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Abstract

This thesis explores the use of a convolutional autoencoder and LSTM model
for making time series forecasts on product category trend data supplied by
“Prisguiden.no”. The use of the CNN-AE-LSTM model is expanded by applying
a local univariate, global univariate, local multivariate and global multivariate
model. Results are compared with a LSTM baseline model applying the same
model types as the CNN-AE-LSTM model. Additionally, a SARIMA model is
used as a statistical baseline for forecasting.

The experiment results show that with the E-commerce data from “Pris-
guiden.no”, the local multivariate LSTM model is the most accurate. The re-
sults indicate that the CNN-AE-LSTM performance is conditionally dependent
on datasets with high levels of noise in order to outperform the LSTM. The model
achieves a small performance increase on datasets with high noise, but predictions
will suffer on data with low levels of noise.

The CNN-AE-LSTM model is not well suited for applications with the use of
trend data from “Prisguiden.no”, while the local multivariate LSTM is the model
best suited for such predictions.
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Sammendrag

Denne masteroppgaven utforsker bruk av en convolutions-autoencoder og LSTM
modell for & gjennomfere tidsserie prediksjon av produkt kategori trend data fra
“Prisguiden.no”. Denne masteroppgaven arbeider mot a utvide den teoretiske
kunnskapen om bruk av denne CNN-AE-LSTM modellen ved a lage modeller
som er bade lokale og globale, samt ved bruk av en univariabel og multivariabel
modell. Resultatene fra disse eksperimentene er sammenlignet med resultater fra
LSTM modeller av samme type, globale og lokale, univariable og multivariabel
modeller. I tillegg er disse modellene sammenlignet med en statistisk ”baseline”
ved bruk av den statistiske modellen SARIMA.

Resultatene fra disse eksperimentene viser at bruk av en lokal multivariabel
LSTM modell er det som er best egnet for a gjennomfgre prediksjoner pa dataen
fra “Prisguiden.no”. Eksperimentene indikerer at CNN-AE-LSTM modellene er
sterkt avhengig av type data som som skal predikeres, og er spesielt egnet til
bruk pa data med store mengder stgy. Ved bruk av et datasett med mye stgy
indikerer eksperiment resultatene at CNN-AE-LSTM modellene utkonkurrerer
LSTM modellen. CNN-AE-LSTM modellen gjgr det hakket bedre pa data med
mye stgy, men er sveert mye darligere enn LSTM modellen pa datasett med lite
eller ingen datastgy.

CNN-AE-LSTM modellen er ikke velegnet for bruk til tidsserie prediksjoner
pa data fra “Prisguiden.no”. En lokal multivariabel LSTM modell er derimot
bedre egnet for slike prediksjoner.
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Chapter 1

Introduction

Section 1.1 introduces the underlying problem of time series prediction in an E-
commerce setting and establishes the motivation behind this thesis. Section 1.2
presents the problem at hand. Section 1.3 lists the goal and relevant research
questions of the thesis, followed by the research method presented in Section 1.4.
The contributions made in this thesis are presented in Section 1.5. Lastly, the
thesis structure is presented in Section 1.6.

1.1 Background and Motivation

With the emergence of the internet, large parts of the human experience are con-
ducted online. Online services supply users with everything from entertainment
and social media to banking and online shopping. The accessibility of online ser-
vices such as online retailers has enabled users to shop for most products online.
With online shopping, competitive pricing emerged. When shopping online, a
user will often consider the product’s pricing before completing a purchase, often
comparing the retail prices between different retailers.

In order to easily and effectively compare prices of products amongst retailers,
“Prisguiden.no” was created. Products and product categories were introduced
to the site, collecting the pricing information of the products from multiple differ-
ent retailers. When new products hit the market, these products are introduced
to the product portfolio in order for users to compare the prices. Operating such
an online service has enabled Prisguden to accumulate user data such as product
and product category interests.

The user interests data is currently unused, despite being collected for years.
The collected time series data could hold relevant information. Prisguiden intends
to use this data in order to predict future product and category trends.
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With this information, the allocation of resources used for product category
updates could be more informed as to what is most relevant.

In order to make such time series predictions, methods for time series fore-
casting are used. Using methods to evaluate historical data in an attempt to
predict future values. Methods have therefore been introduced to achieve this.

1.2 Problem description

Online shopping platforms retain large amounts of product sales and interest
data. Despite this, it is not always easy to know what information this data
might contain and what it could mean to exploit and analyze this data. An-
alyzing product interest data or sales data could help retailers discover helpful
information such as product trends or anomalies. While methods for attaining
such information already exist to some degree, in the form of simple statistical
methods or neural networks, there is still room for improvement.

This thesis will focus on proposing a solution for predicting product trends
on time series data with multiple product categories.

1.3 Goals and Research Questions

This thesis explores using machine-learning algorithms to accurately forecast the
user interest in product categories on a price comparison website. Exploiting
the predictive abilities of deep Neural Networks such as Convolutional Neural
Networks, Long-Short term memory, and Autoencoders, we intend to introduce
a new predictive model into the problem space. The intention is to outperform
the current state-of-the-art predictive algorithms in the current domain.

The data supplied by “Prisguiden.no” contains historical data about user
activity, such as visitation and click data. We intend to use this data to predict
future product and category trends based on the historical data.

Goal To accuratly predict future product category trends based on historical vis-
itation and click data using a Convolutional Autoencoder with LSTM.

To measure the viability and accuracy of the proposed goal, we need to look
into the already proposed methods in this problem space. This is required in order
to assess whether or not our goal is rendered mute due to previous solutions.

RQ1 What are the existing solutions for predicting future product category trends,
or sales trends, based on historical time series data?

RQ2 How does the different solutions found by addressing RQ1 compare to each
other?
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RQ3 What is lacking in the current solutions found by addressing RQ1, and how
could these be improved upon?

The results of the Structured literature review are required for the reader to
understand the context. The literature addressing RQ1, RQ2, and RQ3 have
earlier been submitted and graded as part of the fall project in [Sivertsen and
Kilen, 2021]. It is included here for completeness, but the conclusion of these can
be found in [Sivertsen and Kilen, 2021].

RQ4 How will a baseline LSTM compare against SARIMA wusing error metrics
MASE and sMAPE?

RQ4.1 How will different LSTM model structures affect its results? FE.q. a global
univariate or a local multivariate model.

RQ5 Can a Convolutional Autoencoder and LSTM model achive higher predic-
tive accuracy than current state of the art models?

The proposed model is compared to baselines from the current state-of-the-art
methods used to evaluate the validity of the proposed model.

1.4 Research Method

Through this thesis, the goal and research questions defined in section 1.3 is
approached in two different ways.

Initially, research question 1 through 3 is addressed through a theoretical
analysis of current literature connected to the subject. Current state-of-the-art
methods and frameworks are compared to assess current valid solutions to the
problem space. Additionally, current work done within the E-commerce sector
attempting to predict sales and trends is reviewed. We argue that this problem
space is similar to our proposed problem, and we then use this as a benchmark
in order to assess new solutions. The literature review aims at reviewing the
current state of time series prediction in order to find a method to achieve our
goal described in RQ1-RQ3.

Secondly, research questions 4 and 5 are assessed through practical experi-
mentation. The proposed convolutional autoencoder and LSTM are tested on
the available dataset in order to make predictions. Predictions made by the
model can then be compared to predictions done by baselines models on the
same dataset. The baselines are created as a result of the literature search con-
ducted in order to find other current state-of-the-art models. With the baseline
models created, the CNN-AE and LSTM model can be evaluated to assert if
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the model achieves higher predictive accuracy than other models. In addition to
the proposed CNN-AE-LSTM model, different model structures are tested and
compared to the baseline.

1.5 Contributions

The main focus of this thesis is to assess current state-of-the-art time series
prediction in E-commerce forecasting, and make a comparison with a new state-
of-the-art predictive method. Contributing to state-of-the-art, we propose the use
of a new predictive method in E-commerce forecasting. Introducing a predictive
method that has yet to be applied in an E-commerce setting.

The main contributions of this thesis are:

1. To evaluate and compare current methods of time series prediction on E-
commerce forecasting.

2. To formulate a framework for achieving higher predictive accuracy than the
current state-of-the-art methods on our problem space.

3. To compare current state-of-the-art methods against a new predictive model
to evaluate predictive ability.

4. To develop guidelines for forecasting on category trends on “Prisguiden.no”.

1.6 Thesis Structure

This thesis introduces a lot of different theories and subjects, thus a clear struc-
ture is required. Chapter 2 introduces the underlying theory of the most im-
portant concepts presented in this thesis, ranging from time series prediction to
deep learning methods and concepts. Chapter 3 introduces work related to our
problem-space, creating the theoretical basis for achieving our proposed goal and
research questions. This chapter focuses on current state-of-the-art methods, as
well as new proposed frameworks and methods relevant to our solution. Chapter
5 discusses the available data for the project, presenting data analysis, filtering
and pre-processing. Afterward, chapter 5 describes the proposed model for this
project, as well as model designs for creating baselines. Chapter 6 describes the
methodology used when conducting the experiments and implementation of the
model and baselines, before Chapter 7 presents the results achieved after the
method implementation. Lastly, Chapter 8 contains the discussion part of the
thesis, discussing the model selection, used methodology, results, and possible
sources for errors, before it concludes and summarizes the key findings in the
thesis.



Chapter 2

Background Theory and
Motivation

This section will primarily cover the required background theory for this thesis.
Initially, Section 2.1 covers the required theoretical basis for the rest of this the-
sis, introducing the required theory regarding time series and predictive models.
Section 2.2 covers the Structured literature review conducted concerning the re-
search questions proposed in this thesis, before Section 2.3 covers the underlying
motivation for the work done in this thesis.

2.1 Background Theory

2.1.1 Time Series*

A time series is a sequence of data points that occur in successive
order over some period of time.

Kenton [2020]

In a time series, time is often the independent variable. Examples of time
series are weather data, stock markets, sound level samples. The time t usually
ranges over a discrete index set and is often equally spaced.

Properties

A time series has several properties:

Stationarity A time series is stationary if its statistical properties do not
change over time. In other words, if it has a variance, mean, and covariance
independent of time.
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Rob J Hyndman [2014] defines stationarity more formally in Definition 1.

Definition 1 X; is a stationary time series x1,...,Tpn,1fVs € R : the distribution
of (T4, ..., Trys) 1S equal

Figure 2.1: Examples of stationarity

(a) A stationary Time-Series (b) Non-stationary Time-Series

Seasonality If the time-series follows periodic fluctuations, like how electric-
ity usage varies during 24 hours, then it has seasonality. Figure 2.1a shows a
clear cycle where a clear pattern repeats over again.

Autocorrelation If a time-series has a strong autocorrelation, then there is
a big correlation between observations with a time lag between them.

Trends When a time-series has a deterministic component proportionate to
the time period it has a trend. In simpler terms, if a time-series plot seems to
center around an increasing or decreasing line, it suggests the presence of a trend.
Figure 2.2 show a series with a clear growing trend.

Cycles Cycles differ from seasonality because the period does not have to be
fixed.

Level The level of a time series is equal to the mean. If a time series has a
trend then the level is changing.
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Figure 2.2: A Time-Series decomposed into its trend, seasonal, and residual parts
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White noise is just a random sample of numbers not following any pattern, as
seen in Figure 2.3b.

A random walk is different from white noise, because the next value in the
series is dependent on the previous value plus some noise.

yet+1l=y+r (2.1)

Equation (2.1), where r is some random number, shows the equation for creat-
ing a random walk. An example of a random walk graph is shown in Figure 2.3b.

Figure 2.3b.

0.5

0.0

Autocorrelation

200 400 600 800 1000

Figure 2.4: A Random walk autocorrelation

Since a random walk is highly dependable on previous values, this will clearly
show in an autocorrelation plot. Autocorrelation plots illustrate how much a
series correlates with its previous values. Figure 2.4 shows how a autocorrelation
plot for the random walk in Figure 2.3b. It is a steadily decreasing trend that
follows a linear pattern in the first 500 days. Figure 2.6 illustrates a random walk
decomposed into trend, seasonality, and residual values.

One way to show if a series follows a random walk is to remove the temporal
dependence by subtracting each value in the series by the previous value. This
will leave only the noise r in Equation (2.1). If the series follows a random walk
it will look a lot like the white noise shown in Figure 2.3a.

Plotting the autocorrelation of the remainding noise r in Figure 2.5 we can
see the correlations are small, close to zero and below the 95% (vertical dotted
line) and the 99% (vertical full line) confidence levels.
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Figure 2.6: A Random walk decomposed in Trend, Season, and rest

There are multiple characteristics that identify a random walk.

e The time series shows a strong temporal dependence that decays linearly
or in a similar pattern.

e The time series is non-stationary and making it stationary shows no obvious
learnable structure in the data.

e The persistence model provides the best source of reliable predictions.

2.1.3 Forecasting time-series*

Let Y = {y1,v2, ..., yn} denote a time-series. Forecasting is predicting the next
time step yn+nr where h is the forecasting horizon.
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There are two main categories within time series forecsasting, univariate
and multivariate. A univariate time series prediction consists of only one value
or observation over a time period. Methods for prediction using univariate time
series is called a univariate time series model. The model uses only one value
series as the input sequence, making predictions solely based on the historical
data. A multivariate time series is a set of multiple values spanning a period of
time. A model that takes multiple time-dependent variables as input is called a
multivariate model. These models evaluate the input sequences in relation to each
other, as well as their historical values, in order to make predictions. Multivariate
forecasting can result in the prediction of values for one of the observations or
multiple observations.

Predictive models attempt to forecast values either as a single-step or multiple
steps forward in time. Due to this, forecasting is categorized as Single step
prediction and Multi step predition. Single step prediction forecasts values
only one time step forward in time. Multi-step prediction forecasting values
multiple time steps forward in time at once. Despite the difference, multi-step
forecasting can be accomplished using single-step forecasting. By forecasting a
single step forward in time several times, a single-step forecasting method can
recursively accomplish multi-step prediction.

Assuming a stationary time series, several approaches to time series modeling
are available. A naive method is through the use of mean values, predicting
the next value to be the mean of all past observations. Additionally, a smaller
subset of past observations can be used, applying a moving average across the
time series. Longer subsets result in a smoother prediction graph.

Another viable prediction technique is exponential smoothing. It uses the
same approach as the moving average method but differs through the use of a
decreasing weight assigned to each observation.

y=or;+ (1 —a)y,—1,t >0 (2.2)

Equation (2.2) shows exponential smoothing, where o smoothing factor that
takes values between 0 and 1. It determines how fast the weight decreases with
time.

2.1.4 ARMA*

Auto-Regressive Moving Average ARMA is a statistical model for time series
prediction. It is one of the most commonly used methods for univariate time
series forecasting. ARMA(p, q) is defined for stationary data and consists of two
components AR(p) and M A(q).

The AR(p) model is built on the assumption that the value of a given time
series ¥y, can be estimated using a linear combination of the p past observations,
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an error term €, and a constant term c as seen in Equation (2.3) [Ziegel et al.,
1995].

P
Un=C+ D $iYn-1+en (2.3)
i=1
where ¢;,Vi € {1, ...,p} denote the model parameters, and p is the order of the
model.
The second part M A(q) uses the past errors in a similar fasion Equation (2.4).

q
Yn = B+ Zeien—l +€n (24)
=1

Here p represents the mean of observations. ¢ is the order of the model. 6;,Vi €
{1,...,q} represents the parameters of the model.

Combining the past observations Equation (2.3) and past error terms Equa-
tion (2.4) we get the ARMA(p, q¢) model in Equation (2.5).

P q
Yn = C+ Z¢iyn—1 +en +p+ Zgien—l + €n (25)

i=1 i=1

2.1.5 ARIMA

The ARIMA model is an extension to the ARMA model, and works as a more
generalized model. ARIMA models differ from ARMA models in their ability to
transform a non-stationary time series into a stationary one.

The first part of ARIMA is the autoregression model AR(p) where p is the
maximum lag.

The second part is the moving average model M A(q) where ¢ is the maximum
lag.

The third part is the order of integration I(d) where d is the number of
differences required to make the series stationary.

2.1.6 SARIMA

In addition to the ARIMA model, the SARIMA has been developed. The SARIMA
model extends the ARIMA model by adding a seasonal component to the model,
enabling the model to apply different transformations to a non-stationary sea-
sonal time series in order to remove seasonality and non-stationary behaviors.
[Utlaut, 2008, p. 327-385].

The SARIMA model extends the ARIMA by adding a final component for
seasonality.
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The final component is seasonality S(P, D, @, s), where s is the length of the
season. s is dependent on P and @), which are equal to p and g but for the seasonal
component. D is the number of differences required to remove seasonality from
the series.

The combination of all these parts is the SARIMA model, SARIM A(p, d, q)(P, D, Q, s).

2.1.7 Loss functions*

Russel and Norvig defines loss functions as such:

A loss function L(z,y,7y) is defined as the amount of utility lost
by predicting h(z) = ¢ when the correct answer is f(x) = y and
h is the heuristic function. This is the most general formulation of
the loss function. Often a simplified version is used, L(y,7), that is
independent of x [Russel and Norvig, 2012, p. 710-711].

This means that the loss function is the function that calculates the error
between the models prediction, and the actual target value. This chapter will
briefly explain standard loss functions.

MSE

The most commonly used loss function for regression problems is the Mean
Squared Error (MSE) function in Equation (2.6). It is the mathematically
preferred function if the target distribution is Gaussian. It punishes large errors
much more harshly than smaller errors due to its squaring of the error. Here
e =y — g, where y is the actual value and g is the predicted value.

1 n
MSE ==Y "¢} (2.6)
n
t=1

MAE

If the target distribution consists of outliers, then the Mean Absolute Error
(MAE) in Equation (2.7) is more appropriate as it does not punish the outliers
too much.

1 n
MSE == "|e| (2.7)
n t=1
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MAPE

The Mean Absolute Percentage Error Equation (2.8) (MAPE) is a popular metric
for evaluating forecasting performance. y is the actual target value of the target
we are trying to forecast, and ¢ is the predicted value. ¢ is the time index.

The advantages of MAPE is that it is expressed as a percentage, which means
it is scale-independent and can be used for forecasting on different scales. A
percentage is also easily explainable.

I |3]t - yt|
MAPE = — - 2.8
Py (28)

A significant shortcoming of MAPE is that it is undefined when the actual
value y is 0. It will also produce extreme values if the value is close to 0.

MAPE is also asymmetric and puts a higher penalty on errors where the
predicted g is higher than the actual value y. This is because as long as we are
dealing with positive numbers, the highest bound for a low forecast is 100%. But
there is no upper limit for forecasts that are too high. As a result, the error
function will favor models that under-predict rather than over-predict a forecast.

SMAPE

Symmetric Mean Absolute Percentage Error (SMAPE) shown in Equation (2.9)
is an error function made to overcome some of the shortcomings of the MAPE
function. By incorporating y to the denominator, SMAPE is symmetrical, with
a lower bound of 0% and an upper bound of 200%.

SMAPE is one of the most used performance measures and is used in many
forecasting competitions.

SMAPE is still vulnerable to denominator values close to zero. Hewamalage
et al. [2021] solves the zero problem by changing the denominator of the SMAPE
to maz(|ly| + || + € 0.5 + €), where € is set to 0.1. This version of SMAPE
avoids division by zero by switching to an alternate positive constant for the
denominator when the forecasting values are too small.

n

1 |3jt —yt]
SMAPE = =S~ 9t~ Ul _ v
”; (lye] + |9e]) /2 (2.9)

n

1 |9t — i
SMAPE = — 2.10
ALT =5 tz; mazx(|y| + || + €,0.5 +¢€) (2.10)
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MASE

The Mean Absolute Scaled Error MASE proposed by Hyndman and Koehler
[2006], is a scale-free error metric that compares predictions with the output of
a Naive Forecast.

MAFE
MAEin— sample,naive

MASE =

where M AFE is the mean absolute error produced by the actual forecast and
MAFE;y,_sample naive 15 the mean absolute error produced by a naive forecast,
calculated on the in-sample data. The naive forecast is predicting that the next
time step is equal to the actual value of the current time step.

3 |95 — vl
ﬁ Z?:z Iyt - yt—1|

MASE =

where
J = Number of forecasts
t = The training set
T = Number of samples in the training set

MAE

1 e .
i %5 — 5l
MASE = " =

T—m Z Yt — Yt—ml

t=m-+1

(2.11)

3|~

-

'
MAEinfsample,naive

where:

m = seasonal period

The main difference is the denominator is MAE of the one-step seasonal naive
forecast method on the training set.

MASE is a scale-independent measure, which makes it a good choice for do-
mains with multiple time series of different scales.

MASE is normalized by the average in-sample one-step seasonal forecast error.
So a MASE value greater than 1 indicates that the model tested is worse compared
to the naive benchmark. The closer the MASE error is to 0, the better the model.
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2.1.8 Hyperparameter selection

Machine learning algorithms are heavily dependent on the selected hyperparame-
ters for individual situations. There are several different approaches to hyperpa-
rameter tuning that are used within the field of machine learning. Some methods
approach the problem with heavily exhaustive search methods, whilst others op-
timize the search space by selecting only a subspace of the search range for finding
optimal parameters for a model.

Grid search

Grids search is an example of a hyperparameter tuning method relying on an
exhaustive search of the parameter range. By trying out all possible combinations
of parameters, the model is likely to find a combination that fits the model well
for the current problem space. In order to evaluate the models fitted through the
extensive search, some sort of performance metric is required in order to compare
parameters. Such metrics can be measured through the use of methods such as
cross-validation or through the use of a separate validation set.

In order to tune models, the range of parameters to be selected must be
specified beforehand so that it is clear as to which range of parameters should be
tuned. Géron [2017]

Randomized search

In cases where the number of parameter combinations are limited, grid search is a
fitting approach. However, when the range of parameter combinations is large, it
will result in high time consumption in order to fit all the different combinations.
Other methods are therefore often more relevant. One such method is Random-
ized search or Random search. Randomized search reduces the parameter search
space by selecting only a limited number of parameter combinations at random.
In contrast to grid search where the range of values for each parameter is lim-
ited as to not create a too large parameter search space, random search does not
share this problem. The random search method runs only a selected number of
iterations before completing, disregarding the range of the search space. Thus
the computational budget of the parameter search is determined by the number
of iterations, not by the size of the parameter search space. Géron [2017]

Bayesian tuning

Although random search reduces the search space of grid search, the selection of
parameters is only random. The next step is therefore to consider a more informed
search of parameters. One such approach is to use Bayesian Optimization or
Bayesian search.
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Bayesian optimization is an optimization method constructing a probabilistic
model in order to evaluate parameter selections. When sets of parameters are
selected, these are compared and the results are observed. The observed results
are used as a measure of generalization of the model performance with the se-
lected hyperparameters. The method then attempts to optimize the selection of
parameters in order to improve the model.

The Bayesian optimization method thusly reduces the search space of hyper-
parameters using information available from previous evaluations of the model
Snoek et al. [2012].

2.1.9 Artificial Intelligence*

Artificial Intelligence (AI) is an umbrella term that encapsulates all algorithms
that show some intelligent behavior.

Machine Learning (ML), a subset of Al [Figure 2.7], is a system that learns
on its own through experiences. A programmer does not explicitly program it.
A ML process makes observations from data to identify possible patterns that
can inform future decisions. Machine Learning aims to allow a system to learn
by itself through experience without human intervention. Under the hood of
many machine learning models are just plain statistics [Figure 2.8]. The major
difference between machine learning and statistics is their purpose. Statistics is
the mathematical study of data. Machine learning models are designed to make
the most accurate predictions.

Machine Learning

Random forest K-means clustering

Deep
Learning

Figure 2.7: Venn diagram of Artificial Intelligense, Machine Learning, and Deep
Learning
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Figure 2.8: Venn diagram of Computer Science, Machine Learning, Statistics,
and Mathematics

2.1.10 Deep learning*

Deep learning is a field within artificial intelligence which are inspired by how the
human brain works. These neural networks are trained and used to accomplish
tasks such as classification, clustering, natural language processing, predictive
tasks, and much more.

Supervised learning

Supervised learning is a sub-field of machine learning where the focus is on train-
ing machine-learning methods through the use of labeled data. The method will
attempt to access the data in correlation with the connected data label. Clas-
sical problems within supervised learning are classification problems where the
prediction of a label is the desired result.

Unsupervised learning

Unsupervised learning focuses on creating machine learning methods using data
without a label. The data has no ”correct” label associated with it. Applications
of unsupervised learning might be clustering, anomaly detection recommendation
systems.

2.1.11 Convolutional Neural Network*

A Convolutional Neural Network (CNN) is a neural network architecture
built using convolutional layers in order to extract information. Unlike fully
connected neural networks, convolutional layers interpret data using perceptive
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fields. These perceptive fields evaluate only sections of the input at a time un-
til the whole input is processed. The convolutional layers attempt to extract
features from the input data. The first layer extracts low-level features, while
the next layer extracts higher-level features, and so on [Géron, 2017, p. 443-446].
Convolutional feature extraction is illustrated in Figure 2.9.

Convolutional
layer 2

Convolutional
layer 1

Input layer

Figure 2.9: Figure of CNN layers from [Géron, 2017, p. 444].

Multiple kernels, or filters, are used to extract features from the data. The
result of applying these filters is known as the feature map or the extracted
data features. These feature maps extract lower and higher lever features from
the original data by extracting spatial features, retaining the spatial relationship
within the data. Such spatial features could be the curvature of a dog’s ears in
an image or the correlation of timestep data in a time series. As a result, con-
volutional networks have several applications within image classification, image
recognition, natural language processing, and time series analysis.

2.1.12 Recurrent neural networks*

A Recurrent Neural Network (RNN)is an artificial neural network architec-
ture that can work with data sequences of arbitrary length. Unlike feed-forward
networks, RNNs consider the input data in conjunction with state information
from a previous timestep. To accomplish this, the network uses feedback connec-
tions. The feedback connections serve state information from the previous time
step to the intended node. This connection works as a short-term memory for the
recurrent layers, saving information from the previous time step memory cells.
In the basic RNN, these memory cells retain minimal information, saving
data only from the previous instance. As the RNN memory cell is defined by
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the newest data introduced to the cell, previous information is encoded only in
its effect on that data. Due to this, information is not stored for long in these
memory cells, only retaining short-term memory data. The RNN memory cell is
illustrated in Figure 2.10.

The RNN is able to process data of arbitrary length, meaning that it is well
suited for natural language processing, time series analysis, and similar problems.
In addition, the memory retained in the RNN makes it well suited to extract
temporal relations in the data.

Figure 2.10: Figure of RNN feedback-cell.

In order to improve the performance of the RNN, new models have been
created to address some of its shortcomings. One such model is the Long-Short
Term Memory model (LSTM) [Géron, 2017, p. 469-472].

2.1.13 Long-Short Term Memory

Long-Short Term Memory (LSTM) is a type of recurrent neural network address-
ing some of the shortcomings of the RNN model, such as the vanishing gradients
problem. The LSTM introduces a new memory cell, adding Long-term memory
to the network.

The LSTM memory cells are comprised of two vectors, one for long-term and
one for short-term memory, as well as an input gate (Equation (2.13)), output
gate (Equation (2.14)), and a forget gate (Equation (2.12)). The forget gate
allows for the memory cell to remove unneeded parts of the memory in order to
replace it with new data from the input gate. The long-term memory retains
some of its information while replacing other parts. A illustration of the LSTM
cell is shown in Figure 2.11.

The long-term memory of the LSTM enables it to solve the RNN problem of
vanishing gradients. The long-term memory enables the LSTM to store data at
arbitrary intervals, as well as to detect long-term dependencies in the data.
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The LSTM, like the RNN, is well suited for working on a series of data. The
LSTM can analyze and predict long-term relations in a series of data, making it
well suited for applications such as time series prediction or anomaly detection,
natural language processing, and more [Géron, 2017, p. 492-493].
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Figure 2.11: Figure of LSTM memory cell from [Géron, 2017, p. 492].
ft = O'(Xt*Uf,+Ht_t *Wf) (212)
it = U(Xt *Ui,+Ht—t *Wz) (213)
it = O'(Xt * UO, +Ht—t * Wo) (214)

e X,;: input to the current timestamp.
e U;: weight associated with the input.
e H; ;: the hidden state of the previous timestamp.

o Wy: weight matrix associated with hidden state.

Stateful and stateless LSTMs

A LSTM takes three vectors as input. The previous hidden state H;_; which is
the short term vector described above, the previous cell state C;_; which is the
long-term vector, and the input vector X;. These are not to be confused with the
cells internal weights W; which is the weight matrix for the hidden state vector,
and U;, the weight matrix for the input Xj.

During training, these weight matrixes are shaped by backpropagation. The
hidden state and internal state vectors are not touched by backpropagation but
will constantly be changing during forward passes through the network.
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A stateful LSTM refers to an architecture where the hidden state and cell
state are initialized once but never reset during training. This is typically when
the batches in the training set are dependent on each other, like one long time
series.

In a stateless LSTM the hidden states are reset many times during training,
typically at the end of each batch. A typical example is if the training data is a
set of unrelated sentences.

2.1.14 Awutoencoder*

Autoencoders are neural network models used to learn efficient representations
and encodings of data. Through an unsupervised learning process, autoencoders
aim to reduce the dimensional complexity of data. The models store information
in order to encode and decode input data, efficiently storing representations of the
data used to encode and decode data. Due to the autoencoder’s ability to encode
and then reconstruct data, it is well suited for the dimensional reduction of data.
Autoencoders consist of two parts; the encoder and the decoder. The encoder is
tasked with reducing the data in order to create a coding representation from the
data. This coding is then used by the decoder in order to attempt to reconstruct
the input data. An illustration of an example architecture for an autoencoder is
shown in Figure 2.12.

Through feature mapping, the encoder becomes an efficient feature detector
and extractor. Due to the reduced dimensionality of the coding, the encoder
becomes sufficient at reducing the noise within the data, extracting the most
important features. As a future extractor, autoencoders are well suited for pre-
training neural networks, extracting essential features. At the same time, au-
toencoders can become successful generative models. The decoder is proficient
at reconstructing input data from the coding layer representation, meaning it
can also generate new data. The reconstructive abilities of the decoder enable
the generative model to create new data, similar to the training data used when
creating the model [Géron, 2017, p. 506-508].

2.1.15 Day of the week formula

The book Hale-Evans [1998] has an algorithm which can be used to calculate the
day of the week from a date, for example 14.01.1996.

day_of the_ week = (YC + MC +CC+ DC —LYC) mod 7 (2.15)
e YC = Year code.

e MC = Month code.
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Coding

Figure 2.12: Figure of a Stacked Autoencoder architecture with one hidden en-
coder layer, and one hidden decoder layer.

e CC = Century code.
e DC = Date number.

e LYC = Leap year code.

The year code is calculated using YC' = (YY + (YY)/4) mod 7, where YY
is the last two digits of the year. For the year 1996, YY = 96.

The Month Code is derived from Table 2.1. The date number DC'is just what
day of the month it is.

The century code CC'is 4. The leap year code LYC is 1 the month is january
or february of a leap year.

2.1.16 Student’s t-test

The student’s t-test is a statistical significance test. It is a method of testing
hypotheses about the mean of a small sample drawn from a normally distributed
population when the population standard deviation is unknown. In other words,
it is a method to check if the difference in mean between two groups, is because
of chance.

The method formulates a null hypothesis, which states that there is no effec-
tive difference between the observed sample mean and the hypothesized popula-
tion mean. In other words, it assumes that both groups are equal.

It uses Equation (2.16) to calculate the t-value.
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Table 2.1: Month Code table

Month Code
January
February
March
April

May

June

July
August
September
October
November
December

W O UTN O O WWwOo

>.D/N

EDQ_ENDQ
(N=1)(N)

t= (2.16)

where D is the difference between each sample in the two groups , aka x; — ;.
So>D=>uz;—vy

We can find the p-value by looking it up in the t-table by using our degrees
of freedom, which are N — 1. If the p-value is below our « of 0.05 then we can
reject the null hypothesis that the groups are equal.

2.2 Structured Literature Review Protocol*

A structural literature review (SLR) was conducted to find related work for this
project. The SLR process is based on Anders Kofod-Petersen [2018]. This section
will briefly describe our process, deviations from the process, and changes made
during the process.

2.2.1 Step 1: Idendification of research

In order to retrieve all relevant literature on the topic at hand, we defined our
Research Questions (RQ) and Research Terms (RT).

We included the best-known search engines as our sources:

ACM digital library, IEEE Xplore, ISI web of knowledge, ScienceDirect, Cite-

Seer, SpringerLink and, Google Scholar
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Our search terms are listen in Table 2.2 and Table 2.3. We used a Notion
database to keep track of all the papers. The whole database is available here
Sindre Sivertsen [2021d]. We used another Notion Database to keep track of our
searches and track how we found each Research Paper Sindre Sivertsen [2021c]

Our method for adding literature to the Notion database was:

1. Pick a source search engine
2. Search the search engine applying AND A and OR V using our search terms
3. Add the Search Term and Source combination to the Search Term Database.

4. Title and abstract inclusion screening. Add all remotely relevant papers to
Notion, and link them with the correct Search Term Database.

5. Continue until relevant papers are far in between

6. Repeat the whole process with a new search engine

Devations

We did end up with some deviations to the algorithm above. Some papers we
found by accident when researching the topic. They were deemed too important
not to add. Their search terms were too general for us to consider adding to
the search terms without including several other non-relevant papers. All papers
found by accident were similarly linked with a search term table row documenting
how the paper was discovered.

Some of the best papers we found through the structured review contained
references to other relevant papers, some of which were of high enough quality to
add to our list of sources. These were also added to Notion.

The term Anomaly detection was removed (11.10.2021) as a search term after
our goals shifted away from anomaly detection and towards time series prediction.
This change was documented in our Decision Matriz, which is publicly available
Sindre Sivertsen [2021a].

Name Group 1 Group 2 Group 3

Term 1 CNN Anomaly-detection Autoencoder

Term 2 | Convolution Neural Networks Extremevalues Encoder Decoder networks
Term 3 Outliers

Table 2.2: Search Terms table 1
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Name Group 4 Group 5 Group 6
Term 1 | Time-series LSTM E-commerce
Term 2 Long short term memory Sales
Term 3

Table 2.3: Search Terms table 2

2.2.2 Filtering by Title and Abstract

Working with six different sources and using a manual but an orderly template
for processing papers, we decided to do the rough filtering while searching for
papers in order to avoid adding a vast amount of irrelevant papers to our Notion
database, thus saving time.

In order to filter out papers, we had three Inclusion Criteria (IC).

IC1 The study’s main concern is time series forecasting.
IC2 The study’s should not be older than from 2015.
IC3 The study focus on CNN, autoencoder, or LSTM. Or a statistical method.

IC1 excludes papers with a topic not relevant to our goals, such as time series
classification and anomaly detection. IC2 was then added to reduce the number
of relevant papers, thus reducing the scope of the structured literature review.
Through initial research on the topic of time series prediction, we found few
relevant papers from before 2015. Newer research was usually more relevant due
to the more modern approaches applied, and thus this criterion was introduced.
However, a small number of relevant papers published prior to 2015 were found
to have relevance, and an exception was made for these papers. Lastly, IC3 was
added to keep the papers within our defined scope of methods. 12.10.2021, we
added ”Or a statistical method.” to IC3. This is documented in the decision
matrix [Sindre Sivertsen, 2021a].

Each Inclusion criteria add a maximum of 1 point for each paper. For IC3, if
the paper just covered one of the four listed methods, it would get 0.25 points.
If a paper scored 0 points on either of the Inclusion Criteria, it would be filtered
out.

2.2.3 Quality Assessment

In the final stage of filtering, the goal is to assess the quality of the work. This
was done using a set of quality criteria for further screening.
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e QC 1 The study abstract is concise and describes the aim and results of
the study.

e QC 2 The publisher of the paper/study is a reputable scientific source.

e QC 3 Is there a clear statement of the aim of the research?

e QC 4 Is the study put into the context of other studies and research?

e QC 5 Are system or algorithmic design decisions justified?

e QC 6 Is the test data set reproducible?

o QC 8Is the experimental procedure thoroughly explained and reproducible?

e QC 9 Is it clearly stated in the study which other algorithms the study’s
algorithms have been compared with?

e QC 10 Are the performance metrics used in the study explained and justi-
fied?

e QC 11 Are the test results thoroughly analyzed?

e QC 12 Does the test evidence support the findings presented?

The criteria are used with a scoring system. Yes (1 point), to some degree
(0.5 points), and no (0 points). The maximum possible sum from the Quality As-
sessment is 12. Adding the points from Inclusion Criteria increases the maximum
possible sum to 15.

The quality assessment resulted in a score range of [7.33, 15]. All papers
below 77" were filtered out before the Quality Assessment. The overall list is
public Sindre Sivertsen [2021e]. In order to limit the scope of papers and ensure
the quality of the selected, a threshold of minimum 10 points was set for a paper
to be included.

The final list of included papers contains 23 papers. A screenshot of where
we drew the line for papers to include is presented i the appendix section 8.9.

2.3 Motivation*

This section will cover the underlying motivation for the inclusion of the different
methods and theories in the literature review.
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2.3.1 E-commerce and Sales predictions

With the proposed goal and research questions, the problem presented in this
thesis is not to predict sales in an E-commerce setting. Despite this, the argument
is made that the type of data attained from user interest on products should be
within a similar data distribution and thus a similar problem space. Considering
this, it is necessary to include a literature review of current solutions in sales
predictions and an E-commerce setting. Researching the current state-of-the-
art methods and theory creates a context of what methods have already been
investigated and where improvements can be made.

2.3.2 Deep learning methods

Through the research of the current state-of-the-art forecasting methods, it is
clear that deep learning frameworks are currently at the forefront of time se-
ries forecasting. Although statistical methods have long been state-of-the-art,
current research suggests that deep learning methods can be used to improve
predictive accuracy and reduce predictive error. Research from Makridakis et al.
[2018] comparing statistical methods and deep learning methods for time series
forecasting suggests that deep learning methods are superior if there is enough
data to process. Papers such as Laptev et al. [2017] suggests that methods such
as Autoencers and LSTM are well suited for time series predictions. Further
research into these and other models was therefore needed in order to assess the
current development of time series prediction frameworks.

2.3.3 Hybrid models

Through initial research in the time series prediction domain, we discovered a
new framework for making time series predictions. The paper from Zhao et al.
[2019] covers the use of a deep learning framework using a convolutional autoen-
coder coupled with a LSTM in order to achieve more accurate predictions. The
proposed framework showed great results on data with high fluctuation, which
would warrant the investigation of its use on our problem space and data. This
hybrid method showed greater predictive ability than the individual parts could
achieve independently. With this, we made a case to find other hybrid models or
connected models in order to verify the predictive superiority of hybrid models.
This led us to other papers such as Khan et al. [2020] and Bowen et al. [2020].
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Chapter 3

Related work

In order to find a fitting solution to the goal proposed in Section 1.3 and its related
research questions, we need to assess what advances have been accomplished
within the problem space. We assess state-of-the-art methods in time series
prediction and loss functions. With this, we are able to compare current solutions
and methodology in order to answer our research questions.

This chapter starts with Section 3.1 introducing current and previous ad-
vances within E-commerce time series forecasting. Section 3.2 explores the use of
deep learning method in comparison with statistical methods. Later, Section 3.3
introduces the use of global and local methods, as well as univariate and multi-
variate methods. Section 3.4 introduces current state-of-the-art hybrid methods
for forecasting. Multi-step ahead predictions are pressented in Section 3.5, before
a critique of LSTM usage in literature is given in Section 3.6.

Lastly, selected literature from the Related work section, which creates the
basis for further experimentation and methods, are presented in Section 3.7.

3.1 Forecasting E-commerce*

User click rate on consumer E-commerce goods is a narrow domain, and we are
unable to find any research that has yet been done within this particular field.
However, one can argue that user interest in consumer goods follows the same
distribution as online retail sales. Both domains will have the same seasonality
with weekly and yearly periodic fluctuations. Additionally, the domains contain
the same kind of products and categories. Both domains are dictated by the same
external factors, such as media, commercials, and trends. Forecasting retail sales
should translate well to E-commerce click rate.

29
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Ramos et al. [2015] did a comparative study on exponential smoothing meth-
ods based on state-space models such as ETS and ARIMA. The aim was to
measure the forecasting performance of the two modeling frameworks when ap-
plied to retail sales data of five different categories, containing univariate time
series regarding sales of women’s footwear. The domain proved difficult due to
strong trends and seasonal patterns.

The models forecasting ability were evaluated through several loss functions,
such as RMSE, MAE, and MAPE. Both ETS and ARIMA achieved similar results
with both one-step and multi-step forecasting. Their results show that multi-step
forecasts are generally more accurate. This is argued to be a result of multi-step
to incorporate more up-to-date information. Neither of the models is best suited
for all circumstances.

ETS and AIRMA have also been shown to be effective in other instances. Chu
and Zhang [2003] shows that Holt-Winters exponential smoothing and ARIMA
perform well when macro-economic conditions are relatively stable. However,
when economic conditions are volatile, ANNs outperform linear methods. Despite
this, the existence of stable data is not guaranteed. Often, the data contain
nonlinear characteristics, increasing the complexity of the problem. Weng et al.
[2020] writes that ARIMA, SARIMA, and Holt-Winter’s Exponential Smoothing
model etc., is inconsistent with the actual changes in the sales of retail stores.
Results are usually unstable due to their in-applicability in the processing of
nonlinear relationships. Despite this, statistical methods have the advantage
of high interpretability, whereas more complex machine learning methods are
limited by the high complexity and reduced interpretability.

In comparison to Weng et al. [2020], the paper Bowen et al. [2020] wanted
to use machine learning to maintain the tradeoff between interpretability and
consistency with actual changes in retail sales. Using a hybrid ARIMA and
Back-propagation method, increased forecasting metrics was achieved through
giving up the interpretability of the pure statistical methods. The same gains in
forecasting ability but loss of interpretability was found by Zunic et al. [2020].
They used pure machine learning methods such as the Light GBM, an ensemble
learning method based on the XGB model, and the Prophet model, with good
results.

Bowen et al. [2020] finds that traditional models such as ARIMA have trouble
forecasting E-commerce due to the fast-moving domain of consumer retail buying
patterns. Additionally, their connection to external factors, such as holidays and
price changes, increases the complexity further. The machine learning models
performed better, with lower predictive error and good interpretability. However,
the Light GDM model outperformed the Prophet model because of the models
limitation to univariate time series.

Further experimentation with machine learning methods is done by Bandara
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et al. [2019], through the use of deep learning methods. An accurate E-commerce
sales forecasting model is generated using LSTM Neural Network. Similar time
series are pooled into clusters where univariate and global models are trained on
each cluster. The aim was to improve E-commerce sales forecasting by exploiting
sales correlations and relationships available in an E-commerce hierarchy.

Data preprocessing is done using a forward-filling strategy to input missing
sales observations in the dataset. The data was then normalized to accommodate
the high sales volume ranges. They then used the mean of the sales of a product
as the scaling factor.

Bandara et al. [2019] applied two different techniques for grouping data. The
first approach was based on domain knowledge. Sales ranking and the percentage
of zero sales were used as the primary business metrics to form groups of products.
Group 1 represents their most popular products (67% of sales), group 2 represents
their more unpopular products (33% of sales), and group 3 represents the rest.

The second approach was based on time series clustering. K-means clus-
tering was used on a set of time series features to identify groupings. The
first two features were business-specific features, namely ”sales.quantile” and
7zero.sales.percentage”. The rest of the features were time series specific. A
silhouette analysis was utilized to determine the optimal number of clusters in
the K-means algorithm.

The results outperformed the state-of-the-art univariate forecasting techniques.
Thereby concluding that E-commerce product hierarchies contain various cross-
product demand patterns and correlations. Exploiting these relationships are
necessary to improve the sales forecasting accuracy in this domain.

With the effort to advance the predictive capabilities of models in E-commerce,
previous work done within the problem space is highly relevant as a starting point.
This shows what has already been accomplished and what new methods have not
yet been attempted.

3.2 Statistical methods versus Neural Nets*

Statistical methods like ARIMA and exponential smoothing were once the state-
of-the-art methods for forecasting time series. In recent years Deep Neural Net-
works have attracted more attention. Makridakis et al. [2018] wanted to objec-
tively test these up-and-coming machine learning models to compare with old
state-of-the-art methods. Performance was evaluated across multiple forecasting
horizons using a large subset of 1045 monthly time series. Among the evaluated
machine learning methods are: Bayesian Neural Network (BNN), Multi-Layer
Perceptron (MLP), K-Nearest Neighbor regression (KNN), Recurrent Neural Net-
work (RNN), and Long Short Term Memory neural network (LSTM)
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Among the statistical methods evaluated are: Naive2, ETS, and ARIMA.
They conclude that the statistical methods outperformed all ML methods in
terms of accuracy, measured for both simple one-step-ahead and multiple steps
ahead methods.

The paper Makridakis et al. [2018] highlights some of the drawbacks of ML
methods. Especially their complexity, their computational cost, their lack of
explainability and their inability to show certainty in their predictions. However,
the study has gotten some well-defined criticism. The authors Cerqueira et al.
points out that Makridakis et al. [2018] does their experiments on datasets of
too-small sample size. Their largest time series sample size among the 1045
datasets contained only 144 data points, while the smallest contained 118. They
hypothesize that these datasets are too small for an ML method to generalize
correctly.

Cerqueira et al. [2019] therefor conduct a similar study on 90 univariate time
series, in which all the datasets have a sample size above 1000. Statistical meth-
ods are evaluated against machine learning methods at different sample sizes,
in order to test whether the sample size has an impact on performance. They
conclude that sample size impacts machine learning methods drastically. Sta-
tistical methods outperformed ML methods up to around a sample size of 130
data points. However, in tests conducted with larger sample sizes, the machine
learning methods were generally shown to outperform the statistical methods.

From the discussion originating with the two papers described above, it should
be clear that machine learning methods are to be preferred in the event of suf-
ficient data. Hewamalage et al. [2021] confirms this statement. They further
conclude that even with the higher computational costs associated with ANNs,
such computational costs are feasible because of the general availability of cloud
computing. Complex deep learning methods now have benefits over simpler sta-
tistical methods in many forecasting cases. Although such statistical methods
are reliable and produce a relevant explainable predictive baseline, modern deep
learning methods can accomplish higher predictive accuracy.

The papers presented above show the relevance of exploring new and more
complex methods to improve time series prediction. Deep learning methods such
as LSTMs have high predictive accuracy, and exploring these methods further
may prove to be advantageous. Nevertheless, statistical methods supply a well-
defined predictive baseline for a time series. Additionally, statistical methods
have the advantage of improved explainability, making these methods more read-
ily understandable. With this in mind, using well-defined statistical methods as
a baseline prediction to evaluate new predictive methods should be considered.
Only comparing highly complex deep learning methods may prove difficult if they
cannot make accurate predictions. A baseline should therefore be a meaningful
way of evaluating more complex methods.
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3.3 Model Structure*

The structure of the forecasting model is an important aspect when the goal is
to forecast multiple time series. A simple approach would be to make one model
for each time series. One could assume that each series are independent, but this
assumption will probably not hold water for all domains. For example, in the
E-commerce domain, people who buy shaving cream probably also buy a razer,
as shaving cream will not have much use of its own. An alternative is to build
a more complex model that looks at a bigger picture. This section will explore
different state-of-the-art model structure approaches.

3.3.1 Global versus Local methods

On the topic of having to forecast many time series as a group, the paper from
Montero-Manso and Hyndman [2021] provides a good overview. The article
points to two significant disadvantages for univariate models on a cluster of se-
ries. The number one shortcoming is the sample size. The second is scalability.
Scalability is a problem when a group of time series each requires a separate
model that requires human intervention. Forecasting a cluster of time series in
this manner is called the local approach.

A univariate alternative to a local approach is the global approach [Rabanser
et al., 2020]. The global approach works by pooling all series data together,
fitting a single univariate forecasting function. It prevents over-fitting because
of the larger sample size. The global method has been introduced to exploit the
natural scenario where all series in the set are similar or related. An example
given by the authors is the demand for fictional books follows a similar pattern
for all subgenres, stores, or cover designs. The idea behind this is the strong
assumption that all the time series in the set come from the same process.

This exact method was used by Bandara et al. [2017]. Their domain has
similarities to ours. They want to forecast a database of E-commerce time series
from Walmart.com. They argue that when building global models for a time
series database, the models are potentially trained across disparate series, which
may be detrimental to the overall accuracy. They suggest building separate
models for subgroups of time series. These groups can be selected based on
domain knowledge, which proved to be the best option. With the absence of
domain knowledge, they propose an automatic grouping mechanism to cluster
series together. Their method achieves consistent improvements over the baseline
LSTM model. And conclude that exploiting similarities of multiple time series
in one model is a competitive method.

Montero-Manso and Hyndman [2021] show that even if the strong assumption
that the same process generates all the time series analyzed by a global the
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method is false; the global method will pay off in forecasting accuracy. The
paper argues that global and local methods for forecasting sets of time series are
equally general. The global method is neither restrictive nor requires similarity
or relatedness in the set. But they point out that generalization of global models
assumes groups of independent time series. Under heavy dependence, global
models lose their beneficial performance guarantees.

The paper Hewamalage et al. [2021] comes to the same conclusion. Stating
that even on datasets that involve many heterogeneous series, the strong model-
ing capabilities of RNNs can drive them to perform competitively in forecasting
accuracy.

3.3.2 Univariate or Multivariate time series

Bandara et al. [2017] points out that statistical methods, like ARIMA, are bound
to univariate time series. In the world of Big Data and lots of time series that
correlate with each other, treating each time series separately and forecasting
each in isolation could isolate information regarding big picture trends. Bandara
et al. [2017] argues that the ability to make models that can be trained globally
across all series holds a competitive advantage over models like ARIMA and ETS.
Such a model would simultaneously use multiple time series as input to predict
future values for the time series.

The paper Rabanser et al. [2020] has some good arguments when comparing
univariate versus multivariate models. Both multivariate and global univariate
methods work on groups of time series. However, global methods have the advan-
tage of being more applicable because it does not require observations of multiple
time series at the time of forecasting. Also, multivariate time series models work
on groups that are supposed to have some form of dependence between them,
while global models work on any group. When such a dependency exists, global
method will not capture it directly, unlike multivariate models. Hewamalage
et al. [2021] states in their “7. Future directions” chapter that complex forecast-
ing scenarios, such as a retail sales forecast, the sales of different products may
be interdependent. Forecasting in such a context could require a multivariate
model.

Laptev et al. [2017] wanted to make a single time series model to accurately
make time series predictions during special events. Extreme event prediction de-
pends on numerous external factors, including weather, city population growth,
or marketing changes. Laptev et al. [2017] propose a global, multivariate, au-
toencoder, LSTM network. Their results are promising. They outperform their
existing proprietary model by up to 18% on Uber data. They also show the
model’s generalization power by training on Uber data but then testing it on
the public M3 dataset, where they achieve an above-average result. In Laptev
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et al. [2017] discussion, they point out three criteria for choosing a neural net-
work over a statistical method: (a) number of time series to the model is high,
(b) Length of the times series are high, and (c) correlation among the time series.
Our problem domain meets all these criteria. The third (c) criteria are worth
mentioning because it directly contradicts the argument proposed by Montero-
Manso and Hyndman [2021]which states that in a set of interdependent time
series, a global model lose their beneficial performance guarantees, because a
global model assumes independence. This again contradicts Hewamalage et al.
[2021], which explicitly states retail forecasts, which, as argued, is similar to E-
commerce, as a perfect example for a global model. Of all the papers we found,
none of them concluded that a global method on time series that have some form
of interdependency would directly hurt the model.

Sen et al. [2019] proposes a method to handle predictions of thousands of
interdependent correlating time series. Their proposed method is largely based
on two components. The first component is based on the work of Yu et al.
[2016], which proposes a Temporal regularized matrix factorization (TRM) for
high-dimensional time series prediction. The idea is that the TRM can look at all
the time series and capture the global patterns during prediction. The TRM can
supposedly handle as much as 50.000 time series. The output of the global model
is used as a covariate to a final, local temporal convolution network. This final
model will then focus on local per time series properties, as well as properties
from the global dataset.

3.4 Hybrid frameworks for Time-series forecast-
ing*

Improvements in time series forecasting have emerged in the last few years with
the introduction of deep learning. Previous state-of-the-art methods, such as the
ARIMA model, have been exchanged for deep learning methods using convolution
and recurrent ANNs to improve accuracy. One such improvement strategy has
been to introduce hybrid models. These models are comprised of different models
with unique abilities, helping to increase the accuracy of the connected model.

One example of such a hybrid model is the ARIMA-BP model explored in
Bowen et al. [2020]. This thesis explores the predictive abilities of the ARIMA
model and a Back-Propagation Neural network on a time series problem of sales
forecasting. The ARIMA and BP models were applied to the problem, with the
ARIMA outperforming the BP model. However, by combining the two models,
the hybrid model was able to achieve higher predictive accuracy than either of
the two models accomplished individually.

As we have explored in Section 3.2, the introduction of more advanced neural
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networks often achieves better predictive results than the old ARIMA model.
We, therefore, argue that it should make sense to look further into other hybrid
models, exploring these new and improved models.

The hybrid combination of different ANNs is explored by Khan et al. [2020],
which applies a CNN combined with a LSTM-Autoencoder. This method is used
to explore the predictive ability of the hybrid model on electricity forecasting in
residential and commercial buildings. The findings of the thesis conclude with
the same result as proposed above. The aforementioned method is a hybrid
framework based on convolution, LSTM, and Autoencoder. Convolution is used
to extract features from the input data, while the LSTM-Autoencoder extracts
temporal dependencies between the sequences. The proposed method is applied
to the electricity forecasting problem alongside other models such as ARMA,
SVM, SVR, and others. The hybrid framework outperformed the other models
at prediction using multiple performance metrics such as MSE, MAE, RMSE, and
MAPE, as well as other hybrid deep learning methods such as a CNN-LSTM.

Similar to the framework described above, another framework applying a com-
bination of the same methods was defined in Zhao et al. [2019]. This model differs
through architecture selection, creating a Convolutional Autoencoder instead of
a LSTM Autoencoder. The Convolutional Autoencoder is used to extract and re-
duce dimensional features before the LSTM extracts the temporal features. Sim-
ilar to the previously mentioned method, this ”CNN-AE-LSTM” hybrid method
is tested against several other current predictive models. The proposed method
outperforms methods such as LSTM, ARIMA, and SVR, achieving a much lower
predictive error than the compared methods.

Other attempts to improve predictive forecasting have also shown promising
results. Frameworks such as with the proposed AE-LSTM from Van Hoa et al.
[2021] have shown the use of an autoencoder to increase the accuracy of the
predictions over a basic LSTM method. This thesis focuses on foreign exchange
rate forecasting and shows the increased accuracy achieved using an Autoencoder
and LSTM over a basic CNN or LSTM network. Similarly, Zhang and You
[2020] uses a Gated Dialated Causal Convolutional Encoder-Decoder in network
traffic forecasting. It shows the decrease in predictive error with an advanced
Convolutional Autoencoder compared to a more simple deep learning method
like a LSTM.

The literature seems to favor a more complex hybrid ANN over a simpler
network.

3.5 Multi-step ahead*

Intending to forecast future values, there is a question of how far into the feature
a meaningful prediction can be given. As stated in Section 2.1.3, there are two
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ways to achieve this. Either through the use of multiple single-step predictions
or a multi-step-ahead forecast.

Hewamalage et al. [2021] presents a section regarding multi-step-ahead fore-
casting. Citing Ben Taieb et al. [2011] works and their findings that using a
multip-input multi-output (MIMO) strategy is advantageous over the recursive
single-step-ahead. This is because the MIMO strategy incorporates the inter-
dependencies between each time step rather than forecasting each time step in
isolation. They also found that the MIMO strategy voids error accumulation over
the prediction time steps. Ramos et al. [2015] findings also support the MIMO
strategy over the recursive single-step-ahead strategy.

Hewamalage et al. [2021] suggests that the best input-to-output size ratio is
window_input_size = 1.25 x output_window_size. With this in mind, the use
of multi-step-ahead prediction appears to be the most appropriate approach to
use.

3.6 Criticue

The book Bharadi and Alegavi [2021] describes the decoupling of resetting hidden
states during training of LSTM, and describes the issue of needing a fixed batch
size. We found countless internet forum posts and some articles that touched on
this issue, a few good solutions to the problem were found.

The literature seems to give few answers for how they handle hidden state
resets, if they are using stateful or stateless, and if stateful, and how they handle
the fixed batch size problem.

Bandara et al. [2017] has the following sentences

” All training patches relevant to a particular time series are read
as one sequence. Therefore, the LSTM state needs to be initialized
for each series”.

This indicates that they are using a stateful LSTM [Section 2.1.13]. They are
training global models across multiple time series, but they do not describe how or
when they are resetting the hidden states. If they pass through historic relevant
data before predicting the test set, or how they handle the equal batch size
constraint.

Hewamalage et al. [2021] describes in great detail the different architectures
used, but they do not explicitly reveal how they handle initializing and resetting
of hidden states.

We found one paper that explicitly names resetting hidden states as a tool
Smyl [2020], but no explanation of how this was done.
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3.7 Selected Literature

This chapter has introduced multiple theoretical sources of information presenting
the theoretical influences for this master’s thesis.

The paper by Zhao et al. [2019] serves as the inspiration for the use of
the CNN-AE-LSTM model in this thesis. Influenced by Zhao et al. [2019] and
Cerqueira et al. [2019] the ARIMA /SARIMA model, along with the local univari-
ate LSTM model is used as baseline models in this paper. As we have seen from
Cerqueira et al. [2019], the use of neural network models is preferred when the
amount of data is sufficient, and we can therefore assume the use of new neural
network models is preferred.

Additionaly, Montero-Manso and Hyndman [2021], Bandara et al. [2017],
Laptev et al. [2017] inspire exploration of new model structures for LSTM and
CNN-AE-LSTM models. Montero-Manso and Hyndman [2021] and Bandara
et al. [2017] discuss improvements achieved through use of global models, while
Laptev et al. [2017] suggests the use of multi-feature multivariate models for
improved performance.

For use with such model structures, Bandara et al. [2017] also suggests the
use of groupings of data, which in turn serve as inspiration for grouping of time
series into datasets for experimentation.

These papers are some of the papers discussed, which serve as inspiration for
the research conducted in this master’s thesis.



Chapter 4

Architecture/Model

In this section, we propose a framework architecture intended to solve the goal
presented in Section 1.3. The model composition and selection of tuning meth-
ods are presented for each of the models that are used. Section 4.1 starts with
presenting the SARIMA model, the initial predictive baseline, before the LSTM
model is presented in Section 4.2. Lastly, Section 4.3 presents the model design of
the convolutional autoencoder used in the convolutional autoencoder and LSTM
model.

4.1 SARIMA baseline

As a means to measure the predictive ability of new models, a comparison with
current well-established methods can be useful. Two such predictive methods are
the ARIMA and SARIMA models.

As described in Chapter 5 the available data is both non-stationary, in addi-
tion to having a varrying degree of seasonality. Due to this seasonal component,
a SARIMA model would be the best fitting one of the two.

4.1.1 Model selection

In order to select useful SARIMA models, tuning methods were introduced. With
the aim of finding a set of optimal model parameters, two different methods of
model tuning were used. Both Grid Search and Auto-ARIMA is implemented as
a means of tuning the models.

As the models are aiming at making a 7 day prediction, Grid search is con-
ducted using a 7 day validation set as a measurement for accuracy. Each param-
eter set is used to make a 7 day prediction, where this prediction is compared to
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the true values in the validation set. An error metrics such as the MAE, MSE,
MASE or others can be used to find the best model. When a set of parameters
are selected, the validation data is added to the training set, and the model is
retrained before it attempts to make a new prediction on a test set. This is then
used as a measure for the model.

Additionally, Auto-Arima is used as a second method for tuning the ARIMA
and SARIMA models. This approach uses Bayesian optimization for parameter
tuning, attempting to find the best hyper-parameters for the models. Using an
error metric such as the MSE, the auto-arima model is tuned to find the best
parameters for each time series.

However, although the initial intention was to use both auto arima and Grid
search, a decision was made to reduce the number of experiments. The auto
arima framework was discovered to make a tuning selection that was on-par or
better than the grid search models. This is likely due to the fact that the grid
search models became so specialized that they overfit the training data to such
an extent that the auto-arima perform much better. Thus, as the ARIMA and
SARIMA models only serve as a benchmark, only the auto-arima framework will
be used during tuning.

Lastly, due to the highly seasonal component in the datasets used in this
project, the SARIMA model is preferred due to its ability for seasonal prediction.

4.2 LSTM Baseline

The LSTM model is described in Section 2.1.13, and is the current state-of-the-
art method for making time series predictions. Comparing new models against
the current state-of-the-art models serves as a good measure of whether or not
the new models are useful.

4.2.1 Global and local methods

Unlike the SARIMA model serving as the initial baseline, the LSTM model is
able to work both as a local and a global methods.

First, a local model is created. This can be directly compared against the
SARIMA model described in the previous section. This model only uses one
time series as data for training, validation and testing, similar to the SARIMA
model.

However, the LSTM model differs vastly from the SARIMA model in that it
is able to be used as a global model. Unlike the local method using only one time
series for training and testing, a global model is able to use multiple time series.
Using a set of time series both for training, validation and testing, the LSTM
should be able to increase the predictive ability and accuracy by increasing the
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amount of data available. Additionally, the use of a global model enables the
LSTM to extract features from different time series that hopefully can be used
to make more accurate predictions on the original dataset.

4.2.2 Univariate and Multivariate

The LSTM model is configurable as both a univariate and a multivariate model.
While the univariate model only uses one input variable per time-step, a multi-
variate model takes multiple inputs for each time-step. For seasonal data, one
could then extract information from the dataset, adding multiple new values per
time-step in order to encode information such as season or month.

4.2.3 Model selection

In order to find a fitting LSTM model, hyperparameters are tuned. With the
use of the optuna framework we are able to tune the hyperparameters of our
models. The optuna framework applies Bayesian optimization as described in
Section 2.1.8.

This approach of hyperparameter tuning is used with each of the LSTM ver-
sions. The tuning of the univariate and multivariate and local and global are all
done through the use of Bayesian optimization using optuna.

4.3 Hybrid Model Architecture

We propose a prediction framework based on the one presented in Zhao et al.
[2019]. Creating a Convolutional autoencoder and LSTM method for time series
prediction should provide some benefits. Primarily, the combination of methods
should help with increasing the prediction accuracy in data with high fluctuations.
Unlike the univariate method used in Zhao et al. [2019], we intend to improve
upon the method by experimenting with different model structures to capture
interdependent relationships in a time series cluster. Such a method has never
been explored in the E-commerce forecasting domain, warranting the exploration
of the method’s applicability to the problem space.

The proposed framework is comprised of two parts: the convolutional autoen-
coder and the LSTM.

The convolutional autoencoder process the input data, extracting a feature
set by deconstructing the data. This is done through the encoder. After this,
the decoder is used to reconstruct the input data. By doing this, the noise in the
input data should be decreased to some extent.
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The second part of the architecture is the LSTM module. This module is
intended to extract the temporal features of the dataset to predict future values
in the time series.

An illustration of the described model is shown in Figure 4.1.

Input Reconstructed LST™M LST™M

Encoder Decoder
Dickey-Fuller p-value: 0.518

WUAN .

s
h\w\m_ 5 T HIN

Figure 4.1: Ilustration of a CNN-AE + LSTM network.

Finally, the complete framework proposed in this thesis connects these two
models, creating a convolutional autoencoder and LSTM framework for making
predictions. These predictions are intended to function on time series data with
high fluctuations, making accurate and less error-prone predictions than simple
statistical or deep learning methods.

As a means to validate the proposed method, predictive benchmarks should
be provided. Established methods such as the SARIMA method and the LSTM
method are well suited for this. These methods create a baseline that can be
used to establish the comparative performance with the proposed method.

The motivation behind the proposed framework is explored in further detail
later in Chapter 8.

4.3.1 The Auto-encoder

The first part of the proposed hybrid model is the convolutional autoencoder
used to process the input data. As described, the task of the autoencoder is to
encode and reconstruct the input data, while decreasing the noise.

The design of the autoencoder is based on the thesis by Zhao et al. [2019],
detailing a convolutional autoencoder comprised only of 1 dimensional convolu-
tional and trans-convolutional layers.

In order to find a well-suited autoencoder model for our problem-space, we
designed a model to reconstruct the input data with high accuracy, while still
removing noise from the dataset. Due to the fact that all the data in the different
datasets share similar characteristics a shared autoencoder model is developed.

The autoencoder consists of convolutional and trans-convolutional layers.
There are however other layers and methods that are not used in the autoen-
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coder design. Methods such as batch-normalization and MaxPooling are not
used. This is because adding these measures results in quite poor reconstructive
results, likely due to the high volatility of the data. Other layers, such as dense,
fully connected layers, which often represent the coding in the autoencoder, is
not used either. This is because it was found to be an unneeded increase in the
complexity of the model, as the convolutional layers were well suited to solve the
task on their own.

There are two reasons for using a shared model design. Primarily this is due
to the fact that during experimentation with the autoencoder models architec-
ture, it was found that the same autoencoder performed similarly on each of the
individual time series. Secondly, this was a decision that was made in connection
with the limited time available for experimentation and optimization of models.

4.3.2 LSTM

The second part of the hybrid model is the LSTM model. This model is at-
tached at the end of the autoencoder, using the reconstructed values from the
autoencoder as input data.

Like the LSTM described in Section 4.2, global, local, multivariate, and uni-
variate models are explored.
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Chapter 5

Data

The dataset available for this thesis creates the basis for model selection and
design. This section presents the available data for this project. Exploration of
the dataset is presented in Section 5.1, and the selected time series contained in
the selected datasets are presented in Section 5.2

5.1 Data Exploration*®

In this section we will describe the main dataset given to us by Prisguiden.no.
The full Jupyter notebook exploration is located at Sindre Sivertsen [2021b]. This
section will only describe the highlights from that Notebook.

5.1.1 Basic data structure

As of 26-04-2022 the dataset consists of 41941504 entries. Most of the categories
consist of roughly 1239 data points, depending on when the category was created.
The oldest recorded data are from the beginning of 2019. It consists of 9 features.
as shown in Table 5.1.
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Table 5.1: Features of the Market insight dataset

Nr | Name Type Description

1 |id (int64) Unique identifier

2 | product id (int64) Associated Product id

3 | manufacturer id (int64) Manufacturer id

4 | catid (int64) Associated category id

5 | root cat id (int64) Associated root category id

6 | date (datetime64[ns]) | The date the data was captured

7 | hits (int64) How many times the product page was visited
8 | clicks (int64) How many times users clicked to a retailer

9 | last modified (object) When the row was last modified

It is worth noticing that hits and clicks are different features that measure
the same thing: user interest. A hit is how many times the product page on
Prisguiden.no is visited. A click is how many times a user follows a link from
Prisguiden.no to an external retailer for a given product. A product can receive
a hit and not a click if the user just visits a product detail page without clicking
to a retailer. A product may receive a click without a hit if the user clicks on an
AD or a campaign, which will lead the user directly to the retailer, skipping the
product page on Prisguiden.no. The correlation between hits and clicks for all
categories is roughly 0.578.

The dataset consists of 1325 unique categories and 310499 unique products.
Each product is associated with a product category; for example, all CPUs are
associated with the category "Prosessor (CPU)”s. Each product category is a
leaf node of a category hierarchy. The category ”Prosessor (CPU)” is a child of
the parent category ”Datakomponenter”, which itself is a child of ”Data”.

Summing together all product clicks and hits to its closest parent category
gives us a table on the format shown in Table 5.2.

5.1.2 Category plot analysis

Figure 5.2 show hits and clicks from a random sample of categories from 2019
to 2021. Most of the plots show a clear yearly periodic pattern, as shown in
Figure 5.2a, Figure 5.2b, Figure 5.2c. The scale of values differs between cate-
gories. The category ”"Mobiltelefon” Figure 5.2b gets around 7500 hits per day.
Meanwhile, the values within each category can differ vastly. ”Julekalender”
Figure 5.2c has a hit peak around 16000, while it usually gets around 0 hits per
day.

Some categories experience extreme variations in traffic at different intervals.
One example of this is the category ”Grafikkort GPU”. The traffic tracked before
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Table 5.2: Market Insights Overview dataset

cat_.id date hits  clicks product_id cat_name

2 2018-12-02 00:00:00 2450 301 293349707 Beerbar PC

2 2018-12-03 00:00:00 2889 418 324468137 Beerbar PC

2 2018-12-04 00:00:00 3048 413 319458697 Beerbar PC

2 2018-12-05 00:00:00 2777 381 305158187 Beerbar PC

2 2018-12-06 00:00:00 2882 363 292147192 Beerbar PC

13771 2021-11-07 00:00:00 0 4 1061271 Fuglemat og meiseboller
13771 2021-11-08 00:00:00 36 6 3164575 Fuglemat og meiseboller
13771 2021-11-09 00:00:00 16 1 1572626 Fuglemat og meiseboller
13771  2021-11-10 00:00:00 19 10 2103281 Fuglemat og meiseboller
13771 2021-11-11 00:00:00 24 2 1572628 Fuglemat og meiseboller

and after Christmas 2020 differs vastly, and the data changes its behavior and
distribution from then on.

Table 5.3 shows some basic statistics for ”Mobiltelefoner”. This exact category
was chosen at random just to get an idea of how one-time series might behave.
The time series has a mean of 6453 hits and a standard deviation of 1881, which
is around 30% of the mean. This is quite a big variance in the dataset.

Table 5.3: Mobiltelefon statistics

cat_id hits  clicks
count 1074 1074 1074
mean 19 6453 1474
std 0 1881 649
min 19 0 0
25% 19 5672 1186
50% 19 6462 1388
75% 19 7339 1627
max 19 18699 10673

It is interesting to see how many categories receive zero values and undefined
values each day. A zero value count in this context means how many days a given
category has gotten 0 hits, but it has gotten some clicks. A NaN value in this
context means that the given category has gotten 0 clicks and 0 hits on the given
day. Figure 5.1 shows a lineplot of the different distributions. In general, rela-
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tively few categories have 0-values. Some of the first categories created, the ones
with id 0-500, there exists some days with 0 interest. However, most categories
have at least one click and one hit each day. Categories with id above 10000 start
to see a lot more zero values. The most likely explanation for this is that these
categories are created at a later point in time. The steadily growing line at the
end of Figure 5.1b near id 12000 supports this theory.

Figure 5.1: Counting how many categories have days with 0 hits or NaN values
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5.1.3 Correlation among categories

We did a correlation analysis to get an idea of how the categories correlate.
We can create a correlation matrix by aggregating the dataset to a pivot table,
using dates as the row index and the products id’s as columns. To get reliable
results, we limited the matrix to categories with more than 100 common data
points. Because of the large number of categories, we created two matrixes. The
small matrix in Figure 5.3, is made of a random subset of categories. This small
one should be easy to read and understand. We also made a matrix of all the
categories in Figure 5.4. This matrix is too complex to read details from but gives
a full picture of the data. The lighter cells of the matrix indicate a correlation
toward 1.0. It is worth noticing that the two matrixes do not use the exact same
color spectrum. A completely white tile indicates not enough data to calculate a
correlation.

Looking at the smaller correlation matrix in Figure 5.3 we can see that ”Hylle”
correlates strongly with ”Bord” with a corraltion of 0.7. "Ryddesag” and "Kon-
trollenhet og gateway” does not correlate at all, with a correlation of 0.04. ”Singlet
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til barn” does not have enough data yet, so the whole row is white, indicating
missing values.

Based on the matrix’s color spectrum of the full correlation matrix in Fig-
ure 5.4, it is clear that categories cover almost the whole spectrum of correlation
relationships. The overall bright colors indicate a bias towards positive correla-
tion.

Also worth noticing from the big correlation matrix is an indication of more
purple lines and areas to the lower right corner of the matrix. Tech-related cate-
gories dominated Prisguiden’s product category in its early years. In recent years
they have expanded their reach to include more common household products. It
makes sense that these new products do not correlate much with technology
products.
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Figure 5.3: Correlation matrix of 10 random categories
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category correlation_matrix_all categories

Figure 5.4: Full category correlation matrix

5.2 Datasets

The complete dataset supplied by “Prisguiden.no” contains over 1300 unique
product categories. To achieve product trend predictions of categories the dataset
is split into smaller subsets of data to be analyzed. These datasets create the
basis for the experiments to be conducted. Initially, 3 datasets were selected, each
with its properties and connectivity. The first two datasets are created based on
correlation. The first dataset is defined with 20 highly correlating categories.
Dataset 2 is comprised of 20 categories with very little correlation among them.
This is done to evaluate if a global model will improve predictions when trained
across related time series.

Dataset 3 contains 8 categories picked by domain experts at Priguiden.no,
and it contains highly seasonal data with high extreme values.

5.2.1 Dataset 1 - Correlation

A dataset with a high correlation between the categories is selected to use the
correlation to improve the model predictions. The hope is that the correlating
data gives global models more relevant data to work with. This can then be
compared to a non-correlating dataset (dataset 2) to evaluate the importance of
the data correlation in this case.

To select correlating time series as part of the correlating dataset, a combi-
nation of manual data selection through domain knowledge and auto-correlation
was used. A method for calculating auto-correlation was used to create a heat
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map of correlation between all the categories. Category autocorrelation was cal-
culated using Using this heat map [Figure 5.5], we were able to evaluate what
clusters of categories had the highest concentration of autocorrelation. In order
to make correlating datasets stand out more clearly, we remove values from cat-
egory pairs with an auto-correlation lower than 0.5 across the categories and a
constraint of minimum 100 observations needed.

category_correlation_matrix
-08
- 0.6
- 0.4
0.2

0.0

Figure 5.5: A correlation matrix showing the autocorrelation of all categories,
filtered out values of autocorrelation below 0.5 in order to increase visibility of
high correlation values and groupings.

Using the heatmap as a reference, it was clear that the interval of the first 30
or so categories has a high autocorrelation. Additionally, the categories with the
highest correlation are all categories contained within the domain of electronics.
Using domain knowledge we are able to assert that these categories should have a
higher correlation between them than other categories probably have. With these
two assumptions comprising the basis for the selection, we were able to filter out
categories with less correlation, resulting in a set of 20 categories comprising the
correlating dataset.
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Figure 5.6: A correlation matrix showing the autocorrelation between the selected

20 categories of the highly correlating category dataset - Dataset 1.

The filtered dataset contains 20 categories from the electronics domain, some
of the most highly correlating datasets in our dataset. The selected categories
for dataset 1 are shown with a heatmap in Figure 5.6, and listed in Table 5.4.
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Table 5.4: Selected categories comprising dataset 1 - Correlating categories

Category ID | Name(Norwegian)
2 Beerbar PC
6 Digitalkamera
9 Harddisk og SSD
10 Hovedkort
11 PC-hgytaler
13 Kabinett
20 MP3-Spiller
22 Mus
24 Objektir
26 Prosjektor
27 Minne (RAM)
28 Skanner
29 PC-skjerm
32 Spill
33 Tastatur
34 Videokamera
39 Diverse spillutstyr
41 Programvare
51 Hodetelefoner
54 Systemkamera

5.2.2 Dataset 2 - No Correlation

As the second dataset, a collection of 20 categories with the lowest possible cor-
relation is defined. A dataset with close to no natural correlation either through
autocorrelation or through the use of domain knowledge, the second dataset is
defined in order to serve as an opposite to the first dataset. This dataset is meant
to serve as an opposite to the first dataset, making it easier to evaluate if the
correlation between categories has any significant effect on forecasting.

To find a set of 20 categories with the lowest possible correlation, we conducted
a search on the values of calculated auto-correlation. Using auto-correlation
analysis on the dataset, the categories were sorted after the amount of correlation
summed across all categories. Out of the sorted list, the top 50 categories with the
least correlation were selected. Of these 50, seasonal categories such as product
categories related to Christmas were filtered out. After this, a manual selection
was conducted on the remaining categories in order to remove those with a high
correlation between the remaining categories. This was repeated until only 20
categories remain.



54 CHAPTER 5. DATA
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Figure 5.7: A correlation matrix showing the autocorrelation between the selected
20 categories with the lowest autocorrelation - Dataset 2.

The filtered dataset contains 20 categories with the least inward correlation
we could find. The selected categories for dataset 2 are shown with a heatmap
in Figure 5.7, and listed in Table 5.5.
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Table 5.5: Selected categories comprising dataset 2 - Non- correlating categories

Category ID | Name(Norwegian)
12532 Hodetelefoner
11694 Diverse maleapparater
11716 Beaerplukker
11950 Garasjetelt
11988 Aircondition
11998 Hjertestarter
274 Bord- og gulvvifte
11407 Vinterlek
46 Mobilkamera og tilbehgr
11326 Myggjager og myggfelle
11335 Komfyrvakt
12197 Mosefjerner og plenlufter
11693 Febertermometer
11780 Skredutstyr
12502 Stikk og bitt
11866 Klister
11400 Truger
12256 Terrassebord
10320 Skoyter
10030 Digitale bilderammer

5.2.3 Dataset 3 - Seasonality

Dataset 3 is selected due to the high seasonality contained within the time series.
The dataset consists of 7 time series with high seasonality. While datasets 1 and
2 were selected based on correlation analysis between the time series, dataset 3
is found through the application of domain knowledge.

After talks with contacts at “Prisguiden.no” a list of 8 highly seasonally de-
pendent time series were found. This list of products contains categories heavily
dependent on seasons, such as Christmas and summer. A list of the time series
contained in dataset 3 can be found in Table 5.6.
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Table 5.6: Selected categories comprising dataset 3

Category ID | Name(Norwegian)
12322 Vinterjakke
11428 Vintersko
11850 Langrennski
11852 Skisko

273 Varmeovn
11036 Snofreser
11213 Sngskuffe
12532 Varmepumpe
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Figure 5.2: Category plots of hits and click rate from 2019-2021
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Chapter 6

Method

The applied methodology used in this thesis is explored in this chapter. Sec-
tion 6.1 start with presenting the hardware used for running the experiments.
Section 6.2 then presents the error metrics used to measure the accuracy of the
predictions across models. Running experiments are done through the use of the
framework developed. This framework is explored in more detail in Section 6.3.

Data processing steps used to manipulate data before the use with models are
presented in Section 6.5.

Model methods are then defined and explored. The SARIMA model is de-
scribed in Section 6.6, the LSTM model in Section 6.7, and the hybrid model
CNN-AE and LSTM in Section 6.8. Lastly, Section 6.9 discusses the use of the
t-test for testing the statistical significance of results.

6.1 Software and Hardware

The framework and experiments are implemented using python 3.8
[https://www.python.org/]. The SARIMA method is created using the pm-
darima [https://pypi.org/project/pmdarima/] library and statsmodels library
[https://www.statsmodels.org/stable/index.html], supporting both running the
experiments and tuning with auto-arima from the pmdarima package. On the
other hand, the machine learning library Keras is used to implement the deep
learning methods used such as the LSTM method [https://keras.io/].

When loading data into the experiments, data pipelines were created using
the genpipes library [https://pypi.org/project/genpipes/]. After this, data ma-
nipulation was conducted using the Pandas library, as well as the numpy library

[https://numpy.org/].
The hardware available for running experiments consists of two work-stations.

99
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The first work-station consists of a AMD Ryzen 5 5600X processor and 32 GB
32000 MHz memory with Windows 11 and Linux Sub-system for Linux, while
the second work-station consists of an Intel i9-9900K processor and 16 GB 2666
MHz memory, Windows 10 and Linux Sub-system for Linux. Both of these work-
stations were used for tuning and execution of experiments in this project.

All of the code are open and available at [Github Sindre Sivertsen [2022]].

6.2 Loss function and Metrics

Here the used loss function and metrics are described.

Loss function

Since our datasets often contain a lot of outliers we decided not to use the well
known Mean Squared Error (MSE) [Section 2.1.7]. Instead, we used Mean Ab-
solute Error (MAE) while training the neural networks. We can use the MAE
during training because of the data-preprocessing, which normalizes the time se-
ries values. Some experiments were done using both MASE and sMASE, but
MAE did perform better.

Metrics

When choosing an error metric, we have to accommodate a number of factors.
Since our time series are of different scales, we cannot use a scale-dependent
metric like MSE or MAE on our test data, as the test data is never touched, each
time series might be on different scales.

We use MASE with 1-day naive forecast, as well as MASE with a 7-day naive
forecast. This is because the 1-day naive forecast is a regular metric used and
can give a good impression of how the model performs. However, a 7-day naive
forecast will more closely represent a real-world application measure, because if a
model gets a score higher than 1, it means that it has no real world application,
and it’s better to use the previous week as a forecast for the next week.

A problem with MASE is that if a time series follows a random walk then the
best forecast will always be the naive forecast. MASE is therefore dependent on
how good the naive prediction is. Therefore we also include sMAPE as a metric.
sMAPE will give a better impression of how well our predicted forecasts fit the
target values, independently of the naive forecast. In the chosen datasets zero
values rarely occur. Therefore, the sMAPE metric can be used without worrying
about zero divisions [Section 2.1.7].
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6.3 Experiment Framework

In order to make it easier to execute multiple experiments, which all saved enough
metadata for the experiment to be recreatable and repeatable we made a frame-
work. It can be deconstructed into four main modules. The configuration mod-
ule, a data processing module, an experiment module, and the save experiment
module.

6.3.1 Pipeline module

The data processing module has two functions. The first one is to streamline
all data processing steps and structure them in one shared place. Secondly, to
have a self-documenting data module that can easily save every processing step
applied to the data before the experiments are executed. Examples of a pipeline
steps output are shown in Table 6.1 and in Table 6.2.

Table 6.1: Base data processing steps

w2

=

D
kel

Description

load market insight data and categories and merge them
convert date columns to date_time format

sum up clicks to category level [groupBy(date, cat_id)]
rename column ’title’ to ’cat_name’

combine feature ’'hits’ and ’clicks’ to new feature ’interest’
drop columns ’hits’ and ’clicks’

filter out data from early 2018-12-01

drop uninteresting colums

0O Tk W

Table 6.2: LSTM data processing steps

wn

=

D
o

Description

Convert input dataset to generator object

filter out category

choose columns ’interest’ and ’date’

fill in dates with zero values

convert to np.array

scale data using standardization

generate x y pairs with sliding window with input size 10, and output size 7
generate training and validation data with training size 7

WO Utk WK
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Multiple pipelines were created in order to support all the different experi-
ments. While the deep learning methods such as the LSTM and the hybrid model
only need two shared pipelines, one for univariate and one for multivariate, other
experiments such as the SARIMA is in need of other pipelines. These pipelines are
designed with the aim of modularity, making the expansion of multiple pipelines
with multiple shared steps easy.

6.3.2 Config module

The configuration module is created with the aim of making model selection and
configuration more easily accessible. Using separate configuration files for model
configurations, the amount of code that needs to be changed for the different
experiments is reduced. Additionally, by logging the configuration of models for
each experiment, backtracking the results of different configurations are more
accessible.

The configuration is done through the use of two separate “.yaml” files. The
first one is the “config.yaml” file. This contains information that is shared among
all of the different experiments, such as the selected data files, random seeds,
logged error metrics etc. Secondly, a separate configuration file contains the
information more relevant to the specific experiment. These configuration files
contain information such as the selected predictive model for the experiment, as
well as the model hyperparameters and tuning parameters.

During runtime, the two configuration files are merged, adding the information
from the model configuration to the more general experiment configuration. The
config is parsed through at runtime, accessing the needed information when it
becomes relevant. A config example is available in the appendix at Section 8.6.
Configs are also available in the source code.

6.3.3 Save Experiment module

The save source module handled everything related to logging and saving an
experiment. Each experiment is associated with a unique descriptive ID and a
description text to easily differentiate between experiments. Each experiment
saves trained models, configs, the dataset used, stdout logs, training metrics,
validation metrics, testing metrics and figures.

Everything is save to the local “./models/* folder, and to an exernal ML
experiment tracking tool named neptune.ai. The Neptune experiments are public
and can be seen at https://app.neptune.ai/sjsivertandsanderkk/Masteroppgave/.
The local folder structure of a saved experiment is shown below.

arima-predict-cat-11037-7-days

tArima—l 1037.pkl

data-processing-steps.txt
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| datasets.json
| figures
11037-Data-Prediction.png

11037-Predictions.png

11037-Training-data-approximation.png

11037-Training-data.png

| logging

| training-errors.csv

| metrics.txt

| _options.yaml

| _predictions.csv

| tags.txt

| _title-description.txt

2 directories, 13 files

6.3.4 Packages and verions

Table 6.3: Experiment Python packages and versions

| Package | Version |

matplotlib 3.5.1
matplotlib-inline 0.1.3
numpy 1.22.2
pandas 1.4.0
pandocfilters 1.5.0
sklearn 0.0

statsmodels 0.13.1
torch 1.10.2
optuna 2.10.0
plotly 5.6.0
pytorch-lightning 1.5.10
keras 2.8.0
tensorflow 2.8.0
tensorflow-io-gcs-filesystem | 0.24.0
optkeras 0.0.7
pmdarima 1.8.5
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Table 6.3 show the most important python packages used for the experimental
setup and their respective versions. The full list of packages and versions are
supplied in the requirements.tzt file at the github code repository Sindre Sivertsen

2022]
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6.4 Locking Random Seed for reproducability

In order to make our experiments reproducible, the first code that runs at the
beginning of each experiment is the code that locks a pre-defined random seed
number on all our packages that have stochastic functions. The random seed is
defined in our config [Section 6.3.2], and was always set to 42.

The list of packages we lock the random seed on are as follows:

o random.seed

e os.environment

e np.random.seed

e torch.manual_seed

e torch.cuda.manual_seed

e torch.backends.cuddn.deteriministic

e tf.random.set_seed

6.5 Data preprocessing

This section briefly describes all of the data processing done on the datasets
defined in Section 5.2.

6.5.1 Train, validation, test splitting

The inspiration for the training, validation and test splitting is taken from Ban-
dara et al. [2019], Hewamalage et al. [2021]. Both reserve the last m sized part
of the training set as a validation set, where m is the forecasting window size.
However, Hewamalage et al. [2021] note that this is problematic. This is because
the last part of the training set is removed and therefore not considered when
training the model, as it is used only for validation during model selection and
tuning.

The further away the test predictions are from the training set the worse, be-
cause the underlying patterns may change during this last part of the sequence.
Therefore Hewamalage et al. [2021] suggests an alteration to the use of the val-
idation split. The validation set is split from the training set only when tuning
the model and is thereafter added to the training data when the model is used
and tested. Thus, the models will be trained on all available data, excluding only
the selected test set.
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We did however make some modifications to the approach presented by Hewa-
malage et al. [2021]. Initially, the complete dataset is available. A test set,
consisting of the last m points of the sequence, is then manually split from the
complete dataset. After this, the training set is split again to define both the
used training set and the validation set. For the SARIMA method, a validation
split is not needed. However, the use of a LSTM, specifically a stateful LSTM,
causes restrictions to the creation of the validation set. Due to the use of stateful
LSTM modules, the validation set has to be the same batch size as the training
set. This, in turn, means that using a validation set equal to the forecasting
window m would limit the available batch size for the model used on the training
set.

Using a validation set equal to one forecasting window, also means that if the
model is only trained on one-time series, the validation set would have exactly one
sample in it. This might not be problematic if the time series is homogeneous,
but if the pattern in a time s series varies it can, because the one validation
sample might not be representable for the whole series.

Bandara et al. [2019] would always train their models on multiple time se-
ries, which meant that their validation set would be walidation_size = m
number_of_series. During development and testing, it was found that a vali-
dation set size of only one forecasting window is exceedingly small, in our case.
Tuning on validation error would be severely limited and would produce models
with less optimal hyperparameters.

As a result of these findings, we selected a batch size for the training set
beforehand, then used the chosen batch size as a validation set size.

This, however, means that we are not able to conduct a hyperparameter search
for an optimal batch size because that would change the validation set as well.
When we tried to tune the batch size with a variable validation set, the model
would almost always prefer the smallest possible batch size. This is because it
would result in a small validation set, thus reducing the number of possible errors.

When tuning the models, the validation set is actively used as a measurement
of the predictive ability of the model. However, when conducting final experi-
ments with well-defined models and parameters, the validation set is once again
added to the training set so that the model has more data to train on. This is
the same approach as used in Hewamalage et al. [2021].

Figure 6.1 shows an illustration of how one dataset is split up during hyper-
parameter tuning. The whole time series has a size of length L. The test set
T is taken from the end of the series and has the size of the forecast window
L = m. The validation set V' has the size of one batch size V' = batch_size. So
during tuning, the size of the training data is T'= L — (V + T'). During test-
ing the validation set V is re-added to the training set, making the training set
T=L-T.



66 CHAPTER 6. METHOD

| Sequence length (L) |
| —1
Train Validation Test

k {} 1l I

L-(V+T) ' V ! T

Figure 6.1: Ilustration of trainig, validation, and test split. V = batch size, T =
m = forecast window

The exact time procedure is done when training global models across multiple
time series. The train-val-test-split process is repeated for each time series in the
set, and then the training data for the different time series are concatenated into
one long training sequence. The same is done to the validation data and test
data respectively. Figure 6.2 show how time series are concatenated.

Train Validation Test Training Validation Test

Time series 1 Time series 2

Figure 6.2: Illustration of how multiple time series are concatonated for the global
method

6.5.2 Feature Engeneering

Both the feature ”hits” and “clicks” can be argued to measure user interest.
A product’s hits score measures how many times someone has clicked on that
product information page at prisuigen.no. A product’s click score to measure
how many times prisguiden.no has redirected a user to an external retailer for
the given product. We ended up combining these two variables into one feature
which we called ”interest” with the equation defined in Equation (6.1).

interest = hits + clicks (6.1)

6.5.3 Value Scaling

Deep learning models require appropriate scaling to converge properly. For the
neural networks, we scale the data using standardization as shown in Equa-
tion (6.2).

(6.2)

z =

g

Where p is the mean and o is the standard deviation.
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We also tried to normalize the data by scaling the values down to a predefined
fixed range [0.1, 1] using Equation (6.3). However, during experimentation and
testing, it was found that scaling with standardization outperformed the predic-
tions made with a normalization scaling. Both methods were tested, but at last,
standardization was selected as the preferred scaling method.

oostd — x — z.min()

x.maz() — x.min() (6:3)

x_scaled = x_stdx (h — 1) + 1 (6.4)

where h is the max feature range and [ is the min.

6.5.4 Univariate to Multivariate feature engeneering

Since the E-commerce domain is heavily influenced by external factors, such as
holidays, Christmas, and yearly seasons we thought it would be beneficial for the
neural net models to be aware of which day of the week it is, which month it is,
and if it is closer to summer than winter.

We add the month feature, a number between [0, 11] depending on which
month.

We add the day feature, a number between [0, 6] where 6 is saturday, 0 is sun-
day etc. We can calculate the day of the week using the formula Equation (2.15)
from Section 2.1.15.

We add the feature season which is a number between [-1, 1] using Equa-
tion (6.5).

season = cos(m x (month mod 12)/6) (6.5)

Figure 6.3 shows the output of the season feature. If the month is close to
Christmas (December, January) this feature will be close to 1. If the month is
closer to summer (May, June) this feature will be close to -1.

In the and all added features are scaled between [0.1, 1] as described above.

6.5.5 Moving Window Approach

When creating the datasets, we apply the same moving window approach as
applied by Bandara et al. [2019] and Hewamalage et al. [2021]. This strategy
transforms a time series X; into pairs of < input, output > patches. In other
words, we transform the problem into a supervised learning problem. [Figure 6.4]
show an illustration of the moving window approach.

Given a time series X; = {x1,...,7x} € R¥ of length K a mowing window
algorithm will convert the time series X; into K — n — m number of patches,
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Season feature

Figure 6.3: Season feature

where each patch has the size of m + n, and n is the size of the input window,
and m is the size of the output window.

This thesis will primarily work with output window m for size 7. This is
because it is safe to assume that the E-commerce domain consists of weekly
patterns. 7 days is short enough that we should be able to forecast something
meaningful accurately but long enough to have some commercial value.

Hewamalage et al. [2021] suggests setting the input window size n to be
slightly bigger than the input window with m % 1.25. Or putting m slightly
bigger than the seasonality period m = 1.25 % seasonality_period. We selected
to make the input window a bit bigger than the output window and the weekly
period, by setting m = 10.

6.5.6 Modeling Trend and Seasonality

The literature is conflicting when it comes to NN’s capability to model trends
and seasonality. Sharda and Patil [1992] work inferred that NNs are capable
of modeling seasonality accurately. However, more recent work suggests that
deseasonalisation and detrending can boost the performance of neural networks
[Zhang and Qi [2005] Smyl [2020]]. Ouyang et al. [2021] show that detrending and
deseasonalisation using STL decomposition will harm machine learning models,
but improve statistical models.
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H. Hewamalage, C. Bergmeir and K. Bandara / International Journal of Forecasting 37 (2021) 388-427

sequence ([)

(m) (n=H)
input window 1 output window 1

input window 2 output window 2

(m) (n H )
oo o o o o o o
input window 3 output window 3

Figure 6.4: Moving window scheme [Hewamalage et al., 2021]

Hewamalage et al. [2021] conclude that when all the series in a dataset follow
homogeneous seasonal patterns, with all of them covering the same duration in
time with sufficient lengths, RNNs are capable of capturing seasonality without
prior deseasonalisation. If this is not the case then RNNs have a hard time mod-
eling seasonality on their own, and deseasonalisation step should be employed.

Montero-Manso and Hyndman [2021] advocates for not removing seasonality
on global models based on their empirical results. They conclude that global NNs
do not suffer from an inability to pick seasonal patterns, as long as the models
are sufficiently complex and have enough memory. They argue that removing
seasonal patterns from the data can erase some relevant information that might
be exploited by global models.

These conflicting results in the literature, combined with our varied set of
time series we conclude that we will avoid applying STL decomposition in our
main experiments, but might do some experiments to see how it can improve our
metrics.

6.5.7 Scaling down outliers

Some of our time series consists of a few extreme outliers. An example of how one
of these outliers might occur is if a supplier makes an error and sends a wrong
price to Prisguiden. If this price is much lower than the original price then it
might spike a huge user interest for this item, until Prisguiden finds and corrects
the error. These outliers do not give any meaningful information, so steps were
taken to reduce these extreme values.

We use the standard deviation as a base to scale down the outliers with the
formula below.

z*x0.3 if x > standard_devation x5
y(tn) =

T, otherwise
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An example of how this affects a time series is shown in Figure 6.5.

Scaled down outliers

15000 — original
interest
g 10000
]
£
5000
0

0 250 500 750 1000 1250
time

Figure 6.5: Ilustration of how the scaling effects a time seires. The blue is the
original series. The orange is the processed series.

6.5.8 Data Processing Summary

So far, we have described each processing step and how it is conducted, but not
the overall order.
The main preprocessing steps was carried out as follows:

1.

7.

Combine hits and clicks to feature interest.

Split up into test and training data.

If a multivariate model — > Generate date features.
Scale down outliers

Normalize the data

Generate sliding window patches

Split the training set into training and validation set.

If the model is a global model. Then the same steps described above are
executed once for each time series, and then the training sets, validation sets,
and test sets are concatenated.

The post-processing of the predicted forecasts is just a matter of reversing the
local normalization to the forecast.



6.6. SARIMA BASELINE 71

6.6 SARIMA baseline

The SARIMA model is the first model to create baseline metrics for comparisons
with other models. The SARIMA model is limited to being a local and univariate
method, thus limiting the number of experiments that can be run.

Due to the inherent seasonal component present in the E-commerce data
available in this thesis, the seasonal SARIMA model is selected in favor of the
non-seasonal ARIMA model.

The SARIMA parameter values are shown in the appendix in table Table 8.2.

SARIMA Train, Test splitting

Using the auto-arima method supplied by the pmdarima python library, there
was no need for splitting training data into a training set and validation set. The
auto-arima method requires only the input of one training set.

However, the creation of a test set is required. After the models are created
and tuned, they are used to make predictions, which is then compared to the test
set. The test set is then used to measure the predictive error and accuracy of the
models.

6.6.1 SARIMA Tuning

Model tuning of the SARIMA model is done with the auto-arima framework.
Auto-arima utilizes Bayesian optimization to find a well-suited set of hyperpa-
rameters to use, within a defined search space for parameters. Using the MAE
metric as a measure of performance, auto-arima search for a set of parameters for
each individual time series in the datasets defined in Section 5.2. The parameter
search space used during the tuning is defined in Table 6.4 with the range of
parameter values.

Table 6.4: Parameter search space auto-arima, SARIMA tuning

Parameter | Min | Max
p 0 7
q 0 7
d 0 7
P 0 5
Q 0 5
D 0 5
S 12 12

Through testing of the SARIMA model, the parameter range of 0 to 7 for
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values p,q, and d was found. The same is the case for the P, D, and Q values
with the range from 0 to 5. In order to counteract the likelihood of creating a
highly overfitted model, the values were limited to a range of 7 and 5 due to
results from testing the models.

The seasonal component S is selected to be 12, assuming a monthly season-
ality.

6.7 LSTM

The LSTM consists of stacked layers of LSTM cells followed by a dense layer
with the same output size as our forecast horizon. The parameters used for the
LSTM cells are listed in Table 8.3 and the parameters used in the dense layer are
listed in Table 8.4, both found in the appendix Section 8.7.

LSTM Tuning

The hyperparameters of the LSTM are tuned with the Optuna Python package
with the Bayesian optimal algorithm [Section 2.1.8]. The hyperparameter mini-
mum and maximum values are shown in Table 6.5. These values were carefully
chosen after many tuning experiments. Figure 6.6 show a report from an optuna
tuning, and how different parameter combinations improved the model.

Table 6.5: LSTM Hyperparameter tuning range

| hyperparameter | Tuning range
hidden_size [1, 100]
number_of_layers 1, 2|
dropout (0.0, 0.4]
recurrent_dropout (0.0, 0.4]
optimizer_name "RMSprop’, "Adam’]
learning_rate [le-7, le-2]
number_of_epochs 1, 40]
batch_size (32, 32]

input_window _size 10
output_window_size | 7
number_of_features | 1
number_of_trials 200

stateful_Istm true
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Figure 6.6: A Optuna generated SLICE plot showing model perfomance with
different hyperparameter combinations.

(a) First 6 hyperparameters

(b) Last 5 hyperparameters

Stateful LSTM and hidden states

Intuitively the problem at hand requires a stateful LSTM [Section 2.1.13]. One
problem with stateful LSTMs is that they require all the input to have the
same batch size. This is because the two-state vectors h; and ¢; have the shape
(batch_size, input_length, features). In a stateless LSTM, these vectors are ini-
tialized with zero values at the beginning of each forward pass, so the batch_size
can be inferred from the input. In a stateful LSTM, these vectors are initialized
once together with the rest of the network, and so the batch_size needs to be
specified with the rest of the hyperparameters.

As a consequence the training data, validation data, and test data all need
to use the same batch_size, which is problematic. The easiest solution is to use
online learning, by setting the batch size to 1. However, this means calculating
gradients and doing a backpropagation for each timestep in our dataset, which is
highly inefficient.
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A batch size bigger than one means that the number of samples in the training
data and validation data and test data has to all be dividable by the batch size.
If not the last batch will have too few samples in it, and the network will reject
it. The most common solution is to find the highest common factor between the
training data and the test data, and use that as batch size. This is not a solution
that works on this problem because in our global model we train our model on
many different time series of different lengths, and also, our test data consists of
exactly 1 sample with a size equal the forecasting horizon, per time series. We
managed to solve the test data problem by creating two models with different
batch sizes. We trained the first model on the training data, then copied the
internal weights over to the second model, which had a batch size of one, for
testing and predictions.

The solution of copying weights was not available for the validation data
because the validation step in Keras is incorporated into the training function.
Due to time constraints, we did not want to dive deep into the Keras internals
to see if it was possible to solve this problem by hand.

Our solution ended up being to remove a number of samples at the beginning
of the dataset in order to make the total number of samples dividable by the
batch size, and then make the validation set equal to one batch. Removing data
from the beginning, seemed obvious as newer data will have more relevance than
older data. This meant that we also had to remove batch size as a tunable
hyperparameter, because the model would favor lower batch sizes because that
meant fewer validation data batches, which equals potentially fewer examples to
get wrong.

Instead of automatically tuning batch sizes, we did some manual testing, and
ended up setting batch size 32 for all experiments.

Reset states

Since the hidden states are never reset automatically in Keras stateful LSTM
models. Therefore, we had to do it ourselves.

Local models

For the local models, we are resetting the internal state at the beginning of
each epoch as well as before testing. We do not reset states before validation,
because the validation step always comes after an epoch run, and the validation
data are taken from the end of the training data for each time series. This means
the model will in fact have the correct hidden state when starting the validation
step.

During testing, we have to be a bit more clever. We ran the whole training
set plus the validation set through the networks prediction loop before predicting
the test set and calculate test metrics. This is for the model to ”see” the whole
picture and have the correct internal state before predicting the test set.
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Since we track all experiments we ran, as described in Section 6.3.3, we can
reference some of our testing results to back up our choices. Neptune experiment
MAS-396 and MAS-397 confirms that this tactic pay off. MAS-397 achieved a
MASE score of 2.00 on the test set without resetting states and passing through
training and validation data before the test set. In MAS-396 we used the exact
same setup, but with resetting states before the test set. MAS-396 achieved a
MASE score of 1.67.

Global models

For global models, we followed the concept presented by Smyl [2020], with
global weights, but local states.

As described in Section 6.3 we concatenate multiple time series after one
another during the training of a global model. This means we have to reset the
hidden state during the training of a global model or else we will give our model
a false sense of dependencies between the independent time series.

As described in Section 6.7 all batches had to be of equal size. Our time series
were concatenated one after another into one large time series. Our solution was
to pass in a lambda callback to Keras which ran after each batch. The number of
batched needed to fit each time series was counted. We then counted how many
batches it had executed. When the number of batches executed equals the number
of batches in a time series we reset the hidden state. However, this created a flaw
in experiments with more than one time series. Hidden states might not reset
at the exact right time, but in the worst-case scenario, a batch_size — 1 number
of samples too late. Still, this technique did prove to be successful. Neptun
experiment MAS-491 achieved a MASE metric of 19.61 without resetting states
during training. Neptune experiment MAS-492 achieved a MASE metric of 2.36.

Below is a simplified pseudo code for the algorithm which resets hidden states
during training.

1. time_series_counter = 0

2. time_series_number_of_batches_list = [TS.length() // batch size for each TS
in time-series |

3. start_training_loop()

4. after each batch: if current batch number == time_seires_number_of_batches_list[time_series_cour
then - reset_hidden_state()

5. time_series_counter += 1
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6.8 Hybrid method - CNN-AE and LSTM

The Convolutional Autoencoder and LSTM model consists of two individual mod-
els that are conjoined. Consisting of two models, the autoencoder and the LSTM
model.

6.8.1 Convolutional Autoencoder

As part of the hybrid convolutional autoencoder and LSTM model structure, a
convolutional autoencoder is needed. The autoencoder is intended to encode and
reconstruct the input values of a time series, before the reconstructed values can
be used as input for the LSTM model.

The model is created using 1D convolutional and trans-convolutional layers,
encoding the spacial data from the time series.

Model selection

In order to find a well-suited autoencoder design, manual tuning of the model was
conducted. Tuning of the model was done incrementally, with different composi-
tions of layer types and sizes. Using layers such as the convolutional 1-dimensional
layer, dense layers, MinMaxPooling, BatchNormalization, and different dropouts,
an ideal model architecture was tested.

After tuning the autoencoder on the different datasets with both local, global,
univariate and multivariate experiments, a shared model design was reached.
The convolutional autoencoder consists of an encoder component using 2 con-
volutional layers. The first layer has a kernel size of 3, with 16 filters, while
the second layer has a kernel size of 5, with 32 filters. Similarly, the decoder is
comprised of two TransConvolutional layers with kernel sizes 5 and 3, where the
first layer has a filter size of 32. The number of filters in the last layer depends
on the type of model created. A univariate model has only 1 filter, as only one
value of reconstructed per time point, while the multivariate model has 4.

This model architecture ensures the data is well reconstructed, and can be
shared across all the different models. All the chosen parameters are shown in
Table 8.5 and Table 8.6 in the appendix.

Performance metric

Due to the fact that the only aim for the autoencoder is to construct a recreation
of the time series data, it has no need for the same measure of accuracies as
the SARIMA model and the LSTM model. This is because it does not perform
future predictions, and it is therefore not compared to the predictive models.
However, it has its own goals, which it aims to achieve. In order to tune the
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autoencoder, a loss function is selected to be used during the training process.
Taking inspiration from Zhao et al. [2019], the error metrics MAPE was tested.
However, during tuning and testing of the models, the MAPE metric was found
to make predictions with extremely high error values. The same goes for the
MSE metric. Therefore, based on experimentation and results from tuning, the
MAE metric was found to be the best match for the autoencoder.

Local and global models

With the current design of the autoencoder, the aim was to find an autoencoder
that works well with both local and global models. Even though the global
models are tasked with encoding more data, this was not a clear problem with
the design, although there are limitations. With highly correlating data, such as
dataset 1, less data is required to be coded within the model because partial data
is shared across the different time series. However, this is not the case for non-
correlating data, such as with dataset 2. With this, more data is needed to be
encoded with the same model as above. Although this impaired the performance
of the autoencoder to some degree, testing and tuning of models found that
there are minimal difference in performance between the global and local models.
Therefore, both due to limitations with time and with the results from model
selection and tuning, the same model was selected as a good fit for all model
structures. The same autoencoder model architecture is therefore shared across
all explored models.

Univariate and multivariate

Same as with the use of local and global models, the use of univariate and mul-
tivariate models with the autoencoder served as a challenge. The selected model
needed to be able to encode and reconstruct data for both univariate and multi-
variate data sources.

Although multivariate models require more data to be encoded and recon-
structed, the current autoencoder design works well. Due to experimentation
with univariate and multivariate models, it is found that the model works well
and can be used on all methods regardless of univariate or multivariate model
structure.

6.8.2 LSTM

The second part of the hybrid model is the LSTM model. The LSTM model is
attached to the end of the convolutional autoencoder, processing the output of
the autoencoder as the model input. This is intended to alter the input data to
some extent, removing unneeded noise and volatility.
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As with the LSTM models described in Section 6.7, a stateful LSTM model
is used in the experiments. Therefore, the same limitations and challenges are
present.

The stateful LSTM model requires the use of the same batch size for each pass-
through, thus creating problems for datasets where the number of inputs does
not match a multiple of the batch size. Section 6.7 explains how this problem is
resolved, and the hybrid method applies the same approach. Additionally, the
Section 6.7 present the approach for working with global and local methods. The
same process is applied to the LSTM module in the hybrid model.

6.8.3 Connected model

Unlike the LSTM models Section 6.7 the hybrid model is not specifically tuned
for each of the experiments. Instead, the LSTM models found during LSTM
tuning are applied in the hybrid model. This is done primarily in order to create
a one-to-one comparison between the LSTM and the hybrid model, where the
only difference is the addition of the convolutional autoencoder.

6.9 Statistical T-test

The t-test is used as a statistical measure of significance in predictions between
different predictive models, Section 2.1.16. By using the error metric values
produced by the predictive models, the student t-test is used in order to verify
whether or not the predictions made by two different models are significantly
different.

The error value of each time series per dataset is extracted after the exper-
iments are executed. These results are then aggregated in lists of error values.
A list is created per predictive model. The lists can then be compared using
the t-test, testing for a significant difference between two and two lists of error
metrics from different models.

The results from the t-test can then be used as a measure to evaluate if two
model predictions were made on the same dataset is of significant difference.



Chapter 7

Experiments and Results

This chapter presents the results accomplished through the execution of the ex-
periments defined in chapter Chapter 6.

Initially, the project experiment plan is presented in Section 7.1. This con-
tains the definition of each of the experiments executed. Additionally, this section
connects each experiment with its related research question, as well as the expec-
tations of the experiment.

Secondly, the results from the experiments are presented in Section 7.2. Both
with tables of the average experiment metrics compared and box plots for results
from each of the datasets.

Lastly, additional experiments were completed exploring models on datasets
with other abilities. Section 7.3 and Section 7.4 lists the additional experiments
conducted, using data decomposition or high noise data.

7.1 Experimental Plan

This section contains the definition of the different experiments conducted on the
datasets defined in Section 5.2 applying the methods and models presented in
Chapter 6.

7.1.1 Experiment 0 - SARIMA Baseline

This experiment will serve as a measurement for the predictive accuracy of other
predictive methods. The SARIMA baseline will be used to compare the other
methods applied in later experiments. This experiment will not answer any re-
search questions.

79
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Outline Tune, train and test a seasonal SARIMA method on dataset 1, dataset
2, and dataset 3 using MASE and sMAPE as metrics on a 7-day forecast
horizon.

Expectations The SARIMA method is expected to perform better on more
seasonally dependent data, while not performing exceedingly well in com-
parison to other models.

These experiments will serve as the baseline metric for comparison with later
experiments.

7.1.2 Experiment 1 - LSTM Baseline

This experiment will serve as a baseline created using a currently state of the
art predictive method for E-commerce future prediction, as pressented in Sec-
tion 4.2. By comparing the results achieved in this experiment with the ones
from Section 7.1.1, this experiment serves to answer RQ4 Section 1.3.

Outline Tune, train and test a local univariate LSTM on dataset 1, dataset
2, and dataset 3 using MASE and sMAPE as metrics on a 7 day forecast
horizon. The results are compared with the results from the SARIMA
baseline. Section 7.1.1

Expectations The univariate local LSTM model is expected to outperforme the
SARIMA model on every dataset.

7.1.3 Experiment 2 - LSTM Model structures

This experiment attempt to improve the predictive ability of the LSTM model,
using multivariate and global methods. The experiments are designed to create
models with the aim of outperforming the baseline SARIMA and Local univariate
LSTM models created in Section 7.1.2 and Section 7.1.1. This experiment aims
to answer RQ4.1 [Section 1.3], through the exploration of the questions outlined
below.

e Will additional information, such as day of the week, month and season
help a LSTM to make better predictions?

e Will giving a LSTM model additional data by training a LSTM across
multiple datasets improve predictions?

Outline Tune, train and test a local multivariate LSTM, a global univariate
LSTM, and a global multivariate LSTM on dataset 1, dataset 2, and dataset
3 using MASE and sMAPE as metrics on a 7-day forecast. Compare the
results against the SARIMA and LSTM baseline.
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Expectations It is expected that the multivariate models will outperform the
univariate models. The additional date-encoding of seasonality should help
the NN make more accurate predictions. It should not impair the model
accuracy.

Following the works of Montero-Manso and Hyndman [2021] described in
Section 3.3.1 the global models are expected to perform, at worst, equal
to the local model on all datasets, while at best outperforming the local
models.

7.1.4 Experiment 3 - Convolutional Autoencoder LSTM

This experiment focuses on the proposed hybrid Convolutional Autoencoder and
LSTM model. As this method has yet to be tested on a commercial dataset, the
experiment aims to improve the accuracy of the correlating LSTM models. The
hybrid model is explored in each of the experiments ran on the LSTM, includ-
ing all combinations of Local vs Global models, and univariate vs multivariate
models.

This experiment aims to answer RQ5 [Section 1.3] by applying the Hybrid
method to the datasets.

Outline Tune, train and test a CNN-AE and LSTM models to compare to the
LSTM models created in Section 7.1.2 and Section 7.1.3. Creating a local
univariate model, local multivariate model, global univariate model, and
global multivariate model. All these models are applied to datasets 1, 2
and 3, using MASE and sMAPE metrics on a 7 day forecast. The results
are compared against the SARIMA and LSTM models defined in previous
experiments.

Expectations The Convolutional Autoencoder and LSTM model is expected to
perform better than the correlating LSTM model due to the high volatility
and noise in the available datasets. The multivariate models are expected
to perform better than the univariate models. However, the global models
are expected to perform well on dataset 1 due to the highly correlating
data, while performing worse on datasets 2 and 3.

7.2 Results

This section presents the results acquired from executing the experiments defined
in Section 7.1. Results are presented with average values of error metrics per
dataset, as well as box-plots of error metrics, and t-test results between the
explored models.

All results for each of the experiments can be found in Section 8.8.
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7.2.1 Dataset 1

Table 7.1: Average values for all experiment for dataset-1

MASE sMAPE MASE-7

Experiment

sarima 1.294 0.239 1.063
local univariate Istm 1.129 0.208 1.017
local multivariate lstm 0.972 0.183 0.922
global univariate Istm 1.107 0.203 1.02
global multivariate lstm 1.091 0.202 1.055
local univariate cnn ae lstm 1.124 0.208 0.947
local multivariate cnn ae lstm 0.943 0.181 0.871
global univariate cnn ae Istm 1.157 0.21 1.058

global multivariate cnn ae Istm 1.082 0.198 1.026

Table 7.2: Student t-test, measuring confidence of significant difference between
predictions, comparing LSTM model structures against local univariate LSTM.
sMape error - p-value

local_multivariate global_univariate global_multivariate

dataset 1 0.039211 0.712811 0.642842
dataset 2 0.228875 0.638309 0.320224
dataset 3 0.139856 0.384286 0.185118

Table 7.3: Student t-test, measuring confidence of significant difference between
predictions on the CNN-AE-LSTM and the LSTM for different model structures.
sMape error - p-value

local-univariate local-multivariate global-univariate global-multivariate

dataset 1  0.96549 0.72792 0.00027 0.35168
dataset 2 0.14676 0.01051 0.03044 0.0103
dataset 3 0.82601 0.85881 0.15914 0.02646

Table 7.1 shows the mean metrics across all the time series in dataset 1. Ta-
ble 8.53 show the p-values for every LSTM structure compared with the local
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Figure 7.1: Boxplot of predictions made on dataset 1
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univariate LSTM. Table 7.3 show the p-values comparing the sMAPE results be-
tween the LSTM and the CNN-AE-LSTM for each model structure. The poorest
performing model across the board is SARIMA, with a MASE of 1.294, sMAPE
of 0.239 and 7-day MASE of 1.063. All the different LSTM structures and hybrid
methods outperformed SARIMA, as seen in Figure 7.1b.

The multivariate models outperformed all their retrospective univariate counter
partners. The global univariate LSTM outperforms the local univariate on both
MASE and sMAPE, though not statistically significant, but this results is not
reproduced for the multivariate models, or the CNN-AE-LSTM models.

All the model structures performs slightly better with our proposed CNN-AE-
LSTM method on dataset 1, except for the global univariate CNN-AE-LSTM.

The most consistent models with the least amount of variance are the multi-
variate models. The local multivariate CNN-AE-LSTM and the local multivariate
LSTM were the only two models who beat the naive 7-day prediction. The best
performing model is the local multivariate CNN-AE-LSTM.
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7.2.2 Dataset 2

Table 7.4: Average values for all experiment for dataset-2

MASE sMAPE MASE-7

Experiment

sarima 1.472 0.633 0.707
local univariate Istm 1.765 0.684 0.812
local multivariate Istm 1.377 0.603 0.697
global univariate Istm 1.707 0.662 0.834
global multivariate lstm 1.55 0.642 0.775
local univariate cnn ae lstm 1.827 0.716 0.851

local multivariate cnn ae Istm 1.66 0.743 0.816
global univariate cnn ae Istm 1.734 0.675 0.85
global multivariate cnn ae Istm 1.796 0.703 0.89

Figure 7.2: Boxplot of predictions made on dataset 2
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The results from dataset 2 are shown in Table 7.4, and visualized in Figure
7.2. The p-values are in Table 8.53 and Table 7.3.

Compared to dataset 1, dataset 2 proved to be a much more difficult dataset
to forecast. Compared to the neural network models, SARIMA performs better,
with a mase of 1.472, a 7-day MASE of 0.707 and a smape of 0.633. Some
of the results from dataset 1 are reproduced on dataset 2. For example, the
global univariate LSTM outperforms the local univariate LSTM. The multivariate
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models outperform the univariate models. On dataset 2 however, all the CNN-
AE-LSTM methods perform poorly compared to the LSTM models. The best
performing model on dataset 2 is local multivariate LSTM with a mase of 1.377
a SMAPAE of 0.603 and 0.697.

7.2.3 Dataset 3

Table 7.5: Average values for all experiment for dataset-3

MASE sMAPE MASE-7

Experiment

sarima 1.938 0.382 0.981
local univariate Istm 2.135 0.477 1.306
local multivariate Istm 1.495 0.369 0.988
global univariate Istm 1.968 0.425 1.038
global multivariate Istm 1.728 0.399 0.899
local univariate cnn ae lstm 2.106 0.483 1.242

local multivariate cnn ae Istm 1.352 0.354 0.765
global univariate cnn ae Istm 1.94 0.417 1.004
global multivariate cnn ae Istm 2.935 0.566 1.771

The results from dataset 3 is in Table 7.5, and visualized in Figure 7.3. The
p-values are in Table 8.53 and Table 7.3. On dataset 3 SARIMA, again, out-
performs the purely local univariate LSTM baseline. Many of the same patterns
repeats on dataset 3 as with dataset 1 and 2, multivariate beats univariate, global
unviariate beats local univariate. On dataset 3 it seems that the CNN-AE-LSTMs
outperform the LSTMs once again.

7.2.4 Model Comparisons Across Datasets

Due to the low sample size of the available datasets, proving the statistical signif-
icance of model performance proves to be a difficult task. However, aggregating
the results across the 3 datasets will increase the sample size of the predictions.
This will, in turn, improve the basis for doing statistical tests on the model
predictions. The results are shown in Figure 7.4
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Figure 7.3: Boxplot of predictions made on the seasonal dataset 3
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CNN-AE-LSTM performs best, while the variate CNN-AE-LSTM performs best, but

global multivariate CNN-AE-LSTM per- with a higher variance than on MASE. The

forms worst. global multivariate CNN-AE-LSTM per-
forms worst.

Table 7.6: Average values for all experiment for all-datasets

MASE sMAPE MASE-7

Experiment

sarima 1.481 0.425 0.905
local univariate Istm 1.552 0.438 0.977
local multivariate Istm 1.221 0.382 0.842
global univariate Istm 1.497 0.423 0.946
global multivariate Istm 1.382 0.41 0.912
local univariate cnn ae lstm 1.573 0.454 0.954

local multivariate cnn ae Istm 1.311 0.442 0.832
global univariate cnn ae Istm 1.524 0.429 0.962
global multivariate cnn ae Istm 1.686 0.46 1.095
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Figure 7.4: Barplot comparing average model perfomance across all datasets

& 1.0

0.5

—
w
SMAPE
o o o
o ] IS

0.0

4 £ £ £ E £ £ £ £ - £ £ £ £ £ £ £ E
£ =3 =3 =3 = =] =3 =1 = £ =1 =1 =3 = =3 =3 =3 =
= o o o n o o o e = n n n n a a i 7
R Q Q [ o [ [ o @ R Q @ Q o () () [ [
< < = 3 @ @ © © 5 < < 3 © © © ©
= ‘= = = c c c c = = = = c c c c
H H H H c c H c © o s s c c c c
> > > > v v v o > > > > o = v v
c = 5 = ] ) ) ) e = c = g L ] g
S S =1 > ® " w © > S =1 > ® ® " ®
= £ ® £ = = = = = £ = £ = = = =
S = s = o o © © S = s — © o ® o
<} © <} ° 2 2 2 2 <} © <} ° 2 2 2 2
= g B Q c F=J c s = 8 T Q c =] c =
k<] o o ] ] ] > o o o El S ] >
° B E 3 E ° 3 E 3 E
o - Qo = o - Qo =
[+ [ o ©
2 o 2 2 2 V] 2 2
o o C] ° o C]
o o
Experiments Experiments

(a) Average MASE metrics across all (b) Average sMAPE metrics across all
datasets datasets

Table 7.7: Student t-test, measuring confidence of significant difference between
LSTM models all dataset, statistic value. sMape error. l-u = local univariate,
l-m= local multivariate, g-u = global univariate etc. - p-value

l-u l-m g-u g-m
l-u  nan 0.03918 0.36293 0.10352
I-m  0.03918 nan 0.10993 0.23882
g-u 0.36293  0.10993  nan 0.19305

g-m 0.10352  0.23882  0.19305 nan

LSTM models

The global univariate LSTM model improves prediction error over the local uni-
variate model by 2.4% with the sMAPE metric. Additionally, applying the t-test
implies that this difference in metric is not significant, with a p-value of 0.712.
However, in order to measure the difference in the models we compare the mod-
els across all of the datasets. By aggregating the prediction metrics, as shown
in Table 7.6, we achieve an improvement of 4.43% instead. Additionally, the
p-value from the statistical t-test has a significant decrease in value to 0.362, as
shown in Table 8.54. Although this is still not enough for the t-test to indicate a
statistically significant difference, we are able to see a clear trend indicating that
the global univariate model is an improvement compared to the local univariate
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model.

The local multivariate LSTM shows a big improvement over the local univari-
ate LSTM. On average, the performance of the model reduces predictive error
by 13.74% using the sMAPE error metric. Additionally, the p-value of the t-test
shows a value of 0.039, thus implying a significant difference in predictions.

The global multivariate LSTM model improves predictive error by 4.2% over
the local univariate LSTM model, and 3.1% over the global univariate model. In
addition to outperforming the local univariate baseline, the global multivariate
model also outperformed the global univariate model. However, the t-tests for
the model are all above the threshold of 0.05 compared to both models. The
global multivariate model is not able to outperform the local multivariate model,
with a predictive error of 7.33% worse than the local multivariate model.

7.2.5 Hybrid model compare results

The hybrid methods can be compared with the LSTM baseline methods. The
experiment results used in this section comes from results tables Table 7.1, Ta-
ble 7.4, Table 7.5, as well as the tables for t-test values, Table 7.3.

Local univariate

The local univariate LSTM and the local univariate convolutional autoencoder
and LSTM are one of the model-configurations that offer rather similar results
across datasets. While the hybrid model performance is more or less equal,
predictions made on datasets 2 and 3 vary a bit more. The basic local univariate
LSTM model performs 4.6% and 1.25% better on average than the local univariate
CNN-AE-LSTM model. However, in addition to these similarities in average
performance, the T-test conducted on the experiments reveals the same outcome.
The t-test Resultsults shown in Table 7.3 infer that the predictions made by the
two local univariate models are from the same group, and there is no significant
difference in their distribution.

Global univariate

The global univariate CNN-AE-LSTM model is, on average, an improvement over
the local univariate CNN-AE-LSTM model. The model outperforms the local
univariate model on datasets 2 and 3, but not on dataset 1. However, the global
model performs better than the local model on average over all datasets with a
5.5% lower sMAPE error metric. The global univaraite CNN-AE-LSTM model is
not able to outperforme the global univariate LSTM model. The global univariate
LSTM model generally performed better than the hybrid model. Evaluating the
difference with the t-test, it is also clear that the difference is significant.
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Although the average metrics performance between the hybrid model and the
LSTM model on dataset 1 is only a little under 4%, there is still quite a difference.
By evaluating the metrics of each prediction in the dataset, as well as using the
significance test results from the t-test, it is clear that the global univariate LSTM
model is significantly better than the global univariate convolutional autoencoder
and LSTM for dataset 1. For dataset 2 the difference is not as prominent as with
dataset 1, but also here, there is a significant difference in predictions. Only
with dataset 3, where the hybrid model performs better than the LSTM model
on average as a global univariate model, the t-test signals that there are no
significant differences between the two predictions. However, it is unclear if this
is due to the dataset or if this has to do with the low sample size compared to
dataset 1 and dataset 2.

Local multivariate

The local multivariate CNN-AE-LSTM model serves a slight improvement to
predictions for datasets 1 and 3, although there are no clear improvements to
predictions. On average, dataset 1 is improved with 1.1% and dataset 3 is im-
proved with 1.4% for the sMAPE error metric. The t-test applied to the predic-
tions supports this assumption as there are no significant differences between the
predictions made with the local multivariate model.

However, the results are quite different for dataset 2. The CNN-AE-LSTM
model increases the SMAPE error metric with 23% over the local multivariate
LSTM model, thus decreasing performance significantly. This is also supported
by the t-test conducted, implying a significant difference in prediction SMAPE
errors.

Global multivariate

On dataset 1 the global multivariate hybrid model performs on average 2% better
than the global multivariate LSTM model. However, there is not a significant
difference. This is supported by the results from the t-test, which implies there
is no significance in the difference in predictions. While there was a significant
difference between the models using a global univariate model, the difference in
performance was not high.

Unfortunately, the same does not apply to dataset 2 and dataset 3. While
the hybrid model, on average, perform about 9.5% worse on dataset 2, it also
performs about 41.9% worse on dataset 3. Applying the student t-test to the
predictions also supports the notion of the global multivariate model decreasing
performance for the convolutional autoencoder and LSTM. Both predictions for
dataset 2 and dataset 3 are well within the confidence interval of the t-test, thus
implying a significant difference between the predictions for datasets 2 and 3.
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7.3 Additional Experiments Plan

After analyzing the initial results from our defined experiments we formed some
hypotheses, which led to some additional experiments. These experiments are
described in this section.

7.3.1 Experiment 4: CNN-AE-LSTM on Noisy datasets

The CNN-AE-LSTM performed best on dataset 1, which we know has the most
noise. To confirm our hypothesis that the CNN-AE-LSTM performs better than
a LSTM on the noisy dataset we add three new datasets, one set consists of
noisy time series, the other consists of time series with low noise. In fear that
the noisiest dataset would be too noisy to give any meaningfule predictions we
added the third dataset, which has above-average noise, but not as much as the
noisiest data set.

Choosing the datasets

To make the two datasets we looked at the standard deviation. Firstly we scaled
down outliers which could skew the standard deviation of a series to be higher.
For this we used the same technique as described in Section 6.5.7.

Then, for each time series in the whole dataset we did these steps

1. Scale down the values to have a mean of 0 using standardization.
2. Take the difference of t,, — t,,_1

3. if the standard deviation of the remaining series is above max_threshold
Add to max list

4. if the standard deviation of the remaining series is below the min_threshold
Add to min list

The noisiest dataset had standard deviation above max_threshold = 1.3. The
dataset with the least noise had a standard deviation below min_threshold = 0.4.
The above average noisy dataset had a standard deviation above ok_threshold =
0.8 but below the maximum threshold of 1.3. From the remaining list we ran-
domly picked 7 time series. Examples from each dataset is shown in Figure 7.5,
and the full list of categories are presented in Table 7.8, Table 7.9, and Table 7.10.

Running the experiments

The only two model structures we use are local univariate LSTM and local uni-
variate CNN-AE-LSTM. We follow the same procedure as previously described
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Figure 7.5: Illustration of time series from the low variance dataset (top), high
variance (bottom left), and the medium variance dataset (bottom right).

in Chapter 6, except we do not tune the hyperparameters. Instead, we use a
hyperparameter-set from a previously tuned experiment and use those for all the
models. This is done because of time constraints.

Experiment Plan

Outline Train and test a local univariate LSTM, and a local univariate CNN-
AE-LSTM on a noisy dataset, a low noise dataset, and a medium noisy
dataset, using MASE and sMAPE as metrics on a 7-day forecast. Compare
the results against each other.

Expectations We expect the CNN-AE-LSTM to outperform the LSTM on the
noisy datasets. We also expect the LSTM to have the best performance on
the low noise datasets.

7.3.2 Experiment 5: Differencing on seasonal dataset

The literature on RNN’s ability to model seasonality was conflicting [Section 6.5.6].
Our initial results showed that the LSTM suffered on datasets with strong yearly
seasonality. We want to test if removing trends and seasonality can improve
forecasts.
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Table 7.8: Categories chosen for the highl variance dataset

Category ID  Name (Norwegian)

77 Harddiskkassett

79  Viftestyring
11217  Brannmur (Firewall)
11334 Lamineringsmaskin
11992 Lommelerke
12265 Bilderamme
12511 Sarrens

Table 7.9: Categories chosen for the low variance dataset

Category ID  Name (Norwegian)

10053  Sykkel

11037  Grill

11041  Gressklipper

11048 Hekksaks

11456 Robotgressklipper

11817  Gresstrimmer og kantklipper
13323 Brodder

Choosing Datasets

We chose dataset 3 as the main dataset and dataset 1 as a control dataset. Dataset
3 consists of series with strong seasonality, while dataset 1 has a relatively low
seasonality.

Removing Trend and Seasonality

To remove the trend and seasonality from the time series we use differencing
transformation, which is a method of transforming a time series, which removes
its temporal dependence [Rob J Hyndman, 2014, p. 215]. STL decomposition was
tested as well, but it proved to be give worse results than with differencing. Dif-
ferencing is performed by subtracting the previous observation from the current
observation as shown in Equation (7.1) where z is the transformed differenced
series, and y is the real observations.

2(t) = y(tn) = y(tn-1) (7.1)
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Table 7.10: Categories chosen for the ok variance dataset

Category ID

Name (Norwegian)

16
17
28
34
40
44
45
48

Diverse lydkort
Media

Skanner
Videokamera
Optiske enheter
Vifter
Mobilkabler
Blatann-adapter

The transformation can be removed with Equation (7.2).

y(t) =

Running the experiments

2(tn) + y(tn—1) (7.2)

We would follow the same experimental procedure as previously described in
Chapter 6, except for section Section 6.5.6 which we replace with differencing

described above.

Experiment Plan

Outline Tune, train and test a local univariate LSTM with differencing on
dataset 1 and 3, using MASE and sMAPE as metrics on a 7-day forecast.
Compare the results against previously ran experiment without differenc-

ing.

Expectations We expect the LSTM with differencing to perform better on
dataset 3. We do not know how differencing will affect the results on dataset

1.
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7.4 Additional Experiments Results

Table 7.11: Average values for all experiment for dataset-variance

MASE sMAPE MASE-7

Experiment

dataset-high-variance-lstm-local-univariate 0.645 0.864 0.796
dataset-high-variance-cnn-ae-lstm-local-univariate 0.634 0.832 0.782
ok-variance-lstm-local-univariate 0.788 0.502 0.757
ok-variance-local-univariate-cnn-ae-lstm 0.788 0.501 0.747
low-variance-lstm-local-univariate 3.74 0.421 0.898
low-variance-cnn-ae-Istm-local-univariate 5.072 0.641 1.082

Table 7.12: Student t-test, measuring confidence of significant difference between
predictions, statistic value. sMape error - p-value

low-variance-lstm-local-univariate

High variance (.14734
OK variance 0.73271
Low variance 0.01043

Table 7.13: Student t-test, measuring confidence of significant difference between
predictions, statistic value. MASE error - p-value

low-variance-lstm-local-univariate

High variance 0.38205
OK variance 0.9745
Low variance 0.05382

The results of our two additional experiments are shown in Table 7.11. And
the p-values are presented in Table 7.13, and Table 7.12. The results are also
visualized in Figure 7.6. The table shows the average metrics for all the time
series in the dataset described in the name. For example: dataset-high-variance-
Istm-local-univariate row show the average results for the local univariate LSTM
on the high variance dataset.
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7.4.1 CNN-AE-LSTM on variance

The CNN-AE-LSTM got MASE of 0.645 and an sMAPE of 0.864 on the high
variance dataset. The CNN-AE-LSTM (dataset-high-variance-cnn-ae-lstm-local-
unviariate) outperforms the LSTM on the same dataset with an sMAPE of 0.832
and a mase of 0.634, which is an SMAPE reduction of 3.7% and a relativily low
p-value of 0.147.

The CNN-AE-LSTM performs much worse than the LSTM on the low vari-
ance dataset, whit a SMAPE of 0.641 versus 0.421, and a MASE of 5.072 versus
3.740. This is a 52% decreased sMAPE perfomance and a low p-value of 0.01.
The MASE score is 26.3% worse with a p-value of 0.053.

On the medium variance dataset the CNN-AE-LSTM performs marginally
better than the LSTM with a sMAPE of 0.501 versus 0.502. Both models score
the same MASE of 0.788, the p-value of 0.732 is too high to say anything of value.

7.4.2 Differencing

Table 7.14: Average values for all experiment for dataset-diff

MASE sMAPE MASE-7

Experiment

local univariate lstm dataset 1 1.129 0.208 1.017
local univariate lstm dataset 3 2.207 0.488 1.345
local univariate lstm dataset 1 diff 1.341 0.24 0.98

local univariate lstm dataset 3 diff 1.866 0.367 0.916

Table 7.15: Student t-test, measuring confidence of significant difference between
predictions, statistic value. MASE error - p-value

local-univariate local-univariate

Differencing dataset 0.18392 0.50322

Comparing the local univariate LSTM with differencing done as a pre-processing
step on dataset 3 in Table 7.14, with the same model type, without differencing,
the original local univariate LSTM model without differencing scored a MASE
of 2.207, a SMAPE of 0.488, and a 7-day MASE of 1.345. The model with
differencing scored a MASE of 1.866, a sMAPE of 0.367 and a 7-day MASE
of 0.916. That is an improvement of 15.45%, 24.80%, and 31.90% respectively;
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Figure 7.6: Boxplot of predictions made on the high variance, and the low vari-

ance dataset, comparing CNN-AE-LSTM against LSTM
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however, none of these improvements are not of statistical significance as the
sMAPE p-value is as high as 0.503, as shown in Table 8.44.

We can, however, with greater confidence confirm that differencing on dataset
1 will decrease the results by 15.38%, with a p-value of 0.183.



Chapter 8

Discussion and Conclusion

This section will cover the discussion and conclusion of this thesis. Section 8.1
presents the discussion regarding the proposed framework, selected model struc-
tures, datasets and data analysis, and the results from the experiments. Sec-
tion 8.2 presents the scientific contributions done in this thesis, followed by Sec-
tion 8.3 which concludes the thesis. Lastly, Section 8.4 discuss threats agains
validity, before Section 8.5 lists future work to be done on the problem space and
the presented framework.

8.1 Discussion

This section addresses the underlying discussion creating the basis for the selected
model framework proposed in Chapter 4 and Chapter 6, and the related exper-
iments and results defined in Chapter 7. The discussion contains the reasoning
behind method selection and design and the motivation behind the selection of
error metrics and data processing. Experimental results are addressed in order
to discuss the selected methods and to answer the research question and goal
defined in Section 1.3.

8.1.1 Datasets Characteristics

The results reveal a lot of information about the characteristics of the different
datasets. The sMAPE is our best indicator for how well the prediction graph
fits the target graph. The 1-day MASE gives us an indicator of how well our
predictions are compared to the naive prediction. It is worth noting how well
the naive prediction differs for each time series. In a random-walk the naive
prediction will be the best possible prediction. This is also true for time series

97
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with a high autocorrelation coefficient. The same is true for the 7-day MASE. A
time series with a strong weekly seasonality will give a higher MASE compared
to a time series with a low weekly seasonality. Therefore comparing MASEs
from different datasets can be misleading without knowledge of the underlying
characteristics of these series.

Looking at the results we can make some educated guesses about these time
series characteristics. We get the best forecast fits from dataset 1, which has a
mean sSMAPE of 0.2034. Second comes dataset 3 with a sSMAPE of 0.4362. The
hardest dataset to forecast was dataset 2 with a sSsMAPE of 0.697. Looking at
the 1-day MASE we can expect the mean autocorrelation coefficient for dataset
3 to be the highest among the three, with a MASE of 2.009. Calculating the
autocorrelation for all the time series in the datasets and taking the average of
the results confirms our hypothesis. The results are shown in Table 8.1. Dataset
3 has the highest autocorrelation of all the datasets with a mean of 0.93. There
is also a relatively strong correlation between the 1-day MASE results from the
local univariate LSTM method and the time series autocorrelation.

Table 8.1: Mean autocorrelation and the correlation of the MASE results from
Local Univariate LSTM and the autocorrelation.

Dataset | Mean Autocorrelation | Autocorrelation correlation with MASE
1 0.753 0.229
2 0.775 0.295
3 0.930 0.304

In general, using SMAPE as metric, dataset 2 seems to be the most difficult
dataset to forecast. This makes sense because the dataset consists of many vastly
different time series with few apparent patterns.

8.1.2 Modeling seasonality

Our empirical results indicate that LSTMs have trouble modeling yearly season-
ality. The dataset with the least yearly seasonality is dataset 1. This is the only
dataset where the local univariate LSTM outperformed SARIMA. However, feed-
ing the LSTM with additional data such as day of the week, month, and season,
it became significantly better on datasets with a strong seasonal component. Our
findings do not contradict the findings of Hewamalage et al. [2021] regarding NNs
ability to model seasonality [Section 6.5.6] because all their datasets have a much
higher seasonal frequency. Their data show clear seasonal patterns in a plot with
50 time steps. In contrast, we have yearly seasonality so we have to plot 365+
time steps to be able to see a seasonal pattern.
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It seems LSTMs do not have long enough memory to model seasonal patterns
with a 365 timestep wavelength. This hypothesis is supported by the findings
of Zhao et al. [2020], which concludes that RNNs and LSTMs do not have long
memory from a time series perspective. But they do not give a definite answer
for how long a LSTM remembers.

This explains why SARIMA outperforms the local univariate LSTM on dataset
2 and 3, as both includes of time series with a strong seasonal dependence. Exper-
iment 5 [Section 7.3.2] where we removed the seasonality from dataset 3 confirms
this as well, but the experiment had too few samples to prove anything statisti-
cally. When we remove trend and seasonality by differencing the training data,
we have to reincorporate this difference on our forecasted values before we can
compare them with our test targets. This is done iteratively by Equation (7.2)
where the first z(¢1) is our first predicted value and our first observed y(t,—1)
value is the last value we have before the forecast horizon. This process is based
on only one real observation, which means that we accumulate an error for each
iteration, which can hurt the forecast accuracy. This probably explains the poor
results on dataset 1 when differencing is performed in Experiment 5.

Regarding RQ4 [1.3], we can conclude that on our dataset, when both SARIMA
and LSTM are given the exact same information, SARIMA will outperform
LSTM on time series with a strong 365-day seasonality because of the spatial
memory limitations of LSTMs. SARIMA is a statistical method that does not
rely on memory. It requires the seasonal component for each time series to be
known. When a time series does not have a strong seasonal dependence or this
dependence is removed beforehand, the LSTM performs best.

Regarding RQ4.1 [1.3] our empirical results show that adding date stamp
features to a univariate series can significantly improve forecasting accuracy, es-
pecially on time series with a strong seasonal dependence, and where this seasonal
component has a long wavelength.

8.1.3 Global versus Local models

Comparing the local univariate against the global univariate model, the global
model has an SMAPE performance increase of 2.4% on dataset 1, 3.2% on dataset
2 and 4.9% on dataset 3. The sample sizes of each dataset are relatively low, so
the results are not statistically significant. However, when we increase the sam-
ple size by comparing the same models across all the datasets, we see the same
trend and we get a lower p-value. This show a promising trend. Surprisingly, the
performance increase does not seem to correlate with how homogeneous the time
series in the dataset are to each other. Dataset 1, the most homogeneous set of
them, has the least performance increase. These results support Montero-Manso
and Hyndman [2021] preposition that global models can improve forecasting ac-
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curacy, even if the strong assumption that the same process generates the time
series. And that a global algorithm can also express each forecast that a local
algorithm can express.

The same performance increase is not to be found in the multivariate models.
The local multivariate models are good at capturing the trend and seasonality
of a given product category. This does not seem to translate well to a global
model. One might expect that global models should be able to learn seasonality
across time series if the series contains the same seasonality. The dataset that
suffers the most from making a multivariate local model global is dataset 3 with
a sSMAPE perfomance loss of —37%. Dataset 1 and dataset 2 got —10.38% and
—6.47% loss respectively. One explanation for this might be that even though
all categories in dataset 3 are popular during the winter, and peaks around the
same months, their seasonality is not enough in sync. For example, ”Vintersko”
and ”Vinterjakke” has their most giant peaks around October when the weather
starts becoming cold. While ”Langrennski” and ”Skisko” peaks around January,
when the snow starts falling. This will seem like conflicting information for an
NN that can not differentiate between which category it is looking at, hurting
the NNs modeling capability. However, the value of additional information is not
to be overlooked, because our results show that a multivariate global LSTM will
outperform a univariate global LSTM in all scenarios. And the global model is
a lot more scalable, which can make it is an attractive model structure choice,
even if it is not the most accurate model structure.

Regarding RQ4.1 [1.3] our empirical results show that training a global uni-
variate model across multiple time series will simplify the problem, and improve
forecasting accuracy, even if the underlying time series have very different char-
acteristics. However, this is not true for multivariate models with additional date
stamp features. We can assume that global multivariate models with date fea-
tures will work if all the set time series have the same seasonal patterns. Local
multivariate models will give the most accurate forecast, but global multivariate
models scale a lot better as the number of time series to forecast increases.

8.1.4 Normalization versus Standardisation

Our initial assumption was to use normalization to scale the data between a
fixed range between -1 and 1 because we did not know if the data would follow
a Guassian distribution. After testing both normalization and standardization,
standardization proved to perform significantly better. The problem with scaling
all values between a fixed range is that huge outliers use up a lot of the range
available, which will result in most of the data having very small differences in
values between them. This can affect the NNs ability to differentiate between the
observations.
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Figure 8.1 show two different time series scaled with both techniques

Figure 8.1: Effects of different scaling techniques on a dataset with huge outliers.
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8.1.5 Convolutional Autoencoder with LSTM

After doing experiments with the LSTM and the CNN-AE and LSTM model
on the three datasets used in this thesis, the results from the predictions are
presented in Section 7.2.5.

Experiments conducted on the different datasets result in predictions that can
vary vastly, and some that are quite similar between the models.

The t-test and average metrics attained through the experimentation pre-
sented in Section 7.2.5 infer that the hybrid model CNN-AE-LSTM is not able
to improve performance over the LSTM model on a local univariate model.

One reason behind this lack of difference in predictions might originate in
the selected data. The task of the convolutional autoencoder is to encode and
reconstruct the input data of the model, removing noise and other unneeded
information in the process. Lack of data could serve as an issue in this case. As
each of the time series used in the local univariate model only consists of around
three years of data, or 1300 data points. There is a possibility that there is not
enough similar data for the autoencoder to recognize similarities in data so that
it can then remove the extra noise. Additionally, the amount of noise contained
in the data is not known. If the datasets contain little noise, the autoencoder is
more likely to remove relevant data, thus impairing the performance of the LSTM
model. Due to the implications that the lack of noise in the data potentially
could infer from the predictions, additional experiments are done on data with
high noise and low noise. We will come back to these experiments later in this
discussion.

However, as is seen from the predictions made by the two models, it is clear
that the convolutional autoencoder and Istm does not significantly improve pre-
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dictions compared to the LSTM model.

While the thesis Zhao et al. [2019] only focuses on applying local univariate
models, we wished to explore the expansion of the use of the hybrid model with
other configurations. These include the use of multivariate models and global
models for each dataset. Exploring the use of such variations to the Convolutional
autoencoder and LSTM, we hoped to uncover cases where the model performance
is increased over the standard local univariate model.

Local multivariate models

After the use of global models, a configuration of multivariate models was at-
tempted. Unlike the global models, the amount of data is increased not through
the addition of other time series to the model, but by decomposing the infor-
mation within each time series. By decomposing information such as day of the
week, or season, the amount of data supplied to the models is increased.

Using the hybrid convolutional autoencoder and LSTM model should result
in both improvements and degradation in performance.

Initially, the performance of the model is likely to suffer due to the fact that
the model is required to encode and reconstruct additional input data using the
same model structure. The model might encounter problems recreating the data
using the same model as for the univariate model while attempting to recreate
additional data per data point. If the autoencoder then is limited by the number
of data entries on top of this, the model performance could suffer.

However, the same reasoning might also help improve the hybrid model’s
performance in some situations. While more data would need to be encoded
and reconstructed, the autoencoder will retain more information regarding the
development of trends and spikes through different seasons. While a pattern
might repeat over several seasons, there might be additional hidden information in
the seasonal information. If a pattern is known to never spike during summer but
often spikes through the winter, the autoencoder should be able to differentiate
between the different seasons. Thus, the task of the autoencoder would be to
retain information about changes in trends also dependent on seasonal data.

However, while this reasoning is based on the autoencoder’s ability to encode
and differentiate between values based on season, the amount of data would
severely limit the model. If there is not enough data available, the autoencoder
would not be able to learn of such connections. As discussed in Section 5.1,
the data attained from “Prisguiden.no” only include data-points for a little over
three years. As with the problems discussed with the local univariate model, the
multivariate model would also likely be limited by the amount of data.

This is reflected in the results acquired through testing. The results of these
tests are introduced in Section 7.2.5, and while the performance of datasets 1 and
3 are a little better than for the LSTM model, the differences are not significant.
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However, the performance of the method on dataset 2 is shown to be significantly
worse than the LSTM predictions.

The significant decrease in performance could be due to the lack of data as
discussed earlier. With the local univariate model, there is a 4% performance
decrease with the hybrid model. Although this is not significant, this could point
to the reason behind the poor performance. While the local univariate model and
the local multivariate models both suffer from a lack of data with each dataset.
Both models perform worse on dataset 2, while the performance on dataset 1
is somewhat better both using univariate and multivariate. This could imply
that the selected dataset is less suited for using the autoencoder. This could
then again imply that the convolutional autoencoder is heavily influenced by the
nature of the data that is used. The implications of the dataset’s characteristics
are explored further later when the use of noisy data is discussed. However, if
this is the case, the lack of data could explain the poor performance of dataset
2. The multivariate model would have the same number of time-steps in each
time series but would be required to encode four times the data per time-step.
Therefore, the autoencoder is more likely to perform worse in reconstructing the
input data, thus contributing to a worse performance by the LSTM component.

Although the local multivariate model is the overall best performing of the
convolutional autoencoder and LSTM models, it is outperformed by the LSTM,
indicating that the reason for the improvements by the model is entirely con-
tributed by the improved LSTM model.

Global univariate models

After having explored different local model configurations, global models are also
tested. As is discussed in Section 8.1.3, global univariate models generally out-
perform the local models, training on more available data for the neural network.
The same is mostly true for the convolutional autoencoder, which performs better
with a global univariate configuration than with local univariate models.

As shown in Section 7.2.5, it is clear that with a global univariate configu-
ration, the hybrid model is not able to outperform the LSTM model and often
performs worse.

It seems the benefits of a global model for RNNs are not transferable to other
types of NNs. LSTMs ability to learn across multiple time series can be attributed
to the fundamentals of how the LSTM works. Zhao et al. [2019] discusses previous
work that concludes that the LSTMs memory cell is mainly responsible for the
performance of the LSTM. When training the LSTM on multiple time series, this
memory cell is local to each time series and resets before each new time series are
fed through the network. The LSTM weights, on the other hand, are global across
all the series. These local and global characteristics are unique to RNNs, and
can explain why the Convolutional Autoencoder does not see the same benefits
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when trained on multiple time series. In order for the autoencoder to work well
on such time series data, there is a prerequisite that the data is connected and
that information from one set can be applied to the others. If this is not the case,
the use of global models increasing the amount of independent data would only
serve to decrease the performance of the autoencoder.

Global Multivariate models

Both multivariate models and global models have been tested with the hybrid
convolutional autoencoder and LSTM. The next step is to apply a model with
both of these configurations. We, therefore, apply a global multivariate con-
volutional autoencoder and LSTM, and measure the performance of the model
compared to a global multivariate LSTM model.

It is clear that the global multivariate model suffers the same problems that
are prevalent in both the local multivariate model and the global univariate
model. Like with the global univariate models, the autoencoder is not as well
suited as predicted to encode multiple independent time series. However, perfor-
mance degradation is also influenced by using a multivariate model. The autoen-
coder needs to encode and reconstruct more data per data-point, and with the
same autoencoder structure as well as a lack of data, the autoencoder will likely
perform worse than with the use of a univariate model.

These assumptions are reflected in the results acquired from running experi-
ments on the global multivariate models. While the performance of dataset 1 is
more or less equal between the baseline global multivariate LSTM model and the
hybrid model, the same is not the case for dataset 2 and dataset 3. The results
can be found in Section 7.2.5.

Using the local multivariate model, the hybrid model performed somewhat
better than the LSTM model for dataset 1. It appears that the same applies to
the global multivariate model. Although it has not improved the performance of
the hybrid model significantly it seems that the use of a multivariate model has
counteracted the adverse effects of the global model on dataset 1.

Performance degradation for dataset 2 was expected due to the poor results
both with the global univariate model and the local multivariate model. Both of
these configurations resulted in worse predictions on dataset 2. Dataset 3 on the
other hand, while expected, is not as easily explained. While the performance
was not particularly good on either of the previous models, it would appear that
the combination of the multivariate model and global model caused degradation
in performance. However, the vast difference in performance could also be at-
tributed to the low sample size of the dataset. While this is not the only reason,
it might be a contributing factor to the large difference.

Either way, it is clear that the convolutional autoencoder is not well suited
for use with global multivariate models, as it appears to vastly decrease the
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performance of the predictions.

CNN-AE-LSTM on high noise datasets

As we discussed when talking about the performance of the convolutional au-
toencoder and LSTM on datasets 1, 2, and 3, we made the assumption that the
characteristics of the used dataset could have severe implications on the predictive
accuracy of the hybrid model.

In order to test this, additional experiments were defined and run as described
in Section 7.3. By applying these experiments using the hybrid model to 3 new
datasets with varying degrees of data noise, the assumption was that the degree of
noise in the dataset would heavily influence the predictive abilities of the hybrid
model.

Due to the design of the hybrid model, applying a convolutional autoencoder
to the input data of the model, the data would be altered in accordance with
the autoencoder. The assumption is that when applying the autoencoder to
a dataset with a low amount of noise, the autoencoder would be more likely to
remove important information on which the LSTM part of the model is dependent
on. On the other hand, with a higher level of noise in the dataset, the model is
more likely to reduce the noisy values, contributing to input data that is easier
for the LSTM model to interpret.

The results from the experiment substantiate the hypothesis above. Using the
first noise dataset (low noise), it is apparent that the CNN-AE-LSTM greatly de-
creases the performance of the predictions. With a 52% decrease in performance,
it is clear that the model is not well suited to make predictions on such low noise
data. This notion is further supported by the t-test value signaling that the
difference in predictions is significantly different.

However, applying the hybrid model to the ok-noise dataset is more successful.
Although it does not improve the accuracy and reduce the error metric of the
predictions, it performs about as well as the LSTM model. There is only a 0.2%
difference in predictive error, and the t-test supports the claim that it does not
impair the performance of the LSTM model.

By running experiments on a dataset with low noise and ok noise, it is clear
that the dataset used with the hybrid model has a strong influence on perfor-
mance. Low noise is shown to reduce the performance of the hybrid model, while
the problem does not occur in data with medium/ok noise. Despite this, it is not
clear if the amount of noise in the data only can impair the performance, or if a
more suitable amount of noise could possibly improve the performance. In order
to explore if this is the case we have also explored a dataset with a high level of
noise as defined in Section 7.3. Unlike the datasets with low or ok noise, the high
noise dataset proved to have more success with the CNN-AE-LSTM. On aver-
age, the hybrid model performs a little under 4 percent better than the LSTM
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model using the sSMAPE error metric. Although the t-test is not able to verify
the confidence interval that the predictions are significantly different between the
LSTM and the hybrid model, we are able to manually evaluate the predictions
made by the two models on the dataset. Although there are some variations in
the predictions, we are able to see a general trend of the hybrid model increasing
the performance over the LSTM model on the high variance.

Analyzing the results from the model predictions on the three datasets with
high, low, and ok variance, it is made clear that the dataset used in connection
with the CNN-AE-LSTM and LSTM has a strong influence on the predictive
ability of the model. Higher variance is easier for the model to predict and
recreate meaningfully, while data with lower noise serve as more of a problem
with the autoencoder.

Considering the level of variance/noise in the dataset has such an impact on
the hybrid model, it is clear that other factors could also have a significant im-
plication on the use of the hybrid model. The dataset used by Zhao et al. [2019]
could contain other characteristics that make the hybrid model well suited for
predictions, something that might not be available in the dataset from “Pris-
guiden.no”.

One theory is that the more clearly seasonal data used in the paper by Zhao
et al. [2019] strongly influence the results. The traffic flow dataset illustrated in
the paper as one of the datasets used had a clear and repetitive seasonal pattern
that occurs much more frequently than in our available dataset. This could be an
advantage for the autoencoder as it would have more similar data to work with
and, therefore, more easily reconstruct data without data noise that is generally
not contained in the rest of the dataset.

Additionally, the presence of noise in the dataset is unclear. While the dataset
from prisguiden is comprised of multiple datasets with varying degrees of noise,
the datasets available to Zhao et al. [2019] could be more suited for the use of
the autoencoder due to the presence of noise in the dataset.

While these assumptions are difficult to test and prove in the given state of
afears, this is an important point for further investigation and work with the
hybrid model in order to test and verify its viability of use in other contexts or
problems. While we are not able to achieve the same results as Zhao et al. [2019],
there are many possible reasons for this. Additionally, while we are not able to
prove a statistically significant improvement to forecasting throug the use of the
hybrid model, we are able to see a shared trend of improved results using the
method. We might not be able to recreate the same results as Zhao et al. [2019]
with such large improvements to the error metric values, this is largely dependent
on different factors such as the available dataset.
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8.2 Contributions

Explore the use of a hybrid convolutional autoencoder and LSTM on E-commerce
data from “Prisguiden.no”. The datasets from “Prisguiden.no” have not previ-
ously been explored through the use of time series predictions, and all experi-
mentation done on the dataset is new research. In addition to testing the hybrid
model on the dataset, we also expanded on the experimentation with the hybrid
model. The model is based on the work done in Zhao et al. [2019] where the
model type is proposed on a time series problem. However, the model tested
here is only a local univariate model, and no experimentation data was found on
the use of either global or multivariate model variations. Therefore, we increase
the experimental domain on which the proposed hybrid model is applied and
tested, in an effort to evaluate the model’s predictive ability with new use-cases.

8.3 Conclusion

The goal of this thesis is to forecast future trends using a convolutional autoen-
coder and LSTM model, explore different model structures, and create some
guidelines for forecasting the dataset supplied by “Prisguiden.no”. We reach this
goal by answering the research questions RQ4, RQ4.1 and RQ5 from Section 1.4.

Answering RQ4, we can conclude that a univariate LSTM outperforms SARIMA
unless a strong yearly seasonality is present. However, the LSTM short memory
can be compensated for by adding additional features to the LSTM containing
temporal information. If additional temporal information is unavailable then
removing seasonalities with data pre-processing techniques such as differencing,
might improve accuracy on highly seasonal datasets, but will hurt accuracy on
non-seasonal datasets.

Further, regarding RQ 4.1, we can conclude that both a multivariate LSTM,
and a global LSTM improves forecasting accuracy in every scenario. However,
the combination of the two model structures is not preferred if accuracy is the
prime objective. The local multivariate LSTM, with features that describe the
date, is the preferred method for attaining the lowest predictive error. However,
a global multivariate model can be a good alternative if scalability is essential.

Finally, regarding RQ5 our results, although not statistically significant, with
a p-value of 0.147, show that a hybrid Convolutional Autoencoder can improve a
LSTM on time series with a lot of noise. However, we can confirm that the hybrid
model can severely hurt accuracy if the datasets are not noisy enough. Thus, the
performance increases are not enough to justify using a hybrid CNN-AE-LSTM
over a LSTM on our dataset.
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8.4 Threats Against Validity

All processes are subject to compromises. Some of these choices might compro-
mise the validity of the results. This section summarizes all threats we could find
that might affect the results or make the results difficult to reproduce.

8.4.1 Small sample sizes

We had to limit ourselves to a relatively small sample size. For most experiments
we have three datasets, each dataset contains 20 samples, 20, samples, and 8
samples. Summed up that’s 48 samples in total. The high variance in the results,
combined with a small sample size makes it difficult to prove our results with a
sufficiently high statistical confidence. We can however show promising trends,
and the fact that the same trends in our result hold, while the p-value decreases,
when we increase the sample size by comparing across datasets is promising.

8.4.2 Generelizability the results

All of the time series past are relevant for the future. “Prisguiden.no” logs new
data each day, so when we executed the final experiments on 26.04.2020 we used
all the available data up to that point. Since the domain of E-commerce is volatile
and is constantly changing, we cannot prove that our results hold for any other
points in time. For example, can the buying patterns for our chosen categories
change a lot a couple of years from now. Therefore we try in this report to
focus on the underlying characteristics of the time series, rather than the specific
product categories.

8.4.3 Fixed Batch size

As described in Section 6.7 we had to set our batch size to a fixed number. This
is not something the papers we base our method on are doing. However, none
explains in detail if they are using a stateful LSTM or how they are implementing
it. If we had solved the problem of batch sizes and stateful LSTM, we might have
found that we did not use the optimal batch size for our problem.

8.4.4 Reseting LSTM States

In section Section 6.7 we describe how we resets our LSTM states when training
a global model. We describe how we can in some cases reset the states too late.
This is because a batch might contain two different time series. This can hurt
our results.
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8.5 Future Work

The work done in this thesis investigates the use of the LSTM and convolutional
autoencoder and LSTM on the E-commerce domain of “Prisguiden.no”. However,
the research done in this thesis is not entirely practically applicable. This comes
from the fact that only a small sub-set of the entirety of the available data has
been applied in the research done. This was a limitation applied due to the scope
of the thesis and time limitations that adhere to the research done in a master’s
thesis. Therefore, applying the models explored in this thesis to a real-world
application remains a valid future task.

Additionally, while the priority of this thesis was to validate and explore the
use of a convolutional autoencoder and LSTM in a time series prediction setting,
other models might also fit well with the task of making such predictions. The
Facebook model Prometheus, XGB, and Light GBM, are all valid models that
can also be tested on the dataset to evaluate their usability.

The research conducted in this thesis focuses primarily on forecasting a period
of 7 days. While a 7-day prediction does have value, there might be some merits
to increasing the forecasting window. By increasing the forecasting window from
1 week to 30 days (a month), or 60 days (2 months), the use case for these
predictions would empower “Prisguiden.no” as discussed Chapter 8. While a 30
day prediction period was briefly tested, the 7-day prediction has been prioritized
in this research. Increasing the forecasting window is, therefore, a possible point
of entry for further research conducted on the dataset from “Prisguiden.no”.

Although the experiments done in this thesis are done on several unique
datasets, more work can be done with the experimentation of hybrid model used
on datasets with different characteristics. While dataset 1 and 2 focus on corrola-
tion between time series, this was selected primarily for the experimentation with
local vs global models. The additional testing defined in Section 7.3 explores the
use of the convolutional autoencoder and LSTM on datasets with higher levels
of noise and lower levels of noise. The same concept can be applied to create
datasets with other characteristics. By doing this, the hybrid model performance
can be explored more in-depth using different characteristics of data. It is ex-
pected that the type of data selected for experimentation is highly influential on
the performance of the model, and further experimentation with the model could
therefore be warranted.

E-commerce is a domain that is influenced a lot by external factors, such
as holidays and seasonal sales such as black friday. Expanding the number of
features from external sources is a domain worth exploring for future work.
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Appendices

8.6 Experiment Framework: Example config

data:
data_path: ’ ./ datasets/raw/market_insights_overview_all_2022_02_14.csv’
#categories_path: ’./datasets /raw/solr_categories_all_16_09_2021.csv’
categories_path: ’./datasets/raw/solr_categories_all_2022_02_14.csv’
logger:
log_level: ’INFO’
log_file: ’./log-file.log’ # Currently does nothing

use_gpu_if_available: false # Some experience indicate that GPU is slower

experiment:
tags:
- market_insights
save_sources_to_use: # Which sources the experiment should be saved to
- ’disk’
- ’neptune ’

checkpoint_save_location: ’./models /0 _current_model_checkpoints /"’
log-model_every_n_epoch: 10

# Possible metrics : MSE , MAE , MSE ; MAE
error_metrics:

- 7 MAE’

- ?MASE’

- > MSE ’

- > SMAPE ’

- >MAPE

save_source:
disk:
model_save_location: ’./models /"’

neptune:
project_id: ’sjsivertandsanderkk /Masteroppgave ’
# Set api token with env variable NEPTUNE_API_TOKEN
#api_token: ${NEPTUNE_API_TOKEN}

model:

)

# Model types : ’validation_model ’. >local_univariate_arima N ’local_univariate_1lstm

# global
model_type: ’local_univariate_arima’
rng_seed: 42
validation_model:
placeholder: 0
univariate_lstm:
hyperparameter_tuning_range:

hidden_size: [ 2, 100]
number_of_layers: [ 1, 4]

dropout: [ 0.0, 0.4 ]
#optimizer_mname: [’Adam’, ’RMSprop ’]
optimizer_name: [’RMSprop’, ’Adam’]
#optimizer_mname: [’ Adam ’]
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learning_rate: |
number_of_epochs:
batch_size: [32, 32]
input_window_size: 10
output_window_size: 7 #
multi_variable_nr: 4 #
number_of_features: 4 # be
number_of_trials: 200 # Number
#time_to_tune_in_minutes: 6000
stateful_lstm: true

le —T7,
[5,

le—2 ]
40]

be
be

must
must

must
of

global_model:
parameters_for_all_models:
# If int <= 1 then the
input_window_size: 10
output_window_size: 7
multi_variable_nr: 4
batch_size: 32
number_of_epochs:
stateful_lstm: yes
should_shuffle_batches:
optimizer_name: Adam
learning_rate:
hidden_layer_size: 50
dropout: 7.057973795771e
number_of_features: 4
number_of_layers: 1
datasets:

- 12256
- 10320
- 10030

testing

22

no

06

local_model:
common_parameters_for_all_models
# If int <= 1 then the testing
input_window_size: 10
output_window_size: 7
multi_variable_nr: 1
batch_size: 32
number_of_epochs:
stateful_lstm: yes
should_shuffle_batches:

15

no

optimizer_name: RMSprop
model_structure:
- time_series_id: 12532
learning_rate: 0.00013756

hidden_layer_size: 94
dropout: 0.21199
number_of_features: 1
number_of_layers: 1

- time_series_id: 11694
learning_rate: 0.00013756
hidden_layer_size: 94
dropout: 0.21199
number_of_features: 1
number_of_layers: 1

local_univariate_cnn_ae:
common_parameters_for_all_models:

input_window_size: 14
output_window_size: 7
multi_variable_nr: 1
batch_size: 1
number_of_epochs: 51
optimizer_name: ’adam’
loss: "mse "
should_shuffle_batches: True

model_structure:

- time_series_id: 12322
learning_rate: 0.003
encoder:

- layer: "Convid"
filters: 8
kernel_size: 3
activation: "relu"

- layer: "MaxPool"
size: 2
padding: "valid"

- layer: "Convid"
filters: 16

equal
equal
equal

#

APPENDICES

output_window_size
to number of variables
to of
tuning to
Time in

used in multi
data
more the

If both

features
run. The
minutes ,

number in

trials

to tune number

set will be equal to output_window_size

0.00043177648728211254

set will be equal to output_window_size

better .

of

variable

trials

(1
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kernel_size: 3
decoder:

- layer: "Convid"
kernel_size: 5
filters: 8
activation: "relu"

- layer: "Convid"
kernel_size: 3
filters: 4
activation: "relu"

- layer: "Convid"
kernel_size: 3
filters: 1

local_univariate_cnn_ae_lstm:

common_parameters_for_all_models:

should_shuffle_batches: True
optimizer_name: ’Adam’
loss: "mae"
batch_size: 10
epochs: 20
number_of_epochs: 20
input_window_size: 10
output_window_size: 7
multi_variable_nr: 1
Istm —shared:
input_window_size: 10
output_window_size: 7
multi_variable_nr: 1
epochs: 26
model_structure:
- time_series_id: 12322
Istm:
optimizer_name: ’RMSprop’
stateful_lstm: True
loss: "mae"
learning_rate: 7.88e 05

hidden_layer_size: 14
dropout: 0.132
number_of_features: 1
number_of_layers: 3

ae:
optimizer_name: °’Adam’
loss: "mse"
learning_rate: 0.003

epochs: 20

encoder:

- layer: "Convid"
filters: 8
kernel_size: 3
activation: "relu"

- layer: "MaxPool"
size: 2
padding: "valid"
- layer: "Convid"

filters: 16
kernel_size: 3
decoder:

- layer: "Convid"
kernel_size: 5
filters: 8
activation: "relu"

- layer: "Convid"
kernel_size: 3
filters: 4
activation: "relu"

- layer: "Convid"
kernel_size: 3
filters: 1

local_univariate_arima:
forecast_window_size: 7
steps_to_predict: 7
multi_step_forecast:
auto_arima: true
seasonal: true
# Ranges used for autotuning
hyperparameter_tuning_range:
p: [1, 3]
d: [1, 3]

true #

alternative

if --tune

is recursive

parameter

is

single

set

step
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a: [1, 3]

P: [0, 3]

D: [0, 3]

Q [0, 3]

s: [12, 12]
# metric_to_use_when_tuning: >MASE’
metric_to_use_when_tuning: °’>MAE’

model_structure:
- time_series_id: 12322
hyperparameters:

p: O
d: 1
q: 0
P: 5
D: 1
Q 0

s: 4

- time_series_id: 11428
hyperparameters:

2

1

0

“QU'va vy
o
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8.7 Model parameters

8.7.1 SARIMA model

Table 8.2: Auto-arima parameters

| Parameter | value |

start_p 1

d 1
start_q 1
max_p 7
max_d 7
max_q 7
start_P 0

D None
start_Q 0
max_P )
max_D )
max_Q 5
max_order 5

m 12
seasonal True
stationary False
information_criterion | ’bic’
alpha 0.05
test kpss’
seasonal_test ‘ocsb’
stepwise True
n_jobs 1
start_params None
trend None
method "Ibfgs’
maxiter 50
offset_test_args None
seasonal_test_args None
suppress_warnings True
error_action 'warn’
trace True
random False
random_state 40
n_fits 50
return_valid_fits False
out_of_sample_size 0
scoring ‘mae’
scoring_args None
with_intercept "auto’
sarimax_kwargs None

APPENDICES
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8.7.2 LSTM

Table 8.3: LSTM cell parameters. Values with a T value was tuned

| Parameter | value |
units, T
activation ”tanh”
recurrent_activation | ”sigmoid”
use_bias True
kernel_initializer ”glorot_uniform”
recurrent_initializer | ”orthogonal”
bias_initializer ”zeros”
unit_forget_bias True
kernel_regularizer None
recurrent_regularizer | None
bias_regularizer None
activity_regularizer None
kernel_constraint None
recurrent_constraint | None
bias_constraint None
dropout T
recurrent_dropout T
return_sequences False
return_state False
go_backwards False
stateful True
time_major False
unroll False
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Table 8.4: LSTM dense parameters

Parameter | value
units outout_window_size
activation None
use_bias True

kernel_initializer
bias_initializer
kernel_regularizer
bias_regularizer
activity_regularizer
kernel_constraint
bias_constraint

”glorot_uniform”
”zeros”

None

None

None

None

None

8.7.3 Autoencoder

Table 8.5: Convld cell parameters

| Parameter | value
filters 16, 32
kernel_size 3,5
strides 1
padding ?valid”

data_format

”channels_last”

dilation_rate

1

groups 1
activation "relu”
use_bias True

kernel_initializer

”glorot_uniform”

bias_initializer ”zeros”
kernel_regularizer None
bias_regularizer None
activity_regularizer | None
kernel_constraint None
bias_constraint None

APPENDICES
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Table 8.6: ConvlDTranspose cell parameters

| Parameter | value
filters 32, number_of_features
kernel _size 9, 3
strides 1
padding ?valid”
data_format ”channels_last”
dilation_rate 1
groups 1
activation "relu”, None
use_bias True
kernel_initializer ”glorot_uniform”
bias_initializer ” zeros”
kernel_regularizer None
bias_regularizer None
activity_regularizer | None
kernel _constraint None
bias_constraint None
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8.8 All results

8.8.1 Dataset 1 - Experiment results

APPENDICES

Table 8.7: Metrics from experiment, dataset-1, sarima

Category ID

MASE

sMAPE MASE-7

2

6

9

10
11
13
20
22
24
26
27
28
29
32
33
34
39
41
51
54

1.892
0.677
0.963
0.61
3.869
0.613
0.652
0.657
1.471
0.975
2.44
1.151
2.086
1.169
1.032
0.759
1.447
0.646
1.742
1.035

0.237
0.216
0.165
0.15
0.696
0.089
0.352
0.141
0.114
0.175
0.275
0.383
0.194
0.207
0.157
0.263
0.446
0.274
0.212
0.039

3.047
1.213
0.837
1.121
1.348
1.099
0.584
0.82
1.334
0.377
0.881
1.143
1.283
0.598
0.844
0.694
1.009
1.374
1.167
0.482
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Table 8.8: Metrics from experiment, dataset-1, local univariate Istm

MASE sMAPE MASE-7
Category ID

2 1.144 0.151 1.805
6 0.748 0.244 1.346
9 0.597 0.097 0.529
10 0.659 0.161 1.21
11 0.901 0.225 0.64
13 0.553 0.081 0.985
20 0.637 0.346 0.576
22 0.845 0.178 1.046
24 1.743 0.133 1.496
26 1.049 0.186 0.407
27 1.661 0.178 0.599
28 1.5 0.466 1.489
29 2.124 0.192 1.211
32 1.154 0.204 0.593
33 1.704 0.238 1.397
34 0.725 0.25 0.637
39 1.314 0.393 0.92
41 0.674 0.286 1.436
51 0.568 0.064 0.95

54 2277 0.088 1.062
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Table 8.9: Metrics from experiment, dataset-1, global univariate lstm

MASE sMAPE MASE-7
Category ID

2 2.321 0.279 3.601
6 0.679 0.216 1.234
9 0.91 0.154 0.706
10 0.633 0.156 1.148
11 0.858 0.215 0.6
13 0.607 0.088 1.085
20 0.605 0.33 0.545
22 0.714 0.153 0.888
24 1.784 0.141 1.63
26 1.24 0.219 0.481
27 1.404 0.15 0.525
28 0.789 0.286 0.726
29 2.037 0.189 1.226
32 0.963 0.174 0.485
33 0.96 0.146 0.802
34 0.661 0.227 0.603
39 1.37 0.416 0.957
41 0.709 0.295 1.519
51 1.382 0.163 0.937

54 1.512 0.058 0.702
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Table 8.10: Metrics from experiment, dataset-1, local multivariate lstm

MASE sMAPE MASE-7
Category ID

2 1.473 0.185 2.307
6 0.541 0.172 0.97
9 0.539 0.088 0.5
10 0.626 0.154 1.116
11 0.867 0.216 0.614
13 0.555 0.081 0.986
20 0.631 0.341 0.564
22 0.917 0.189 1.181
24 1.209 0.092 1.093
26 0.851 0.153 0.326
27 1.99 0.218 0.717
28 0.745 0.273 1.027
29 1.636 0.151 1.048
32 0.813 0.15 0.426
33 1.23 0.179 0.977
34 0.74 0.256 0.671
39 1.251 0.371 0.874
41 0.549 0.239 1.184
51 0.819 0.096 1.193

54 1.449 0.056 0.667




128

APPENDICES

Table 8.11: Metrics from experiment, dataset-1, global multivariate lstm

MASE sMAPE MASE-7

Category ID

2 2.706 0.317 4.309
6 0.749 0.242 1.334
9 0.628 0.103 0.59
10 0.55 0.136 1.024
11 0.94 0.236 0.65
13 0.603 0.087 1.069
20 0.593 0.321 0.528
22 0.73 0.156 0.914
24 1.796 0.143 1.672
26 0.889 0.16 0.34
27 1.43 0.152 0.515
28 0.883 0.309 0.91
29 1.825 0.168 1.159
32 1.061 0.189 0.52
33 1.037  0.156 0.842
34 0.708 0.247 0.646
39 1.368 0.415 0.955
41 0.763 0.311 1.649
51 1.139 0.131 0.818
54 1.419 0.055 0.646
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Table 8.12: Metrics from experiment, dataset-1, local univariate cnn ae Istm

MASE sMAPE MASE-7
Category ID
2 1.176 0.159 1.897
6 0.693 0.221 1.242
9 0.56 0.091 0.491
10 0.587  0.145 1.074
11 0.854 0.213 0.608
13 0.578 0.084 1.047
20 0.648 0.352 0.577
22 0.867  0.182 1.062
24 1.54 0.118 1.278
26 0.964 0.172 0.373
27 1.356 0.144 0.49
28 1.523 0.472 1.52
29 2.155 0.197 1.361
32 1.08 0.193 0.563
33 1.324 0.193 0.908
34 0.715 0.247 0.636
39 1.312 0.393 0.918
41 0.722 0.309 1.535
51 1.7 0.201 0.382
54 2.121 0.082 0.986
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Table 8.13: Metrics from experiment, dataset-1, global univariate cnn ae Istm

MASE sMAPE MASE-7
Category ID

2 2.392 0.286 3.809
6 0.719 0.23 1.309
9 0.965 0.165 0.781
10 0.636 0.156 1.122
11 0.899 0.225 0.633
13 0.597  0.086 1.058
20 0.598 0.325 0.537
22 0.732 0.157 0.899
24 1.926 0.154 1.746
26 1.258 0.223 0.473
27 1.451 0.155 0.549
28 0.872 0.309 0.812
29 2.121 0.198 1.268
32 1.099 0.195 0.548
33 0.961 0.146 0.789
34 0.664 0.226 0.606
39 1.393 0.425 0.971
41 0.728 0.302 1.556
51 1.434 0.17 0.936

54 1.703 0.065 0.759
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Table 8.14: Metrics from experiment, dataset-1, local multivariate cnn ae Istm

MASE sMAPE MASE-7
Category ID
2 1.411 0.18 2.329
6 0.574  0.182 1.031
9 0.55 0.089 0.492
10 0.622 0.153 1.14
11 0.828 0.205 0.599
13 1.173 0.159 0.901
20 0.618 0.333 0.55
22 0.883 0.183 1.123
24 1.133 0.086 1.031
26 0.616 0.107 0.194
27 1.772 0.192 0.626
28 0.608 0.236 0.667
29 1.51 0.14 0.775
32 0.898 0.164 0.476
33 1.28 0.185 1.049
34 0.661 0.224 0.611
39 1.253 0.371 0.876
41 0.713 0.312 1.509
51 0.574 0.065 0.821
54 1.187  0.045 0.629
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Table 8.15: Metrics from experiment, dataset-1, global multivariate cnn ae Istm

MASE sMAPE MASE-7
Category ID
2 2.351 0.283 3.964
6 0.743 0.239 1.309
9 0.684 0.113 0.606
10 0.588 0.145 1.093
11 0.89 0.224 0.633
13 0.485 0.071 0.867
20 0.572 0.312 0.51
22 0.669 0.143 0.837
24 2.06 0.167 1.889
26 0.889 0.159 0.343
27 1.675 0.181 0.581
28 0.819 0.293 0.876
29 1.768 0.162 1.099
32 0.949 0.172 0.488
33 0.938 0.143 0.78
34 0.698 0.243 0.642
39 1.403 0.428 0.974
41 0.69 0.287 1.51
51 1.212 0.141 0.822
54 1.566 0.06 0.693
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8.8.2 Dataset 2 - Experiment results

Table 8.16: Metrics from experiment, dataset-2, sarima

MASE sMAPE MASE-7
Category ID

12532 1.217 0.512 0.681
11694 0.89 0.386 0.547
11716 0.988 1.083 0.889
11950 1.33 0.749 0.456
11195 2.075 0.259 0.377
11998 2.63 0.978 0.751
274 0.754 0.323 0.432
11407 2.933 0.787 0.77
46 0.676  0.738 0.947
11326 0.866 0.351 0.752
11335 1.386 0.496 0.926
12197 1.463 0.459 0.704
11693 1.184 0.248 0.781
11780 0.783 1.268 0.522
12502 1.509 0.6 0.918
11866 0.855 0.853 0.786
11400 2.537 0.491 0.751
12256 1.373 0.258 0.642
10320 2.758 1.443 1.028

10030 1.223 0.382 0.476
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Table 8.17: Metrics from experiment, dataset-2, local univariate lstm

MASE sMAPE MASE-7
Category ID

12532 2.017 1.085 1.1
11694 0.841 0.36 0.522
11716 0.683 1.031 0.662
11950 0.845 0.554 0.5
11195 5.398 1.063 0.937
11998 2.102 0.878 0.691
274 1.766 1.082 1.007
11407 0.684 0.329 0.179
46 0.656  0.695 0.914
11326 1.273 0.57 1.048
11335 1.077 0.349 0.571
12197 1.885 0.648 1.012
11693 1.099 0.222 0.661
11780 0.684 1.107 0.665
12502 1.421 0.553 0.868
11866 0.727 0.846 0.669
11400 5.595 0.849 1.643
12256 1.414 0.253 0.658
10320 3.773 0.759 1.401

10030 1.359  0.439 0.528
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Table 8.18: Metrics from experiment, dataset-2, global univariate lstm

MASE sMAPE MASE-7
Category ID

12532 1.686 0.819 0.939
11694 0.705 0.306 0.44

11716 0.913 1.111 0.884
11950 1.043 0.653 0.574
11195 4.302 0.751 0.776
11998 2.258 0.901 0.789
274 1.646 0.969 0.939
11407 3.971 0.922 1.024
46 0.651  0.665 0.913
11326 1.154 0.5 0.997
11335 0.944 0.298 0.648
12197 1.837 0.625 0.95

11693 1.395 0.294 0.904
11780 1.501 1.121 1.434
12502 1.608 0.656 0.984
11866 0.779 0.812 0.721
11400 3.099 0.587 0.924
12256 2.086 0.413 0.872
10320 1.176 0.376 0.431

10030 1.394 0.452 0.546
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Table 8.19: Metrics from experiment, dataset-2, local multivariate lstm

MASE sMAPE MASE-7
Category ID

12532 1.518 0.708 0.739
11694 0.905 0.392 0.565
11716 0.701 1.059 0.679
11950 1.568 0.806 0.965
11195 1.406 0.189 0.251
11998 1.769 0.825 0.54

274 1.471 0.816 0.83

11407 0.987 0.563 0.191
46 0.658 0.692 0.922
11326 0.763 0.299 0.621
11335 0.771 0.247 0.504
12197 1.492 0.471 0.926
11693 1.074 0.223 0.646
11780 0.87 1.596 0.848
12502 0.692 0.222 0.45

11866 0.839 1.034 0.769
11400 5.984 0.861 1.792
12256 1.228 0.218 0.626
10320 1.538 0.422 0.574

10030 1.301 0.423 0.504




8.8. ALL RESULTS

Table 8.20: Metrics from experiment, dataset-2, global multivariate lstm

MASE sMAPE MASE-7
Category ID
12532 1.665 0.808 0.912
11694 0.83 0.359 0.52
11716 0.785 1.045 0.776
11950 0.948 0.611 0.528
11195 4.222 0.735 0.733
11998 2.218 0.916 0.813
274 1.659 0.979 0.93
11407 2.607  0.726 0.715
46 0.656 0.678 0.925
11326 1.094 0.467 0.923
11335 0.961 0.305 0.663
12197 1.328 0.407 0.882
11693 1.256 0.26 0.852
11780 0.865 1.259 0.832
12502 1.564 0.631 0.982
11866 0.832 0.925 0.755
11400 3.266 0.608 1.027
12256 1.557  0.287 0.722
10320 1.288 0.379 0.467
10030 1.395 0.453 0.546
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Table 8.21: Metrics from experiment, dataset-2, local univariate cnn ae Istm

MASE sMAPE MASE-7
Category ID
12532 1.92 1.004 1.05
11694 0.837  0.36 0.516
11716 0.711 1.108 0.691
11950 1.032 0.65 0.597
11195 5.523 1.103 0.966
11998 1.972 0.852 0.665
274 1.919 1.25 1.097
11407 2.026 0.628 0.561
46 0.664 0.707 0.923
11326 1.223 0.538 1.037
11335 1.015 0.33 0.618
12197 1.96 0.685 1.089
11693 0.957 0.19 0.643
11780 0.966 1.274 0.939
12502 1.458 0.572 0.891
11866 0.72 0.815 0.663
11400 5.695 0.857 1.681
12256 1.744 0.324 0.807
10320 2.875 0.64 1.069
10030 1.331 0.431 0.516
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Table 8.22: Metrics from experiment, dataset-2, global univariate cnn ae Istm

MASE sMAPE MASE-7
Category ID

12532 1.716 0.842 0.956
11694 0.72 0.309 0.442
11716 0.901 1.105 0.878
11950 1.046 0.654 0.571
11195 4.417 0.78 0.796
11998 2.261 0.905 0.784
274 1.672 0.994 0.953
11407 3.767 0.9 0.97
46 0.651 0.668 0.914
11326 1.196 0.523 1.035
11335 0.941 0.297 0.637
12197 1.887 0.649 0.953
11693 1.353 0.283 0.895
11780 1.697 1.163 1.626
12502 1.634 0.671 0.996
11866 0.788 0.821 0.728
11400 3.134 0.591 0.91
12256 2.145 0.428 0.891
10320 1.404 0.472 0.523

10030 1.359 0.439 0.535
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Table 8.23: Metrics from experiment, dataset-2, local multivariate cnn ae Istm

MASE sMAPE MASE-7
Category ID

12532 1.261 0.55 0.751
11694 0.896 0.389 0.557
11716 0.717 1.041 0.697
11950 2.07 0.912 0.963
11195 3.845 0.639 0.663
11998 1.635 0.816 0.548
274 1.559 0.893 0.887
11407 1.309 1.02 0.528
46 0.662 0.709 0.926
11326 0.983 0.409 0.816
11335 0.711 0.239 0.473
12197 2.199 0.805 1.154
11693 1.05 0.219 0.694
11780 1.055 1.911 1.041
12502 0.881 0.295 0.568
11866 1.08 1.792 1.005
11400 5.612 0.849 1.665
12256 1.966 0.383 0.984
10320 2.424 0.567 0.896

10030 1.281 0.416 0.508
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Table 8.24: Metrics from experiment, dataset-2, global multivariate cnn ae lstm

MASE sMAPE MASE-7
Category ID

12532 1.83 0.934 1.01
11694 0.823 0.353 0.495
11716 0.843 1.076 0.828
11950 1.049 0.656 0.573
11195 4.851 0.896 0.854
11998 2.286 0.92 0.77
274 1.749 1.067 0.984
11407 4.119 0.941 1.086
46 0.656  0.689 0.916
11326 1.294 0.585 1.089
11335 0.904 0.284 0.611
12197 1.769 0.595 0.938
11693 1.41 0.297 0.954
11780 2.098 1.251 2.029
12502 1.618 0.663 1.003
11866 0.802 0.827 0.748
11400 2.756 0.542 0.836
12256 1.971 0.383 0.875
10320 1.713 0.655 0.656
10030 1.38 0.448 0.54

8.8.3 Dataset 3 - Experiment results

Table 8.25: Metrics from experiment, dataset-3, sarima

MASE sMAPE MASE-7
Category ID

12322 3.159 0.33 1.507
11428 0.766 0.164 0.568
11850 2.632 0.53 0.893
11852 3.414 0.349 0.917
273 2.337 0.536 1.63
11036 0.614 0.148 0.688
11213 1.362 0.485 0.962

12532 1.217 0.512 0.681
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Table 8.26: Metrics from experiment, dataset-3, local univariate lstm

MASE sMAPE MASE-7

Category ID

12322 2.186 0.242 1.026
11428 1.906 0.343 1.347
11850 1.56 0.368 0.556
11852 2.843 0.311 0.78
273 2.371 0.561 1.595
11036 3.001 0.539 3.223
11213 1.318 0.469 0.889
12532 1.898 0.985 1.032

Table 8.27: Metrics from experiment, dataset-3, global univariate lstm

MASE sMAPE MASE-7

Category ID

12322 2.035 0.227 0.961
11428 1.361 0.261 0.99
11850 2779  0.558 0.924
11852 3.67 0.381 0.994
273 1.315 0.366 0.875
11036 1.432  0.306 1.545
11213 1.549  0.544 1.123
12532 1.607  0.76 0.894
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Table 8.28: Metrics from experiment, dataset-3, local multivariate lstm

MASE sMAPE MASE-7
Category ID

12322 0.807 0.1 0.381
11428 2.147 0.57 1.606
11850 1.017 0.248 0.345
11852 1.393 0.171 0.363
273 2.127 0.522 1.447
11036 2.125 0.412 2.343
11213 1.096 0.393 0.757
12532 1.249 0.538 0.665

Table 8.29: Metrics from experiment, dataset-3, global multivariate lstm

MASE sMAPE MASE-7
Category ID

12322 1.679 0.192 0.813

11428 0.814 0.17 0.639
11850 2.683 0.544 0.882

11852 3.306 0.351 0.898

273 1.341 0.372 0.903

11036 0.989 0.223 1.138

11213 1.175 0.405 0.91

12532 1.839 0.936 1.007
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Table 8.30: Metrics from experiment, dataset-3, local univariate cnn ae Istm

MASE sMAPE MASE-7
Category ID

12322 2.165 0.24 1.019
11428 2.181 0.382 1.554
11850 1.565 0.369 0.561
11852 2.845 0.311 0.785
273 2.212 0.534 1.486
11036 2.113 0.412 2.177
11213 1.838 0.604 1.285
12532 1.93 1.013 1.068

Table 8.31: Metrics from experiment, dataset-3, global univariate cnn ae lstm

MASE sMAPE MASE-7
Category ID

12322 1.997 0.223 0.943
11428 1.155 0.228 0.836
11850 2.733 0.551 0.902
11852 3.863 0.397 1.041
273 1.244 0.351 0.821
11036 1.392 0.298 1.496
11213 1.564 0.549 1.115

12532 1.575 0.738 0.875
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Table 8.32: Metrics from experiment, dataset-3, local multivariate cnn ae Istm

MASE sMAPE MASE-7
Category ID
12322 2.06 0.284 0.927
11428 0.791 0.169 0.583
11850 1.178 0.296 0.38
11852 1.23 0.152 0.323
273 1.621 0.421 1.1
11036 0.749 0.17 0.836
11213 1.532 0.536 1.078
12532 1.658 0.808 0.891

Table 8.33: Metrics from experiment, dataset-3, global multivariate cnn ae lstm

MASE sMAPE MASE-7
Category ID
12322 1.784  0.201 0.886
11428 1.503 0.283 1.044
11850 3.502  0.635 1.388
11852 5.4 0.501 1.421
273 3.002  0.657 2.049
11036 4.733  0.737 5.208
11213 1.739  0.59 1.17
12532 1.82 0.927 1.004
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8.8.4 Dataset with variance - Additional Experiments

Table 8.34: Metrics from experiment, dataset-variance, dataset-high-variance-
cnn-ae-Istm-local-univariate

MASE sMAPE MASE-7
Category ID

7 0.516 1.242 0.711
79 0.88 0.616 1.394
11217 0.506  0.905 0.499
11334 0.727 0.691 0.728
11992 0.524 0.837 0.714
12265 0.553 0.888 0.785
12511 0.729 0.645 0.645

Table 8.35: Metrics from experiment, dataset-variance, dataset-high-variance-
Istm-local-univariate

MASE sMAPE MASE-7
Category ID

7 0.519 1.349 0.705
79 0.876 0.613 1.394
11217 0.517  0.897 0.536
11334 0.798 0.788 0.811
11992 0.526 0.839 0.718
12265 0.524 0.879 0.732

12511 0.752 0.681 0.676
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Table 8.36: Metrics from experiment, dataset-variance, low-variance-cnn-ae-lstm-

local-univariate

MASE sMAPE MASE-7

Category ID

10053 5.263 0.626 1.133
11037 6.043 0.616 1.132
11041 9.286 0.935 1.048
11048 1.499 0.315 0.689
11456 6.149 0.675 1.104
11817 2.053 0.595 0.936
13323 5.213 0.723 1.531

Table 8.37: Metrics from experiment, dataset-variance, low-variance-cnn-ae-lstm-

local-univariate

MASE sMAPE MASE-7

Category ID

10053 5.263  0.626 1.133
11037 6.043  0.616 1.132
11041 9.286  0.935 1.048
11048 1.499 0.315 0.689
11456 6.149  0.675 1.104
11817 2.053  0.595 0.936
13323 5213  0.723 1.531
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Table 8.38: Metrics from experiment, dataset-variance, ok-variance-lstm-local-
univariate

MASE sMAPE MASE-7
Category ID

16 0.731 0.27 0.568
17 1.306 1.2 0.666
28 0.628 0.242 0.689
34 0.697 0.239 0.596
40 0.919 0.414 0.878
44 0.568  0.245 0.685
45 0.706 0.611 1.005
48 0.75 0.799 0.971

Table 8.39: Metrics from experiment, dataset-variance, ok-variance-lstm-local-
univariate

MASE sMAPE MASE-7
Category ID

16 0.731 0.27 0.568
17 1.306 1.2 0.666
28 0.628 0.242 0.689
34 0.697 0.239 0.596
40 0.919 0.414 0.878
44 0.568  0.245 0.685
45 0.706 0.611 1.005

48 0.75 0.799 0.971
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8.8.5 Dataset with differencing - Additional Experiments

Table 8.40: Metrics from experiment, dataset-diff, local univariate lstm dataset
1

MASE sMAPE MASE-7
Category ID

2 1.144 0.151 1.805
6 0.748 0.244 1.346
9 0.597 0.097 0.529
10 0.659 0.161 1.21
11 0.901 0.225 0.64
13 0.553 0.081 0.985
20 0.637 0.346 0.576
22 0.845 0.178 1.046
24 1.743 0.133 1.496
26 1.049 0.186 0.407
27 1.661 0.178 0.599
28 1.5 0.466 1.489
29 2.124 0.192 1.211
32 1.154 0.204 0.593
33 1.704 0.238 1.397
34 0.725 0.25 0.637
39 1.314 0.393 0.92
41 0.674 0.286 1.436
51 0.568 0.064 0.95

54 2.277 0.088 1.062
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Table 8.41: Metrics from experiment, dataset-diff, local univariate Istm dataset
1 diff

MASE sMAPE MASE-7
Category ID

2 1.206 0.173 2.072
6 0.697 0.222 1.296
9 0.929 0.159 0.662
10 0.645 0.158 1.176
11 0.829 0.212 0.49

13 0.765 0.114 0.863
20 0.684 0.369 0.688
22 0.717 0.155 0.835
24 2.441 0.202 1.735
26 1.176 0.216 0.37
27 3.015 0.355 1.022
28 1.105 0.371 0.69

29 3.199 0.321 1.177
32 0.894 0.163 0.48

33 0.583 0.09 0.661
34 0.751 0.263 0.602
39 1.742 0.573 1.178
41 0.58 0.243 1.246
51 2.69 0.357 1.497
54 2.166 0.084 0.861

Table 8.42: Metrics from experiment, dataset-diff, local univariate lstm dataset
3

MASE sMAPE MASE-7
Category ID

12322 2.148 0.238 1.012
11428 3.041 0.492 2.213
11850 1.642 0.383 0.583
11852 2.717 0.3 0.761
273 2.434 0.571 1.628
11036 2.515 0.477 2.636
11213 1.234 0437 0.878

12532 1.923 1.009 1.046
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Table 8.43: Metrics from experiment, dataset-diff, local univariate lstm dataset

3 diff

MASE sMAPE MASE-7

Category ID

12322 1.86 0.209 1.083
11428 1.302 0.252 0.858
11850 3.105 0.597 1.066
11852 4.401 0.436 1.197
273 0.683 0.217 0.551
11036 0.972 0.22 1.082
11213 1.36 0.484 0.804
12532 1.243 0.525 0.684

8.8.6 T-test statistical significance test results

Table 8.44: Student t-test, measuring confidence of significant difference between
predictions, statistic value. MASE error - p-value

local-univariate

local-univariate

Differencing dataset

0.18392

0.50322

Table 8.45: Student t-test, measuring confidence of significant difference between
LSTM models all dataset, statistic value. MASE error. l-u = local univariate,
l-m= local multivariate, g-u = global univariate etc. - p-value

l-u l-m g-u g-m
l-u  nan 0.00321 0.6342 0.12963
I-m  0.00321 nan 0.04453 0.18605
g-u 0.6342 0.04453 nan 0.00858
g-m 0.12963  0.18605  0.00858 nan
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Table 8.46: Student t-test, measuring confidence of significant difference between
the local Univariate LSTM and other LSTM models on dataset 1. MASE error

- p-value
l-u l-m g-u g-m
l-u  nan 0.04385 0.83216 0.7314
I-m  0.04385 nan 0.07791  0.14276
g-u 0.83216 0.07791 nan 0.66554
g-m (.7314 0.14276  0.66554 nan

Table 8.47: Student t-test, measuring confidence of significant difference between
LSTM models dataset 2, statistic value. MASE error - p-value

l-u l-m g-u g-m
l-u nan 0.10908 0.82966 0.31324
I-m  0.10908 nan 0.22664 0.4502
g-u 0.82966 0.22664 nan 0.06325
g-m 0.31324 0.4502  0.06325 nan

Table 8.48: Student t-test, measuring confidence of significant difference between
LSTM models dataset 3, statistic value. MASE error - p-value

l-u l-m g-u g-m
l-u  nan 0.01711 0.62535  0.2787
l-m 0.01711 nan 0.3017 0.61195
g-u 0.62535  0.3017 nan 0.03802
g-m 0.2787 0.61195  0.03802 nan
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Table 8.49: Student t-test, measuring confidence of significant difference between
the local Univariate LSTM and other LSTM models on dataset 1. sMape error -
p-value

l-u l-m g-u g-m
l-u  nan 0.03921 0.71281 0.64284
I-m  0.03921 nan 0.05036  0.07294
g-u 0.71281  0.05036  nan 0.85439
g-m 0.64284  0.07294  0.85439 nan

Table 8.50: Student t-test, measuring confidence of significant difference between
LSTM models dataset 2, statistic value. sMape error - p-value

l-u l-m g-u g-m
l-u  nan 0.22887 0.63831 0.32022
I-m  0.22887 nan 0.29329 0.40499
g-u 0.63831 0.29329 nan 0.31726
g-m 0.32022 0.40499 0.31726 nan

Table 8.51: Student t-test, measuring confidence of significant difference between
LSTM models dataset 3, statistic value. sMape error - p-value

l-u l-m g-u g-m
l-u  nan 0.13986 0.38429 0.18512
I-m  0.13986 nan 0.49114  0.76066
g-u 0.38429 0.49114 nan 0.45713
g-m 0.18512 0.76066 0.45713 nan

Table 8.52: Student t-test, measuring confidence of significant difference between
predictions, statistic value. MASE error - p-value

local_multivariate global_univariate global_multivariate

dataset 1 0.043850 0.832161 0.731403
dataset 2 0.109082 0.829658 0.313239
dataset 3 0.017108 0.625346 0.278702
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Table 8.53: Student t-test, measuring confidence of significant difference between
predictions, comparing LSTM model structures against local univariate LSTM.
sMape error - p-value

local_multivariate global_univariate global_multivariate

dataset 1 0.039211 0.712811 0.642842
dataset 2 0.228875 0.638309 0.320224
dataset 3 0.139856 0.384286 0.185118

Table 8.54: Student t-test, measuring confidence of significant difference between
LSTM models all dataset, statistic value. sMape error. l-u = local univariate,
l-m= local multivariate, g-u = global univariate etc. - p-value

l-u l-m g-u g-m
I-u nan 0.03918 0.36293 0.10352
I-m 0.03918 nan 0.10993 0.23882
g-u 0.36293  0.10993 nan 0.19305

g-m 0.10352  0.23882  0.19305 mnan

Table 8.55: Student t-test, measuring confidence of significant difference between
predictions on the CNN-AE-LSTM and the LSTM for different model structures.
MASE error - p-value

local-univariate local-multivariate global-univariate global-multivariate

dataset 1  0.93845 0.51339 0.00053 0.78276
dataset 2 0.48063 0.0499 0.1826 0.02548
dataset 3 0.84437 0.67088 0.49328 0.0295
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Figure 8.2: Test predictions for local univariate LSTM on category 11850 with
last week values ploted as a reference.
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Figure 8.3: Test predictions for local univariate LSTM on category 12322 with
last week values ploted as a context.
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