
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Thilogen Thambirajah

Pose Estimation with The Invariant
Extended Kalman Filter as a Stable
Observer

Master’s thesis in Mechanical engineering
Supervisor: Olav Egeland
June 2022

M
as

te
r’s

 th
es

is





Thilogen Thambirajah

Pose Estimation with The Invariant
Extended Kalman Filter as a Stable
Observer

Master’s thesis in Mechanical engineering
Supervisor: Olav Egeland
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering





Acknowledgements

I would like to express my deepest gratitude to my supervisor, Olav Egeland, for the guidance through-
out this master’s thesis. The feedback and assistance provided played a significant role in completing
this master thesis and is greatly appreciated.



Abstract

A typical application of an IMU is to measure the acceleration and angular velocity using accelerom-
eters and gyroscopes, and is often found in localization problems within the robotics field. In this
thesis, an extension of the extended Kalman filter (EKF), termed the invariant extended Kalman filter
(IEKF), is derived from [2] in order to achieve convergence around any trajectory which is a coveted
property for nonlinear observers.

Two cases from [2], simple car model and navigation on flat earth, are simulated to investigate the
IEKF as a stable observer in comparison to the EKF. The simulations displays the superiority of the
IEKF as it outperforms the EKF on every simulation performed. When it comes to more challenging
cases, the EKF is seen to diverge, whereas the IEKF does not diverge as a result of the logarithm of
the error obeying a linear differential equation, also referred to as a log-linear property, which gives
local stability around any trajectory.



Sammendrag

En typisk anvendelse av en IMU er å måle akselerasjonen og vinkelhastigheten ved hjelp av akselerome-
tre og gyroskoper, og finnes ofte i lokaliseringsproblemer innen robotikkfeltet. I denne oppgaven er en
utvidelse av det utvidede Kalman-filteret (EKF), kalt det invariante utvidede Kalman-filteret (IEKF),
utledet fra [2] for å oppnå konvergens rundt enhver bane som er en ettertraktet egenskap for ikke-
lineære observatører.

To tilfeller fra [2], enkel bilmodell og navigasjon på flat jord, er simulert for å undersøke IEKF som en
stabil observatør i forhold til EKF. Simuleringene viser IEKFs overlegenhet ettersom den overgår EKF
på hver simulering som utføres. Når det gjelder mer utfordrende tilfeller, ser man at EKF divergerer,
mens IEKF ikke divergerer som et resultat av at logaritmen til feilen følger en lineær differensialligning,
også referert til som en log-lineær egenskap, som gir lokal stabilitet rundt hvilken som helst bane.



Contents

Acknowledgements i

Abstract ii

Sammendrag iii

1. Introduction 1
1.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Background 2
2.1. Linear and nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1. Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2. Nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.1. Matrix Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2. Group of rotation matrices, SO(2) . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3. Group of rotation matrices, SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.4. Group of direct planar isometries, SE(2) . . . . . . . . . . . . . . . . . . . . . 4
2.2.5. Group of double direct planar isometries, SE2(3) . . . . . . . . . . . . . . . . . 5

2.3. Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1. Hamilton’s representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2. Quaternion represented by a scalar and a vector . . . . . . . . . . . . . . . . . 7
2.3.3. Vector represented as a quaternion . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.4. Quaternion represented as a four-dimensional vector . . . . . . . . . . . . . . . 8
2.3.5. Unit quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.6. Quaternion logarithm and exponential . . . . . . . . . . . . . . . . . . . . . . . 10

2.4. Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1. The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2. The Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. Nonlinear Attitude Filtering 17
3.1. Multiplicative Extended Kalman Filter - MEKF . . . . . . . . . . . . . . . . . . . . . 17

3.1.1. Time propagation of state estimate . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2. Error equations and linearization of error quaternions . . . . . . . . . . . . . . 18
3.1.3. Covariance propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4. MEKF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. Right Invariant Extended Kalman Filter - RIEKF . . . . . . . . . . . . . . . . . . . . 21
3.2.1. Time propagation of state estimate . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2. Eror equations and linearization of error quaternions . . . . . . . . . . . . . . . 21
3.2.3. Covariance propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4. RIEKF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



Contents v

4. Pose Estimation 24
4.1. Autonomous error dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1. Autonomous error dynamics formulated in SE(2) . . . . . . . . . . . . . . . . . 25
4.2. Log-linear property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3. Invariant EKF for right and left observations . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1. Left-invariant observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2. Right-invariant observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4. Simple car model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.1. Extended Kalman Filter - EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2. Left Invariant Extended Kalman Filter - LIEKF . . . . . . . . . . . . . . . . . 32

4.5. Navigation on flat earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.1. Multiplicative Extendend Kalman Filter - MEKF . . . . . . . . . . . . . . . . . 36
4.5.2. Right Invariant Extended Kalman Filter - RIEKF . . . . . . . . . . . . . . . . 40

5. Simulation 46
5.1. Nonlinear attitude filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2. Pose estimation - Simple car model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3. Pose estimation - Navigation on flat earth . . . . . . . . . . . . . . . . . . . . . . . . . 48

6. Results & Discussions 50
6.1. Simple car model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2. Navigation on flat earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7. Conclusion 60

A. Code listing 63
A.1. Simple car model - EKF & LIEKF python code . . . . . . . . . . . . . . . . . . . . . . 63
A.2. Navigation on flat earth - MEKF & RIEKF python code . . . . . . . . . . . . . . . . . 68



List of Figures

2.1. Matrix block diagram of a linear system with state x, input u and output y . . . . . . 3
2.2. Timeline illustrating the propagation and update notations used in relation to the state

estimate [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.1. Simulated results for the EKF and LIEKF pose estimation with an initial heading error
θ̂0 = 1◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2. Comparison of the attitude and position error for the EKF and LIEKF with initial
heading error θ̂0 = 1◦, plotted against the time. . . . . . . . . . . . . . . . . . . . . . . 51

6.3. Simulated results for the EKF and LIEKF pose estimation with an initial heading error
θ̂0 = 45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4. Comparison of the attitude and position error for the EKF and LIEKF with initial
heading error θ̂0 = 45◦, plotted against the time. . . . . . . . . . . . . . . . . . . . . . 53

6.5. Simulated results for the MEKF and RIEKF pose estimation with Q = Q1. . . . . . . 55
6.6. Comparison of the attitude and position error for the MEKF and RIEKF with Q = Q1,

plotted against the time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7. Simulated results for the MEKF and RIEKF pose estimation with Q = Q2. . . . . . . 57
6.8. Comparison of the attitude and position error for the MEKF and RIEKF with Q = Q2,

plotted against the time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



List of Tables

5.1. Nonlinear attitude filtering - Quaternion: Parameters and their respective values for
the system initialization for the MEKF and RIEKF . . . . . . . . . . . . . . . . . . . . 46

5.2. Nonlinear attitude filtering - Quaternion: Parameters and their respective values for
the noise initialization and coefficient matrices for the MEKF and RIEKF . . . . . . . 47

5.3. Pose estimation - Simple car model: Parameters and their respective values for the
system initialization of the EKF and LIEKF . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4. Pose estimation - Simple car model: Noise and covariance initialization parameters and
their respective values for the EKF and LIEKF . . . . . . . . . . . . . . . . . . . . . . 48

5.5. Pose estimation - Navigation on flat earth: Parameters and their respective values for
the system initialization of the MEKF and RIEKF . . . . . . . . . . . . . . . . . . . . 49

5.6. Pose estimation - Navigation on flat earth: Noise and covariance initialization parame-
ters and their respective values for the MEKF and RIEKF . . . . . . . . . . . . . . . . 49



Chapter 1.

Introduction

Kalman filtering and nonlinear observers are important in pose estimation with IMUs. Pose estima-
tion is the operation of estimating attitude and position of a robot, and plays a significant role for
autonomous robots or vehicles in regards to decision making about future actions [9].

A typical application for pose estimation is navigation [4],[19] which requires accurate estimation of
robot pose. For such problems, filter based methods like the extended Kalman filter (EKF) are widely
used as a result of its simplicity and efficiency [16],[14],[5]. The goal of a filter estimator is to achieve
convergence to zero of the state estimate [9]. However, the EKF does not guarantee optimality and
its efficiency is spontaneous. To achieve this goal, the Invariant EKF built on the nonlinear observer
theory [2] is introduced, where the theory of invariant observer design is based on the estimation error
being invariant under the action of matrix Lie group [6]. Since the EKF uses Kalman equations to
stabilize the estimation error, a general method is to attempt to derive local convergence properties
around any trajectories using the EKF [2].

The next chapter in this thesis consists of the background, where theoretical background is provided
such that the reader gains familiarity with the filter equations for the cases presented later in this
thesis. In chapter 3, attitude filtering using quaternions for the multiplicative extended Kalman filter
(MEKF) and the right invariant extended Kalman filter (RIEKF) is introduced. Further, chapter 4
presents two cases from [2] that are to be simulated using the nonlinear observer design as presented by
Barrau and Bonnabel, in order to highlight the properties of the Invariant EKF. At last, the remaining
chapters displays the results of the filters for the corresponding initialization parameters, where the
results are discussed and concluded.

1.1. Notations
In this thesis, Rn×n is used to denote a matrix with dimension n × n with real entities, and Rn is used
to denote a vector with dimension n. Given a matrix M , the inverse is denoted M−1, the transpose
is denoted MT and the skew-symmetric is denoted (M)×. At last, In is used to denote an identity
matrix with dimension n × n.



Chapter 2.

Background

This chapter serves the theoretical background for the implementations presented later in this thesis.
Given this background information, one should be able to understand and implement the presented
equations and algorithms in chapter 3 and chapter 4.

2.1. Linear and nonlinear systems
In the state-space model, the state is defined by the state variables given in Euclidean space as

x = (x1, x2, · · · , xn) ∈ Rn (2.1)

where x ∈ Rn indicates that the state x is a vector with n number of state variables. The input
variable can also be written in the form

u = (u1, u2, · · · , un) ∈ Rp (2.2)

indicating that the input vector consist of p number of inputs.

2.1.1. Linear systems

A linear model is a mathematical model of a process, where it is possible to control the process and also
extract information. The tools needed for estimation and control of a process is easier to implement
and understand for linear systems as opposed to nonlinear systems.

A linear system is defined in continuous-time using the equations in the state space

ẋ = Ax + Bu (2.3)
y = Cx (2.4)

where x is the state vector, u is the control/input vector and y is the output vector. Consequently, A
is the system matrix, B is the input matrix and C is the output matrix. Even If the matrices A, B
and C are time-varying, the system is still linear. Figure 2.1 shows a simplified explanation of a linear
system dynamics.



Chapter 2. Background 3

Figure 2.1.: Matrix block diagram of a linear system with state x, input u and output y

2.1.2. Nonlinear systems

A nonlinear system can be written in continuous-time as

ẋ = f(x, u, w) (2.5)
y = h(x, v) (2.6)

where f(·) and h(·) are nonlinear functions, and w and v are the process noise and measurement noise,
respectively. In the case where f(·) and h(·) are explicit functions of t, then the system is time-varying.
It is noted that the system is nonlinear, unless f(x, u, w) = Ax + Bu + w and h(x, v) = Hx + v.

2.2. Lie Groups
From [17], a Lie Group is defined as a smooth manifold where the group operation and the inversion
must be continous. The group operation must be associative, there must be an identity element e ∈ G
and there must be an inversion to satisfy the usual group axioms for all g, g1, g2, g3 ∈ G:

eg = ge = g (identity)
g−1g = gg−1 = e (inverses)

g (g2g3) = (g1g2) g3 = g1g2g3 (associativity)

2.2.1. Matrix Lie Groups

A matrix lie group G is a closed subgroup of the defined set GL(n;R) of invertible n × n matrices
with real entries, where Mn(R) = Rn×n is defined as the set of all n × n matrices with real entities.
Since G is subgroup of GL(n;R), it has the following properties

In ∈ G, ∀g ∈ G, g−1 ∈ G, ∀a, b ∈ G, ab ∈ G (2.7)

where In is the identity matrix of Rn. The matrix lie group G is associated with a vector space, g,
called the Lie algebra of G which is a real subspace of Mn(R) with the same dimension as G. g can be
identified to Rdim g using the linear invertible map Lg : Rdim g → g and it can be mapped to the matrix
lie group G through the matrix exponential expm, yielding exp(ξ) = expm (Lg(ξ)) for ξ ∈ Rdim g. This
map is invertible for small ξ, and we have (exp(ξ))−1 = exp(−ξ). Also for any g ∈ G, the adjoint
matrix ad(g) ∈ Rdim g×dim g is defined by g exp(ζ)g−1 = exp (ad(g)ζ) for all ζ ∈ g [3].



Chapter 2. Background 4

2.2.2. Group of rotation matrices, SO(2)
Elements of the rotation group in two dimensions are represented by 2D rotation matrices. G is
defined as a group of rotation matrices, SO(2), so that

G = SO(2) =
{

R ∈ M2(R), RRT = I, det(R) = 1
}

(2.8)

and g the space of skew-symmetric matrices so(2) is

g = so(2) =
{

A ∈ M2(R), A = −AT
}

(2.9)

recall from the introduction above that M2(R) = R2×2. The logarithm is then defined as

Lso(2) (θ) = (θ)× =
(

0 −θ
θ 0

)
(2.10)

and the exponential map is expressed as

exp
(
θ×) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(2.11)

which verifies R = exp (θ×).

2.2.3. Group of rotation matrices, SO(3)
Elements of the rotation group in two dimensions are represented by 3D rotation matrices. G is
defined as a group of rotation matrices, SO(3), so that

G = SO(3) =
{

R ∈ M3(R), RRT = I, det(R) = 1
}

(2.12)

and g the space of skew-symmetric matrices so(3) is

g = so(3) =
{

A ∈ M3(R), A = −AT
}

(2.13)

The logarithm is then defined as

Lso(3)

 ξ1
ξ2
ξ3

 =

 ξ1
ξ2
ξ3


×

=

 0 −ξ3 ξ2
ξ3 0 −ξ1

−ξ2 ξ1 0

 (2.14)

and the exponential map verifies R = exp(ξ) and is expressed as

exp(ξ) = I +
(sin(∥ξ∥)

∥ξ∥

)
S +

(1 − cos(∥ξ∥)
∥ξ∥2

)
S2 (2.15)

where S = Lso(3)

 ξ1
ξ2
ξ3

.

2.2.4. Group of direct planar isometries, SE(2)
The group SE(2) has three dimensions corresponding to translation and rotation in the plane. G is
defined as a group of direct planar isometries, SE(2), so that it is represented in homogeneous form



Chapter 2. Background 5

as

G = SE(2) =
{(

R(θ) x
01×2 1

)
; θ ∈ R, x ∈ R2

}
(2.16)

where R(θ) is planar rotation matrix of angle θ. Then the lie algebra g is defined as

g = se(2) =


 0 −α u1

α 0 u2
0 0 0

 ;

 α
u1
u2

 ∈ R3

 (2.17)

which gives the vector form of the logarithm and the logarithm

ζ =

 α
u1
u2

 (2.18)

Lse(2)(ζ) =

 0 −α u1
α 0 u2
0 0 0

 (2.19)

Further, the Lie exponential map writes

exp(ζ) =
(

R(α) E(α)u
01×2 1

)
(2.20)

where R(α) ∈ SO(2), u =
(

u1
u2

)
and the matrix E(α) is given as

E(α) =
(

sin(α)/α −(1 − cos(α)/α)
(1 − cos(α))/α sin(α)/α

)
(2.21)

and the adjoint representation of the logarithm is defined as

ad(ζ) =

 0 0 0
u2 0 −ωk

−u1 ωk 0

 (2.22)

where ωk is the angular velocity at time step k.

2.2.5. Group of double direct planar isometries, SE2(3)
G is defined as a group of double direct planar isometries, SE2(3), so that

G = SE2(3) =


 R v x

01×3 1 0
01×3 0 1

 ; R ∈ SO(3), v, x ∈ R3

 (2.23)

Then the lie algebra g is defined as

g = se2(3) =


 (ξ)× u y

0 0 0
01×3 0 0

 ; ξ, u, y ∈ R3

 (2.24)



Chapter 2. Background 6

which gives the vector form of the logarithm and the logarithm

ζ =

 ξ
u
y

 (2.25)

Lse2(3)

 ξ
u
y

 =

 (ξ)× u y
01×3 0 0
01×3 0 0

 (2.26)

Then the Lie exponential map writes

exp (ζ) = I5 + S + 1 − cos(∥ξ∥)
∥ξ∥2 S2 + ∥ξ∥ − sin(∥ξ∥)

∥ξ∥3 S3 (2.27)

where S = Lse2(3)(ξ, u, y)T .

2.3. Quaternions
This section serves as an introduction to quaternions where the main focus is to present the expression
for the mathematical computations using quaternions. A quaternion can be given in various forms,
and the most common forms and their corresponding mathematical operations are presented in this
section. The material in this section is inspired by [8] and [21].

2.3.1. Hamilton’s representation

Quaternions were first invented by William Rowan Hamilton, a 19th-century Irish mathematician,
and often appears in mathematics as an algebraic system [21].

A quaternion is a vector with one real and three imaginary parts, written in the form

q = qs + q1i + q2j + q3k ∈ H (2.28)

where qs, q1, q2 and q3 are real coefficients and the complex units i, j and k satisfies

i2 = j2 = k2 = −1
ij = −ji = k, jk = −kj = i, ki = −ik = j

It is noted that the notation H is to indicate that a quaternion is defined as in the fomulation of
Hamilton, which can be seen from equation (2.28).

Then, multiplying a quaternion with a scalar α gives

αq = α (qs + q1i + q2j + q3k) = αqs + αq1i + αq2j + αq3k (2.29)

and the inner product of a quaternion can be computed by defining the inner product of the complex
units Two quaternions are defined as q = qs + q1i + q2j + q3k and p = ps + p1i + p2j + p3k, in order
to express the formulas for the mathematical operations using quaternions.

Addition and subtraction is computed element-wise and gives

q ± p = qs ± ps + (q1 ± p1) i + (q2 ± p2) j + (q3 ± p3) k (2.30)

and the multiplication of the two quaternions is computed exactly like the multiplication of complex



Chapter 2. Background 7

numbers, which writes

qp = (qs + q1i + q2j + q3k) (ps + p1i + p2j + p3k)
= qsps − q1p1 − q2p2 − q3p3

+ (qsp1 + psq1 + q2p3 − q3p2) i

+ (qsp2 + psq2 + q3p1 − q1p3) j

+ (qsp3 + psq3 + q1p2 − q2p1) k

(2.31)

The conjugate of a quaternion is defined as a quaternion with opposite signs on the imaginary parts

q∗ = qs − iq1 − jq2 − kq3 (2.32)

and the magnitude of a quaternion ∥q∥ is defined as

∥q∥2 = q2
s + q2

1 + q2
2 + q2

3 (2.33)

This can also be seen for the quaternion product of a quaternion and its corresponding conjugate
quaternion, which is given as

qq∗ = q2
s + q2

1 + q2
2 + q2

3 (2.34)

which indicates that

∥q∥2 = qq∗ (2.35)

From this, the inverse quaternion is given using the quaternion product by qq−1 = 1. The inverse
quaternion is then defined as

q−1 = q∗

∥q∥2 (2.36)

2.3.2. Quaternion represented by a scalar and a vector

As mentioned earlier in this chapter, a quaternion consist of a real part and imaginary part. Then
a quaternion can be defined using a scalar and a vector where the scalar represents the real part of
a quaternion and the vector is a three-dimensional vector that represents the imaginary part of a
quaternion. Therefore, a quaternion can be formulated as

q = α + β ∈ H (2.37)

where α ∈ R and β ∈ R3. So multiplying with a scalar γ gives

γq = γα + γβ ∈ H (2.38)

Further, two quaternions are defined as q1 = α1 +β1 and q2 = α2 +β2. Then addition and substraction
is computed component wise as

q1 ± q2 = (α1 ± α2) + (β1 ± β2) ∈ H (2.39)

The multiplication of the two quaternions is defined as

q1 ◦ q2 = (α1α2 − β1 · β2) + (α1β2 + α2β1 + β1 × β2) ∈ H (2.40)



Chapter 2. Background 8

and the quaternion product is associative, so it satisfies

q1 ◦ (q2 ◦ q3) = (q1 ◦ q2) ◦ q3 = q1 ◦ q2 ◦ q3 ∈ H (2.41)

The conjugate quaternion is formulated as

q∗ = α − β (2.42)

and the magnitude of a quaternion ∥q∥ is

∥q∥2 = q∗ ◦ q (2.43)

The quaternion product of a quaternion and its corresponding conjugate quaternion is defined as

q ◦ q∗ = q∗ ◦ q = α2 + β · β (2.44)

and the inverse quaternion is defined exactly as in equation (2.36).

2.3.3. Vector represented as a quaternion

A vector can be formulated as a quaternion with a zero scalar part. The quaternion product of a
quaternion q and a vector v is computed as

q ◦ v = −β · v + αv + β × v (2.45)
v ◦ q = −β · v + αv − β × v (2.46)

and the quaternion product of a vector v1 and a vector v2 is defined as

v1 ◦ v2 = −v1 · v2 + v1 × v2 (2.47)

The conjugate of a vector is defined as v∗ = −v and the magnitude of vector ∥v∥ is

∥v∥2 = v ◦ v∗ = −v ◦ v = v · v (2.48)

2.3.4. Quaternion represented as a four-dimensional vector

A commonly used representation of a quaternion is a four-dimensional vector, so that the quaternion
is defined as

[q] =
[

α
β

]
∈ R4 (2.49)

Considering two quaternions q1 and q2, the quaternion product of the two quaternions gives

[
q1◦ q2

]
=
[

α1α2 − βT
1 β2

α1β2 + α2β1 + β1 × β2

]
(2.50)

and alternatively, the quaternion product can be computed using matrices as

[q1 ◦ q2] = QL (q1) [q2] = QR (q2) [q1] (2.51)



Chapter 2. Background 9

with

QL(q) =
[

α −βT

β αI + β×

]
(2.52)

QR(q) =
[

α −βT

β αI − β×

]
(2.53)

A vector v ∈ H is defined as a four-dimensional vector, which gives

[v] =
[

0
v

]
∈ R4 (2.54)

and the quaternion product of a quaternion q and a vector v is then computed as

[q ◦ v] = QL(q)[v] (2.55)
[v ◦ q] = QR(q)[v] (2.56)

Further, the conjugate quaternion is defined as

[q∗] =
[

α
−β

]
∈ R4 (2.57)

and the magnitude of a quaternion ∥q∥ is found from

∥q∥2 = [q]T[q] (2.58)

2.3.5. Unit quaternions

A unit quaternion has four parameters and can be expressed as a 3 × 3 rotation matrix, which is
the reason to why unit quaternions plays an important role in applications involving rotations, i.e.
aerospace, robotics, drones, etc.

A unit quaternion is defined as a quaternion with unity norm. The unit quaternion is then defined as

q = η + ϵ (2.59)

which satisfies

∥q∥2 = q · q = q ◦ q∗ = η2 + ϵ · ϵ = 1 (2.60)

In the case where a quaternion is defined as four-dimensional vector, the norm ∥q∥2 is given as

∥q∥2 =
[

η
ϵ

]T [
η
ϵ

]
= η2 + ϵTϵ = 1 (2.61)

It is then seen that the conjugate quaternion can be written as

q∗ = q−1 (2.62)

A unit quaternion can also be defined by the euler paramaters η = cos θ
2 and ϵ = k sin θ

2 , where k is
a unit vector. Considering a rotation matrix R ∈ SO(3) with angle and axis parameteres given by θ
and k, respectively, the rotation matrix can then be expressed using the Euler parameters as

R = I + 2ηϵ× + 2ϵ×ϵ× (2.63)



Chapter 2. Background 10

2.3.6. Quaternion logarithm and exponential

From the rotaton defined earlier, an angle ϕ is defined as ϕ = θ
2 , and a quaternion is represented as

ϕk. Then the exponential function writes

exp(ϕk) = cos ϕ + k sin ϕ (2.64)

and consequently the unit quaternion can be expressed using the exponential function as

q = exp
(

θ

2k

)
(2.65)

Following this, the logarithm can then be defined as

log(q) = θ

2k (2.66)

Computation of the logarithm and the exponential

Two cases are considered where for the first case, a logarithm v is given by the angle ϕ and a unit
vector k, which writes v = ϕk. This means that from equation (2.64) the exponential of the logarithm
gives exp(v) = exp(ϕk) = cos ϕ + k sin ϕ. A quaternion is to be found from the exponential logarithm
as q = exp(v).

For the second case, a quaternion is defined as q = η +ϵ and the logarithm is defined so that it satisfies
exp(v) = q. This implies that ϵ = k sin ϕ which gives the angle formulated as ϕ = arcsin ∥ϵ∥.

Then, the computation of a quaternion from the logarithm can be defined from the first case as

exp(v) = cos ∥v∥ + sin ∥v∥ v

∥v∥
(2.67)

As can be seen, this equation is undefined when ∥v∥ = 0. An alternative formulation is then expressed
as

exp(v) = cos ∥v∥ + sinc(∥v∥)v (2.68)

where

sinc(x) = sin x

x
(2.69)

With this, it is possible to estimate sinc(x) using the Taylor series expansion of sin x
x , when x is close

to zero.

Further, the computation of the logarithm from a quaternion can be defined from the second case as

v = arcsin ∥ϵ∥
∥ϵ∥

ϵ (2.70)

Here it is also seen that the equation is undefined when ∥ϵ∥ = 0. This is avoided by estimating arcsin x
x

using the Taylor series expansion when x is close to zero.

2.4. Kalman Filters
In this section, the Kalman filter and the extended Kalman filter are presented as background infor-
mation for the filters used in this thesis, the multiplicative extended Kalman filter and the left and



Chapter 2. Background 11

right invariant extended Kalman filter, which is implemented for attitude estimation and 3D SLAM.
It is noted that the mentioned filters are all a modification of the extended Kalman filter.

2.4.1. The Kalman Filter

Kalman filter is an algorithm that recursively estimates the state variables given the measurements
observed over time. It is an important tool in control systems and have been demonstrating its
usefulness in various applications, i.e., estimation of attitude and the combined estimation of attitude
and position. The updating process for Kalman filters is fairly general and so the Kalman filter
have relatively simple form and require small computational power, meaning that it can often be
implemented in real time [12].

Continuous-time Kalman Filter

A continuous-time linear system is given by the state-space model as

ẋ = Acx + Bcu + nc (2.71)
y = Cx + wc (2.72)

where Ac is the state transition matrix corresponding to the state vector x ∈ Rn, Bc is the control-input
matrix corresponding to the control vector u ∈ Rq, nc is the process noise and wc is the measurement
noise. The process noise and measurement noise has zero mean and covariance defined as, respectively
[18]

E
{

nc,tn
T
c,t+τ

}
= Qcδτ (2.73)

E
{

wc,tw
T
c,t+τ

}
= Rcδτ (2.74)

where δ(·) is the Kroneker delta function.

Then the corresponding Kalman Filter for this system is defined as

˙̂x = Acx̂ + Bcu + Kc(y − Cx̂) (2.75)
Ṗ = PAT

c + AcP + Qc − PCTR−1
c CP (2.76)

where x̂ is the estimated state, P = cov(x− x̂) is the covariance of the state estimation error x̃ = x− x̂
and Kc is the Kalman gain matrix defined as

Kc = PCTR−1
c (2.77)

The measurement and the measurement estimation error is then defined as

ŷ = Cx̂ (2.78)
ỹ = y − Cx̂ = y − ŷ (2.79)

Here it can be seen that the time propagation of the state for the Kalman filter given in equation
(2.75) is identical to the first equation from the linear system described in equation (2.71), but with an
additional correction term Kc(y − Cx̂). It is then obvious that the correction term is proportional to
the measurement estimation error ỹ. From the formula of the Kalman gain given in equation (2.77),
the relationship between the Kalman gain Kc, the covariance of state estimation error P and the
covariance of measurement noise Rc can be explained by the fact that Kc increases as P increases and
that Kc decreases as Rc increases.



Chapter 2. Background 12

Discrete-time Kalman Filter

The linear system from equations (2.71), (2.72) in discrete-time is defined as

xk = Akxk−1 + Bkuk−1 + nk (2.80)
yk = Ckxk + wk (2.81)

Then the corresponding Kalman Filter for this system is defined as a propagation and update part,
where the propagation is given as

x̂k|k−1 = Akx̂k−1|k−1 + Bkuk−1 (2.82)
Pk|k−1 = AkPk−1|k−1AT

k + Qk (2.83)

It is noted that the estimated state vector x̂k|k−1 gives the estimate of xk based on measurements up
until time step k − 1, with k being the current time step, whereas x̂k−1|k−1 gives the estimate of xk−1
based on measurements up until time step k−1. Using this logic, it is obvious that x̂k|k would give the
estimate based on measurements up until time step k. The timeline from Figure 2.2 provides a simple
explanation of the time propagation of the state estimate in discrete-time. This type of notation is
commonly used when presenting the equations of the algorithm for the different filters later in the
thesis.

Figure 2.2.: Timeline illustrating the propagation and update notations used in relation to the state
estimate [18]

.

Further, in order to calculate the update, the estimated measurement and measurement estimation
error is defined as

ŷ = Ckx̂k|k−1 (2.84)
ỹk = yk − Ckx̂k|k−1 (2.85)

where the Kalman gain is computed using the covariance of the measurement estimation error, S, and
gives

Sk = CkPk|k−1CT
k + Rk (2.86)

Kk = Pk|k−1CT
k S−1

k (2.87)

Then the updated state estimate and the updated covariance is found using

x̂k|k = x̂k|k−1 + Kkỹk (2.88)
Pk|k = (I − KkCk) Pk|k−1 (2.89)



Chapter 2. Background 13

Continuous-discrete Kalman Filter

Assuming that the discrete-time system from equations (2.80), (2.81) is a discretization of the continous-
time system from equations (2.71), (2.72), Euler´s first method is used yielding the system matrices

Ak = exp (hAc) ≈ I + hAc (2.90)

Bk =
∫ h

0
exp (τAc) B dτ ≈ hBc (2.91)

Qk =
∫ h

0
exp (τAc) Qc exp (τAc)T dτ ≈ hQc (2.92)

Rk = 1
h

Rc (2.93)

and so the equation from (2.83) is now formulated as

Pk|k−1 = AkPk−1|k−1AT
k + Qk

= (I − AcPk−1|k−1)Pk−1|k−1(I − AcPk−1|k−1)T

≈ Pk−1|k−1 + h
(
AcPk−1|k−1 + Pk−1|k−1AT

c + Qc

) (2.94)

Here it can be seen that as h approaches zero, the euler discretization of the covariance propagation
approches the covariance propagation from equation (2.83).

Then the time propagation from timestep k − 1 to timestep k of the Kalman Filter is defined as

˙̂xt = Acx̂t + Bcu, k − 1 ≤ t < k (2.95)
Ṗt = PtA

T
c + AT

c Pt + Qc (2.96)

and propagates x̂ from x̂k−1|k−1 to x̂k|k−1 and P from Pk−1|k−1 to Pk|k−1. Further, the propagated
state estimate and the propagated covariance is used in the update part of the system

x̂k|k = x̂k|k−1 + Kkỹk (2.97)
Pk|k = (I − KkCk) Pk|k−1 (2.98)

where ỹ, Sk and Kk is defined exactly the same as for the discrete-time system. When it comes
to simulation of the Kalman filter, it is common that the equations for the filter are presented in
contionus-discrete time, which is the case for the filters presented in this thesis later.

2.4.2. The Extended Kalman Filter

From the previous subsection, the Kalman filter was presented using a linear system dynamics. In
practice all systems are ultimately nonlinear, so most applications where the Kalman filter is important
involves a nonlinear system. The extended Kalman filter was then introduced as a nonlinear extension
of the Kalman filter. The main idea of the filter is to use the nonlinear state-space model for time
propagation of the state estimate and to use the linearized error dynamics to compute the time
propagation of the state covariance matrix and the Kalman gain matrix [18]. The extended Kalman
filter is used in a wide range of applications such as navigation, mobile robots, tracking of planes, etc.



Chapter 2. Background 14

Continuous-time Extended Kalman Filter

A continuous-time nonlinear system is given by the state-space model as

ẋt = fc(xt, ut; t) + nc,t (2.99)
yt = h(xt; t) + wt (2.100)

Then the time propagation of the corresponding extended Kalman filter for this system is defined as

˙̂xt = fc(x̂t, ut; t) + Kc(yt − h(x̂t; t)) (2.101)
ŷ = h(x̂t; t) (2.102)

The state error x̃ = x − x̂ and innovation ỹ = y − ŷ is linearized in order to apply the Kalman filter
to the nonlinear system. The linearized model is then used to define the covariance and to compute
the Kalman gain.

The error model is defined as

˙̃xt = fc(x̂t + x̃t︸ ︷︷ ︸
xt

, ut; t) + nc,t − fc(x̂t, ut; t) − Kcỹt (2.103)

ỹt = h(x̂t + x̃t︸ ︷︷ ︸
xt

; t) + wt − h(x̂t; t) (2.104)

and it is obvious to see that xt is substituted with x̂t + x̃t by using the formula for the state error
x̃ = x − x̂. Then the linearization of the estimate x̂t is defined as

∂fc

∂x̃

∣∣∣∣
x̂,u

x̃ ≈ fc(x̂t + x̃t, ut; t) − fc(x̂t, ut; t) (2.105)

∂h

∂x̃

∣∣∣∣
x̂

x̃ ≈ h(x̂t + x̃t; t) − h(x̂t; t) (2.106)

where the partial derivatives are evaluated at x = x̂ and the linearized model is computed, giving

˙̃xt = (Ac − KC) x̃t + nc,t (2.107)
ỹt = Cx̃t + wt (2.108)

with the linearized matrices Ac and C defined as

Ac = ∂fc

∂x̃

∣∣∣∣
x̂,u

, C = ∂h

∂x̃

∣∣∣∣
x̂

(2.109)

Further, the linearized model is used to compute the Kalman gain Kc and the time propagation of
the covariance P , and the equations writes

Ṗ = AcP + PAT + Q − PCTR−1
c CP (2.110)

Kc = PCTR−1
c (2.111)

Discrete-time Extended Kalman Filter

The nonlinear system defined from equation (2.99), (2.100) in discrete-time is defined as

xk = f (xk−1, uk−1; tk) + nk−1 (2.112)
yk = h (xk; tk) + wk (2.113)



Chapter 2. Background 15

Then the corresponding extended Kalman filter for this system is defined as a propagation and update
part, where the time propagation is given as

x̂k|k−1 = f
(
x̂k−1|k−1, uk−1; tk

)
(2.114)

The error model is defined from the state error x̃ = x − x̂ and innovation ỹ = y − ŷ as

x̃k = f (xk−1, uk−1; tk) + nk−1 − f
(
x̂k−1|k−1, uk−1; tk

)
(2.115)

ỹk = h (xk; tk) + wk − h (x̂k; tk) (2.116)

and linearization gives the linearized error model

x̃k = Ax̃k−1 + nk−1 (2.117)
ỹk = Cx̃k−1 + wk (2.118)

where the linearized matrices are defined as

Ak = ∂f

∂x̃

∣∣∣∣
x̂k−1|k−1,uk−1

, Ck = ∂h

∂x̃

∣∣∣∣
x̂k|k−1

(2.119)

Further, the linearized model is used to compute and the Kalman gain Kc and the time propagation
of the covariance P , where the covariance propagation writes

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + Qk (2.120)

and the Kalman gain is found by

Sk = CkPk|k−1CT
k + Rk (2.121)

Kk = Pk|k−1CT
k S−1

k (2.122)

Finally, the updated state estimate and the updated covariance is computed as

x̂k|k = x̂k|k−1 + Kkỹk (2.123)
Pk|k = (I − KkCk) Pk|k−1 (2.124)

Continuous-discrete Extended Kalman Filter

For the continuous-discrete extended Kalman filter, the time propagation of the state estimate x̂
and the state covariance P is given in continous-time, while the update of the state estimate and the
state covariance is given in discrete-time as the measurements are obtained at discrete instants of time.

The time propagation of the state estimate is defined as

˙̂xt = fc (x̂t, ut; t) (2.125)

and the innovation is defined as

ỹk = yk − h
(
x̂k|k−1; tk

)
(2.126)



Chapter 2. Background 16

The error model given by the state error x̃ = x − x̂ and the innovation ỹ = y − ŷ is used to present
the linearized error model

˙̃xt = Acx̃t + nc,t (2.127)
ỹt = Cx̃t + wt (2.128)

where the linearized matrices are defined as

Ac = ∂fc

∂x̃

∣∣∣∣
x̂,u

, C = ∂h

∂x̃

∣∣∣∣
x̂

(2.129)

The linearized model is used to compute and the Kalman gain Kc and the time propagation of the
covariance P , where the covariance propagation writes

Ṗt = PtA
T
c + AT

c Pt + Qc (2.130)

Finally, the updated state estimate and the updated covariance is computed as

x̂k|k = x̂k|k−1 + Kkỹk (2.131)
Pk|k = (I − KkCk) Pk|k−1 (2.132)

where Kc and Sk is defined exactly as for the discrete-time extended Kalman filter.



Chapter 3.

Nonlinear Attitude Filtering

This chapter is an introduction to the MEKF and RIEKF, where the necessary equations required to
simulate nonlinear attitude filtering is presented. It is noted that this case is not simulated in this
thesis, as this chapter is extracted from the specialization project prior to this thesis. This chapter
only serves the purpose of introducing the reader to nonlinear attitude filtering and the MEKF and
RIEKF filter. Although the results for this case is not included, the initialization parameters for this
case can be found in chapter 5.

3.1. Multiplicative Extended Kalman Filter - MEKF
The MEKF is a modification of the Extended Kalman Filter (EKF) to estimate a three-component
attitude error. The MEKF error quaternion results in an identity quaternion using an invariant output
error termed left-invariant error instead of a linear error used for the EKF [15].

The presented equations and algorithm for the MEKF in this chapter are mainly based and inspired
by [13], [15]. It is also worth to mention that these equations are the same as in [20], where the MEKF
is simulated in a comparative study. The time propagation from [20] is calculated using Euler´s
method, where the notations k and k − 1 represents the current time step and the previous time step,
respectively. The attitude is represented by an unit quaternion q = η + ϵ, which is equivalent to the
rotation matrix R = I + 2ηϵ + ϵ×ϵ×.

Since q is a unit quaternion, the kinematic equation can be written in the form of

q̇ = 1
2q ◦ ω (3.1)

where ω corresponds to the angular velocity of the attitude. Following Farrenkopf´s model [10], the
gyroscope measurement ωm is expressed as

ωm(t) = ω(t) + b(t) + n1(t) (3.2)

and the bias model as

ḃ = n2 (3.3)

where n1 and n2 is zero-mean white noise and b is the gyroscope bias. Combining equation (3.1) and
(3.2) presents the system dynamics as



Chapter 3. Nonlinear Attitude Filtering 18

q̇ = 1
2q ◦ (ωm − b − n1) (3.4)

ḃ = n2 (3.5)

It is noted that in order to get an accurate estimation of the attitude R, it is important to determine
the bias, b, by estimation.

3.1.1. Time propagation of state estimate

Given an angular velocity measured by a gyroscope, ωm, the estimated angular velocity is expressed
as

ω̂ = ωm − b̂ (3.6)

The estimate of the measurement i is expressed by the estimated rotation matrix, R̂, and is given as

ŷi = R̂Tdn
i (3.7)

where di is a known vector in the spatial frame n, e.g the earth magnetic field in NED coordinates
as it is described in [7], and is not to be confused with "d" further in this text. It is noted that R̂ is
defined by the components of q̂.

The estimate of the gyroscope bias is updated by the following formula

b̂k = b̂k−1 + h (Kbỹ) (3.8)

where

Kbỹ = P T
c,k−1CT

aiR
−1
c ỹ = P T

c,k−1δ (3.9)

and the estimated measurement error, ỹ, is defined as ỹ = y − ŷ. Further, the update of the state
estimate is

q̂k = q̂k−1 ◦ exp (0.5h (ω̂ + Pa,k−1δ)) (3.10)

where h is the time step.

3.1.2. Error equations and linearization of error quaternions

The error equations for the MEKF is presented as

q̃ = q̂−1 ◦ q (3.11)
b̃ = b − b̂ (3.12)

Then the error dynamics of attitude can be described by the kinematic differential equation of the
error quaternion, and is presented as



Chapter 3. Nonlinear Attitude Filtering 19

˙̃q = q̂−1 ◦ q̇ + d
dt

(
q̂−1

)
◦ q (3.13)

Following the article written by Silvère Bonnabel in 2009 [7] it is mentioned that if q depends on time,
then q̇−1 = −q−1 ∗ q̇ ∗ q−1. This gives

d
dt

(
q̂−1

)
= −q̂−1 ◦ ˙̂q ◦ q̂−1 (3.14)

By combining equation (3.13) and (3.14), the differential equation of the error matrix is seen as

˙̃q = q̂−1 ◦ q̇ − q̂−1 ◦ ˙̂q ◦ q̂−1 ◦ q

= q̂−1 ◦ 1
2q ◦ (ωm − b − n1) − q̂−1 ◦ 1

2 q̂ ◦
(
ωm − b̂ + Kqỹ

)
◦ q̃

= 1
2 q̃ ◦

(
ωm − (b̂ + b̃) − n1

)
− 1

2
(
ωm − b̂ + Kqỹ

)
◦ q̃

= ϵ̃×ω̂ − 1
2
(
ϵ̃T
) (

−b̃ + Kqỹ + n1
)

︸ ︷︷ ︸
Scalar

+1
2 η̃
(
−b̃ − Kqỹ + n1

)
+ 1

2 ϵ̃×
(
−b̃ + Kqỹ + n1

) (3.15)

From the resulting equation, the vector part of the error equation then presents the following kinematic
differential equation

˙̃ϵ = ϵ̃×ω̂ + 1
2 η̃
(
−b̃ − Kqỹ + n1

)
+ 1

2 ϵ̃×
(
−b̃ + Kqỹ + n1

)
(3.16)

It is noted that ã = 2ϵ̃ is used as the three parameter representation of the error rotation as long as
θ̂ < π, which is assumed to be the case for all practical implementations.

Given this information, the linearized error dynamics is expressed as

[ ˙̃a
˙̃b

]
=
[

−ω̂× −I
0 0

] [
ã

b̃

]
+
[

Kq

Kb

]
ỹ +

[
n1
n2

]
(3.17)

and the linearized measurement error equation is expressed as

ỹi = Ci

[
ã

b̃

]
, Ci =

[
Cai 0

]
=
[

ŷ×
i 0

]
(3.18)

Summarized, the A and C matrices are a result of the linearization of error quaternions and are given
as

A =
[

−ω̂× −I
0 0

]
(3.19)

C =

 ŷ×
1 0
...

ŷ×
m 0

 (3.20)

Further, the innovation is described as



Chapter 3. Nonlinear Attitude Filtering 20

δ =
∑
i=1

CT
i R−1

c ỹi =
∑
i=1

ŷ×
i R−1

c (ŷi − yi) (3.21)

and the covariance of the innovation S is

S = CTR−1
C C =

∑
i=1

(
ŷ×

i

)T
R−1

c ŷ×
i (3.22)

3.1.3. Covariance propagation

The covariance matrix follows [20]

Pk =
[

Pa,k Pc,k

P T
c,k Pb,k

]
(3.23)

and consists of the gains Pa, Pb and Pc. These gains are updated from the following equations

Pa,k = Pa,k−1 + h
(
P
(
Pa,k−1ω̂× − Pc,k−1

)
+ Qa − Pa,k−1SPa,k−1

)
(3.24)

Pb,k = Pb,k−1 + h
(
Qb − P T

c,k−1SPc,k−1
)

(3.25)

Pc,k = Pc,k−1 + h
(
−ω̂×Pc,k−1 − Pb,k−1 + Qc − Pa,k−1SPc,k−1

)
(3.26)

3.1.4. MEKF Algorithm

Algorithm 1 MEKF signal Algorithm
Initialize Qa, Qb, Qc and RC

Initialize q0, b0 and Pa0, Pb0, Pc0
loop

ω̂ = ωm − b̂k−1
ŷi = R̂Tdn

i

S = CTR−1
C C = ∑

i=1

(
ŷ×

i

)T
R−1

c ŷ×
i

δ = ∑
i=1 ŷ×

i R−1
c (ŷi − yi)

q̂k = q̂k−1 ◦ exp (0.5h (ω̂ + Pa,k−1δ))
b̂k = b̂k−1 + h

(
P T

c,k−1δ
)

Pa,k = Pa,k−1 + h (2P (Pa,k−1ω̂× − Pc,k−1) + Qa − Pa,k−1SPa,k−1)
Pb,k = Pb,k−1 + h

(
Qb − P T

c,k−1SPc,k−1
)

Pc,k = Pc,k−1 + h (−ω̂×Pc,k−1 − Pb,k−1 + Qc − Pa,k−1SPc,k−1)

Pk =
[

Pa,k Pc,k

P T
c,k Pb,k

]
end loop



Chapter 3. Nonlinear Attitude Filtering 21

3.2. Right Invariant Extended Kalman Filter - RIEKF
The RIEKF is closely related to the MEKF in that they both use an invariant output error. Unlike
the MEKF, the RIEKF uses the right-invariant error, hence its name. The main benefit of this
modification is that the matrices A and C are constant on a much more extensive set of trajectories
[7], which may lead to better accuracy and less computational power. The presented equations and
algorithm for the RIEKF in this chapter are inspired by [7].

Given that the RIEKF and the MEKF both use an invariant output error, the implementation of the
RIEKF is to some degree similar to the MEKF. Therefore, the identical formulas for both filters are
not included in this section, as they have already been specified in section 3.1.

The state propagation of the RIEKF is given by

q̇ = 1
2q ◦ (ωm − b) + nq ◦ q (3.27)

ḃ = q−1 ◦ nb ◦ q (3.28)

where nq and nb are white noise vectors in the spatial frame, whereas the noise from the system
dynamics of the MEKF are in the body frame.

3.2.1. Time propagation of state estimate

The estimate of measurement i is

ŷi = q̂−1 ◦ di ◦ q̂ (3.29)

Similar to the MEKF, the estimate of the gyroscope bias is defined as

b̂k = b̂k−1 + h
(
q̂−1 ◦ (KbE) ◦ q̂

)
(3.30)

where

KbE = P T
c,k−1δ (3.31)

and unlike the MEKF, the estimated measurement error for the RIEKF, E, is defined as

E = q̂ ◦ (y − ŷ) ◦ q̂−1 = q̃−1 ◦ (d + wy) ◦ q̃ − d (3.32)

where d and wy are a known vector and white noise in the spatial frame n, respectively.

3.2.2. Eror equations and linearization of error quaternions

Considering unit quaternions, the error equation for the left invariant, LIEKF, is

q̃l = q̂−1 ◦ q (3.33)

which is the same error equation used in the MEKF. Whereas the right invariant, RIEKF, the error
equation is given as



Chapter 3. Nonlinear Attitude Filtering 22

q̃r = q ◦ q̂−1 (3.34)

Then the error equations for the RIEKF is

q̃ = q ◦ q̂−1 (3.35)
b̃ = q ◦ (b − b̂) ◦ q−1 (3.36)

Next, the kinematic differential equation of the error quaternion is

˙̃q = q̇ ◦ q̂−1 − q ◦ q̂−1 ◦ ˙̂q ◦ q̂−1

= 1
2q ◦ (ωm − b) ◦ q̂−1 − q ◦ q̂−1 ◦ 1

2 q̂ ◦
(
ωm − b̂

)
◦ q̂−1 − q ◦ q̂−1 ◦ KqE ◦ q̂ ◦ q̂−1

= 1
2q ◦ (ωm − b) q̂−1 − 1

2q ◦
(
ωm − b̂

)
q̂−1 − q̃−1 ◦ KqE

= 1
2 b̃Tϵ̃︸ ︷︷ ︸
Scalar

−1
2 η̃b̃ − 1

2 b̃×ϵ̃ + q̃TKqE︸ ︷︷ ︸
Scalar

−η̃KqE − ϵ̃×KqE

(3.37)

where the vector part of the equation is

˙̃ϵ = −1
2 η̃b̃ − 1

2 b̃×ϵ̃ − η̃KqE − ϵ̃×KqE (3.38)

The kinematic differential equation of the bias error is

˙̃b = q̇ ◦ (b − b̂) ◦ q−1 + q ◦ (ḃ − ˙̂
b) ◦ q−1 − q ◦ (b − b̂) ◦ q−1 ◦ q̇ ◦ q−1

= 1
2q ◦ ω̂ ◦ (b − b̂) ◦ q−1 + q ◦

(
q−1Mωwω ◦ q − q̂−1 ◦ KωE ◦ q̂

)
◦ q−1

− 1
2q ◦ (b − b̂) ◦ q−1 ◦ q ◦ ω̂ ◦ q−1

= 1
2
(
q̃ ◦
(
q̂ ◦ ω̂ ◦ q̂−1

)
◦ q̃−1

)×
b̃ + Mωw − q̃ ◦ KωE ◦ q̃−1

(3.39)

using the common state variable ã = 2ϵ̃ the linearization of the error equations leads to the linearized
model

d
dt

[
ã

b̃

]
=
[

0 −I

0 Ω̂×

] [
ã

b̃

]
(3.40)

Ei =
[

d× 0
] [ ã

b̃

]
(3.41)

which gives the linearized matrices

A =
[

0 −I

0 Ω̂×

]
(3.42)

Ci =
[

d×
i 0

]
(3.43)



Chapter 3. Nonlinear Attitude Filtering 23

It is noted that C is constant and that A consists only of Ω̂× which is not constant, as Ω̂ = q̂ ◦ ω̂ ◦ q̂−1.
Next, the innovation is

δ =
∑
i=1

CT
i R−1

c Ei =
∑
i=1

(
d×

i

)T
R−1

c

(
di − q̂ ◦ yi ◦ q̂−1

)
(3.44)

where the covariance of the innovation is

S = CTR−1
C C =

∑
i=1

(
d×

i

)T
R−1

c d×
i (3.45)

3.2.3. Covariance propagation

Finally the time propagation of the gains are expressed as

Pa,k = Pa,k−1 + h (−2P (Pc,k−1) + Qa − Pa,k−1SPa,k−1) (3.46)

Pb,k = Pb,k−1 + h
(
2P
(
Ω̂×Pb,k−1

)
+ Qb − P T

c,k−1SPc,k−1
)

(3.47)

Pc,k = Pc,k−1 + h
(
−Pc,k−1Ω̂× − Pb,k−1 + Qc − Pa,k−1SPc,k−1

)
(3.48)

3.2.4. RIEKF Algorithm

Algorithm 2 RIEKF signal Algorithm
Initialize Qa, Qb, Qc and RC

Initialize q0, b0 and Pa0, Pb0, Pc0
loop

ω̂ = ωm − b̂k−1
ŷi = q̂−1 ◦ di ◦ q̂

δ = ∑
i=1

(
d×

i

)T
R−1

c

(
di − q̂ ◦ yi ◦ q̂−1)

S = ∑
i=1

(
d×

i

)T
R−1

c d×
i

q̂k = q̂k−1 ◦ exp (0.5h (ω̂ + Pa,k−1δ))
b̂k = b̂k−1 + h

(
q̂−1 ◦

(
P T

c,k−1δ
)

◦ q̂
)

Pa,k = Pa,k−1 + h (−2P (Pc,k−1) + Qa − Pa,k−1SPa,k−1)
Pb,k = Pb,k−1 + h

(
2P
(
Ω̂×Pb,k−1

)
+ Qb − P T

c,k−1SPc,k−1
)

Pc,k = Pc,k−1 + h
(
−Pc,k−1Ω̂× − Pb,k−1 + Qc − Pa,k−1SPc,k−1

)
Pk =

[
Pa,k Pc,k

P T
c,k Pb,k

]
end loop



Chapter 4.

Pose Estimation

This chapter is based on [2], and the autonomous dynamics of the errors is examined to determine
the convergence properties of the IEKF around any trajectory. The logarithm of the left- and right-
invariant is introduced, where the error dynamics are linearized in terms of the logarithm. Then, the
general structure of the IEKF is provided.

Using this theoretical information, two different cases from [2], simple car model and navigation
on flat earth, are presented where the left invariant extended Kalman filter (LIEKF) and the right
invariant extended Kalman filter (RIEKF) are compared against the EKF and its modification MEKF,
respectively.

4.1. Autonomous error dynamics
Following Definition 1, this section serves as a proof of the autonomous error dynamics for the IEKF,
as presented in [2].

A matrix lie group is defined as G ∈ RN×N so that the lie algebra is denoted as g where g ∈ Rdim g.
A noise-free dynamics is considered

χ̇ = fu(χ) (4.1)

where χ is the state which lies in the lie group G and u is an input variable so that fu(χ) = f(χ, u).

Two distinct trajectories χ and χ̄ are considered based on Equation 4.1, which means that ˙̄χ = fu(χ̄).
Then the error between the trajectories can be be defined with a left-invariant and right-invariant
error as

χ̃L = χ−1χ̄ (Left-invariant) (4.2)
χ̃R = χ̄χ−1 (Right-invariant) (4.3)

where the left-invariant error satisfies χ̄ = χχ̃L and the right-invariant satisfies χ̄ = χ̃Rχ.

Definition 1 The left-invariant and right-invariant errors are said to have a state-trajectory inde-
pendent propagation if they satisfy a differential equation of the form ˙̃χ = gu(χ̃)[2].

A class of dynamic system is considered, which satisfies

fu(ab) = fu(a)b + afu(b) − afu(id)b (4.4)

for all a, b ∈ G, where id denotes the identity matrix. Then the error dynamics from Equation 4.2
and Equation 4.3 are autonomous. This means that the system has state trajectory independent error



Chapter 4. Pose Estimation 25

propagation property and the left- and right-invariant error dynamics writes

˙̃χL = gL
u

(
χ̃L
)

= fu

(
χ̃L
)

− fu(id)χ̃L (4.5)

˙̃χR = gR
u

(
χ̃R
)

= fu

(
χ̃R
)

− χ̃Rfu(id) (4.6)

The proof can be derived by considering the left-invariant error dynamic

˙̃χL = gL
u

(
χ̃L
)

= d

dt

(
χ−1χ̄

)
= −χ−1χ̇χ−1χ̄ + χ−1 ˙̄χ
= −χ−1fu(χ)χ̃L + χ−1fu(χχ̃L)

(4.7)

which has to hold for any χ and χ̃L, particularly for χ = id. This gives

gL
u

(
χ̃L
)

= fu

(
χ̃L
)

− fu(id)χ̃L (4.8)

Finally, reinjecting Equation 4.8 into Equation 4.7 gives

fu

(
χ̃L
)

− fu(id)χ̃L = −χ−1fu(χ)χ̃L + χ−1fu(χχ̃L)

fu(χχ̃L) = χfu

(
χ̃L
)

− χfu(id)χ̃L + fu(χ)χ̃L

= fu(χ)χ̃L + χfu(χ̃L) − χfu(id)χ̃L

(4.9)

and it is concluded that fu(χχ̃L) = fu(χ)χ̃L + χfu(χ̃L) − χfu(id)χ̃L satisfies Equation 4.4. The proof
for right-invariant errors is analogous and straightforward.

4.1.1. Autonomous error dynamics formulated in SE(2)
Two trajectories in SE(2) are considered as χ and χ̄ for the dynamics

χ̇ = χν (4.10)

where χ is the state in SE(2) and ν is the logarithm of µ = (ω, v, 0)T

χ =
(

R x
01×2 1

)
(4.11)

ν = Lse(2)(µ) =

 0 −ω v
ω 0 0
0 0 0

 (4.12)

The dynamics of the left-invariant error, χ̃L = χ−1χ̄, is given as

˙̃χL = χ̃Lν − νχ̃L (4.13)

An error variable ξ is defined representing the left-invariant error, so that it satisfies χ̃L = exp(ξ).
Then the error dynamics gives

ξ̇ = J−1
R (ad(ξ))µ − J−1

L (ad(ξ))µ

=
(
J−1

R (ad(ξ)) − J−1
L (ad(ξ))

)
µ

(4.14)



Chapter 4. Pose Estimation 26

where J−1
L (·) and J−1

R (·) denotes the inverse of the left and right Jacobian, respectively, and are defined
as

JL(ad(µ))−1 =
∞∑

k=0

Bk

k! (ad(µ))k (4.15)

JR(ad(µ))−1 =
∞∑

k=0

(−1)kBk

k! (ad(µ))k (4.16)

with Bk being the Bernoulli numbers.

It is observed that the terms of series for the left and right Jacobian are identical, except for the first
order term, which gives the formulation

J−1
R (ad(ξ)) − J−1

L (ad(ξ)) = ad(ξ) (4.17)

and using this formulation in Equation 4.14 gives

ξ̇ = ad(ξ)µ (4.18)

which yields the linear dynamics

ξ̇ = − ad(µ)ξ = Aξ (4.19)

4.2. Log-linear property
This chapter serves as a proof of the fact that the time propagation of the logarithm of the error will
be linear, provided that the left-invariant error or the right-invariant error satisfies Equation 4.5 or
Equation 4.6. The presented proof in this chapter is based on [2], where a more detailed version can
be found.

The system dynamic from Equation 4.1 and the condition

gu(ab) = agu(b) + gu(a)b, a, b ∈ G (4.20)

is considered. Then the functions gu, which governs the errors propagation, has the following properties

gL
u

(
χ̃L
)

= fu

(
χ̃L
)

− fu(id)χ̃L (4.21)

gR
u

(
χ̃R
)

= fu

(
χ̃R
)

− χ̃Rfu(id) (4.22)

where the left-invariant error satisfies ˙̃χL = gL
u

(
χ̃L
)

and the right-invariant error satisfies ˙̃χR =
gR

u

(
χ̃R
)
. The verification of these properties are straightforward.

To show that the error has log-linear property, a variable which defines a solution at time t corre-
sponding to a given initial condition is defined as Φt. This is the flow associated with the system
(d/dt)χ̃t = gu(χ̃t) which satisfies the condition from Equation 4.20.

Two variables denoted Φt(X0) and Φt(Y0) with initial conditions X0 and Y0 respectively, are defined
as the solutions of

Ẋ = gu(X) (4.23)
Ẏ = gu(Y ) (4.24)



Chapter 4. Pose Estimation 27

and a variable Φt(Z0) with initial condition Z0 = X0Y0 is defined as a solution of

Ż = gu(Z) (4.25)

The goal is to see if Φt(X0)Φt(Y0) is a solution of the system (d/dt)χ̃t = gu(χ̃t), which gives

d

dt
Φt(X0)Φt(Y0) = Φt(X0) d

dt
Φt(Y0) + d

dt
Φt(X0)Φt(Y0)

= Φt(X0)gu (Φt(Y0)) + gu (Φt(X0)) Φt(Y0)
= gu (Φt(X0)Φt(Y0))

(4.26)

Here it is seen that Φt(X0)Φt(Y0) is a solution of d
dtΦt(X0)Φt(Y0) with initial condition X0Y0. This

also suggests that

Φt(Z0) = Φt(X0Y0) = Φt(X0)Φt(Y0) (4.27)

Further, a case is considered where Φt(Y0) = Φt(X0) which gives Φt(Z0) = Φt(X0)2 with an initial
condition Z0 = X2

0 . This means that Φt(X0)2 is a solution (d/dt)X2 = gu(X2).

Two variables Lg(ξ) and Lg(ζ) are defined as the logarithm of X and Z, respectively, and are denoted
as ξ∧ and ζ∧. This gives

exp(ζ∧) = exp(ξ∧) exp(ξ∧) (4.28)

and the Baker-Campbell-Hausdorff formula [11] gives

ζ = 2ξ (4.29)

Since Φt(Z0) and Φt(X0) satisfies Ż = gu(Z) and Ẋ = gu(X), then Φt(ζ0) = 2Φt(ξ0) will satisfy the
same dynamics for Φt(ξ0). This means that the initial conditions are ξ0 = log(X0), ζ0 = log(Z0) where
ζ0 = 2ξ0. Further, this can be generalized by defining Φt(Y0) = exp((1 − α)ξ∧) which gives ζ = αξ for
any rational α. This suggests that the dynamics of Φt(ξ0) is homogeneous, and given that the system
is autonomous, it is concluded that the dynamics of the logarithm is linear and can be expressed as

d

dt
Φt(ξ0) = AtΦt(ξ0) (4.30)

4.3. Invariant EKF for right and left observations
This section provides an introduction to the IEKF general structure in continuous-discrete time and
shows that the IEKF is a nonlinear observer with local convergence properties around any trajectory,
which is a rare feature when it comes to nonlinear observers.

From [2] a system is considered as

χ̇t = fu(χt) (4.31)

where χt ∈ G and

fu(ab) = fu(a)b + afu(b) − afu(id)b (4.32)

Further, two kinds of observations corresponding to this system, left-invariant observations and right-
invariant observations, are derived in the next sections.



Chapter 4. Pose Estimation 28

4.3.1. Left-invariant observations

For the left-invariant observations, the measurements are considered as

yn
k = χkdn (4.33)

where dn are known vectors.

Then the left-invariant EKF is given by

˙̂χt = fu(χ̂t), k − 1 ≤ t < k (4.34)

χ̂k|k = χ̂k|k−1 exp
(
Ln

(
χ̂−1

k|k−1yn
k − dn

))
(4.35)

The left invariant error is defined as

χ̃L
t = χ−1

t χ̂t (4.36)

where χ and χ̂ are trajectories of the system Equation 4.31 in the interval k − 1 ≤ t < k of the
propagation. This suggests that the left-invariant error dynamics is autonomous in this time interval,
and is defined as

˙̃χL
t = gL

u (χ̃L
t ) (4.37)

The logarithm of the left-invariant error ξ∧
t satisfies the linear dynamics

d

dt
ξt = Atξt (4.38)

where At is to be computed.

Further, the update of the left-invariant error is defined by χ̃L
k|k = χ−1

k χ̂k|k, which writes

χ̃L
k|k = χ̃L

k|k−1 exp
(
Ln

(
(χ̃L

k|k−1)−1dn − dn
))

(4.39)

and it is seen that the update of the error does not depend on the trajectory of the system.

4.3.2. Right-invariant observations

The measurements for right-invariant observations are considered as

yn
k = χ−1

k dn (4.40)

Then the right-invariant EKF is given by

˙̂χt = fu(χ̂t), k − 1 ≤ t < k (4.41)

χ̂k|k = exp
(
Ln

(
χ̂k|k−1yn

k − dn
))

χ̂k|k−1 (4.42)

The right-invariant error is defined as

χ̃R
t = χ̂tχ

−1
t (4.43)

which has the autonomous dynamics

χ̃R
t = gu(χ̃R

t ) (4.44)



Chapter 4. Pose Estimation 29

and exactly like the left-invariant observations, the logarithm of the right-invariant error ξ∧
t has linear

dynamics.

Further, the update of the right-invariant error is defined by χ̃R
k|k = χ̂k|kχ−1

k , which writes

χ̃R
k|k = exp

(
Ln

(
χ̃R

k|k−1dn − dn
))

χ̃R
k|k−1 (4.45)

and it is seen that the update of the error does not depend on the trajectory of the system.

The next sections in this chapter presents two different cases where the LIEKF and the RIEKF are
built upon the theoretical information and proof provided from the current and previous sections.

4.4. Simple car model
In this section, the Extended Kalman Filter (EKF) and the Left Invariant Extended Kalman Filter
(LIEKF) are presented in relation to pose estimation using a simple car model in the Euclidean space.

The system dynamics for the simple car model is given as

θ̇ = ωk (4.46)
ẋ(1) = cos(θ)vk (4.47)
ẋ(2) = sin(θ)vk (4.48)

where θ and x is the heading and position of the robot, respectively, vk is the velocity in along the
x-axis and wk is the angular velocity. In discrete time the model can be written as

θk = θk−1 + hωk (4.49)

x
(1)
k = x

(1)
k−1 + h cos (θk−1) vk (4.50)

x
(2)
k = x

(2)
k−1 + h sin (θk−1) vk (4.51)

4.4.1. Extended Kalman Filter - EKF

The equations and algorithm for the EKF is mainly based on [1] and inspired by [3]. It is noted that
the EKF error system is linear, and is defined as X̃ = X − X̂ as in [1].

The state vector for the EKF is defined as

X = (θ, x) , θ ∈ R, x ∈ R2 (4.52)

The propagation of the estimates is defined as

θ̂k|k−1 = θ̂k−1|k−1 + hωk (4.53)

x̂
(1)
k|k−1 = x̂

(1)
k−1|k−1 + h cos

(
θ̂k−1|k−1

)
vk (4.54)

x̂
(2)
k|k−1 = x̂

(2)
k−1|k−1 + h sin

(
θ̂k−1|k−1

)
vk (4.55)

and the measurement and the estimated measurement is defined as

yk = xk (4.56)
ŷk = x̂k|k−1 (4.57)



Chapter 4. Pose Estimation 30

The propagated state in vector form is

X̂k|k−1 =
(
θ̂k|k−1, x̂1

k|k−1, x̂2
k|k−1

)
(4.58)

Error equations and linearization

The estimation errors are given as

θ̃ = θ − θ̂ (4.59)
x̃(1) = x(1) − x̂(1) (4.60)
x̃(2) = x(2) − x̂(2) (4.61)

so using Equation 4.50 and Equation 4.54 gives

x̃
(1)
k|k−1 = x

(1)
k − x̂

(1)
k|k−1

= x
(1)
k−1 + h cos (θk−1) vk −

(
x̂

(1)
k−1|k−1 + h cos

(
θ̂k−1|k−1

)
vk

)
= x̃

(1)
k−1|k−1 + h

(
cos (θk−1) − cos

(
θ̂k−1|k−1

))
vk

= x̃
(1)
k−1|k−1 + h

(
cos

(
θ̃k−1|k−1 + θ̂k−1|k−1

)
− cos

(
θ̂k−1|k−1

))
vk

≈ x̃
(1)
k−1|k−1 + hθ̃k−1|k−1

d
dθ

cos(θ)
∣∣∣∣
θ̂k−1|k−1

vk

= x̃
(1)
k−1|k−1 + hθ̃k−1|k−1

(
− sin

(
θ̂k−1|k−1

))
vk

(4.62)

and using Equation 4.51 and Equation 4.55 gives

x̃
(2)
k|k−1 = x

(2)
k − x̂

(2)
k|k−1

= x
(2)
k−1 + h sin (θk−1) vk −

(
x̂

(2)
k−1|k−1 + h sin

(
θ̂k−1|k−1

)
vk

)
= x̃

(2)
k−1|k−1 + h

(
sin (θk−1) − sin

(
θ̂k−1|k−1

))
vk

= x̃
(2)
k−1|k−1 + h

(
sin
(
θ̃k−1|k−1 + θ̂k−1|k−1

)
− sin

(
θ̂k−1|k−1

))
vk

≈ x̃
(2)
k−1|k−1 + hθ̃k−1|k−1

d
dθ

sin(θ)
∣∣∣∣
θ̂k−1|k−1

vk

= x̃
(2)
k−1|k−1 + hθ̃k−1|k−1 cos

(
θ̂k−1|k−1

)
vk

(4.63)

Further, the error equations are summarized as

θ̃k|k−1 = θ̃k−1|k−1 (4.64)

x̃
(1)
k|k−1 = x̃

(1)
k−1|k−1 + hθ̃k−1|k−1

(
− sin

(
θ̂k−1|k−1

))
vk (4.65)

x̃
(2)
k|k−1 = x̃

(2)
k−1|k−1 + hθ̃k−1|k−1 cos

(
θ̂k−1|k−1

)
vk (4.66)

and the measurement estimation error is

ỹk = yk − ŷk (4.67)



Chapter 4. Pose Estimation 31

Then the linearized matrices at the estimates are obtained as

Ak =


0 0 0

− sin
(
θ̂k|k−1

)
vk 0 0

cos
(
θ̂k|k−1

)
vk 0 0

 (4.68)

Ck =
(

0 1 0
0 0 1

)
(4.69)

Kalman gain and estimates

With the linearized error system, the covariance propagation is defined as

Pk|k−1 = Pk−1|k−1 + h
(
AkPk−1|k−1 + Pk−1|k−1AT

k + Q̂k

)
(4.70)

where the noise matrix Q̂k given as:

Q̂k = Cov

[(
wθ

k, wl
k, wtr

k

)T
]

(4.71)

with

Cov

[(
wθ

k, wl
k, wtr

k

)T
]

= Qk = diag
(
(π/180)2, 10−4, 10−4

)
(4.72)

Kalman gain is computed by

S = CkPk|k−1CT
k + N̂k (4.73)

Lk = Pk|k−1CT
k S−1 (4.74)

where the noise matrix N̂k is given as

N̂k = R
(
θ̂k|k−1

)
NkR

(
θ̂k|k−1

)T
(4.75)

with

Nk = I2 (4.76)

Then the covariance update is defined as

Pk|k = (I3 − LkCk) Pk|k−1 (4.77)

and the state update

X̂k|k = X̂k|k−1 + Lk (ỹk) = X̂k|k−1 + Lk (yk − ŷk) (4.78)

EKF algorithm

From the formulas presented in this chapter, the algorithm for the EKF can be described by a prop-
agation and an update.



Chapter 4. Pose Estimation 32

Algorithm 3 EKF - Simple car model
Initialize P0 and X̂0
loop

Define Ak, Ck, as in Equation 4.68, Equation 4.69
Define Qk, Nk as in Equation 4.72, Equation 4.76
Propagation
θ̂k|k−1 = θ̂k−1|k−1 + hωk

x̂
(1)
k|k−1 = x̂

(1)
k−1|k−1 + h cos

(
θ̂k−1|k−1

)
vk

x̂
(2)
k|k−1 = x̂

(2)
k−1|k−1 + h sin

(
θ̂k−1|k−1

)
vk

Pk|k−1 = Pk−1|k−1 + h
(
AkPk−1|k−1 + Pk−1|k−1AT

k + Qk

)
Update
ŷk = x̂k|k−1

S = CkPk|k−1CT
k + N̂k

Lk = Pk|k−1CT
k S−1

Pk|k = (I3 − LkCk) Pk|k−1
X̂k|k = X̂k|k−1 + Lk (yk − ŷk)

end loop

4.4.2. Left Invariant Extended Kalman Filter - LIEKF

The LIEKF equations and algorithm in this chapter are based on [2]. The EKF and the LIEKF are
very similar to each other as the LIEKF is a modification of the EKF. The main difference between
the mentioned filters is that for the LIEKF, a nonlinear error variable is chosen, which causes some
of the error equations to differ. The lie group in SE(2) will be implemented for this filter.

The state vector for the LIEKF is defined as

X = (θ, x) , θ ∈ R, x ∈ R2 (4.79)

Recall from earlier in this chapter that the system dynamics in discrete time is defined as in Equa-
tion 4.49 - Equation 4.51 and that the time propagation of the state estimates is defined as in Equa-
tion 4.53 - Equation 4.55. Further, this system can be embedded in the matrix Lie group SE(2) using
the matrices introduced earlier in this thesis, from subsection 2.2.4. This gives

χ̂k−1|k−1 =
(

R
(
θ̂k−1|k−1

)
x̂k−1|k−1

01×2 1

)

=


cos

(
θ̂k−1|k−1

)
− sin

(
θ̂k−1|k−1

)
x̂

(1)
k−1|k−1

sin
(
θ̂k−1|k−1

)
cos

(
θ̂k−1|k−1

)
x̂

(2)
k−1|k−1

0 0 1


(4.80)

νk = Lse(2)(µk) =

 0 −ωk vk

ωk 0 0
0 0 0

 (4.81)

where νk is the logarithm of µk = (wk, vk, 0)T .



Chapter 4. Pose Estimation 33

The measurement is given in homogeneous form as

Yk = χk|k−1

(
02×1

1

)
(4.82)

and the propagated state is defined as

χ̂k|k−1 = χ̂k−1|k−1 + h
(
χ̂k−1|k−1νk

)
(4.83)

Error equations and linearization

The left invariant estimation error is

χ̃ = χ−1χ̂ ∈ SE(2) (4.84)

and the measurement estimation error is defined in homogeneous form as

Ỹ = χ−1χ̂

(
02×1

1

)
= χ̃−1

(
02×1

1

)
(4.85)

The propagation and update of the continuous-discrete LIEKF is

˙̂χt = χ̂tνt (4.86)

χ̂k|k = χ̂k|k−1 exp
(
L̃kỸ

)
(4.87)

where L̃k is a reduced-dimension gain matrix defined by L̃k = Lkp̃ with p̃ = (I2, 02,1). This results in
the reduced-dimension gain matrix

L̃k = (Lk, 02,1) (4.88)

Then the error system dynamics is found by the time derivative of the corresponding dynamics of χ̃,
as

˙̃χ = χ−1 ˙̂χ + χ̇−1χ̂

= χ−1 ˙̂χ − χ−1χ̇χ−1χ̂

= χ̃ν∧ − ν∧χ̃

(4.89)

χ̃k|k = χ−1
k χ̂k|k = χ̃k|k−1 exp

(
L̃kχ̃−1

k|k−1

(
02×1

1

))
(4.90)

To linearize the error system, an error variable, ξ, is established representing the left invariant esti-
mation error χ̃ as

ξ = (θ, ρ) , θ ∈ R, ρ ∈ R2 (4.91)

which satisfies

χ̃ = exp (ξ) =
(

R(θ) E(θ)ρ
01×2 0

)
(4.92)

From Equation 4.89, χ̃ν − νχ̃ implies that

ξ̇ = JR(ξ)−1µ − JL(ξ)−1µ = ad(ξ)µ = − ad(µ)ξ (4.93)



Chapter 4. Pose Estimation 34

yielding the first linearized equation.

Using (exp(u)−1 = exp(−u)), it is observed that

χ̃−1 = exp (−ξ) =
(

R(−θ) −E(−θ)ρ
01×2 1

)
(4.94)

which gives

χ̃−1
(

0
1

)
=
(

−E(−θ)ρ
1

)
(4.95)

Since E(θ) → I when θ → 0, the latter equation can be estimated by (for small θ)

ξk = ξk−1 − Lnρ (4.96)

yielding the second linearization equation. It is noted that ρ = Ckx =
(

0 1 0
0 0 1

)
x. The linearized

error system is then summarized as

ξ̇t = − ad(µ)ξt = −

 0 0 0
0 0 −ωk

−vk ωk 0

 ξt (4.97)

ξk|k = ξk|k−1 − Ln

(
0 1 0
0 0 1

)
x (4.98)

which presents the linearized matrices

Ak = −

 0 0 0
0 0 −ωk

−vk ωk 0

 (4.99)

Ck =
(

0 1 0
0 0 1

)
(4.100)

Kalman gain, covariance matrix and state update

The kalman gain and the propagation and update of the covariance matrix for the LIEKF are computed
exactly as for the EKF, and the equations are found from subsubsection 4.4.1. Unlike the EKF, the
state update for the LIEKF is defined as

χ̂k|k = χ̂k|k−1 exp
(

L̃k

[
χ̂−1

k|k−1Yk −
(

02×1
1

)])
(4.101)

It is noted that since the bottom element of χ̂−1
k|k−1Yk −

(
02×1

1

)
is always zero, the reduced-dimension

gain matrix L̃k is used. At last, the state update in vector form is defined as

X̂k|k =
(
Atan2

(
sin(θ̂k|k), cos(θ̂k|k)

)
, x̂

(1)
k|k, x̂

(2)
k|k

)
(4.102)

where x̂
(1)
k|k, x̂

(2)
k|k is the updated estimated position of the robot and θ̂k|k is the updated estimated

heading of the robot.



Chapter 4. Pose Estimation 35

LIEKF algorithm

From the formulas presented in this chapter, the algorithm for the LIEKF can be described by a
propagation and an update.

Algorithm 4 LIEKF - Simple car model
Initialize P0 and X̂0
loop

Define Ak, Ck, as in Equation 4.99, Equation 4.100
Define Qk, Nk as in Equation 4.72, Equation 4.76
Propagation
χ̂k|k−1 = χ̂k−1|k−1 + h

(
χ̂k−1|k−1νk

)
Pk|k−1 = Pk−1|k−1 + h

(
AkPk−1|k−1 + Pk−1|k−1AT

k + Qk

)
Update

Yk = χk|k−1

(
02×1

1

)
S = CkPk|k−1CT

k + N̂k

Lk = Pk|k−1CT
k S−1

Pk|k = (I3 − LkCk) Pk|k−1

χ̂k|k = χ̂k|k−1 exp
(

L̃k

[
χ̂−1

k|k−1Yk −
(

02×1
1

)])
end loop

4.5. Navigation on flat earth
This section presents the necessary equations and algorithms to simulate navigation on flat earth,
which can be considered as a vehicle evolving in the 3D space. In addition, there are known features
(landmarks) in the 3D space being observed relative to the vehicle position. The presented equations
and algorithms in this chapter are based on [2].

In chapter 3 the MEKF and RIEKF was introduced in relation to nonlinear attitude filtering using
quaternions, whereas for this chapter the MEKF and RIEKF is designed for estimation of attitude,
position and linear velocity. The lie group in SE2(3) will be implemented for the RIEKF.

The system dynamics for the vehicle evolving in the 3D space is given in continuous time as

Ṙ = R(ωk)× (4.103)
v̇ = g + Ruk (4.104)
ẋ = v (4.105)

where R, v and x is the attitude, velocity and position of the robot, respectively, wk is the three-
dimensional angular velocity as measured by the gyroscope, uk is the three-dimensional measured
acceleration, and g is the gravitational vector defined g = (0, 0, −9.81)T .

The system dynamics is given in discrete time as

Rk = Rk−1 + h(Rk−1(ωk)×) (4.106)
vk = vk−1 + h(g + Rk−1ûk) (4.107)
xk = xk−1 + h(vk−1) (4.108)



Chapter 4. Pose Estimation 36

Further, the corresponding noisy model is defined as

Ṙ = R (ωk + wω)× (4.109)
v̇ = g + R (uk + wu) (4.110)
ẋ = v (4.111)

where wω and wu are noise in the gyroscope and the accelerometer, respectively.

4.5.1. Multiplicative Extendend Kalman Filter - MEKF

The state vector for the MEKF is given as

X = (R, v, x) (4.112)

The propagation of the state estimates in discrete time is defined as

R̂k|k−1 = R̂k−1|k−1 + h(R̂k−1|k−1
(
ω̂k)×) (4.113)

v̂k|k−1 = v̂k−1|k−1 + h
(
g + R̂k−1|k−1ûk

)
(4.114)

x̂k|k−1 = x̂k−1|k−1 + h(v̂k−1|k−1) (4.115)

and the measurement and the estimated measurement is defined in vector form as

Yk =
(
Y 1

k , . . . , Y n
k

)
=
(
RT

k (p1 − xk) , . . . , RT
k (pn − xk)

)
(4.116)

Ŷk =
(
Ŷ 1

k , . . . , Ŷ n
k

)
=
(
R̂T

k|k−1

(
p1 − x̂k|k−1

)
, . . . , R̂T

k|k−1

(
pn − x̂k|k−1

))
(4.117)

where Yk, Ŷk ∈ R3n, with n being the notation for the total number of landmarks.

Error equations and linearization

The estimation errors are given as

R̃ = R̂RT (4.118)
ṽ = v̂ − v (4.119)
x̃ = x̂ − x (4.120)

so using Equation 4.106 and Equation 4.113 gives

˙̃Rk−1|k−1 = ˙̂
Rk−1|k−1RT

k−1 − R̂k−1|k−1ṘT
k−1

= R̂k−1|k−1(ωk)×RT
k−1 − R̂k−1|k−1

(
ωk

×)T RT
k−1

= 0

(4.121)

and using Equation 4.107 and Equation 4.114 gives

˙̃vk−1|k−1 = ˙̂vk−1|k−1 − v̇k−1

= g + R̂k−1|k−1uk − (g + Rk−1uk)
= R̂k−1|k−1uk − R̃T

k−1|k−1R̂k−1|k−1uk

= (I − R̃T
k−1|k−1)R̂k−1|k−1uk

(4.122)

where Rk−1 is substituted with R̃T
k−1|k−1R̂k−1|k−1.



Chapter 4. Pose Estimation 37

Using Equation 4.108 and Equation 4.115 gives

˙̃xk−1|k−1 = ˙̂xk−1|k−1 − ẋk−1

= v̂k−1|k−1 − vk−1

= ṽk−1|k−1

(4.123)

and finally, the measurement error is given as

ỹk = ŷk − yk

= R̂T
k|k−1

(
pn − x̂k|k−1

)
− RT

k (pn − xk)

= R̂T
k|k−1

(
pn − x̂k|k−1

)
− R̂T

k|k−1R̃k|k−1 (pn − xk)

= R̂T
k|k−1(I − R̃k|k−1)pn − R̂T

k|k−1(I − R̃k|k−1)x̂k|k−1 − R̂T
k|k−1R̃k|k−1x̃k|k−1

(4.124)

The error model is summarized as
˙̃Rk−1|k−1 = 0
˙̃vk−1|k−1 = (I − R̃T

k−1|k−1)R̂k−1|k−1uk

˙̃xk−1|k−1 = ṽk−1|k−1

(4.125)

with the measurement error

ỹk = R̂T
k|k−1(I − R̃k|k−1)pn − R̂T

k|k−1(I − R̃k|k−1)x̂k|k−1 − R̂T
k|k−1R̃k|k−1x̃k|k−1 (4.126)

Since the error variable R̃ is not a vector variable, it is linearized using the first-order expansion
R̃ ≈ I + θ̃×, where θ̃ ∈ R3. Then, linearization at R̃ = I, ṽ = 0 and x̃ = 0 using R̃ ≈ I + θ̃× gives

˙̃vk−1|k−1 =
(
I − R̃T

k−1|k−1

)
R̂k−1|k−1uk

≈ −
(
θ̃×

k−1|k−1

)T
R̂k−1|k−1uk

= θ̃×
k−1|k−1R̂k−1|k−1uk

= −(R̂k−1|k−1uk)×θ̃k−1|k−1

(4.127)

and the linearized measurement error is

ỹk = −R̂T
k|k−1θ̃×

k|k−1pn + R̂T
k|k−1θ̃×

k|k−1x̂k|k−1 − R̂T
k|k−1x̃k|k−1

= −R̂T
k|k−1θ̃×

k|k−1

(
pn − x̂k|k−1

)
− R̂T

k|k−1x̃k|k−1

= R̂T
k|k−1

(
pn − x̂k|k−1

)×
θ̃k|k−1 − R̂T

k|k−1x̃k|k−1

(4.128)

The linearized matrices are then defined as

Ak =


03×3 03×3 03×3

−
(
R̂k−1|k−1uk

)×
03×3 03×3

03×3 I3 03×3

 (4.129)

Ck =


R̂T

k|k−1

(
p1 − x̂k|k−1

)×
03×3 −R̂T

k|k−1
· · ·

R̂T
k|k−1

(
pn − x̂k|k−1

)×
03×3 −R̂T

k|k−1

 (4.130)



Chapter 4. Pose Estimation 38

Linearization of noisy model

Linearization of the noisy model defined in Equation 4.109-Equation 4.111 in continuous-time gives

˙̃R =
( d

dt
R̂

)
RT − R̂ṘT

= R̂ω×
k RT − R̂

(
ω×

k + w×
ω

)T
RT

= R̂w×
ω R̂TR̃

(4.131)

˙̃v = ˙̂v − v̇

= g + R̂uk − g − Ruk − Rwu

=
(
I − R̃T

)
R̂uk − R̃TR̂wu

(4.132)

˙̃x = ˙̂x − ẋ = v̂ (4.133)

Given that R̃ ≈ I + θ̃×, the propagation of the error rotation is defined as ˙̃R = ˙̃θ×, which gives

˙̃θ = R̂wω (4.134)
˙̃v =

(
I − R̃T

)
R̂uk − R̃TR̂wu

≈ θ̃×R̂uk − R̂wu

= −(R̂uk)×θ̃ − R̂wu

(4.135)

˙̃x = ṽ (4.136)

yielding the noise matrix Gk defined as

Gk =

 R̂ 03×3 03×3
03×3 −R̂ 03×3
03×3 03×3 03×3

 (4.137)

and in discrete time it is given as

Gk =

 R̂k−1|k−1 03×3 03×3
03×3 −R̂k−1|k−1 03×3
03×3 03×3 03×3

 (4.138)

Kalman gain and estimates

Using the linearized matrices, the covariance propagation is defined as

Pk|k−1 = Pk−1|k−1 + h
(
AkPk−1|k−1 + Pk−1|k−1AT

k + Q̂k

)
(4.139)

where

Q̂k = Gk Cov (wk) GT
k (4.140)

Cov (wk) = Q (4.141)

It is noted that for the simulation of navigation on flat earth, two different noise matrices Q1 and
Q2 are initialized as Q in order to study the behaviour of the MEKF and RIEKF filter. The noise
matrices are defined in chapter 5.

It is noted that previously in chapter 3 the Kalman gain was denoted Kk, but for the current chapter,
the Kalman gain is denoted Lk as in [2].



Chapter 4. Pose Estimation 39

The Kalman gain is defined as

Lk = Pk|k−1HT S−1 (4.142)
S = HPk|k−1HT + N̂k (4.143)

where S is defined using the noise matrix N̂k given as

N̂k =


R̂k|k−1 Cov

(
V 1

k

)
R̂T

k|k−1
. . .

R̂k|k−1 Cov (V n
k ) R̂T

k|k−1

 (4.144)

and

Nk = Cov (Vk) = Cov

[(
V 1

k , · · · , V n
k

)T
]

=

 10−2I3 03×3 03×3
03×3 10−2I3 03×3
03×3 03×3 10−2I3

 (4.145)

Then the covariance update is written as

Pk|k = (I9 − LkCk) Pk|k−1 (4.146)

For the MEKF, the state is updated by defining a vector variable representing the innovation

ξ = (ξθ, ξv, ξx)T = −Lk

(
Ŷk − Yk

)
, ξθ, ξv, ξx ∈ R3 (4.147)

and then the updated state is defined as

X̂k|k =
(

R̂k|k−1 exp(ξθ),
(
v̂k|k−1 + ξv

)T
,
(
x̂k|k−1 + ξx

)T
)

(4.148)

where exp(·) is the exponential map corresponding to the exponential map defined for SO(3) in
Equation 2.15, so that it satisfies exp(ξθ) = R(ξθ).

MEKF algorithm

From the formulas presented in this chapter, the algorithm for the MEKF can be described by a
propagation and an update.



Chapter 4. Pose Estimation 40

Algorithm 5 MEKF - Navigation on flat earth
Initialize P0 and X̂0
loop

Define Ak, Ck, as in Equation 4.130, Equation 4.129
Define Gk, N̂k as in Equation 4.138, Equation 4.144
Propagation
R̂k|k−1 = R̂k−1|k−1 + h(R̂k−1|k−1 (ω̂k)×)
v̂k|k−1 = v̂k−1|k−1 + h

(
g + R̂k−1|k−1ûk

)
x̂k|k−1 = x̂k−1|k−1 + h(v̂k−1|k−1)
Pk|k−1 = Pk−1|k−1 + h

(
AkPk−1|k−1 + Pk−1|k−1AT

k + Q̂k

)
Update
Yk =

(
Y 1

k , . . . , Y n
k

)
=
(
RT

k (p1 − xk) , . . . , RT
k (pn − xk)

)
S = CkPk|k−1CT

k + N̂k

Lk = Pk|k−1CT
k S−1

Pk|k = (I9 − LkCk) Pk|k−1

ξ = (ξθ, ξv, ξx)T = −Lk

(
Yk − Ŷk

)
, ξθ, ξv, ξx ∈ R3

X̂k|k =
(

R̂k|k−1R(ξθ),
(
v̂k|k−1 + ξv

)T
,
(
x̂k|k−1 + ξx

)T
)

end loop

4.5.2. Right Invariant Extended Kalman Filter - RIEKF

The state vector for the RIEKF is given as

X = (R, v, x) (4.149)

Recall from earlier in this chapter that the system dynamics in discrete time is defined as in Equa-
tion 4.106 - Equation 4.108 and that the time propagation of the state estimates is defined as in
Equation 4.113 - Equation 4.115.

This system can be embedded in the group of double homogeneous matrices SE2(3), introduced in
subsection 2.2.5, which gives

χ̂k−1|k−1 =

 R̂k−1|k−1 v̂k−1|k−1 x̂k−1|k−1
01×3 1 0
01×3 0 1

 (4.150)

fωk,uk
(χ̂k−1|k−1) =

 R̂k−1|k−1(ω̂k)× g + R̂k−1|k−1ûk v̂k−1|k−1
01×3 0 0
01×3 0 0

 (4.151)

Then the time propagation of the state estimate is defined as

χ̂k|k−1 = χ̂k−1|k−1 + h(fωk,uk
(χ̂k−1|k−1)) (4.152)



Chapter 4. Pose Estimation 41

and the measurement and the estimated measurement is given in homogeneous form as

Yk =
(
Y 1

k , . . . , Y n
k

)
=

χ−1
k

 p1
0
1

 , . . . , χ−1
k

 pn

0
1


 (4.153)

Ŷk =
(
Ŷ 1

k , . . . , Ŷ n
k

)
=

χ̂−1
k|k−1

 p1
0
1

 , . . . , χ̂−1
k|k−1

 pn

0
1


 (4.154)

It is noted that Yk and Ŷk are both given in homogeneous form as mentioned above, and can be
formulated as

Y n
k =

 yn
k

0
1

 , Ŷ n
k =

 ŷn
k

0
1

 (4.155)

where

yn
k = Rk (pn − xk) , ŷn

k = R̂k|k−1
(
pn − x̂k|k−1

)
(4.156)

Condition for autonomous error dynamics

Using the state embedded in SE2(3) from Equation 4.150, two states are defined in order to determine
if the condition for autonomous error dynamics from Equation 4.4 is satisfied. The states are defined
as

A =

 Ra va xa

01×3 1 0
01×3 0 1

 , B =

 Rb vb xb

01×3 1 0
01×3 0 1

 (4.157)

and from Equation 4.151, the corresponding functions are given as

f(A) =

 Raω× g + Rau va

01×3 0 0
01×3 0 0

 , f(B) =

 Rbω
× g + Rbu vb

01×3 0 0
01×3 0 0

 (4.158)

and lastly, the identity function is defined as

f(I) =

 Iω× g + u 03×1
01×3 0 0
01×3 0 0

 (4.159)

The next step is to compute the matrices f(AB), Af(B), f(A)B and Af(I)B. Then

AB =

 RaRb Ravb + va Raxb + xa

01×3 1 0
01×3 0 1

 (4.160)

f(AB) =

 RaRbω
× g + RaRbu Ravb + va

01×3 0 0
01×3 0 0

 (4.161)



Chapter 4. Pose Estimation 42

The matrices Af(B), f(A)B are defined as

Af(B) =

 RaRbω
× Rag + RaRbu Ravb

01×3 0 0
01×3 0 0

 (4.162)

f(A)B =

 Raω×Rb Raω×vb + g + Rau Raω×xb + va

01×3 0 0
01×3 0 0

 (4.163)

and lastly

Af(I)B =

 Raω× Rag + Rau 03×1
01×3 0 0
01×3 0 0


 Rb vb xb

01×3 1 0
01×3 0 1


=

 Raω×Rb Raω×vb + Rag + Rau Raω×xb

01×3 0 0
01×3 0 0


(4.164)

From these matrices, it is seen that

f(AB) = Af(B) + f(A)B − Af(I)B (4.165)

which satisfies the condition Equation 4.4, and it is concluded that the error dynamics are autonomous.

Error equations and linearization

The estimation errors are given as

R̃ = R̂RT (4.166)
ṽ = v̂ − R̃v (4.167)
x̃ = x̂ − R̃x (4.168)

and the estimated measurement error is

ỹn = R̂ (ŷn − yn) (4.169)

Then, using Equation 4.106 and Equation 4.113 gives

˙̃Rk−1|k−1 = ˙̂
Rk−1|k−1RT

k−1 − R̂k−1|k−1ṘT
k−1

= R̂k−1|k−1(ωk)×RT
k−1 − R̂k−1|k−1

(
ωk

×)T RT
k−1

= 0

(4.170)

and using Equation 4.107 and Equation 4.114 gives

˙̃vk−1|k−1 = ˙̂vk−1|k−1 − ˙̃Rk−1|k−1vk−1 − R̃k−1|k−1v̇k−1

= g + R̂k−1|k−1uk − R̃k−1|k−1(g + Rk−1uk)
= (I − R̃k−1|k−1)g

(4.171)

where Rk−1 is substituted with R̃T
k−1|k−1R̂k−1|k−1.



Chapter 4. Pose Estimation 43

Using Equation 4.108 and Equation 4.115 gives

˙̃xk−1|k−1 = ˙̂xk−1|k−1 − ˙̃Rk−1|k−1xk−1 − R̃k−1|k−1ẋk−1

= v̂k−1|k−1 − R̃k−1|k−1vk−1
(4.172)

and finally, the measurement error is given as

ỹn
k|k−1 = R̂k|k−1 (ŷn

k − yn
k )

= R̂k|k−1R̂T
k|k−1

(
pn − x̂k|k−1

)
− R̂k|k−1RT

k|k−1 (pn − xk)

= (I − R̃k|k−1)pn − (x̂k|k−1 − R̃k|k−1xk)
= (I − R̃k|k−1)pn − x̃k|k−1

(4.173)

The error model is summarized as

˙̃Rk−1|k−1 = 0 (4.174)
˙̃vk−1|k−1 = (I − R̃k−1|k−1)g (4.175)
˙̃xk−1|k−1 = v̂k−1|k−1 − R̃k−1|k−1vk−1 (4.176)

with the measurement error

ỹk = (I − R̃k|k−1)pn − x̃k|k−1 (4.177)

Recall from the previous subsection that since the error variable R̃ is not a vector variable, it is
linearized using the first-order expansion R̃ ≈ I+θ̃×, where θ̃ ∈ R3. Then, linearization at R̃ = I, ṽ = 0
and x̃ = 0 using R̃ ≈ I + θ̃× gives

˙̃vk−1|k−1 = (I − R̃k−1|k−1)g
≈ −θ̃×

k−1|k−1g = g×θ̃k−1|k−1
(4.178)

˙̃xk−1|k−1 = v̂k−1|k−1 − R̃k−1|k−1vk−1

= v̂k−1|k−1 − R̃k−1|k−1R̃T
k−1|k−1

(
v̂k−1|k−1 − ṽk−1|k−1

)
= ṽk−1|k−1

(4.179)

and the linearized measurement error is

ỹk = (I − R̃k|k−1)pn − x̃k|k−1

= −θ̃×
k|k−1pn − x̃k|k−1

= (pn)×θ̃k|k−1 − x̃k|k−1

(4.180)

The linearized matrices are then defined as

Ak =

 03×3 03×3 03×3
(g)× 03×3 03×3
03×3 I3 03×3

 (4.181)

Ck =

 (p1)× 03×3 −I3
· · ·

(pn)× 03×3 −I3

 (4.182)



Chapter 4. Pose Estimation 44

Linearization of noisy model

Linearization of the noisy model defined in Equation 4.109-Equation 4.111 in continuous-time gives

˙̃R =
( d

dt
R̂

)
RT − R̂ṘT

= R̂ω×
k RT − R̂

(
ω×

k + w×
ω

)T
RT

= R̂w×
ω R̂TR̃

(4.183)

˙̃v = ˙̂v − ˙̃Rv − R̃v̇

= g + R̂uk −
(
R̂w×

ω R̂TR̃
)

v − R̃g + R̃Ruk + R̃Rwu

= (I − R̃)g −
(
R̂wω

)×
R̃v + R̂wu

(4.184)

˙̃x = ˙̂x − ˙̃Rx − R̃ẋ

= v̂ −
(
R̂w×

ω R̂TR̃
)

x − R̃v
(4.185)

Given that R̃ ≈ I + θ̃×, the propagation of the error rotation is defined as ˙̃R = ˙̃θ×, which gives

˙̃θ× = R̂w×
ω R̂T =

(
R̂wω

)×
(4.186)

Then the linearized noisy model is defined as

˙̃θ = R̂wω (4.187)
˙̃v = g×θ̃ + v×R̂wω + R̂wu (4.188)
˙̃x = v̂ −

(
R̂w×

ω R̂TR̃
)

x − R̃v

= ṽ + x×R̂wω

(4.189)

yielding the noise matrix Gk defined as

Gk =

 R̂ 03×3 03×3
v̂×R̂ R̂ 03×3
x̂×R̂ 03×3 03×3

 (4.190)

and in discrete time it is given as

Gk =


R̂k−1|k−1 03×3 03×3(

v̂k−1|k−1
)×

R̂k−1|k−1 R̂k−1|k−1 03×3(
x̂k−1|k−1

)×
R̂k−1|k−1 03×3 03×3

 (4.191)

Kalman gain and estimates

Using the linearized matrices, the covariance propagation is defined as in Equation 4.139 using Gk

derived above from Equation 4.191. As mentioned earlier, Cov (wk) is defined by two different noise
matrices Q1 and Q2 depending on which matrix is initiated, and can be found from chapter 5.

Exactly like the MEKF, the Kalman gain Lk is defined by using Equation 4.143-Equation 4.145, and
the covariance update is defined as in Equation 4.146.



Chapter 4. Pose Estimation 45

The innovation in homogeneous form is given as

Ỹk = χ̂k|k−1
(
Ŷk − Yk

)
(4.192)

and can be formulated as

Ỹ n
k =

 ỹn
k

0
0

 , ỹn
k = R̂k|k−1(ŷn

k − yn
k ) (4.193)

Since the last two elements of each measurement, the state update is defined as

χ̂k|k = exp (−Lkỹk) χ̂k|k−1 (4.194)

where ỹk =
(
ỹ1

k, . . . , ỹn
k

)
∈ R3n and exp(·) is the exponential map corresponding to the exponential

map defined for SE2(3) in Equation 2.27.

RIEKF algorithm

From the formulas presented in this chapter, the algorithm for the RIEKF can be described by a
propagation and an update.

Algorithm 6 RIEKF - Navigation on flat earth
Initialize P0 and X̂0
loop

Define Ak, Ck, as in Equation 4.181, Equation 4.182
Define Gk, N̂k as in Equation 4.191, Equation 4.144
Propagation
χ̂k|k−1 = χ̂k−1|k−1 + h(fωk,uk

(χ̂k−1|k−1))
Pk|k−1 = Pk−1|k−1 + h

(
AkPk−1|k−1 + Pk−1|k−1AT

k + Q̂k

)
Update
yn

k = RT
k (pn − xk)

ỹk =
(
ỹ1

k, . . . , ỹn
k

)
= (R̂k|k−1(ŷ1

k − y1
k), . . . , R̂k|k−1(ŷn

k − yn
k ))

S = CkPk|k−1CT
k + N̂k

Lk = Pk|k−1CT
k S−1

Pk|k = (I9 − LkCk) Pk|k−1
χ̂k|k = exp (−Lkỹk) χ̂k|k−1

end loop



Chapter 5.

Simulation

The simulations performed in this thesis are simulated by python, and the codes are presented in
appendix A.1 and A.2.

5.1. Nonlinear attitude filtering
This subsection presents the simulation steps and parameters of the MEKF and the RIEKF for
nonlinear attitude filtering using quaternions. As mentioned earlier, the nonlinear attitude filtering
case will not be simulated and displayed in this thesis as it is extracted from the specialization project
prior to the master thesis.

The simulation is performed with 0.001 s time step with a total time of 30s, where the true trajectory
is defined by the sinusoidal input Ω = 1

2sin(2π
5 t) [0, 0, 1] ◦

s .

The initial rotation defined by the unit quaternion and the initial bias is initialized with a standard
deviation stdq0 = 60◦ and stdb0 = 20◦

s , respectively. The coefficient matrix Qa is defined with a
standard deviation stdΩ = 25◦

s , and Qb with a standard deviation stdb = 0.1◦
s squared. Next, the

coefficient matrix Rc is defined with a standard deviation stdy = 30◦. It is important to note that for
the noise initialization, the standard deviations are converted from degrees to radians before they are
implemented.

A complete overview of the system initialization parameters can be found in Table 5.1 and the noise
initialization parameters can be found in Table 5.2. It is noted that the initialization parameters used
for this case are identical for both the MEKF and RIEKF.

System initialization
Parameter Value

Ω
(
0, 0, 1

2 sin(2π
5 t)

)
◦
s

h 0.001s

t 30s

di d1 = (1, 0, 0)T , d2 = (0, 0, 0)T , d2 = (0, 0, 1)T

q0 (0, 0, 0, 1)T

b0 (0, −0.5, 0.01)T

Table 5.1.: Nonlinear attitude filtering - Quaternion: Parameters and their respective values for the
system initialization for the MEKF and RIEKF



Chapter 5. Simulation 47

Noise initializaition
Parameter Value

stdq0 60◦

stdb0 20◦
s

stdΩ 25◦
s

stdb 0.1◦
s

stdy 30◦

Pa0
1

std2
q0

I3

Pb0
1

std2
b0

I3

Pc0 I3

Qa0 diag((std2
Ω, std2

Ω, std2
Ω))

Qb0 diag((std2
b , std2

b , std2
b))

Qc0 03×3

Rc diag((std2
y, std2

y, std2
y))

Table 5.2.: Nonlinear attitude filtering - Quaternion: Parameters and their respective values for the
noise initialization and coefficient matrices for the MEKF and RIEKF

5.2. Pose estimation - Simple car model
This subsection presents the simulation steps and parameters of the EKF and the LIEKF in relation
to pose estimation. The true trajectory moves in a circle with radius r ≈ 6.283m, with a speed of
v = 1m

s and an angular velocity of ω = 2π
40 s−1 so that it takes 40s for the robot to complete the circle.

The simulation is simulated using h = 0.1s for a duration of 32s as the remaining part of the trajectory
is irrelevant due the filters convergence properties. Two initial cases are performed for the filters using
two different initial headings, θ̂0 = 1◦ and θ̂0 = 45◦, corresponding to the initial heading error of the
robot. The initialization of the covariance matrix P0 depends on the heading error and the initial
position of the robot is always assumed known.

A complete overview of the system initialization parameters can be found in Table 5.3 and the noise
initialization parameters can be found in Table 5.4. It is noted that the initialization parameters used
for this simulation are identical for both the EKF and LIEKF.



Chapter 5. Simulation 48

System initializaition
Parameter Value

h 0.1s

t 32s

v 1m
s

ω 2π
40 s−1

θ̂0 1◦ and 45◦

x̂0 (0, 0)T

Table 5.3.: Pose estimation - Simple car model: Parameters and their respective values for the system
initialization of the EKF and LIEKF

Noise initializaition
Parameter Value

P0 (θ̂0 = 1◦) diag
(
(π/180)2, 0, 0

)
P0 (θ̂0 = 45◦) diag

(
(15π/180)2, 0, 0

)
Qk diag

(
(π/180)2, 10−4, 10−4)

Nk I2

Table 5.4.: Pose estimation - Simple car model: Noise and covariance initialization parameters and
their respective values for the EKF and LIEKF

5.3. Pose estimation - Navigation on flat earth
This section presents the simulation steps and parameters of the MEKF and the RIEKF for pose
estimation. It is noted that for the simulation of navigation on flat earth, the MEKF uses the noise
matrix Gk as defined in Equation 4.191, which is actually designed for the RIEKF. Even though Gk

is defined as in Equation 4.138 for the MEKF (given its error equations), this did not produce the
same result as in [2] for an unknown reason. This could be something to investigate as a future work
of what has been done in this thesis.

The true trajectory moves in a circle with radius r = 5m with a speed of v = 1m
s and an angular

velocity of ω = 2π
30 s−1 around the z-axis so that it takes 30s for the robot to complete the circle.

The simulation is simulated using h = 0.1s for a duration of 30s. Two cases are simulated using two
different noise matrices, Q1 and Q2, where the attitude error of the robot is R̂0 = exp(15◦) ∈ SO(3)
and the initial position error is x̂0 = (1, 0, 1)T , corresponding to a standard deviation of 1m in the
x-direction and z-direction.

A complete overview of the system initialization parameters can be found in Table 5.5 and the noise
initialization parameters can be found in Table 5.6. It is noted that the initialization parameters used
for this simulation are identical for both the MEKF and RIEKF.



Chapter 5. Simulation 49

System initializaition
Parameter Value

h 0.1s

t 30s

r 5m

ω 2π
t s−1

g (0, 0, −9.81)T

R̂0 exp(15◦) ∈ SO(3)
v̂0 (ωr, 0, 0)T

x̂0 (1, 0, 1)T

Table 5.5.: Pose estimation - Navigation on flat earth: Parameters and their respective values for
the system initialization of the MEKF and RIEKF

Noise initializaition
Parameter Value

P0 (Q = Q1)

 ( 5π
180)2I3 03×3 03×3
03×3 10−2I3 03×3
03×3 03×3 I3



P0 (Q = Q2)

 (15π
180 )2I3 03×3 03×3
03×3 10−2I3 03×3
03×3 03×3 I3



Q1

 10−8I3 03×3 03×3
03×3 10−8I3 03×3
03×3 03×3 03×3



Q2

 10−4I3 03×3 03×3
03×3 10−4I3 03×3
03×3 03×3 03×3


Nk 10−2I9

Table 5.6.: Pose estimation - Navigation on flat earth: Noise and covariance initialization parameters
and their respective values for the MEKF and RIEKF



Chapter 6.

Results & Discussions

6.1. Simple car model

Figure 6.1.: Simulated results for the EKF and LIEKF pose estimation with an initial heading error
θ̂0 = 1◦.



Chapter 6. Results & Discussions 51

Figure 6.2.: Comparison of the attitude and position error for the EKF and LIEKF with initial
heading error θ̂0 = 1◦, plotted against the time.



Chapter 6. Results & Discussions 52

Figure 6.3.: Simulated results for the EKF and LIEKF pose estimation with an initial heading error
θ̂0 = 45◦.



Chapter 6. Results & Discussions 53

Figure 6.4.: Comparison of the attitude and position error for the EKF and LIEKF with initial
heading error θ̂0 = 45◦, plotted against the time.



Chapter 6. Results & Discussions 54

6.1.1. Discussion

From Figure 6.1 it is seen that a heading error of 1◦ has very little effect on the performance of the
filters, and both filters behave similarly. Figure 6.3 shows that a heading error of 45◦ has a greater
effect on the performance of the filters. The robot starts at (0, 0), but as the heading error is now
45◦, the robot starts moving outwards. It is obvious to see that the LIEKF outperforms the EKF as
it consists of autonomous error properties.

The error plots from Figure 6.2, shows that the EKF is clearly outperformed as the LIEKF error
shows rapid decrease in position estimation error, whereas the EKF stuggles to converge up until
approximately t ≈ 28s. From the plot of the attitude estimation error it is seen that the EKF
corrects itself within the first five seconds, but is seen to increase in error as the time increases, before
converging at approximately t ≈ 25s. The LIEKF on the other hand, completely outperforms the
EKF as it converges within five seconds.



Chapter 6. Results & Discussions 55

6.2. Navigation on flat earth

Figure 6.5.: Simulated results for the MEKF and RIEKF pose estimation with Q = Q1.



Chapter 6. Results & Discussions 56

Figure 6.6.: Comparison of the attitude and position error for the MEKF and RIEKF with Q = Q1,
plotted against the time.



Chapter 6. Results & Discussions 57

Figure 6.7.: Simulated results for the MEKF and RIEKF pose estimation with Q = Q2.



Chapter 6. Results & Discussions 58

Figure 6.8.: Comparison of the attitude and position error for the MEKF and RIEKF with Q = Q2,
plotted against the time.



Chapter 6. Results & Discussions 59

6.2.1. Discussion

It is noted that the dashed line in Figure 6.5 and Figure 6.7 shows the distance from the landmark
(feature) to the xy-plane (height in z-direction) and are the same for both figures.

The error plots from Figure 6.6 shows the error of the filters for the tightly tuned process noise matrix
Q = Q1, to represent highly precise inertial sensors. From the attitude error plot, it is seen that
both the MEKF and RIEKF correct themselves immediately which is caused by the gains decreasing.
However, the gains are now too small to be corrected for the MEKF, leading to its convergence. This
is clearly illustrated in Figure 6.5 as well. The RIEKF is seen to rapidly decrease to zero in attitude
estimation error, but then increases before stabilizing over the next couple of seconds. The position
error plot also shows that the RIEKF converges to zero, although it does fluctuate a very small amount
after, and the MEKF is clearly outperformed.

The error plots from Figure 6.8 shows the error of the filters for the enlarged process noise matrix
Q = Q2. The tuning of the process noise matrix Q1 is called robust tuning, which is a way of improving
the convergence properties of the (M)EKF [2], as can be seen from the plots. Both filters converge to
zero in attitude and position estimation error.

Comparing the results provided in this thesis with that of [2], it is clear to see that the error plots
does not look exactly the same. This could be a result of the difference between the initial covariance
matrix P0 defined for this thesis, and the initial covariance matrix used in [2] which was not specified.



Chapter 7.

Conclusion

The simulations presented in this thesis shows the superiority of the IEKF in comparison to the EKF
as the latter filter is outperformed on every case that was simulated, even for challenging Q. This
is a result of the invariance of the IEKF, which causes the estimation error to satisfy the log-linear
autonomous differential equation on the Lie algebra corresponding to the Lie algebra of the system
dynamic [9].

In the simulation of the simple car model, a small heading error results in both filters converging
but as the heading error increases, the IEKF outperfomrs the EKF due to the use of the system’s
nonlinearities. In the simulation of navigation on flat earth, the differently tuned process noise matrices
Q1 and Q2 highlights the advantage of the IEKF over the EKF. It is concluded that the IEKF possesses
theoretical stability guarantees around any trajectory, which EKF does not, using the same tuning
implementation and computational load [2]. Although the EKF does not guarantee convergence
around any trajectory, it is still possible to improve the EKF using the trick where the process noise
matrix is tuned properly, e.g. Q2.



References

[1] Axel Barrau. “Non-linear state error based extended Kalman filters with applications to navi-
gation”. PhD thesis. Mines Paristech, 2015.

[2] Axel Barrau and Silvère Bonnabel. “The invariant extended Kalman filter as a stable observer”.
In: IEEE Transactions on Automatic Control 62.4 (2016), pp. 1797–1812.

[3] Axel Barrau and Silvere Bonnabel. “An EKF-SLAM algorithm with consistency properties”. In:
arXiv preprint arXiv:1510.06263 (2015).

[4] Billur Barshan and Hugh F Durrant-Whyte. “Inertial navigation systems for mobile robots”. In:
IEEE transactions on robotics and automation 11.3 (1995), pp. 328–342.

[5] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart. “Robust visual inertial
odometry using a direct EKF-based approach”. In: 2015 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE. 2015, pp. 298–304.

[6] Silvere Bonnabel, Philippe Martin, and Pierre Rouchon. “Non-linear symmetry-preserving ob-
servers on Lie groups”. In: IEEE Transactions on Automatic Control 54.7 (2009), pp. 1709–
1713.

[7] Silvère Bonnable, Philippe Martin, and Erwan Salaün. “Invariant extended Kalman filter: theory
and application to a velocity-aided attitude estimation problem”. In: Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference. IEEE. 2009, pp. 1297–1304.

[8] Jack CK Chou. “Quaternion kinematic and dynamic differential equations”. In: IEEE Transac-
tions on robotics and automation 8.1 (1992), pp. 53–64.

[9] Saptadeep Debnath, Anthony Liang, Gaurav Manda, Sunbochen Tang, and Hao Zhou. “Invariant
Extended Kalman Filtering for Robot Localization using IMU and GPS”. In: ().

[10] RL Farrenkopf. “Analytic steady-state accuracy solutions for two common spacecraft attitude
estimators”. In: Journal of Guidance and Control 1.4 (1978), pp. 282–284.

[11] Brian C Hall et al. Lie groups, Lie algebras, and representations: an elementary introduction.
Vol. 10. Springer, 2003.

[12] Jeffrey Humpherys, Preston Redd, and Jeremy West. “A Fresh Look at the Kalman Filter”. In:
SIAM Review 54 (Nov. 2012). doi: 10.1137/100799666.

[13] Ern J Lefferts, F Landis Markley, and Malcolm D Shuster. “Kalman filtering for spacecraft
attitude estimation”. In: Journal of Guidance, Control, and Dynamics 5.5 (1982), pp. 417–429.

[14] Mingyang Li and Anastasios I Mourikis. “High-precision, consistent EKF-based visual-inertial
odometry”. In: The International Journal of Robotics Research 32.6 (2013), pp. 690–711.

[15] F Landis Markley. “Attitude error representations for Kalman filtering”. In: Journal of guidance,
control, and dynamics 26.2 (2003), pp. 311–317.

[16] Anastasios I Mourikis, Stergios I Roumeliotis, et al. “A Multi-State Constraint Kalman Filter
for Vision-aided Inertial Navigation.” In: ICRA. Vol. 2. 2007, p. 6.

[17] Jon M Selig. Geometric fundamentals of robotics. Vol. 128. Springer, 2005.

https://doi.org/10.1137/100799666


References 62

[18] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley
& Sons, 2006.

[19] David Titterton, John L Weston, and John Weston. Strapdown inertial navigation technology.
Vol. 17. IET, 2004.

[20] Mohammad Zamani, Jochen Trumpf, and R Mahony. “Nonlinear attitude filtering: A comparison
study”. In: arXiv preprint arXiv:1502.03990 (2015).

[21] Fuzhen Zhang. “Quaternions and matrices of quaternions”. In: Linear algebra and its applications
251 (1997), pp. 21–57.



Appendix A.

Code listing

A.1. Simple car model - EKF & LIEKF python code
1 """
2 @author : Thilogen
3 """
4 # -------------------------------------------------------------------
5

6 import numpy as np
7 import math
8 import matplotlib . pyplot as plt
9

10 # -------------------------------------------------------------------
11

12 # Define some functions needed to calculate the necessary equations
13

14 def skew2(a):
15 return a*np.array ([[0 , -1],[1, 0]])
16 def exp2(theta):
17 #theta = theta.item ()
18 return np.array ([[ np.cos(theta), -np.sin(theta)],
19 [np.sin(theta), np.cos(theta)]])
20 def Ese2(theta):
21 a = np.sinc(theta/np.pi)
22 b = (theta /2) *(np. square (np.sinc(theta /(2* np.pi))))
23 return np.array ([[a, -b], [b, a]])
24

25 # -------------------------------------------------------------------
26

27 # Define the function that creates the real trajectory
28

29 def create_dynamics (n_time , h, om , v):
30 X = np.zeros ((3, n_time ))
31 for i in range (1, n_time ):
32 theta = X[0,i -1]; x = X[1:3 ,i -1]
33 X[:,i] = np.array ([ theta + om * h,
34 x[0] + np.cos(theta)* v * h,
35 x[1] + np.sin(theta)* v * h])
36 return X
37

38 # -------------------------------------------------------------------
39

40 # Define the propagate function for both filter
41

42 def propagate (h, Xh , P, v, om , Q, config ):
43 theta_h = Xh [0]; x_h = Xh [1:3]; R_h = exp2( theta_h )
44

45 if config == "ekf":



Appendix A. Code listing 64

46 A = np.zeros ((3 ,3))
47 A[1 ,0] = -np.sin( theta_h )*v; A[2 ,0] = np.cos( theta_h )*v
48

49 P_p = P + h*(A @ P + P @ A.T + Q)
50

51

52 Xh_p = np.array ([ theta_h + om * h,
53 x_h [0] + np.cos( theta_h )* v * h,
54 x_h [1] + np.sin( theta_h )* v * h])
55

56

57 elif config == "liekf":
58 A = np.zeros ((3 ,3))
59 A[2 ,0] = -v; A[1:3 ,1:3] = skew2(om)
60 A = -A
61

62 P_p = P + h*(A @ P + P @ A.T + Q)
63

64

65

66 Xhi = np.block ([[ R_h , x_h. reshape (2 ,1)],
67 [0 ,0 ,1]])
68

69 v_lie = np.zeros ((3 ,3))
70 v_lie [0:2 , 0:2] = skew2(om); v_lie [0 ,2] = v
71 Xhi_p = Xhi + h * (Xhi @ v_lie)
72 Xh_p = Xhi_p
73

74

75 return Xh_p , P_p
76

77 # Define the update function for both filter
78

79 def update (Xh_p , P_p , Y, N, config , step):
80

81 if config == "ekf":
82 Rh_p = exp2(Xh_p [0])
83 elif config == "liekf":
84 Rh_p = Xh_p [0:2 ,0:2]
85

86

87 N_hat = Rh_p @ N @ Rh_p.T
88 H = np. hstack ((np.zeros ((2 ,1)), np.eye (2)))
89

90 S = H @ P_p @ H.T + N_hat
91 L_n = P_p @ H.T @ np. linalg .inv(S)
92

93 if config == "ekf":
94 Yn = Y - Xh_p [1:3]
95 Xh_u = Xh_p + (L_n @ Yn)
96

97 elif config == "liekf":
98 Xhi_p = Xh_p
99

100 Yn = np.block ([Y, 1])
101

102 inno = (np. linalg .inv(Xhi_p) @ Yn) - np.array ([0 ,0 ,1])
103 Ln_tilde = np. hstack ((L_n , np.zeros ((3 ,1))))
104 delta = Ln_tilde @ inno
105

106 E_delta = Ese2(delta [0]); R_delta = exp2(delta [0])
107 exp_delta = np.block ([[ np. hstack (( R_delta ,np.array ([ E_delta @ delta [1:3]]) .T)

)],



Appendix A. Code listing 65

108 [np.array ([0 ,0 ,1]) ]])
109 Xhi_u = Xhi_p @ exp_delta
110

111 # Using Atan(y,x) to find theta , where y = sin(theta) and x = cos(theta)
112 thetah_u = math.atan2(Xhi_u [1,0], Xhi_u [0 ,0]); xh_u = Xhi_u [0:2 ,2]
113 if ( thetah_u < 0 and k > n_time /2):
114 thetah_u += 2*np.pi
115 Xh_u = np. hstack (( thetah_u , xh_u))
116

117 P_u = (np.eye (3) - L_n @ H) @ P_p
118

119 return Xh_u , P_u
120

121 # -------------------------------------------------------------------
122

123 # Define the system initialization parameters for the simple car model
124

125 v = 1; t_circ = 40; om = 2*np.pi/ t_circ ; h = 0.1
126 n_rounds = 4/5
127 n_time = int( n_rounds * t_circ /h)
128

129

130 X = create_dynamics (n_time , h, om , v)
131 # -------------------------------------------------------------------
132

133 # Define the noise intialization parameters
134

135 N = np.eye (2)
136 Q = np.diag ((( np.pi /180) **2 ,1e-4,1e -4))
137

138 # -------------------------------------------------------------------
139

140 filters = ["liekf","ekf"]
141

142 Xu_ekf = np.zeros ((3, n_time ))
143 Pu_ekf = np.zeros ((3, 3, n_time ))
144 Xu_liekf = np.zeros ((3, n_time ))
145 Pu_liekf = np.zeros ((3, 3, n_time ))
146

147 # Define heading error ( degrees )
148

149 heading_error = 45
150

151 if heading_error == 45:
152 Pu_ekf [: ,: ,0] = np.diag ([(15* np.pi /180) **2, 0, 0])
153 Pu_liekf [: ,: ,0] = np.diag ([(15* np.pi /180) **2, 0, 0])
154 elif heading_error == 1:
155 Pu_ekf [: ,: ,0] = np.diag ([( np.pi /180) **2, 0, 0])
156 Pu_liekf [: ,: ,0] = np.diag ([( np.pi /180) **2, 0, 0])
157

158

159 # Creating initial theta given the heading_error
160

161 Xu_ekf [0 ,0] = - heading_error * (np.pi /180)
162 Xu_liekf [0 ,0] = - heading_error * (np.pi /180)
163

164 Xu_ekf [0 ,0] = -heading_error * (np.pi /180)
165 Xu_liekf [0 ,0] = -heading_error * (np.pi /180)
166

167 # -------------------------------------------------------------------
168

169 plt. figure (1)
170 plt. figure (1).clear ()



Appendix A. Code listing 66

171 plt.plot(X[1], X[2],"g", label = "True trajectory ")
172

173 # Iterate through the filter list and calculate and plot trajectory for each filter
174

175 for config in filters :
176

177 for k in range (1, n_time ):
178

179 Y = X[1:3 ,k]
180

181 if config == "ekf":
182 Xp , Pp = propagate (h, Xu_ekf [:,k -1]. copy (), Pu_ekf [:,:,k -1]. copy (), v, om

, Q, config )
183 Xu_ekf [:,k], Pu_ekf [:,:,k] = update (Xp , Pp , Y, N, config , k)
184 elif config == "liekf":
185 Xp , Pp = propagate (h, Xu_liekf [:,k -1]. copy (), Pu_liekf [:,:,k -1]. copy (), v

, om , Q, config )
186 Xu_liekf [:,k], Pu_liekf [:,:,k] = update (Xp , Pp , Y, N, config , k)
187

188

189 if config == "ekf":
190 plt.plot( Xu_ekf [1,:], Xu_ekf [2,:], "b--", label = "EKF - Estimated trajectory

")
191

192 elif config == "liekf":
193 plt.plot( Xu_liekf [1,:], Xu_liekf [2,:], "r--", label = "LIEKF - Estimated

trajectory ")
194

195 plt. xlabel ("x [m]")
196 plt. ylabel ("y [m]")
197 plt.xlim ([-10, 10])
198 plt.ylim ([-2, 14])
199

200 plt.title(f" Attitude filtering , initial heading error = { heading_error }\N{ DEGREE SIGN
}")

201

202 plt. legend ()
203

204 plt. savefig (f" attitude_filtering_ { heading_error }. png ")
205 plt.show ()
206

207 # -------------------------------------------------------------------
208

209 # Define the error of the estimated trajectories
210

211 err_ekf = abs(X - Xu_ekf )
212 err_liekf = abs(X - Xu_liekf )
213

214 t = h*np. arange ( n_time )
215

216 pos_err_liekf = np.zeros( n_time )
217 pos_err_ekf = np.zeros( n_time )
218 for i in range( n_time ):
219 pos_err_liekf [i] = err_liekf [1:3 ,i]. sum ()
220 pos_err_ekf [i] = err_ekf [1:3 ,i]. sum ()
221

222 # -------------------------------------------------------------------
223

224 #Plot the attitude error
225

226 plt. figure (2)
227 plt. figure (2).clear ()
228



Appendix A. Code listing 67

229 plt.plot(t, err_liekf [0 ,:] / (np.pi /180) , "r--", label = "LIEKF attitude error")
230 plt.plot(t, err_ekf [0 ,:] / (np.pi /180) , "b--", label = "EKF attitude error")
231

232 plt. xlabel ("time [s]")
233 plt. ylabel (" Attitude error [ degrees ]")
234

235 plt.title(f" Attitude error , initial heading error = { heading_error }\N{ DEGREE SIGN }")
236

237

238 plt. legend ()
239

240 plt.xlim ([0, n_time *h])
241 plt. savefig (f" attitude_filtering_attitude_error_ { heading_error }. png ")
242 plt.show ()
243

244 # -------------------------------------------------------------------
245

246 #Plot the position error
247

248 plt. figure (3)
249 plt. figure (3).clear ()
250

251 plt.plot(t, pos_err_liekf , "r--", label = "LIEKF position error")
252 plt.plot(t, pos_err_ekf , "b--", label = "EKF position error")
253

254 plt. xlabel ("time [s]")
255 plt. ylabel (" Position error [m]")
256 plt.title(f" Position error , initial heading error = { heading_error }\N{ DEGREE SIGN }")
257

258 plt. legend ()
259

260 plt.xlim ([0, n_time *h])
261 plt. savefig (f" attitude_filtering_position_error_ { heading_error }. png ")
262 plt.show ()



Appendix A. Code listing 68

A.2. Navigation on flat earth - MEKF & RIEKF python code
1 """
2 @author : Thilogen
3 """
4

5 import numpy as np
6 import matplotlib . pyplot as plt
7

8 # -------------------------------------------------------------------
9

10 # Define some functions needed to calculate the necessary equations
11

12 def skewm(r):
13 return np.array ([[0,-r[2],r[1]] , [r[2],0,-r[0]] , [-r[1],r[0] ,0]])
14 def vex(u):
15 return np.array ([u[2,1], u[0,2], u[1 ,0]])
16 def expso3 (u):
17 S = skewm(u); un = np. linalg .norm(u)
18 return np. identity (3) + np.sinc(un/np.pi)*S + 0.5*( np.sinc(un /(2* np.pi)))**2 *

S@S
19

20 def expse2_3 (u):
21 un = np. linalg .norm(u [0:3])
22 if un > 0.000001:
23 a = ((1-np.cos(un)) / un **2)
24 b = (un - np.sin(un))/(un **3)
25 else:
26 a = 1/2 + (un **2) /24
27 b = 1/6 + (un **2) /120
28 S = np.block ([[ skewm(u [0:3]) , u [3:6]. reshape (3 ,1) , u [6:9]. reshape (3 ,1)],
29 [np.zeros ((2 ,5))]])
30 return np. identity (5) + S + a*S@S + b*S@S@S
31

32 def integrate_se3 (h, X, om , u):
33 R = X[0:3 ,0:3]; v = X[0:3 ,3]; x = X[0:3 ,4]
34 R_int = R @ expso3 (h*om)
35 v = np.array ([1.0 , 0.0, 0.0])
36 x_int = x + h * R @ JLso3(h*om) @ v
37 return np. hstack (( R_int , v. reshape (3 ,1) , x_int. reshape (3 ,1)))
38

39 def JLso3(u):
40 theta = np. linalg .norm(u); S = skewm(u)
41 a = 0.5 * (np.sinc(theta /(2* np.pi)))**2
42 if theta > 0.000001:
43 b = (theta - np.sin(theta))/( theta **3)
44 else:
45 b = 1/6 + theta **2/120
46 return np.eye (3) + a*S + b*S@S
47

48 def logSO3 (R):
49 # The vector form of the logarithm in SO (3) ( Robotic style)
50 theta = np. arccos (0.5 * (np.trace(R) - 1))
51 ct = np.cos(theta); vt = 1-ct
52 if theta < 0.000001:
53 f = 1 + (theta **2) /6
54 u = vex(f * 0.5 * (R-R.T))
55 if np.pi - theta < 0.00001:
56 ct = np.cos(theta); vt = 1-ct
57 if R[0 ,0] - ct > 0.5:
58 kx = np.sqrt ((R[0 ,0] - ct)/vt)
59 ky = (R[0 ,1] + R[1 ,0]) / (2* kx*vt)
60 kz = (R[2 ,0] + R[0 ,2]) / (2* kx*vt)
61 elif R[1 ,1] - ct > 0.5:



Appendix A. Code listing 69

62 ky = np.sqrt ((R[1 ,1] - ct)/vt)
63 kz = (R[1 ,2] + R[2 ,1]) / (2* ky*vt)
64 kx = (R[0 ,1] + R[1 ,0]) / (2* ky*vt)
65 else:
66 kz = np.sqrt ((R[2 ,2] - ct)/vt)
67 kx = (R[2 ,0] + R[0 ,2]) / (2* kz*vt)
68 ky = (R[1 ,2] + R[2 ,1]) / (2* kz*vt)
69 u = theta * np.array ([kx , ky , kz])
70 else:
71 f = theta / np.sin(theta)
72 u = vex(f * 0.5 * (R-R.T))
73 return u
74

75 # -------------------------------------------------------------------
76

77 # Define the function that creates the real trajectory
78

79 def create_dynamics (n_time , h, om , v, u):
80 X = np.zeros ((3,5, n_time ))
81 X[: ,0:3 , 0] = np.eye (3)
82 X[:,3, 0] = v
83 for i in range (1, n_time ):
84 X[:,:,i] = integrate_se3 (h, X[:,:,i -1]. copy (), om , u)
85 return X
86

87 def generate_map (v, omega , delta_r , n_L):
88 p_L = np.zeros ((3, n_L)); r = v/omega
89 for i in range(n_L):
90 rho = r - 2* delta_r
91 theta = 2*np.pi*i/n_L
92 p_L [:,i] = [rho*np.cos(theta), rho*np.sin(theta)+5.0 , 0.8*(( -1) **i)]
93 return p_L
94

95 # -------------------------------------------------------------------
96

97 # Define the propagate function for both filter
98

99 def propagate (Xh , P, h, om , u, g, Q, config ):
100 Rh = Xh[:, 0:3]; vh = Xh [: ,3]; xh = Xh [: ,4]
101

102 zero_3 = np.zeros ((3 ,3))
103 A = np.zeros ((9 ,9))
104 if config == "mekf":
105 A[3:6 ,0:3] = -skewm(Rh @ u); A[6:9 ,3:6] = np.eye (3)
106 elif config == "riekf":
107 A[3:6 ,0:3] = skewm(g); A[6:9 ,3:6] = np.eye (3)
108

109

110 G = np.block ([[Rh , zero_3 , zero_3 ],
111 [skewm(vh), Rh , zero_3 ],
112 [skewm(xh), zero_3 , Rh ]])
113

114 Q_hat = G @ Q @ G.T
115

116 P_p = P + h * (A @ P + P @ A.T + Q_hat)
117

118

119 if config == "mekf":
120 Xh_p = integrate_se3 (h, Xh , om , u)
121 elif config == "riekf":
122 Xh_p = np.block ([[ integrate_se3 (h, Xh , om , u)],
123 [np.zeros ((2 ,3)), np.eye (2) ]])
124



Appendix A. Code listing 70

125

126 return Xh_p , P_p
127

128 # Define the update function for both filter
129

130 def update (Xh_p , P_p , Y, N, config ):
131 Rh_p = Xh_p [0:3 ,0:3]; vh_p = Xh_p [0:3 ,3]; xh_p = Xh_p [0:3 ,4]
132 R = Y[0:3 ,0:3]; x = Y[0:3 ,4]
133

134 yn = np.zeros (3 * n_L) # 1x9 - vec
135 yn_h = np.zeros (3 * n_L) # 1x9 - vec
136

137 for i in range(n_L):
138 yn [3*i:3*i+3] = R.T @ (p_L [:,i] - x)
139 yn_h [3*i:3*i+3] = Rh_p.T @ (p_L [:,i] - xh_p)
140

141 N_hat = np.zeros ((3* n_L ,3* n_L))
142 H = np.zeros ((3* n_L ,3* n_L))
143

144 for i in range(n_L):
145 N_hat [3*i:3*i+3, 3*i:3*i+3] = Rh_p @ N[3*i:3*i+3, 3*i:3*i+3] @ Rh_p.T
146

147

148 if config == "mekf":
149 for i in range(n_L):
150 H[3*i:3*i+3, 0:3] = Rh_p.T @ skewm(p_L [:,i] - xh_p)
151 H[3*i:3*i+3, 6:9] = -Rh_p.T
152

153 elif config == "riekf":
154 for i in range(n_L):
155 H[3*i:3*i+3, 0:3] = skewm(p_L [:,i])
156 H[3*i:3*i+3, 6:9] = -np.eye (3)
157

158 S = H @ P_p @ H.T + N_hat # 9x9 - mat
159 L_n = P_p @ H.T @ np. linalg .inv(S) # 9x9 - mat
160

161 if config == "mekf":
162 inno = -L_n @ (yn_h - yn) # 9x1 vec
163

164 Xh_u = np.zeros ((3 ,5))
165 Xh_u [: ,0:3] = Xh_p [: ,0:3] @ expso3 (inno [0:3])
166 Xh_u [: ,3] = Xh_p [: ,3] + inno [3:6]
167 Xh_u [: ,4] = Xh_p [: ,4] + inno [6:9]
168

169 elif config == "riekf":
170 yn_tilde = np.zeros (3 * n_L) # 1x9 - vec
171 for i in range(n_L):
172 yn_tilde [3*i:3*i+3] = Rh_p @ (yn_h [3*i:3*i+3] - yn [3*i:3*i+3]) # 1x3 -

vec
173

174 delta = -L_n @ yn_tilde # 9x1 - mat
175

176 Xhi_u = expse2_3 (delta) @ Xh_p
177 Xh_u = Xhi_u [0:3 ,:]
178

179

180

181 P_u = (np.eye (9) - L_n @ H) @ P_p
182

183

184 return Xh_u , P_u
185

186 # ----------------------------------------------*---------------------



Appendix A. Code listing 71

187

188 # Define the system initialization parameters
189

190 radius = 5.0; t_circ = 30.0; omega = 2*np.pi/ t_circ ; v_t = omega * radius
191 h = 0.1
192 n_time = 1* int( t_circ /h)
193

194 n_L = 3
195

196 ex = np.array ([1 ,0 ,0]); ey = np.array ([0 ,1 ,0]); ez = np.array ([0 ,0 ,1])
197 g = -9.81 * ez
198 v_3d = v_t * ex; om_3d = omega * ez; u_3d = omega **2 * radius * ey + g
199

200 # -------------------------------------------------------------------
201

202 init_heading_est_error = -15 * np.pi /180
203 theta_t_i = init_heading_est_error
204

205 # Define the noise intialization parameters
206

207 I_3 = np.eye (3)
208 zero_3 = np.zeros ((3 ,3))
209

210 N = (1/h) * 1.0e-2 * np.block ([[ I_3 , zero_3 , zero_3 ],
211 [zero_3 , I_3 , zero_3 ],
212 [zero_3 , zero_3 , I_3 ]])
213

214 Q1 = 1.0e-8 * np.block ([[ I_3 , zero_3 , zero_3 ],
215 [zero_3 , I_3 , zero_3 ],
216 [zero_3 , zero_3 , zero_3 ]])
217

218

219 Q2 = 1.0e-4 * np.block ([[ I_3 , zero_3 , zero_3 ],
220 [zero_3 , I_3 , zero_3 ],
221 [zero_3 , zero_3 , zero_3 ]])
222

223

224 Q10 = np.block ([[((5* np.pi /180) **2)*I_3 , zero_3 , zero_3 ],
225 [zero_3 , 1e -2* I_3 , zero_3 ],
226 [zero_3 , zero_3 , I_3 ]])
227

228

229 Q20 = np.block ([[((15* np.pi /180) **2)*I_3 , zero_3 , zero_3 ],
230 [zero_3 , 1e -2* I_3 , zero_3 ],
231 [zero_3 , zero_3 , I_3 ]])
232

233

234

235 # -------------------------------------------------------------------
236

237 # Create the true trajectory and true landmark positions
238

239 X = create_dynamics (n_time , h, om_3d , v_3d , u_3d)
240 p_L = generate_map (v_t , omega , 1, n_L)
241

242 filters = ["mekf","riekf"]
243

244 cov_om = Q2
245

246 Xu_mekf = np.zeros ((3,5, n_time ))
247 Xu_riekf = np.zeros ((3,5, n_time ))
248

249 Rt_init = expso3 (np.array ([0,0, init_heading_est_error ]))



Appendix A. Code listing 72

250

251 # Attitude
252 Xu_mekf [: ,0:3 ,0] = Rt_init
253 Xu_riekf [: ,0:3 ,0] = Rt_init
254

255 # Velocity
256 Xu_mekf [: ,3 ,0] = Rt_init @ v_3d
257 Xu_riekf [: ,3 ,0] = Rt_init @ v_3d
258

259 # Position
260 Xu_mekf [: ,4 ,0] = np.array ([1.0 , 0.0, 1.0])
261 Xu_riekf [: ,4 ,0] = np.array ([1.0 , 0.0, 1.0])
262

263 Pu_riekf = np.zeros ((9, 9, n_time ))
264 Pu_mekf = np.zeros ((9, 9, n_time ))
265

266 if np. array_equal (cov_om , Q1):
267 Pu_riekf [: ,: ,0] = Q10
268 Pu_mekf [: ,: ,0] = Q10
269

270 elif np. array_equal (cov_om , Q2):
271 Pu_riekf [: ,: ,0] = Q20
272 Pu_mekf [: ,: ,0] = Q20
273

274 # -------------------------------------------------------------------
275

276 plt. figure (1)
277 plt. figure (1).clear ()
278 ax = plt.axes( projection =’3d’)
279

280 ax. plot3D (p_L [0,:], p_L [1,:], p_L [2,:],"ko", label = " Landmarks ")
281 ax. plot3D (p_L [0,:], p_L [1,:], np.zeros (3) ,"kx")
282 for i in range(n_L):
283 px = np. hstack (( p_L [0,i], p_L [0,i]))
284 py = np. hstack (( p_L [1,i], p_L [1,i]))
285 pz = np. hstack (( p_L [2,i], 0))
286 ax. plot3D (px , py , pz , "k--")
287

288 ax. plot3D (X[0,4,:], X[1,4,:], X[2,4,:],"g", label = "True trajectory ")
289

290 # Iterate through the filter list and calculate and plot trajectory for each filter
291

292 for config in filters :
293 for k in range (1, n_time ):
294 Y = X[:,:,k]
295 if config == "mekf":
296 Xp , Pp = propagate ( Xu_mekf [:,:,k -1]. copy (), Pu_mekf [:,:,k -1]. copy (),
297 h, om_3d , u_3d , g, cov_om

, config )
298 Xu_mekf [:,:,k], Pu_mekf [:,:,k] = update (Xp , Pp , Y, N, config )
299 elif config == "riekf":
300 Xp , Pp = propagate ( Xu_riekf [:,:,k -1]. copy (), Pu_riekf [:,:,k -1]. copy (),
301 h, om_3d , u_3d , g, cov_om

, config )
302 Xu_riekf [:,:,k], Pu_riekf [:,:,k] = update (Xp , Pp , Y, N, config )
303

304 if config == "mekf":
305 ax. plot3D ( Xu_mekf [0,4,:], Xu_mekf [1,4,:], Xu_mekf [2,4,:], "b--", label = "

MEKF - Estimated trajectory ")
306

307

308 elif config == "riekf":
309 ax. plot3D ( Xu_riekf [0,4,:], Xu_riekf [1,4,:], Xu_riekf [2,4,:],"r--", label = "



Appendix A. Code listing 73

RIEKF - Estimated trajectory ")
310

311

312 ax. set_zlim (-1,5)
313 plt. legend ()
314

315

316 if np. array_equal (cov_om , Q1):
317 plt.title("Pose estimation , Q = Q1")
318 plt. savefig (" navigation_pose_estimation_Q1 .png")
319 elif np. array_equal (cov_om , Q2):
320 plt.title("Pose estimation , Q = Q2")
321 plt. savefig (" navigation_pose_estimation_Q2 .png")
322

323

324 plt.show ()
325

326 # -------------------------------------------------------------------
327

328 #Plot the attitude error
329

330 plt. figure (2)
331 plt. figure (2).clear ()
332

333 t = h*np. arange ( n_time )
334

335

336 riekf_attitude_error = np.zeros( n_time )
337 mekf_attitude_error = np.zeros( n_time )
338

339 for i in range( n_time ):
340 riekf_attitude_error [i] = abs( logSO3 (X[0:3 ,0:3 ,i] @ Xu_riekf [0:3 ,0:3 ,i].T).sum ())
341 mekf_attitude_error [i] = abs( logSO3 (X[0:3 ,0:3 ,i] @ Xu_mekf [0:3 ,0:3 ,i].T).sum ())
342

343

344

345 plt.plot(t, riekf_attitude_error / (np.pi /180) , "r--", label = "RIEKF attitude error"
)

346 plt.plot(t, mekf_attitude_error / (np.pi /180) , "b--", label = "MEKF attitude error")
347

348

349

350 plt.xlim ([0, n_time *h])
351 plt.ylim ([0, 20])
352 plt. legend ()
353 plt. xlabel ("time [s]")
354 plt. ylabel (" Attitude error [ degrees ]")
355

356 if np. array_equal (cov_om , Q1):
357 plt.title(" Attitude error , Q = Q1")
358 plt. savefig (" navigation_attitude_error_Q1 .png")
359 elif np. array_equal (cov_om , Q2):
360 plt.title(" Attitude error , Q = Q2")
361 plt. savefig (" navigation_attitude_error_Q2 .png")
362

363 plt.show ()
364

365 # -------------------------------------------------------------------
366

367 #Plot the position error
368

369 plt. figure (3)
370 plt. figure (3).clear ()



Appendix A. Code listing 74

371

372 riekf_position_error = np.zeros( n_time )
373 mekf_position_error = np.zeros( n_time )
374

375 for i in range( n_time ):
376 riekf_position_error [i] = np. linalg .norm(X[0:3 ,4 ,i] - Xu_riekf [0:3 ,4 ,i])
377 mekf_position_error [i] = np. linalg .norm(X[0:3 ,4 ,i] - Xu_mekf [0:3 ,4 ,i])
378

379

380 plt.plot(t, riekf_position_error , "r--", label = "RIEKF position error")
381 plt.plot(t, mekf_position_error , "b--", label = "MEKF position error")
382 plt.xlim ([0, n_time *h])
383 plt.ylim ([0, 2])
384 plt. xlabel ("time [s]")
385 plt. ylabel (" Position error [m]")
386 plt. legend ()
387 if np. array_equal (cov_om , Q1):
388 plt.title(" Position error , Q = Q1")
389 plt. savefig (" navigation_position_error_Q1 .png")
390 elif np. array_equal (cov_om , Q2):
391 plt.title(" Position error , Q = Q2")
392 plt. savefig (" navigation_position_error_Q2 .png")
393 plt.show ()



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Thilogen Thambirajah

Pose Estimation with The Invariant
Extended Kalman Filter as a Stable
Observer

Master’s thesis in Mechanical engineering
Supervisor: Olav Egeland
June 2022

M
as

te
r’s

 th
es

is


	Acknowledgements
	Abstract
	Sammendrag
	Introduction
	Notations

	Background
	Linear and nonlinear systems
	Linear systems
	Nonlinear systems

	Lie Groups
	Matrix Lie Groups
	Group of rotation matrices, Lg
	Group of rotation matrices, Lg
	Group of direct planar isometries, Lg
	Group of double direct planar isometries, Lg

	Quaternions
	Hamilton's representation
	Quaternion represented by a scalar and a vector
	Vector represented as a quaternion
	Quaternion represented as a four-dimensional vector
	Unit quaternions
	Quaternion logarithm and exponential

	Kalman Filters
	The Kalman Filter
	The Extended Kalman Filter


	Nonlinear Attitude Filtering
	Multiplicative Extended Kalman Filter - MEKF
	Time propagation of state estimate
	Error equations and linearization of error quaternions
	Covariance propagation
	MEKF Algorithm

	Right Invariant Extended Kalman Filter - RIEKF
	Time propagation of state estimate
	Eror equations and linearization of error quaternions
	Covariance propagation
	RIEKF Algorithm


	Pose Estimation
	Autonomous error dynamics
	Autonomous error dynamics formulated in Lg

	Log-linear property
	Invariant EKF for right and left observations
	Left-invariant observations
	Right-invariant observations

	Simple car model
	Extended Kalman Filter - EKF
	Left Invariant Extended Kalman Filter - LIEKF

	Navigation on flat earth
	Multiplicative Extendend Kalman Filter - MEKF
	Right Invariant Extended Kalman Filter - RIEKF


	Simulation
	Nonlinear attitude filtering
	Pose estimation - Simple car model
	Pose estimation - Navigation on flat earth

	Results & Discussions
	Simple car model
	Discussion

	Navigation on flat earth
	Discussion


	Conclusion
	Code listing
	Simple car model - EKF & LIEKF python code
	Navigation on flat earth - MEKF & RIEKF python code


