
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Eirik Berg Samuelsen

Attitude Estimation with IMUs using
Machine Learning

Master’s thesis in Mechanical Engineering
Supervisor: Olav Egeland
June 2022

M
as

te
r’s

 th
es

is

Eirik Berg Samuelsen

Attitude Estimation with IMUs using
Machine Learning

Master’s thesis in Mechanical Engineering
Supervisor: Olav Egeland
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Preface

This master’s thesis is the final requirement for the degree of Master of Science
in Mechanical Engineering at the Norwegian University of Science and Technol-
ogy. The thesis was written during the spring of 2022, under the supervision of
Professor Olav Egeland.

I would like to thank Olav Egeland for the supervision throughout this thesis. The
freedom to explore the subject of this thesis has been appreciated. His feedback
and support during the project has been very helpful.

I would also like to thank my family for all the support given during the course
of this thesis. I would especially like to thank my girlfriend for all the emotional
support given during times facing difficulties in the project.

Abstract

Low cost Micro Electro Mechanical System (MEMS) Inertial Measurement Units
(IMU) measure angular velocities and accelerations using gyroscopes and ac-
celerometers. They are used in a wide variety of applications for estimating
orientation, also referred to as attitude. The signals from the gyroscopes and
accelerometers are typically corrupted with noise and time-varying bias. This re-
duces the quality in the estimated orientation. Estimating the orientation from
open-loop integration typically yields poor estimates that quickly drifts from the
true value with time.

This thesis builds on an existing method of using a Convolutional Neural Network
(CNN) to obtain reliable estimates for the orientation. This method is compared
to an existing conventional orientation estimation filter to investigate how good
the CNN-based method performs. A new method of data augmentation is used
together with the CNN-based method in an attempt to improve the performance
of the CNN. New CNN architectures replacing this existing CNN are also tested,
to further improve the performance of the method.

The existing CNN-based approach was proven to be very effective for orientation
estimation when compared to the conventional orientation estimation filter. The
use of the new technique for data augmentation did not produce consistently bet-
ter results, and was therefore considered to be ineffective in further improving
the performance. The use of new CNN architectures combined with the exist-
ing method managed to perform better than the original CNN, improving the
method.

Sammendrag

Rimelige Micro Electro Mechanical System (MEMS) Inertial Measurement Units
(IMU) måler vinkelhastigheter og aksellerasjoner ved bruk av et gyroskop og et
aksellerometer. De er brukt i mange forskjellige situasjoner til å estimere orien-
teringer. Signalene fra gyroskopet og aksellerometeret inneholder typisk mye støy
og tids-varierende bias. Dette bidrar til å redusere kvaliteten til de estimerte ori-
enteringene. Dersom orienteringene estimeres ved å direkte integrere opp vinkel-
hastighetene, får man typisk dårlige estimater som fort, med tiden, vil avvike fra
de faktiske orienteringene.

Denne oppgaven bygger på en eksisterende metode der det brukes et konvo-
lusjonelt nevralt nettverk til å estimere orienteringer. Denne metoden sammen-
lignes med et konvensjonelt filter for estimering av orientering for å undersøke
hvor god ytelse metoden basert på nevrale nettverk har. En ny metode av data
augmentation brukes sammen med den eksisterende metoden basert på et nevralt
nettverk, i et forsøk på å forbedre ytelsen til det nevrale nettverket. Videre brukes
nye arkitekturer av konvolusjonelle nevrale nettverk til å erstatte det nevrale
nettverket i den eksisterende metoden i et forsøk på å forbedre ytelsen til meto-
den ytterligere.

Metoden basert på et konvolusjonelt nevralt nettverk ble påvist å ha en veldig
god ytelse sammenlignet med det konvensjonelle filteret. Den nye metoden av
data augmentation klarte ikke å konsekvent produsere bedre resultater. Det ble
derfor konkludert med at dette ikke bidro til å forbedre den eksisterende meto-
den. Bruken av nye nevrale nettverksarkitekturer kombinert med den eksisterende
metoden ga bedre resultater enn det opprinnelige nevrale nettverket. Dermed
forbedret bruken av nye nettverksarkitekturer metoden.

Contents

Preface i

Abstract iii

Sammendrag v

1 Introduction 1
1.1 Background and motivation . 1
1.2 Problem description . 1

2 Preliminaries 3
2.1 Rotation matrices, the SO(3)-group 3

2.1.1 Rotation matrices . 3
2.1.2 The Lie algebra so(3) . 4
2.1.3 The exponential map in SO(3) 4
2.1.4 Kinematic differential equation 4
2.1.5 The logarithmic map in SO(3) 5

2.2 Quaternions . 5
2.2.1 Definitions and main properties 5
2.2.2 Unit quaternions for representing rotations 7
2.2.3 The exponential map for quaternions 7
2.2.4 Kinematic differential equation 7

3 Method 9
3.1 Overview . 9
3.2 Modeling of kinematics and IMUs 9
3.3 Training a Convolutional Neural Network for estimating IMU cor-

rections . 10
3.3.1 Overview . 10
3.3.2 Modeling of noise free angular velocities from the IMU . . . 11
3.3.3 Convolutional Neural Networks for time series predictions . 12
3.3.4 Convolutional Neural Network for corrections of angular ve-

locities . 13

viii Contents

3.3.5 description of the CNN . 14
3.3.6 Calculating loss . 16
3.3.7 Batch computations . 18

3.4 Evaluation metrics . 19
3.4.1 Trajectory alignment . 20
3.4.2 Absolute Orientation Error 20
3.4.3 Absolute Yaw Error . 21
3.4.4 Relative Orientation Error 22

4 Method development 25
4.1 Overview . 25
4.2 Comparison with existing conventional filters 25
4.3 Data augmentation . 26

4.3.1 Data augmentation using virtual rotations 26
4.4 Use of different neural network architectures 27

4.4.1 Residual neural network . 27
4.4.2 Dense neural network . 28

5 Experimental trials, results and discussion 31
5.1 Overview . 31
5.2 Reproducible results in deep learning 31
5.3 Dataset descriptions . 32

5.3.1 TUM VI dataset . 32
5.3.2 EuRoC dataset . 33
5.3.3 Similarities and differences between EuRoC and TUM VI . 33

5.4 Comments on evaluation metrics 34
5.5 Madgwicks gradient descent optimization filter 34

5.5.1 Experimentation details . 34
5.5.2 Results and discussion . 34

5.6 The effects of data augmentation 39
5.6.1 Experimentation details . 39
5.6.2 Effects of data augmentation on EuRoC 39
5.6.3 Effects of data augmentation on TUM VI 41
5.6.4 Discussion . 42

5.7 Different CNN architectures . 43
5.7.1 Experimentation details . 43
5.7.2 Comments on the error metrics 44
5.7.3 Results and discussion . 45

6 Conclusion 51

List of Figures

3.1 Training process for the CNN . 11
3.2 Dilated convolutions . 13
3.3 The CNN-architecture in [2] . 14
3.4 Comparison of GELU and ReLU activation functions 16
3.5 Comparison of different loss functions 18
3.6 Tree of matrix multiplications . 19

4.1 Residual network architecture . 28
4.2 Residual block . 29
4.3 Dense network architecture . 30

5.1 AOE, AYE and AIE on the EuRoC dataset using the Madgwick filter 37
5.2 AOE, AYE and AIE on the TUM VI dataset using the Madgwick

filter . 38
5.3 ROE on EuRoC using virtual rotation data augmentation 40
5.4 ROE on TUM VI using virtual rotation data augmentation 41

List of Tables

3.1 Layers of the CNN-architecture in [2] 15

5.1 Results for the Madgwick orientation filter 36
5.2 Results on EuRoC using virtual rotation data augmentation 40
5.3 Results on TUM VI using virtual rotation data augmentation . . . 42
5.4 Dense network architecture details 44
5.5 Residual network architecture details 44
5.6 Results using different CNN architectures 46

Chapter 1

Introduction

1.1 Background and motivation
Micro Electro Mechanical Systems (MEMS) Inertial Measurement Units (IMU)
are compact devices measuring angular velocities and proper accelerations. This
is measured by the onboard 3-axis gyroscope sensors and 3-axis accelerometers.
Due to the small size and low cost of MEMS IMUs, they are practical for use in
a wide variety of applications [13]. Typical applications include estimating the
orientation of an object or a robot. In order to reliably estimate the orientation
of an object using an IMU, filtering of the angular velocities and accelerations is
required. It is possible to estimate the orientation from open-loop integration of
the angular velocities. This typically results in a poor estimate that quickly drifts
from the true value with time. These poor estimates results from corruptions
in the IMU-measurements. The measurements are typically corrupted by time
varying-bias and noise in the signals, as well as calibration factors including non-
orthogonal axes of the sensors, axis-misalignments and scale factors [23].

Existing methods of estimating the orientation from an IMU include the Madgwick
gradient descent optimization filter [18], Kalman Filters such as the Multiplicative
Extended Kalman Filter [16] and Complementary filters [19].

Recently, Brossard et al. [2] proposed a method of estimating the orientation
from IMU measurements using deep learning. They used a Convolutional Neural
Network (CNN) to denoise the angular velocities, and obtained accurate estimates
of the orientation by open-loop integration of these angular velocities.

1.2 Problem description
The aim in this thesis was to compare the performance of the method developed
in [2] with traditional methods of orientation estimation, in order to gain insight

2 Chapter 1 Introduction

into how well the new method performs. Additionally, methods for improving the
performance of the works of [2] are explored. This includes investigating whether
different architectures of the CNN perform better.

Chapter 2

Preliminaries

This chapter was first presented in a preliminary study on the subject [24], but
this theory is essential for understanding this thesis as well. Therefore it is also
included in this report.

2.1 Rotation matrices, the SO(3)-group
This section presents rotation matrices from the 3D-rotation group called the
SO(3)-group for representing rotations. The material is based on [17] and [5].

2.1.1 Rotation matrices

Rotation matrices, R ∈ R3×3, are part of the special orthogonal group, SO(3).
They represent orientations or act as operators on reference frames or vectors.
Used as an operator, R either rotates a vector or a reference frame, or changes
the frame of reference in which a reference frame or vector is represented. A
rotation matrix satisfies

RTR = I (2.1)
det(R) = 1 (2.2)

From the definition it follows that

R−1 = RT (2.3)

4 Chapter 2 Preliminaries

2.1.2 The Lie algebra so(3)
The Lie algebra of the SO(3)-group is the set of all 3 × 3 skew-symmetric ma-
trices and is denoted so(3). The skew symmetric representation of a vector
u = [u1, u2, u3]T ∈ R3 is defined as

u× =

 0 −u3 u2
u3 0 −u1

−u2 u1 0

 (2.4)

2.1.3 The exponential map in SO(3)
A rotation can be described as rotating around a unit vector k ∈ R3 by an angle
θ ∈ R. Thus the pair (θ,k) is often referred to as the angle-axis-parameters of a
rotation. From the definition of the matrix exponential function we have that

R = exp(θk×) = I + sin θk× + (1 − cos θ)k×k× (2.5)

which is called the Rodrigues equation. Here k× is the skew-symmetric repre-
sentation of k, defined in equation (2.4). Therefore R is the matrix exponential
of the matrix u× = θk×. In the case where the rotation matrix R is computed
directly from the logarithm u×, it is generally not recommended to use equation
(2.5) directly, because of the risk of dividing by zero when recovering the angle-
axis-parameters from the logarithm. In this case, the recommended expression
is

R = exp(u×) = I + sinc(∥u∥)u× + 1
2sinc2

(∥u∥
2

)
u×u× (2.6)

where sinc(·) is the unnormalized sinc function,

sinc(x) ≜
{

sin x/x, x ̸= 0
1, x = 0 (2.7)

2.1.4 Kinematic differential equation

The time derivative of the rotation matrix describes the rate of change of orien-
tation with respect to time. It is defined as

Ṙ = Rω× ∈ TRSO(3) (2.8)

2.2 Quaternions 5

where TRSO(3) is the tangent space of the SO(3)-group. Here, R describes the
rotation from a spatial frame to the body frame, and ω× is the skew symmetric
representation of the angular velocity in the body frame. The corresponding
integration scheme based on increments in angular velocity becomes

Rn = Rn−1exp(ωndt) (2.9)

Here, n = 1, 2, 3, ... denotes the time step and dt is the time increment between
measurements. It is assumed that the angular velocity ωn is constant during dt.

2.1.5 The logarithmic map in SO(3)
Because R is the exponential of u× = θk×, the matrix u× is the logarithm of R.
The logarithm of a rotation matrix is calculated using

θ = arccos trR − 1
2 , 0 < θ < π (2.10)

and

log(R) =
{

0.5
(
1 + 1

6θ
2
)

(R − RT), θ < δ
θ

2 sin θ (R − RT), δ < θ < π
(2.11)

Where δ is chosen such that the error is less than machine precision.

2.2 Quaternions
This section presents the use of quaternions for representing rotations in 3D-space,
and is based on [4].

2.2.1 Definitions and main properties

A quaternion can be represented as a 4-dimensional vector defined as

q ≜

[
α
β

]
=

qs
q1
q2
q3

 ∈ R4 (2.12)

6 Chapter 2 Preliminaries

Where α ∈ R is the scalar part and β ∈ R3 is the vector part of the quaternion.
The sum of two quaternions q1 and q2 is defined as

q1 ± q2 =
[
α1
β1

]
±

[
α2
β2

]
=

[
α1 ± α2
β1 ± β2

]
(2.13)

The quaternion product between quaternions q1 and q2 is given by

q1 ◦ q2 =
[

α1α2 − βT1 β2
α1β2 + α2β1 + β1 × β2

]
(2.14)

which can also be written as

q1 ◦ q2 = QL(q1)q2 = q1QR(q2) (2.15)

where

QL(q) =
[
α −βT

β αI + β×

]
(2.16)

and

QR(q) =
[
α −βT

β αI − β×

]
(2.17)

The quaternion conjugate is defined by

q =
[
α

−β

]
(2.18)

The norm of a quaternion follows from the inner product of two quaternions

q1 · q2 = qT1 q2 (2.19)

and is given by

∥q∥ = √
q · q =

√
q ◦ q =

√
qTq (2.20)

2.2 Quaternions 7

The inverse quaternion q−1 is defined as

q−1 = q

∥q∥2 (2.21)

2.2.2 Unit quaternions for representing rotations

A unit quaternion is a quaternion of magnitude ∥q∥ = 1, denoted q = [η ϵ]T .
The unit quaternion can be described by the Euler parameters as

q =
[
η
ϵ

]
=

[
cos θ2

k sin θ
2

]
(2.22)

where k is a unit vector. From this it can be seen that a unit quaternion can
represent a rotation of an angle θ around an axis k, similarly to a rotation matrix
R. The rotation matrix R corresponding to the unit quaternion is then

R = I + 2ηϵ× + 2ϵ×ϵ× (2.23)

2.2.3 The exponential map for quaternions

Similarly as for the SO(3)-group, the exponential map for quaternions maps the
angle-axis parameters ϕ = θ/2, k to a quaternion. The expression for this, defined
for all v = ϕk is

exp(v) = cos ||v|| + sinc (||v||) v (2.24)

where sinc(·) is defined in equation (2.7).

2.2.4 Kinematic differential equation

The kinematic differential equation for quaternions is defined as

q̇ = 1
2q ◦ ω (2.25)

where q is the quaternion representing the rotation from the spatial frame to the
body frame, and ω is the angular velocity in the body frame. The corresponding
integration scheme based on increments in angular velocity becomes

8 Chapter 2 Preliminaries

qn = qn−1 ◦ exp(0.5ωndt) (2.26)

which is similar to equation (2.9).

Chapter 3

Method

3.1 Overview
In this chapter the method this study is based on [2] is presented in detail.

3.2 Modeling of kinematics and IMUs
The Farrenkopf model [6] is a widely used measurement model for modeling gy-
roscope measurements from an IMU, and is described by

ωIMU(t) = ω(t) + b(t) + n1(t) ∈ R3 (3.1)

where ωIMU is the angular velocity measured by the IMU, ω is the true angular
velocity, b is the bias and n1 is zero-mean white noise. The bias can be described
by the Wiener process

ḃ = n2 (3.2)

where n2 is zero-mean white noise. This is a simple model, and is well suited
for use in attitude estimation filters such as the Multiplicative Extended Kalman
Filter [20]. The method proposed by Brossard et al. [2] includes a more complex
measurement model than this, since they also account for calibration of the IMU.
They also include accelerations measured by the IMU in the measurement model.
The expression in discrete form becomes

uIMU
n =

[
ωIMU
n

aIMU
n

]
= C

[
ωn

an

]
+ bn + nn ∈ R6 (3.3)

10 Chapter 3 Method

where bn is the bias and nn is zero-mean white noise. an is the accelerations
in the IMU body frame. C is the intrinsic calibration matrix accounting for
scale-factors, g-sensitivity and axis-misalignments. C can be written as

C =
[
SωMω A
03×3 SaMa

]
≈ I6 (3.4)

where Sω ≈ I3 and Sa ≈ I3 represents scale factors, Mω ≈ I3 and Ma ≈ I3 rep-
resents axis misalignments and A ≈ 03×3 represents g-sensitivity. Accelerations
in the body frame excluding the effects of gravity can be written as

an = RT
n−1((vn − vn−1)/dt− g) ∈ R3 (3.5)

where g ∈ R3 is gravity and vn ∈ R3 is the IMU-velocity in the spatial frame.

By propagating the angular velocity using equation (2.26) or (2.9), we can get an
estimate of the orientation at each time step. Which of these equations is used, is
determined by whether we want the orientations to be represented in quaternions
or rotation matrices. In the method proposed by Brossard et al. [2] the rotation
matrix representation is used. Note that propagating ωIMU

n directly through one
of these equations generally leads to a poor estimate that drifts from the true
value with time. This is a result of the noise and calibration factors present in
the measurement, modeled by equation (3.3).

3.3 Training a Convolutional Neural Network for
estimating IMU corrections

3.3.1 Overview

The main component of the method proposed by Brossard et al. [2] is the use
of a Convolutional Neural Network (CNN) in order to denoise the measurement
signals from an IMU. These noise-free measurements are then propagated through
equation (2.9) to estimate the orientation of the IMU. An overview of the learning
process is visualized in Figure 3.1. The CNN receives measurements of accelera-
tions and angular rates from the IMU for each time step. The output from the
CNN is then an estimate of the correction to the gyroscope signals needed in
order to obtain noise free gyroscope measurements. This correction is then com-
bined with the gyro-rate measurement from the IMU to obtain noise free gyro
rates which are integrated open-loop to obtain an estimated orientation for each
time step. The CNN is then trained using the loss calculated from a loss function
based on the ground truth and estimated orientations. A static calibration matrix

3.3 Training a Convolutional Neural Network for estimating IMU corrections 11

is also optimized during training to negate the effects C has on the measurements
in equation (3.3). The reason why the loss is calculated based on orientations
and not gyro-rates is because accurate ground truth angular velocities are not
achievable to obtain, whereas accurate ground truth orientations are [2].

Figure 3.1: Training process for the CNN. Gyro-corrections are computed in
the CNN using measurements of the angular velocities and accelerations from the
IMU as inputs. The gyro-corrections are combined with the angular velocities
from the IMU to produce angular velocities without noise. The angular velocities
are then integrated to orientations in open-loop. These estimated orientations are
compared to the ground truth orientation in order to calculate a value for the
loss. The loss is then used to train the CNN. Figure initially presented in [24].

3.3.2 Modeling of noise free angular velocities from the IMU

The noise free angular velocities ω̂n used to estimate the orientation are defined
as

ω̂n = ĈωωIMU
n + ω̃n (3.6)

which is based on equation (3.3). Here, Ĉω = ŜωM̂ω ∈ R3×3 is the estimated
static calibration matrix and ω̃n is the gyro-rate correction from the output of
the CNN, which is modeled as

ω̃n = ĉn + b̂ (3.7)

where ĉn captures time-varying bias and noise, and b̂ captures static bias.

12 Chapter 3 Method

3.3.3 Convolutional Neural Networks for time series predictions

CNNs have been important in the field of computer vision for several years, ever
since LeCun et al. proposed a CNN for classifying digits in 1998 [15]. More
recently CNNs have been shown to be effective on time-series predictions as well,
as demonstrated by [2] and [1]. One of the contributing factors for this success is
the use of dilated convolutions.

The formal definition of a dilated convolution operation F on a 1-D time series
x ∈ Rn is given as [1]

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (3.8)

Here f : {0, ..., k − 1} → R is the filter, k is the kernel size of the filter, d is the
dilation factor and s is the element of the sequence the convolution is operating
on. It is important that the convolutions in the CNN are causal. This means
that each predicted output of the CNN is inferred only from past information
of the inputs and not future information. In order to achieve this in the CNN
architecture, zero-padding is used on the start of the sequence. Zero-padding is
implemented by simply adding the amount of zeros needed to the start of the
input vector. How many zeros that are needed, is computed from the kernel size
and dilation of the current layer as

padding = d · (k − 1) (3.9)

Figure 3.2 illustrates the use of padding and dilated convolutions and the effects it
has on the dimensions of the output vector. As can be seen on the figure, the use
of dilations increases the receptive field of the CNN. It is normal to increase the
dilation exponentially for layers deeper in the network, which quite quickly gives
a large receptive field and makes sure that each input to the CNN is included in
the computation of the output. From the figure it is clear that the use of padding
is essential to ensure that the CNN is causal

3.3 Training a Convolutional Neural Network for estimating IMU corrections 13

Figure 3.2: Dilated convolutions. The figure shows how the dilation gap in the
convolutions produces a larger receptive field, allowing more values to contribute
in calculating the current output. In the first layer, the receptive field is 3. in
the second layer it has increased to 5. Zero-padding is added to the start of the
sequence for each layer to ensure that the convolutions are causal, meaning that
no information from future time steps are included in calculating the current time
step.

3.3.4 Convolutional Neural Network for corrections of angular
velocities

The learning method in [2] optimizes a static calibration matrix and trains a CNN
to output gyro-corrections in real time. In relation to equation (3.6), Ĉω is the
optimized calibration matrix and ω̃n is the real-time gyro-corrections. The gyro-
correction for each time-step n is calculated using the last N IMU-measurements.
Measurements from time steps earlier than n − N are not included in the calcu-
lation of ω̃n. The magnitude of N is determined by the layer with the largest
kernel size and dilation gap in the CNN,

N = max(kernel dimension × dilation gap) (3.10)

and is called the receptive field of the CNN. The receptive field is thus a parameter
which can be tuned for the best results possible. It was noted by [2] that keeping
the receptive field relatively small mitigated the problem of overfitting to specific
patterns in the training data, allowing the CNN to generalize better on unseen
test data.

The kinematic equation used for integrating angular velocities to orientations,
equation (2.9), does not include accelerometer measurements in estimating the
orientations. Regardless of this, the CNN uses both angular velocities and ac-

14 Chapter 3 Method

celerometer measurements as inputs in order to estimate the gyro-corrections. It
was stated in [2] that the inclusion of accelerometer measurements as inputs to
the CNN reduced the orientation errors by 50% compared to using only angular
velocities. An intuition for why this is the case can be derived from equation (3.5).
When assuming the variations in velocity to be small between time steps we get

an+1 − an ≈ −(Rn − Rn−1)Tg ≈ −(exp(−ωndt) − I3)RT
n−1g (3.11)

We see that the accelerometer measurements contains some information about the
angular velocity in this case. The variations in velocity is not assumed to be small
in this method. Regardless, this relation gives some intuition that the accelerom-
eter measurements contains information that can be utilized by the CNN. The
relation between the gyro-corrections ω̃n and the function learned by the CNN is

ω̃n = f(uIMU
n−N , ...,u

IMU
n) (3.12)

where uIMU
n−N , ...,u

IMU
n are the angular velocities and acceleration measurements

from the IMU.

3.3.5 description of the CNN

The general architecture of the CNN is visualized in Figure 3.3. Table 3.1 sum-
marizes the details of how each layer of the CNN is implemented. The dimension
of the kernel operating on each layer is 7. From the table we have that the largest
dilation gap is 64. Using equation (3.10) we see that the receptive field N of the
CNN is 7×64 = 448. This corresponds to 2.24 seconds of measurements from the
IMU at a sample rate of 200 Hz.

Figure 3.3: The CNN-architecture presented in [2]. Past measurements within
the receptive field of 448 are included in calculating the current gyro-correction.
Figure initially presented in [24].

The activation function used in the CNN is the non-linear Gaussian Error Linear
Unit (GELU) [9], which is applied after each convolution operation. It is defined

3.3 Training a Convolutional Neural Network for estimating IMU corrections 15

as

GELU(x) = xΦ(x) (3.13)

Layer Layer type Number of filters Dilation gap Activation function
1 Conv1D 16 1 GELU
1 BatchNorm1D - - -
2 Conv1D 32 4 GELU
2 BatchNorm1D - - -
3 Conv1D 64 16 GELU
3 BatchNorm1D - - -
4 Conv1D 128 64 GELU
4 BatchNorm1D - - -
5 Conv1D 1 1 GELU
5 BatchNorm1D - - -

Table 3.1: Visualisation of the layers of the CNN-architecture in [2]. A kernel
dimension of 7 is used for all convolutional layers. Table initially presented in
[24].

Here, Φ(x) is defined as the standard Gaussian cumulative distribution function.
The difference between the GELU and the widely used Rectified Linear Unit
(ReLU) activation functions is visualized in Figure 3.4. The main difference is that
the GELU function is a smooth function where inputs both below and above 0 are
weighted in the output, whereas the ReLU function is discontinuous and inputs
below 0 are gated. Brossard et al. [2] observed that the CNN was more prone to
overfitting to the training data when the ReLU function was used as opposed to
when GELU was used. They assumed this was due to the discontinuity in the
ReLU function, arguing that this caused the CNN to output too quick corrections
for the gyro. They noted that corrections this quick does not make sense for
physical signals.

A layer of Batch Normalization is used between the layers of the CNN, as displayed
in Table 3.1. The function of a batch normalization layer is to normalize the
output of the previous layer to a standard deviation of 1 and a zero mean. This
is implemented to stabilize the training of the CNN [25].

Compared to other Visual-Inertial Odometry (VIO) methods, the number of train-
able parameters in the CNN of this method is very low. VIO-methods often require
more than 2 600 000 trainable parameters in total [2]. In contrast, the method
of Brossard et al. requires 77 052 parameters to be trained. This means that the
method requires far less computational resources both during training and for use

16 Chapter 3 Method

Figure 3.4: Comparison of GELU and ReLU activation functions. ReLU is
discontinuous, and inputs less than 0 are set to 0. GELU is smooth and weighs
values both above and below 0. Figure initially presented in [24]

in real time applications. This should give the method great value for the use in
applications where computational resources are scarce.

The datasets used to train the CNN are relatively small, with 45 000 samples
in the TUM VI [26] dataset and 90 000 samples in the EuRoC [3] dataset. The
number of trainable parameters is therefore similar to the number of samples in
the training data. It is therefore necessary to use techniques to avoid overfitting
to the training data. For this reason, dropout and weight decay is utilized during
training. Dropout works so that each channel of a layer in the network has a
probability p of being set to zero during training. For this implementation the
value of p is set to 0.1. This has the effect of limiting co-adaptions between the
channels in the network [10], making each unit more independent of the activations
other units in the network has. This should make each unit contribute more in
making the correct predictions from the CNN.

3.3.6 Calculating loss

Calculating loss from angular velocities is not feasible, as mentioned in Subsection
3.3.1. The reason for this is that we need ground truth values corresponding to
IMU measurements for all time steps in the time series. For the datasets used in
this project, the IMUs have a sample rate of 200 Hz. The best accurate tracking

3.3 Training a Convolutional Neural Network for estimating IMU corrections 17

systems for angular velocities usually have a frequency of 20 – 120 Hz [2]. Due
to this, the loss is instead based on the estimated orientations calculated using
equation (2.9). To reduce the risk of overfitting to specific patterns in the training
data, increments of rotation on the form

δRi,i+j = RT
i Ri+j =

i+j−1∏
k=i

exp (ωk) (3.14)

are used instead of calculating the loss from the orientation at every time step. The
increments are down-sampled so that the IMU-frequency is reduced by a factor
of j. Brossard et al. [2] stated that one advantage of using rotated increments on
this form is that they are invariant to changes in the orientation and yaw-angle.
This means that, for instance, left-multiplication of two rotation matrices with
R does not change the value of the product of the two rotation matrices. The
loss-function for these rotation increments is computed as

Lj =
∑
i

ρ
(
log

(
δRi,i+jδR̂

T
i,i+j

))
(3.15)

where log(·) is the logarithmic map defined in equation (2.11) and ρ(·) is the
Huber loss function [12];

ρ(ϵ) =
{ 1

2ϵ
2, |ϵ| ≤ δ,

δ
(
|ϵ| − 1

2δ
)
, otherwise. (3.16)

where ϵ is the error between the ground truth and estimated value. This function
is linear when the error is large and quadratic when the error is small. The Huber
loss function is visualized in Figure 3.5, where it is plotted together with the Mean
Square Error (MSE) and the Mean Absolute Error (MAE). Notice that the Huber
function overlaps the MSE for small values and the MAE for large values. This
is an appreciated property when dealing with datasets containing outliers in the
ground truth data. If MSE was used instead, outliers would potentially have too
much influence in the magnitude of the loss and negatively affect the training of
the CNN.

For all experiments, a loss parameter δ = 0.005 is chosen and the loss function
used is

L = L16 + L32 (3.17)

18 Chapter 3 Method

Figure 3.5: Comparison of the Huber loss function with the Mean Square Error
(MSE) and Mean Absolute Error (MAE). For large values MAE and the Huber loss
function coincides. For small values MSE and the Huber loss function coincides.
This characteristic is beneficial on datasets with outliers in the ground truth
values. Figure initially presented in [24].

Such that the increments used for computing the loss is reduced by a factor of 16
and 32.

3.3.7 Batch computations

Training a neural network demands great computational resources. When training
using large datasets, the execution time is very important. In order to speed up
the training process, parallelization is utilized so that several computations can be
made in parallel at once. PyTorch is used to implement this in the form of batch
operations on the GPU. For instance, when gyro-corrections are predicted by the
CNN based on the IMU measurements, all gyro-corrections for each dataset is
computed at once. Computations of kinematic equations and loss are also done in
parallel to further decrease the execution time. The result is a significantly faster
execution time compared to doing one computation at the time on the CPU.

In order to illustrate the effect of parallelization, a small experiment was conducted
in the preliminary report preceding this thesis [24]. Equation (2.11) was used
to compute the logarithm of the rotation matrix. It took 5 ms to compute the
logarithm of one single rotation matrix. To compute one million rotation matrices

3.4 Evaluation metrics 19

at once took 108 ms on an Nvidia GTX 950m GPU. This corresponded to 1.1 ×
10−4 ms of time used per computation, which reduced the execution time with a
factor of approximately 45 000. This details the significant performance increases
gained from utilizing parallelization.

Another measure to improve the execution time is in the implementation of com-
puting the rotated increments in equation (3.14). When computing this equation
directly, this equation requires j = 32 computations if the loss function in equa-
tion (3.17) is used. Instead, Brossard et al. [2] viewed this equation as a tree
of matrix multiplications [2], as shown in Figure 3.6. Here we can see that it
takes only 2 computations to sub sample by a factor of 4. By this method, the
necessary number of computations in equation (3.14) is reduced from j = 32 to
log2(j) = log2(32) = 5.

The execution time is further improved by calculating the ground truth rotated
increments only once, before training, and storing them for use during training.
This is possible since the same increments for ground truth is used in the loss
function every epoch.

Figure 3.6: Tree of matrix multiplications [2]. The amount of computations
necessary to down sample by a factor of j is reduced to log2(j). In the figure,
only 2 computations are necessary to down sample by a factor of 4. Figure initially
presented in [24].

3.4 Evaluation metrics
Evaluating the performance of an orientation estimation algorithm is not trivial
[28]. There are two main causes for this. The orientations (both estimated and
ground truth) are collected for a large number of time steps. This implies that
the collection of orientations we want to evaluate is inherently high dimensional.
Furthermore, it is usually the case that the estimated orientation is expressed

20 Chapter 3 Method

in a different reference frame from the ground truth orientations. Zhang and
Scaramuzza goes into detail on this topic in [28], and the evaluation methods
used in [2] is highlighted there. Note that [2] used the openVINS toolbox [7]
implemented in the Robot Operating System (ROS). ROS is a framework used
for applications related to robotics. Since ROS was not used in this project, the
openVINS toolbox was not used for evaluation either. Therefore the evaluation
methods covered in this chapter was completely re-implemented in python for the
use in this project.

Several different methods for evaluating a trajectory exists, and each method has
its advantages and disadvantages. Two commonly used metrics are the absolute
error and the relative error. These methods are detailed here. In order to achieve
an informative evaluation it is recommended to use both the absolute error and
the relative error in order to account for the advantages and disadvantages of each
method.

3.4.1 Trajectory alignment

Alignment of the estimated trajectory to the same reference frame as the ground
truth trajectory is necessary for both the absolute error and the relative error.
The trajectory is aligned using the orientation of the first time step and is trivial
to compute. The rotational transformation R

′ between the ground truth and
estimated orientation can be described by

R
′ = RR̂

T (3.18)

where R is the ground truth orientation and R̂ is the estimated orientation for the
first time step. The estimated orientations can now be aligned with the ground
truth trajectory by rotating the orientation for each time step using

R̂
′

n = R
′
R̂n (3.19)

where R̂
′

n is the aligned estimated orientation.

3.4.2 Absolute Orientation Error

For computing the Absolute Orientation Error (AOE), the estimated orientations
are aligned using the initial orientation as described in Subsection 3.4.1. Then,
the AOE is computed as

3.4 Evaluation metrics 21

AOE =

√√√√ M∑
n=1

1
M

∥∥∥log
(
RT
n R̂n

)∥∥∥2

2
(3.20)

which is the Root Mean Square Error (RMSE) of the orientations. Here, Rn is
the ground truth orientation, R̂n is the estimated orientation and M is the total
number of time steps. log(·) is defined in equation (2.11).

One advantage of the AOE is that just one single number is computed in order
to quantify the performance of an entire estimated trajectory. This makes the
metric easy to use for comparing the quality of several trajectories. Secondly, the
AOE is relatively easy to implement. The main disadvantage of the AOE is that
the magnitude of the error is sensitive to when in the trajectory the error occurs.
Errors occurring earlier in a sequence will have a much greater impact on the
AOE than errors occurring later in the sequence. Zhang et al. [28] cited several
researchers observing this problem.

3.4.3 Absolute Yaw Error

For orientation estimation algorithms such as VIO methods the estimate of the
yaw-angle tends to drift with time [2]. It is therefore of interest to evaluate the
performance of the method of [2] for estimating the yaw-angle as well as the 3D-
orientation. For doing this, a slight variant of equation (3.20) is used. First, the
orientation between the estimate and ground truth at time step n is calculated as

R̃n = RT
n R̂n (3.21)

Then, the yaw-angle θ is retrieved from R̃n by utilizing the relation between the
rotation matrix and the corresponding roll-pitch-yaw-angles (ϕ, θ, ψ),

Rn =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 =

cθcψ −cϕsψ + sϕsθcψ sϕsψ + cϕsθcψ
cθsψ cϕcψ + sϕsθsψ −sϕcψ + cϕsθsψ
−sθ sϕcθ cϕcθ

 (3.22)

Where the notation cθ, sθ, ... is short for cos θ, sin θ, From this, we have that

r21
r11

= cθsψ
cθcψ

= tanψ (3.23)

22 Chapter 3 Method

which means that the expression for retrieving the yaw-angle for each time step
is given by

ψn = tan−1 r21
r11

(3.24)

The Absolute Yaw Error (AYE) is now defined as the RMSE of the yaw-errors as

AYE =

√√√√ M∑
n=1

1
M
ψ2
n (3.25)

As is the case for the AOE, the magnitude of the AYE is also sensitive to when
an error occurs in the trajectory.

3.4.4 Relative Orientation Error

The computation of the Relative Orientation Error (ROE) metric is much more
involved than the AOE and AYE. The ROE is calculated for each sub-trajectory
of a given length of an entire sequence. Suppose that the sub-trajectory length is
set to be N meters. Then, start with the orientation at time step n. Now, find
the time step where the IMU has traveled N meters from the position at time
step n, defined as time step g(n), and use the orientation at this time step. Now,
align the estimated orientations using the ground truth orientation at time step
n and the method described in Subsection 3.4.1 For this sub-trajectory, calculate
the orientation increments for ground truth δR and the estimate δR̂ as

δRn,g(n) = RnRT
g(n) (3.26)

δR̂n,g(n) = R̂nR̂
T
g(n) (3.27)

Now use these increments to calculate the ROE for the given sub-trajectory as

ROE =
∥∥∥log

(
δRT

n,g(n)δR̂n,g(n)
)∥∥∥

2
(3.28)

Next, take time step n + 1 and find the time step where the IMU has traveled
N meters from this time step, g(n+ 1). Align the orientations and calculate the
orientation increments and the ROE for this sub-trajectory. Repeat this until the
ROE has been calculated for all sub trajectories of this length.

3.4 Evaluation metrics 23

The ROE is thus not a single number representing the performance of the al-
gorithm, as opposed to the AOE, but rather a collection of errors from all the
sub-trajectories. This collection of errors can now be used to compute statistics
such as the mean, median and percentiles, and the results can be visualized using
box-plots.

It is advantageous to calculate the ROE for sub-trajectories of several different
lengths N to get more informative metrics. This can be helpful to assess the qual-
ity of the estimate both over shorter and longer distances. The error over shorter
distances is related to local consistency while the error over longer distances is
related to long-term accuracy [28].

The main advantage of the ROE compared to the AOE is that the ROE is not
sensitive to the time an error occurs in the trajectory. The ROE also offers much
more flexibility in terms of the choice of sub-trajectory lengths used as well as
more informative statistics produced. The main disadvantage is that the ROE is
more complicated to implement than the AOE.

Chapter 4

Method development

4.1 Overview
This chapter describes further development of the method presented in Chapter 3.
To gain insight into how well the method of [2] and the newly developed methods
perform, a conventional filter [18] is presented for comparison. Then, a technique
of data augmentation based on virtual rotations of the IMUs in the datasets is
detailed. Lastly, two new CNN architectures are presented, which are used to
replace the CNN in the method of [2], one CNN based on ResNet [8] and another
CNN based on DenseNet [11].

4.2 Comparison with existing conventional filters
Compared to Visual Inertial Odometry-based methods for attitude estimation,
the method presented in [2] looks very promising. It is, however, of interest to
compare the performance of the method in [2] to the performance of a well tuned
conventional filter for attitude estimation. This is because both methods only use
an IMU to estimate the attitude. For this comparison the Madgwick gradient
descent optimization filter [18] is used. The open-source implementation of this
filter from [21], written in python, is used for this comparison.

In order to evaluate the performance of the filter, the AOE and AYE is used for
comparison with the CNN-based approach. Another metric is also included in
order to get a more detailed overview of the error for this filter. This metric is
the Absolute Inclination Error (AIE) defined as [14]

AIE =

√√√√ M∑
n=1

1
M

(
2 cos−1

√
q2
s + q2

3

)
(4.1)

26 Chapter 4 Method development

which gives the error of the rotation excluding the error in the yaw-angle, and
is calculated using the quaternion representation. This metric is included since
the Madgwick filter is expected to preform better with regards to the AIE than
the AOE or AYE when using only a gyroscope and accelerometer as inputs. The
evaluation of how such a filter performs when compared to the method of [2] is
meant to provide valuable insight into how well this method performs compared
to more traditional methods.

4.3 Data augmentation
Data augmentation in machine learning is a technique used to make a dataset
appear larger and more diverse than it originally is. It has for long been a popular
technique in the field of computer vision. An important use case is when the
original dataset is relatively small, often small enough that good results would
be unobtainable without using regularization techniques. In computer visions,
techniques for data augmentation include mirroring of images, tweaking of the
color balance of the image and randomly rotating and cropping the image.

In [2] Gaussian noise was added to the gyro-rates and accelerations from the IMU
as a technique of data augmentation. The added noise had a standard deviation of
0.01◦/s. In [27], Weber et al. compared an end-to-end Recurrent Neural Network
(RNN) to conventional filters for estimating roll and pitch angles using gyro-
rates and accelerations from an IMU. They reported a significant improvement
in the performance of the RNN when applying a random virtual orientation to
the IMU as a data augmentation technique. Inspired by these results, the data
augmentation technique using virtual rotations is implemented while training the
CNN of [2] to investigate if an equal improvement in performance can be observed
here as well.

4.3.1 Data augmentation using virtual rotations

Virtually rotating the IMU simulates the case where an IMU is mounted imper-
fectly on a rigid-body. The technique is implemented by both rotating the angular
velocities and accelerations from the IMU and the ground truth orientations by
the same rotation R. During training, this is implemented as follows: For each
training epoch, a random roll, pitch and yaw angle (ϕ, θ, ψ) is generated for each
sequence in the training dataset. These angles are generated to be within the
same set range of values. Using these random angles, the corresponding rotation
matrix is calculated using

4.4 Use of different neural network architectures 27

R =

cθcψ −cϕsψ + sϕsθcψ sϕsψ + cϕsθcψ
cθsψ cϕcψ + sϕsθsψ −sϕcψ + cϕsθsψ
−sθ sϕcθ cϕcθ

 (4.2)

Now, the angular velocities, accelerations and ground truth orientations for all
time steps in an entire sequence is rotated by this R.

4.4 Use of different neural network architectures
It is of interest to replace the CNN in the method of [2] with other state of the art
CNN architectures and observe if it is possible to get even better orientation esti-
mates. Two different architectures have been tested to explore if this is possible.
A CNN based on ResNet [8] and a CNN based on DenseNet [11].

4.4.1 Residual neural network

An important contribution in computer vision was the CNN-structure ResNet [8].
This CNN won the 1st place on several competitions, including the ImageNet
competition in 2015. The use of a similar structure as ResNet has been used by
Bai et al. [1] for the task of sequence modeling, with good results. Here a CNN
was used to beat the performance of Recurrent Neural Networks on a large variety
of different sequence modeling benchmarks. The good results obtained amongst
others by these authors have inspired the use of a similar structure for the CNN
used in this project. This type of CNN-architecture is used instead of the CNN
presented in Subsection 3.3.5 for the relevant experiments.

In Figure 4.1 the structure of a Residual CNN is visualized. Here, each CNN-
block represents the structure shown in Figure 4.2. Each block consists of two
convolutional layers. The activation function used for each convolutional layer is
the GELU activation function. Furthermore, batch normalization and dropout
is applied to each layer. As shown in these two figures, the main component
of a residual network is that the output of each block is added to the input of
the block using skip connections that bypasses the convolutions and non linear
functions. Because of this, the CNN does not need to learn the full transformation
from the input to the output. Rather, the layers of the CNN now learns small
modifications to the inputs of each layer instead. This mechanism speeds up the
learning process and enables the use of very deep neural networks. This method
allowed [8] to train a network with 152 layers and still achieve good results on
computer vision related tasks.

In the implementation of the Residual CNN in this project, the channel dimensions

28 Chapter 4 Method development

change within each block. This means that the output of each block has a different
channel dimension from the input. Hence, the input and the output can no longer
be added together. To mitigate this problem, a 1×1 convolutional layer is used to
scale up the channel dimension of the skip connections before the addition while
maintaining an identity mapping, as shown in Figure 4.2. The scaling up of the
channel dimension happens in the first convolutional layer of each block. Each
layer of each block then uses the same dilation gap and has the same channel
dimension of each output.

In order to get an output from the CNN that has the correct dimensions for the
gyro-corrections, ω̃n ∈ R3, a 1 × 1 convolution layer is applied after the final
CNN-block. This layer changes the dimension of the outputs to R3 and scales
down the channel dimension to 1.

Figure 4.1: Residual network architecture. The input to each CNN-block is
added to the output. Therefore each CNN-block learns modifications on identity
mappings from the input as opposed to the entire transformation from input to
output.

4.4.2 Dense neural network

DenseNet [11] is another important contribution to the field of computer vision.
The general architecture of a Dense network is illustrated in Figure 4.3. The archi-
tecture is similar to the architecture of the Residual network, with the exception
that every layer is connected to every subsequent layer in the network, using skip
connections. As was the case for the Residual network, this also allows the use
of very deep networks. This mechanism should improve the flow of information
when compared to the Residual network [11]. Now each layer in the CNN receives
information from every preceding layer in the network.

Similarly to the Residual network, each CNN-block in Figure 4.3 contain the same
layers as the layers shown in Figure 4.2. The channel dimensions and dilation gap
are also the same for both convolutional layers in each block. It is also necessary
in the Dense network to use a 1 × 1 convolution for each skip-connection in the

4.4 Use of different neural network architectures 29

Figure 4.2: Residual block. Each block contains two convolutional layers. The
skip-connections from the input contain a 1 × 1 convolutional layer to ensure
matching channel dimensions when the skip-connections are added to the outputs
of the convolutional layers.

network in order to obtain the correct channel dimension. As for the Residual
network, a final 1×1 convolutional layer is applied to ensure the correct dimensions
of the output of the network.

30 Chapter 4 Method development

Figure 4.3: Dense network architecture. Every layer in the network is connected
to every subsequent layer. Each layer in the network thus receives information
from every preceding layer.

Chapter 5

Experimental trials, results and
discussion

5.1 Overview
This chapter starts with detailing the reproducibility of results when training
neural networks using PyTorch. Then a brief description of the datasets used in
the experiments follows. Experimentation done with regards to the new methods
presented in Chapter 4 is thereafter detailed: Firstly, experimentation from using
the Madgwick filter is presented and compared to the method of [2]. Then an
analysis of the effects of data augmentation on the datasets follows. Lastly, the
use of new CNN architectures replacing the CNN in [2] is studied.

5.2 Reproducible results in deep learning
During early testing and validation of the method of Brossard et al. [2] it was
observed that the results varied significantly for each time the CNN was trained,
even when all parameters were kept exactly equal. For instance, considering the
results of the AOE obtained on the TUM VI dataset, the results varied between
1.56◦ to 4.93◦. The same variation was observed for the ROE. It was furthermore
impossible to reproduce the exact results obtained in [2].

The explanation of this variation is found in the PyTorch documentations regard-
ing reproducibility [22]. Reproducible results are not guaranteed across platforms
or PyTorch releases. Reproducible results are not guaranteed between GPU or
CPU executions either, as was the observation made here. It is, however, possible
to limit the nondeterministic behaviour in order to obtain reproducible results be-
tween executions on the same device. First, the seed value for generating random
numbers is held constant between executions. Furthermore it is specified that

32 Chapter 5 Experimental trials, results and discussion

PyTorch uses only deterministic algorithms. These measures have been tested to
ensure reproducible results between executions on the same GPU. Using different
GPUs between executions of the same program did not produce reproducible re-
sults. Therefore all experiments has been done on the same GPU, an Nvidia Tesla
V100. For the specific seed values used in these experiments, the CNN model de-
veloped by Brossard et al. achieves slightly worse results here than those obtained
in [2]. This detail is not considered to be important. It is much more important
that the results are consistent between executions. This ensures that differences
in the performance observed when modifying the method of [2] is caused only by
the modifications made, and not by the random behaviour of training the CNN.
The PyTorch version used for all experiments is PyTorch 1.10.2, and the operating
system used is CentOs Linux 8.2.2004.

5.3 Dataset descriptions
The datasets used for all experiments are the EuRoC dataset [3] and the TUM
VI dataset [26]. These are the same datasets that were used by Brossard et al.
[2]. These datasets were used to keep conditions of the experiments as similar as
possible to the original work and limit potential sources of error.

5.3.1 TUM VI dataset

The TUM VI dataset [26] has been captured using a hand-held device containing a
sensor-suite of stereo cameras and an IMU. The IMU is a Bosch BMI160 recording
3-axis accelerometer readings and gyroscope-rates at a sample rate of 200 Hz. For
acquisition of ground truth orientations and positions several infrared reflective
markers has been placed on the device. An Optitrack motion capture system
tracks these reflective markers in order to capture ground truth poses at a rate of
120 Hz. The motion capture system consists of 16 Flex13 infrared cameras.

The sequences in the dataset has been captured in a diverse set of sceneries,
including indoors and outdoors. Of these sequences, only the sequences labeled
room are the ones containing ground truth poses for the entire sequence. Hence,
these sequences are the ones used in this project, since it is vital to have ground
truth available for the method of machine learning used in this project. This
constitutes 6 sequences, each lasting between 2–3 minutes. The CNN is trained
using the first 50 seconds of the sequences room 1, room 3 and room 5. The
remainder of each sequence is used for validation. Sequences room 2, room 4 and
room 6 are left as the test dataset. It is noted that the IMU is properly calibrated.

5.3 Dataset descriptions 33

5.3.2 EuRoC dataset

The EuRoC dataset [3] has been captured using an AscTec Firefly hex-rotor Micro
Aerial Vehicle (MAV) containing a sensor-setup. The sensor-suite consists of
a stereo camera arrangement and an ADIS16448 IMU capturing accelerometer
values and gyroscope-rates at 200 Hz. Two systems for capturing ground truth
poses has been used. A Leica Nova MS50 laser tracker was used to capture
the position of a prism mounted on top of the MAV at a rate of 20 Hz for some
sequences. For other sequences a Vicon motion capture system was used to capture
pose measurements from reflective markers mounted on the MAV at a rate of 100
Hz.

The dataset consists of 11 sequences lasting between 2–3 minutes each. For this
dataset all sequences contain ground truth positions and orientations, and there-
fore all sequences of the dataset have been used in this project. Five sequences
were captured in a Machine Hall, labeled MH 01, ..., MH 05. The remaining six
sequences were captured in a smaller room and labeled V1 01, V1 02, V1 03, V2
01, V2 02 and V2 03. Each sequence also has a label of easy, medium or diffi-
cult, symbolising the difficulty of each sequence. Of these sequences, the first 50
seconds of sequences MH 01, MH 03, MH 05, V1 02, V2 01 and V2 03 were used
for training the CNN. The remainder of these sequences were used for validation.
The remaining 5 sequences were used for testing the CNN. In this dataset, the
IMU is not properly calibrated, as is reflected in the results when compared to
the results from the TUM VI dataset.

5.3.3 Similarities and differences between EuRoC and TUM VI

To fully understand and compare the results between the performance of the
CNN on the EuRoC and TUM VI datasets, it is important to understand how
the datasets are similar, and how they differ. The most notable difference between
the datasets is that the IMU in the TUM VI dataset has been properly calibrated
by the authors of [26] while the IMU in EuRoC has not been calibrated. For
the TUM VI dataset, this calibration includes correction in static bias as well as
compensation for scale factors and axis misalignment. It was noted by Brossard
et al. [2] that calibrating the IMU leads to a much better performance (this was
said in the context of using a training method for calibrating the IMU, but the
same holds true for conventional methods of calibration as well). How much effect
calibration has on the results is reflected in the orientation error obtained simply
by open loop integration on each dataset, where EuRoC has an average AOE of
120.9◦ whereas TUM VI has an average AOE of 6.26◦.

Other differences between the datasets includes differences in the device the IMUs
are mounted on. For the TUM VI dataset, the IMU is mounted on a hand-held

34 Chapter 5 Experimental trials, results and discussion

device. For the EuRoC dataset, it is mounted on a rotor-driven MAV. Hence, the
IMU-measurements on the EuRoC dataset should contain more noise than the
TUM VI dataset, coming from the rotors. The rotors should produce colored noise
[2] which in theory would be harder to estimate. The datasets are, however, similar
in the movement patterns captured. Both datasets contain mostly translational
movement patterns.

5.4 Comments on evaluation metrics
Some measures have been taken in order to ease the comparison of the performance
between several executions. If nothing else is stated, this is how the metrics are
reported: When the AOE and AYE is reported, this is the average AOE/AYE over
all sequences in the dataset. The ROE is calculated for sub-trajectory distances
of 7, 21 and 35 meters. The ROE is then scaled for each value by distance, in
order to get one collection of errors in degrees per meter. This collection of errors
is then used to produce box plots and to compute the mean ROE for use in tables.

5.5 Madgwicks gradient descent optimization filter

5.5.1 Experimentation details

In order to get a better understanding of the results from the method of [2], it
is beneficial to compare it to well established conventional methods of attitude
estimation. As mentioned in Section 4.2, the conventional filter used for this
comparison is the Madgwick gradient descent optimization filter [18]. This filter
only has one tuning parameter, β. In order to find the optimal tuning, the filter
is applied to all sequences using a tuning parameter β in the range 0.01 to 0.3 in
steps of 0.01 for the EuRoC dataset and 0.0001 to 0.01 in steps of 0.000165 for
the TUM VI dataset. Then the average AOE, AYE and AIE from all sequences
are plotted against each value of β in order to find the optimal tuning for each
error metric. The range of tuning parameters suited for use was initially found
with some trial and error. Once an acceptable parameter was found, fine tuning
the filters was done using the ranges specified above.

5.5.2 Results and discussion

The plots of the errors for different tuning parameters β for EuRoC and TUM
VI can be seen in Figures 5.1 and 5.2, respectively. These figures visualize how
tuning of the filter was performed on both datasets. In Table 5.1 the AOE,
AYE and AIE is compared for the results of open loop integration, the method

5.5 Madgwicks gradient descent optimization filter 35

of [2] and the Madgwick filter. Note that the metrics provided in the table for
the Madgwick filter are the values corresponding to the optimal tuning for each
respective metric. In Figures 5.1 and 5.2 it can be seen that the optimal tuning
parameter β for the AOE, AYE and AIE, respectively, does not share the same
value. It is evident that the Madgwick filter fails to estimate the 3D-orientation
when considering the AOE for both datasets. On the EuRoC dataset a slight
decrease in the error is observed compared to open loop integration. On the
TUM VI dataset the Madgwick filter achieves the exact same error as open loop
integration. The reason why the the error decreases for the EuRoC dataset and
not for the TUM VI dataset is most likely related to the fact that the IMU in
TUM VI is calibrated while the IMU in EuRoC is not. Most likely the filter is
able to attenuate some of the noise present in the EuRoC dataset, which leads to
better results for the AOE compared to open loop integration.

The source of the poor estimates for the 3D-orientation is found in the results for
the AYE. Surprisingly, open loop integration actually yielded better performance
than the Madgwick filter on both datasets. Figures 5.1 and 5.2 show that the
filter does not manage to provide good estimates of the yaw-angle, regardless of
the value of β. The reason for these poor results stem from the fact that we use
an IMU with only a gyroscope and an accelerometer. Without another sensor
such as a magnetometer, the only direction vector we have for corrections in the
estimate is the direction of gravity measured by the accelerometer. Therefore the
filter has no observations that can be used to correct for the yaw angle, which
leads to poor results with regards to the AYE, and, ultimately, also the AOE.

Contrary to the results obtained from open loop integration and the Madgwick
filter, the CNN of [2] achieves very good results for the AOE and AYE, and the
error is reduced substantially on both datasets. The CNN has been trained by
minimizing the loss for the 3D-orientation. It is evident that good estimates of the
3D-orientation rely on good estimates of the yaw-angle as well, and that minimiz-
ing the loss for the orientation generally leads to good estimates of the yaw-angle.
As discussed, the Madgwick filter does not manage to estimate the yaw angle since
it is not able to utilize information from the gyroscopes or accelerometers to infer
this angle. The results for the CNN proves that the gyroscopes and accelerometers
actually contain some information of the yaw-angle. This demonstrates one of the
advantages of using a CNN. The CNN is able to find relations in the IMU mea-
surements that are not modeled by the kinematic equations. Some intuition for
how the accelerometer measurements relate to the angular velocities was provided
in equation (3.11), but this relation was derived by assuming negligible velocity
variations between time steps, which is an invalid assumption on these datasets.
The results for the CNN in Table 5.1 indicate that a similar relation exists also
when velocity variations are present between time steps.

36 Chapter 5 Experimental trials, results and discussion

The results for the AIE in Table 5.1, which captures the errors in the roll and pitch
angles, are more favourable for the Madgwick filter. Very similar performances
between the CNN and the Madgwick filter is achieved on the TUM VI dataset,
and slightly better results are achieved for the CNN on EuRoC. As expected,
the Madgwick filter does a really good job of estimating the roll and pitch angles
when compared to open loop integration. The CNN, however, manages to provide
similar or better results for the AIE even though the CNN was trained to estimate
the 3D-orientation. A surprising observation is the AIE for open loop integration
for the TUM VI dataset, which achieves an error of 1.02 degrees. This indicates
that very good estimates of the roll and pitch angles are possible to obtain simply
by open loop integration from a well calibrated IMU.

In light of the results obtained from the Madgwick gradient descent filter, it
becomes evident just how successful the method of [2] is at estimating the 3D-
orientation. Since the method of [2] is based on open-loop integration of denoised
gyro-rates, no corrections in the estimated orientation is possible to apply in real
time. The performance is therefore completely dependent on how good the gyro-
corrections from the CNN are so that drift in the estimated orientations from the
ground truth orientations is avoided. Despite this, the method of [2] manages to
get excellent results on the TUM VI and EuRoC datasets.

AOE (deg) AYE (deg) AIE (deg)
open loop CNN [2] Madgwick open loop CNN [2] Madgwick open loop CNN [2] Madgwick

EuRoC 120.9 2.88 105.8 91.2 1.80 97.2 82.1 2.64 3.27
TUM VI 6.26 1.56 6.26 5.91 1.38 6.22 1.02 0.56 0.55

Table 5.1: Results comparing the Madgwick filter with the CNN from [2] and
open loop integration of angular velocities. The Madgwick filter does not perform
well with regards to the AOE and AYE. Good performance is achieved for the
filter with regards to the AIE. The CNN achieves excellent results for all metrics.

5.5 Madgwicks gradient descent optimization filter 37

(a) AOE EuRoC Madgwick filter (b) AYE EuRoC Madgwick filter

(c) AIE EuRoC Madgwick filter

Figure 5.1: AOE, AYE and AIE on the EuRoC dataset using the Madgwick
filter. The optimal tuning of the filter obtained an AOE, AYE and AIE of 105.75,
98.22 and 3.27 degrees respectively. Hence the filter only obtained good results
for the AIE, representing the errors in the roll and pitch angles. The filter failed
to estimate the yaw-angle, and as a result, the full 3D-orientation.

38 Chapter 5 Experimental trials, results and discussion

(a) AOE TUM Madgwick (b) AYE TUM Madgwick

(c) AIE TUM Madgwick

Figure 5.2: AOE, AYE and AIE on the TUM VI dataset using the Madgwick
filter. The optimal tuning of the filter obtained an AOE, AYE and AIE of 6.26,
6.22 and 0.55 degrees respectively. As for the EuRoC dataset, the filter only
obtained good results for the AIE, representing the errors in the roll and pitch
angles. The filter failed to estimate the yaw-angle, and as a result, the full 3D-
orientation.

5.6 The effects of data augmentation 39

5.6 The effects of data augmentation

5.6.1 Experimentation details

The experimentation of the effects of data augmentation on the method in [2] was
performed by analysing two different types of data augmentation. The effects vir-
tual orientations had on the performance was the main focus of the experiments.
It is, however, possible to apply too many techniques of data augmentation at
once. Applying too many of these techniques at once can degrade the perfor-
mance of the CNN. For this reason, every experiment performed with respect to
virtual rotations, was done both with and without the method implemented in
[2] of adding Gaussian noise to the IMU measurements as a data augmentation
technique.

As was noted in Section 4.3, the orientation R used to rotate the IMU and ground
truth data was calculated from roll, pitch and yaw angles generated from within
a specified range of values. During early testing it was observed that how large
this range of values was set to be, had a significant impact on the performance of
the CNN. For this reason, a wide variety of ranges for these rotation angles were
tested. The results are summarized in box-plots for each of these rotation ranges
in Figures 5.3 and 5.4. In these plots, a virtual rotation range of for instance 5
deg means that R was constructed from roll, pitch and yaw angles with values
between −5 and 5 degrees for each epoch during training. In the results presented
from these experiments, the results from the original method of [2] is referred to
as baseline.

5.6.2 Effects of data augmentation on EuRoC

Figure 5.3 shows the effects of different magnitudes of virtual rotation augmenta-
tion on the ROE, both with and without added noise to the IMU-measurements.
For a more detailed analysis, Table 5.2 is included, which contains the AOE, AYE
and mean ROE for each execution. In this comparison, the method proposed by
Brossard et al. [2] is termed baseline. From the figure we can see that the best
performance was achieved using the baseline method with noise to the IMU-input,
which is the exact method proposed in [2]. Using the baseline method without
added noise produced slightly worse results. When applying a virtual rotation
to the IMU, two distinct patterns emerge. Firstly, for both executions with and
without added noise to the IMU, the ROE increases significantly as the range
of the virtual orientations increase. This pattern is confirmed in Table 5.2 for
both the AOE, AYE and mean ROE. Secondly, for most of the executions, better
performance is achieved by using virtual orientations only, as opposed to both
adding noise and virtual orientations at the same time. When using a small range
of virtual orientations only, the performance is similar to or slightly worse than

40 Chapter 5 Experimental trials, results and discussion

the results from baseline.

Figure 5.3: ROE on EuRoC using virtual rotation data augmentation. The best
results for the ROE was obtained from the baseline configuration with Gaussian
noise on IMU measurements as data augmentation. Increasing the range of rota-
tions when constructing the virtual rotation led to gradually worse results.

AOE/AYE (deg) mean ROE (deg/m)
With noise Without noise With noise Without noise

open loop - 120,92/91,2 - 5,25
baseline 2,88/1,8 4,75/3,13 0,13 0,18
±0.25◦ 6,24/4,17 3,98/2,37 0,2 0,15
±0.5◦ 5,63/3,76 4,44/2,48 0,18 0,16
±0.75◦ 5,71/2,95 5,17/2,62 0,18 0,17
±1◦ 6,7/3,93 5,15/2,48 0,21 0,17
±2◦ 10,88/5,14 11,93/6,35 0,29 0,32
±3◦ 11,77/4,86 11,91/5,67 0,33 0,33
±4◦ 18,11/7,19 17,13/7,28 0,48 0,46
±5◦ 25,32/14,06 21,44/10,14 0,65 0,59
±10◦ 34,13/17,44 36,71/22,46 0,95 1,04
±15◦ 54,51/40,56 51,41/38,33 1,51 1,47
±20◦ 76,12/70,85 66,07/60,74 2,24 1,91

Table 5.2: Results on EuRoC using virtual rotation data augmentation. The
best results for the AOE, AYE and mean ROE was obtained from the baseline
configuration with Gaussian noise on IMU measurements as data augmentation.
All metrics became gradually worse when increasing the range of rotations used
for constructing the virtual rotations.

5.6 The effects of data augmentation 41

5.6.3 Effects of data augmentation on TUM VI

Figure 5.4 shows the results from using virtual rotations as data augmentation
on the TUM VI dataset. Table 5.3 summarizes the AOE, AYE and mean ROE
for all executions. An interesting observation is that the baseline CNN performed
best without the use of noise as data augmentation. The best results from these
experiments, however, was to use a very slight amount of virtual rotations with a
range of ±0.25◦. A very similar performance was achieved when using this virtual
rotation both with and without noise on IMU measurements at the same time.
The execution with added noise performed best with respect to the AOE, AYE
and mean ROE. When looking at the box plot in Figure 5.4 for a rotation range
of ±0.25◦, it is harder to argue which of these executions performed best. The
execution with Gaussian noise has a lower median value. The execution without
Gaussian noise, however, has a lower maximum value and a lower value for the
upper quartile. Generally on the TUM VI dataset the range of rotations specified
while constructing the virtual rotation has much less impact than on the EuRoC
dataset. Similar results are obtained over a wide variety of rotation ranges, both
with and without Gaussian noise added to the IMU measurements.

Figure 5.4: ROE on TUM VI using virtual rotation data augmentation. The
baseline configuration performed best without using Gaussian noise on the IMU
measurements as data augmentation. The best performance was obtained using a
slight virtual rotation range of ±0.25◦. Using varying ranges of virtual rotations
did not consistently perform better than the baseline configuration.

42 Chapter 5 Experimental trials, results and discussion

AOE/AYE (deg) mean ROE (deg/m)
With noise Without noise With noise Without noise

open loop - 6,26/5,92 - 0,145
baseline 1,56/1,38 1,34/1,12 0,062 0,059
±0.25◦ 0,9/0,68 1,31/1,08 0,057 0,058
±0.5◦ 3,2/2,92 2,94/2,71 0,087 0,084
±0.75◦ 1,56/1,36 1,42/1,21 0,062 0,059
±1◦ 1,48/1,26 3,28/3,05 0,061 0,087
±2◦ 2,02/1,76 1,15/0,94 0,07 0,056
±3◦ 2,29/2,08 1,41/1,2 0,073 0,06
±4◦ 3,47/3,18 3,18/2,97 0,092 0,083
±5◦ 0,96/0,78 1,49/1,25 0,057 0,062
±10◦ 3,25/3,02 1,01/0,67 0,086 0,058
±15◦ 3,82/3,49 1,51/1,26 0,092 0,061
±20◦ 4,07/3,75 1,97/1,72 0,096 0,065

Table 5.3: Results on TUM VI using virtual rotation data augmentation. The
best results for the AOE, AYE and mean ROE were obtained using both Gaussian
noise on the IMU measurements and a slight virtual rotation with a range of
±0.25◦. Using different ranges of virtual rotation did, however, not consistently
improve the performance of the CNN.

5.6.4 Discussion

Using virtual rotations as a means of data augmentation was not found to consis-
tently improve the performance of the CNN in [2] for either of the two datasets.
On the EuRoC dataset the best results were achieved by using the exact method
in [2]. On the TUM VI dataset, better results were obtained by using a slight
virtual rotation with angles within ±0.25◦ as data augmentation for each epoch.
Using other rotation ranges did, however, not consistently improve the results.
On the EuRoC dataset, using a too large rotation range resulted in substantially
worse performance.

It was not expected that the specified range in values for the roll, pitch and yaw
angles would affect the performance as much as it did in these experiments, and
that using a large range for the angles would degrade the performance as much as
it did for the EuRoC dataset. Most likely this happened because the datasets now
appeared to be too diverse. This could have made the CNN put more emphasis
on patterns in the datasets that were only introduced as a result of this data
augmentation technique. Hence, there is a chance that the CNN generalized on
too diverse patterns in the training data, and that the training data no longer
gave a good enough representation of how the IMU measurements used as inputs
were supposed to look like, leading to the CNN performing worse on the unseen

5.7 Different CNN architectures 43

test data. The reason why data augmentation using virtual rotations performed
worse on the EuRoC dataset than on the TUM VI dataset is also most likely
related to this problem. Since the IMU measurements in the EuRoC dataset are
uncalibrated, and since colored noise is present from the rotors of the MAV, this
dataset potentially contains more diverse characteristics than the TUM VI dataset
without the use of data augmentation.

In conclusion, it was not possible to obtain better results on the EuRoC dataset
using virtual rotation data augmentation. On the TUM VI dataset, better results
were obtained using some of the combinations of Gaussian noise and virtual rota-
tions as data augmentations. Better results were, however, only achieved for some
of the specified ranges of values for the roll, pitch and yaw, and not consistently
over several different rotation ranges. It is therefore concluded that the method
of using virtual rotations as data augmentation is not very effective, and hence it
is not relied on for any of the further experiments.

5.7 Different CNN architectures

5.7.1 Experimentation details

When testing the Dense and Residual CNN architectures from Section 4.4, many
different configurations were tested in order to find an optimal architecture. Ini-
tially, different configurations using only one single convolutional layer per block
were tested, as opposed to two convolutional layers visualized in Figure 4.2. It was
not possible to produce better results than the CNN of Brossard et al. [2] using
this type of architecture, regardless of how deep the Neural Network was. For this
reason, the structure in Figure 4.2 was adopted for each CNN-block instead, with
two convolutional layers per block. This is the same structure as the one used by
Bai et al. [1] which produced good results in their study.

The testing of different CNN architectures was performed by testing deeper and
deeper networks by adding one CNN-block (of the structure visualized in Figure
4.2) at a time. For each configuration, different dilation gaps and kernel dimen-
sions of each layer were used in order to test each network with a varying size of
receptive fields. The receptive fields tested varied between 224 and 28 672 sam-
ples, corresponding to between 1.12 seconds to 2.4 minutes of measurements, so
that a wide range of different receptive fields were tested. The smallest CNN-
configuration tested was using a CNN consisting of 3 blocks, and the largest CNN
consisted of 7 blocks. Due to constraints on the availability of computer resources,
it was not possible to test deeper networks than this. The same procedure for
testing different CNN-architectures with different receptive fields was done for
both configurations of the Dense network and Residual network.

44 Chapter 5 Experimental trials, results and discussion

It was not possible to find a CNN-configuration that preformed better than the
CNN of [2], in this section referred to as baseline, for both the EuRoC and TUM
VI datasets simultaneously. It was, however, possible to find two different ar-
chitectures that preformed better than baseline for each of the two datasets. An
architecture based on the Dense CNN preformed best on the EuRoC dataset. The
structure is summarized in Table 5.4. An architecture based on the Residual CNN
preformed best on the TUM VI dataset, and is summarized in Table 5.5. Both
networks consist of 6 blocks. The receptive fields of the Dense and Residual net-
works are 1701 and 7168 samples respectively. This corresponds to 8.5 s and 35.8
s of past IMU measurements respectively. Note that the channel dimension for
both networks is the same for blocks 5 and 6. When the channel dimension of the
last block was increased to 512, following the pattern of doubling the dimension
per block, the networks required too much time to train. Therefore, the channel
dimension of block 6 was limited to 256 for both architectures.

CNN block 1 2 3 4 5 6 final layer
kernel dimension 7 7 7 7 7 7 1
dilation gap 1 3 9 27 81 243 1
channel dimension 16 32 64 128 256 256 1

Table 5.4: Dense network architecture details. The receptive field of this network
is N = max(kerneldimension × dilationgap) = 7 × 243 = 1701, corresponding to
8.5 s of past IMU measurements.

CNN block 1 2 3 4 5 6 final layer
kernel dimension 7 7 7 7 7 7 1
dilation gap 1 4 16 64 256 1024 1
channel dimension 16 32 64 128 256 256 1

Table 5.5: Residual network architecture details. The receptive field of this
network is N = max(kerneldimension × dilationgap) = 7 × 1024 = 7168, corre-
sponding to 35.8 s of past IMU measurements.

5.7.2 Comments on the error metrics

The results of the ROE for the baseline network, Dense network and Residual
network is visualized in Figures 5.5a and 5.5b respectively. Note that the ROE
in the box plots is not scaled per meter in the plots. Rather, the ROE is plotted
for the distances of 7, 21 and 35 meter traveled by the IMU, which means that
the ROE is given in degrees rather than deg/m. This is done in order to provide
a detailed comparison of the results achieved by the different CNN architectures,
specifically how they compare across different sequence lengths. In Table 5.6 the

5.7 Different CNN architectures 45

AOE and AYE as well as the mean ROE in deg/m is displayed for each architecture
over all sequences in each of the datasets. The results for each network on all
sequences is included to provide an even more detailed comparison than just
comparing the mean values.

Note that the results for the AOE and AYE reported in [2] are better than the
results achieved in these experiments for the method developed in [2], here referred
to as baseline, as well as the results for the new CNN architectures. For the
baseline architecture Brossard et al. [2] achieved an AOE/AYE of 2.10◦/0.96◦

and 1.28◦/0.82◦ for the EuRoC and TUM VI datasets respectively. When the
same architecture was evaluated in this project, an AOE/AYE of 2.88◦/1.80◦ and
1.56◦/1.38◦ was achieved for the same datasets. The reason for this discrepancy is
explained in Section 5.2. The method regarding reproducibility described in this
section was used for these experiments. This ensures that the results obtained
from these experiments are comparable, and that any improvements in the results
are caused solely from the new methods implemented. For this reason, the results
reported in Table 5.6 are not directly comparable to the results reported in [2].

5.7.3 Results and discussion

Performance on the EuRoC dataset

When looking at Figure 5.5a, it is clear that the Residual Network performs worse
than baseline for all distances. When comparing the Dense network to the baseline
network, however, some interesting observations can be made. Over a distance
of 7 meters, both networks have a nearly identical ROE. Over distances of 21
and 35 meters the Dense network clearly beats baseline. This implies that both
architectures have a similar local consistency over small distances. Meanwhile,
the Dense Network has a greater long term accuracy, meaning that it performs
better over longer sequences.

The results for the EuRoC dataset in Table 5.6 details the performance for each
sequence in the dataset. This table shows that the Residual network performed
worse on all metrics for all sequences, as was the case for the box plots of the
ROE for this network as well. When comparing the performance of the Dense
network to the baseline network the table shows that the Dense network does
not perform better than baseline for all sequences. Baseline still performs better
on sequences MH 02 easy and V1 03 difficult, and scores a better AOE on the
sequence MH 04 difficult. Regardless of this, the Dense network manages to get
a better performance on average, with an AOE/AYE of 2.87/1.70 compared to
2.88/1.80 for baseline.

In light of the results presented, only a slight increase in the performance was

46 Chapter 5 Experimental trials, results and discussion

observed with regards to the mean AOE, AYE and ROE when using the Dense
network. The most significant performance gains of the Dense network was seen
for the ROEs over 35 meters traveled, where the mean ROE decreased with 0.47
degrees compared to baseline. This indicates that the Dense network has a greater
long-term accuracy while maintaining a good local consistency. This increase
in long-term accuracy is most likely related to the large receptive field of the
network. With the receptive field of the Dense network covering 35.8 s of past
IMU measurements, the receptive field covers almost all measurements over a
distance of 35 m for the velocities the IMU has in both datasets. This means that
the Dense network can combine more information from past IMU measurements
to infer the current gyro-correction.

Performance on the TUM VI dataset

From Figure 5.5b it is clear that the Dense network performs worse than baseline
for the ROE over all distances. The Residual network, however, manages to
perform better than baseline for the ROE over all distances. This is in agreement
with the results for the TUM VI dataset presented in Table 5.6, where the Residual
network has a lower error for all metrics on all sequences in the dataset, except
for a slightly worse result for the AOE on the room 4 sequence. The Residual
network thus both has a better short term consistency and a better long term
accuracy than baseline on this dataset.

AOE/AYE (deg) mean ROE (deg/m)
dataset sequence baseline Residual Net Dense Net baseline Residual Net Dense Net

MH 02 easy 2.91/1.53 4.20/2.35 3.50/2.71 0.0845 0.1259 0.0983
MH 04 difficult 1.27/0.88 3.71/2.60 1.34/0.75 0.0432 0.1063 0.0353

EuRoC V1 01 easy 3.98/2.64 5.07/2.95 3.64/2.28 0.2893 0.2942 0.2710
[3] V1 03 difficult 1.96/1.29 3.19/1.97 2.27/1.63 0.0702 0.0986 0.0768

V2 02 medium 4.28/2.37 6.93/3.03 3.60/1.16 0.1439 0.2011 0.1254
mean 2.88/1.80 4.62/2.58 2.87/1.70 0.1307 0.1685 0.1266
room 2 1.96/1.83 1.57/1.38 2.61/2.49 0.0573 0.0555 0.0681

TUM VI room 4 0.95/0.68 0.98/0.57 1.37/0.93 0.0592 0.0581 0.0844
[26] room 6 1.78/1.63 1.59/1.31 2.13/1.99 0.0723 0.0638 0.0768

mean 1.56/1.38 1.38/1.09 2.04/1.80 0.0624 0.0588 0.0754

Table 5.6: Results using different CNN architectures. The Residual network
performed better than baseline on all sequences on the TUM VI dataset for all
metrics except the AOE on room 4. The Dense network performed better than
baseline on the EuRoC dataset on three of the five sequences used, and obtained
a better result for the AOE, AYE and mean ROE than baseline on average.

5.7 Different CNN architectures 47

Discussion of the results for both datasets

The performance gains achieved by the Residual network on the TUM VI dataset
are greater than those achieved by the Dense network on the EuRoC dataset.
During experimentation it was observed that it was much easier to find a bet-
ter performing CNN architecture for the TUM VI dataset than for the EuRoC
dataset, and several of the tested configurations performed better than baseline
on TUM VI. For the EuRoC dataset, the Dense network configuration presented
here was the only configuration found to perform better than baseline. As was
mentioned in Section 5.3, the most notable difference between the datasets is that
the TUM VI dataset is calibrated while the EuRoC is not. This could in turn
effect the performance of the networks and make them behave differently for each
dataset. It seems logical that it should be easier for a CNN to perform better on
the TUM VI dataset since it is calibrated. One more reason that it was easier
to find a better architecture for the TUM VI dataset could be related to the fact
that Brossard et al. [2] tuned their network to perform well on both datasets at
the same time. There is a possibility that their network was tuned for the best
possible performance on the EuRoC while maintaining a good performance on the
TUM VI dataset. If this was the case, it would be harder to achieve performance
gains on the EuRoC dataset.

Surprisingly, the receptive field of both of the architectures tested in these ex-
periments is substantially greater than baseline. As mentioned in Chapter 3,
baseline has a receptive field of 448. The receptive fields of the Dense and Resid-
ual networks are 1701 and 7168 samples, corresponding to 8.5 s and 35.8 s of data
respectively. Especially interesting is the size of the receptive field on the Resid-
ual Network, which is 16 times greater than the receptive field of the baseline
network. This indicates that as the CNN models become increasingly large and
complex, they manage to combine more and more information from the past IMU
measurements in estimating each gyro-correction. Based on the results presented
in the previous sections, this seems to be a beneficial attribute contributing in the
CNN-models performing better on the datasets.

A surprising observation made during testing of the different CNN architectures
was that no configuration of the Dense network tested managed to perform better
than the baseline network on the TUM VI dataset. Similarly no configuration of
the Residual network performed better than baseline on the EuRoC dataset. This
suggests that there are some different traits in each of the CNN architecture types
that makes each of the CNNs better suited to their respective datasets. The main
difference between the two architectures is: For the Dense network each layer re-
ceives the information for every preceding layer in the network, including the IMU
measurements used as inputs to the CNN. For the Residual network an identity
mapping is passed forward from layer to layer, and each CNN-block learns small

48 Chapter 5 Experimental trials, results and discussion

modifications to the these mappings. Since the IMU in EuRoC is uncalibrated,
and contains colored noise from the rotors of the MAV it is a possibility that
each layer in the Dense CNN has an advantage of gaining the knowledge of the
input as well as the knowledge of each preceding layer in the network, since the
original IMU signal is more corrupted. Likewise, for the TUM VI dataset, there
is a possibility that since the IMU signals are calibrated, only slight modifications
to the gyro-rates are needed, which are captured well by the small modifications
to the identity mapping present in each layer of the Residual network.

One of the primary observations done from testing the different architectures is
that in order to get the best possible results, an attitude estimation method based
on CNNs should be individually tuned to the specific dataset or IMU it is intended
to be used on. This is similar to tuning conventional attitude estimation filters
such as the Madgwick filter [18]. When regarding the results for the AIE from
Section 5.5, a different tuning parameter β is required to produce the best possible
results for each of the datasets, which is analogous to what is observed for the
CNNs.

Adding to the discussion of the use of data augmentation from Section 5.6, the
CNN architectures developed in these experiments were trained both with and
without these data augmentation techniques. It was observed that the use of vir-
tual orientations had little effect on the performance of the networks. The use of
added Gaussian noise to the IMU measurements during training made a substan-
tial difference, however. For all the results provided in Table 5.6 Gaussian noise
was added to the IMU measurements for data augmentation. When training the
Residual network from this table without this data augmentation technique on
the TUM VI dataset, an AOE/AYE of 9.50◦/9.06◦ was achieved. By simply inte-
grating the gyro-rates from the IMU, an AOE/AYE of 6.26◦/5.91◦ was achieved.
This means that the CNN actually contributed to make the orientation estimates
worse in this case. In contrast, using the baseline network without the use of
noise as data augmentation actually produced better results than with the use of
noise, as was demonstrated in Table 5.3. The use of this data augmentation was
therefore much more beneficial when training the deeper CNN-models presented
in this section. This illustrates the importance of regularization techniques such
as data augmentation when training large CNN-models on small datasets.

In the preliminary study [24] the method of Brossard et al. [2] was tested on the
BROAD dataset [14] without success. One of the reasons for this could be related
to the architecture of the CNN in [2]. The BROAD dataset is a much more
diverse dataset than the datasets used in these experiments. For this reason,
there is a possibility that success on the BROAD dataset requires the use of a
more complex CNN model that is able to model the more diverse patterns of this
dataset. Both the Residual and Dense networks developed in this thesis were

5.7 Different CNN architectures 49

tested on the BROAD dataset. But it was still not possible to produce acceptable
results. Therefore producing good results on the BROAD dataset remains an
unsolved issue.

Despite the fact that it was not possible to produce good results on the BROAD
dataset, it was possible to improve the method of [2] by using a different CNN
architecture and tuning the network to each individual dataset. Slight improve-
ments were made on the EuRoC dataset and more substantial improvements were
obtained for the TUM VI dataset. These improvements comes at a cost of in-
creasing the complexity of the CNN model, making the new models require greater
computational resources. While the CNN-model in [2] took about 3 minutes to
train on a V100 GPU, the CNN-models presented in this chapter took about 15–20
minutes to train. Therefore, the new developed CNN models should be considered
on systems where computational resources are in abundance, whereas the CNN
model of [2] should be preferred on systems where computational resources are
scarce. Furthermore, a CNN method individually tuned for the specific dataset
or IMU in use is preferred.

50 Chapter 5 Experimental trials, results and discussion

(a) ROE of different CNN architectures on EuRoC. The Dense net-
work performs nearly identical to baseline on sub-sequences with
length of 7 meters. For longer sequences, the Dense network beats
baseline. The residual network obtains worse results over all met-
rics.

(b) ROE of different CNN architectures on TUM VI. The Resid-
ual network performs better than baseline for sub-sequences of all
lengths. The Dense network performs worse than baseline over all
lengths.

Chapter 6

Conclusion

In this thesis, the performance of the method proposed in [2] using a CNN to
estimate the orientation has been compared to the performance of the Madgwick
orientation filter [18] on the TUM VI and EuRoC datasets. Compared to this
filter, the method of [2] is extremely successful. The Madgwick filter fails to
estimate the 3D-orientation since it failed to estimate the yaw-angle from an IMU
containing only a gyroscope and accelerometer. In contrast, the method of [2]
managed to achieve good estimates both for the yaw angle and the 3D-orientation.

A new method of data augmentation was used together with the method of [2] to
try to increase the performance of the CNN. A thorough analysis was performed
with regards to virtually rotating the IMU to create a more diverse dataset. It was
not possible to produce better results from this method on the EuRoC dataset. On
the TUM VI dataset better results were achieved by applying very slight virtual
rotations to the IMU. The results on the TUM VI dataset were not consistent for
different amounts of virtual rotations, and the results were therefore not satisfying.
In conclusion, using virtual rotations for data augmentation did not improve the
performance of the method from [2].

Replacing the CNN in [2] with new CNN architectures increased the performance
of the method. Using a Dense neural network yielded slight improvements on the
EuRoC dataset. Using a Residual neural network yielded good improvements on
the TUM VI dataset. The combination of a larger receptive field and a more
complex CNN-model individually tuned for each dataset proved to be successful.

References

[1] S. Bai, J. Z. Kolter, and V. Koltun. “An empirical evaluation of generic con-
volutional and recurrent networks for sequence modeling”. In: arXiv preprint
arXiv:1803.01271 (2018).

[2] M. Brossard, S. Bonnabel, and A. Barrau. “Denoising imu gyroscopes with
deep learning for open-loop attitude estimation”. In: IEEE Robotics and
Automation Letters 5.3 (2020), pp. 4796–4803.

[3] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart. “The EuRoC micro aerial vehicle datasets”. In:
The International Journal of Robotics Research 35.10 (2016), pp. 1157–1163.

[4] O. Egeland. Quaternions, attitude estimation and SLAM. NTNU, 2021.
[5] O. Egeland. Robot Vision. NTNU, 2021.
[6] R. L. Farrenkopf. “Analytic steady-state accuracy solutions for two common

spacecraft attitude estimators”. In: Journal of Guidance and Control 1.4
(1978), pp. 282–284.

[7] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang. “Openvins: A re-
search platform for visual-inertial estimation”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 4666–
4672.

[8] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 770–778.

[9] D. Hendrycks and K. Gimpel. “Gaussian error linear units (gelus)”. In: arXiv
preprint arXiv:1606.08415 (2016).

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov. “Improving neural networks by preventing co-adaptation of feature
detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[11] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. “Densely
connected convolutional networks”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017, pp. 4700–4708.

54 References

[12] P. J. Huber. “Robust estimation of a location parameter”. In: Breakthroughs
in statistics. Springer, 1992, pp. 492–518.

[13] M. Kok, J. D. Hol, and T. B. Schön. “Using inertial sensors for position and
orientation estimation”. In: arXiv preprint arXiv:1704.06053 (2017).

[14] D. Laidig, M. Caruso, A. Cereatti, and T. Seel. “BROAD—A Benchmark
for Robust Inertial Orientation Estimation”. In: Data 6.7 (2021), p. 72.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324.

[16] E. J. Lefferts, F. L. Markley, and M. D. Shuster. “Kalman filtering for space-
craft attitude estimation”. In: Journal of Guidance, Control, and Dynamics
5.5 (1982), pp. 417–429.

[17] K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press,
2017.

[18] S. O. H. Madgwick. “An efficient orientation filter for inertial and iner-
tial/magnetic sensor arrays”. In: Report x-io and University of Bristol (UK)
25 (2010), pp. 113–118.

[19] R. Mahony, T. Hamel, and J.-M. Pflimlin. “Nonlinear complementary fil-
ters on the special orthogonal group”. In: IEEE Transactions on automatic
control 53.5 (2008), pp. 1203–1218.

[20] F. L. Markley. “Attitude error representations for Kalman filtering”. In:
Journal of guidance, control, and dynamics 26.2 (2003), pp. 311–317.

[21] G. M. Mayitzin. AHRS: Attitude and Heading Reference Systems. 2022. url:
https://github.com/Mayitzin/ahrs (visited on 05/15/2022).

[22] Reproducibility - PyTorch. 2022. url: https://pytorch.org/docs/stable/
notes/randomness.html (visited on 05/16/2022).

[23] J. Rohac, M. Sipos, and J. Simanek. “Calibration of low-cost triaxial inertial
sensors”. In: IEEE Instrumentation & Measurement Magazine 18.6 (2015),
pp. 32–38.

[24] E. Samuelsen. Estimation of Noise in IMUs with Deep Learning. NTNU,
2021.

[25] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry. “How does batch nor-
malization help optimization?” In: Proceedings of the 32nd international
conference on neural information processing systems. 2018, pp. 2488–2498.

[26] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and D. Cre-
mers. “The TUM VI benchmark for evaluating visual-inertial odometry”.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE. 2018, pp. 1680–1687.

https://github.com/Mayitzin/ahrs
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html

References 55

[27] D. Weber, C. Gühmann, and T. Seel. “Neural networks versus conventional
filters for Inertial-Sensor-based attitude estimation”. In: 2020 IEEE 23rd
International Conference on Information Fusion (FUSION). IEEE. 2020,
pp. 1–8.

[28] Z. Zhang and D. Scaramuzza. “A tutorial on quantitative trajectory evalua-
tion for visual (-inertial) odometry”. In: 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 7244–
7251.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Eirik Berg Samuelsen

Attitude Estimation with IMUs using
Machine Learning

Master’s thesis in Mechanical Engineering
Supervisor: Olav Egeland
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	Introduction
	Background and motivation
	Problem description

	Preliminaries
	Rotation matrices, the SO(3)-group
	Rotation matrices
	The Lie algebra so(3)
	The exponential map in SO(3)
	Kinematic differential equation
	The logarithmic map in SO(3)

	Quaternions
	Definitions and main properties
	Unit quaternions for representing rotations
	The exponential map for quaternions
	Kinematic differential equation

	Method
	Overview
	Modeling of kinematics and IMUs
	Training a Convolutional Neural Network for estimating IMU corrections
	Overview
	Modeling of noise free angular velocities from the IMU
	Convolutional Neural Networks for time series predictions
	Convolutional Neural Network for corrections of angular velocities
	description of the CNN
	Calculating loss
	Batch computations

	Evaluation metrics
	Trajectory alignment
	Absolute Orientation Error
	Absolute Yaw Error
	Relative Orientation Error

	Method development
	Overview
	Comparison with existing conventional filters
	Data augmentation
	Data augmentation using virtual rotations

	Use of different neural network architectures
	Residual neural network
	Dense neural network

	Experimental trials, results and discussion
	Overview
	Reproducible results in deep learning
	Dataset descriptions
	TUM VI dataset
	EuRoC dataset
	Similarities and differences between EuRoC and TUM VI

	Comments on evaluation metrics
	Madgwicks gradient descent optimization filter
	Experimentation details
	Results and discussion

	The effects of data augmentation
	Experimentation details
	Effects of data augmentation on EuRoC
	Effects of data augmentation on TUM VI
	Discussion

	Different CNN architectures
	Experimentation details
	Comments on the error metrics
	Results and discussion

	Conclusion

