

Using a processor for memory
-efficient GUI display driving

Master Thesis
NTNU
Trondheim, Spring 2022

Master Thesis, Spring 2022

Candidate (Surname, Name):

Saure, Runar

Date: SUBJECT: GROUP (name/nr): PAGES/APDX: BIBL. NR:
22.06.22 TFE4930 None 86 / 8 N/A

SUPERVISOR(S):
Glenn Ruben Bakke, Snorre Aunet

TITLE:
Using a processor for memory-efficient GUI display driving

Abstract:

While microcontrollers are getting stronger by the day and more advanced technologies are
developed for embedded systems, it seems logical to use these in more complex embedded sys-
tems such as a human-machine graphical interface. However, cutting costs is always a priority,
and by using techniques to limit the RAM-usage and CPU Processing power required through
the use of a line-based description of the graphical scene, it seems possible to better optimize
the system for lower cost microcontrollers. The implementation of a high-level model based
on this idea was tested, and showed mixed results. The RAM usage was noticeably better,
ranging from 26 785% and upwards in saved RAM space, when not considering compression.
The runtime was however noticeably worse, struggling to perform the same as a reference
model. Given the basis of this thesis, it is possible to further optimize the system, such as by
using a lower level model to better match the runtime of a standard render model.

2

Content

Contents

1 Introduction - Description of Task 5

2 Background - Theories 6
2.1 RAM . 6
2.2 Colour Lookup Table . 7
2.3 Alpha Blending . 8
2.4 Masking . 9
2.5 Horizontal Sync . 10
2.6 Frame Buffering . 10
2.7 Double Buffering . 10
2.8 Line Buffer . 11
2.9 Scene Descriptor . 11
2.10 Big O – Complexity . 12
2.11 Python Packages . 13

2.11.1 PIL - Python Image Library . 13
2.11.2 Numpy . 13
2.11.3 time . 13
2.11.4 matplotlib - pyplot . 13

3 Methodology 14
3.1 CLUT Implementation . 14
3.2 Alpha Blending Implementation . 15
3.3 Masking Implementation . 15
3.4 RAM Implementation . 15
3.5 Scene Descriptor Implementation . 17
3.6 Rendering Structure Implementation . 18

4 Results 19
4.1 A note about results . 19
4.2 Per-line timing diagram . 19
4.3 Reference Scene Timing . 21
4.4 RAM-usage per line . 21
4.5 Relative run-times . 23
4.6 Output Scenes . 23

5 Discussion 24

6 Conclusion 27

A Results and pictures 29
A.1 Alpha, Mask and CLUT operators per line . 29

A.1.1 Alpha . 29
A.1.2 Masking . 30
A.1.3 CLUT . 31

A.2 RAM put and get . 32
A.3 Output scenes . 35
A.4 Scene components . 36

A.4.1 Backgrounds . 36
A.4.2 Masks . 38

3

Content

A.4.3 Other testing results . 39

B Pre-project report for Master Thesis 40

C Python Code for model and reference model 59

4

Introduction - Memory-efficient GUI display driving using a Co-processor

1 Introduction - Description of Task

This thesis covers the research of a line-based render definition on a system driving a graphical
interface through a human-machine interface, for example, a screen. It will cover the exploration
of increasing efficiency of memory and processor usage, to accompany slower low-power GUI-
driving microcontrollers. The Line-based implementation will be compared to a reference model
using more standard methods of rendering solutions more similar to standard implementation
in double-buffered systems. Both the complexity and timing between such systems will be
compared to create a foundation to more mathematically find a budget for each line in the
line-buffer to compare to the standard rendering reference. This study can be considered to
be split into multiple smaller parts, consisting of analyzing the RAM usage for each individual
solution given different scene compositions, in addition to analyzing the time budget for different
operations to give a generalized idea of what operations can be ran within a given line before
it exceeds the reference models timings. The project is based on a high-level implementation,
utilizing Python as the coding language for all functions.

This thesis covers multiple sub-elements to make the line-based solution possible, such as a
specialized scene descriptor to construct the graphical elements and handle any operations per-
formed on it. It will cover the general principle of Colour Lookup Table, alpha blending, and
masking operations, RAM, and how these are implemented in the system. Analysis of the two
systems, and comparisons will be covered.

This thesis is based on previous work on a pre-project report studying the basis of the task,
with the focus moving towards a deeper research of underlying theories and implementations
of the previous task. Some of the subjects covered by the previous work will be covered and
expanded upon in the theory part, but reading the previous report is recommended to get a
better overview, and is included in the appendix: [Pre-project report for Master Thesis].

5

Background - Theories

2 Background - Theories

2.1 RAM

Most MCUs and larger systems contain what is called “Random Access Memory”, or RAM
for short. This is a volatile memory unit, used for intermediate storage of data as a mid-level
between the CPUs cache, and higher storage units such as Flash, EEPROM, SSD etc. This
implies that any data too large, or not important enough for the cache is placed in RAM. One
such case is when performing image operations in a system, where the temporary collected data,
for example when working with the whole frame of a picture, is stored in RAM for fast access,
while any sub-pixels currently being operated reside in the CPU cache. However, as the RAM is
volatile, any data will disappear during any power loss, which means that storing critical data
long term in it is considered a bad idea.

Figure 1: RAM array visualized

To better understand the inner workings of a RAM-module, refer to figure 1. The RAM is
represented as a long array of size N, with a subset-array of arrays given size [N], which usually
is set to 8 bits. Each of these will act like a register, having their own address under the parent
array, but usually only one data-byte is stored in each RAM Pos-unit. It is possible to split the
array into a high- and low nibble of different data sets, but is not recommended to do manually.
Usually, a larger data-set will be split out over multiple sub-arrays, such that the total data
is stored in the range of Address to Address + N. When the data is to be collected, one uses
the allocated address as an argument into the RAM, which then collects the required byte, or
puts any data into the supplied address if performing a write. In more common systems, it is
possible for the data to be spatially placed, however, in this project it is limited to simulating a
sequential placement.

6

Background - Theories

2.2 Colour Lookup Table

In order to represent a picture, a Colour Lookup Table (Hereby known as CLUT) is needed for
the picture, unless a global CLUT is provided by the scene descriptor. By providing one of these,
it is possible to both display and modifies the colour characteristics of the provided picture. In
the scene descriptor for the current model, the CLUT is implicitly imported when fetching the
picture by setting the picture pixel-points RGB-values directly and using standardized CLUT-
values to represent the picture as-was, which usually is represented as 24-bit images. This way,
any stored picture with a normalized CLUT will look as before it was imported. However, in
the case that the user wants to modify the picture with a given hue, or a set filter, it is possible
to change out the Picture’s CLUT or apply a global CLUT to modify the picture, for example
by giving it a more red tint overall.

Figure 2: 1D CLUT. [1]

The way the implementation of CLUT works in the current code acts as an expansion, or
a reinterpretation of the basic idea of CLUT, allowing greater control of each colour range,
over for example a simple 5-bit shared CLUT, which would limit the colour space to up to 10
unique colours, where usually a selection of bit values corresponds to set colours in the RGB or
CMYK range, and a control bit to select if the value should correspond to a grey-scale mapping.
Multiple interpretations of such colour spaces can be seen in Figure 2, showing multiple bit-sizes
and solutions. In the 2-dimensional model, the extension of the colour range to the colouration of
each channel corresponds to "completely absent” at 0, to “fully opaque” at 255. At smaller sizes,
this extension might start looking close to the basic idea of CLUTs, however, the 1-dimensionality
of the basic concept will always be more space-saving than any higher-order array, but at the
obvious cost of precision.

The CLUT is based on a 2D implementation of size 3*(Bits), where Bits imply the size of each
R, G and B colour palette. To better visualize how this looks, Figure 3 is included, where each
shade of a colour X and a colour Y is incremented in the X/Y axis for each sub-element. Each
jump between squares symbolises an increment of colour Z, given as an offset of the size of the
two previous colour channels, and shows how increasing the Z-colour factor affects the colours
for the previous channels. Together, these three will create a specific colour given by their
respective input R, G and B values. A more complex representation could be made by stacking

7

Background - Theories

Figure 3: 2D CLUT [2]

the Z-axis of the previously created 2D palette visualization, creating a 3D cube visualization.
This representation could make it even easier to visualize how each R, G and B increment or
decrement affects the output colour value. A single “point” in the cube will then result in the
colouration of the current pixel on the display. Given an equal size of each channel, a cube of
the size (n)3 can be generated from a 2D CLUT. One such example is shown in Figure 4.

Figure 4: 3D visualization of 2D CLUT. [3]

2.3 Alpha Blending

Alpha Blending is the process of combining two layers of overlapping pictures with the appear-
ance of transparency, to make an illusion that the background shines through onto the overlaying
picture. This is done with a fourth positional bit for every pixel, bumping the bit count up to,
regularly, 32-bit in images. Using this extra byte, often referred to as “Alpha value”, allows one
to apply an algorithm that weights said alpha as a transparency factor. This method uses said
alpha to combine the foreground with a “matte”, which often is a background picture, to multi-
ply the source pixel with the alpha to create an output pixel, which when combined with every
other pixel is referred to as the composite. Usually, the alpha range is mapped to values between
0.0 and 1.0 such that 0 equals a fully transparent picture, where the foreground disappears and

8

Background - Theories

the background is rendered, while an alpha value of 1.1 creates an opaque foreground picture.
This method is usually referred to as an “Over” operator, although more complex operators
exist such as “in”, “out”, “atop” and “xor”, but these go outside the scope of the thesis, and is
recommended to get to delve on your own.

To achieve an "over" alpha blend, a standard, easy-to-run formula is usually used, given by

Composte = Bckgrond∗ (1.0 − Aph) + Foregrond∗ (Aph) (1)

which is applied per pixel, per colour channel, and outputs a blended byte as a final composite
of the foreground and background picture. Here, the Foreground will be the overlaying picture,
and the composite will be the end result picture of the operation. One thing to note, which
makes this effect possible, is how the background decreases in value as the alpha is increased,
which in turn increases the factor of the foreground.

Unlike the R, G, and B channels, the alpha value is most often used as a per-picture factor,
where the picture can be seen as “Equally transparent”, instead of as a per-pixel factor, where
the picture would get a fading effect, although the latter is fully possible. As a real-life example
of how alpha blending works, one could imagine holding a red see-through textile in front of an
object and seeing through the textile. To help visualize further, refer to Figure 5

Figure 5: Examples of blending at various alphas. [4]

If the process of alpha blending seems curious, it is possible to read more about the process in
an article published by Sudipta Maji and Asoke Nath [5]

2.4 Masking

The effect of using masking on pictures allows one to do simple “cut-outs” of a picture, often
defined by an attached stencil-like picture, referred to as the “mask”, or “bit mask”. This mask
file is composed of a picture-like format, where each bit is defined as 1 or 0. This means that
masks usually are small, which could make them a powerful tool for applying graphical effects
on weaker hardware. This effect is often used in graphics where a certain part of a picture is
intended to overlap a background picture, but the intended picture is not squared, or just a
part of a larger picture. By using the bitmask, the relevant part of the picture is cut out of its

9

Background - Theories

original file, and placed over the background image, resulting in an output picture consisting of
the new compound image.

2.5 Horizontal Sync

Horizontal Sync, or h-sync for short, is a signal that is given at fixed intervals to the monitor
to change the current drawing line from current Y to the next Y. This is done at the time of
the screen resolution in vertical orientation, times the target frame rate. Given a 24 frame rate
target, which is categorized as the preferred frame rate in a study published by Farid Pazhoohi
and Alan Kingstone [6], and at a 600 vertical resolution, it would approach a time limit of
6,94 ∗ 10−5 seconds, or 0,00694 millisecond time limit per horizontal line before it changes
line. By using the formula

H − sync =
1

(FrmesPerSecond)∗ (Vertc ength)
(2)

It is possible to find the time frame given for each line operation, and will be harder to reach if
the frame rate, horizontal or vertical length is increased, which needs to be carefully considered
and balanced when compared to the complexity of the scene.

2.6 Frame Buffering

In most modern GPUs, it is not unlikely to find what is called a frame buffer. This buffer is
a dedicated portion of the GPUs RAM specialized in containing any currently rendered frame
represented as a bitmap, which is ready to be output to any external I/O devices. This could
be items such as a screen, another buffer etc, delivering a GUI item, such as graphics, texts,
or similar rendered products. GPUs contain at least one rendered picture and are sent to the
external I/O device as soon as a “get” signal arrives. As soon as the rendered frame is gotten,
the buffer is usually flushed, and a new frame can be stored. This method might employ some
tight time limits, all depending on the current application and complexity of the rendered scene,
which, in the worst case, results in a bad user experience or hiccups to external systems that
require the rendered frame within the given limits. The size of the frame buffer might vary, but
is at a minimum the required data size of a full picture of the maximum supported resolution.

2.7 Double Buffering

Some GPUs might have only one buffer, but implementing multiple buffers has become common
among hardware developers. The main drive for using multiple buffers is the most likely removal
of any stuttering of the picture flow, flickering of the picture between the time a buffer is flushed
and a new picture is read, or tearing of the picture, the GPU is out of sync and draws the next
frame at a higher rate than the screen, and parts of the old image remain while the new one
is drawn over it per-line. These are handled by allowing the next frame to be rendered onto
the secondary buffer, while the primary buffer keeps displaying the current data set. this way,
a refresh of the buffer does not happen, and the screen remains active with the current picture,

10

Background - Theories

instead of producing tearing or flickering. When the next rendered frame is ready, a MUX
changes the output status from one buffer to the other, switching the primary- and secondary
status of the two buffers, allowing the previous primary buffer to refresh and receive the next
frame. This method gives some extra slack for the GPU, allowing for some smaller delays at
heavier loads without compromising too much of the user experience.

A drawback of the double buffering method, is that the amount of buffer memory must double.
Some implement this at hardware-level, meaning a larger footprint on the PCB, while others
might go for a software solution, by using, for example, a portion of the RAM for the buffer
data. This becomes a problem with larger pictures quickly occupying up the space of valuable
RAM , especially when considering smaller MCUs which have limited RAM space. Given that
the rendering often apply multiple operations on a frame before sending it out, it will need to
temporary store the full frames of the picture, and especially when multiple pictures are needed
for the modification, the RAM usage might give large spices that leaves less resources available
for the rest of the system, which is unwanted.

2.8 Line Buffer

As the problem of a double buffer potentially eating up too much RAM space during intense
operations which could hamper the performance of the rest of the system, a more conservative
approach might be necessary. This is where the idea of reducing the required buffer size comes
in, by utilizing a reduced footprint through rendering only one line at a time, which greatly
improves memory usage, but comes at its own compromises. The line buffer is allocated in the
ram, which only increases in footprint by the vertical length of the frame,

RAM timing could also be influenced, as in total, more RAM gets and puts are called, which,
depending on the implementation of the RAM, could create some increase in run-time when
compared to the reference model.

2.9 Scene Descriptor

To help the process of knowing what data to get when, a scene descriptor format is necessary
to adapt to the proposed line-based rendering technique, such that the system collects the
smallest, correct amount of data, and thereby occupies the least possible RAM space. The
Scene Descriptor will keep data about the picture, such as which operations to apply at each
scene, how the layering of multiple elements is set up, and any additional references, such as a
pointer to the mask and CLUT to be used.

By using the scene descriptor during rendering, the rendering algorithm will allow the scene to
be constructed in the most efficient way, and can also easily swap the scene operations on-the-fly,
given that something injects the information into the descriptor. The next time the scene is
constructed after such operations, the displayed picture on a screen will have changed, given
that the new operation sets are within the h-sync timings given by the hardware.

11

Background - Theories

2.10 Big O – Complexity

Big O-notation is a common way in computer science to measure the complexity of a given
algorithm, to check its efficiency in an easy and simplified way. By using the steps through the
method, we can find a value of how the complexity of the algorithm varies with the input size N,
without being machine-dependent. The way a Big-O analysis is performed, is by going through
the algorithm step wise, in simple steps the same way a computer would interpret it.

When analyzing an algorithm, there most common ways of finding a measurement of it is by
finding either its best case, average case, or worst case factor. Big-O covers the worst-case,
which is often one of the most valuable feedback to get, as it tells the designer something about
the most time-critical component.

There are some simple considerations to remember when doing a Big-O analysis. First of all,
some terms will dominate the other terms, because the term simply is of a higher order, and
any lesser terms will become irrelevant in the larger scheme. The following order is considered
when doing an analysis:

O(n!) > O(2n) > O(n2) > O(n∗ ogn) > O(n) > O(og∗ n) > O(1) (3)

Any operator more left biased than the others found when analyzing the algorithm, will then
dominate and remove the lower order terms. Any constant, such as 3n, will also be reduced to
simply O(n) as the size of n rises, because of how the n dominates the constant factor.

Figure 6: Big-O Complexity. Collected from [7]

Figure 6 show how each term affects the complexity, and thereby the run time of the scene,
given by the numer of elements n that are put into the algorithm. As an example, would the
line buffer algorithm be of a factor of O(2n), a larger array would quickly impact the system,
eating away both the RAM and run time at record speeds when increasing.

12

Background - Theories

2.11 Python Packages

During the project, three external libraries were used for some operations, and is necessary to
include for the code to work, as they are used in important parts of the code, to simplify some of
the process during the design. These libraries can be replaced in later iterations, if it is deemed
worth it to do so.

2.11.1 PIL - Python Image Library

To import and export the pictures from and to a .bmp format, and to quickly change the picture
mode from RGB to RGBA at certain stages, PIL’s Image sub-library was used. This allowed
for easy handling of the I/O part of the images, removing Unnecessary time spent on building
additional libraries that already exist.

2.11.2 Numpy

Numpy was included and often used in the process of transcribing the imported images over to
an array-format, to easier handle them in the operation sets of the task.

2.11.3 time

time was included for measurement, as to find the real-world run time of the operation sets.

2.11.4 matplotlib - pyplot

A simple library that allows for plotting operations and displaying. Used to create the his-
tograms.

13

Methodology

3 Methodology

3.1 CLUT Implementation

The implementation currently supports a given input argument for the colour space to generate
an empty CLUT of a given size, and a function to input any user-defined CLUT into the newly
generated shell. This allows the user to either modify the picture to a set requirement or to
experiment with colours to see how one can affect a stored picture. To recreate the function
used in the model, it is recommended to use the following algorithm, with adjustments where
necessary:

Algorithm 1 CLUT Apply Algorithm
1: procedure Apply CLUT(Pctre, neCLUT,Oƒ ƒset)
2: Function Initialization
3: Store Picture Data in RAM
4: for Length (Picture) do
5: if Pe = Unmodƒ ed then
6: Collect current R, G, B values at current x + offset
7: Find and collect corresponding value in New CLUT
8: Input new values into corresponding position
9: if Lyer 6= 0 then

10: Set current pixel to modified
Return Modified Picture Line

Running this algorithm should produce a colour-filtered picture, matching the R, G and B
channels to the new CLUT. If this is to be implemented to support variable CLUT sizes, modifi-
cations are necessary to get it to run. The functions "GenerateTestCLUT" and "ChangeCLUT"
were also made, but are not of importance to the model. They can still be found included in
the CLUT-file in the appendix.

14

Methodology

3.2 Alpha Blending Implementation

The Alpha Blending assumes that the foreground picture has an RGBA-format, and has a valid
value for the Alpha-channel. The current implementation uses a single alpha for sampling of
the whole picture to reduce the amount of additional operations, but to allow for fading, simply
fetch the current alpha channel value from the stored line at the current active pixel, and apply
it pixel-wise.

Algorithm 2 Alpha Apply Algorithm
1: procedure Apply Alpha(Foregrond,Oƒ ƒset, Bckgrond)
2: Function Initialization
3: Store Picture Data in RAM
4: for Length(Picture) do
5: if Pe = Unmodƒ ed then
6: Get pixel at current X + Offset
7: Apply Alpha to each channel R, G, B, using channel A
8: Use mathematical Alpha Blending formula
9: Store blended data

10: if Lyer 6= 0 then
11: Set current pixel to modified
12: Return alpha blended picture Line

3.3 Masking Implementation

To apply a masking operation, the steps are pretty straight forward.

Algorithm 3 Masking Algorithm
1: procedure Apply Mask(Foregrond,Oƒ ƒset, Bckgrond,Msk)
2: Function Initialization
3: Store Picture Data in RAM
4: for Length(Foreground) do
5: if Pe = Unmodƒ ed then
6: if MskBt() = 0 then
7: Pass through background pixel
8: if ese then
9: Set output pixel to Foreground

10: if Lyer 6= 0 then
11: Set current pixel to modified

Return Masked picture Line

3.4 RAM Implementation

Two functions are central when implementing the RAM, in order to store and access any data
residing in it. in addition, a class is made, simply called "RAM", which contains three elements:

15

Methodology

The array size data of the RAM, which creates space for the number of entities to be stored.
Each entity space the array has an undefined size, as the

Note that a put_specific function is also included in the code, but uses the same placement logic
as the regular put, but instead of a for-loop, uses an extra input-argument, "Address", to go
directly to the given address to put the data. This function is usually used to overwrite existing
data, such as a picture array that has been modified for other layers to use.

Algorithm 4 RAM put function
1: procedure RAM Put(Dt)
2: for Length(RAM Array) do
3: if Arrypcement 6= occped then
4: Put data into place
5: mark placement as occupied
6: Return address

When data is stored in RAM, it is natural to also collect the data when needed. This is done
through the RAM get function. For any function where a picture line is referenced to, and
RAM is used, replace the variable name with the RAM Get function to fetch and operate on
the cached picture line.

Algorithm 5 RAM get function
1: procedure RAM Get(Adress)
2: if Addresscontnsnydt = Tre then
3: Return data
4: if Addresscontnsnydt 6= Tre then
5: Return error

As visible from the algorithm, it is important to store the address returned from the put function
in a temporary variable in order to access it at a later time. Foregoing this will result in values
getting lost, the RAM getting temporary cluttered, and generally a lot of thrown errors for any
functions used.

As to avoid a quickly filled RAM as time passes and functions are ran, an additional function
is necessary in order to remove the data from the array position, such that new data can be
stored. This is handled by a function called clear, with a general implementation shown below.

Algorithm 6 RAM clear function
1: procedure RAM clear(Adress)
2: if ddress = ”A” then
3: for Length(RAM Array) do
4: Clean the data for the current array entity
5: mark the space as clear
6: if Ese then
7: set current array entity to empty
8: remove any data stored

16

Methodology

3.5 Scene Descriptor Implementation

Figure 7: Model for Scene Descriptor

The Scene Descriptor, in addition to the Scene List, as shown in Fig 7, is one of the most
important parts of the model that allows for a controlled line-based rendering technique given
a line-limited buffer. It acts as a wrapper around a set of pictures, and allows for manipulation
of commands, placement, modifications and similar on a per-layer level. As each Scene item is
initialized and loaded, it is placed into a Scene Layer List, which handles the rendering priority
of the scene. As the current implementation works on a top-down rendering orientation, it is
necessary to consider this when building the scene. To build the scene, it is simply placed as
an argument in the render() function, where it works its way down, modifying and placing the
scene given the commands of the wrapper. As an example of how the final output using the
scene descriptor looks like, refer to Fig. 28, 29 and 30. As an example, Scene 3, Fig 30 was built
by using the components of Fig. 35, an input CLUT, and two text pictures with masks. By
working its way topwards-down, each element was modified according to the layers description,
considering the lower layers, and built the scene line by line and sent it to the line-buffer, which
again sends it to the screen, which created Scene 3 with high artistic value.

17

Methodology

3.6 Rendering Structure Implementation

To actually take use of the scene descriptor, a rendering function is necessary to unpack and
build the output picture from the input layout. To support this, the Render() function was built,
which works its way through a Scene Layer list, given by the current scene to be displayed, and
does the necessary operations to display the picture they way the designer thought it out. The
Render() imports the said Scene Layer list, and starts by rendering the highest layer. If any
operations are performed on it, it will mark the area affected as "used" Through a small 1-bit
buffer of size Length(X_Screen), which is used by lower layers to check for "keep-out" areas by
marking the affected pixels as "dirty". As the top layer finishes its marked operations, it switches
down through the next layers iteratively, and perform their operations, kept out by any "Dirty
Pixel", until the bottom layer is reached. This layer is the Background layer, which has a more
limited scope in functions, as it has no lower layers to affect. After performing or bypassing a
CLUT-option, it fills in any "Clean Pixel" locations that are left on the line with the background
data, and then returns the scene line out to the buffer.

Algorithm 7 Rendering Function
1: Create scene
2: procedure Render(Scene_st, CrrentY, RAM)
3: Initialize function
4: create output Line buffer in RAM
5: Start at top layer
6: Save picture line in RAM
7: if Current layer active in line CurrentY then
8: if ApplyCLUT == True then
9: input relevant layer info into CLUT function

10: for Length(Picture) do
11: if Pixel modified then
12: move modified pixels into Line buffer
13: if ApplyMask == True then
14: Input relevant layer info into Mask function
15: for Length(Picture) do
16: if Pixel modified then
17: move modified pixels into Line buffer
18: if ApplyAlpha == True then
19: Input relevant layer info into Alpha function
20: for Length(Picture) do
21: if Pixel modified then
22: move modified pixels into Line buffer
23: if Background layer reached then
24: Fill free/missing pixels from buffer with background
25: for range(Line) do
26: if Pixel modified == False then
27: save background pixel to line buffer pixel
28: Move to the next lower layer in Scene List

18

Results

4 Results

4.1 A note about results

Due to the amount of result pictures, most of the lesser relevant ones have been moved to
Appendix A.

4.2 Per-line timing diagram

Figure 8: Time usage Scene 1

19

Results

Figure 9: Time usage Scene 2

Figure 10: Time usage Scene 3

20

Results

4.3 Reference Scene Timing

Figure 11: Runtime with Reference model on Scene 1, 2, 3

4.4 RAM-usage per line

Figure 12: RAM Usage scene 1

21

Results

Figure 13: RAM Usage scene 2

Figure 14: RAM Usage scene 3

22

Results

4.5 Relative run-times

Figure 15: Time spent in each operation, given the same picture

Figure 16: Ratios between operations and passing through a simple picture

4.6 Output Scenes

Refer to Appendix A Section 3

23

Discussion

5 Discussion

Considering the resulting output graphs from Fig.8, Fig. 9 and Fig. 10, which give the execution
time in a per-line fashion, it is possible to see certain trends when compared to the implemented
reference model, with the timings shown in Fig. 11. The exact values of the reference model, at
exactly 7.02, 0.93 and 14.49 seconds can be divided to its Y-line lengths to find the comparable
render time on an average-per-line basis, which would correspond to the actual run-time limits
of each line, comes in at (1) 0,0117, (2) 0,00155 and (3) 0,02415 seconds. These are "at slowest"
estimates, meaning that no function can run slower than this time in order to perform at the
same rate of the reference model. Considering Scene 1 and Scene 2 compared to the reference
model, it seems like the implementation runs slower than the reference for the given scene.
Many factor can affect this, including how the run time compiler interprets each of the models,
the higher number of RAM accesses possibly slowing down operations more frequently on the
suggested model, and general optimization issues with the line based implementation due to
designer choices.

Scene 3 is an interesting case however, being the most complex scene of all three. The timing
diagrams of scene 3 imply that the line based implementation will reach its goal at over 90% of
the lines, meaning that any factor making the reference rendering quicker at scene 1 and 2 is lost
when constructing a more complex scene. One factor that could affect this, is the RAM put and
get commands have to be called more times for the complex scene in the reference model, which
means storing, getting and clearing the large pictures at a much higher rate, finally impacting
the run-time in such a way that the line-based rendering is more viable.

A RAM comparison is also in place, showing the current amount of stored bytes for Scene112,
Scene213 and Scene314. The reference model is quite forward to calculate, adding the total size
of the two pictures together, as both needs to be cached in RAM at the same time. Given the
800x600@24BPP used in the task, the minimum size of the background buffer will always be
at 1 875 KB when stored directly in RAM at full size, in addition to overlaying pictures used
at the same time, which given the constructed scenes, vary from. This already overshoots the
worst-case value of the Line-based buffer, coming in at 7,8125 kilobytes. This implies that for a
RAM-limited micro-controller unit, a line-based renderer is preferable over the reference model,
as it has a reduction of 26 785%, which is very highly viable for small micro-controllers.

To minimize any variations, it is better to explore the comparison in a complexity and Big-O
notation . Starting with a Big-O notations, a quick analysis shows that all are of a general same
form, with slight variations.

The active part of the Alpha can be simplified to

24

Discussion

1: procedure Alpha(SomeInput)
2: Function Initialization
3: Store Picture Data in RAM
4: for x do
5: PicOut = Foreground * Alpha + Background*(1-Alpha)
6: Repeat two more times
7: if State then
8: DoSomething
9: return value

Reducing this step by step, we end up with the For-loop as the dominant term, which equals
to O(n) in complexity. As the other functions also has a For-loop as the highest order, they
also equal to O(n), meaning that the complexity of the scene rises linearity with the number of
pixels in horizontal direction.

To find a relative complexity for a scene, assume a set target for a pixel passthrough, meaning
loading a clean pixel-line from RAM and into the line-buffer. By using this idea, it is possible
to adjust the set target to get a line-budget that shows if it is possible to run certain operations
within a given time window, given by the ratio between the pixel passthrough, and the different
operations shown in Fig. 15 and Fig. 16. It show that, when compared to a simple passthrough,
Alpha has a weight coefficient of 3.53 compared to passthrough, Mask has a 1.5 coefficient, and
CLUT comes in at 1.21 times a pass-operation, on a per-pixel basis. By allocating a set value
as a target for the line, it is possible to use these values to calculate the possible weight of the
scene for any given composition.

As an example, lets assume a screen at a set number of horizontal pixels displays a simple
picture at 60 frames per second at a set CPU frequency, but it is decided that it should rather
display at 30 frames per second at the same frequency to allow the use of picture effects. The
pixel passthrough had a cost of 50 at 60 frames per second, but as it is reduced to 30 frames
per second, each line now has double the budget. By now using this new budget at 100, we can
start theorizing how many operations we can afford to run at x pixels per line, given the weight
ratios of the different operations.

Assuming the previous example, with 100 in budget, and a 50 pixel width, an example scene
could be composed of 15 pixels applied with an alpha, 15 with a mask, and 20 with a CLUT.
This leaves a budget of 0,35 left, which should be able to make the timings compared to the
previous passthrough solution. A simple formula for calculating if the given combination is
within its budget can be given by

Bdget >= n∗ AphWeght +m∗MskWeght + o∗ CLUTWeght (4)

by making sure that the equation is either balanced, or in favour of the budget.

Considering this, there are some limitations in the current implementation compared to a more
realistic situation, as the software is supposed to be ran on a Micro-controller Unit. As the code
is ran on a computer, it greatly reduces the run-time when compared to the more realistic speeds
of the slower micro-controller. The implementation is also compiler-level dependent, meaning

25

Discussion

that which compiler is used has an effect on the outcome, as the model is high-level. Different
compilers could give different results, closing in or spreading more out from the reference model.
To decrease the effects of this, it is highly advisable to implement any further development
of the model at a lower level language, such as C or Assembly, such that the compiler could
potentially have a smaller effect on the performance, given that it does have an effect. This also
follows more optimizations to the line buffer code, as the higher degree of control with low-level
languages allows for clever manipulative tricks on the data sets, increasing performance.

The suggested implementation in this thesis, however, is meant as a research of viability, and
has shown results that gives a vague idea if it is something to look more into, especially at the
aforementioned lower level implementation.

26

Conclusion

6 Conclusion

This thesis has covered a suggested implementation of a high-level model for implementing a
line-based rendering technique, using a scene descriptor to build the graphical interface. A
description of the algorithm used in the implementation has been described at a higher level,
and multiple tests have been performed to analyze the performance. A reference model, based
on more traditional render techniques was also implemented, for comparison.

The model improved the RAM usage drastically by using only one line at a time, but seems
to currently be limited by execution time when compared to the reference model. This could
be due to several reasons, such as not implementing the model at a lower level such as C or
Assembly, poor optimization in the implemented code, or compiler variations between the tested
models.

From the model, a more general budget method was suggested for analyzing run-time conditions,
allowing the designer to calculate if the scene can be rendered in time, given the complexity of
the scene and the size of the screen.

27

References

References

[1] André R. S. Marçal, "Automatic color indexing of hi-
erarchically structured classified images" [Online]. Available:
https://www.researchgate.net/publication/4183583_Automatic_color_indexing_of_hierarchically
_structured_classified_images

[2] Matthias Trapp, Sebastian Pasewaldt, Jürgen Döllner, "Tech-
niques for GPU-based Color Quantization" [Online]. Available:
https://www.researchgate.net/publication/332912124_Techniques_for_GPU-
based_Color_Quantization

[3] Nvidia, "Chapter 24. Using Lookup Tables to Accelerate Color Transformations"
[Online]. Available: https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-
rendering/chapter-24-using-lookup-tables-accelerate-color

[4] StackOverflow, "HTML5 Canvas Creative Alpha-Blending" [Online]. Available
https://stackoverflow.com/questions/17418048/html5-canvas-creative-alpha-blending
[Accessed 03.06.2022]

[5] Asoke Nath, Sudipta Maji, "Scope and Issues in Alpha Compositing Tech-
nology" [Online]. Available: https://www.researchgate.net/profile/Asoke-Nath-
4/publication/288838744_Scope_and_Issues_in_Alpha_Compositing_Technology/links
/5686a63208ae197583975758/Scope-and-Issues-in-Alpha-Compositing-Technology.pdf

[6] Farid Pazhoohi, Alan Kingstone, "The Effect of Movie Frame Rate
on Viewer Preference: An Eye Tracking Study" [Online]. Available:
https://www.researchgate.net/publication/348679933_The_Effect_of_Movie_Frame_Rate_on
_Viewer_Preference_An_Eye_Tracking_Study

[7] Kelvin Salton do Prado, "Understanding time complexity with Python examples"
[Online]. Available: https://towardsdatascience.com/understanding-time-complexity-with-
python-examples-2bda6e8158a7

[8] Ákos Szabó, "Panoramic Photography of Green Field" [Online]. Available:
https://www.pexels.com/photo/panoramic-photography-of-green-field-440731/

[9] Christian Heitz, "Brown and Green Mountain View Photo" [Online]. Available:
https://www.pexels.com/photo/brown-and-green-mountain-view-photo-842711/

[10] Irina Iriser, "Closeup Photography of Brown Wheat Field" [Online]. Available:
https://www.pexels.com/photo/closeup-photography-of-brown-wheat-field-1301537/

28

References

A Results and pictures

A.1 Alpha, Mask and CLUT operators per line

A.1.1 Alpha

Figure 17: Scene 1 Alpha Usage

29

References

A.1.2 Masking

Figure 18: Scene 1 Mask Usage

Figure 19: Scene 2 Mask Usage

30

References

Figure 20: Scene 3 Mask Usage

A.1.3 CLUT

Figure 21: Scene 3 CLUT Usage

31

References

A.2 RAM put and get

Figure 22: Scene 1 RAM puts

Figure 23: Scene 2 RAM puts

32

References

Figure 24: Scene 3 RAM puts

Figure 25: Scene 1 RAM gets

33

References

Figure 26: Scene 2 RAM gets

Figure 27: Scene 3 RAM gets

34

References

A.3 Output scenes

Figure 28: Scene 1 after construction

Figure 29: Scene 2 after construction

35

References

Figure 30: Scene 3 after construction

A.4 Scene components

This section will not include the text-image-files, as it does not seem necessary. They simply
consist of black text on a white background. The mask is the same text-picture used again.

A.4.1 Backgrounds

Figure 31: Background for scene 1. Collected from [8]

36

References

Figure 32: Background for scene 2. Collected from [9]

Figure 33: Background for scene 3. Collected from [10]

37

References

A.4.2 Masks

Figure 34: Grass mask

Figure 35: Star mask

38

References

A.4.3 Other testing results

Figure 36: Masking

Figure 37: Masking and Alpha

39

References

Figure 38: Masking and Alpha and CLUT

B Pre-project report for Master Thesis

40

Memory-efficient GUI display driving

Technical report
Runar André Saure
Trondheim, 2021

Project, Autumn 2021

CANDIDATES ():
Saure, Runar
DATE: SUBJECT: GROUP (name/nr): PAGES/APDX: BIBL. NR:
19.12.21 TFE4590 18 / N/A
subject teacher(s):
Snorre Aunet, Glenn Ruben Bakke
TITLE:
Memory-efficient GUI display driving
Summary:
This report aims to show the implementation of a memory optimized GPU driver,
through usage of a scene descriptor and a line buffer to represent the graphics in a
much more memory-conscious way than what standard models use. The resulting
analysis show that improvements are made, and further optimization of code combined
with restructuring and newer solutions can give an increase in the memory efficiency
of such a system.

2

Content

Content

1 Introduction - Description of Task 4
1.1 Memory-efficient GUI display driving . 4

2 Background - Theory 5
2.1 Colour Lookup-Table . 5
2.2 Scene Description . 6
2.3 RAM . 6
2.4 Frame Buffering . 6
2.5 Double Buffering . 7
2.6 Line Buffer . 7
2.7 Python Packages . 7

2.7.1 Numpy . 7
2.7.2 PIL . 8
2.7.3 tkinter . 8

3 Methodology 9
3.1 RAM Implementation . 9
3.2 CLUT Implementation . 10
3.3 Scene Descriptor . 10
3.4 Linebuffer and Buffer . 11

4 Results 12

5 Discussion 14

6 Further development and the road ahead 16

7 Conclusion 17

3

Introduction - Description of Task

1 Introduction - Description of Task

1.1 Memory-efficient GUI display driving

The task sets out to explore the possibilities of increasing the efficiency of memory usage in
GUI-driving MCUs, through different solutions and code optimizations, where this paper
represents one of the possible implementations. The implementation must be compared
to a reference model, which consists of a normal implementation of a double-buffered as
to get an idea of how viable the solution is compared to the reference.

The task is split into multiple smaller parts, which gives an idea of what steps must be
taken to build the code. A Scene descriptor format is required to describe how the layering
of any pictures is handled, and how they are passed on to the graphical processing part
of the model. RAM- and CLUT operations are also required, as a proof-of-concept of the
implementation.

To check the validity of the implementation, it is required to run the code with an error-
free result, and be able to collect or draw the complete scene with all layers represented,
with results that can be analysed for both the reference model and the suggested imple-
mentation.

The analysis requires a representation of how the memory usage differs between multiple
scenes of different complexity, especially compared to the reference model.

4

Background - Theory

2 Background - Theory

2.1 Colour Lookup-Table

A simple way to add some modification to a picture is by using a Colour Lookup-Table
(Hereby referenced to as CLUT) to modify the color characteristics of the picture.

CLUTs can be constructed either by using multiple 1D-arrays for each aspect of the picture
such as the RGB values, or other picture modifications such as colour alpha. Another
solution is to arrange it into a 3D cube, representing each R, G and B channel, which can
easiest be visualized by a 2D-representation, as seen in Figure. 1 below.

Figure 1: 3D-LUT can be represented as a 2D-array. Found at UnrealEngines Website[1]

By locking one of the colour components of RGB as the Z-axis, the two other are shown
on the X and Y axis. by iterating over the Z-axis, here shown as the array of pictures
with a horizontal offset, we get a better understanding of how increasing the Z-component
affects the output picture when calibrating with the X and Y-component. together, the
RGB values will extract one single "dot" from the 3D-LUT, giving the coloration of the
pixel on the display.

A 1D implementation is much simpler, with each channel represented by a separate in-
discriminate array. Each input is specifically mapped to a value in the array, while still
keeping a high precision in colour accuracy when applying the CLUT. Another advantage
of a 1D LUT is the small size required, where the amounts of bits needed is given by

LUTSize = 2numberofbits ∗ Nnumberofchannels (1)

Any remapping or adjusting of the 1D LUT also requires much simpler functions compared
to a 3D-LUT.

The main purpose of LUT however, is to modify a picture to give a hue that differs from
the original. For example, by limiting the blue and green component from a custom LUT,
will when applied result in a much more red tinted picture on the screen, or a yellow tint
as seen in . By changing the LUT, either by importing a new one or doing mathematical
manipulations on the array, it is possible to create many different filters, depending on
the desired colour alteration or effects.

5

Background - Theory

2.2 Scene Description

A scene descriptor is a data structure that lays out the representation of how graphics can
be displayed. Its structure is inherently hierarchical, where each "layer" will describe a
component of the graphics to be rendered. This is then used to communicate with external
processes or functions in what manner any graphical operations or manipulations will be
handled.

By using a scene descriptor, it is possible do to on-the-fly manipulations of which layer to
draw, and more easily modify attributes such as xy-placement, CLUTs and layer of the
scene, without disrupting the whole frame.

2.3 RAM

The RAM module is one of the main focus points of the task, as the project sets out to
minimize its usage. RAM, short for Random Access Memory, is an intermediate storage
unit in MCUs, as a mid-level between cache found inside the CPUs, and any other storage
such as flash, SSD or EEPROM. The RAM remains volatile however, and any content
will disappear during a power outage, so correctly storing any valuable variable is highly
recommended.

To represent RAM in an easy way, it is best to imagine it as a long array, with each
cell containing some amount of data, usually up to 8 bits. These are known as registers,
with each having an unique address. These addresses are referenced to when writing to
or reading the target register. Usually, larger data sets are spread over multiple registers,
and will be preferred to be spatially placed, as to reduce the complexity of placing and
retrieving.

2.4 Frame Buffering

A Frame buffer is a dedicated portion of the RAM that is specialized in containing graph-
ical I/O data for graphical processing of the system. The data stored inside the buffer is
used to drive a screen with information or GUI, Which can be represented as graphics,
text or similar models. In modern systems, the frame buffer contains at least one picture
ready to be rendered, represented by the pixel values for RGB, Alpha etc., usually in a
bitmap format. As soon as a picture, or "frame" is ready and the GPU is ready for the
next frame, the frame buffer sends the current frame to the graphical processor, and starts
retrieving the next frame.

6

Background - Theory

2.5 Double Buffering

In modern systems, double buffering is a method often implemented to reduce the amount
of flickering experienced when using any screen to interact with the MCU. If the next
frame is not ready before the GPU requests the next one, commonly caused by incorrect
timings or too complex frame operations, the screen gives the illusion of "blinking" as it
tries to keep up with the drawing demand of the system. By using a double buffer, the
processor completes a picture inside a dedicated memory space known as a buffer instead
of directly to the screen, which gives the processor time to finish the picture before the
graphics processor starts rendering the frame. This way, the display will not stutter as
it awaits the data from a slower CPU, but can keep up to the faster GPU and give a
smoother user experience.

By using the double buffering method however, the amount of memory required for driving
the screen flicker-free increases, and can become quite "big" in cases where larger or more
detailed pictures are used. This poses a big problem in MCUs where memory space is
very limited, and using every bit of space wisely is advisable.

2.6 Line Buffer

The Line Buffer is a solution that attempts to mitigate the problem of space usage intro-
duced by buffering. By limiting the buffer size to only one line, or "width" of the screen at
a time, it is possible to greatly reduce the size of the buffer, while still avoiding problems
associated with a bufferless rendering, such as flickering.

2.7 Python Packages

Following are some key packages used in the code. It is highly advised to read up on these
if trying to replicate the results achieved in this report. They can be found at Numpy[4],
PIL[3] and tkinter[5]

2.7.1 Numpy

Numpy is a very commonly used library of Python, and will therefore be kept very short,
but is included as it has been important for achieving a solution. Numpy is a package that
contains multiple mathematical functions and operations, and has many useful functions
for operating on array objects, especially arrays with multiple dimensions, which stands
for a lot of the operations done in the solution. The advantage of Numpy is also its speed.
Compared to standard manual solutions, it is optimized to achieve the fastest possible
output.

7

Background - Theory

2.7.2 PIL

PIL, "Python Image Library", or "Pillow" as the newest fork is called, is a library special-
ized in handling images in code, with a wide support of formats and processing operations.
It is optimized for fast data access, and allows a wide amount of picture-related operations
for handling any picture to be used in the scene descriptor. Its main use for the task is
focused on importing and exporting the pictures, and transforming the format, in this
case JPGs, into modifiable arrays.

2.7.3 tkinter

tkinter is a lightweight and easy-to-use GUI package for python, which allows displaying
of graphics without the use of external MCUs. This package has mainly been used in
the task for displaying and checking the correctness of the data traveling through the
system. Without a GUI package such as tkinter, testing and analyzing becomes much
harder as some appliances, such as CLUT, requires more work to verify if one checks the
data directly instead.

8

Methodology

3 Methodology

This section will explain some of the implementations of the solution model. Simple
code snippets will appear for simple functions, while the more complex solutions will be
explained in a more abstract manner.

3.1 RAM Implementation

The RAM object was chosen to be represented as an array to simulate the closeness to
its physical representation with registers and addresses. A simple instantiating is shown
by Fig. ?? , where the RAM is sized by an input variable RAM_Size, which allows to
easily resize or create multiple RAM instances on the fly, and "Type" allows you to input
the value in both Bytes and Kilobytes.

To allow sector to exist inside the RAM, a simple function ram_allocate_sectors(Layers,
RAMSize) was created, which allows the user to split the size of the RAM into multiple
zones, each representing the memory region for a single layer. A return value "SectionSize"
is used as an offset for any accesses to the memory.

Some important functions for the RAM are the put and get functions, which each has
a function instance for the data and the CLUT. A ram_put_data(Layer, Offset, Data,
RAMIn) function allows the user to designate which layer the chosen data is saved in, and
in which RAM-instance. This function manipulates the picture array to be saved inside
the RAM in a spatial way, allowing quick access during a get.

The corresponding ram_put_clut acts in a similar manner, but uses a return value
DataLen from the data function to determine the additional offset of the CLUT, such
that the CLUT begins where the Data ends.

The inverse functions ram_get_data and ram_get_clut works in the opposite way of the
puts, retrieving the data arrays in a similar reversed manner, and returns the collected
values.

9

Methodology

3.2 CLUT Implementation

The CLUT used in this task is a 1-Dimensional LUT, with a simple basis generate code
for a linearly scaled array for each RGB-value, allowing for an easy-to-use easy-to-modify
LUT, which still retains the accuracy while having a very small footprint.

To apply the CLUT, a simple function ApplyCLUT(Data, CLUT) allows the user to
change the color saturation of the picture. The function checks every R, G and B value
from the input data, and compares it to the input CLUT. By finding the corresponding
R,G or B value in the CLUT, it fetches corresponding modified new value from the CLUT,
and applies it to the data.

An attempt to make a 3D-LUT was made during the process, but was put aside to
prioritize a simple working LUT, however it should be possible to re-implement the 3D-
LUT with some more work, which would allow for much more customizability for the
LUT. Any future iterations might switch to the 3D-LUT, but considerations must be
taken to as whether the advantages of a 3D-LUT is worth the drawback of a much larger
memory footprint.

3.3 Scene Descriptor

The Scene Descriptor is a class which contains the values of every layer, in addition
attaching the CLUT and functions to checking if CLUT is to be applied. The Scene file
can be checked for any layer numbers, and the placement of the pictures in each layer.

When printing the scene to a display, the scene first collects the amount of layers involved
in the following line. If multiple layers are found, it saves the values for the width of the
layers, and checks the X-position of the topmost layers. This tells the scene descriptor
where to start and stop drawing each layer. The process starts with the lowest layer
number, with layer 0 being regarded as the background for the scene. As the Descriptor
reaches the starting parameters for any higher layer, it switches the picture to be drawn
to the topmost of the ones on the current co-ordinate, and renders it until the end. When
the end of line is reached, the resulting line is sent to the linebuffer, and it continues by
iterating the y-axis onto the next line.

10

Methodology

3.4 Linebuffer and Buffer

The linebuffer is generated form a simple array-generation, and then uses a function
FillLineBufferFromArray to apply the input data, after any operations such as layering,
CLUT etc. is done, to the 2-D array.

The regular buffer is replicated in the same manner, but with a third dimension added
to simulate a full screen, which considerably increases the size. To replicate the buffer
in a simple manner, the FillLineBufferFromArray function can be used to send into the
buffer, iterating over the y-size of the regular buffer array.

11

Results

4 Results

This section will present some of the measurements and analyses extracted from the code,
with a short explanatory text.

Figure 2: Reference picture

Figure 2 show a reference picture collected from WikiMedia[6].

Figure 3: CLUT Applied

Figure 3 show the same picture after a yellow-based CLUT tint is applied.

Figure 4: Larger reference picture

12

Results

For further testing of the system, a larger picture shown in fig. 4 is used to verify that
the model can handle larger pictures.

Figure 5: Larger reference with CLUT

Fig. 5 uses the same yellow-tint CLUT as shown in fig. 3

Figure 6: Complex scene build-up

To test the capability of the scene descriptor, fig. 6 show a constructed scene showing a
background (Pacman), an offset picture (Upper helicopter), and an offset CLUT-applied
picture (Lower helicopter).

Fig. 7 shows the amount of RAM used when comparing a Linebuffer solution to a Double
buffer solution when comparing a 800x600 @24bpp picture.

Fig. 8 show the comparison of a 273x204 @24bpp picture

13

Discussion

Figure 7: Memory usage of a 800x600 24bpp picture

Figure 8: Memory usage of a 273x204 24bpp picture

5 Discussion

Throughout the results, the validity of the model is represented throughout the pictures.
Both the process of saving the picture successfully to ram, retrieving it and applying
the CLUT filter shows basic functionality as could be required for a solution. The more
interesting case comes with Fig. 6, where the Scene Descriptor comes into play.

By utilizing the descriptor, the code allows for the X-Y offset of pictures, where it is

14

Discussion

freely possible to place the pictures within the bounds of the predetermined screen size.
The layering is also shown, where the scene descriptor explained in Chapter 3.3 layers the
two helicopter pictures on top of the background picture. By introducing alpha masking,
it would be possible to allow for more advanced figures, such as the Spadille and other
figures seen on the Pacman-example.

When comparing the results of Fig 7 and Fig. 8, it shows that the line buffer gives a lower
memory footprint compared to the double buffer solution when using larger pictures. This
might however be affected by the aspect ratio of the pictures, and the gain of linebuffer
when comparing the first and second results, it does not increase linearly, as the gain is
much lower.

As can be seen from Fig. 7, the linebuffer consumes a considerable less amount of RAM
when compared to the double buffer. Further optimizations could have made the double
buffer size considerably smaller, but it would still not reach the low footprint of a linebuffer
solution. Regarding this, the most pressing issue is the analysis of the bandwidth of such
a solution, but that part remains as a further development note. A size reduction does
not help if it struggles to send the data in time, which will quickly result in a sluggish
experience for the user of the display. The least severe symptoms would be "flickering" or
being able to see the lines being drawn, but it could degrade into clearly visible drawing
of each line. Further testing and work will show if the solution is applicable for real-world
hardware.

15

Further development and the road ahead

6 Further development and the road ahead

This project represent a limited implementation of the solution, but with many ways to
expand. One of the most considerable improvements are various compression algorithms
to reduce the size of both pictures, CLUT and the buffer even further. the addition of an
on-the-fly generated CLUT could also help save memory space, depending on if it has a
1D, 2D or 3D-implementation of the CLUT. The 3D-implementation will have the largest
footprint reduction from this, as it is considerably larger than a 1D-array.

The scene descriptor has more potential for expansion, allowing for more complex picture
manipulation such as alpha blending, masking, color space reduction and expansions,
linear interpolating of the CLUT and more advanced techniques.

The code can also be expanded to be tested on an actual MCU, which would allow more
MCU-specific optimizations, and make way for analyzing bandwidth, processor cycles,
memory operations and similar, which will give a much wider view of the viability of the
project on actual hardware.

16

Conclusion

7 Conclusion

The experiment of implementing a solution to reduce the memory footprint of GPU
driving has shown itself to have potential. The solution has proved to be able to operate
around a self-implemented RAM-module and appliance of CLUT to the picture, but also
more advanced tasks such as layering and placement of pictures, with regards to the
drawing of a single line at a time.

More work is needed to prove that this is a viable model for actual implementation in
hardware, but with more advanced features, optimizations and testing, it could give results
that shows the merit of the model.

17

References

References

[1] https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/PostProcessEffects/UsingLUTs/

[2] Further reading:

[3] https://pillow.readthedocs.io/en/stable/

[4] https://numpy.org/doc/stable/index.html

[5] https://wiki.python.org/moin/TkInter

[6] Helicopter Photo: https://commons.wikimedia.org/wiki/File:Smallpicttest.JPG

[7] Pacman Photo: http://www.artpoker.net/pacman-wallpaper-when-pacman-and-poker-
come-together-1024x768

18

References

C Python Code for model and reference model

59

1 Code Files

1.1 AlphaBlending.py

#Alpha Compositing

import numpy as np

#Alpha Compositing i s the p roce s s o f combining two images with a transparency mask
PictureOut = np . z e ro s ((800 , 4) , dtype=np . u int8)

#Function that checks i f a p i c tu r e conta in s alpha .
de f check a lpha (p i c ture , TestEntity) :

#I f i t does not , a l low the user to input a custom alpha . I f i t i s not with in bounds (0 , 255) , r e turn an e r r o r and ask again .
i f (l en (p i c tu r e [0] [0]) == 3) :

whi l e True :
alpha = input (” Enter alpha value : ”)
i f alpha . i s d i g i t () :

alpha = in t (alpha)
i f alpha >= 0 and alpha <= 255 :

break
e l s e :

p r i n t (” Inva l i d alpha value ”)
e l s e :

p r i n t (” Inva l i d alpha value ”)

#put the alpha value in to th ep i c tu r e
PictureOut = [[[0 , 0 , 0 , 0] f o r i in range (l en (p i c tu r e [0]))] f o r j in range (l en (p i c tu r e))]

f o r i in range (l en (p i c tu r e)) :
f o r j in range (l en (p i c tu r e [i])) :

PictureOut [i] [j] [0] = p i c tu r e [i] [j] [0]
PictureOut [i] [j] [1] = p i c tu r e [i] [j] [1]
PictureOut [i] [j] [2] = p i c tu r e [i] [j] [2]
PictureOut [i] [j] [3] = alpha

pr in t (”Alpha value s e t . ”)
re turn PictureOut

e l s e :
p r i n t (”Alpha a l r eady pre sent ”)
#ask user i f want to input new alpha
pr in t (”Do you want to input a new alpha value ? Y/N”)
i f (input () == ”y” or ”Y” or ” yes ” or ”Yes ”) :

whi l e True :
alpha = input (” Enter alpha value : ”)
i f alpha . i s d i g i t () :

alpha = in t (alpha)
i f alpha >= 0 and alpha <= 255 :

break
e l s e :

p r i n t (” Inva l i d alpha value ”)
e l s e :

p r i n t (” Inva l i d alpha value ”)

f o r i in range (l en (p i c tu r e)) :
f o r j in range (l en (p i c tu r e [i])) :

p i c t u r e [i] [j] [3] = alpha

1

re turn p i c tu r e

e l s e :
p r i n t (” ok , no alpha value s e t . ”)

re turn p i c tu r e

#Formula f o r s imple ”Over” operator . r ep l aced by simply p lugg ing i t d i r e c t l y in to ApplyAlpha , to avoid func t i on c a l l t imings
de f AlphaFormula (Fg , Bg , Alpha) :

#Out = Fg∗A+Bg∗(1−A)
return Fg∗Alpha + Bg∗(1−Alpha)

#Create a func t i on that blends two p i c t u r e s together , us ing foregrounds alpha as ”mask ” .
de f ApplyAlpha (Foreground , X Offset , Operator , Background , TestEntity) :

#The input Foreground i s a p i c tu r e o f x l ength with a x o f f s e t r e l a t i v e to background . Background i s a p i c tu r e o f another l ength .
#The output i s a p i c tu r e o f the same length as the background , but with the foreground app l i ed .
i f (Operator == (”Over” or ” over ”)) :

PictureOut = np . z e ro s ((l en (Background) , 4) , dtype=np . u int8)
#StartTime = time . time ()
#map the foreground alpha value to a range o f 0 to 1 manually . This i s done to avoid f l o a t i n g po int e r r o r s .
Alpha = Foreground [0] [3]
AlphaOut = Alpha
Alpha = Alpha/255
f o r CurrentX in range (l en (Foreground)) :

#I f the cur rent p i x e l i s f r e e
i f TestEntity . FreeLine [CurrentX + X Offset] == True :

TestEntity . ApplyAlpha Pixel += 1
#Apply the alpha formula Fg∗Alpha + Bg∗(1−Alpha)
PictureOut [CurrentX+X Offset] [0] = Foreground [CurrentX] [0] ∗ Alpha + Background [CurrentX+X Offset] [0]∗ (1 −Alpha)
TestEntity . ApplyAlphaR += 1
PictureOut [CurrentX+X Offset] [1] = Foreground [CurrentX] [1] ∗ Alpha + Background [CurrentX+X Offset] [1]∗ (1 −Alpha)
TestEntity . ApplyAlphaG += 1
PictureOut [CurrentX+X Offset] [2] = Foreground [CurrentX] [2] ∗ Alpha + Background [CurrentX+X Offset] [2]∗ (1 −Alpha)
TestEntity . ApplyAlphaB += 1

#Combine Red , Green and Blue in to PictureOut
PictureOut [CurrentX+X Offset] [3] = AlphaOut

#PictureOut [CurrentX] = [Red , Green , Blue , AlphaOut]
i f TestEntity . CurrentLayer != 0 :

TestEntity . FreeLine [CurrentX + X Offset] = Fal se

TestEntity . AlphaBlend += 1
e l s e :

r e turn
return PictureOut

2

#Put alpha value in to the input p i c ture , which i s in format (800 , 4) . The input a l s o conta in s the alpha value to put in
de f PutAlpha (Picture , Alpha) :

PictureOut = np . z e ro s ((l en (P ic ture) , l en (P ic ture [0]) , 4) , dtype=np . u int8)
f o r j in range (l en (P ic ture)) :

f o r i in range (l en (P ic ture [0])) :
PictureOut [j] [i] [0] = Pic ture [j] [i] [0]
PictureOut [j] [i] [1] = Pic ture [j] [i] [1]
PictureOut [j] [i] [2] = Pic ture [j] [i] [2]
PictureOut [j] [i] [3] = Alpha

return PictureOut

1.2 AlphaMasking.py

#Masks each channel g iven by the mask .
import numpy as np

#Masks each channel g iven by the mask .
de f ApplyMask (PictureFG , X Offset , PictureBG , Mask , TestEntity) :

#White (>0) means draw , black (0) means remove
#Create PictureOut with the same s i z e as PictureFG .
PictureOut = np . z e ro s ((l en (PictureBG) , 4) , dtype=np . u int8)

#For each X
f o r i in range (l en (PictureFG)) :

i f TestEntity . FreeLine [i+X Offset] == True :
#For each channel

#I f the mask i s not t ransparent
i f Mask [i] . a l l () == 0 :

#Set the channel to the background p i c tu r e
PictureOut [i+X Offset] = PictureBG [i+X Offset]
TestEntity .NoMask += 1
pass

e l s e :
#Set the channel to the foreground p i c tu r e
PictureOut [i+X Offset] = PictureFG [i]
i f TestEntity . CurrentLayer != 0 :

TestEntity . FreeLine [i+X Offset] = Fal se
TestEntity . ApplyMask += 1

return PictureOut
#, TestEntity . FreeLine

#Check i f the p i c tu r e i s RGB or RGBA. Returns the number o f channe l s . Not used .
de f CheckNumbersOfChannels (P ic ture) :

i f (l en (P ic ture [0] [0]) == 4) :
r e turn 4

3

e l i f (l en (P ic ture [0] [0]) == 3) :
r e turn 3

e l s e :
p r i n t (”No . Just no . ”)

1.3 Analytics.py

import matp lo t l i b . pyplot as p l t

#Input i s a c l a s s which conta in mul t ip l e a t t r i b u t e s which are ar rays . Create a histogram f o r each a t t r i bu t e , i t e r a t i n g over the ar rays .
de f histogram (inpu t s t ruc tu r e , Length) :

#c r ea t e a histogram f o r each a t t r i b u t e
Histogram = [0] ∗ Length
f o r i in range (l en (i npu t s t r u c tu r e)) :

#c r ea t e a histogram f o r each a t t r i b u t e
Histogram [i] = i npu t s t r u c tu r e [i]

PlotHistogram (Histogram , Length)
re turn Histogram

#Input a c l a s s . The c l a s s conta in s mu l t ip l e a t r i b u t e s . Create a histogram f o r each a t t r i b u t e .

#Function to p l o t the histogram
def PlotHistogram (Histogram , Length) :

p l t . bar (range (Length) , Histogram)
p l t . show ()
#Save the histogram
#p l t . s a v e f i g (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Histogram/Test Histogram .bmp”)

#Save every i t e r a t i o n −value in to array
de f Test ing (TestEntity , CurrentY) :

TestEntity . ApplyAlpha Pixel Array [CurrentY] = TestEntity . ApplyAlpha Pixel
TestEntity . ApplyMask Pixel Array [CurrentY] = TestEntity . ApplyMask
TestEntity . CLUT Pixel Array [CurrentY] = TestEntity . CLUT Pixel Applied
TestEntity . RAM put Array [CurrentY] = TestEntity .RAM put
TestEntity . RAM get Array [CurrentY] = TestEntity . RAM get
TestEntity . RAM Used Bytes Array [CurrentY] = TestEntity . RAM Used Bytes

#Erase every va lye
de f Clean (TestEntity) :

TestEntity . ApplyAlpha Pixel = 0
TestEntity . ApplyMask = 0
TestEntity . CLUT Pixel Applied = 0
TestEntity .RAM put = 0
TestEntity . RAM get = 0
TestEntity .RAM Used = 0

4

TestEntity . RAM Used Bytes = 0

#Analyze by p r i n t i n g histogram of each array
de f Analyze (TestEntity) :

histogram (TestEntity . ApplyAlpha Pixel Array)
histogram (TestEntity . ApplyMask Pixel Array)
histogram (TestEntity . CLUT Pixel Array)
histogram (TestEntity . RAM put Array)
histogram (TestEntity . RAM get Array)
histogram (TestEntity . RAM Used Bytes Array)

1.4 CLUT.py

#Class f o r c o l o r lookup tab l e with R, G and B channe l s
import numpy as np

de f GenerateCLUT(sizeR , sizeG , s i zeB) :
#Generate a c o l o r lookup tab l e f o r R, G and B channe l s with each channel having a s i z e o f s izeR , s izeG and s izeB . Sta r t at 0 and end at sizeR −1, sizeG−1 and sizeB −1. The array i s 2D.
CLUTR = np . z e ro s ((1 , s i zeR) , dtype=np . u int8)
CLUTG = np . z e r o s ((1 , s izeG) , dtype=np . u int8)
CLUTB = np . z e r o s ((1 , s i zeB) , dtype=np . u int8)
#Merge CLUTR, CLUTG and CLUTB into a s i n g l e 2D array c a l l e d CLUT
CLUT = np . concatenate ((CLUTR, CLUTG, CLUTB) , ax i s=0)
re turn CLUT

def GenerateTestCLUT(sizeR , sizeG , s i zeB) :
#Generate a c o l o r lookup tab l e f o r R, G and B channe l s with each channel having a s i z e o f s izeR , s izeG and s izeB . Sta r t at sizeR −1, sizeG−1 and sizeB−1 and end at 0 .
#Only s im i l a r CLUT s i z e−va lue s atm
CLUT = np . z e r o s ((3 , s i zeR) , dtype=np . u int8)
#Generate the CLUT as 2D arrays in R, G, B order .
f o r i in range (s izeR) :

CLUT[0] [i] = s izeR − i
CLUT[1] [i] = sizeG − i
CLUT[2] [i] = s izeB − i

r e turn CLUT

def ChangeCLUT(OldCLUT, NewCLUT, TestEntity) :
#r ep l a c e OldCLUT with NewCLUT. OldCLUT and NewCLUT are 2D arrays that conta in the CLUT va lue s in R, G, B order .
#OldCLUT and NewCLUT are o f the same bit−s i z e .
OutCLUT = [[[0 f o r b in range (l en (NewCLUT [0] [0]))] f o r g in range (l en (NewCLUT[0]))] f o r r in range (l en (NewCLUT))]

f o r i in range (l en (OldCLUT)) :
f o r CurrentX in range (l en (OldCLUT[i])) :

OutCLUT[i] [CurrentX] = NewCLUT[i] [CurrentX]
TestEntity .ChangeCLUT += 1
return OutCLUT

def ApplyCLUT(Picture , CLUT, X Offset , TestEntity) :

PictureOut = np . z e ro s ((800 , 4) , dtype=np . u int8)

5

#Over the range o f p i c tu r e
f o r CurrentX in range (l en (P ic ture)) :

i f TestEntity . FreeLine [CurrentX+X Offset] :

#Temp [0] , Temp [1] , Temp [2] = CLUT[0] [P i c ture [CurrentX] [0]] , CLUT[1] [P i c ture [CurrentX] [1]] , CLUT[2] [P i c ture [CurrentX] [2]]

#Set the p i x e l to the value in the CLUT
PictureOut [CurrentX+X Offset] [0] , PictureOut [CurrentX+X Offset] [1] , PictureOut [CurrentX+X Offset] [2] = CLUT[0] [P i c ture [CurrentX] [0]] , CLUT[1] [P i c ture [CurrentX] [1]] , CLUT[2] [P i c ture [CurrentX] [2]]
i f (l en (P ic ture [CurrentX]) == 4) :

PictureOut [CurrentX+X Offset] [3] = Pic ture [CurrentX+X Offset] [3]

i f TestEntity . CurrentLayer != 0 :
TestEntity . FreeLine [CurrentX + X Offset] = Fal se

TestEntity . CLUT Pixel Applied += 1

TestEntity . CLUT Applied += 1

return PictureOut

1.5 DemoScene.py

import AlphaBlending
import AlphaMasking
import OperationsCounter
import Dynamic RAM
import CLUT
from PIL import Image
import Ana ly t i c s
import numpy as np
import MenusConstructor

import time

#I f you want to input custom va lues . Test ing grounds .
””” p r i n t (”Custom r e s o l u t i o n ? Yes/No”)
i f (input ()==(”Yes” or ” yes ”)) :

p r i n t (” Please input X r e s o l u t i o n ”)
ScreenResolut ionX = input ()
p r i n t (” Please input Y r e s o l u t i o n ”)
ScreenResolut ionY = input ()

e l s e :
p r i n t (”Okay , No custom r e s o l u t i o n : (Se t t i ng to standard r e s o l u t i o n 800x600 ”)
ScreenResolut ionX = 800
ScreenResolut ionY = 600 ”””

#Get sc r e en s i z e s
ScreenResolut ionX = MenusConstructor . ScreenResolut ionX

6

ScreenResolut ionY = MenusConstructor . ScreenResolut ionY

#Setup
TestEntity = OperationsCounter . OperationsCounter (ScreenResolutionY , ScreenResolut ionX)
StateMachineStatus = ”Main”
OutputBuffer = np . z e ro s ((ScreenResolutionX , 4) , dtype=np . u int8)
OutputBufferLarge = np . z e ro s ((ScreenResolutionY , ScreenResolutionX , 4) , dtype=np . u int8)

#Create RAM
RAM=Dynamic RAM.RAM(16 , TestEntity)
TestWithTime = True

#Main render funct ion , where the drawing magic happens .
de f Render (Items , CurrentY , RAM, TestEntity) :

TestEntity . FreeLine = [True]∗ ScreenResolut ionX
#Create a l i n e b u f f e r f o r shared use . Wil l always get p o s i t i o n 0 .
L ineBuf fe rAdress = RAM. put (np . z e r o s ((ScreenResolutionX , 4) , dtype=np . u int8) , TestEntity)

CurrentItem = Items [l en (Items)−1]
#Star t at top l ay e r . I t e r a t e downwards towards background .
whi l e CurrentItem . Next != None :

TestEntity . CurrentLayer = CurrentItem . Layer

RAM. StorePictureInRam (CurrentItem , CurrentY , RAM, TestEntity)

L ineBuf f e r = RAM. get (LineBuf ferAdress , TestEntity)
#I f cur rent l ay e r i s with in cur rent y , proceed to do ope ra t i on s
i f ((CurrentY >= CurrentItem . P i c tu r eO f f s e t [1]) and (CurrentY < CurrentItem . P i c tu r eO f f s e t [1] + CurrentItem . P i c tu r eS i z e [1])) :

i f (CurrentItem .ApplyCLUT) :
CLUTBuff = CLUT.ApplyCLUT(RAM. get (CurrentItem . Picture RAM Adress , TestEntity) , CurrentItem .CLUT, CurrentItem . P i c tu r eO f f s e t [0] , TestEntity)

f i l l b u f f e r with used p i x e l s
f o r x in range (ScreenResolut ionX) :

i f TestEntity . FreeLine [x] == False :
L ineBuf f e r [x] = CLUTBuff [x]

i f (CurrentItem . ApplyMask == True and CurrentItem . ApplyAlpha == False) :

MaskBuff = AlphaMasking . ApplyMask (RAM. get (CurrentItem . Picture RAM Adress , TestEntity) , CurrentItem . P i c tu r eO f f s e t [0] , Items [1] . P i c ture [CurrentY] , CurrentItem .Mask [CurrentY−CurrentItem . P i c tu r eO f f s e t [1]] , TestEntity)

f i l l b u f f e r with used p i x e l s
f o r x in range (ScreenResolut ionX) :

i f TestEntity . FreeLine [x] == False :
L ineBuf f e r [x] = MaskBuff [x]

7

i f (CurrentItem . ApplyAlpha) :

#workaround to use both alpha and mask
i f (CurrentItem . ApplyMask) :

AlphaBuff = AlphaMasking . ApplyMask (RAM. get (CurrentItem . Picture RAM Adress , TestEntity) , CurrentItem . P i c tu r eO f f s e t [0] , Items [1] . P i c ture [CurrentY] , CurrentItem .Mask [CurrentY−CurrentItem . P i c tu r eO f f s e t [1]] , TestEntity)

Temp = RAM. get (CurrentItem . Picture RAM Adress , TestEntity)

f o r x in range (l en (Temp)) :
i f TestEntity . FreeLine [x+CurrentItem . P i c tu r eO f f s e t [0]] == False :

Temp[x] = AlphaBuff [x + CurrentItem . P i c tu r eO f f s e t [0]]
RAM. p u t s p e c i f i c (CurrentItem . Picture RAM Adress , Temp, TestEntity)

#r e a l alpha part
e l s e :

AlphaBuff = AlphaBlending . ApplyAlpha (RAM. get (CurrentItem . Picture RAM Adress , TestEntity) , CurrentItem . P i c tu r eO f f s e t [0] , ”Over ” , Items [1] . P i c ture [CurrentY] , TestEntity)

f o r x in range (ScreenResolut ionX) :
i f TestEntity . FreeLine [x] == False :

L ineBuf f e r [x] = AlphaBuff [x]

#Store in ram
RAM. p u t s p e c i f i c (LineBuf ferAdress , L ineBuf fer , TestEntity)

#Move to next l ay e r
CurrentItem = CurrentItem . Next

#Draw background when at end o f array
CurrentItem = Items [1]
TestEntity . CurrentLayer = CurrentItem . Layer

RAM. StorePictureInRam (CurrentItem , CurrentY , RAM, TestEntity)
#Poss ib ly apply CLUT i f reques ted
i f (CurrentItem .ApplyCLUT) :

Buff = CLUT.ApplyCLUT(RAM. get (CurrentItem . Picture RAM Adress , TestEntity) , CurrentItem .CLUT, CurrentItem . P i c tu r eO f f s e t [0] , TestEntity)
Temp = RAM. get (CurrentItem . Picture RAM Adress , TestEntity)
f o r x in range (ScreenResolut ionX) :

#Knotete INC .
Temp[x] = Buff [x]

RAM. p u t s p e c i f i c (CurrentItem . Picture RAM Adress , Temp, TestEntity)

#F i l l r e s t o f unmodif ied p i x e l s with background

8

f o r x in range (ScreenResolut ionX) :
i f (TestEntity . FreeLine [x] == True) :

L ineBuf f e r [x] = Items [1] . P i c ture [CurrentY] [x]

r e turn RAM. get (LineBuf ferAdress , TestEntity) , TestEntity

Runs = 0
whi le (1) :

#Construct the main scene i f statemachine r eque s t s i t
i f (StateMachineStatus == ”Main ”) :

#Clean t e s t i n g
Ana ly t i c s . Clean (TestEntity)

#Construct the MainMenu Scene Desc r ip to r l i s t
MainMenu = MenusConstructor . MainMenuBuild (TestEntity)

#Star t t iming
TestWithTime = True
#Total time
MuskTime = time . time ()
f o r CurrentY in range (ScreenResolut ionY) :

TestEntity . CurrentY = [CurrentY]

#MainLoop f o r render
#Line−time
StartTime = time . time ()
#Star t render
OutputBuffer , TestEntity = Render (MainMenu , CurrentY , RAM, TestEntity)
EndTime = time . time ()

RAM. CheckEveryArrayBit (TestEntity)
#Cleanup
RAM. c l e a r (” Al l ” , TestEntity)
#End MainLoop
#Save time
TestEntity . TimeTaken [CurrentY] = EndTime − StartTime
#OutputBufferLarge i s only used to v i s u a l i z e the whole p i c tu r e at the end . NOT FOR THE ACTUAL MEASUREMENTS OF LINE TIMINGS!
OutputBufferLarge [CurrentY] = OutputBuffer

#More an a l y t i c s
Ana ly t i c s . Test ing (TestEntity , CurrentY)

9

Analyt i c s . Clean (TestEntity)

MoskTime = time . time ()
FullTime = MoskTime − MuskTime
pr in t (FullTime)

#Print TestEntity in to Histograms
Ana ly t i c s . histogram (TestEntity . TimeTaken)
Ana ly t i c s . Analyze (TestEntity)

#draw OutputBufferLarge to screen , and save i t l o c a l l y
OutputBuf ferPicture = Image . fromarray (OutputBufferLarge)
OutputBuf ferPicture . save (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Test DemoScene .bmp”)
#OutputBuf ferPicture . show ()
p r i n t (” Pr intedPic ture ”)

#Run MainMenu f o r x c y c l e s
Runs += 1
de l MainMenu
i f (Runs >= 1) :

StateMachineStatus = ”SettingsMenu”
Runs = 0
#Hmm

#Acts the same way as MainMenu when ran . No comments neccesary .
i f (StateMachineStatus == ”SettingsMenu ”) :

Ana ly t i c s . Clean (TestEntity)

SettingsMenu = MenusConstructor . Sett ingsMenuBuild (TestEntity)

TestWithTime = True
f o r CurrentY in range (ScreenResolut ionY) :

TestEntity . CurrentY = [CurrentY]

StartTime = time . time ()
OutputBuffer , TestEntity = Render (SettingsMenu , CurrentY , RAM, TestEntity)
EndTime = time . time ()
RAM. CheckEveryArrayBit (TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)

Ana ly t i c s . Test ing (TestEntity , CurrentY)
Ana ly t i c s . Clean (TestEntity)

OutputBufferLarge [CurrentY] = OutputBuffer

Ana ly t i c s . histogram (TestEntity . TimeTaken)
Ana ly t i c s . Analyze (TestEntity)

10

OutputBuf ferPicture = Image . fromarray (OutputBufferLarge)
OutputBuf ferPicture . save (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Test DemoScene SettingsMenu .bmp”)

Runs += 1
de l SettingsMenu
i f (Runs >= 1) :

StateMachineStatus = ”SubSettingsMenu”
Runs = 0
#Hmm

#No comments needed
i f (StateMachineStatus == ”SubSettingsMenu ”) :

Ana ly t i c s . Clean (TestEntity)

SubSettingsMenu = MenusConstructor . SubSettingsMenuBuild (TestEntity)

TestWithTime = True
f o r CurrentY in range (ScreenResolut ionY) :

TestEntity . CurrentY = [CurrentY]

#MainLoop f o r render
StartTime = time . time ()
OutputBuffer , TestEntity = Render (SubSettingsMenu , CurrentY , RAM, TestEntity)
EndTime = time . time ()
RAM. CheckEveryArrayBit (TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
#End MainLoop

TestEntity . TimeTaken [CurrentY] = EndTime − StartTime

Ana ly t i c s . Test ing (TestEntity , CurrentY)

Ana ly t i c s . Clean (TestEntity)

OutputBufferLarge [CurrentY] = OutputBuffer

Ana ly t i c s . histogram (TestEntity . TimeTaken)
Ana ly t i c s . Analyze (TestEntity)

OutputBuf ferPicture = Image . fromarray (OutputBufferLarge)
OutputBuf ferPicture . save (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Test DemoScene SubSettingsMenu .bmp”)

Runs += 1
de l SubSettingsMenu
i f (Runs >= 1) :

StateMachineStatus = ”Done”
Runs = 0
#Hmm

e l s e :
break

11

1.6 DynamicRAM.py

#This code w i l l s imulate a dynamic RAM module with a s e t s i z e as i n i t input argument .
#I t w i l l increment an a t t r i b u t e o f the input c l a s s ”TestEntity ” every time each func t i on i s c a l l e d .

from numpy import t r u e d i v i d e

#I n i t i a t e a RAM module
c l a s s RAM:

de f i n i t (s e l f , S ize , TestEnt i tyIn) :
s e l f . S i z e = S i z e
s e l f . data = [None] ∗ S i z e
s e l f . dataoccupied = [Fa l se] ∗ S i z e
s e l f . RAMTestEntity = TestEnt i tyIn

A func t i on to put data in to the RAM array , and return an andress
de f put (s e l f , data , TestEntity) :

TestEntity . RAM put call += 1

#loop through dataoccupied to see i f the re i s space l e f t in the ram . I f the re i s , put the data in the ram .
f o r i in range (l en (s e l f . dataoccupied)) :

i f s e l f . dataoccupied [i] == False :
s e l f . data [i] = data
s e l f . dataoccupied [i] = True
TestEntity .RAM put += 1
return i

#I f no p lace l e f t in the ram , p r i n t e r r o r .
p r i n t (”No space l e f t in the RAM”)
return −1

#Put data in s p e c i f i c RAM adre s s . S im i l a r to r e gu l a r put , but no scanning needed .
de f p u t s p e c i f i c (s e l f , adress , data , TestEntity) :

s e l f . data [adre s s] = data
s e l f . dataoccupied [adre s s] = True
TestEntity .RAM put += 1
return adre s s

#Function to get the data at a g iven adre s s
de f get (s e l f , adress , TestEntity) :

TestEntity . RAM get call += 1

#check i f the adre s s i s in the ram
#I f not in RAM
i f s e l f . dataoccupied [adre s s] == False :

p r i n t (”Data not in the RAM”)
TestEntity . RAM get DataNotFound += 1
return −1

#I f in RAM
e l i f s e l f . dataoccupied [adre s s] == True :

TestEntity . RAM get += 1
return s e l f . data [adre s s]

12

#S i tua t i on s not covered w i l l g ive an e r r o r .
e l i f (s e l f . dataoccupied [adre s s] == True and s e l f . data [adre s s] == None) or (s e l f . dataoccupied [adre s s] == False and s e l f . data [adre s s] != None) :

TestEntity . RAM get error += 1
pr in t (” Fatal Error . S i t ua t i on not covered by the code . ”)
re turn −1

#Function to c l e a r out the ram of e i t h e r a l l data , or s e l e c t data .
de f c l e a r (s e l f , adress , TestEntity) :

i f ad re s s == ”Al l ” :
f o r i in range (l en (s e l f . dataoccupied)) :

s e l f . data [i] = None
s e l f . dataoccupied [i] = Fal se
TestEntity . RAM clear += 1

return 0
e l s e :

s e l f . data [adre s s] = None
s e l f . dataoccupied [adre s s] = Fal se
TestEntity . RAM clear += 1

#I f commando ”Al l ” , c l e a r a l l data in the ram .

re turn True

#Function to check how many ” e n t i t i e s ” are in the RAM
def check (s e l f , TestEntity) :

count = 0
f o r i in range (l en (s e l f . dataoccupied)) :

i f s e l f . dataoccupied [i] == True :
count += 1

#pr in t (” There are ” , count , ”data in the RAM”)
#TestEntity . RAM check += 1
return count

#Function to f i nd how many bytes are s to r ed in RAM
def CheckEveryArrayBit (s e l f , TestEntity) :

DataSize = 0
DataArray = 0
#DataBits = 0
f o r i in range (l en (s e l f . data)) :

i f (s e l f . dataoccupied [i]) :
X = len (s e l f . data [i]) − 1
Z = len (s e l f . data [i] [X])

DataArray = X ∗ Z
e l s e :

break

TestEntity . RAM Used Bytes += DataArray

#pr in t (” There are ” , DataSize , ” da tab i t s in the RAM”)
return

13

#Store a Y−ax i s o f a p i c tu r e in ram
def StorePictureInRam (s e l f , Structure , CurrentY , RAM Entity , TestEntity) :

#Save the cur rent l i n e o f the a c t i v e p i c tu r e in the RAM.
#
i f (CurrentY < Struc ture . P i c tu r eS i z e [1] + Structure . P i c tu r eO f f s e t [1]) and (CurrentY >= Structure . P i c tu r eO f f s e t [1]) :

S t ruc ture . Picture RAM Adress = RAM Entity . put (St ructure . P i c ture [CurrentY−Struc ture . P i c tu r eO f f s e t [1]] , TestEntity)
St ruc ture . PictureStoredInRam = True

e l s e :
S t ruc ture . PictureStoredInRam = False

1.7 MenusCOnstructor.py

import Scene Desc r ip to r
import AlphaBlending
import numpy as np
from PIL import Image
import CLUT

#Setup
ScreenResolut ionX = 800
ScreenResolut ionY = 600

#Build In f o f o r MainMenu
#Tips : always in c lude mask f o r t ex t . Match the mask with a blackout o f the text .
de f MainMenuBuild (TestEntity) :

#Use Scene Desc r ip to r to bu i ld the scene through a func t i on
MainMenuBG = Scene Desc r ip to r . SceneDescr iptor (0 , ScreenResolutionX , ScreenResolut ionY)

MainMenuBG. Ex i s t s = 1
#MainMenu1 . Layer = 0

#se t background to sc r e en r e s o l u t i o n
#Save p i c tu r e and CLUT in the c l a s s
MainMenuBG. Pic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /MainMenuBackground .bmp”)
MainMenuBG. Pic ture = np . asar ray (MainMenuBG. Pic ture . convert (’RGBA’))
MainMenuBG. P i c tu r eS i z e = [ScreenResolutionX , ScreenResolut ionY]
MainMenuBG.ApplyCLUT = False
MainMenuBG.CLUT = CLUT. GenerateTestCLUT (256 , 256 , 256)
#MainMenuBG.DrawOverBG = False

#Background with in de f ined s c r e e n s i z e ?
i f ((MainMenuBG. P i c tu r eS i z e [1] <= ScreenResolut ionY) and (MainMenuBG. P i c tu r eS i z e [0]) <= ScreenResolut ionX) :

pass
e l s e :

p r i n t (” Error ! P i c ture i s not the same s i z e as the s c r e en r e s o l u t i o n . The background needs to f i t the s c r e en . ”)
e x i t ()

#Construct l ay e r 1
MainMenu1 = Scene Desc r ip to r . SceneDescr iptor (1 , 200 , 100)
MainMenu1 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/ I n n s t i l l i n g e r 2 0 0 1 0 0 .bmp”)
MainMenu1 . P ic ture = MainMenu1 . P ic ture . convert (’RGBA’)
MainMenu1 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (MainMenu1 . P ic ture) , 200)
MainMenu1 . P i c tu r eS i z e = [200 , 100]

14

MainMenu1 . P i c tu r eO f f s e t = [600 , 0]
MainMenu1 .CLUT = CLUT. GenerateTestCLUT (256 , 256 , 256)

#MainMenu1 .ApplyCLUT = True
MainMenu1 . ApplyMask = True
MainMenu1 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/ I n n s t i l l i n g e r 2 0 0 1 0 0 .bmp”))

#Construct l ay e r 2
MainMenu2 = Scene Desc r ip to r . SceneDescr iptor (2 , 100 , 100)
MainMenu2 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Kaf f e 100 100 .bmp”)
MainMenu2 . P ic ture = MainMenu2 . P ic ture . convert (’RGBA’)
MainMenu2 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (MainMenu2 . P ic ture) , 255)
MainMenu2 . P i c tu r eS i z e = [100 , 100]

MainMenu2 . ApplyMask = True
MainMenu2 . P i c tu r eO f f s e t = [700 , 300]
MainMenu2 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Kaf f e 100 100 .bmp”))

#Construct l ay e r 3
MainMenu3 = Scene Desc r ip to r . SceneDescr iptor (3 , 300 , 100)
MainMenu3 . P i c tu r eS i z e = [300 , 100]

MainMenu3 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Brukerguide 300 100 .bmp”)
MainMenu3 . P ic ture = MainMenu3 . P ic ture . convert (’RGBA’)
MainMenu3 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (MainMenu3 . P ic ture) , 120)

MainMenu3 . P i c tu r eO f f s e t = [0 , 200]
MainMenu3 . ApplyAlpha = True
MainMenu3 . P ic ture = AlphaBlending . PutAlpha (MainMenu3 . Picture , 120)

#MainMenu3 .ApplyCLUT = True
#MainMenu3 .CLUT = CLUT. GenerateTestCLUT (256 , 256 , 256)
#End−en t i t y
MainMenuEnd = Scene Desc r ip to r . Empty

#Create scene array
MainMenu = Scene Desc r ip to r . SceneItems
MainMenu . Array = [MainMenuBG, MainMenu1 , MainMenu2 , MainMenu3]

#Create a l i nked l i s t
MainMenu3 . Next = MainMenu2
MainMenu2 . Next = MainMenu1
MainMenu1 . Next = MainMenuEnd
#MainMenuBG. Next = MainMenuEnd
MainMenuEnd . Next = None

TestEntity . ScenesConstructed += 1
return MainMenu , MainMenuBG, MainMenu1 , MainMenu2 , MainMenu3

15

#The f o l l ow i ng scene con s t ru c t i on s should need no more exp lanat ion .

MainMenuBG = Scene Desc r ip to r . SceneDescr iptor (0 , ScreenResolutionX , ScreenResolut ionY)

#Construct S e t t i n g s Menu
#Tips : always in c lude mask f o r t ex t . Match the mask with a blackout o f the text .
de f Sett ingsMenuBuild (TestEntity) :

Sett ingsMenuBuild = Scene Desc r ip to r . SceneDescr iptor (0 , ScreenResolutionX , ScreenResolut ionY)

SettingsMenuBuild . Ex i s t s = 1

#se t background to sc r e en r e s o l u t i o n
SettingsMenuBuild . P i c ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r / Sett ingsBackground .bmp”)
SettingsMenuBuild . P i c ture = np . asar ray (SettingsMenuBuild . P i c ture . convert (’RGBA’))
Sett ingsMenuBuild . P i c tu r eS i z e = [ScreenResolutionX , ScreenResolut ionY]
SettingsMenuBuild .ApplyCLUT = False
Sett ingsMenuBuild .CLUT = CLUT. GenerateTestCLUT (256 , 256 , 256)

i f ((SettingsMenuBuild . P i c tu r eS i z e [1] <= ScreenResolut ionY) and (SettingsMenuBuild . P i c tu r eS i z e [0]) <= ScreenResolut ionX) :
pass

e l s e :
p r i n t (” Error ! P i c ture i s not the same s i z e as the s c r e en r e s o l u t i o n . The background needs to f i t the s c r e en . ”)
e x i t ()

#Buf f e r P ic ture 1
SettingsMenuBuild1 = Scene Desc r ip to r . SceneDescr iptor (1 , 400 , 200)
SettingsMenuBuild1 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Sub−Se t t i ng s 400 200 .bmp”)
SettingsMenuBuild1 . P ic ture = SettingsMenuBuild1 . P ic ture . convert (’RGBA’)
SettingsMenuBuild1 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (SettingsMenuBuild1 . P ic ture) , 200)
SettingsMenuBuild1 . P i c tu r eO f f s e t = [0 , 100]
Sett ingsMenuBuild1 .ApplyCLUT = False
Sett ingsMenuBuild1 .CLUT = CLUT. GenerateTestCLUT (256 , 256 , 256)

#MainMenu1 .ApplyCLUT = True
SettingsMenuBuild1 . ApplyMask = True
SettingsMenuBuild1 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Sub−Se t t i ng s 400 200 .bmp”))

#Buf f e r P ic ture 2
SettingsMenuBuild2 = Scene Desc r ip to r . SceneDescr iptor (2 , 200 , 100)
SettingsMenuBuild2 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Temperatur 200 100 .bmp”)
SettingsMenuBuild2 . P ic ture = SettingsMenuBuild2 . P ic ture . convert (’RGBA’)
SettingsMenuBuild2 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (SettingsMenuBuild2 . P ic ture) , 200)
SettingsMenuBuild2 . ApplyMask = True
SettingsMenuBuild2 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Temperatur 200 100 .bmp”))

Sett ingsMenuBuild2 . ApplyAlpha = True

SettingsMenuBuild2 . P i c tu r eO f f s e t = [300 , 500]

16

#Buf f e r P ic ture 3
SettingsMenuBuild3 = Scene Desc r ip to r . SceneDescr iptor (3 , 300 , 100)
SettingsMenuBuild3 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Brukerguide 300 100 .bmp”)
SettingsMenuBuild3 . P ic ture = SettingsMenuBuild3 . P ic ture . convert (’RGBA’)
SettingsMenuBuild3 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (SettingsMenuBuild3 . P ic ture) , 50)
Sett ingsMenuBuild3 . P i c tu r eO f f s e t = [500 , 500]

Sett ingsMenuBuild3 . ApplyMask = True
SettingsMenuBuild3 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Brukerguide 300 100 .bmp”))

#Buf f e r P ic ture 4
SettingsMenuBuild4 = Scene Desc r ip to r . SceneDescr iptor (4 , 200 , 100)
SettingsMenuBuild4 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Ti lbake 200 100 .bmp”)
SettingsMenuBuild4 . P ic ture = SettingsMenuBuild4 . P ic ture . convert (’RGBA’)
SettingsMenuBuild4 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (SettingsMenuBuild4 . P ic ture) , 0)
Sett ingsMenuBuild4 . P i c tu r eO f f s e t = [500 , 100]

Sett ingsMenuBuild4 . ApplyMask = True
SettingsMenuBuild4 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Ti lbake 200 100 .bmp”))

SettingsMenuBuildEnd = Scene Desc r ip to r . Empty

SettingsMenu = Scene Desc r ip to r . SceneItems
SettingsMenu . Array = [SettingsMenuBuild , SettingsMenuBuild1 , SettingsMenuBuild2 , SettingsMenuBuild3 , Sett ingsMenuBuild4]

#Create a l i nked l i s t
Sett ingsMenuBuild4 . Next = SettingsMenuBuild3
SettingsMenuBuild3 . Next = SettingsMenuBuild2
SettingsMenuBuild2 . Next = SettingsMenuBuild1
SettingsMenuBuild1 . Next = SettingsMenuBuildEnd
#SettingsMenuBuild . Next = SettingsMenuBuildEnd
SettingsMenuBuildEnd . Next = None

TestEntity . ScenesConstructed += 1

SettingsMenu = Scene Desc r ip to r . SceneItems
SettingsMenu . Array = [SettingsMenuBuild , SettingsMenuBuild1 , SettingsMenuBuild2 , SettingsMenuBuild3 , Sett ingsMenuBuild4]

r e turn SettingsMenu , SettingsMenuBuild , SettingsMenuBuild1 , SettingsMenuBuild2 , SettingsMenuBuild3 , Sett ingsMenuBuild4

#Construct Subse t t ing s Menu
de f SubSettingsMenuBuild (TestEntity) :

SubSettingsMenuBuild = Scene Desc r ip to r . SceneDescr iptor (0 , ScreenResolutionX , ScreenResolut ionY)

SubSettingsMenuBuild . Ex i s t s = 1
#SubSettingsMenu . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/ I n n s t i l l i n g e r 2 0 0 1 0 0 .bmp”)

17

SubSettingsMenuBuild . P i c ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /SubSettingsBackground .bmp”)
SubSettingsMenuBuild . P i c ture = np . asar ray (SubSettingsMenuBuild . P i c ture . convert (’RGBA’))
SubSettingsMenuBuild . P i c tu r eS i z e = [ScreenResolutionX , ScreenResolut ionY]

SubSettingsMenuBuild .ApplyCLUT = True
SubSettingsMenuBuild .CLUT = CLUT. GenerateTestCLUT (256 , 256 , 256)

SubSettingsMenuBuild1 = Scene Desc r ip to r . SceneDescr iptor (1 , 800 , 600)
SubSettingsMenuBuild1 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /MainMenuBackground .bmp”)
SubSettingsMenuBuild1 . P ic ture = SubSettingsMenuBuild1 . P ic ture . convert (’RGBA’)
SubSettingsMenuBuild1 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (SubSettingsMenuBuild1 . P ic ture) , 200)

SubSettingsMenuBuild1 . ApplyMask = True
SubSettingsMenuBuild1 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r / S t j e rn e .bmp”))

SubSettingsMenuBuild2 = Scene Desc r ip to r . SceneDescr iptor (2 , 800 , 600)
SubSettingsMenuBuild2 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/NothingToSeeHere 800 600 .bmp”)
SubSettingsMenuBuild2 . P ic ture = SubSettingsMenuBuild2 . P ic ture . convert (’RGBA’)
SubSettingsMenuBuild2 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (SubSettingsMenuBuild2 . P ic ture) , 200)

SubSettingsMenuBuild2 . ApplyMask = True
SubSettingsMenuBuild2 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/NothingToSeeHere 800 600 .bmp”))

SubSettingsMenuBuild3 = Scene Desc r ip to r . SceneDescr iptor (3 , 400 , 200)
SubSettingsMenuBuild3 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/BACK 400 200 .bmp”)
SubSettingsMenuBuild3 . P ic ture = SubSettingsMenuBuild3 . P ic ture . convert (’RGBA’)
SubSettingsMenuBuild3 . P ic ture = AlphaBlending . PutAlpha (np . asar ray (SubSettingsMenuBuild3 . P ic ture) , 200)

SubSettingsMenuBuild3 . P i c tu r eO f f s e t = [i n t (ScreenResolut ionX /2 − 200) , i n t (ScreenResolut ionY /2 − 100)]
SubSettingsMenuBuild3 . ApplyMask = True
SubSettingsMenuBuild3 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/BACK 400 200 .bmp”))

SettingsMenu = Scene Desc r ip to r . SceneItems
SettingsMenu . Array = [SubSettingsMenuBuild , SubSettingsMenuBuild1 , SubSettingsMenuBuild2 , SubSettingsMenuBuild3]

SubSettingsMenuBuildEnd = Scene Desc r ip to r . Empty
#Create a l i nked l i s t
SubSettingsMenuBuild3 . Next = SubSettingsMenuBuild2
SubSettingsMenuBuild2 . Next = SubSettingsMenuBuild1
SubSettingsMenuBuild1 . Next = SubSettingsMenuBuildEnd
#SettingsMenuBuild . Next = SettingsMenuBuildEnd
SubSettingsMenuBuildEnd . Next = None

TestEntity . ScenesConstructed += 1

SubSettingsMenu = Scene Desc r ip to r . SceneItems
SubSettingsMenu . Array = [SubSettingsMenuBuild , SubSettingsMenuBuild1 , SubSettingsMenuBuild2 , SubSettingsMenuBuild3]

r e turn SubSettingsMenu , SubSettingsMenuBuild , SubSettingsMenuBuild1 , SubSettingsMenuBuild2 , SubSettingsMenuBuild3

1.8 OperationsCounter.py

18

#A t e s t c l a s s with a t t r i b u t e s that measures t imes a func t i on has been used .

#Length i s the y−l ength o f the s c r e en .

#Just a l o t o f va lue s f o r read ing d i f f e r e n t va lue s
c l a s s OperationsCounter () :

de f i n i t (s e l f , Length , Width) :

FreeLine = [True]∗Width
s e l f . Length = Length

s e l f . CurrentLayer = 0

s e l f . ScenesConstructed = 0
s e l f . TimeTaken =[0]∗Length
#Alpha
#Redundant v

#Alpha
s e l f . AlphaPassed = 0

s e l f . ApplyAlpha Pixel = 0
s e l f . ApplyAlpha Pixel Array = [0] ∗ Length
s e l f . ApplyAlphaR = 0
s e l f . ApplyAlphaG = 0
s e l f . ApplyAlphaB = 0

s e l f . AlphaBlend = 0

#Mask
s e l f . NoMask = 0
s e l f . ApplyMask = 0
s e l f . ApplyMask Pixel Array = [0] ∗ Length

#CLUT
s e l f .ChangeCLUT = 0
s e l f . CLUT Applied = 0
s e l f . CLUT Pixel Applied = 0
s e l f . CLUT Pixel Array = [0] ∗ Length
s e l f . CLUT Pixel Skipped = 0

#RAM
s e l f . RAM put call = 0
s e l f .RAM put = 0
s e l f . RAM put Array = [0] ∗ Length

s e l f . RAM get call = 0
s e l f . RAM get = 0
s e l f . RAM get Array = [0] ∗ Length

s e l f . RAM get DataNotFound = 0
s e l f . RAM get error = 0
s e l f . RAM clear = 0
s e l f . RAM Used Cumulative = 0
s e l f . RAM Used Bits Cumulative = 0

19

s e l f .RAM Used = 0
s e l f . RAM Used Array = [0] ∗ Length
s e l f . RAM Used Bytes = 0
s e l f . RAM Used Bytes Array = [0] ∗ Length

#s e l f . l i s t =

””” @property
de f NoMask(s e l f) :

r e turn s e l f . NoMask
@NoMask . s e t t e r
de f NoMask(s e l f , va lue) :

s e l f . NoMask = value
p r i n t (” value : ”)
p r i n t (s e l f . NoMask) ”””

1.9 Referanse DobbelBuffer Enkel.py

import OperationsCounter
import Dynamic RAM
import CLUT
from PIL import Image
import Ana ly t i c s
import numpy as np
import Referanse Funks joner

import time

#Simple scene d e s c r i p t o r l i t e , based on model scene d e s c r i p t o r
c l a s s P i c tu r eL i s t :

de f i n i t (Se l f , Layers) :
S e l f . l i s t = [0] ∗ Layers

c l a s s P ic ture :
de f i n i t (Se l f , l ayer , ResolutionX , ResolutionY) :

S e l f . Ex i s t s = 1
S e l f . S i z e = [ResolutionX , ResolutionY]
S e l f . Layer = l ay e r
S e l f . P i c ture = [[]]
S e l f . O f f s e t = [0 , 0]
S e l f .ApplyCLUT = False
S e l f .CLUT = np . z e ro s ((3 , 256) , dtype=np . u int8)
S e l f . ApplyMask = False
S e l f .Mask = [[]]
S e l f . ApplyAlpha = False

ScreenResolut ionX = 800
ScreenResolut ionY = 600

TargetBuf fer = False
TestEntity = OperationsCounter . OperationsCounter (ScreenResolutionX , ScreenResolut ionY)
StateMachineStatus = ”MainMenu”
RAM = Dynamic RAM.RAM(16 , TestEntity)

20

#A l o t o f manual con s t ruc t i on o f scenes , us ing the scene d e s c r i p t o r .

#Main Menu
MainMenuBG = Picture (0 , ScreenResolutionX , ScreenResolut ionY)
MainMenu1 = Picture (1 , 200 , 100)
MainMenu2 = Picture (2 , 100 , 100)
MainMenu3 = Picture (3 , 300 , 100)

MainMenuBG. Pic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /MainMenuBackground .bmp”) . convert (”RGBA”))
MainMenu1 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/ I n n s t i l l i n g e r 2 0 0 1 0 0 .bmp”) . convert (”RGBA”))
MainMenu2 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Kaf f e 100 100 .bmp”) . convert (”RGBA”))
MainMenu3 . P ic ture = Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Brukerguide 300 100 .bmp”) . convert (”RGBA”)
MainMenu3 . P ic ture . putalpha (128)
MainMenu3 . P ic ture = np . asar ray (MainMenu3 . P ic ture)

MainMenu1 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/ I n n s t i l l i n g e r 2 0 0 1 0 0 .bmp”))
MainMenu2 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Kaf f e 100 100 .bmp”))

MainMenu1 . O f f s e t = [600 , 0]
MainMenu2 . O f f s e t = [700 , 300]
MainMenu3 . O f f s e t = [0 , 200]

#Se t t i n g s
SettingsMenuBG = Picture (0 , ScreenResolutionX , ScreenResolut ionY)
SettingsMenu1 = Picture (1 , 400 , 200)
SettingsMenu2 = Picture (2 , 200 , 100)
SettingsMenu3 = Picture (3 , 300 , 100)
SettingsMenu4 = Picture (4 , 200 , 100)

SettingsMenuBG . Pic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r / Sett ingsBackground .bmp”) . convert (”RGBA”))
SettingsMenu1 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Sub−Se t t i ng s 400 200 .bmp”) . convert (”RGBA”))
SettingsMenu2 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Temperatur 200 100 .bmp”) . convert (”RGBA”))
SettingsMenu3 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Brukerguide 300 100 .bmp”) . convert (”RGBA”))
SettingsMenu4 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Ti lbake 200 100 .bmp”) . convert (”RGBA”))

SettingsMenu1 . O f f s e t = [0 , 100]
SettingsMenu2 . O f f s e t = [300 , 500]
SettingsMenu3 . O f f s e t = [500 , 500]
SettingsMenu4 . O f f s e t = [500 , 100]

SettingsMenu1 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Sub−Se t t i ng s 400 200 .bmp”))
SettingsMenu2 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Temperatur 200 100 .bmp”))
SettingsMenu3 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Brukerguide 300 100 .bmp”))
SettingsMenu4 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/Ti lbake 200 100 .bmp”))

#SubSett ings
SubSettingsMenuBG = Picture (0 , ScreenResolutionX , ScreenResolut ionY)
SubSettingsMenu1 = Picture (1 , 800 , 600)
SubSettingsMenu2 = Picture (2 , 800 , 600)
SubSettingsMenu3 = Picture (3 , 400 , 200)

SubSettingsMenuBG . Pic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /SubSettingsBackground .bmp”) . convert (”RGBA”))
SubSettingsMenu1 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /MainMenuBackground .bmp”) . convert (”RGBA”))

21

SubSettingsMenu2 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/NothingToSeeHere 800 600 .bmp”) . convert (”RGBA”))
SubSettingsMenu3 . P ic ture = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/BACK 400 200 .bmp”) . convert (”RGBA”))

SubSettingsMenuBG .CLUT = CLUT. GenerateTestCLUT (256 , 256 , 256)
SubSettingsMenu1 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r / S t j e rn e .bmp”))
SubSettingsMenu2 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/NothingToSeeHere 800 600 .bmp”))
SubSettingsMenu3 .Mask = np . asar ray (Image . open (”F: / Google Drive / Skule /Elsys 5 . r /Nordic Master/ B i l l e d e r /Egne/BACK 400 200 .bmp”))

SubSettingsMenuBG . Of f s e t = [0 , 0]
SubSettingsMenu1 . O f f s e t = [0 , 0]
SubSettingsMenu2 . O f f s e t = [0 , 0]
SubSettingsMenu3 . O f f s e t = [i n t (ScreenResolut ionX /2 − 200) , i n t (ScreenResolut ionY /2 − 100)]

TimeArray = [0] ∗ 3
whi l e (1) :

i f StateMachineStatus == ”MainMenu” :
FreeLine=np . f u l l ((ScreenResolutionY , ScreenResolut ionX) , True)

StartTime = time . time ()
#Operation 1
Out , FreeLine = Referanse Funks joner . Ref Alpha (MainMenu3 , MainMenu3 . Of f se t , MainMenuBG, FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
#Operation 2
Out1 , FreeLine = Referanse Funks joner . Ref Mask (MainMenu1 . Picture , MainMenu1 . Of f se t , Out , MainMenu1 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
#Operation 3
Out2 , FreeLine = Referanse Funks joner . Ref Mask (MainMenu2 . Picture , MainMenu2 . Of f se t , Out1 , MainMenu2 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
#Operation 4
Out3 = Referanse Funks joner . R e f F i l l (Out2 , MainMenuBG. Picture , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)

#Timing
EndTime = time . time ()
TimeArray [0] = (EndTime − StartTime)
#pr in t the time
#Next s t a t e
StateMachineStatus = ”SettingsMenu”

#Show f i n a l output
#Out3 = Image . fromarray (Out3)
#Out3 . show ()

#Not important , but shows how Shadow bu f f e r s switch on a so f tware l e v e l .
i f TargetBuf fer == True :

Buf f e r0 = Out3
i f TargetBuf fer == False :

Buf f e r1 = Out3
TargetBuf fer != TargetBuf fer

#Rest o f s c ene s are much o f the same .

22

i f StateMachineStatus == ”SettingsMenu ” :
FreeLine=np . f u l l ((ScreenResolutionY , ScreenResolut ionX) , True)

StartTime = time . time ()
Out , FreeLine = Referanse Funks joner . Ref Mask (SettingsMenu1 . Picture , SettingsMenu1 . Of f se t , SettingsMenuBG . Picture , SettingsMenu1 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
Out1 , FreeLine = Referanse Funks joner . Ref Mask (SettingsMenu2 . Picture , SettingsMenu2 . Of f se t , Out , SettingsMenu2 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
Out2 , FreeLine = Referanse Funks joner . Ref Mask (SettingsMenu3 . Picture , SettingsMenu3 . Of f se t , Out1 , SettingsMenu3 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
Out3 , FreeLine = Referanse Funks joner . Ref Mask (SettingsMenu4 . Picture , SettingsMenu4 . Of f se t , Out2 , SettingsMenu4 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
EndTime = time . time ()
TimeArray [1] = (EndTime − StartTime)

#Out3 = Image . fromarray (Out3)
#Out3 . show ()
StateMachineStatus = ”SubSettingsMenus”

i f StateMachineStatus == ”SubSettingsMenus ” :
FreeLine=np . f u l l ((ScreenResolutionY , ScreenResolut ionX) , True)

StartTime = time . time ()

Out = Referanse Funks joner . Ref CLUT(SubSettingsMenuBG . Picture , SubSettingsMenuBG .CLUT, [0 , 0] , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
Out1 , FreeLine = Referanse Funks joner . Ref Mask (SubSettingsMenu1 . Picture , SubSettingsMenu1 . Of f se t , Out , SubSettingsMenu1 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
Out2 , FreeLine = Referanse Funks joner . Ref Mask (SubSettingsMenu2 . Picture , SubSettingsMenu2 . Of f se t , Out1 , SubSettingsMenu2 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
Out3 , FreeLine = Referanse Funks joner . Ref Mask (SubSettingsMenu3 . Picture , SubSettingsMenu3 . Of f se t , Out2 , SubSettingsMenu3 .Mask , FreeLine , RAM, TestEntity)
RAM. c l e a r (” Al l ” , TestEntity)
#Out3 = Referanse Funks joner . R e f F i l l (Out2 , MainMenuBG. Picture , FreeLine , RAM, TestEntity)

EndTime = time . time ()
TimeArray [2] = (EndTime − StartTime)

#Get time
Ana ly t i c s . histogram (TimeArray)

Out3 = Image . fromarray (Out3)
Out3 . show ()
break

1.10 Referanse Funksjoner

#Create a func t i on that combines two p i c t u r e s by us ing the alpha blending a lgor i thm .
import numpy as np
from PIL import Image

#Create a func t i on that masks the cur rent p i c tu r e with a mask . S im i l a r to model Mask
de f Ref Mask (Foreground , Of f se t , Background , Mask , FreeLine , RAM, TestEntity) :

23

#Store in RAM
ForegroundAdress = RAM. put (Foreground , TestEntity)
BackgroundAdress = RAM. put (Background , TestEntity)
#For I t e r a t e over the whole p i c tu r e
f o r y in range (l en (Foreground)) :

f o r x in range (l en (Foreground [y])) :
f o r c in range (l en (Foreground [y] [x])) :

#I f maskbit empty , do nothing
i f Mask [y] [x] . a l l () == 0 :

pass
#i f maskbit set , mask out p i c tu r e
e l s e :

Temp1 = RAM. get (ForegroundAdress , TestEntity)
Temp2 = RAM. get (BackgroundAdress , TestEntity)
Temp2 [y+Of f s e t [1]] [x+Of f s e t [0]] = Temp1 [y] [x]
RAM. p u t s p e c i f i c (BackgroundAdress , Temp2 , TestEntity)
RAM. p u t s p e c i f i c (ForegroundAdress , Temp1 , TestEntity)
FreeLine [y+Of f s e t [1]] [x+Of f s e t [0]] = False

re turn RAM. get (BackgroundAdress , TestEntity) , FreeLine

#Create a func t i on that app l i e s a CLUT to the cur rent p i c tu r e . S im i l a r to model CLUT
def Ref CLUT(Picture , CLUT, Of f se t , RAM, TestEntity) :

#Store in RAM
PicAdress = RAM. put (Picture , TestEntity)
CLUTAdress = RAM. put (CLUT, TestEntity)
#For whole p i c tu r e
f o r y in range (l en (P ic ture)) :

f o r x in range (l en (P ic ture [y])) :
#For every channel

f o r c in range (l en (P ic ture [y] [x]) −1) :
TempPic = RAM. get (PicAdress , TestEntity)
TempCLUT = RAM. get (CLUTAdress , TestEntity)
#Change co lour to accompanied new CLUT value
Pic ture [y] [x] [c] = CLUT[c] [P i c ture [y] [x] [c]]
RAM. p u t s p e c i f i c (PicAdress , Picture , TestEntity)

re turn RAM. get (PicAdress , TestEntity)

#Function to apply alpha to a p i c tu r e . S im i l a r to model Alpha
de f Ref Alpha (StructFG , Of f se t , StructBG , FreeLine , RAM, TestEntity) :

PictureOut = np . z e ro s ((StructBG . S i z e [1] , StructBG . S i z e [0] , 4) , dtype=np . u int8)
#Store in RAM
ForegroundAdress = RAM. put (StructFG . Picture , TestEntity)
BackgroundAdress = RAM. put (StructBG . Picture , TestEntity)
PictureOutAdress = RAM. put (PictureOut , TestEntity)
f o r y in range (l en (StructBG . Pic ture)) :

f o r x in range (l en (StructBG . Pic ture [0])) :
i f x − Of f s e t [0] >= 0 and x − Of f s e t [0] < StructFG . S i z e [0] :

i f y − Of f s e t [1] >= 0 and y − Of f s e t [1] < StructFG . S i z e [1] :

24

#I f f u l l y t ransparent
i f StructFG . Pic ture [y−Of f s e t [1]] [x−Of f s e t [0]] [3] == 0 :

TempFG = RAM. get (ForegroundAdress , TestEntity)
TempOut = RAM. get (PictureOutAdress , TestEntity)
TempOut [x + Of f s e t [0]] = TempFG[y] [x]
RAM. p u t s p e c i f i c (PictureOutAdress , TempOut , TestEntity)
RAM. p u t s p e c i f i c (ForegroundAdress , TempFG, TestEntity)
TestEntity . AlphaPassed += 1

#Blend i t
#Each channel
#Fg∗Alpha + Bg∗(1−Alpha)
e l s e :

TempFG = RAM. get (ForegroundAdress , TestEntity)
TempBG = RAM. get (BackgroundAdress , TestEntity)
TempOut = RAM. get (PictureOutAdress , TestEntity)
R = TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [0] ∗TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [3] / 2 5 5 + TempBG[y] [x] [0]∗ (1 −TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [3] / 2 5 5)
TestEntity . ApplyAlphaR += 1
B = TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [1] ∗TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [3] / 2 5 5 + TempBG[y] [x] [1]∗ (1 −TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [3] / 2 5 5)
TestEntity . ApplyAlphaG += 1
G = TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [2] ∗TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [3] / 2 5 5 + TempBG[y] [x] [2]∗ (1 −TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [3] / 2 5 5)
TestEntity . ApplyAlphaB += 1
FreeLine [y] [x] = False
TempOut [y] [x] [0] , TempOut [y] [x] [1] , TempOut [y] [x] [2] , TempOut [y] [x] [3]

= R, G, B, TempFG[y−Of f s e t [1]] [x−Of f s e t [0]] [3]
RAM. p u t s p e c i f i c (PictureOutAdress , TempOut , TestEntity)

e l s e :
TempBG = RAM. get (BackgroundAdress , TestEntity)
TempOut = RAM. get (PictureOutAdress , TestEntity)
TempOut [y] [x] = TempBG[y] [x]
RAM. p u t s p e c i f i c (PictureOutAdress , TempOut , TestEntity)

e l s e :
TempBG = RAM. get (BackgroundAdress , TestEntity)
TempOut = RAM. get (PictureOutAdress , TestEntity)
TempOut [y] [x] = TempBG[y] [x]
RAM. p u t s p e c i f i c (PictureOutAdress , TempOut , TestEntity)

TestEntity . AlphaBlend += 1
return RAM. get (PictureOutAdress , TestEntity) , FreeLine

#F i l l s any f r e e p i x e l s with background
de f R e f F i l l (Picture , Background , FreeLine , RAM, TestEntity) :

PicAdress = RAM. put (Picture , TestEntity)
BackgroundAdress = RAM. put (Background , TestEntity)
f o r y in range (l en (Background)) :

f o r x in range (l en (Background [0])) :
i f FreeLine [y] [x] == True :

RAM. get (PicAdress , TestEntity)
RAM. get (BackgroundAdress , TestEntity)
P ic ture [y] [x] = Background [y] [x]

r e turn Pic ture

1.11 Scene Descriptor.py

#SCENE DESCRIPTOR
import numpy as np

25

c l a s s Empty () :
de f i n i t (s e l f) :

s e l f . Next = None

de f Bui ldScene (PictureFG , PictureBG , OperationsCounter) :

r e turn 0

#Array o f scenes , f o r l a y e r i n g purposes
c l a s s SceneItems :

de f i n i t (s e l f , Items , S i z e) :
s e l f . Items = [] ∗ Items
s e l f . NumberOfItems = S i z e
s e l f . P i c ture = []

#Class f o r wrapping scene around p i c tu r e
c l a s s SceneDescr iptor :

#Generate Scene
de f i n i t (Se l f , l ayer , ResolutionX , ResolutionY) :

S e l f . Ex i s t s = 1
S e l f . SizeX = ResolutionX
S e l f . SizeY = ResolutionY
S e l f . Layer = l ay e r
S e l f .DrawOverBG = True

S e l f . P i c ture = [[]]
S e l f . P i c tu r eS i z e = [ResolutionX , ResolutionY]
S e l f . PictureStoredInRam = False
S e l f . Picture RAM Adress = 0

S e l f . Next = None
S e l f . Previous = None

c l a s s P i c tu r e In f o :
#de f i n i t (S e l f) :
#Addi t iona l scene ope ra t i on s i n f o
S e l f . P i c tu r eO f f s e t = [0 , 0]

S e l f . ApplyAlpha = False
S e l f . ApplyTargetAlpha = False
S e l f . ApplyAlphaTarget = 0

S e l f . ApplyTargetMask = False
S e l f . ApplyMaskTarget = 0
S e l f . ApplyMask = False
S e l f .Mask = [[]]

S e l f .ApplyCLUT=False
S e l f .CLUT = np . z e ro s ((3 , 256) , dtype=np . u int8)
S e l f . GlobalCLUT=False

26

S e l f . GlobalCLUT = np . z e r o s ((3 , 256) , dtype=np . u int8)

#X, Y

27

	Introduction - Description of Task
	Background - Theories
	RAM
	Colour Lookup Table
	Alpha Blending
	Masking
	Horizontal Sync
	Frame Buffering
	Double Buffering
	Line Buffer
	Scene Descriptor
	Big O – Complexity
	Python Packages
	PIL - Python Image Library
	Numpy
	time
	matplotlib - pyplot

	Methodology
	CLUT Implementation
	Alpha Blending Implementation
	Masking Implementation
	RAM Implementation
	Scene Descriptor Implementation
	Rendering Structure Implementation

	Results
	A note about results
	Per-line timing diagram
	Reference Scene Timing
	RAM-usage per line
	Relative run-times
	Output Scenes

	Discussion
	Conclusion
	Results and pictures
	Alpha, Mask and CLUT operators per line
	Alpha
	Masking
	CLUT

	RAM put and get
	Output scenes
	Scene components
	Backgrounds
	Masks
	Other testing results

	Pre-project report for Master Thesis
	Python Code for model and reference model

