key is present
in a tree by using k hash functions on the key. The hash funtions maps to a
bit-array of m bits. If all the evaluated m bits are 1 we conclude that the element
is present in the tree, and thus must be examined, otherwise the key is absolutely
not in the tree. Figure 3.3 illustrates the data structure and its workings.

False positives are possible, but by doing a rough estimate on the amount of keys
stored, the false positive probability can be controlled and made rather small. In
fact, less that 10 bits per element are required for a 1% false positive probability,
independent of the size or number of elements in the set [36]. Having a modifiable
false positive probability is a nice property, but what is more important is that
false negatives are not possible. Thus, consulting a tree’s associated filter will in
any case mark it as relevant if the key is present in the tree.

Set

0 0 11 0 1 11 0 0 01 0 1 00

a b c

c
Is in set?

d

Figure 3.3: Bloom filter constructed on the set {a, b, c} using k = 3
and m = 16. Querying the filter for c returns possible true because
all bit-array positions are 1. Meanwhile, querying for d returns cer-
tain false since two bit-array positions are 0. Note that one bit-array
position equal to 0 is enough to make sure the query argument is
not a member of the set.

Usage of the Bloom filters are an experimental addition to the design and can
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be enabled or disable upon parallel B+-tree creation. As is known from the
standard LSM-tree’s reliance on this structure as well; operations that can or
will remove keys from a certain tree (i.e. update and remove) will asymptotically
degrade the performance of the filters [37]. This is due to not being able to
remove an already hashed key from a filter, because the filter does not contain
explicit information about all keys hashed. In turn this makes operations of such
nature “second-class citizens” when enabled. This is an interesting aspect that is
explored and discussed in more elaborate detail in the the performance evaluations
of chapter 4.

The Bloom filter implementation used as a component of this thesis’ parallel
B+-tree, is the C++ Bloom Filter Library created by Arash Partow [38]. It
is a single header implementation with no external dependencies. A number
of parameters can be passed during construction, most notably projected_-
element_count and false_positive_probability, which in turn makes finding
a number of hash functions yielding the minimum amount of storage bits required
to remain consistent with the user’s arguments possible.

3.2.3 Thread pool

The thread pool is the workhorse of the parallel B+-tree. It is intended to make
working with asynchronus task execution easier, and reduce the amount of over-
head required to dispatch tasks to the threads. As aforementioned, one of the
main selling points of the thread pool’s design pattern is avoiding the thread
creation cost. A generic thread pool only composes a few central components as
illustrated in Figure 3.4. The task submitters pushes tasks into a task queue,
the threads in the thread pool pops tasks from said queue, executes them and
then returns to the thread pool becoming available for new task assignments.
Tasks submitted by the task submitters might be so-called fire-and-forget, mean-
ing that they have no return value of relevance to the submitter, or they could
have a return value that the task submitter can obtain from a shared state.

Task submitter 1

Task submitter 2

Task submitter N

21 M

Task queue Thread 1

Thread 2

Thread K

Task submitters Thread pool

Figure 3.4: The main components of a thread pool design pattern.

In the parallel B+-tree the main executing thread responsible for the parallel B+-
tree object is the only task submitter. Tasks are submitted to the task queue
with required arguments for method execution, always working on the basis of
an appointed B+-subtree. The threads in the thread pool lock the tree which
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they access during operation using appropriate read and write locks in the form
of std::unique_lock [39] and std::shared_lock [40], respectivly. The mutex
ownership wrappers are applied over the std::shared_mutex [41] associated with
the tree, ensuring that only one thread at a time is allowed to modify a tree, but
multiple threads can read from the tree if no unique write lock has been applied
to the mutex.

The C++ thread pool implementation used for this thesis’ purposes is written
by Barak Shoshany [42]. Much like the Bloom filter implementation chosen,
this implementation is also written as a self-contained class with no external
dependencies. Upon construction of a new thread pool the number of worker
threads can be specified. As is expected, providing a higher number than the
number of available kernel-level threads is undesirable. There are two methods
for submitting tasks to the thread pool: submit and push_task. Using the first
returns a std::future [43] on the return value of the task submitted. If there
is no return value for the task submitted, the std::future encapsulate a simple
boolean data type which resolves to true when the task is completed. The latter
method avoids the overhead of generating a std::future and is practical for fire-
and-forget tasks. The last method from the thread pool class used in this thesis’
programming work is the wait_for_tasks method, which blocks the caller until
all tasks in the task queue have been completed.

3.3 Parallel B+-tree operations

The methods implemented and evaluated on the ParallelBplustree class are
insert, search, update and remove (delete is a reserved C++ keyword, hence
remove). To look at how task creation cost affects performance, all operations
have two implementations. That is, one implementation takes a single key (and
possibly a single value: insert and update), and one takes a vector of keys (and
possibly a vector of values: same operations as mentioned in the single case). This
section describes the main lines and central ideas involved in implementing the
operations through words an code snippets. But, before that, in order to under-
stand how the ParallelBplustree works, a brief description of the parameters
passed to the constructor during initialization of a new ParallelBplustree is
given:

• order: Order of tree i.e. order of all managed B+-trees

• numThreads: Number of threads to use in the thread pool.

• numTrees: Number of B+-trees to create and use.

• useBloomFilters: Boolean determining if Bloom filters should be applied
at a per B+-tree basis.
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3.3.1 Single key operations

Single key operations as denoted here refers to the implemented versions of in-
sert, search, update and remove that operates on a single key at a time i.e.
they are all callable with a const int key argument. All such single key op-
erations, except insert, are from the perspective of the main executing thread,
designed and implemented with the idea of quickly passing a coordination-task to
the thread pool. The idea being that blocking the main executing thread should
be the callers responsibility, which in turn should yield high throughput if creat-
ing a coordination-task can be done cheaply compared to the desired operation.
Once the coordination-task has been popped from the thread pool’s task queue,
more tasks are created by the thread assigned the coordination-task. This thread
is also responsible for relaying information back to caller of the operation’s entry
point in scenarios requiring it (e.g. search). The reason as to why there is no
associated coordination-task during insert, has to do with insert being the only
operation where it is entirely certain that only one tree must be accessed.

Insert

The single key insert operation naturally takes a key and value to be inserted into
the data structure. This operation, when packed and dispatched as a threadIn-
sert task, firstly checks if Bloom filters are used by the instance. If not, then
one of the B+-trees is chosen (pseudo-)randomly from a uniform distribution, a
write lock on the tree is acquired, and the key-value pair inserted. If however,
Bloom filters are used, the filters are consulted first. This is done in an attempt to
preserve locality of data, i.e. store a key and all its associated values in one tree.
If the key is found in a Bloom filter, the associated tree is where the key-value
pair is inserted after aquiring a write lock. Otherwise, insert is done in the same
manner as for when Bloom filters are not in use. Listing 3.1 shows a small excerpt
from the threadInsert method when useBloomFilters is false. The filters are
of course also updated during insert using the same locking mechanism as for the
trees.

const int treeIndex = distr(gen);
std::unique_lock<std::shared_mutex> treeWriteLock(*treeLocks[

↪→ treeIndex]);
trees[treeIndex]->insert(key, value)};

Listing 3.1: Insert of key-value pair in threadInsert task of
parallel B+-tree insert operation when useBloomFilters is false.
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Search

The search operation takes a const int key argument, and returns the hefty
data type std::future<std::vector<std::future<const std::vector<int>
*»>. That is, a value that can be waited on by the receiver. A pointer to the
associated std::promise [44] of the std::future return value, is passed along
with the key to the threadSearchCoordinator task, before the search operation
returns. In the coordination-task, relevant B+-trees that need searching are found,
and tasks for searching them created. Values of type std::future for each search-
task are pushed to a result vector. This result vector is used to set the value of the
promise, making the intermediate vector-result available to the caller of search
through its future’s shared state. The caller can then wait on each individual tree
search if wanted.

The idea is once again that having a quick return from the main entry point of
search, should allow the caller to queue multiple searches quickly. Then its up
to the parallel processing capabilities to finish the workload in a timely manner.
Meanwhile, the caller can do other stuff or wait on all task to complete using,
for example, the waitForWorkToFinish method on ParallelBplustree. The
search operation described can be seen in its entirety in Listing 3.2. The promise
created in the method is evidently allocated using heap memory. This memory is
freed at the end of the coordination-task without disturbing the return value of
search, since a underlying shared state exists.

std::future<std::vector<std::future<const std::vector<int> *>>>
↪→ ParallelBplustree::search (const int key) {

std::promise<std::vector<std::future<const std::vector<int> *>>>
↪→ *prom = new std::promise<std::vector<std::future<const
↪→ std::vector<int> *>>>;

std::future<std::vector<std::future<const std::vector<int> *>>>
↪→ fut = prom->get_future();

threadPool.push_task([=, this]) () mutable {
↪→ threadSearchCoordinator(key, prom); });

return fut;
}

Listing 3.2: Single key search method as implemented in
ParallelBplustree.

Update

Of the single key operations, the update operation involves the most complex
coordination-task of the lot. In order to save some time in certain cases and make
the threadUpdateCoordinator method not to long, all calls to update will insert
the key with the values provided, if the key is not present in the tree at time of
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update. This should not limit the possibilites from an end-user’s perspective, as
it can always be verified beforehand if a key is present in the tree by using the
search operation.

The update operation should, along with a const int key argument, be pro-
vided with a argument that is a reference to a vector of values. Executing a
update-coordination-task means finding a suitable B+-tree for the update (or in-
sert as previously mentioned) and removing all stale-to-be key-value pairs that
might reside in other B+-trees. Hopefully, when using Bloom filters, only one
update will be issued and no removes. On the other hand, having disabled Bloom
filters, will always result in one B+-tree receiving the update and all other trees
getting a remove call on the key. Listing 3.3 shows the gist of updating by a
code snippet from threadUpdateCoordinator when useBloomFilters is false.
Write locks are used and acquired by the threads carrying out threadUpdate
and threadRemove tasks before accessing the B+-tree on which to perform said
operation.

int treeToUpdateOrInsert = distr(gen);
threadPool.push_task([=, &values, this] { threadUpdate(key, values,

↪→ treeToUpdateOrInsert); });
for (int i = 0; i < numTrees; i++) {
if (i != treeToUpdateOrInsert) {
threadPool.push_task([=, this] { threadRemove(key, i); });

}
}

Listing 3.3: Task of threadUpdateCoordinator during single key
update when useBloomFilters is false.

It should be clear that insert-if-not-found during update is beneficial since then
the threadUpdateCoordinator does not have to issue search tasks on all trees,
block and wait, and then reconciling trees by issuing threadUpdate and thread-
Remove operations. Instead the threadUpdateCoordinator never blocks. How-
ever, an implementational implication of doing it like this is that the actual
threadUpdate operation assumes update, and thus does not update the asso-
ciated Bloom filter if insert occurs. Some steps could be taken to mitigate this,
for example changing and using the return type of update on the Bplustree
class, but as of now this has not been done.

Remove

Removing a key from the parallel B+-tree is in many ways the inverse operation
of insert. If Bloom filters are in use, the coordination-task created by remove
will consult the Bloom filters to identify B+-trees where the key to remove might
reside. Since false negatives are not a possibility, all relevant trees will be oper-
ated on with a threadRemove task. If however, Bloom filters are not in use, a
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threadRemove task must be issued for every B+-tree of the parallel tree. The spe-
cific remove implementation uses the same promise and future return mechanism
as described during search. This allows for nuanced waiting on the single key
remove operation at the callers discretion. Listing 3.4 shows a snippet from the
threadRemoveCoordinator method when useBloomFilters is true. The vector
named result shown in this snippet is later moved and set as the value of the
promise having a shared state with the callers return value.

for (int i = 0; i < numTrees; i++) {
std::shared_lock<std::shared_mutex> treeFilterReadLock(*

↪→ treeFilterLocks[i]);
if (treeFilters[i]->contains(key)) {
treeFilterReadLock.unlock();
result.push_back(
threadPool.submit(
[=, this] { return threadRemove(key, i); }

)
);

}
}

Listing 3.4: Task of threadRemoveCoordinator during single key
remove when useBloomFilters is true.

3.3.2 Batch operations

The batch operations are the counterpart versions of the single key operations
found in subsection 3.3.1. They extend parallel processing applicability by carry-
ing out multiple simple operations at once when called upon. These operations
came to be after doing some initial single key operation tests during development.
Those tests seemed to indicated that in order to leverage parallel processing ca-
pabilities meaningfully, the workload of tasks created by the thread pool design
pattern has to be costly to the degree that the cost of task creation becomes
negligible. Only relying on batch operations in a real system could be regarded
as lazy evaluation, whereby the processing resources should be effectively utilized
when requested.

For the sake of clarity; the batch operations are insert, search, update and
remove. What all methods have in common is that the main executing thread
carries out the equivalent coordination-task discussed during single key opera-
tions. Additionally all methods except search are void, i.e. they have no return
value. The methods partition the batch workload according to the number of
threads (numThreads) or number of trees (numTrees) used by the parallel B+-
tree instance, depending on the value of useBloomFilters.
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Insert

The batch insert operation takes a reference to a vector of keys, and a reference
to a vector of the keys associated values. If Bloom filters are used, the workload
is split by the number of threads in an attempt to utilize all parallel processing
capability. The difference from the single key operation then manifests itself
mainly through creation of a (likely) severly reduced number of thread pool tasks,
but uses the same threadInsert backbone as the comparable single key insert
operation. There is however a threadInsert wrapper method that gets provided
with iterators, which in turn are pointers to appropriate partition start- and
endpoints of the reference arguments. This is done to cut down on argument
copies compared to the single key insert operation that packages each key-value
pair separately in a threadInsert task.

When Bloom filters are not used the batch insert operation should be able to
perform really well since the batch can simply be split by the number of trees. One
thread accessing one tree allows for acquiring the write lock once before the actual
threadInsert of the batch begins. This lock can be held until the operation
finishes. The one obvious drawback is the general “not using Bloom filters”-
drawback, i.e. not having locality in data means all other operations becomes
more demanding in the parallel B+-tree. Listing 3.5 shows the threadInsert
wrapper method.

Search

For the batch search operation the variable to divide the workload by is always
the number of trees, i.e. one task is pushed to the thread pool for each B+-tree
managed. When Bloom filters are in use, the main executing thread checks for
each key in the keys vector reference provided; which trees it might belong to. Any
relevant trees are marked for search on the key in question. After looping through
all keys the threadSearch tasks are pushed to the thread pool and a result vector
returned to the caller. This result vector will, when the pool finishes all tasks,
contain all search results using a mapping of equivalence between a search key
index in the keys vector and the result vector index. Not using Bloom filters
means that the batch search operation will immediately create a threadSearch
task for each tree on all keys.

The threadSearch method packaged as tasks during batch search can be seen in
Listing 3.6. As shown by the code snippet, read locking is only applied once before
all searches on a tree. Additionally, the result of a search is assigned directly in
the result vector previously returned to the caller of the batch operation. This last
point is worth elaborating on since, in general, thread safety cannot be guaranteed
working with a vector. Looking at the code snippet it should be apparent that
values have to already exist in the result vector to avoid a segmentation fault at
runtime. This is taken care of at the start of the batch search operation where
result is initialized with a allocator providing nullptr values on each potential
B+-tree search result. This way, locking on indexes in the result vector (which
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void ParallelBplustree::threadInsert(
std::vector<int>::iterator keysSplitBegin,
std::vector<int>::iterator keysSplitEnd,
std::vector<int>::iterator valuesSplitBegin,
const int treeIndex

) {
if (treeIndex > -1) {
std::unique_lock<std::shared_mutex> treeWriteLock(*treeLocks[

↪→ treeIndex]);
for (
std::vector<int>::iterator keysSplitIt = keysSplitBegin;
keysSplitIt != keysSplitEnd;
keysSplitIt++, valuesSplitBegin++

) {
trees[treeIndex]->insert(*keysSplitIt, *valuesSplitBegin);

}
}
else {
for (
std::vector<int>::iterator keysSplitIt = keysSplitBegin;
keysSplitIt != keysSplitEnd;
keysSplitIt++, valuesSplitBegin++

) {
threadInsert(*keysSplitIt, *valuesSplitBegin);

}
}

}

Listing 3.5: The threadInsert wrapper method pushed as
partitioned tasks to the thread pool during batch insert. Note the
acquisition of a write lock once for all of a partition’s inserts when
useBloomFilters is false i.e. treeIndex > -1.

would need to be done if empty initializing and using the vector container’s push_-
back method) becomes unnecessary, since at any time the only thread to access
a B+-tree specific search result is the one thread tasked with the threadSearch
method on that tree.

Update

Batch updating follows the natural design pattern derived during implementa-
tion of the aforementioned batch operations. The main executing thread when
calling the update operation starts of by finding a suitable B+-tree to receive
each update. Then, potential B+-trees that require remove on each of the keys
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void ParallelBplustree::threadSearch(
const std::vector<int> *batchKeys,
const int treeIndex,
std::vector<std::vector<const std::vector<int> *>> &result,
const std::vector<int> keysPos

) {
if (useBloomFilters) {
if (keysPos.size() > 0) {
std::shared_lock<std::shared_mutex> treeReadLock(*treeLocks[

↪→ treeIndex]);
for (int i = 0; i < keysPos.size(); i++) {
result[keysPos[i]][treeIndex] = trees[treeIndex]->search((*

↪→ batchKeys)[keysPos[i]]);
}

}
}
else {
std::shared_lock<std::shared_mutex> treeReadLock(*treeLocks[

↪→ treeIndex]);
for (int i = 0; i < batchKeys->size(); i++) {
result[i][treeIndex] = trees[treeIndex]->search((*batchKeys)[

↪→ i]);
}

}
}

Listing 3.6: The threadSearch method pushed as partitioned
tasks to the thread pool during batch search.

to receive updates are identified and marked. Using Bloom filters should cut
down on the number of single operations needed in the end. If these filters are
not used the update workload is distributed evenly accross trees, and each up-
date will lead to numTrees - 1 removes. For each tree a task on the method
threadUpdateThenDelete is pushed to the thread pool. All updates will precede
the removes on a tree, and write locking is applied once before all updates and
removes on a tree are carried out. The same insert-if-not-found mechanism dis-
cussed during the single key update version is also used here. Listing 3.7 shows
the threadUpdateThenDelete method.

Remove

The batch remove operation passes a pointer to the keys vector it got passed by
reference, to the threadRemove task, for each tree when Bloom filters are not
in use. Otherwise, similar to other operations the Bloom filters are first tested
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void ParallelBplustree::threadUpdateThenDelete(
std::vector<int> updateKeys,
std::vector<int> updateIndexOfValues,
const std::vector<std::vector<int>> *updateBatchValues,
std::vector<int> deleteKeys,
const int treeIndex

) {
std::unique_lock<std::shared_mutex> treeWriteLock(*treeLocks[

↪→ treeIndex]);
for (int i = 0; i < updateKeys.size(); i++) {
trees[treeIndex]->update(updateKeys[i], (*updateBatchValues)[

↪→ updateIndexOfValues[i]], true);
}
for (int i = 0; i < deleteKeys.size(); i++) {
trees[treeIndex]->remove(deleteKeys[i]);

}
}

Listing 3.7: The threadUpdateThenDelete method pushed as
partitioned tasks to the thread pool during batch update. All
taken by value vector parameters are provided as move-constructed
arguments during task creation in update to avoid unnecessary
copies.

for each key, resulting in a mapping between trees and the keys that needs be
removed from them. These arguments are then provided to the threadRemove
tasks. Write locking is in any case only done once for each tree operated on as
show in Listing 3.8.

void ParallelBplustree::threadRemove(std::vector<int> keys, const
↪→ int treeIndex) {

std::unique_lock<std::shared_mutex> treeWriteLock(*treeLocks[
↪→ treeIndex]);

for (int key : keys) {
trees[treeIndex]->remove(key);

}
}

Listing 3.8: The threadRemove method pushed as partitioned
tasks to the thread pool during batch remove when
useBloomFilters is true.
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Chapter 4
Results and Discussion

This chapter presents the performance results obtained for all operations found
in section 3.3. There exists a number of variables that can be tuned to create
different configurations, which of course will generate different results. The re-
sults presented here are those best belived to showcase strengths and weaknesses
of the implementation. Reasoning for choice of specific variable values will be
given in section 4.2 and on presentation of the results. All parallel operations are
compared and illustrated against their equivalent single threaded B+-tree imple-
mentation. The B+-tree implementation will be referred to as baseline. The main
performance evaluator is throughput measured in operations per second.

4.1 Setup

All tests and performance evaluations were executed on a computer with the
specifications show in Listing 4.1. The codebase was compiled with the following
compiler and options:

• g++ (Ubuntu 9.3.0-17ubuntu1 20.04) 9.3.0

• -std=c++2a

• -O3

• -pthread

Using an Intel processor, the computers supports hyper-threading which is Intel’s
proprietary version of simultaneous multithreading [45]. With hyper-threading
enabled the CPU exposes two execution contexts per physical core, i.e. threads.
As stated by the aforementioned Intel source: “[...] Intel Hyper-Threading Tech-
nology improves CPU throughput (by up to 30% in server applications)”. Accord-

41
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ingly, as can also be understood from the output of lscpu seen in Listing 4.1, the
computer used for testing supports at most 32 kernel-level threads.

$ cat /var/run/motd.dynamics
[...] Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0-96-generic x86_64) [...]
$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
Stepping: 2
CPU MHz: 1199.204
CPU max MHz: 3400.0000
CPU min MHz: 1200.0000
BogoMIPS: 5194.34
Virtualization: VT-x
L1d cache: 512 KiB
L1i cache: 512 KiB
L2 cache: 4 MiB
L3 cache: 40 MiB
$ free -h --si

total used free shared buff/cache available
Mem: 128G 5.1G 117G 13M 6.4G 122G
Swap: 130G 0B 130G

Listing 4.1: Specifications of the computer used for testing and
evaluating performance.

4.2 Commonalities

The interface for running the tests and controlling variable values is a command
line program. Listing A.1 found in appendix A shows all the available flags and
options.



4.2. Commonalities 43

The variables, whose impact on the two operation modes are studied, are:

• order

• numThreads

• numTrees

All bar charts that present results examining how the value of order impacts an
operation’s throughput, uses numThreads= numTrees= std::thread::hardware_-
concurrency() = 32. A starting point is needed, and the reason for chosing
these values are as follows: since the main executing thread blocks, it can prob-
ably contribute in the thread pool while suspended. Accordingly, numThreads
= std::thread::hardware_concurrency(). If parallel execution was perfectly
timed, locking would become obsolete and only one thread would modify a criti-
cal structure at any one point in time. As such, numTrees >= numThreads if all
threads are to be used all the time, when locking on trees.

Moving on, the results obtained when examining order are used to determine
its value for each operation when examining the other variables. The same way,
the results obtained when examining numThreads, in conjunction with those from
observing order, are used to determine its value for runs observing numTrees.
The values chosen are, for each operation, given at the start of the section linked
to the bar charts, and reasoned in their appropriate subsections. This method-
logy implies that the culmination of the parallel implementations’ throughput
performance, yields highest measurements at the last studied variable, namely
numTrees. Regarding the bar charts, it should be mentioned that they are all
presented using a logarithmic y-axis.

To hone in on the specific variables and study the central aspects of the imple-
mentations, some command line arguments have been set to the same appropriate
values throughout testing. These are:

• --op/--tree-size 5000000

• --op-distr-high/--build-distr-high 5000000

• --op-distr-low/--build-distr-low 1 (default i.e. not explicitly pro-
vided)

The value provided to --op will ensure that 5000000 operations are performed
for the test carried out, whereas the value provided to --tree-size, ensures that
the tree to perform the test on has received 5000000 inserts during tree build, if
the test is not to evaluate the performance of insert. The value of 5000000 is
sort of arbitrarily chosen, but it strikes a nice balance between running time and
sufficent workload.

All keys and values are, for both build and test, drawn from a uniform integer
distribution provided with a Mersenne Twister pseudo-random generator having
a state size of 19937 bits. In use this is the std::uniform_int_distribution
[46] provided with the std::mersenne_twister_engine [47]. Since the distri-
bution is uniform and the keys drawn pseudo-randomly, all tests end up with
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a somewhat large portion of duplicate keys drawn. Other distribution would
also be interesting to put to the test, as well as evaluating sequentially unique
keys, in order to see how the implementation adapts to other recognizable real-
life access patterns. Nevertheless, the uniform integer distribution should be
regarded as foundationally sufficent to obtain performance evaluation of valid
character. The values provided to --op-distr-high/--build-distr-high and
--op-distr-low/--build-distr-low as seen above ensures that the entire uni-
form range is used during all test runs.

4.3 Insert performance

The insert performance results are presented in Figure 4.1. An accompanying
breakdown of the parallel B+-trees main executing threads time expenditures
can be found in Table 4.1.

Secondary variables and their value:

• Figure 4.1a, 4.1b: numThreads = 32, numTrees = 32

• Figure 4.1c, 4.1d: order = 128, numTrees = 32

• Figure 4.1e, 4.1f: order = 128, numThreads = 16

4.3.1 order impact on insert throughput

Figure 4.1a and Figure 4.1b shows how the order of the B+-tree(s) affect the
insert throughput. The baseline shows steady increase in performance up until
the 128 and 256 order marks, from there a slight decline is observed.

Regarding the parallel instances during single key operation mode, both show
leveled performance. The leveled performance is explainable by taking a look
at the time expenditures show in Table 4.1. For the bar charts in question the
majority of operation time is spent pushing tasks to the thread pool. This is
clearly seen by the pushing-waiting ratio being above 1. When running without
Bloom filters this ratio is extremely high, ranging from around 602 to 4143. As
such, there is indication that pushing more meaningful tasks to the pool, i.e. tasks
containing multiple operations, should be beneficial. Of course, this bottleneck
means that in such configuration the insert throughput is largely limited by single
threaded performance, with an additional cost of dividing each insert operation
into a two-step process. Having such a high ratio means that the value of order
becomes insignificant, since any potential speed up will be eaten away by the
pushing time.

For the single key operations, the without Bloom filters variant unsurprisingly
lies above its counterpart throughout the range of values. This is due to the
with Bloom filters variant having to manage the Bloom filters, which involves
additional locking, reading and insert overhead.
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Figure 4.1: Insert performance of baseline and parallel B+-tree
implementations.
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Table 4.1: Time consumption grouped by stage during parallel B+-
tree insert operation. Pushing refers to time spent pushing tasks to
the thread pool, i.e. time spent accessing the public insert oper-
ation’s entry point. Waiting refers to time spent waiting for work
to finish using the waitForWorkToFinish method. Low combined
Pushing and Waiting time yields high throughput.

Variable Figure
reference

Bloom
filter

Variable
value

Pushing
(ms)

Waiting
(ms)

Pushing-
Waiting
ratio

order

Figure 4.1a
(Single key)

w/

8 4893 1752 2.792808
16 4468 2109 2.11854
32 4497 2079 2.163059
64 3951 2587 1.527252

128 4614 1919 2.404377
256 4352 2289 1.901267
512 4356 2444 1.782324

1024 4602 2211 2.081411

w/o

8 4219 7 602.714286
16 4141 4 1035.25
32 4139 6 689.833333
64 4127 5 825.4

128 4121 2 2060.5
256 4143 1 4143.0
512 4172 2 2086.0

1024 4226 2 2113.0

Figure 4.1b
(Batch)

w/

8 0 6061 0.0
16 0 5889 0.0
32 0 5898 0.0
64 0 5888 0.0

128 0 5934 0.0
256 0 6046 0.0
512 0 6076 0.0

1024 0 6055 0.0

w/o

8 0 408 0.0
16 0 335 0.0
32 0 310 0.0
64 0 290 0.0

128 0 287 0.0
256 0 294 0.0
512 0 321 0.0

1024 0 300 0.0

numThreads

Figure 4.1c
(Single key)

w/

1 563 18998 0.029635
4 1188 9235 0.128641

12 2579 4195 0.614779
16 3456 3192 1.082707
20 3966 2685 1.477095
24 4485 2049 2.188873
32 4562 1937 2.355188
35 3241 3708 0.874056

w/o

1 1147 3133 0.366103
4 3844 145 26.510345

12 3608 8 451.0
16 3557 7 508.142857
20 4025 6 670.833333
24 4064 2 2032.0
32 4107 2 2053.5
35 4156 3 1385.333333

Figure 4.1d
(Batch)

w/

1 0 18332 0.0
4 0 10068 0.0

12 0 6111 0.0
16 0 6013 0.0
20 0 6079 0.0
24 0 6042 0.0
32 0 5981 0.0
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35 0 6360 0.0

w/o

1 0 1724 0.0
4 0 494 0.0

12 0 290 0.0
16 0 252 0.0
20 0 254 0.0
24 0 257 0.0
32 0 300 0.0
35 0 301 0.0

numTrees

Figure 4.1e
(Single key)

w/

8 2587 5099 0.507354
16 2971 3850 0.771688
24 3281 3108 1.055663
32 3596 2974 1.209146
40 3308 3491 0.947579
48 2991 4079 0.733268
56 2548 4770 0.534172
64 2605 5073 0.513503

w/o

8 3939 1 3939.0
16 3876 3 1292.0
24 3565 3 1188.333333
32 3755 5 751.0
40 3705 4 926.25
48 3693 1 3693.0
56 3624 6 604.0
64 3868 5 773.6

Figure 4.1f
(Batch)

w/

8 0 7210 0.0
16 0 6330 0.0
24 0 5931 0.0
32 0 6011 0.0
40 0 6114 0.0
48 0 6417 0.0
56 0 6710 0.0
64 0 7049 0.0

w/o

8 0 416 0.0
16 0 281 0.0
24 0 327 0.0
32 0 255 0.0
40 0 282 0.0
48 0 240 0.0
56 0 264 0.0
64 0 233 0.0

When taking a look at the batch operation mode, a performance boost is observed
for both variations of the parallel B+-tree. The without filters variant hugly
benefits from dividing the inserts by numTrees and only locking once. Pushing
time for both becomes 0 ms, but the full parallel processing capabilities are only
realized in the without variant since it has no lock collisions. Further, as can
be seen in Figure 4.1b, there is about 10 times throughput improvement in the
without variant compared to its single key operation mode (note the y-axis change
from 106 to 107). As such, the baseline is vastly outperformed. The with variant’s
improvement is completely overshadowed by the without’s improvement. But,
once again looking at the relevant parts of Table 4.1 reveals that in batch operation
mode the with variant consistently hits running times right around 6000 ms and
below, compared to 6500 ms in the single key operation mode. Locking and Bloom
filter managment evidently becomes the bottleneck of this configuration.

Spending time on the actual insert tasks, as opposed to pushing tasks to the thread
pool, shows that the parallel variants are susceptible to the value of order as well.
Similar to the baseline, best performance is observed around the 128 order mark.
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The reason as to why 128 is a good choice for the value of order during insert,
most likely has to do with the cache layout and sizes of the computer used for
evaluating the operations performance. The integer data type in C++ is 4 bytes,
and the fill factor reached during these tests seems to allign nicely with stacking
multiple data structure containing the keys into the closest caches when order is
around 128.

The results obtained and explained in this subsection led to order having 128 as
value for the remaining insert performance tests to be described.

4.3.2 numThreads impact on insert throughput

The impact of adjusting numThreads for the parallel B+-tree variants can be
seen in Figure 4.1c and Figure 4.1d. The blue line labeled “Baseline” shows
the order = 128 performance for the baseline B+-tree found in Figure 4.1a and
Figure 4.1b.

First describing the single key operation mode and the with Bloom filters vari-
ant. A performance increase is observed until numThreads surpasses the available
number of kernel-level threads (32). The increase is most notable when moving
from 1, to 4, to 12 threads in the thread pool. Beyond this, performance increase
is severly reduced due to locking incurring overhead of such character that addi-
tional parallel processing capabilities added, are simply wasted away waiting for
locks to become available. Of course, moving from 32 to 35 threads is more of a
sanity check than anything else. Performance at this stage is expected to drop,
because a value beyond the maximum number of supported kernel-level threads
necessarily incurs context switching overhead.

Taking a look at the single key operation mode and the without Bloom filter
variant some interesting results are observed. Perfomance increase is found until
numThreads = 16, but then at numThreads = 20 a relatively larger dip is seen.
From here on, there is slight decrease in performance as numThreads continue to
increase. Remember that the without Bloom filters variant still uses locks, but no
filter locks. It seems the saturation point for when such simple locking becomes
to much, is numThreads = 16 for in single key operation mode. Studying relevant
parts of Table 4.1 we see that there is however improvements in waiting time
beyond 16 threads, but the additional pushing time makes the throughput turn
out worse. This is most likely due to the task queue of the thread pool being a
bottleneck. As more threads are actively popping tasks from the queue, the main
executing thread will more frequently have to wait to push new tasks. Thus, also
using multiple thread pools when the computer used supports a great number of
threads, might show further increase in performance.

In batch operation mode, the with Bloom filters variant shows similar devel-
opment to its counterpart single key operation mode. The insert throughput is
slightly better, something that is clear from looking at the total time expenditures
in Table 4.1. The without variant outperforms the baseline and shows bigger leaps
in performance when increasing the numer of threads, compared to its counterpart
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single key operation mode. However, while 16 threads remains the peak, the “ma-
jor” dip is now observed moving from 24 to 32 threads. As the time expenditures
table confirms, it is the waiting time that grows. This is interesting since, in the
single key operation mode, splitting the workload by numTrees showed improved
waiting time when utilizing a greater number of threads. A possible explanation
for this behavior is that with 5000000 keys and the great performance increase,
finding, accessing and moving the keys to be inserted between the caches of cores
located on two sockets, turns out more expensive than keeping it all close to one,
and letting each thread of the thread pool complete 1 or 2 tasks.

Based on the results of this subsection numThreads has value 16 for the last insert
performance test group to be described. A last point as to why 16 might be a
reasonable value is that the computer used for performance evaluation after all,
in reality have 16 cores (8 cores on 2 sockets). Thus, using anything beyond 16
threads also becomes a test of hyper-threading performance. So, to not intro-
duce unnecessary noise 16 is the value of choice, although the parallel B+-tree
as aforementioned, showed increased performance until matching the number of
kernel-level threads.

4.3.3 numTrees impact on insert throughput

The results that show how the value of numTrees impact the insert throughput
can be found in Figure 4.1e and Figure 4.1f. Regarding the with Bloom filters
variant, development is similar in both single key and batch operation mode.
Peak insert throughput is in both cases observed at numTrees = 24, but the
batch operation mode outperforms its counterpart by 60424 ops. Comparing the
two throughout the range shows higher throughput in favor of batch operation
mode, with values including and in between 42929-72042 ops. Table 4.1 shows
that the pushing-waiting ratio during single key operation mode at the peak is
relatively high compared to most other values in the range. In both cases for the
with Bloom filters variant, a small reduction in throughput is observed after the
peak for each increment in numTrees. It is interesting that 24 is the value in both
cases, where the overhead of Bloom filter managment hits its sweet spot when
numThreads = 16 and order = 128 on this computer.

When looking at the without Bloom filters variant, the results are a bit inconclu-
sive during single key operation mode, but during batch operation mode an inter-
esting pattern emerges. Insert throughput spikes during times when numTrees is
a multiple of 16. As previously mentioned, 16 is the number of cores the machine
has, so these results makes sense, i.e. the underlying supporting architecture im-
pacts the insert throughput when performance is high. Lastly, we see the highest
insert throughput measurements during insert performance tests combining all
discoveries made, with peaks over 20 Mops. In fact, the results does not top out
on the range of numTrees values tested on. A top will necessarily exist since
batch operation mode in the end becomes a form of single key operation mode (in
the extreme case where each insert operation gets its own tree). Also, although
the baseline is clearly outperformed by this parallel configuration, the number of
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B+-trees will make the other operations more complex and time consuming, as
we will see.

4.4 Search performance

The search performance results are presented in Figure 4.2. Table 4.2 shows
the breakdown of the parallel B+-trees main executing threads time expendi-
tures.

Secondary variables and their value:

• Figure 4.2a, 4.2b: numThreads = 32, numTrees = 32

• Figure 4.2c, 4.2d: order = 1024, numTrees = 32

• Figure 4.2e, 4.2f: order = 1024, numThreads = 32

For all search tests, about 63% of the keys searched for are found in the tree.
This is due to the way in which keys are drawn, both during build and search as
explained during the last part of section 4.2.

Note that, even though none of the performance runs displayed in Figure 4.2
beats their comparable baseline, there are in fact some sligthly more extreme
configurations on the computer used during testing that will, e.g. batching, en-
suring order = numThreads = numTrees = 4 yielded 1.3 Mops, which beats a
baseline order = 4 having around 740 Kops. This indicates that the in-memory
data structure can benefit from reduced tree height when compared against the
baseline’s height during search.

4.4.1 order impact on search throughput

How different values of order affects the implementations search throughput can
be seen in Figure 4.2a and Figure 4.2b. Both in single key and batch operation
mode the baseline outperforms the parallel implementations for all values of order
tested. At most the baseline peaks at close to 3 Mops.

The with Bloom filters variant is the best candidate of the two variations when
looking at single key operation mode. Albeit, its performance is fairly leveled
throughout the range. Table 4.2 shows that its pushing-waiting ratio ranges from
8-14 in this case, while a great increase in pushing-waiting ratio, making the value
lie between 169-285, is found during its batch operation mode. Tasking the main
executing thread with correctly identifying the trees to search is likely the reason
for this increase. The silver lining of the latter results is however that waiting
times mostly lie below 100 ms, which shows the parallel potiential when fully
realized.

The without variant on its side becomes the prime candidate when looking at
batch operation mode. Here the pushing-waiting ratio sinks a bit below 1 as seen
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Figure 4.2: Search performance of baseline and parallel B+-tree
implementations.
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Table 4.2: Time consumption grouped by stage during parallel B+-
tree search operation. Pushing refers to time spent pushing tasks to
the thread pool, i.e. time spent accessing the public search oper-
ation’s entry point. Waiting refers to time spent waiting for work
to finish using the waitForWorkToFinish method. Low combined
Pushing and Waiting time yields high throughput.

Variable Figure
reference

Bloom
filter

Variable
value

Pushing
(ms)

Waiting
(ms)

Pushing-
Waiting
ratio

order

Figure 4.2a
(Single key)

w/

8 11973 1364 8.777859
16 11970 991 12.078708
32 11854 1436 8.254875
64 11982 882 13.585034

128 11925 1431 8.333333
256 11856 847 13.997639
512 11936 878 13.594533

1024 11860 809 14.660074

w/o

8 134480 137917 0.975079
16 135399 137161 0.987154
32 135100 136606 0.988976
64 136842 135797 1.007695

128 135971 135432 1.00398
256 135487 135348 1.001027
512 135222 135305 0.999387

1024 136079 135015 1.007881

Figure 4.2b
(Batch)

w/

8 17157 101 169.871287
16 17363 78 222.602564
32 18033 66 273.227273
64 16536 58 285.103448

128 17382 66 263.363636
256 17454 64 272.71875
512 17520 64 273.75

1024 16829 60 280.483333

w/o

8 1586 5303 0.299076
16 1954 3881 0.503478
32 1606 4021 0.399403
64 1572 3124 0.503201

128 1923 2592 0.741898
256 1822 2229 0.817407
512 1892 2343 0.807512

1024 1576 2378 0.662742

numThreads

Figure 4.2c
(Single key)

w/

1 2201 25115 0.087637
4 5045 8107 0.622302

12 11234 780 14.402564
16 11362 1086 10.462247
20 11593 973 11.914697
24 11758 795 14.789937
32 11868 1389 8.544276
35 11915 1004 11.86753

w/o

1 3828 357730 0.010701
4 14323 212245 0.067483

12 47648 202665 0.235107
16 63843 190188 0.335684
20 81242 178706 0.454613
24 100727 162380 0.620317
32 134849 133759 1.008149
35 151020 123820 1.219674

Figure 4.2d
(Batch)

w/

1 14162 1321 10.720666
4 14073 182 77.324176

12 15598 55 283.6
16 15730 46 341.956522
20 14921 50 298.42
24 16899 50 337.98
32 16536 60 275.6
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35 16989 53 320.54717

w/o

1 1346 44962 0.029936
4 1390 12383 0.112251

12 1729 4529 0.381762
16 1374 3561 0.385847
20 1391 3438 0.404596
24 1517 3413 0.444477
32 1824 2140 0.852336
35 1845 2229 0.827725

numTrees

Figure 4.2e
(Single key)

w/

8 11656 806 14.461538
16 11616 1300 8.935385
24 11650 798 14.598997
32 11857 1398 8.481402
40 12222 1235 9.896356
48 12165 1293 9.408353
56 12320 1278 9.640063
64 12474 1520 8.206579

w/o

8 70260 4394 15.989986
16 128206 9735 13.169594
24 131809 71900 1.833227
32 135478 134880 1.004434
40 138322 195783 0.706507
48 137288 258101 0.531916
56 139716 320189 0.436355
64 140106 385536 0.363406

Figure 4.2f
(Batch)

w/

8 5038 252 19.992063
16 9330 93 100.322581
24 12273 65 188.815385
32 16998 53 320.716981
40 22681 48 472.520833
48 27128 37 733.189189
56 27221 35 777.742857
64 36213 28 1293.321429

w/o

8 610 2205 0.276644
16 905 2155 0.419954
24 1244 2283 0.544897
32 1587 2504 0.633786
40 2194 3360 0.652976
48 2294 5511 0.416258
56 2694 6499 0.414525
64 2939 8388 0.350381

in Table 4.2. Development throughout the range is similar to that of the base-
line. Although, its pushing-wating ratio is close to 1 during single key operation
mode, the implementation is in this case plagued by both pushing and waiting
times of high absolute values. This is because the threadSearchCoordinator
pushes an additional numTrees tasks to the pool for each single key task push
by the main executing thread. Which most likeley causes a thread pool access
bottleneck.

In any case, the most promising looking value for order when trying to achive
high search thoughput seems to be 1024, so this is the value chosen moving
forward. Interestingly, this contrasts the 128 value obtained when examining
insert performance in section 4.3. This is possibly due to more surrounding data
structures (e.g. std::promise and vector return types) being used in comparison
to the insert operations.
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4.4.2 numThreads impact on search throughput

The search throughput impact of adjusting numThreads can be found in Fig-
ure 4.2c and Figure 4.2d.

In single key operation mode both variants make it clear that adding additional
parallel processing resources is useless if the bottleneck is caused by troubles in
effectively distributing the tasks quickly enough. Table 4.2 shows how waiting
time grows from 2201 ms to 11915 ms, and from 3828 ms to 151020 ms, for
the with and without Bloom filters variants respectively. Remember that for
any run the number of tasks to be pushed is 5000000. So, it is clear in single
key operation mode that adding threads to the thread pool severly reduces task
distribution time. Simultaneously, the reduction in waiting time is not observed,
or not enough, to counteract the pushing time effects for values of numThreads
surpassing 12 and 4, for with and without Bloom filters respectively.

Batch operation mode shows more promising results in utilizing parallel process-
ing capabilities for the without Bloom filters variant. Somewhat sporadic leaps
in performance until the maximum number of available kernel-level threads are
in use is observed. The with variant on its side shows a more similar pattern to
that of single key operation mode, not really benefiting much from the switch to
batching. Centralizing the with variants task distribution on the main executing
thread in hopes of speed up, does not seem worth it when comparing to increased
lock contention as a result of increased numThreads, with a middleman coordi-
nation task pushed to the pool, as done during comparable parts of the insert
operations. Batch mode does on the plus side for both variants show time ex-
penditures that develop more predictibly compared to single key operation mode.
That is, small increments in pushing times, and small decrements in waiting times
for the majority of numThreads values.

4.4.3 numTrees impact on search throughput

The results regarding numTrees impact on search throughput can be found in
Figure 4.2e and Figure 4.2f.

The without Bloom filters variant shows similar development during both single
key and batch operation mode. Although, the numbers are much better during
batch operation mode. The relationship between numTrees and search through-
put is in this case inversely proportional. The same relationship holds when
looking at the with Bloom filters variant. However, the relationship is then much
more pronounced during batch operation mode. Even though this relationship is
expected, it stands in stark contrast to the relationship derived between numTrees
and insert throughput, at least during batch operation mode without use of Bloom
filters, which shows proportionality. This trade-off would need assessment if con-
figuring the implementation for use in a real system, i.e. are inserts or searches
most important? Taking a look at Table 4.2 confirms that it is the pushing time
that grows the most during batch operation mode for both variants, whereas dur-



4.5. Update performance 55

ing single operation mode it is mainly waiting time increase that is responsible
for degrading performance of the without variant, while the with variant stays
fairly leveled here.

4.5 Update performance

In Figure 4.3 all update performance results are presented. The accompanying
time expenditures table, which shows the breakdown of the parallel B+-trees main
executing threads, is Table 4.3.

Secondary variables and their value:

• Figure 4.3a, 4.3b: numThreads = 32, numTrees = 32

• Figure 4.3c, 4.3d: order = 512, numTrees = 32

• Figure 4.3e, 4.3f: order = 512, numThreads = 12

4.5.1 order impact on update throughput

The results concerning how order affects the B+-tree(s) update performance are
presented in Figure 4.3a and Figure 4.3b. In single key operation mode both
parallel variants do not display any significant variation in update throughput,
in response to the value of order varying. Table 4.3 shows that their pushing-
waiting ratios stays fairly stable over all values tested. Taking a look at the
absolute times, the with variant spends almost all its time pushing and close to
no time waiting. The without variant on its side have pushing-waiting ratios right
around 1 for all values, but compared to the with variant, it uses vastly more time
in absolute terms. Since single key updating by use of a coordination-task is more
complex than the other comparable parallel B+-tree operations (complex in the
sense that a great number of modifiable (sub)tasks might be added to the thread
pool’s task queue), the payoff when using Bloom filters becomes clear in single
key operation mode.

In batch operation mode the without variant performs better than the with vari-
ant. Albeit, peak performance does not surpass the results obtained for the
parallel B+-trees in single key operation mode. For both variants the update
throughput does not move in any one direction, when moving from start to fin-
ish on the range of values put to the test. Time expenditures for both however
show tendency towards reduced waiting time when the value of order increases.
This makes sense as the impact of varying order should mostly affect the actual
operations carried out involving the B+-trees.

The baseline outperforms both variations throughput on the entire range of values
tested. Since the single key operation mode variants do not seem too affected by
the value of order, and the batch operation mode results are somewhat inconclu-
sive, the choice of order to use when generating the other update performance
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Figure 4.3: Update performance of baseline and parallel B+-tree
implementations.
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Table 4.3: Time consumption grouped by stage during parallel B+-
tree update operation. Pushing refers to time spent pushing tasks
to the thread pool, i.e. time spent accessing the public update op-
eration’s entry point. Waiting refers to time spent waiting for work
to finish using the waitForWorkToFinish method. Low combined
Pushing and Waiting time yields high throughput.

Variable Figure
reference

Bloom
filter

Variable
value

Pushing
(ms)

Waiting
(ms)

Pushing-
Waiting
ratio

order

Figure 4.3a
(Single key)

w/

8 12940 32 404.375
16 14035 2 7017.5
32 14590 12 1215.833333
64 14544 1 14544.0

128 14543 2 7271.5
256 14558 2 7279.0
512 14663 2 7331.5

1024 14751 3 4917.0

w/o

8 92596 97780 0.946983
16 94979 98727 0.962037
32 93644 99141 0.944554
64 95324 96502 0.987793

128 95383 96002 0.993552
256 95683 96451 0.992037
512 95792 95682 1.00115

1024 95131 96312 0.987738

Figure 4.3b
(Batch)

w/

8 56106 1024 54.791016
16 57340 973 58.931141
32 57026 810 70.402469
64 63507 102 622.617647

128 57936 465 124.593548
256 60453 387 156.209302
512 58068 223 260.394619

1024 59523 195 305.246154

w/o

8 45465 2179 20.865076
16 44412 1408 31.542614
32 41966 1228 34.174267
64 41359 1052 39.314639

128 38211 913 41.852136
256 40024 581 68.888124
512 38118 681 55.973568

1024 42915 460 93.293478

numThreads

Figure 4.3c
(Single key)

w/

1 1035 16623 0.062263
4 2697 10767 0.250488

12 13759 2 6879.5
16 13739 1 13739.0
20 14011 8 1751.375
24 14328 9 1592.0
32 14619 5 2923.8
35 14719 2 7359.5

w/o

1 1311 79465 0.016498
4 8750 133418 0.065583

12 32734 150422 0.217614
16 42675 144502 0.295325
20 54416 134463 0.404691
24 66843 124223 0.538089
32 96182 94729 1.015338
35 106236 86182 1.232694

Figure 4.3d
(Batch)

w/

1 50511 1422 35.521097
4 57392 153 375.111111

12 58980 359 164.289694
16 58795 13 4522.692308
20 54190 271 199.9631
24 57139 350 163.254286
32 54935 245 224.22449
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35 59626 275 216.821818

w/o

1 28859 19114 1.509836
4 39367 700 56.238571

12 35778 570 62.768421
16 40309 864 46.653935
20 40738 707 57.620934
24 39965 919 43.487486
32 38192 737 51.820896
35 40656 835 48.68982

numTrees

Figure 4.3e
(Single key)

w/

8 13903 1 13903.0
16 13728 2 6864.0
24 13721 2 6860.5
32 13723 3 4574.333333
40 13803 5 2760.6
48 14011 3 4670.333333
56 14060 4 3515.0
64 11234 2841 3.954241

w/o

8 29228 21673 1.34859
16 31141 63696 0.4889
24 32216 105946 0.304079
32 33171 152427 0.217619
40 32302 195594 0.165148
48 33087 239800 0.137977
56 34319 283477 0.121064
64 34407 330215 0.104196

Figure 4.3f
(Batch)

w/

8 17555 751 23.375499
16 32735 490 66.806122
24 42502 510 83.337255
32 57369 404 142.002475
40 69765 362 192.720994
48 83037 202 411.074257
56 96778 296 326.952703
64 109449 334 327.691617

w/o

8 8974 1287 6.972805
16 18109 672 26.947917
24 30873 706 43.729462
32 40160 776 51.752577
40 53806 817 65.858017
48 56793 125 454.344
56 70597 718 98.324513
64 74241 416 178.463942

results is 512. 512 produces reasonable throughput results, both for the baseline
and the two batch mode operation variants.

4.5.2 numThreads impact on update throughput

Figure 4.3c and Figure 4.3d presents the update throughput results obtained when
varying the number of threads used in the thread pool. In single key operation
mode the with variant only shows increased performance during the first step from
1 to 4 threads. Moving beyond 4 threads, performance declines sligthly with each
step. Table 4.3 shows that at 12 threads and onwards the main executing thread’s
waiting time is in reality non-existent. This indicates that dispatching the update
during the coordination-task, and completing it, takes less time than pushing a
subsequent update task. The additional parallel processing capabilities are not
utilized, while they incur additional cost reflected in the pushing times. In the
end this leads to the declining development observed. The without variant shows
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more dramatic decline in performance until 12 threads, and growing pushing-
waiting ratios throughout the range. From 12 threads and onwards any reduction
in waiting time is merely cancelled out by increase in pushing time, thus yielding
similar throughput measurments.

In batch operation mode a numThreads value of 12 and 32 marks the peaks for
the without variant. Although, multiple other numThreads values produce results
fairly close by. Taking a look at the time expenditures reveales that batching
the way it is done, makes the main executing thread spend almost all its time at
the pushing stage for both variants. The waiting times are all really similar for
the without variant when using more than 1 thread in the thread pool. The with
variant on its side have one numThreads value that stands out when examining the
waiting times. That is, numThreads = 16 which yields 13 ms spent waiting for this
particular test run. The reason as to why 16 stands out, most likely has to do with
the specifications of the computer used, as also discussed during subsection 4.3.2
where numThreads = 16 showed itself as a good value of choice.

Since it seems batch operation mode has the most to gain from adjusting num-
Threads, the peak of the without variant in this operation mode makes numThreads
have value 12, for the numTrees update performance results to be presented
next.

4.5.3 numTrees impact on update throughput

Lastly, the update performance results regarding how the value of numTrees im-
pact throughput are presented in Figure 4.3e and Figure 4.3f. The same inversely
proportional relationship between numTrees and update throughput is found for
all variants, except the with Bloom filters single key operation mode variant.
This is the same relationship that was found when examining numTrees impact
on search throughput in subsection 4.4.3. In batch operation mode the relation-
ship is due to increased pushing times, stemming from more partitions and tasks
created on the main executing thread. While for the without Bloom filters single
key operation mode variant, the relationship is due to increased waiting times,
stemming from the coordination-task creating more partitions and tasks. The
with variant in single key operation mode remains level with minimal decline due
to the bottleneck of this particular design seemingly being the pushing stage.
However, when looking at the time expenditures one data point stands out. That
is, numTrees = 64 forces a shift in distribution of time between stages, yield-
ing a comparativly low pushing-waiting ratio of 4. This shift might be due to the
amount of storage required for the data structure reaching a value which demands
the computer manages the data in a different way.
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4.6 Remove performance

Figure 4.4 presentes the remove performance results. The accompanying time
expenditures table, which shows the breakdown of the parallel B+-trees main
executing threads, is Table 4.4.

Secondary variables and their value:

• Figure 4.4a, 4.4b: numThreads = 32, numTrees = 32

• Figure 4.4c, 4.4d: order = 1024, numTrees = 32

• Figure 4.4e, 4.4f: order = 1024, numThreads = 32

4.6.1 order impact on remove throughput

The impact of order on remove throughput can be seen in Figure 4.4a and
Figure 4.4b. In single key operation mode both parallel variants are outperformed
by the baseline. Both variants stay level throughout the range of values, and the
with Bloom filters variant performs much better than the without variant.

The way better results are found when looking at batch operation mode. Here
the without variant beats all other competitors for all values of order. Wheras
the baseline peaks at order = 256, the without variant continues to show perfor-
mance increase until the last value tested, namely order = 1024. At this point
performance is about 4.5 Mops compared to the baseline’s 2.5 Mops. Expect-
edly, remove performance should increases up until a certain point when order
increases as long as the bottleneck of performance is the actual remove opera-
tion. This is due to more simple removes being carried out, and less merges and
redistributions occurring. Table 4.4 shows that the batch operation mode with-
out variant has pushing times of 0 ms, stemming from the simplicity of splitting
workload by numTrees and optimized compiling. The throughput performance of
the batch operation mode with variant on its side is way worse, but comparable
to its single key operation mode counterpart.

Due to the high performer being the batch operation mode without variant, and
it peaking at order = 1024, 1024 is chosen as the fixed value of order for the
other remove performance tests carried out.

4.6.2 numThreads impact on remove throughput

The results concerning numThreads affect on remove throughput are presented in
Figure 4.4c and Figure 4.4d.

In single key operation mode the with variant reaches its 371 Kops peak at 12
threads. Meanwhile, the peak of the without variant is just 22 Kops with 4 threads
in use. As confirmed by looking at time expenditures, increasing the number of
threads leads to longer pushing times due to more contention and managment of
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Figure 4.4: Remove performance of baseline and parallel B+-tree
implementations.
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Table 4.4: Time consumption grouped by stage during parallel B+-
tree remove operation. Pushing refers to time spent pushing tasks
to the thread pool, i.e. time spent accessing the public remove op-
eration’s entry point. Waiting refers to time spent waiting for work
to finish using the waitForWorkToFinish method. Low combined
Pushing and Waiting time yields high throughput.

Variable Figure
reference

Bloom
filter

Variable
value

Pushing
(ms)

Waiting
(ms)

Pushing-
Waiting
ratio

order

Figure 4.4a
(Single key)

w/

8 13523 1247 10.844427
16 13937 1463 9.526316
32 13775 1338 10.295217
64 14166 1420 9.976056

128 13982 1203 11.62261
256 13591 1367 9.942209
512 14032 1429 9.819454

1024 13974 1158 12.067358

w/o

8 132408 165198 0.801511
16 133498 165042 0.808873
32 133992 164065 0.816701
64 132657 162088 0.818426

128 133148 163661 0.81356
256 133336 162260 0.821743
512 133039 161359 0.824491

1024 135251 164302 0.823185

Figure 4.4b
(Batch)

w/

8 14833 202 73.430693
16 15560 131 118.778626
32 15805 93 169.946237
64 15114 93 162.516129

128 15461 77 200.792208
256 15198 61 249.147541
512 16215 72 225.208333

1024 14565 64 227.578125

w/o

8 0 4091 0.0
16 0 2683 0.0
32 0 1945 0.0
64 0 1459 0.0

128 0 1274 0.0
256 0 1222 0.0
512 0 1124 0.0

1024 0 1110 0.0

numThreads

Figure 4.4c
(Single key)

w/

1 2135 26018 0.082059
4 4587 9404 0.487771

12 12606 854 14.761124
16 12810 943 13.584305
20 12918 1161 11.126615
24 13370 1125 11.884444
32 14008 1331 10.524418
35 14279 1417 10.076923

w/o

1 4015 353707 0.011351
4 13390 216183 0.061938

12 46070 208996 0.220435
16 63462 197041 0.322075
20 80143 189990 0.421827
24 98759 182156 0.542167
32 134037 161731 0.828765
35 147421 129694 1.136683

Figure 4.4d
(Batch)

w/

1 12850 731 17.578659
4 13153 211 62.336493

12 14400 106 135.849057
16 15919 95 167.568421
20 14648 88 166.454545
24 15340 91 168.571429
32 13481 75 179.746667
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35 14395 60 239.916667

w/o

1 0 21105 0.0
4 0 5516 0.0

12 0 2460 0.0
16 0 1866 0.0
20 0 1752 0.0
24 0 1754 0.0
32 0 1111 0.0
35 0 1118 0.0

numTrees

Figure 4.4e
(Single key)

w/

8 13271 1371 9.679796
16 13637 1370 9.954015
24 13603 1259 10.804607
32 13710 1014 13.52071
40 13976 1035 13.503382
48 14382 1200 11.985
56 14568 1257 11.589499
64 14800 1247 11.868484

w/o

8 68663 6207 11.062188
16 122758 18291 6.711388
24 129173 70503 1.832163
32 133219 162723 0.818686
40 131272 195735 0.670662
48 134322 276359 0.486042
56 136765 335857 0.407212
64 138555 398137 0.348008

Figure 4.4f
(Batch)

w/

8 4476 180 24.866667
16 7892 222 35.54955
24 11553 87 132.793103
32 15254 63 242.126984
40 23021 62 371.306452
48 24039 60 400.65
56 30664 37 828.756757
64 34698 43 806.930233

w/o

8 0 1261 0.0
16 0 1235 0.0
24 0 1164 0.0
32 0 1107 0.0
40 0 1811 0.0
48 0 1820 0.0
56 0 1910 0.0
64 0 1886 0.0

the thread pool. The with variants peak marks the point were further reduction
in waiting times does not occur, while its pushing times continues to increase.
The without variant on its side sees reductions in waiting times and increases in
pushing times on the entire range of values. Even performing marginally better
at a value of 35 than 32. Why that is, is not exactly clear. It might just be
a particularly “good” run. Since performance at this point is so low, and the
difference is minuscule, it is not deemed worthwhile investigating.

In batch operation mode the without variant displays a much more dependent
pattern on the number of threads in use. Performance increases sharply until
about 16 threads, and then sharply again moving from 24 to 32 threads. From
16 threads and onwards the baseline is beaten. As aforementioned, 16 is the
computers number of cores, and with hyper-threading 32 threads are supported.
Thus, the development is in line with what the computers underlying architecture
supports. Unfortunately, the with variant does not perform as well or predictably.
Once again, as also discussed during previous operations, this is most likely due
to placing a to high demand on the main executing thread. The time expendi-
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tures in this case shows that waiting times are really low, but pushing times are
consistently plagued by the overhead associated with workload distribution in a
fashion that attempts to avoid waiting for locks at the time of actually operating
on the B+-trees.

In hopes of achiving the best remove throughput, these results suggests that
numThreads should have a value of 32 when generating the numTrees results.

4.6.3 numTrees impact on remove throughput

Figure 4.4e and Figure 4.4f shows how the value of numTrees impact remove
throughput for the parallel variants.

In single key operation mode the with variant remains level, only declining slightly
as numTrees increases. Since the Bloom filters have a low false positive proba-
bility, unneccessary tasks created by the coordination-task will be few even when
the number of trees are high. Thus, the value of numTrees does not strongly
affect this variant. The without variant however shows declining performance as
numTrees increases. This is due to the number of B+-tree remove calls being
issued, being directly dependent on numTrees.

In batch operation mode the with variant displays similar development to that
of the single key operation mode without variant. Although, its performance in
absolute numbers is much better. The batch operation mode without variant
beats the baseline with some margin, and increases performance until numTrees
= 32. From there on, performance drops to right around the baseline’s level. Of
course, since the value of numThreads is 32, and workload in this case is split by
numTrees, it makes sense that performance drops at above 32 trees since then
some threads must carry out more than one task.

4.7 Profiling

To better understanding exactly where time gets spent during a portion of the op-
eration modes, some configurations where selected for additional profiling. These
are, one low performing search operation test, and one high performing insert
operation test. Both these runs serve as examples helping illustrate and highlight
when and why the parallel implementation scores better or worse.

Due to full access rights needed to perform profiling of the multithreaded code
the correct way, a different computer to the one used during primary testing and
performance evaluation was used for profiling. The two computers have the same
x86_64 architecture, with similar performance development on the testable range
of threads. Full relevant specifications of the computer used for profiling can be
found in Listing 4.2. Once again, having an Intel processor, the profiling computer
supports at most 4 kernel-level threads.
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$ system_profiler -detailLevel mini SPSoftwareDataType
SPHardwareDataType
Software:

System Software Overview:

System Version: macOS 11.6.2 (20G314)
Kernel Version: Darwin 20.6.0

Hardware:

Hardware Overview:

Model Name: MacBook Pro
Model Identifier: MacBookPro11,1
Processor Name: Dual-Core Intel Core i5
Processor Speed: 2,4 GHz
Number of Processors: 1
Total Number of Cores: 2
L2 Cache (per Core): 256 KB
L3 Cache: 3 MB
Hyper-Threading Technology: Enabled
Memory: 4 GB
System Firmware Version: 432.60.3.0.0
SMC Version (system): 2.16f68

Listing 4.2: Specifications of the computer used for profiling.

4.7.1 Vizualisation tool and workflow

In order to convey information in an orderly fashion to the reader, two separate
tools from the main profiling tool have been used. Those are, Brendan Gregg’s
flame graph vizualization tool [48] and Google’s unofficial pprof tool [49].

Profiling runs were carried out using the Instruments performance analyzer [50],
who is bundled with Xcode, and its Time Profiler template. From the raw profiles
collected, the call tree’s were deep copied and transformed to pprof readable
files using the instrumentsToPprof tool [51]. Excerpts of top entry reports were
generated using pprof, and using pprofutils [52], files of the folded text format
needed to feed the flame graphs were generated.

Flame graph

To understand what the flame graphs actually display, here is a short quote from
Brendan Gregg’s own website [48]:



66 Chapter 4. Results and Discussion

The x-axis shows the stack profile population, sorted alphabetically
(it is not the passage of time), and the y-axis shows stack depth,
counting from zero at the bottom. Each rectangle represents a stack
frame. The wider a frame is is, the more often it was present in the
stacks. The top edge shows what is on-CPU, and beneath it is its
ancestry. The colors are usually not significant, picked randomly to
differentiate frames.

pprof reports

The pprof top entry reports show much the same as the flame graphs, but in
a more detail specific way. This means that the flame graphs are best used to
quickly overview the situation, and the graph reports allows for studying the
profiling in more detail. Natively, the flame graphs are interactive SVGs, but
in this report they are reproduces as images. Thus, the pprof graph reports are
handy in their own right.

4.7.2 Search performance run

The parallel B+-tree variant selected for profiling here, was the low performing
without Bloom filters single key operation mode variant:

$ ./optimized --test search --bloom-disable --threads 2

Main executing thread

The main executing thread’s profiled results are presented in Figure 4.5 and Fig-
ure 4.6. A first observation is that during this run, this thread spends its majority
of time waiting. The top 10 nodes sorted by cumulative weight presented in Fig-
ure 4.6b shows that std::__1::__assoc_sub_stat::wait clocks in at 38.45%.
Waiting should of course make up most of this threads time if the number of
operations pushed makes the thread pool’s task queue grow. The other main por-
tions seen in Figure 4.5a is the free_tiny calls and the search operation itself.
Freeing a lot of memory is due to search having a return type, and the main
executing thread collecting these results for simple statistics calculations before
termination.

The ParallelBplustree::search operation makes up 18.69% cumulatively as
seen in Figure 4.6b. Note that its flat weight is 0, which is easily verifiable by
taking a look at Figure 4.5b. This flame graph also verifies that locking takes up
most of the main executing threads time during the task pushing stage in single
key operation mode. Specifically, its the __psynch_mutex(wait/drop) seen in
Figure 4.6a holding high flat weights during this portions of program execution.
The only other stack frame of notable size during the search operation, is that
of operator new, which is caused by a std::promise heap allocation, which
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Figure 4.5: Flame graph displaying relevant portions of the main
executing thread’s stack trace during the search test run.

purpose is to in turn relay the search result back to the caller. The actual push
on the thread pool’s task queue (implemented by use of std::deque [53]) can
only be found in 5.4% of the samples, i.e. 5.4% cumulative weigth. In the flame
graph with root locked on the search operation this is the frame colored red,
squezed between operator new and std::__1::mutex::lock. Ideally, we would
of course like to trade some of the lock managment time, reflected in the mutex
lock/unlock operations of these results, against time spent on actually pushing
task to the thread pool’s task queue.

Worker thread

The results obtained for the worker thread examined are presented in Figure 4.7
and Figure 4.8. As can be seen, the total time found in the reports are larger
than that of the main executing thread. This is only due to the flame graph
and reports in this instance being rooted at the thread_pool::worker function.
Thus, results from the tree build stage can also be found lurking in these reports.
However, it is easy enough to distinguish between the two.

Luckily, most of the worker’s time during search performance evaluation is spent
inside the actual search operation on B+-trees. The cumulative report found
in Figure 4.8b places the figure at 33.65% for Bplustree::search, and the
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Type: cpu
Showing nodes accounting for 5140ms, 76.72% of 6700ms total
Dropped 31 nodes (cum <= 33.50ms)
Showing top 10 nodes out of 54

flat flat% sum% cum cum%
1506ms 22.48% 22.48% 1506ms 22.48% __psynch_cvwait
668ms 9.97% 32.45% 668ms 9.97% __psynch_mutexwait
645ms 9.63% 42.07% 645ms 9.63% pthread_mutex_lock
624ms 9.31% 51.39% 624ms 9.31% madvise
541ms 8.07% 59.46% 541ms 8.07% tiny_free_list_remove_ptr
319ms 4.76% 64.22% 2022ms 30.18% tiny_free_no_lock
261ms 3.90% 68.12% 261ms 3.90% __psynch_mutexdrop
206ms 3.07% 71.19% 206ms 3.07% tiny_free_list_add_ptr
192ms 2.87% 74.06% 192ms 2.87% pthread_mutex_unlock
178ms 2.66% 76.72% 2118ms 31.61% std::__1::__assoc_sub_state::
↪→ __sub_wait

(a) Entries sorted by flat/own weight.

Type: cpu
Showing nodes accounting for 2089ms, 31.18% of 6700ms total
Dropped 31 nodes (cum <= 33.50ms)
Showing top 10 nodes out of 54

flat flat% sum% cum cum%
0 0% 0% 6700ms 100% Program::searchParallelBplustree [pid:

↪→ 0]
0 0% 0% 2576ms 38.45% std::__1::__assoc_sub_state::wait [tid

↪→ : 0x0]
178ms 2.66% 2.66% 2118ms 31.61% std::__1::__assoc_sub_state::
↪→ __sub_wait

0 0% 2.66% 2056ms 30.69% free_tiny [tid: 0x0]
319ms 4.76% 7.42% 2022ms 30.18% tiny_free_no_lock

9ms 0.13% 7.55% 1936ms 28.90% std::__1::condition_variable::wait
67ms 1.00% 8.55% 1913ms 28.55% _pthread_cond_wait

1506ms 22.48% 31.03% 1506ms 22.48% __psynch_cvwait
0 0% 31.03% 1252ms 18.69% ParallelBplustree::search [tid: 0x0]

10ms 0.15% 31.18% 1181ms 17.63% std::__1::mutex::lock

(b) Entries sorted by cumulative weight.

Figure 4.6: Top 10 nodes found in the reports on the main execut-
ing thread’s stack trace during the search test run.
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Figure 4.7: Flame graph displaying relevant portions of a worker
thread’s stack trace during the search test run.

top flat weight, seen in Figure 4.8a, is that of Bplustree::findSearchPath
with 18.59%. Time spent elsewhere mainly concerns the ParallelBplustree-
::threadSearchCoordinator function, wherein time expenditures are spread out
similar to what was found during examination of the main executing thread in Fig-
ure 4.5. That is, whereas the ParallelBplustree::threadSearchCoordinator
function accounts for 21.01% cumulatively, the push operation on the thread
pool’s task queue concerning specific B+-tree searches, has a measly cumulative
weight at 0.52%. Otherwise, time at this point is mainly spent dealing with lock
managments. Since Bloom filters are disabled, the samples collected that identify
locking at this stage are first and foremost connected to the thread pool’s task
queue.

4.7.3 Insert performance run

The high performing parallel B+-tree variant profiled, was the without Bloom
filters batch operation mode variant:

$ ./optimized --test insert --batch --bloom-disable --threads 2

Main executing thread

The flame graph presenting the main executing thread during this run can be
found in Figure 4.9. It clearly shows that the main executing thread spends close
to all its time waiting for the thread pool to finish the insert operations. Taking a
look at the reports found in Figure 4.10; Figure 4.10b places the cumulative per-
centage at 97.50% for the ParallelBplustree::waitForWorkToFinish method.
At the same time, all flat weights registering more than 0 ms found in Figure 4.10a
are associated with this waiting. In fact, no stack trace contains ParallelBplus-
tree::insert, i.e. the pushing stage, at the sampling rate recorded at. This is
not to surprising as the primary results presented during section 4.3 contains time
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Type: cpu
Showing nodes accounting for 10453ms, 66.76% of 15657ms total
Dropped 72 nodes (cum <= 78.28ms)
Showing top 10 nodes out of 62

flat flat% sum% cum cum%
2910ms 18.59% 18.59% 5128ms 32.75% Bplustree::findSearchPath
1678ms 10.72% 29.30% 1678ms 10.72% Node::isLeaf const
1257ms 8.03% 37.33% 1257ms 8.03% __psynch_mutexdrop
1248ms 7.97% 45.30% 1248ms 7.97% __psynch_mutexwait
740ms 4.73% 50.03% 740ms 4.73% __psynch_cvbroad
701ms 4.48% 54.51% 1133ms 7.24% tiny_malloc_should_clear
573ms 3.66% 58.17% 573ms 3.66% pthread_mutex_lock
491ms 3.14% 61.30% 491ms 3.14% tiny_free_list_add_ptr
448ms 2.86% 64.16% 1370ms 8.75% tiny_free_no_lock
407ms 2.60% 66.76% 1717ms 10.97% free_tiny

(a) Entries sorted by flat/own weight.

Type: cpu
Showing nodes accounting for 3.50s, 22.34% of 15.66s total
Dropped 72 nodes (cum <= 0.08s)
Showing top 10 nodes out of 62

flat flat% sum% cum cum%
0 0% 0% 15.66s 100% thread_pool::worker [pid: 0]
0 0% 0% 6.68s 42.68% std::__1::__function::__func::operator

↪→ [tid: 0x0]
0.07s 0.46% 0.46% 5.27s 33.65% Bplustree::search
2.91s 18.59% 19.05% 5.13s 32.75% Bplustree::findSearchPath

0 0% 19.05% 3.29s 21.01% ParallelBplustree::
↪→ threadSearchCoordinator [tid: 0x0]

0 0% 19.05% 2.18s 13.94% ParallelBplustree::threadInsert [tid:
↪→ 0x0]
0.02s 0.13% 19.18% 2.02s 12.93% std::__1::mutex::lock
0.41s 2.60% 21.78% 1.72s 10.97% free_tiny

0 0% 21.78% 1.71s 10.90% std::__1::__function::__func::
↪→ destroy_deallocate [tid: 0x0]
0.09s 0.56% 22.34% 1.71s 10.89% operator new(unsigned long)

(b) Entries sorted by cumulative weight.

Figure 4.8: Top 10 nodes found in the reports on a worker thread’s
stack trace during the search test run.
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expenditures for the configuration in question at 0 ms. Of course, spending little
to no time distributing a few tasks makes this configuration get off to a good
start.

Search ic

std::__1::this_thread::sleep_for(std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000000l> > const&)

mach_msg_trap

ParallelBplustree::waitForWorkToFinish() [tid: 0x0]

nanosleep__..

fr..

mach_msg

ma..

Program::buildRandomParallelBplustree(int, std::__1::uniform_int_distribution<int>&) [pid: 0]

__semwait_signal clock_get_time

Figure 4.9: Flame graph displaying relevant portions of the main
executing thread’s stack trace during the insert test run.

Worker thread

The flame graph found in Figure 4.11, depicting how the worker thread spends it
time, at a glance reveals that the actual insert operations are in focus. Cu-
mulatively the most interesting figures are 97.08% spent at ParallelBplus-
tree::threadInsert and 96.30% spent at Bplustree::insert. These numbers
can be found in Figure 4.12b. Flat weight consumption displayed in Figure 4.12a
shows that it is the tree traversal by Bplustree::findSearchPath taking up the
most amount of time.

Search ic

f..

szone_ma..

free

_malloc_zo..

operator n..Node::isLeaf() const

s..

ParallelBplustree::threadInsert(std::__1::__wrap_iter<int*>, std::__1::__wrap_iter<int*>, std::__1::__wrap_iter<int*>, int) [tid: 0x0]

std:..

LeafNode::insert(int, int)Bplustree::findSearchPath(int, Node*, std::__1::stack<Node*, std::__1::deque<No..

std::_..

Bplustree::insert(int, int)

LeafNo..

std..

st..

std::__..

tiny_mal..szone..

s..

_mall..

ti..

thread_pool::worker() [pid: 0]

na..

operat..

Interna..

t..

Figure 4.11: Flame graph displaying relevant portions of a worker
thread’s stack trace during the insert test run.

When comparing this configuration and the way it works to that of subsec-
tion 4.7.2, it becomes clear that avoiding locking, and creation and managment
of multiple times more tasks are the causes for the performance difference ob-
served. The operation types are of course different, but they both interact with
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Type: cpu
Showing nodes accounting for 40ms, 100% of 40ms total

flat flat% sum% cum cum%
19ms 47.50% 47.50% 19ms 47.50% mach_msg_trap
15ms 37.50% 85.00% 15ms 37.50% __semwait_signal
3ms 7.50% 92.50% 36ms 90.00% nanosleep
2ms 5.00% 97.50% 39ms 97.50% std::__1::this_thread::sleep_for
1ms 2.50% 100% 1ms 2.50% madvise

0 0% 100% 39ms 97.50% ParallelBplustree::waitForWorkToFinish
↪→ [tid: 0x0]

0 0% 100% 40ms 100% Program::buildRandomParallelBplustree
↪→ [pid: 0]

0 0% 100% 19ms 47.50% clock_get_time
0 0% 100% 1ms 2.50% free_large [tid: 0x0]
0 0% 100% 19ms 47.50% mach_msg

(a) Entries sorted by flat/own weight.

Type: cpu
Showing nodes accounting for 40ms, 100% of 40ms total

flat flat% sum% cum cum%
0 0% 0% 40ms 100% Program::buildRandomParallelBplustree

↪→ [pid: 0]
0 0% 0% 39ms 97.50% ParallelBplustree::waitForWorkToFinish

↪→ [tid: 0x0]
2ms 5.00% 5.00% 39ms 97.50% std::__1::this_thread::sleep_for
3ms 7.50% 12.50% 36ms 90.00% nanosleep

0 0% 12.50% 19ms 47.50% clock_get_time
0 0% 12.50% 19ms 47.50% mach_msg

19ms 47.50% 60.00% 19ms 47.50% mach_msg_trap
15ms 37.50% 97.50% 15ms 37.50% __semwait_signal

0 0% 97.50% 1ms 2.50% free_large [tid: 0x0]
1ms 2.50% 100% 1ms 2.50% madvise

(b) Entries sorted by cumulative weight.

Figure 4.10: Top 10 nodes found in the reports on the main exe-
cuting thread’s stack trace during the insert test run.
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the thread pool. However, it is not without downside that the insert configuration
is able to excel at inserting. As presented and discussed before, the configuration
responsible for these results also suffers quite severly during search and update
when compared to the baseline.

Type: cpu
Showing nodes accounting for 1293ms, 77.15% of 1676ms total
Dropped 30 nodes (cum <= 8.38ms)
Showing top 10 nodes out of 39

flat flat% sum% cum cum%
422ms 25.18% 25.18% 818ms 48.81% Bplustree::findSearchPath
296ms 17.66% 42.84% 296ms 17.66% Node::isLeaf const
139ms 8.29% 51.13% 229ms 13.66% tiny_malloc_should_clear
126ms 7.52% 58.65% 451ms 26.91% LeafNode::insert
66ms 3.94% 62.59% 66ms 3.94% tiny_size
65ms 3.88% 66.47% 69ms 4.12% tiny_malloc_from_free_list
59ms 3.52% 69.99% 241ms 14.38% std::__1::vector::insert
54ms 3.22% 73.21% 132ms 7.88% free_tiny
33ms 1.97% 75.18% 33ms 1.97% _platform_memmove$VARIANT$Haswell
33ms 1.97% 77.15% 33ms 1.97% small_malloc_should_clear

(a) Entries sorted by flat/own weight.

Type: cpu
Showing nodes accounting for 0.98s, 58.59% of 1.68s total
Dropped 30 nodes (cum <= 0.01s)
Showing top 10 nodes out of 39

flat flat% sum% cum cum%
0 0% 0% 1.68s 100% thread_pool::worker [pid: 0]
0 0% 0% 1.63s 97.08% ParallelBplustree::threadInsert [tid:

↪→ 0x0]
0.02s 1.19% 1.19% 1.61s 96.30% Bplustree::insert
0.42s 25.18% 26.37% 0.82s 48.81% Bplustree::findSearchPath
0.13s 7.52% 33.89% 0.45s 26.91% LeafNode::insert
0.01s 0.89% 34.79% 0.33s 19.51% operator new(unsigned long)
0.03s 1.73% 36.52% 0.31s 18.32% _malloc_zone_malloc
0.30s 17.66% 54.18% 0.30s 17.66% Node::isLeaf const
0.01s 0.89% 55.07% 0.28s 16.41% szone_malloc_should_clear
0.06s 3.52% 58.59% 0.24s 14.38% std::__1::vector::insert

(b) Entries sorted by cumulative weight.

Figure 4.12: Top 10 nodes found in the reports on a worker thread’s
stack trace during the insert test run.
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Chapter 5
Conclusion and Future work

This chapter concludes the master’s thesis by summarizing its contents. In doing
so, the key findings are reiterated, and the most probable causes for the findings
are stated. In addition to the summarization concluding the master’s thesis, some
future work stemming from the insights gained is listed.

5.1 Conclusion

This master’s thesis was motivated by the modern hardware architecture’s de-
mand on horizontally scalable designs and implementations. DBMSs, being no
exception in having to adapt to the new and ever-changing computer landscape,
have to keep developing their systems. Index structures are utmost important
when the DBMSs quickly and efficiently shall retrieve data records.

In this master’s thesis the classical B+-tree index structure was first implemented.
Then, this implementation was used as the core of a B+-tree variation’s design and
implementation. The B+-tree variation that has been designed and implemented,
most importantly parallelizes the already established B+-tree’s access methods.
In search of an effective and usable parallel B+-tree, the thread pool design pat-
tern was employed, and Bloom filters used in some configurations. Two versions
for each method of operation, termed single key operation mode and batch oper-
ation mode, were implemented such that the effect of batch processing also could
be examined. Then the parallel B+-tree implementation’s potential was evaluated
by obtaining throughput performance measurements on all operations, and oper-
ation modes, over a varied set of the parallel B+-tree’s configuration possibilites.
Furthermore, profiling of both low and high performing runs was carried out, to
gain further insight into when and why the parallel implementation scored better
or worse than the baseline.
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Looking at insert, throughput results beating the baseline by up to 10× were
obtained by the parallel B+-tree configuration which batches operations and does
not make use of Bloom filters. Performance measurements regarding search
largely tipped in favor of the baseline B+-tree, but competitive performance was
observed at the extreme ends of variable values tested. Once again, batching with
Bloom filters disabled overall performed best of the parallel configurations, but
utilizing such filters yielded a more leveled performance over the range of variables
and values tested for most series of runs. As update requires a search and
change of value, the parallel implementation must do more managment and careful
handling to remain consistent. Thus, the results obtained here for the parallel
configurations shows a resemblance to search with regards to development on
variable value ranges, but throughput is lower than those of search, and baseline
performs better than all configurations tested. The best overall parallel B+-
tree update results were obtained by the single key with Bloom filters operation
mode variant. Concerning delete, baseline beating results were obtained by the
batching without Bloom filters variant during some configuations, whereas the
other variations underperformed the baseline.

It was discovered that the variables, whose impact on all operations and opera-
tion modes were studied, exhibited recognizable patterns in the throughput mea-
surements, accross the different operations and configurations examined. Most
notably, for each of the variables and their respective ranges of values tested
on; increasing the value of order generally improves throughput, if it is this
variable’s value which imposes the current bottleneck of the configuration. Of
course, there is an upper bound on the achievable throughput by adjusting the
value of order, largely determined by the computer’s cache layout, due to the
data structure being in-memory. The variables numThreads and numTrees have
a complex codependent relationship affected by the way workload is split, which
makes itself known in the throughput measurements obtained. When taking all
the operations results into consideration, it is found that increasing the value of
numThreads until the number of computer cores is reached (and sometimes until
the maximum number of hyper-threading supported threads is reached), in most
cases positivly affects throughput during batch operation mode. As for numTrees,
a proportional relationship is found between this variable and insert throughput,
on parts of the range of values for all parallel B+-tree variations. Whereas, for
all other operations, this relationship is inversely proportional, with the parallel
without Bloom filters variant being the only exception during measurements of
the remove operation.

Profiling evidently revealed that the biggest challenge when aiming for high par-
allel throughput performance is the way in which to generate and distribute tasks.
In many cases the thread pool’s task queue becomes a bottleneck when partition-
ing the workload in too many tasks, as is done during single key operation mode.
In order to leverage the parallel processing capabilities effectively, the tasks cre-
ated and pushed to the thread pool’s task queue have to be worthwhile, i.e. the
time it takes to carry out a task must be costly to the degree that, the cost of
task creation and managment becomes negligible. Only then, if the degree of
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parallelism is sufficient, will the parallel implementation have a chance at beating
the baseline.

In conclusion, this master’s thesis shows that the B+-tree index structure can see
tremendous improvements in throughput, if adequately adapting to the modern
hardware architecture, through means of employing horizontally scalable paral-
lelization of operations. But doing so is hard, and it is the delicate nature of
parallel programming that make it so. This makes a cost-benefit analysis appli-
cable before execution, to see if parallelization of either entire operations or only
certain parts should at all be used, at a per scenario basis.

5.2 Future work

This master’s thesis only scratches the surface of what it takes to fully parallelize
an index structure to be used in a DBMS. As for the specific parallel design and
implementation presented, some of the most notable future work involves:

• Implementing scan.

• Change storage format to a more rigorous block-and-post storage format.

• Experiment with no-interrupt thread pool task pushing and fine-tuning of
sleep parameter used by worker threads.

• Explore how different storage containers affect throughput of operations.

• Apply locking at a lower level.

• Implement the parallel B+-tree in a DBMS.

Other interesting future work in a broader view concerns redesign and implemen-
tation of other index structures in a manner that allows concurrent and parallel
operations. Some attempts at such work were already listed in section 2.4, but
there are problems that needs to be addressed here as well. Taking a look at par-
allelizing some of the other classical index structures in a pure way, such as for
example the R-tree and Hash index, would in its own right be interesting.
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Appendix A
Commands to run performance
evaluation tests

This appendix lists all commands used to generate the throughput performance
results presented in chapter 4. <range> should be replaced by a value in the range
one wishes to examine. The values of <range> used for each command in this
thesis is given before the commands.

The output from using --help option can be seen in Listing A.1. A description
of all available flags and options can be found here.

A.1 Insert performance

A.1.1 Single key

order

<range> = [8, 16, 32, 64, 128, 256, 512, 1024]
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
basic --order <range>
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --order <range>
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --bloom-disable --order <range>
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$ ./optimized --help
USAGE:
./optimized [FLAGS] [OPTIONS] --test <test>

FLAGS:
--batch Enable batching during test and

general build, if --tree option has value parallel
--bloom-disable Disable bloom filter usage if --tree

option has value parallel
--help Print this help information
--show Print the tree after build if

--tree-size value <= 1000

OPTIONS:
--build-distr-high <num> Highest possible key value during

tree build [default: 1000000]
--build-distr-low <num> Lowest possible key value during tree

build [default: 1]
--op <num> Number of operations to perform for

the --test value specified [default: 1000000]
--op-distr-high <num> Highest possible key value during

test operation [default: 1000000]
--op-distr-low <num> Lowest possible key value during test

operation [default: 1]
--order <num> Order of the Bplustree(s) [default:

5]
--test <test> The test to carry out [default: ]

[possible values: delete, insert, search, update]
--threads <num> Number of threads to use in the

thread pool if --tree has value parallel [default:
std::thread::hardware_concurrency()]
--tree <type> The tree data structure to create

[default: parallel] [possible values: basic, parallel]
--tree-size <num> The number of inserts to do during

tree build (overridden by --op if --test has value insert)
[default: 1000000]
--trees <num> Number of Bplustrees to use if --tree

option has value parallel [default:
std::thread::hardware_concurrency()]

Listing A.1: ./optimized --help.

numThreads

<range> = [1, 4, 12, 16, 20, 24, 32, 35]
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree



A.1. Insert performance 85

parallel --order 128 --threads <range>
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --order 128 --bloom-disable --threads <range>

numTrees

<range> = [8, 16, 24, 32, 40, 48, 56, 64]
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --order 128 --threads 16 --trees <range>
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --order 128 --bloom-disable --threads 16 --trees <range>

A.1.2 Batch

order

<range> = [8, 16, 32, 64, 128, 256, 512, 1024]
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
basic --order <range>
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --batch --order <range>
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --batch --bloom-disable --order <range>

numThreads

<range> = [1, 4, 12, 16, 20, 24, 32, 35]
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --order 128 --batch --threads <range>
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --order 128 --batch --bloom-disable --threads <range>

numTrees

<range> = [8, 16, 24, 32, 40, 48, 56, 64]
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --order 128 --batch --threads 16 --trees <range>
$ ./optimized --op 5000000 --op-distr-high 5000000 --test insert --tree
parallel --order 128 --batch --bloom-disable --threads 16 --trees <range>
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A.2 Search performance

A.2.1 Single key

order

<range> = [8, 16, 32, 64, 128, 256, 512, 1024]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree basic --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --bloom-disable
--order <range>

numThreads

<range> = [1, 4, 12, 16, 20, 24, 32, 35]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order 1024 -
-threads <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order 1024 -
-bloom-disable --threads <range>

numTrees

<range> = [8, 16, 24, 32, 40, 48, 56, 64]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order 1024 -
-threads 32 --trees <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order 1024 -
-bloom-disable --threads 32 --trees <range>

A.2.2 Batch

order

<range> = [8, 16, 32, 64, 128, 256, 512, 1024]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
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--op-distr-high 5000000 --test search --tree basic --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --batch --order
<range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --bloom-disable
--batch --order <range>

numThreads

<range> = [1, 4, 12, 16, 20, 24, 32, 35]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order 1024 -
-batch --threads <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order 1024 -
-batch --bloom-disable --threads <range>

numTrees

<range> = [8, 16, 24, 32, 40, 48, 56, 64]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order 1024 -
-batch --threads 32 --trees <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test search --tree parallel --order 1024 -
-batch --bloom-disable --threads 32 --trees <range>

A.3 Update performance

A.3.1 Single key

order

<range> = [8, 16, 32, 64, 128, 256, 512, 1024]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree basic --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
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--op-distr-high 5000000 --test update --tree parallel --bloom-disable
--order <range>

numThreads

<range> = [1, 4, 12, 16, 20, 24, 32, 35]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order 5<range>2
--threads <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order 5<range>2
--bloom-disable --threads <range>

numTrees

<range> = [8, 16, 24, 32, 40, 48, 56, 64]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order 5<range>2
--threads <range>2 --trees <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order 5<range>2
--bloom-disable --threads <range>2 --trees <range>

A.3.2 Batch

order

<range> = [8, 16, 32, 64, 128, 256, 512, 1024]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree basic --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --batch --order
<range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --bloom-disable
--batch --order <range>
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numThreads

<range> = [1, 4, 12, 16, 20, 24, 32, 35]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order 5<range>2
--batch --threads <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order 5<range>2
--batch --bloom-disable --threads <range>

numTrees

<range> = [8, 16, 24, 32, 40, 48, 56, 64]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order 5<range>2
--batch --threads <range>2 --trees <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test update --tree parallel --order 5<range>2
--batch --bloom-disable --threads <range>2 --trees <range>

A.4 Remove performance

A.4.1 Single key

order

<range> = [8, 16, 32, 64, 128, 256, 512, 1024]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree basic --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --bloom-disable
--order <range>

numThreads

<range> = [1, 4, 12, 16, 20, 24, 32, 35]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
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--op-distr-high 5000000 --test delete --tree parallel --order 1024 -
-threads <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --order 1024 -
-bloom-disable --threads <range>

numTrees

<range> = [8, 16, 24, 32, 40, 48, 56, 64]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --order 1024 -
-threads 32 --trees <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --order 1024 -
-bloom-disable --threads 32 --trees <range>

A.4.2 Batch

order

<range> = [8, 16, 32, 64, 128, 256, 512, 1024]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree basic --order <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --batch --order
<range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --bloom-disable
--batch --order <range>

numThreads

<range> = [1, 4, 12, 16, 20, 24, 32, 35]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --order 1024 -
-batch --threads <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --order 1024 -
-batch --bloom-disable --threads <range>
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numTrees

<range> = [8, 16, 24, 32, 40, 48, 56, 64]
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --order 1024 -
-batch --threads 32 --trees <range>
$ ./optimized --tree-size 5000000 --build-distr-high 5000000 --op 5000000
--op-distr-high 5000000 --test delete --tree parallel --order 1024 -
-batch --bloom-disable --threads 32 --trees <range>
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