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Abstract

Like in many other industries, Vision System has made significant impact in manufacturing
industry. It is however understood that same vision system approach cannot be installed for
different manufacturing facility with different circumstances and producing different products.
At Vello AS, glass/door profiles are manufactured. The fibre creels used as a raw material
can run out and needs to be replaced. Right now, inspections and replacements are manual.
Due to the human factor, come fibre rolls can be missed out during the inspection and this
can lead to non-uniformly structured final product. If the inspection could be automated
with the help of robust vision system however, this can be prevented and can impact the
overall production quite significantly. So, in this paper, different vision systems are looked
upon and the one which looks the most promising for our case was selected. Vision system
powered by deep learning, SSD network architecture, is selected and implemented to extract
the dimensions from the fibre rolls. The aim is to make the facility independent of manual
inspections required to know the fibre roll status. This way, it can prevent running out of fibre
materials and ultimately, eliminate negative effects on the production quality. After number of
experimentation, it was concluded that SSD network architecture can deliver a robust vision
system for the facility. Object detection is capable of extracting the dimensions in millimeters
once the pixel dimension is calibrated. However, there are many factors such as camera quality,
lighting, camera strategy, training image quality etc. which are to be improved for a vision
system. Once these things are improvised, the vision system can be installed at the facility
for dependable results.
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1 Introduction

1.1 Introduction and Motivation

In this report, a suitable vision system is to be studied which is able to feed-in the status of
the raw material being used for the production of window or door profile in the manufacturing
facility at Vello AS. Usually, the vision systems are used to inspect the final product[8]. Here
however, we will try to inspect the raw material, which is the roll of glass fibre, stacked on a
multi-layer cabinet and provide the necessary information so that the operator does not need to
perform manual inspection every once in a while. Although it might sound pretty straight forward,
there are a lot of challenges which are to be overcome.

Figure 1: Rolls of Glass Fibre at Vello AS

As shown in Fig.1, the creels are placed on the shelves with multiple floors. Each production
line has two racks, each rack consists of 168 creels. There are 8 different production lines which
means there are 16 shelves and 2688 creels in total. The fiber from the creels with the help of the
metal guides are fed, as shown in Fig.2, into a resin bath where they fuse together and go further
to be shaped into a desired profile.

Figure 2: Fibre being fed into a hot resin bath

Currently, an operator does the inspection and manually replaces the skein. It is tedious. If
the operator misses out on an empty skein and is not able to replace it in time, then the produced
profile might have uneven fibre distribution. Hence, it seems like an effective vision system would
be able to positively impact the production line at Vello AS. However, there’s a catch to this.
The fibre from the skein are being pulled out from the center and this makes it difficult for the
vision system to recognise the changes in outer dimensions because there are none. Therefore, it
is necessary to keep an open mind and come up with a clever strategy.
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Given the circumstances in the manufacturing facility at Vello, attention immediately goes
to a computer vision system. Computer Vision System is a tool which helps solve industrial
problems, usually by eliminating the need of manual inspection and using a Vision System for
better productivity is not a new concept. From Agricultural industry to medical industry, it is
only becoming more and more popular[24]. Vision Systems are often used to perform the dull
tasks involved in the process that can be fatiguing to a human, which consequently might lead to
blunders. For example, if a person has to check the quality of potatoes produced in a farm all day
long, there is a high probability that he/she is going to become inconsistent. Additionally, smart
vision systems can substitute or even outperform skilled workers when it comes to performing
dangerous and demanding works. Marriage of Vision System with Machine Learning has made
it even more sophisticated and trustworthy. Use of AI in the vision system has improved to the
capabilities that are closer to that of human vision.

(a) Vision System in food industry (b) Vision System in Agriculture

Figure 3: Vision System in different industries

The development in vision system over the years has proven it to be a robust tool in the
manufacturing industry. It is cutting costs, lead time, wastes and moreover, improved the product’s
quality by reducing errors. This does not necessarily mean that installing a vision system is always
fruitful. There are vision systems which follow different strategies and one strategy might or might
not be suitable for the given process. Hence, it is necessary to study what type of vision system,
if needed, is the most compatible with the process associated. For example, there is a vision
system that uses Deep Learning and there is a traditional computer vision system. A traditional
vision system could be the answer here as there is basically only one type of raw material to be
inspected[25]. However, deep learning vision system will be looked into thoroughly as there are
different factors which might play against the results if the vision system is not smart enough.

1.2 Industrial Objectives

While looking into possible vision system solution with respect to the manufacturing environment,
it is important that the system we choose to work with must satisfy the following objectives.

⇒ Vision System must be able to replace manual inspection
As mentioned earlier, the primary objective is to replace the manual inspection with a vision
system which is smart enough to notify the operator about the status of raw material. The
operator should be able to know when a skein has approximately 100 m of fiber left so that
it gives him/her the time to replace it without any rush.

⇒ Vision System must be flexible
While replacing a skein with a new one, the operator needs to manually glue the ends of
the fibres. Vello AS aims to automate this as well in the future. Hence, the vision system
we decide on installing must be flexible enough that it is compatible with the automated
splicing technique Vello AS might use in near future. If required it should also be able to
communicate with the mobile robots as the company is considering to automate more and
more processes involved in the manufacturing.

⇒ Monitoring System must be economically feasible
Most importantly, the vision system should be worth the impact it can make. The system
must have a cheap unit price to cover all the creels.

2



2 Methodology

The thesis will briefly look into different vision system strategies used in the similar indus-
tries. Different vision sensors/equipment normally used will also be looked upon and the relevant
parameters will be compared. The comparison might include hardware components along with
the software components. Variety of strategies to maximise the accuracy along with the promising
vision technologies will also be discussed. State-of-the-Art and future direction in the field of vision
system will also be included.

Figure 4: Simple decision-making flowchart

The vision system technique which looks most promising for our case, will be discussed in detail.
Profound knowledge about these systems will be gathered from the relevant resources. The system
will be experimented on the images acquired from the manufacturing facility. The results obtained
from the experiments will be displayed. They are evaluated on the basis of precision they deliver
and the final recommendation will be made to Vello AS along with the relevant guidelines. All the
factors that have significant impact on the results’ precision along with the ways to improve those
shortcomings will also be thoroughly discussed.

3



3 Research Questions

The questions this report tries to answer are listed and briefly elaborated below:

1. What are the vision system concepts which can contribute to a robust vision system?

Different strategies normally utilised by different vision systems will be discussed. How are
these techniques being or can be implemented to build a robust vision system?

2. Can the selected concept be implemented at the manufacturing facility?

Does the vision system concept satisfy the industrial objectives? Also, is it or will it be able
to deliver results with required precision and accuracy?

3. How can the selected concept impact the overall production line?

If the vision system is able to deliver or will be able to deliver, how can it prove itself to be a
valuable asset? What are the problems it is able to solve or minimise at the manufacturing
facility? Why should Vello have this system installed?

4. What are the external factors that can influence the vision system’s quality?

What are the different factors that can affect the quality of results obtained using the selected
vision system concept?

5. How influential can these external factors be?

How significantly can these factors affect the quality of our results? Can they be ignored or
are they a priority?

6. What are the relevant guidelines?

What are the different techniques that can be implemented in order to negate the negative
effects of the external factors in order to get results with better accuracy?

4 Vision System Concept Research

All the relevant information on vision system are collected from different sources and are dis-
cussed in this section. Basically, different components that make up a vision system strategy and
the theories that connect these components with the scope and the objective of the thesis are put
under the spotlight.

Over the years, different strategies have been implemented in different industries in order to
have an efficient vision system that can actually make a positive impact. The strategy does not
have to be same just because the vision system is being used in the same industry at the similar
point of the product’s life-cycle. For example, in our case, the change in dimension cannot be
recognised with a horizontal view because the thickness of the skeins changes from the inside.
Hence, vision system that are already in use may have to be improvised. However, information on
different computer vision strategies from available literature are discussed below.

4.1 Embedded Smart Camera

Embedded smart cameras are the ones with an inbuilt computing system. Among the embedded
smart cameras, Open Machine Vision Camera is under focus. It is a low-power smart camera that
lends itself naturally to wireless sensors and Machine Vision applications. It makes use of Python
3 interpreter which makes it desirably flexible. However, some of the other embedded cameras are
compared in the table below.

4



Sensor eCam CMUCam3 Pixy (CMUCam5) MeshEye MicrelEye OpenMV

Power 230mW 500mW 700mW 260mW N/A 500mW
External Storage No SD Card No MMC No uSD/Flash

Scriptable No Yes No No No MicroPython
Image Processing No Frame Color Object Image Face

Differencing Tracking Detection Classification Detection
Commercial avail. No No Yes No No Yes
Dimensions(cm) 2.0x2.8 5.5x5.7 5.3x5.0 N/A 5x5x3 3.0x3.5
Open Source No Yes Yes No No Yes

Table 1: Comparison of different embedded cameras [15].

Monocular camera system can achieve real-time measurements of an object . It is a camera
which can detect distant objects and lane boundaries and when the system adopts open MV
camera, Python scripts can process the image quickly[16]. When the image captured are subjected
to processing such as Gaussian Filter and Canny Edge Detection, target distance and dimension
can be obtained.

4.2 Digital Camera System

In this vision system, a simple digital camera is used to consistently feed in the image of the
target to a computer. The image then is processed with the help of Python script and the necessary
dimensions are measured. As shown in Fig.5, a reference object(with known dimensions) is used
in order to calibrate, then the target objects are measured accordingly. It is accurate enough when
the camera is parallel to the face of the objects [29] and this feature makes it tricky for us because,
as mentioned earlier, it is impossible to realise the change in dimensions from the side view.

Figure 5: Calibration with reference object(left), Measurement(right) [29]

5



4.3 Stereo Vision Camera

It is a type of camera with two or more image sensors which allows the camera to perceive
depth. Two different 2D images taken from different positions(right and left) are used to find
stereo disparity[7]. The disparity is then used to create a depth image. In a production industry,
stereo vision cameras are used to acquire two 2D images. From the contours detected on these
2D images, 3D contours are reconstructed and the required dimensions are obtained[10]. They are
cost-effective and possibility of real-time mapping makes them a valuable vision technology.

Figure 6: Example of depth image from stereo image[17]

4.4 Image Processing

Images obtained from a camera might be usable but are prone to higher uncertainties. Pro-
cessing the image using relevant algorithms has the potential to substantially improve the quality
of a vision system. Moreover, to find intricate details in an image can be made possible after
image processing. For example, maybe distance between edges of an object in an image are to be
determined but it might happen that the edges are not quite clear. Here, image processing plays
a vital role and prepares the image for the aimed operation.

Figure 7: Image processed via Hue and Value channel [3]

Scikit-image is such an image processing library. It is easily accessible, powerful and has been
consistently evolving[31]. The algorithm from the library can be implemented on RGB image to
acquire a totally different perspective as shown in Fig.7. It can significantly minimise the effect
of environmental uncertainty factors such as light intensity. As it is an open source library, there
is no need of spending time and energy in other similar commercial packages. The development
team of scikit-image collaborates on GitHub where we can look for support if an issue arises.
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Figure 8: Application of different edge detection filters from scikit-image on the glass fibre skein
image [A.1]

4.5 Metrology

Using a vision system to obtain different dimension is, as expected, not very straight forward
as a conventional contact-based measurement. When using a vision system to measure features
of the target object, calibration is the most important stage. Coefficients are calculated using the
reference object which dimensions are known[12]. The coefficients are the numbers that relate the
dimension in units with number of pixels in the image.
Mathematically,

Pixels per metric = Object Width in pixel/Known width

Once the calibration done and the coefficients evaluated, number of pixels are used to obtain the
actual dimension. Lens distortion and camera view angle play a vital role in determining the
accuracy though. Also, it should be such that the reference object is constantly present in the
camera view.

4.6 State-of-the-Art

It is always wise to know the heights the technology has reached so that it gives a sense
of possible sophistication that can be incorporated for a given system. Deep learning, a type of
machine learning, contributes to the modern and highly sophisticated computer vision system. It is
realised using Artificial Neural Network, which can be defined as a matrix of interconnected nodes
with flow of data from input to output as shown in Fig.9. ANN tries to imitate a human neuron
system to accomplish decision making. The system can be trained by using the data available and
since it is a autonomous system, there is no need of manual programming.

7



Figure 9: Simple Structure of Artificial Neural Network [2]

For example, let us say there is a need of a computer vision system to identify different plants
out there. This is going to be a lot of work if an engineer has to manually program all the recognis-
able features. Instead, CNN(Convolutional Neural Network), ANN optimal for image classification,
can be implemented for autonomous feature extraction and classification. The computational cost
however is very high as compared to that of a classical Machine Vision System. Also, it is under-
stood that use of Deep Learning in a vision system is fruitful where it is difficult to hand-craft the
design of algorithms due to limited uncertainties involved in the process.

5 Concept Selection

The most promising vision system strategy or combination of strategies will be selected. In
order to find out which strategy works best at the facility, it is important to consider the different
influential factors in the manufacturing facility at Vello AS. If a strategy is backed by strong
reasons, has promising features and satisfies the objectives listed earlier, we can proceed further
and start experimenting by utilising relevant data and analysing the results obtained.

5.1 Circumstances at the manufacturing facility

Before choosing a right Vision System, there are several things to be considered [6]. Some of
the relevant factors to our case are listed as following.

• Number of Inspection per Second

• Attributes to Inspect

• Size of area to be inspected

• Actions to be taken as a result

(a) Individual creel (b) Schematic top view of the creel

Figure 10: Fibre creel

8



The roll of fibre glass used by Vello is opaque as shown in Fig.10(a). and the single glass fibre
thread is translucent. So, object detection is not much of a challenge. The biggest challenge, as
mentioned earlier is the fact that fibre is pulled out via metal guides to the resin bath from the
center of the creel. As shown in Fig.10(b), y is the inner diameter and x is the outer diameter.
Among these, only the y value changes. Hence, the change in dimension can be most effectively
realised only with the top view. Unfortunately, the creels are stacked on the shelves which limits
the view. So, workable view we can acquire would look something like Fig.11.

Figure 11: Image acquired with Ubiquiti UniFi

5.2 Approach

It was realised that, in spite of the cabinet structure making it difficult for acquiring good view
of the individual rolls away from the camera, part of the fibre rolls where the thickness can be
realised are still visible as demonstrated in Fig.12(a).

(a) Image from an angled view (b) Schematic of a possible camera position

Figure 12: Approach

So, a camera can be placed on one cabinet to acquire images/videos of the rolls on the adjacent
cabinet as shown in Fig.12(b). Then the data can be processed accordingly to extract the thickness.
The question now is that which of the strategies is the most promising.
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5.3 Strategy Selection

Flowchart shown in the methodology section was implemented. Among different concepts
discussed earlier, OpenCV and Deep Learning vision system were theoretically promising and
satisfied the industrial objectives. However, this does not mean that other concepts mentioned
earlier are eliminated as both OpenCV and Deep Learning vision system include combination of
different concepts such as image processing, data augmentation, calibration etc. Initially, utilising
simple OpenCV script to extract dimensions was attempted[A.12]. The aim was to implement the
script which is able to detect circular/elliptical feature on one of the images acquired. However, it
was immediately realised that the script was not powerful enough to detect the necessary features
from the real images as only a part of the rolls in the images were visible. Maybe, the position
of the fibre rolls could be improved for the OpenCV to work. The plan was to place the rolls
horizontally as the script had good results when the shape was completely visible as demonstrated
on Fig.13.

Figure 13: Open CV implemented by altering the rolls positioning in the 3D model

As it was not feasible to actually do this in the facility, a 3D modeling was done on Siemens NX
to replicate the cabinets. Although majority of the circles in the image was not detected, it was
only the matter of tweaking the parameters. However, the bigger problem is, it is not practical to
place the rolls horizontally as when the thickness of the roll is less, it would not hold the structure
and collapse, which would negatively impact the production quality. Hence, it was clear that this
would not be the right strategy.

Using vision system that incorporates deep learning techniques seemed viable and more prom-
ising as they are way more efficient. Machine learning is able to do wonders now and is evolving
exponentially. So, it was realised that using deep learning could be a solution given the challenging
circumstances in the manufacturing facility. Also, if successful, they seem to satisfy the objectives
stated in one of the earlier sections. A good camera positioning with a good camera can capture
significant number of rolls in a frame which makes it very economical even though the computa-
tional cost can be quite high. Therefore, going forward, a script that incorporates deep learning
will be implemented and the results will be analysed.
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6 Deep Learning for Vision System

It is important to have a profound understanding of the working principle of deep learning to
be able to implement it in the most efficient manner. It is understood that Convolutional Neural
Network is a type of neural network which delivers when it comes to classifying images[2]. In health
sector, they are being used to diagnose lung cancer from the X-ray reports[1] and in automobile
industry, they are being used to develop vision system for autonomous cars[4].

Figure 14: Data and information flow in CNN [2]

Fig.14 displays different components a CNN is comprised of. They are typically composed of
the feature extraction part and the classification part.

6.1 Feature Extraction

Feature extraction part has a series of convolutional layers. This is where the network extracts
individual measurable property from the input image[23]. Image has its height, width and depth.
Depth in case of 2D images is the color channel. As an image goes through different layers,
dimension decreases and the depth increases. This is because in the later layers, the depth are
feature maps that represents the feature extracted from the previous layers. Convolutional layer
makes use of filters called kernel to extract the features as shown in Fig.15. Hence, the depth of
the layer depends on the number of kernels used in the layer whereas the decrease in the image
dimension depends on kernel size.

Figure 15: Kernel in action [23]
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6.1.1 ReLU as an activation function

Then there is ReLU(Rectified Linear Unit), a type of activation function. The activation
functions are used to achieve non-linearity. They decide if a particular neuron is to be activated or
not. ReLU is one of the most common activation function because it works well in many different
situations. It also trains better. The ReLU activation function activates only when the output is
greater than zero. Otherwise, it just outputs zero. They are present in both feature extraction
part and classification part. Some of the other activation functions are Sigmoid, Leaky ReLU,
Hyperbolic, Linear etc.

Figure 16: ReLU activation function

6.1.2 Pooling Layers

Pooling layers are used so that the depth of the output layers do not increase because this
makes learning for the network more complex. Pooling simply downsamples the parameters before
being passed on to the next layer. We can then get feature maps with smaller dimensions and
same depth.

Figure 17: Two types of Pooling

6.2 Classification

Classification part consists of fully connected neural networks and a activation function. The
output from the feature extraction part becomes the input for the fully connected network. The
matrix form is however flattened so that the output from the CNN which is represented in a matrix
form is transformed to array as they are not compatible with the fully connected layers.
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Figure 18: Classification part of the network [13]

6.2.1 Hidden Layers

In a network, hidden layer is where features are learnt. The first layer detects simple pattern
like straight line. The second layer learns pattern the straight line and this goes on and on until
the network is able to learn complex patterns. In a fully connected neural network, each node
is connected to all the nodes in the previous layer. For each node assigned with a weight value
which represents how important it is, to determine the output. Initially, the weights are randomly
distributed, but as they are trained, they will update the weights in a way that gives the correct
output.

6.2.2 The Feedforward Process

The information flows from the input layer through the hidden layers to the output layer.
Weighted sum is calculated for each of the connections present in the network and activation
function is implemented.

Figure 19: Node connections with weight values

The feedforward calculations for layer 1 of the network in Fig.17 is demonstrated below:

a
(1)
1 = σ(w

(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3

13



Same calculations will be done for the nodes in the other layer including the output layer.

6.2.3 Error Function

Error functions or loss functions help the network measure how far away the output is from
the right output. It evaluates the network internally and is always greater than zero. Hence,
greater the loss, more the network needs to be trained in order to achieve better accuracy. The
most commonly used error function for classification problems is cross-entropy. It quantifies how
different are the probability distributions. Mathematically,

E(W, b) = −
m∑
i=1

γilog(Pi)

where γ is the desired probability, P is the predicted probability and m is the number of classes.

6.2.4 Optimisation

The network has obtained the error value, but it still needs a way to use that value to update
the weights to minimise the error. This is when optimisation comes to play. The most common
optimisation algorithms are batch gradient descent, mini-batch gradient descent and stochastic
gradient descent.

Figure 20: Different optimisation algorithm [14]

The network starts with random weight and the goal is to obtain weight value/s so that the
algorithm can reach the shallowest part of the error curve to produce the minimum error. The
Mini-Batch Gradient Descent is a hybrid of BGD and SGD. It has good features of both Gradient
Descents. Hence, usually Mini-Batch GD can be the best compromise a deep learning engineer
can make.
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6.2.5 Backpropagation

The weighted sum and activation functions are used to get an output. The error function
will give network the difference of the acquired output from the target output. Gradient descent
optimisation then computes the ∆w which minimises the error value. There must be a system
which updates the weight value that incorporates the change responsible for minimising the error.
This is where Backpropagation comes to play. Mathematically,

Wnew = Wold − α(δError/δWx)

where α is the learning rate.

So, through backpropagation the change in the weight value is passed on until the neurons of
the very first layer. Now, this new weight, using the feedforward process, generates the output.
And, this goes on and on until we have weight value that is able to give us desired output.

6.2.6 Softmax as an activation function

The Softmax function changes the input values to probabilty values so that the sum of the
output is 1. This feature makes it the most common activation function to be used in the output
layer, specially when we need to predict the class between two or more classes. It is a generalisation
of the sigmoid function.

6.2.7 Hyperparameters

Some of the most common hyperparameters are learning rate, loss functions, optimisers, num-
ber of layers and activation functions. These can be used to tune the network and influence the
output quality. It is important to tune them to a balanced value to get about the desired quality
of output though. For example, when tuning number of layers, it is understood that more the
number of layers, more learning for the network is possible. However, this does not mean having
the maximum number of layers will necessarily train the network most efficiently. There is a good
chance that the network will have very good result with the training data set, but cannot perform
when subjected to a new data. This phenomenon is also called overfitting. This is the way with
most of the hyperparameters.
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7 Literature Review

As it was decided to use a vision system that incorporates deep learning, it is necessary to
know how it has been or could be used in situation that is similar to the one we have. This way, we
can get inspiration and at the same time make sure that we do not end implementing something
that has already been done in the exact same manner. Hence, in this section, we will look into
implementation of the different vision systems.

Image preprocessing and edge detection are one of the techniques that can be used for measuring
dimensions. Image preprocessing will make the image more suitable for edge detection usually by
removing the unwanted objects in the images which will intensify the edges’ contrast. Same steps
were taken to measure dimension of shaft workpiece[20]. To avoid the edge detection from becoming
influenced by the interference region, Fully Convolutional Network was used along with texture
repair method. The edge was obtained with Holistically-nested Edge Detection and to make that
more efficient, canny operator was used. Outer diameter of the shaft workpiece was measured and
accuracy of 0.02 mm was achieved.

Figure 21: Shaft workpiece [20]

Deep Learning Vision System are also often used just to find out the defective products in a
production line. They are usually trained using the images of products containing defects and of
products that do not contain defect. Such a vision system was designed to inspect fiber interlock
armor cables[32]. The resolution of the images were determined such that the defects size on the
order of tens of microns could be detected. Accuracy of 78.9 % was achieved when the network was
trained with 10000 samples. It was also realised that this vision system solution was economically
feasible.

Figure 22: Fibre interlock armor cables [32]
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Similarly, vision system with convolutional neural network was used to detect defect in shapes
of crankshaft[18]. Use of CNN made the inspection more efficient compared to the traditional
methods. However, the inspection system was designed specifically to replace the manual inspection
of the crankshafts.

Figure 23: Crankshaft with defect [18]

Deep learning vision systems can also be used in the field of agriculture. For example, they can
be used to estimate yield of fruits or vegetables. A study was performed using faster R-CNN to
detect, count and estimate size of citrus fruits[9]. Drone camera was used to acquire images which
would then be preprocessed before they are in the network. The flight altitude for the UAV was
determined to make sure that the ratio of metric dimension to pixel dimension is 0.26 cm/pixel
consistently. Deep learning was used for object detection and openCV was used for dimension
extraction. Estimates from the trees were compared in terms of weight and turns out that the
vision system was able to deliver 7.22 % which was significantly more accurate than the yield
estimated by an expert.

Figure 24: Object detection and size measurement of citrus fruit [9]

A survey was conducted to provide an overview on traditional machine learning, deep learning
methods and machine vision techniques which can be implemented in a food processing industry.
Food items like soybean, walnut, tomato, banana, shrimp and cod fillets all had grading accuracy
more than 95 %[21] when different types of neural network were utilised. It was also concluded
how much more room for improvements there is when neural networks are used to perform food
processing operations.
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Figure 25: Vision system flow chart [21]

Vision system can also use segmentation technique to measure the target object. An automatic
segmentation using deep learning was implemented to measure fish size. The aim of the paper was
to show how effective automated vision system would be in minimising number of undersized fish.
The image system was placed in the trawl and Masked R-CNN was used to localise individual
fish. The system was even able to distinguish overlap and overcome it. Cubic polynomial for the
main skeleton axis is estimated using Random Sample Consensus in order to measure the length.
2600 manually labeled fish image was used to train the network along with augmented images.
Accuracy for single fish was 99.4 % and accuracy for overlapping fish was 98.4 %[26] which seemed
very promising.

Figure 26: Segmentation of fish using Masked R-CNN [26]

Similar segmentation technique along with object detection was implemented to estimate the
area of shuck, shell, and embryo on pecans in different growth stages. Masked R-CNN was used
to make object detection and segmentation possible. The network was able to achieve 95.3 % to
100 % on the models for the object detection task and area estimation achieved a mean absolute
percentage error of 10.14 % to 28.06 %[22].

Figure 27: Area estimation of the embryo of pecan nut [22]
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7.1 Conclusion from the review

Studying all the deep learning vision system implementations mentioned above, it was realised
that the robust vision system powered by deep learning definitely has the potential to deliver desired
functionality with good accuracy at the manufacturing facility. The different techniques used for
vision system which were subjected to varying conditions was, without a doubt, inspiring.Keeping
the objectives and the influential factors at the manufacturing facility in mind, approaching the
challenge with the help of object detection seemed very much viable. It was also clear that convolu-
tional neural network is the best option when it comes to working with images. We then know that
the bounding box used for the object detection returns its coordinates. Hence, the plan is to test
a vision system that utilises convolutional neural network for image processing, object detection
and the coordinates to acquire thickness of the glass fibre rolls.

8 Implementation

In this section, we will look into how different parts of the vision system is made to work with
the target object so that the desired result is obtainable, desired result being successful detection
of fibre rolls and accurate dimension extraction. As the plan is to use coordinates of the bounding
boxes, it can be understood that accuracy of the extracted dimensions are going to depend on
how accurately the target objects are detected. And, accuracy of the detection will depend on the
network architecture chosen to work with and how it is trained.

8.1 Training Data Acquisition

Collecting training data is one of the most important part of building a vision system. Quality
of all the following phases directly or indirectly depends on the quality of training data collected,
quality not only in terms of resolution. Keeping all that in mind, the pictures were collected using
Ubiquiti Unifi G3 dome camera. The camera has maximum digital video resolution of 1920 x 1080.

Figure 28: Some of the pictures acquired at the manufacturing facility

We could use a better camera than Ubiquiti Unifi G3 dome to capture images for training.
However, it was already available and it could be used to experiment the vision system. It would
not make sense if we spend a significant amount on a better camera and the network is not able
to produce quality result as desired. Hence, using Ubiquiti Unifi G3 was the most economically
feasible option at the moment.

The plan was to train the neural network manually on images of individual fibre roll images
so maybe taking pictures of individual images separately sounds like a good idea. However, if we
were to acquire one image for one fibre roll, it would be difficult to eliminate other roll in the image
as they stand very close to each other. It is possible to get the pictures of individual rolls with
different thickness in a different location but then, it would miss the essence of the cabinet and
other factors such as lighting, overlap etc. Since the trained network was to be implemented upon
the rolls in the cabinets, it was decided that we take images as displayed in Fig.26.

19



We can see the images, because of its perspective nature, are distorted vertically. Horizontal
distortion however, was eliminated as we had the option to do that with the Ubiquiti software.
Although just acquiring those images was not enough as the plan is to train the network using
individual roll images. So, that would be done by simply cropping out individual images as shown
in Fig.27. With the vertical distortion along with poor lighting going downwards, it was difficult
to acquire good quality images for training specially for the rolls in the bottom shelf. Hence, low
resolution and low quality images were obtained for the rolls in the bottom shelf. Anyways, as much
images with lighting and position variations were collected so that the network once trained, could
be able to detect all those rolls subjected to different positions, overlaps and of course lighting.
Total of 100 images were acquired for training and testing.

Figure 29: Cropped out images of individual rolls

8.2 Network Architecture

With the training data available, it is time to select a network architecture which is ideal to the
situations we have in hand. It was decided that CNN would be preferred as they deliver when it
comes to working with images. However, there are so many different architectures that incorporates
CNN and is able to perform object detection task. Some of such object detection systems are R-
CNN, Single-shot Detector(SSD) and You Only Look Once(YOLO). So, it is necessary to consider
all the factors and select one of the most desirable neural network architectures. For R-CNN,
training happens in multiple stage and because of that, it takes longer time to train the network.
Whereas SSD and YOLO are both single-stage detectors and are faster, but not necessarily more
accurate than multiple-stage detectors such as R-CNN. However, comparing mAP of 74 % achieved
by a SSD family and mAP of 57.9 % achieved by YOLO on standard datasets, SSD seemed more
attractive for now. Mean Average Precision(mAP) compares the ground-truth bounding box with
the detected box. Higher the mAP, more reliable the detection is.

8.2.1 SSD

The SSD network released in 2016 by Wei Liu[5] was able to reach new levels for object
detection tasks. Since SSD is a single-stage detector, convolutional layer is responsible to predict
the objectness score and classification probability. Objectness score is a way of quantifying how
accurate is the predicted bounding box. The manually constructed bounding box is compared to
the detected bounding box and the level of overlap between them is measured. When the overlap
is 100 % then the objectness score of 1 is returned. Along with the objectness score, score for the
target object being inside the bounding box is also returned.
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Figure 30: SSD300 Architecture [19]

SSD architecture normally has three different parts and they are Base network, Multi-scale
feature layers and Non-maximum suppression. We can see that VGG16 is used as a base
network for the SSD300 architecture because it performs well in image classification. VGG16 is a
type of SSD which has 16 concolutional layers. Base network segments every bounding box and
treats it as individual images and checks if it was able to extract any feature of the target object
there. Multi-scale layers is comprised of convolutional layers that decrease in size. These are used
to make it possible for the network to detect features that are larger in size or which are closer to
the camera when the image was captured. Now, NMS lets only one box with the highest overlap
with the ground truth box stay and eliminates all the other boxes. It is important because for
example, in the SSD architecture displayed above, for one class there will be 8732 boxes which is
taken care of when fed to the NMS layer.

Figure 31: Different SSD architecture available [28]

Some of the SSD model available in the TensorFlow 2 Detection Model Zoo are displayed
above. Among them, SSD MobileNet V2 FPNLite 320 × 320 was chosen to be implemented. On
the list, the chosen model is only the second best in terms of speed and accuracy. However, it was
the best compromise when it came to computational cost. If the implementation goes in the right
direction with this model, then we always have the option to use a faster and more accurate model.
In this model, Feature Pyramid Network is used for feature extraction. It basically outputs feature
maps of different resolution. So, we can say that FPN is the base network here. MobileNet V2
means that the network is built on depthwise separable kernels where the input channels are kept
separately. The model is designed to be trained on image of resolution 320 × 320 and the model
is created using the TensorFlow Object Detection API which is an open-source framework. It is
able to output bounding box coordinates in the form [ymin, xmin, ymax, xmax] which can then
be used to obtain required dimensions.
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Figure 32: Example of a detection result with SSD MobileNet V2 FPNLite 320× 320 [30]

8.3 Labeling Image

The network architecture chosen here utilises supervised learning as manually labelled data
are used to train the network. Hence, it is necessary to label the images acquired earlier so that
the SSD can learn. To label the images, we use LabelImg[11] as an image annotation tool. It is
written in python and uses Qt for graphical interface.

Figure 33: Labeling a single image

Images like Fig.26 were cropped to acquire images like Fig.27. The resolution of the cropped
out images varied. So, they were all made to have a uniform size of 480× 640. Then the LabelImg
platform was used and the object of interest was manually labeled. A total of 100 different cropped
images was labelled with two object classes, Outer Ellipse and Inner Ellipse. The quality of labeling
is something that can significantly influence the precision object detection can deliver. It can be
challenging sometimes though, when the edges are not very clear for our eyes specially because of
the poor resolution obtained by making the cropped out images have uniform size.
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Once we label the target objects in the images successfully, the platform will create an XML
file which has all the information. As shown in Fig.32, it has the coordinates of the bounding boxes
that was manually constructed around the target objects. Both the images and the XML files are
stored in the training folder and will be accessed by the network to learn. Some of the pairs are
also stored in a testing folder which will be accessed by the network to evaluate the precision of the
detection. The detected bounding box is compared to the manually constructed bounding box, in
terms of overlap, in order to obtain the precision the network is able to deliver.

Figure 34: XML for a manually labeled individual roll

8.4 Running the script

Once the training and testing data is prepared, we can now begin the learning process for
the network. The script starts by having the selected SSD network in place and creating the
label map for the object classes we have. Then the script is cloned and TFRecords are created
for efficient storage. Since the SSD network we are using is trained already, it already has its
architecture defined. However, since not all the parameters match, the script is configured on the
basis of components required. Things like number of classes, number of layers, size of filters etc.
are configured as per our needs. Finally, we can run the training cell followed by testing cell where
the detection is evaluated. When we are done with this, we will have downloaded a good number
of python modules.

Parameters Values
Object classes 2
Minimum depth 16

Weight 3.9999998989515007 e−5

Activation RELU6

Decay 0.996999979019165
Epsilon 0.0010000000474974513

Table 2: Feature Extractor parameters

The object classes are Outer Ellipse and Inner Ellipse. The feature extractor part of the ar-
chitecture has 16 convolutional layers. Initial weight value mentioned above is the weight value
obtained from training the network on COCO, a large-scale segmentation, object detection and
captioning dataset. RELU 6 is the activation function being used here. It is a modified RELU for
which the limit for activation can be set. Epsilon value here refers to the probability of choosing to
explore and the weight decay is regularisation technique in deep learning. Weight decay penalises
a cost function which is likely to shrink the weight values, discouraging the network to activate
the weights during backpropagation.
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Parameters Values
Kernel Size 3 ×3

Depth 128
Weight 3.9999998989515007 e−5

Activation RELU6

Decay 0.996999979019165
Epsilon 0.0010000000474974513

Table 3: Parameters for Box Predictor

Parameters Values
Minimum Level 3
Maximum Level 7
Aspect Scale 4.0
Aspect Ratios 1.0, 2.0, 0.5

Scales per Octave 2

Table 4: Parameters for Anchor Boxes

Parameters Values
Kernel Size 3 ×3

Depth 128
Function Sigmoid
Gamma 2.0
Alpha 0.25

Class Prediction Bias -4.599999904632568
Batch Size 5

Table 5: Parameters for Post Processing

Kernel size refers to the dimension of a kernel filter being used to extract the features. The
box predictor here has 128 layers. Weight, activation function, decay and epsilon however, have
the same values as the feature extractor.

Another major feature of an SSD network is that it makes use of Anchor Boxes. They are
the key to quality object detection. The network actually makes thousands of prediction, but only
shows the ones that is closest to accurate. Thousands of anchor boxes are created for each images.
The anchor box with highest value of overlap divided by non-overlap is ,for the network, to be
learned from. This value is also called Intersection Over Union. For example, if IOU is more than
50%, the network is instructed to learn from it, but if it is 40%, then the network understands that
the object in the box is ambiguous and does not rely on it. The parameters used for the anchor
boxes in the network we have implemented are displayed in Table 4.
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9 Results

The network was trained with a different strategy each time and three different strategies were
implemented.

9.1 3D Model

The 3D model was already available. So, it would be wise to make use of them as we could
control a lots of factors that can influence the image quality like lighting, camera angle, frame
width etc. Hence, in Siemens NX, a camera was positioned justifiably. The camera view was then
rendered and every individual roll was cropped out. A total of 30 images was acquired and labeled
only for inner ellipse making a total of 30 images available for training and testing.

Figure 35: Image from the 3D model

The labeling of images acquired from the 3D model is demonstrated in Fig.34. Once labeled
all the images of individual rolls, 80 % of the image and XML pairs was used for training and the
remaining was used for testing.

Figure 36: Labeling 3D modeled roll
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Finally, the training was initiated and the result was evaluated by using the data stored inside
the testing folder. Detection on one of the images used to test the script is shown in Fig.35. The
network was trained only to detect the inner ellipse as this was one of the first experiments. The
quality of the result obtained was however very encouraging.

Figure 37: Result obtained on 3D model image

9.2 Individual roll

After successfully performing the test on the 3D model images, it was time to test the network
on the real images where not a lot of environmental factors are not or cannot be controlled.
Similar strategy was implemented to acquire images of individual rolls. Cropped out images of
size 480× 640 was then labeled manually as shown in Fig.31. Some of the pictures, specially ones
of the rolls in the bottom cabinet, had very poor resolution due to vertical distortion. Anyways,
total of 100 different images were labeled separately for two object classes, inner ellipse and outer
ellipse. That made a total of 200 images available for training and testing. Like before, 80 % of
the image and XML pairs was used for training and the remaining was used for testing.

Figure 38: Result obtained on real image (top), total loss vs epochs (bottom)
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Figure 39: Training results for the 2000thiteration

While the results were mesmerising for some of the images as shown in Fig.38, it was not the
same for all. It was quickly realised that the images with poor resolution, as expected, did not
perform too well. At the same time, the kind of result obtained in most of the images proved that
it can work on real images which are subjected to the actual environmental influences.

Figure 40: One of the images used for dimension(in pixel) extraction

For the bounding box that is detecting an inner ellipse and an outer ellipse with 87% and 90%
accuracy respectively, the dimensions in pixel was extracted by utilising the output coordinates
as shown in Fig.40. For fibre roll in the image, the thickness in pixels can be obtained by simply
subtracting ymax for the bounding box that is detecting the outer ellipse from ymax for the bounding
box detecting the inner ellipse. It would have been challenging if the output was not in terms of
coordinates but in terms of length and width. The reason being that the starting point for the
bounding boxes might not be the same, which is the case for the image displayed above. So, as
long as the bounding box detects the edges of inner and out ellipse that is closest to the camera,
thickness can be precisely measured.

9.3 Bunch of rolls

After the successful detection on individual roll images, we could extract the dimensions, but
their was nothing to compare it to in order to calibrate the pixel dimensions. Also, to make it
more realistic, it was necessary to implement the network on images with number of rolls in it. So,
to do that, when at Vello, we took some pictures of the cabinets and measured a thickness in mm
for the rolls using a digital Vernier Caliper.

Figure 41: Image to be tested
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Initially, the approach was to train the network on previously acquired individual rolls and
test it on the image displayed as Fig.41. Extract the coordinates of the detected bounding box
and compare it with the dimensions in millimeter and try to calibrate it. However, the result was
not very promising as expected. Surprisingly, the network was not able to detect any of the rolls
in the image. So, the approach was improved and similar images with number of rolls were added
into the training folder to achieve a better result. All the visible rolls in the images were labeled
manually for both inner and outer ellipse as shown in Fig.42.

Figure 42: Labeling multiple rolls in an image

Only 10 images with multiple number of rolls were added to the training folder consisting of
the labeled individual roll images to achieve the results shown in Fig.43. This means, we could
train the on more of such images to enhance object detection for images with multiple number of
rolls.

Figure 43: Result obtained with more training images (top), Mean Average Precision (bottom)

So, we did that. More images like that were obtained at the manufacturing facility and all the
rolls with distinctly visible edges was manually labeled. 20 such images were added and labeled.
Then the image and xml pairs were moved into the training folder. Now, the training folder had
200 pairs and the testing folder had 40 pairs including the image with the rolls that was measured
with a digital Vernier Caliper. The training was run and evaluation was done with the images in
the test folder to obtain the result shown in Fig.52.
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Figure 44: Learning rate for initial training

Figure 45: Learning rate after adding 20 images

Figure 46: Classification loss for initial training

Figure 47: Classification loss after adding 20 images
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Figure 48: localisation loss for initial training

Figure 49: localisation loss after adding 20 images

Figure 50: losses for step 2000 for initial training

Figure 51: losses for step 2000 after adding 20 images
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Figure 52: Result obtained with hybrid images (top), Mean Average Precision (bottom)

Without tweaking any of the hyperparameters, we are still able to enhance the network’s
performance just by adding the training images. Although, the network is clearly not able to detect
all the fibre rolls it is trained to detect and the precision values has decreased compared to the
mAP displayed in Fig.43, the progress is still significant. Now that we have the network detected
both inner and outer ellipse for 6 different rolls in two different panels, we can try calibrating by
utilising the thickness measured in mm with a digital Vernier Caliper.

Figure 53: Bounding box coordinates for detected ellipse(top), calibration(bottom)

We know there is a vertical distortion. So, we cannot expect to have the same ratios for rolls
in different panels. However, it would look good if we could obtain the same ratio for the rolls
which are in the same panel at least. Negative value for the thickness in pixel dimension also can
be discouraging here, but there are several things to consider here. Moreover, this is supposed to
be more of a demonstration on how we can use the coordinates to calculate the thickness in pixel
and relate it to the thickness in mm. The threshold for the overlap score was set to be 0.5. So, we
can see the variations in accuracy of the detection. The fibre roll (1,3) and the fibre roll (2,1) are
detected with satisfying accuracy for both inner and outer ellipses.
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10 Discusssion and Conclusion

After meticulous research on different vision systems that can be used to automate the inspec-
tion of fibre roll status at Vello’s manufacturing facility and keeping the objectives in mind, making
use of deep learning was fairly chosen to be the most viable solution. Among different neural net-
work architectures, Single Shot Detector was selected. To minimise the computational cost, one
of the lightest SSD network, SSD MobileNet V2 FPNLite 320 × 320, was used. This particular
network architecture was perfect to be implemented here because it could output coordinates of
the bounding boxes which would be used later to obtain thickness of the fiber rolls in pixels.

In the beginning, 3D model was used to acquire images for training and testing the network.
This was done to make sure that using the chosen network architecture can deliver. With encour-
aging results on individual roll images obtained from the 3D model, the network was now ready
to be tested on real images. So, some of the images with multiple rolls in it was cropped and
images with individual rolls was labelled to train the network. The quality of detection was poor
compared to the detection on images of 3D model. Environmental factors were to blame as none
of the parameters in the network architecture were improvised. Things like lighting, texture of the
fibre rolls, camera positioning was completely under control with the 3D model images whereas this
was not the case for the real images. The fibre rolls also have a plastic cover which can sometimes
deceive even human eyes as an elliptical edge of the fibre roll. Hence, it did influence labeling,
training and detection.

Also, even though horizontal distortion was eliminated, real images still had vertical distortion.
And since we were cropping individual rolls out of the image, resolution for the images, going
towards bottom of the cabinet, degraded. The network standardised the resolution for every image
to be 320 × 320 which exacerbated the image quality. The amazing and really encouraging thing
is, the network was still able to deliver qualitative object detection for most of the images in the
test folder.

The bounding box coordinates output would only give us the thickness in pixels which is no
good unless calibrated. So, some of the rolls’ thickness was measured with a Vernier Caliper. The
plan was to use the image with multiple number of these measured rolls for object detection and
compare the pixel dimension with the dimension in millimeters. Hence, instead of using individual
roll images, it was important to make use of images with multiple rolls. Moreover, this was going
to be the case when the vision system would be actually implemented at the manufacturing facility.
It was understood that the training also must be done with similar images labeled for multiple
rolls in it. The result obtained was not very satisfying, but it was for sure encouraging, given
that it was still delivering amidst all the limitations mentioned earlier. A simple way to relate the
dimensions in pixel to the dimensions in millimeters was demonstrated. Detection accuracy for
inner and outer ellipse varied for different detected fibre rolls. The rolls with highest accuracy for
both inner and outer ellipse could be trusted.

The measurement precision solely depended on the quality of object detection achieved. The
object detection quality is influenced by many factors though. So, it is clear that if we are able to
eliminate the factors negatively impacting the detection quality, we can achieve precise measure-
ments from the vision system. One of the factors was resolution of the images used for training
and testing, specially the for the cropped out images. One of the improvisations to minimise the
resolution degradation is to have higher resolution cameras acquire the images. The vertical dis-
tortion was also one of the reasons for getting low resolution images of the rolls on the bottom
panels. So, a camera capable of capturing parallel image would be able to eliminate the vertical
distortion. Also, if we look into an image, each of the fibre roll in an image seems to have a different
positioning and this is due to the perspective nature of the camera we use. Moving camera that
moves along the rail and has as fewer rolls as possible in a frame at a time could do the trick to
avoid such variations and at the same time minimise the distortions. The change in thickness of
the fibre roll is very slow, so the motion does not have to be very fast, which is an advantage here.
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The network we are using is computationally cheap, but it resizes all the images to 320× 320.
However, if we make use of heavier SSD architecture like SSD ResNet50 V1 FPN 1024 × 1024, it
could drastically improve the quality of object detection. For this to impact as desired, the training
images must have high resolution. Not using the cropped out individual roll images could also help
us achieve the quality of detection we desire. The only downside to using such heavy network
is it can be computationally expensive. The other important environmental influence which can
be improvised for better results is lighting. The rolls in different cabinets or even the rolls in the
same cabinet but different panels, appeared to have different value because of inconsistent lighting.
The fibre rolls seemed to have different materials even though they are actually the same. And
this is one of the reasons for the network not being able to detect all the fibre rolls in an image.
Implementing better lighting system would definitely improve our results significantly. The moving
camera with a frame that can capture 4 or 6 rolls at a time can have a adequately powerful light
source installed on it which can uniformly illuminates all the fibres present in the frame.

Figure 54: Basic concept of the interface

All these improvements could be made and the deep learning vision system could be implemen-
ted once again. More precise object detection can be achieved and calibration as demonstrated can
be performed. Images for constant time interval can be fed to the network and detected changes
can be studied to understand the pattern. The network will return the dimensions in millimeters
once calibrated and the threshold for the minimum acceptable thickness can be set so that the
interface can notify the operator with the fibre roll’s thickness and location helping the operators
to replace the rolls in time so that inconsistent profiles can be avoided. The time operators invested
to inspect the fibre rolls manually can be invested on something more productive. These are some
of the ways a vision system like this can positively impact the overall manufacturing. Therefore,
deep learning vision system has a potential to be a robust vision system at Vello’s manufacturing
facility.
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[A.1] Applying different filters to the image

1

2 import numpy as np

3 from skimage import io

4 import matplotlib.pyplot as plt

5 from skimage.transform import rescale,resize, downscale_local_mean

6

7 camera = io.imread("st3.jpg",as_gray=True)

8

9 from skimage.filters import roberts,sobel, scharr,prewitt

10

11 edge_roberts = roberts(camera)

12 edge_sobel = sobel(camera)

13 edge_scharr = scharr(camera)

14 edge_prewitt = prewitt(camera)

15

16 fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey =True,figsize=(8,8))

17 ax = axes.ravel()

18

19 ax[0].imshow(camera,cmap=plt.cm.gray)

20 ax[0].set_title('original␣image')
21

22 ax[1].imshow(edge_roberts,cmap=plt.cm.gray)

23 ax[1].set_title('Roberts')
24

25 ax[2].imshow(edge_sobel,cmap=plt.cm.gray)

26 ax[2].set_title('Sobel')
27

28 ax[3].imshow(edge_prewitt,cmap=plt.cm.gray)

29 ax[3].set_title('Prewitt')
30

31 for a in ax:

32 a.axis('off')
33

34 plt.tight_layout()

35 plt.show()

36



[A.2] Labeling images to create xml pairs [27]

1

2 !pip install --upgrade pyqt5 lxml

3 LABELIMG_PATH = os.path.join('Tensorflow', 'labelimg')
4 if not os.path.exists(LABELIMG_PATH):

5 !mkdir {LABELIMG_PATH}

6 !git clone https://github.com/tzutalin/labelImg {LABELIMG_PATH}

7 if os.name =='nt':
8 !cd {LABELIMG_PATH} && pyrcc5 -o libs/resources.py resources.qrc

9 !cd {LABELIMG_PATH} && python labelImg.py

[A.3] Setup Paths [27]

1

2 import os

3 CUSTOM_MODEL_NAME = 'my_ssd_mobnet'
4 PRETRAINED_MODEL_NAME = 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8'
5 PRETRAINED_MODEL_URL = 'http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz'
6 TF_RECORD_SCRIPT_NAME = 'generate_tfrecord.py'
7 LABEL_MAP_NAME = 'label_map.pbtxt'
8

9 paths = {

10 'WORKSPACE_PATH': os.path.join('Tensorflow', 'workspace'),
11 'SCRIPTS_PATH': os.path.join('Tensorflow','scripts'),
12 'APIMODEL_PATH': os.path.join('Tensorflow','models'),
13 'ANNOTATION_PATH': os.path.join('Tensorflow', 'workspace','annotations'),
14 'IMAGE_PATH': os.path.join('Tensorflow', 'workspace','images'),
15 'MODEL_PATH': os.path.join('Tensorflow', 'workspace','models'),
16 'PRETRAINED_MODEL_PATH': os.path.join('Tensorflow', 'workspace','pre-trained-models'),
17 'CHECKPOINT_PATH': os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME),
18 'OUTPUT_PATH': os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME, 'export'),
19 'TFJS_PATH':os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME, 'tfjsexport'),
20 'TFLITE_PATH':os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME, 'tfliteexport'),
21 'PROTOC_PATH':os.path.join('Tensorflow','protoc')
22 }

23

24 files = {

25 'PIPELINE_CONFIG':os.path.join('Tensorflow', 'workspace','models', CUSTOM_MODEL_NAME, 'pipeline.config'),
26 'TF_RECORD_SCRIPT': os.path.join(paths['SCRIPTS_PATH'], TF_RECORD_SCRIPT_NAME),

27 'LABELMAP': os.path.join(paths['ANNOTATION_PATH'], LABEL_MAP_NAME)

28 }

29

30 for path in paths.values():

31 if not os.path.exists(path):

32 if os.name == 'posix':
33 !mkdir -p {path}

34 if os.name == 'nt':
35 !mkdir {path}

[A.4] Download TF Models Pretrained Models from Tensorflow Model Zoo and Install TFOD [27]

1 import wget

2 if not os.path.exists(os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection')):
3 !git clone https://github.com/tensorflow/models {paths['APIMODEL_PATH']}
4 url="https://github.com/protocolbuffers/protobuf/releases/download/v3.15.6/protoc-3.15.6-win64.zip"

5 wget.download(url)

6 !move protoc-3.15.6-win64.zip {paths['PROTOC_PATH']}
7 !cd {paths['PROTOC_PATH']} && tar -xf protoc-3.15.6-win64.zip

8 os.environ['PATH'] += os.pathsep + os.path.abspath(os.path.join(paths['PROTOC_PATH'], 'bin'))
9 !cd Tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=. && copy object_de

10 tection\\packages\\tf2\\setup.py setup.py && python setup.py build && python setup.py install

11 !cd Tensorflow/models/research/slim && pip install -e .

12 VERIFICATION_SCRIPT = os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection', 'builders', 'model
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13 _builder_tf2_test.py')
14 # Verify Installation

15 !python {VERIFICATION_SCRIPT}

16 import object_detection

17 wget.download(PRETRAINED_MODEL_URL)

18 !move {PRETRAINED_MODEL_NAME+'.tar.gz'} {paths['PRETRAINED_MODEL_PATH']}
19 !cd {paths['PRETRAINED_MODEL_PATH']} && tar -zxvf {PRETRAINED_MODEL_NAME+'.tar.gz'}

[A.5] Create Label Map [27]

1 labels = [{'name':'Inner_Ellipse', 'id':1},{'name':'Outer_Ellipse', 'id':2}]
2

3 with open(files['LABELMAP'], 'w') as f:

4 for label in labels:

5 f.write('item␣{␣\n')
6 f.write('\tname:\'{}\'\n'.format(label['name']))
7 f.write('\tid:{}\n'.format(label['id']))
8 f.write('}\n')

[A.5] Create TF records [27]

1 ARCHIVE_FILES = os.path.join(paths['IMAGE_PATH'], 'archive.tar.gz')
2 if os.path.exists(ARCHIVE_FILES):

3 !tar -zxvf {ARCHIVE_FILES}

4

5 if not os.path.exists(files['TF_RECORD_SCRIPT']):
6 !git clone https://github.com/nicknochnack/GenerateTFRecord {paths['SCRIPTS_PATH']}
7 !python {files['TF_RECORD_SCRIPT']} -x {os.path.join(paths['IMAGE_PATH'], 'train')} -l {files['LABELMAP']} -

8 o {os.path.join(paths['ANNOTATION_PATH'], 'train.record')}
9 !python {files['TF_RECORD_SCRIPT']} -x {os.path.join(paths['IMAGE_PATH'], 'test')} -l {files['LABELMAP']} -o

10 {os.path.join(paths['ANNOTATION_PATH'], 'test.record')}

[A.6] Copy Model Config to Training Folder [27]

1 !copy {os.path.join(paths['PRETRAINED_MODEL_PATH'], PRETRAINED_

2 MODEL_NAME, 'pipeline.config')} {os.path.join(paths['CHECKPOINT_PATH'])}

[A.7] Update Config For Transfer Learning [27]

1 import tensorflow as tf

2 from object_detection.utils import config_util

3 from object_detection.protos import pipeline_pb2

4 from google.protobuf import text_format

5 config = config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG'])
6

7 pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()

8 with tf.io.gfile.GFile(files['PIPELINE_CONFIG'], "r") as f: proto_str = f.read()

text_format.Merge(proto_str, pipeline_config)

9

10 pipeline_config.model.ssd.num_classes = len(labels)

11 pipeline_config.train_config.batch_size = 4

12 pipeline_config.train_config.fine_tune_checkpoint = os.path.join(paths['PRETRAINED_MODEL_PATH'], PRETRAINED_

13 MODEL_NAME, 'checkpoint', 'ckpt-0')
14 pipeline_config.train_config.fine_tune_checkpoint_type = "detection"

15 pipeline_config.train_input_reader.label_map_path= files['LABELMAP']
16 pipeline_config.train_input_reader.tf_record_input_reader.input_path[:] = [os.path.join(paths['ANNOTATION_PA
17 TH'], 'train.record')]
18 pipeline_config.eval_input_reader[0].label_map_path = files['LABELMAP']
19 pipeline_config.eval_input_reader[0].tf_record_input_reader.input_path[:] = [os.path.join(paths['ANNOTATION_
20 PATH'], 'test.record')]
21

22 config_text = text_format.MessageToString(pipeline_config) with tf.io.gfile.GFile(files['PIPELINE_CONFIG'],
23 "wb") as f: f.write(config_text)
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[A.8] Train the model [27]

1 TRAINING_SCRIPT = os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection', 'model_main_tf2.py')
2

3 command = "python␣{}␣--model_dir={}␣--pipeline_config_path={}␣--num_train_steps=2000".format(TRAINING_SCRIPT

4 , paths['CHECKPOINT_PATH'],files['PIPELINE_CONFIG'])
5

6 !{command}

7

8 print(command)

[A.9] Evaluate the model [27]

1

2 command = "python␣{}␣--model_dir={}␣--pipeline_config_path={}␣--checkpoint_dir={}".format(TRAINING_SCRIPT,

3 paths['CHECKPOINT_PATH'],files['PIPELINE_CONFIG'], paths['CHECKPOINT_PATH'])
4 print(command)

5 !{command}

[A.10] Load Train model from checkpoint [27]

1 import os

2 import tensorflow as tf

3 from object_detection.utils import label_map_util

4 from object_detection.utils import visualization_utils as viz_utils

5 from object_detection.builders import model_builder

6 from object_detection.utils import config_util

7

8 configs = config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG'])
9 detection_model = model_builder.build(model_config=configs['model'], is_training=False)

10

11 # Restore checkpoint

12 ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)

13 ckpt.restore(os.path.join(paths['CHECKPOINT_PATH'], 'ckpt-3')).expect_partial()
14

15 @tf.function

16 def detect_fn(image):

17 image, shapes = detection_model.preprocess(image)

18 prediction_dict = detection_model.predict(image, shapes)

19 detections = detection_model.postprocess(prediction_dict, shapes)

20 return detections

[A.11] Detect from an image [27]

1 import cv2

2 import numpy as np

3 from matplotlib import pyplot as plt

4 %matplotlib inline

5

6 category_index = label_map_util.create_category_index_from_labelmap(files['LABELMAP'])
7 IMAGE_PATH = os.path.join(paths['IMAGE_PATH'], 'test', 'ellipse_i_27.png')
8

9 img = cv2.imread(IMAGE_PATH)

10 image_np = np.array(img)

11

12 input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)

13 detections = detect_fn(input_tensor)

14

15 num_detections = int(detections.pop('num_detections'))
16 detections = {key: value[0, :num_detections].numpy()

17 for key, value in detections.items()}

18 detections['num_detections'] = num_detections

19

20 # detection_classes should be ints.
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21 detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
22

23 label_id_offset = 1

24 image_np_with_detections = image_np.copy()

25

26 viz_utils.visualize_boxes_and_labels_on_image_array(

27 image_np_with_detections,

28 detections['detection_boxes'],
29 detections['detection_classes']+label_id_offset,
30 detections['detection_scores'],
31 category_index,

32 use_normalized_coordinates=True,

33 max_boxes_to_draw=5,

34 min_score_thresh=.8,

35 agnostic_mode=False)

36

37 plt.imshow(cv2.cvtColor(image_np_with_detections, cv2.COLOR_BGR2RGB))

38 plt.show()

[A.12] Measurement of Circular Object with OpenCV

1 import cv2 as cv

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 image = 'test_5.png'
6 img = cv.imread(image,1)

7 original = img.copy()

8 img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

9

10 img = cv.GaussianBlur(img,(21,21),cv.BORDER_DEFAULT)

11

12 circles = cv.HoughCircles(img,cv.HOUGH_GRADIENT,0.9,100,param1=80,param2=30,minRadius=30,maxRadius=70)

13 detected_circles = np.uint16(np.around(circles))

14 print('coordinates␣=␣',detected_circles)
15 print('shapes␣=␣',detected_circles.shape)
16

17 radius = np.array(detected_circles)

18 print('radius␣=',radius)
19

20

21 for i in detected_circles[0,:]:

22 cv.circle(original,(i[0],i[1]),i[2],(50,200,200),3)

23 cv.circle(original,(i[0],i[1]),2,(255,0,0),3)

24 cv.putText(original,str(i[2]), (i[0]-70,i[1]-75),cv.FONT_HERSHEY_SIMPLEX,1.1,(255,0,0),2)

25

26 # print('radius are',radius)
27

28

29 cv.imshow('circles',original)
30 cv.waitKey()
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