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Abstract

The k-means algorithm is a popular clustering algorithm widely used
in unsupervised machine learning. Anomaly-based Intrusion Detection
Systems (IDS) can use it to detect attacks on hosts and networks in
situations where traditional signature-based IDS are not effective. How-
ever, due to high data rates in today’s networks, the original k-means
algorithm may be too slow for IDS applications. In this thesis, we look
at ways to speed up k-means-clustering-based IDS and build improved
IDS on the distributed streaming platform Apache Flink.

Firstly, one can operate the k-means algorithm in different modes
that vary in speed and accuracy. We have tested offline/batch k-means
and some online versions. A mode of operation (MoO) that we call
transforming k-means was the fastest mode and had a surprisingly high
accuracy. Secondly, improvements to the original k-means algorithm that
affect the speed have earlier been proposed, yet few of these improvements
have been applied in intrusion detection. Three improvements based on
the triangle inequality have been tested in this thesis. One improvement,
Philips” Compare-Means algorithm, provides a slight speedup. In this
thesis, we also use triangle inequality in online k-means. The tests showed
that we could increase speed slightly by utilising Philips’ idea of comparing
centroid-to-centroid distances in transforming k-means.

This thesis also introduces domains as a concept to handle non-
numeric data in k-means-based IDS. A separate Euclidean plane and a
pair of centroids are assigned to data that share the same values on all
non-numeric features. As a result, we have formalised the pre- and post-
processing of data in k-means-based IDS, and discussed the consequences.
One consequence is that some domains may be malicious by nature, in
which case a signature-based IDS should assist our anomaly-based IDS.

We implemented the improvements and MoOs of the k-means algo-
rithm on the distributed streaming platform Apache Flink. This thesis
also introduces a new MoO which may be a good fit for anomaly-based
IDS. It combines the speed and the surprisingly good accuracy of trans-
forming k-means, and batch mode to update the model along the way. We
propose anomaly-based IDS that apply the k-means speedups and differ-
ent modes on Apache Flink. By doing so, the efficiency of anomaly-based
IDS using k-means clustering are improved.






Sammendrag

K-means-algoritmen er en populeer grupperingsalgoritme som er mye
brukt i ikke-veiledet maskinlaering. Anomalibaserte inntrengningsdetek-
sjonssystemer (eng: Intrusion Detection Systems, IDS) kan bruke den til
& oppdage angrep pa verter og nettverk i situasjoner der tradisjonelle
signaturbaserte IDS ikke er effektive. Pa grunn av hgye datahastigheter i
dagens nettverk kan den originale k-means-algoritmen veere for treg til
bruk i IDS. I denne oppgaven ser vi pé ulike mater & gke hastigheten til
k-means-grupperingsbasert IDS, samt bygger en forbedret IDS pa Apache
Flink, en distribuert streamingplattform.

For det fgrste kan en benytte k-means-algoritmen i forskjellige moduser
som varierer i hastighet og ngyaktighet. Vi har testet offline/batch k-
means og noen online versjoner. En modus som vi kaller transforming k-
means, var den raskeste modusen og hadde overraskende god ngyaktighet.
For det andre finnes det tidligere foresladtte forbedringer av k-means-
algoritmen basert pa trekantulikheten, som pavirker hastigheten, men
fa av disse forbedringene har blitt brukt i inntrengningsdeteksjon. Tre
av disse forbedringene er testet i denne oppgaven. En av forbedringene,
Compare-Means-algoritmen til Philips, gir en liten gkning i hastighet. I
denne oppgaven bruker vi ogsa trekantulikheten i online k-means. Testene
viste at vi kunne gke hastigheten litt ved & bruke idéen til Philips om &
benytte sentroide-til-sentroide-avstander i transforming k-means.

Denne oppgaven introduserer ogsa domener som et konsept for a
handtere ikke-numeriske data i k-means-basert IDS. Et eget euklidsk plan
og et par sentroider er tilordnet data som deler de samme verdiene pa
alle ikke-numeriske attributter. P4 den maten har vi formalisert for- og
etterbehandlingen av data i k-means-basert IDS, samt diskutert konse-
kvensene. En konsekvens er at noen domener kan vaere ondsinnet av natur,
i sa fall bgr en signaturbasert IDS stgtte opp om var anomalibaserte IDS.

Vi implementerte forbedringene og modusene til k-means-algoritmen
pa den distribuerte streamingplattformen Apache Flink. Denne oppgaven
introduserer ogsa en ny modus som kan passe godt til anomalibasert IDS.
Den kombinerer transforming k-means sin hastighet og overraskende gode
ngyaktighet, og batch k-means for 4 oppdatere modellen underveis. Vi fore-
slar effektive anomalibaserte IDS, som bruker forbedringene av k-means
og forskjellige moduser, pa Apache Flink. Ved & gjgre dette, forbedres
effektiviteten til anomalibaserte IDS som bruker k-means-gruppering.
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Introduction

1.1 Problem description

Efficient systems to mitigate attacks on hosts and networks are crucial in today’s
society. Intrusion Detection Systems (IDS) and Intrusion Prevention System (IPS)
play a significant role in protecting personal, cooperative and national assets by
detecting, identifying and, if possible, stopping attacks. To ensure IDS quality,
efficient detection algorithms should be used since the attacks should be detected
while they are in progress, i.e., the IDS must operate in real-time.

IDS can either be signature-based, also called misuse-based, or anomaly-based.
The first type of IDS scans for signatures, or fingerprints, of known attacks when
looking for intrusions, while the second looks for anything that is not close to normal
traffic and behaviour. As a result, anomaly-based IDS are efficient against zero-
day attacks, which are a significant threat in today’s networks. In this thesis, we
concentrate on anomaly detection systems.

To detect anomalies, clustering is often used as an unsupervised machine learning
method. Clustering algorithms in IDS should be effective, fast and need enough
capacity to handle large traffic loads. The k-means algorithm is a clustering algorithm
that is often used as it is straightforward and linear in computation time. However,
the original k-means algorithm is sometimes too slow for application in IDS.

Improvements to the k-means algorithm have been proposed as the original
algorithm sometimes performs unnecessary computations. We can skip multiple
calculations by utilising the triangle inequality. As a result, the algorithm’s efficiency
can then be increased. Even though the literature can tell us a lot about the proposed
improvements, few of the improvements have been put into IDS. Therefore, in this
thesis, we implement multiple improvements of the k-means algorithm put in IDS
context and compare them with each other and to the original algorithm to speed
up k-means-clustering-based IDS.
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Moreover, there are many different ways of operating the k-means algorithm in
IDS as there are many proposed modes of the k-means algorithm. As a result, we
also investigate different modes and variations of the k-means algorithm that may
suit IDS.

The overall goal of this thesis is to build a better k-means implementation for
application in IDS. By also utilising the potential parallelisation can provide, we
believe we can create an even better IDS. More specifically, we implemented the
proposed improvements and modes of the k-means algorithm on Apache Flink. This
relatively new distributed computing platform supports interesting features we use
considering IDS. Furthermore, this thesis also presents a proposal for implementing
improvements to the k-means algorithm for application in IDS in Apache Flink, as
it has not been done before. Moreover, the thesis also presents how to implement
k-means-based IDS in Apache Flink in general. By doing so, we explore different
ways to speed up anomaly-based IDS as the clustering problem at hand is hard and
speed is crucial.
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Research questions

We have defined some research questions (RQ) that we answer in this thesis. These
questions will help us build a better IDS based on the triangle inequality on Apache
Flink.

RQ1

RQ2

RQ3

RQ4

How can the different improvements of the k-means algorithm be
adjusted to operate with Apache Flink?

In this RQ, we address the changes that need to be made to the already
proposed triangle-inequality-based improvements of the k-means algorithm to
implement them in Apache Flink.

How can k-means on Apache Flink be used in intrusion detection
applications?

The RQ is about how a k-means-clustering-based IDS can be implemented on
Apache Flink, with or without triangle inequality. We also explore different
ways to operate the k-means algorithm in IDS, i.e., different modes of k-means.

What is the accuracy of an IDS using the different versions of the
k-means algorithm?

By accuracy, we mean the IDS’ ability to do its job. This RQ help us verify the
different triangle inequality-based improvements of the k-means algorithm. The
RQ also help us compare different ways of operating the k-means algorithm in
IDS, as we expect the modes of k-means to vary in accuracy.

What is the speed of an IDS applying the different versions of the
k-means algorithm?

This RQ addresses the efficiency of the IDS. In addition, this RQ help us
compare the different triangle inequality-based improvements and modes of
operation of the k-means algorithm.
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1.3 Objectives
Related to the research questions stated above, we define the following objectives of
the thesis.

1. Investigate what needs to be done to build a k-means-based IDS.

2. Investigate what needs to be done to implement k-means on a parallel streaming
environment.

3. Implement different modes of k-means, incl. the sequential, on Apache Flink.

4. Implement different improvements of k-means utilising the triangle inequality
on Apache Flink.

5. Test and compare different implementations of k-means put in IDS.

6. Propose a better IDS build with k-means on Apache Flink.

1.4 Hypothesis

We hypothesise that the improvements of the k-means algorithm based on the triangle
inequality can be implemented on Apache Flink and that they perform better in
case of speed than the original implementation. We also believe Apache Flink is an
excellent system for implementing an IDS. The accuracy of IDS using the proposed
improvements should be the same. However, the different modes of operation should
vary in accuracy, as briefly discussed in RQ3.

1.5 Main contribution

The main contributions of this thesis are the following.

—

. Adapting improved k-means to Apache Flink.

2. Adapting modes of operation of k-means to Apache Flink.

3. Adapting k-means-based IDS to process data sets with non-numerical data.
4. Comparisons of different modes of operation and improvements of k-means.

5. Propose one or multiple better IDS on Apache Flink by suggesting methods
to improve k-means based on triangle inequality and modes of operation of
k-means.
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1.6 Thesis structure

Chapter 2 This chapter gives relevant background on the theory and technologies
used in the thesis. This includes introducing Apache Flink and essential
concepts in machine learning.

Chapter 3 This chapter presents some former studies and papers contributing to
implementing k-means and its improvements in parallel computing environ-
ments.

Chapter 4 The scientific methods used and a more detailed description of what we
do in this thesis are provided in this chapter.

Chapter 5 Multiple theoretical contributions are made and are outlined in this
chapter. In addition, RQ1 and RQ2 are answered in this chapter.

Chapter 6 Some preliminary results to the different improvements and modes of
operation of the k-means algorithm, as read in the literature, are provided in
this chapter.

Chapter 7 This thesis includes experimental work that is presented in this chapter.
Both setup and results are presented. RQ3 and RQ4 are answered by the work
outlined in this chapter.

Chapter 8 Discussion of the obtained results and other contributions by this thesis
are provided in this chapter.

Chapter 9 Finally, this chapter gives a conclusion summarising our findings. Also,
recommendations for future work are provided.






Background

2.1 Intrusion detection systems

As briefly described in Chapter 1, Intrusion Detection Systems (IDS) are systems
to detect intrusions and attacks on either networks or hosts. These systems detect
attacks by either inspecting logs or looking at network traffic (packets on the network)
and then trigger an alarm. If the system also prevents attacks, the system can be
called an IPS, see for example [Pet20a].

IDS can be categorised in many ways. One way to distinguish between IDS is
to look at the scope. It can either be looking at attacks on a network or attacks
on hosts (servers and computers) on a network. The first variant, network-based
IDS, look at network traffic. The second variant is called host-based IDS and is only
installed on one computer to detect malicious activity on this computer.

Also, network-based IDS can be further divided into systems deployed inline
(all network traffic goes through the system, like in a router) or passive (where the
system receives a copy of the network traffic). Finally, host-based IDS can look at
memory usage, system logs, OS API calls or inbound network traffic.[YT11]

To classify different types of traffic (normal and malicious), one can either define
what normal traffic is (and report any deviations) or store abnormal traffic (signatures
or fingerprints of known attacks). This distinction gives us two categories of IDS
that can be divided: signature-based, also called misuse-based, and anomaly-based.
The first category is the most commonly seen in today’s networks. However, with
the evolution of today’s networks, the last type should also be used. Both categories
will be described here, but this thesis will mainly focus on anomaly-based IDS. The
results in this thesis apply to both network and host-based IDS.
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2.1.1 Signature-based IDS

Signature-based IDS store signatures of known attacks. These signatures can be
written as regular expressions or strings that the logs or network traffic are matched
against. If a match is found, the system reports an intrusion. The signatures must
be defined in advance, and all known and relevant attacks must be specified. If
new attacks are known, one needs to define the signatures of the different attack
variations. If a slight variation of an attack is not defined in the database, the attack
is not be detected. Therefore, signature-based IDS are not effective against zero-day
attacks as they are not known in advance.[YT11]

2.1.2 Anomaly-based IDS

Anomaly-based IDS stores indications of normal behaviour and report if any activity
stands out. Everything that is not "close" to normal traffic is then classified as
abnormal. Anomaly-based IDS can detect zero-day attacks. One challenge is that
normal behaviour varies a lot, especially if a new service or point is introduced into
the network or the host. At first, before this new normality is defined, the IDS may
report false positives[Y'T11]. One way to store normal behaviour and find deviation
is to use machine learning, which is explained in the next section.

2.1.3 Quantitative comparison of IDS

The effectiveness of an IDS can be defined as how good it is at doing its job, meaning
it can look at how accurate and fast the IDS is. The metrics for accuracy can be
based on rates of true and false positives and negatives, as described in Table 2.1.
The Bayesian detection rate also called Positive Predictive Value (PPV), and the
Receiver Operator Characteristic (ROC) curve are examples of such metrics. They
use the True Positive Rate (TPR) and the False Positive Rate (FPR) as defined in
Section 7.2.[Pet20b]

Table 2.1: Confusion matrix

Real attacks / Anomalies Normal traffic
Positive (alarm) True Positive (TP) False Positive(FP)
Negative (no alarm) False negative (FN) True negative (TN)

Then talking about the capacity and the speed of an IDS, we look at how much
incoming traffic or traffic/event intensity the IDS can handle. For example, if an IDS
can process a bounded source of N records by using x time, the capacity of the IDS
can be written as N/x.
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2.2 Machine learning

Machine learning systems are techniques and algorithms that allow computers to
autonomously acquire and integrate knowledge and automatically learn programs
using data to finish tasks. This knowledge and programs can be continuously improved
as well. [YT11; Dom12]

Machine learning can be categorised into supervised and unsupervised learning
algorithms. Depending on the problem, different algorithms suit the situation and
form different branches of machine learning. One of the branches of unsupervised
learning is clustering, described in Section 2.2.1. Machine learning can be supervised,
meaning it learns with the help of humans. Often, the machine is given labelled data
to train. On the other hand, unsupervised learning is when unlabelled data trains
the machine learning model without humans correcting the model it creates. If we
train an IDS based on a supervised learning method, we would need loads of labelled
network traffic, which would be very expensive. Instead, unsupervised methods, like
cluster analysis, suit our case in a better way.

In many machine learning systems, a model is trained from either labelled or
unlabelled training data. This process is sometimes referred to as fitting the model.
When this model is used to work on actual data, the phase is called transforming.
If the machine learning system is tested, it is essential to test it with data that the
system has not seen before.

2.2.1 Cluster analysis

Clustering is the branch of machine learning that aims to cluster data points that
belong together and is a method of unsupervised machine learning. The data can be
clustered in two or more clusters, i.e., assign data to different classes. The number
of clusters depends on the use case and can be decided in advance or set during the
algorithm’s run-time, like in hierarchical clustering[HSDO0O].

Cluster analysis can be used in anomaly detection where the algorithm clusters
data points in two clusters, one for normal data and one for non-normal data (also
called anomalies). All data points that fall into the anomaly cluster are reported.
This thesis focuses on clustering as an unsupervised machine learning method and
further dive into the k-means algorithm.

Since clustering is unsupervised and unlabelled by nature, and since we want to
trigger an alarm each time a data point is assigned to the abnormal cluster, another
labelling method is needed to label the clusters afterwards. Labelling algorithms
are not in the scope of this thesis, but the cluster with the largest cardinality often
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gets labelled as "normal'. However, this method is shown not to be very effective
[PAOCO6].

Although this thesis focuses on two clusters, multiple clusters are possible. For
instance, one can have clusters for normal traffic and different types of attacks.
However, the labelling may be tricky. Supervised labelling is also one method that
can be used.

Feature engineering is selecting the relevant features (attributes) to be used in
the machine learning system. What are the relevant features? What features should
not be included? These questions are taken care of by feature engineering, which is
often done by experts that perform feature selection.

2.2.2 Challenges with machine learning and cluster analysis

The No Free Lunch theorem[WM97] states that no machine learning algorithm is
superior in all use cases. In other words, without any assumptions, there is no better
algorithm than another algorithm when solving any problem. Likewise, the Ugly
Duckling theorem states that without any assumptions, there are no better features
to be included over other features. [HSDOO]

One major challenge is overfitting, referencing to when the machine learning system
is so adjusted to the training data that it fails when put in real-life environments.
Another challenge has been called the curse of dimensionality. This challenge relates
to an observation that any point will tend to be equally distant to any other point
when increasing the dimensions, i.e., the number of features. [Dom12]

In some clustering algorithms, the number of clusters needs to be chosen. The
number of clusters to select is not always obvious and may be a cause for a less
precise clustering algorithm. As mentioned above, we would like to have two clusters
in anomaly-based IDS, as we have two classes; normal and abnormal traffic. However,
with the incoming data, two clusters may not be suitable.

2.3 The k-means algorithm

The k-means algorithm, first described by Edward W. Forgy [For65] and Stuart
Lloyd [Llo82] in 1965 and 1982, respectively, is a widely used unsupervised clustering
algorithm[Kog07]. k stands for the number of clusters, and the algorithm handles k
vectors representing the mean of the points in the different clusters. The k-means
algorithm is commonly used due to its low complexity and linear computation time.
The algorithm involves no training phase, as described in Section 2.2.
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The algorithm tries to minimise the sum-squared error, SSE. SSE is defined in
Equation (2.1), where C; is the set of data points, or points, assigned to cluster j,
¢; is the mean vector of cluster j and d(z,y) is the Euclidean distance between the
data points 2 and y. This problem is NP-hard[ADHP09], meaning there is no known
optimal solution to this problem in linear time. The algorithm will only manage to
find a local optimum[HW79].

The mean of the cluster is called the centroid. The k-means algorithm works as
stated in Algorithm 2.1. Different distance measures can be used[Kog07]. In this
thesis, our distance measure will be Euclidean.

k
SSE=Y"Y" d(x;c;) (2.1)

j=1lz; ECj

Algorithm 2.1 The original k-means algorithm
Initialise k centroids at random
While algorithm has not converged:
Assign each vector to its currently closest centroid.
Move each centroid to the mean of its currently-assigned vectors.

For step 1, different initialisation methods are used. In the Forgy’s original
version of the k-means algorithm, k vectors are chosen at random. However, other
methods have been proved to be more effective in making the algorithm converge
faster[CKV13], such as the k-means++. In this version, k vectors are chosen using a
special distribution [Art+06].

If d is the number of dimensions in each vector, ¢ is the number of iterations
before convergence, and n is the number of points, the running time is given by
O(kndi). This version of the algorithm is called "crisp" or "hard" k-means since the
vectors are assigned membership to one cluster. Fuzzy k-means are when the vectors
have a membership to all clusters with a weight[HSD00]. We will work with "crisp"
k-means in this thesis.

2.3.1 Modes: Offline and online versions of the k-means algorithm

The k-means algorithm can work in many different modes. The naive algorithm
originally works in offline or batch mode, meaning it runs when all data points are
presented in advance. When put in IDS, the batch mode accumulates N vectors
at a time when network traffic arrives, adds them to the pool of vectors, and then
runs the algorithm on the whole collection of vectors. Old batches can either be
included or not. By contrast, the online versions do not accumulate batches but
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process one vector at a time when it arrives and assign this vector a cluster without
first recomputing centroids.

MacQueen proposed an online mode of k-means [Mac+67] that recalculates
centroids (step 2 of Algorithm 2.1) each time a vector gets assigned a (new) cluster
[Cell5, ch. 2.2.2]. On the other hand, the offline/batch mode will recalculate centroids
only once per iteration.

Another online version is called sequential k-means[Dud97]. Sequential k-means
will assign a new vector, z;, to the closest centroid and then update the mean, ¢; 1,
using Equation (2.2). The number of vectors in the cluster after the ith vector has
arrived is given as n;. Recursion can show that Equation (2.2) gives the updated
mean when a new object is introduced. This version of k-means will not need to store
former vectors in each cluster, only ¢; and n;. However, the updated model does
not get the benefit of letting vectors change clusters as running the whole k-means
algorithm gives. As a result, the order of events will influence the result.

Ci—1 *Nyj— Z;
C; = it S B nl L+ i sNg = Nyj—1 +1 (22)
%

Sequential k-means can be implemented with forgetfulness. In normal k-means,
all vectors in a cluster are weighted the same when calculating the mean, ¢;. However,
the algorithm can be programmed to "forget" old means. In Equation (2.2), ¢;—1 may
be weighted with a factor of 0.5. As networks evolve, old traffic may be irrelevant
for the IDS, meaning forgetfulness may be a good solution when using sequential
k-means. Forgetfulness in batch mode is solved by weighting old batches when
running the algorithm using weights on the old batches.

2.3.2 Improvements to the k-means algorithm

The original k-means algorithm is called the naive k-means algorithm since it some-
times does multiple unnecessary computations. Improvements to the algorithm
utilising the triangle inequality (sometimes referred to as TI) and other techniques
have been proposed. The triangle inequality holds if the distance measure used
in clustering is a metric and states that for any three points, a, b and ¢, where
d(x,y) is the Euclidean distance between the points x and y, this is always true:
d(a,b) < d(a,c) + d(b,c).

By using the triangle inequality on either the distance between centroids or
bounds on distances between points and centroids, Philips[Phi02], Elkan[Elk03],
Hamerly[Ham10] and Drake[DH12] have proposed some improvements that speed up
the k-means algorithm and reduce the number of distance calculations. The work by
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Drake and Hamerly in [Cell5, ch. 2] gives a good comparison and overview of the
different improvements of the k-means algorithm.

This section lists some of the improvements this thesis uses that utilise the triangle
inequality to skip some re-computations. Below, x is a vector, c is its currently
assigned centroid, and ¢’ is another candidate centroid. The following descriptions of
improvements to the k-means algorithm are taken from the pre-project report prior
to this thesis [Sty].

Compare-means (Philips [Phi02]) By the triangle inequality, we can skip the
calculation of d(z, ), if 2d(x,c) < d(c,c’). This means x cannot be assigned
to ¢’. The reason for this condition is the following. The triangle inequality
states that d(c,c) — d(z,¢) < d(z,c'). If 2d(x,c) < d(c,c/) we can write
2d(z,c¢) —d(z,c) < d(z,d) = d(z,c) < d(x,c). Now we know that ¢’ is far
enough from c. In this improvement, distances between centroids need to be
calculated each time centroids move (after each iteration).

Sort-means (Philips [Phi02]) This variant uses the same condition as compare-
means, but is faster than compare-means since it searches for centers in a
different order. This variant has a larger overhead by maintaining a k x k
matrix storing centroid-to-centroid distances each time a new centroid gets
calculated. By sorting each row of the matrix, we can see if any other centroid,
¢, is far enough from ¢, meaning d(c, ') > 2d(z, ¢), by searching the row of
¢ in increasing distance to c. If one centroid is found, the search can stop, x
gets a new centroid and more importantly, we have skipped looking at some
far-away unnecessary centroids. Although sort-means is faster, the variant has
some extra overhead of sorting the centroid-to-centroid distance matrix [Cell5].

Upper and lower bounds (Elkan [Elk03]) Elkan’s idea is to use upper and
lower bounds instead of exact values to skip some computations. Let ¢ be a
centroid before one iteration of the k-means algorithm. Let cx be the new posi-
tion after recomputing the cluster mean after the iteration. Multiple conditions
are checked to skip computations. As Philips, Elkan also uses the following
fact: 3d(c,) > d(z,c) = d(x,c’) > d(z,c), and d(z, ) is not needed to be
computed. An upper bound, u(z), for d(x, ¢) is maintained. At the beginning,
the upper bound starts as u(x) = d(z, ¢). After each iteration, the upper bound
is maintained by adding d(c, cx) to u(z). If u(z) < 1d(c, ), by checking the
minimum d(c, ") over all ¢’ # ¢, we do not need to compute d(z,c’) and x
does not change the cluster. A lower bound for d(z,c), l(z,c), is also used
in this modification of the k-means algorithm. If ¢ did not move too much
during the iteration, {(z, c) — d(c, cx) is a good approximation for d(z, cx). If
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u(x) < Iz, ) or u(z) < 1d(c, '), the calculation of d(z, ¢) is unnecessary and
x does not change cluster to ¢’

One lower bound (Hamerly [Ham10]) This is a modification of Elkan’s algo-
rithm and uses only one lower bound, I(x), instead of k x n lower bounds. I(x)
represents the minimum distance any centroid, except for the currently-assigned,
can be at that point. It maintains the maximum distance any centroid has
moved and uses this to update I(x). If [(x) < u(z) happens to be true, more
computation is needed and x might switch cluster. This algorithm uses less
memory than Elkan’s algorithm, but calculates distances more often. This
algorithm works better in low dimension [Cell5].

b lower bounds (Drake and Hamerly [DH12]) This variant is a trade-off to
reduce the overhead in Hamerly’s algorithm and the memory usage in Elkan’s
algorithm. It maintains 1 < b < k lower bounds for each vector. The first b — 1
lower bounds represent the distance to the b — 1 closest centroids, except for
its currently-assigned. The last lower bound represents a lower bound for the
k — b furthest-away centroids and is updated by either subtracting the distance
the furthest-away centroid has moved, or by subtracting the longest distance
centroid has moved (sometimes beneficial) [Cell5]. The rest of the lower bounds
are maintained, as in Elkan’s algorithm, by subtracting the movement of each
corresponding centroid. By sorting the lower bounds, we may skip unnecessary
comparisons when investigating if {(x, ¢) < u(x). The number b can be chosen
by forehand or adjusted by the algorithm after each iteration.

2.3.3 Practical use of k-means

As k-means works in the Euclidean space, non-numeric, symbolic or nominal attributes
in records cannot be processed in the k-means algorithm. Boolean attributes can
be included since the distance between true and false will be 1 if we encode true
as 1 and false as O[YT11, p. 65]. The same value at boolean attributes will have a
distance of 0. However, suppose the symbolic attribute can have three or more values.
In that case, we cannot assign each value to a number to include the attribute in the
k-means algorithm, as they not have a natural ordering [LO13, p. 85]. For example,
if an attribute for a record (network package) is the name of the protocol, it will not
make sense to compare the distance between Hypertext Transfer Protocol (HTTP)
and File Transfer Protocol (FTP) and the distance between HTTP and Simple Mail
Transfer Protocol (SMTP). HTTP is not closer to SMTP than to FTP.

We can consider some alternatives for dealing with these attributes. Firstly, we
could ignore the nominal points and not include them in the vectors. However,
this could be problematic since the anomaly traffic of one service may be closer
to the normal traffic cluster of another service. Secondly, we can do as [YT11, p.
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65] suggests. The authors suggest solving this issue by splitting the datasets into
partitions of records with the same values on all symbolic (not binary) fields and
running the k-means algorithm on each partition divided. This means the groups
will not share centroids, and we can have one pair of centroids (attack traffic and
normal traffic) for each partition.

2.4 Parallelisation and distributed computing

Distributed computing, or cluster computing (not to be confused with clustering
as described in Section 2.2.1), is the technique of dividing the computation and
operations on large datasets among multiple computer nodes that form a cluster in a
parallel fashion[DG04; Les+20]. This means the dataset is split among all computers
in a cluster, and the same operations are performed in each node.

The MapReduce paradigm was the first widely used framework implemented
in Apache Hadoop. MapReduce is the process of mapping the data to different
operators by key (while filtering or sorting the data) and then performing a Reduce
function on all operators (like a summary function) before the result is emitted.
Unfortunately, while Apache Hadoop is known for its fault tolerance and scalability,
the framework does not support iterative algorithms [Al +17]. Apache Spark is
a framework that adds more functionality to the MapReduce paradigm, enabling
more algorithms to be implemented and are better suited for lesser fault-tolerant
applications. In addition, the framework supports both batch processing, meaning
the operators operate on batches of data, and streaming by dividing the stream of
data into small micro-batches that execute operators[Mac21].

2.4.1 Apache Flink

Apache Flink is a relatively new distributed computing framework that supports
stateful operations and different APIs to operate on the different layers to handle both
bounded and unbounded data sources'. The Table API and the SQL API operate
on the highest layer, while the DataStreamAPI operates on the lower layer enabling
more custom data operations. A programmer can change between the different APIs
freely. Flink supports both batch operations and streaming natively[Mac21].

In Flink documentation, [Docs] we can read that the Flink architecture consists of
one centralised JobManager connected to a cluster of worker nodes called TaskMan-
agers. The user connects to the JobManager either through the Flink Client or the
command line interface (CLI) to execute Jobs that are executable Java or Scala
programs. The JobManager creates a Directed Acyclic Graph (DAG) of operators,

1Bounded means the data has an end, while unbounded is a continuous stream of data.
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sends it to the TaskManagers and distributes the workload to the TaskManagers,
where the operators are.

The Apache Flink community is very active. Some years ago, the DataStream
API was supposed to cover streaming, while the DataSet API would take care of
batch applications. However, the DataSet API is an API the community wants
to phase out, and it is not recommended to use. The community is working on
extending the DataStream API to fully support batch and streaming interchangeably.
As seen in the roadmap of Apache Flink?, the DataSet API approaches the end of
life and should not be used anymore.

The legacy DataSet API supports iterative algorithms. However, only one stream
of data is allowed in and out of the iterations. This feature is also put into the
DataStream API. Other Flink features include advanced windowing as well.

A datastream (stream of data) can be connected and distributed evenly among
the operators that work in parallel (TaskManagers), or a datastream can also be
broadcasted. This is useful if network traffic to analyse is distributed among multiple
operators, and the centroids in the k-means algorithm are broadcasted to each
operator, ready to assign points to clusters.

Apache FlinkML

In January 2022, the community launched FlinkML 2.0. In a blog post, [LG22], they
stated that they want to build a machine learning framework inside Apache Flink
that also comes with some out-of-the-box machine learning algorithms. The machine
learning library is marked as MVP on Apache Flink’s roadmap, meaning it is still in
early development.

In the FlinkML documentation, [MLDocs|, we can read that the FlinkML library
operates at different Stages. The first Stage is an Estimator responsible for training
the machine learning model and implementing a fit method. This method takes
in training data and outputs a Model. Next, the Model is another estimator that,
among other things, implements a method called transform, which takes in data
and uses the model data to produce a result or prediction. This corresponds to the
training phase as described in Section 2.2.

The library also introduces a framework for iterative algorithms that supports
multiple streams to be fed back into the iteration, emitted and put into the iteration
like in Figure 2.1.

2https://flink.apache.org/roadmap.html
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Figure 2.1: The iteration paradigm in Apache FlinkML. The figure is based on
Apache FlinkML documentation[MLDocs].

KMeans in FlinkML

Offline and online implementations of the k-means algorithm have been added to
the FlinkML library®. The online implementation was added at the end of March
2022. Note that the online implementation is not included in the current stable
documentation of FlinkML* (May 2022).

Since the machine learning paradigm in Flink operates with a fit operation to
create a model, the OfflineKMeans implementation in the machine learning library of
Apache Flink is also split into two operations that derivate from the original k-means
algorithm. The two operations are fit and transform. The fit operation creates a
"KMeansModel" that essentially are centroids. In this operation, the offline k-means
algorithm is performed. The second operation is the transform operation that takes
input vectors and assigns them to their closest centroids from the "KMeansModel"
in one iteration without adjusting the centroids. This paradigm works a lot like
other machine learning systems, as described in Section 2.2. The OfflineKMeans
implementation in FlinkML (the fit operation) terminates after a fixed number of
iterations and will not look at when the algorithm has converged.

OnlineKMeans in FlinkML is a forgetful sequential k-means implementation as
described in Section 2.3.1.

Shttps://github.com/apache/flink-ml/tree/master/flink-ml-lib/
4https://nightlies.apache.org/flink /flink-ml-docs-stable/
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Related work

3.1 Naive k-means and Elkan’s improvement on MapReduce

Despite Apache Hadoop not supporting iterative algorithms, AlGhamdi et al.[Mac+67]
implemented k-means on Apache Hadoop by introducing a driver that took control
over the iterations and fed the MapReduce framework for each iteration.

Along with implementing the naive algorithm on MapReduce, KMMR-N, the
authors also implemented Elkan’s improvement of the k-means algorithm by using
bounds to utilise the triangle inequality. The bounds were stored in two different
methods, and both were tested. The first method, KMMR-EV, extended the point
into an extended vector (EV), also containing the bounds. The second method,
KMMR-BF, included storing this information in a separate file.

The results showed that KMMR-EV decreased the running time compared to
KMMR-N with speedups of 4.5x. KMMR-BF was even faster, with speedups of
6.8x compared to KMMR-N. However, this varied with the number of dimensions,
records and clusters. The overhead of KMMR-EV could outweigh the gained time
from skipping distance calculations in high dimensions, high & and large number of
records so much that it becomes slower than KMMR-N.

In future work, AlGhamdi et al. suggest testing other improvements of the
k-means algorithm. For instance, Philips’ Compare-Means or Hamerly’s version using
only one lower bound. The authors also suggest testing both methods to store the
overheads.

3.2 Naive k-means and Elkan’s improvement on legacy
Apache Flink

Ringdalen used version 1.9 of Flink when he, in his master thesis from 2020, im-
plemented the naive and Elkan’s versions of the k-means algorithm on the Apache
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Flink framework [Rin20]. The 1.9 version of Flink was quite different from today’s
stable version. Firstly, no machine learning library was available to support Stages
and iterations with multiple datastreams. Besides, no k-means implementation was
available out-of-the-box. As described in section 2.4.1, the earlier versions had other
APIs, like the DataSet API. This API supported an iterative paradigm that only
could handle one datastream in and out of the iterations. To mitigate this, Ringdalen
introduced a tagged tuple to feed points, centroids and other information® to the
next iteration. Apache Flink provides programmers with some examples, including
an example showing the k-means algorithm implemented using the DataSet API.
However, this example only supported two dimensions, so Ringdalen extended the
example to support multiple dimensions and further extended that implementation
to apply Elkan’s improvements.

Ringdalen compared the naive and Elkan’s versions of the k-means algorithms
on Flink and compared them to a naive implementation using classical computing.
Results showed that Elkan’s version performed worse than the naive version when
increasing the number of clusters. Only increasing the parallelism and having a
small £ made Elkan’s version perform better than the naive version. However, the
overhead of introducing tagged tuples to store bounds did outtake the gained time by
skipping distance calculations. With parallelism of 4, Elkan’s version had an increase
in performance of just 1.8% with k = 2.

One could wonder if this result is because the datastream consisted of many
tagged tuples that were not actual points and that these tagged tuples were quite
large.

As further work, Ringdalen suggests looking into online versions of the k-means
algorithm since input in IDS is unbounded by nature. Also, future work should work
on only transferring information that will be altered during iterations and not the
entire tagged tuple.

IRingdalen called this information Carry Over Information (COI) and was sent as tuples
containing information about bounds and more.



Methodology

In this chapter, we look at how we solve the problem that naive k-means sometimes
is too slow for application in IDS, (see Section 1.1). We can formulate the goal of this
thesis as building a better k-means-clustering-based anomaly detection system based
on already proposed improvements of the k-means algorithm utilising the triangle
inequality on Apache Flink. As the goal is to improve an artefact, this can be called a
design process, as described in [Wiel4]. The design process is described in Section 4.1.
To help drive the thesis forward, as already described in Section 1.2, we have defined
some research questions. The research questions help us compare the proposed
improvements of the k-means algorithm to find the best solution and verify that we
have achieved the goal and built a better IDS. They will also help us make actual
artefacts. The experimental work that we performed in the thesis is described in
Section 4.2.

Later in this thesis, we use the word domain as a concept to solve what was
introduced in Section 2.3.3. (See Definition 4.1).

Definition 4.1. Domain Group of features with the same value on all non-numeric
attributes (i.e., those attributes that cannot be included in the k-means algorithm).
The k-means algorithm is performed on each domain separately. In other words,
a domain is a separate Euclidean plane with a separate set of centroids where all
points have the same value on all nominal attributes.

21
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Mode of Operation

We will also use the term Mode of Operation (MoO). When putting k-means in an
IDS context, as we have seen in Section 2.3.1, the algorithm can operate in different
modes and be used in different ways. Three modes will be described here:

Batch When offline is put in IDS context, we operate k-means in batch mode as
described in Section 2.3.1. We can vary the size of the batches (batchSize).
However, in our experimental work we operated with batchSize = 1000.

Transform This mode, that we also call transforming k-means, is proposed by us
and corresponds to the transform method in the KMeans implementation of
FlinkML as described in Section 2.4.1. This mode means having a trained
model, i.e., centroids and assigning vectors to the closest centroids without
updating the centroids.

Sequential This mode is described in Section 2.3.1 as sequential k-means and allows
the centroids to update. This mode can also be used on a trained model or by
choosing the first points as initial centroids. In our experimental work we used
a trained model as initial centroids.

4.1 Building a better IDS

As Wieringa presented in [Wiel4d], understanding the problem is central to the
design process. By doing so, we can design different artefacts that could treat the
problem. This phase includes software development in our case, where we make
an IDS implementing different versions of k-means. We then validate the designed
treatments (or artefacts) to see if they fulfil the requirements and solve our problem.
This is done as part of the experimental work where we test each artefact.

4.1.1 Functional requirements

To design different artefacts that may solve the problem, we need to define the
requirements for our IDS that determine the scope of the thesis. These requirements
are specified in Table 4.1.

We set k = 2 in this thesis as we operate with two labels and clusters; one for
normal traffic and one for anomalies (referencing FR1).

4.1.2 Designing artefacts

We introduce concepts, use literature, and adjust pseudo-code to design artefacts
that may treat the problem and fulfil the requirements. This work is given in the
theoretical contribution in Chapter 5. During this work, we answer RQ1 and RQ2.



4.1. BUILDING A BETTER IDS 23

Table 4.1: Functional requirements for our IDS.

ID Functional requirement

FR1 The IDS should be able to cluster network traffic into two classes: One
for normal traffic and one for abnormal traffic.

FR2 The IDS should be at least as accurate as naive IDS meaning it should
have the same T/FPR as naive or better.

FR3 The IDS should be faster than a naive version.

FR4 The IDS should implement an improvement of k-means based on triangle
inequality.

FR5 The IDS should be implemented on Apache Flink.

FR6 The IDS should run k-means on all domains integrated, not in separate
operators. Nor should it skip or drop the nominal fields.

FR7 The IDS should stop running the algorithm when the algorithm has
converged and not when a fixed number of iterations has been performed.

FR8 The output of the IDS should be the points along with IDs of their
assigned cluster so the clusters later can be labelled.

4.1.3 Validation and evaluation

To validate fulfilled requirements and compare the different artefacts, we ran statistical
difference-making experiments to see the difference between our treatments on a test
data set. The experimental work in Section 7 shows our results during this validation

and comparisons. Our two RQs that were answered using experiments were RQ3
and RQ4.

The discussion in Section 8 evaluates the artefacts and provides solutions, based
on the validation and theoretical contribution, where we describe a better IDS.

Software development

As part of our experimental setup, we perform software development. The software
development was done in an agile fashion, where some of the requirements were taken
care of for each iteration[Wiel4]. We started with the KMeans implementation in
FlinkML and changed that implementation in multiple iterations before we fulfilled
all the requirements.

One challenge we faced is the researcher’s knowledge about the platform Apache
Flink, which may introduce unwanted interference in the results. One of the reasons
we chose to start with the KMeans implementation that comes with FlinkML as a
starting point was to minimise this effect. We focused on modifying the fit operation
since this is the operation that is more like the original k-means algorithm. Then, we
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also needed to change the returned model to receive information about what vectors
were assigned to which centroid.

4.2 Testing artefacts in experiments

We performed multiple experiments in this thesis. We used Wieringa’s framework
for the Empirical Cycle to get an understanding of our design research. As stated
by Wieringa, design research is when we want to answer research questions about
implementations or treatments to a problem.

Wieringa talks about different forms of treatments and variables when doing
design research. Experimental treatments, by some known as independent variables,
are the different ways we can treat the problem. It is the controllable input of the
experiments we will perform. The output or results are studied when changing the
treatments. Measured variables, by some known as dependent variables, are the
measured result after performed experiments. Extraneous variables and confounding
variables are variables that may influence the measured variables out of our control.

This section presents the different experimental treatments, i.e., experiments
we performed. In addition, measurements regarding accuracy and speed are also
outlined. The way the experiments were performed is outlined as well. All this leads
to some requirements for our experimental work at the end of this section.

4.2.1 Experimental treatments

There are multiple variables we may change to find a better IDS. We concentrate
on two of these that make up our two types of experimental treatments. We may
vary the use of improvements of k-means based on triangle inequality (TT), from now
called treatment /variable A, or we could change the mode of operation, from now
called treatment/variable B.

Treatment A: Applying triangle inequality

The first treatment we apply is triangle inequality, i.e., testing different improvements
of the k-means algorithm based on the triangle inequality. We use the improvements
already introduced in Section 2.3.2. Table 4.2 shows the versions of treatment A that
will be tested.

The naive version is our reference treatment, i.e., the use of no triangle inequality.
Since we only deal with k& = 2, Sort-Means is not tested in these experiments.
"Philips’ algorithm" will then only refer to Compare-Means. Drake is not used since
it requires k > 2. When applicable, we test treatment A on different MoO during
the experiments, starting with offline.
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Table 4.2: Treatments relevant to variable A to be tested.

TreatmentID Name

Al Naive k-means

A2 Philips’ Compare-Means
A3 Elkan’s algorithm

A4 Hamerly’s algorithm

In this treatment, we are interested in the difference in execution time and how
the distance calculation reduction can increase the algorithm’s speed. Therefore,
when performing experiments on one specific MoO using different artefacts where
treatment A is changed, it is important that we use the same data set, the order
of events is the same and that the same initial centroids are chosen. The accuracy
is only used for validation of A.1-A.4 as they all should perform the same when it
comes to accuracy.

Treatment B: Using different modes of operation

Treatment B is about varying the different MoO that may be useful in IDS. Each
mode that is tested and its parameters are described earlier in this chapter. The
transform and sequential modes use trained models. To compare these MoO, both
will use the same trained model, made from the outputting centroids from running
k-means offline on a separate set of training data. Table 4.3 summarises the different
MoO that we tested.

In the batch and sequential modes, the order of incoming events influences the
result. Therefore, five different seeds are used to randomise the input order. All
artefacts where treatment B vary are tested five times, one for each order of input,
even the transform MoQO. A mean from the five different orders of events is provided.

Table 4.3: Treatments relevant to variable B to be tested.

TreatmentID Name of MoO Order of input... Parameter Trained

B.1 Batch ...affect the result batchSize No
B.2 Transform Yes
B.3 Sequential ...affect the result Yes

Forgetful sequential k-means is not tested since that would be beyond the scope
of this thesis. However, forgetful sequential k-means would be interesting in IDS as
the internet is evolving. Moreover, test data sorted in order of event time should be
used to test a forgetful algorithm. And we do not require this from our test data.
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In this treatment, we are first and foremost interested in the accuracy of different
MoO. How fast these different modes are also investigated. However, these modes
differ widely in how they operate so there is significant differences. All artefacts
are tested using the same dataset. No triangle inequality is applied when testing
treatment B.

4.2.2 Measurements

This section outlines the different measurements we performed during the experiments.

Speed

To measure the calculation time for the different implementations, we looked at the
execution time of the Flink Job by inspecting the logs afterwards. There, we could
get a Job’s NetRunTime in milliseconds.

The Flink Job, as already mentioned, includes pre-processing data and writing
results to files. However, these operations were identical for all implementations we
tested, meaning the results here are comparable.

Our calculations of execution time assume Flink’s built-in timer is good. Regard-
less, there may be numerous extraneous variables that influence execution times.
For example, other processes on the computer and memory state affect the results.
Therefore, we also accumulated the number of distance calculations done. Flink
comes with build-in accumulates we utilised for this purpose, whose output is given
in the logs after running a Flink job.

Accuracy

We use PPV to compare different variants of IDS regarding accuracy. As a result,
TPR/FPR were calculated. Each experiment’s output was written to a file with the
assigned cluster-ID and the correct label.

As part of the dataset we use, the correct class is included, i.e., the data is labelled.
Then prepossessing the data, this label is included in the data points sent through the
algorithm but is not used. Ideally, we would remove these labels when sending the
data as point vectors into the algorithm and, in the end, join the resulted data points
and their assigned cluster-id with the original dataset using the Base64 encoding of
the point vector as the joined attribute, giving us the labels back. However, such
joining may not be possible as multiple data points in the dataset may share the
same value on the vectors.

We need to label the clusters after performing our experiments to calculate
accuracy. As already mentioned, cardinality is often used. However, depending on
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the dataset used, this may not at all be the case. Therefore we assume a perfect
labelling algorithm that is always correct and as good as supervised labelling. The
cluster with the fewest normal data points is labelled positive. If a domain has the
same number of normal data points in both clusters, the cluster with the highest
cardinality is chosen as the "normal" cluster.

We accumulate the output data to measure TPR and FPR. This is done by
accumulating the number of point vectors assigned to each cluster and the number
of vectors labelled as normal in each cluster.

There are some important considerations when measuring accuracy when intro-
ducing domains. Firstly, we need to remember when calculating TPR/FPR that we
cannot accumulate points in clusters 1 and 2 in different domains since the labelling
probably would not be the same for cluster 1 in one domain and another. Therefore,
the distinction between domains should remain until finished labelling each cluster in
each domain. Secondly, some domains may have no data points with either normal
or abnormal labels. This may be because the dataset has too few data points in
each domain. Therefore, we measure accuracy without those domains, i.e., where the
probability of an attack, Base Rate (BR), is 1 or 0.

4.2.3 Execution of experiments

Our experiments may have multiple extraneous variables that interfere with the
measured variables. Wieringa states that randomisation and numerous attempts
cancel out the effect of extraneous variables. The speed measurements are believed to
be affected by extraneous variables the most. As a result, these experiments require
us to perform multiple attempts and calculate a mean. The runtime we use is the
mean of five executions.

We also need some test data for our experiments. As already stated, the test data
should be the same for all artefacts where the treatment vary i.e., when comparing
treatments A or B. The test data should be labelled so we can calculate the accuracy.
We need two test sets for B.2 and B.3 that simulate network data — one for training
and one for the testing.

4.2.4 Requirements for the experiments

The above considerations give us the requirements shown in Table 4.4. These
requirements are included in the agile development process.
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Table 4.4: Requirements for the experiments.

ID Requirement

RE1 We need to accumulate the number of distance calculations.

RE2 We need to include the correct label in the outputted data.

RE3 We need a framework for testing different improvements without unnec-
essary differences between the artefacts interfering with the results.

RE4 We need an offline k-means implementation that outputs the centroids

so we can use the centroids in B.2 and B.3 as initial centroids.




Theoretical contribution

To fulfil some of the functional requirements and answer RQ1 and RQ2, multiple
theoretical contributions have been made and that are outlined in this chapter.
Where applicable, the theoretical contribution is presented for different MoO we use
in the experimental work (referencing beginning of Chapter 4).

5.1 Introducing domains in k-means-based IDS

We need to solve the problem described in Section 2.3.3 regarding nominal features in
k-means before implementing a k-means clustering-based IDS. The solution is to take
what [YT11] said and introduce the concept of domains. Domains are already defined
in Definition 4.1. The domain can be identified as a string being the conjunction of all
non-numeric fields. The k-means algorithm is performed on each domain separately.
Figure 5.1 shows what an IDS utilising the solution presented in [Y'T11] would look
like.

By introducing the concept of domains, we have not altered the k-means algorithm
but rather formalized the pre-processing and post-processing when applying k-means
in IDS. Nevertheless, there are some essential considerations that we need to address.

In some domains, a clustering algorithm makes sense. For example, if one domain
consists of HT'TP traffic and another consists of SMTP traffic, both domains probably
have normal traffic and anomalies. However, some domains may contain one class by
nature. Some combination of flags and services may always be anomalies as they
will never be normal behaviour. However, if a combination makes no sense now,
it may be the root of a future zero-day attack. This depends on the dataset and
the different features selected. Not taking care of this issue would lead to multiple
false positive (FP) or false negative (FN) that should not happen in those domains.
K-means does not solve this challenge. In such cases, an anomaly detection system
should be assisted by signature-based detection by looking at those specific domains.

29
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Figure 5.1: An anomaly-based IDS implementing the solution to nominal features
as suggested by [YT11].

We suggest not automatically approving domains that seem only-normal domains as
they may introduce zero-day attacks in the future.

If the number of vectors in a data set is less than k, there are not enough vectors
to choose initial centroids, so k-means cannot be started, or we may need to wait for
more data. In other words, k-means need to be dropped if there are too few vectors
in offline mode. On the other hand, the algorithm needs to buffer the data point in
online mode. This issue with too few vectors is likely when introducing domains in
the IDS, as vectors in one domain may arrive less frequently.

5.1.1 Adjusting KMeans in streaming, like in FlinkML, to
support domains

We run one instance of k-means while having domains as an integrated part in this
thesis. Pseudo-code and description for this k-means algorithm to run on distributed
streaming platforms (i.e., Flink) follows. Future work may adjust k-means to support
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domains on classical computing.

In the KMeans implementation that follows FlinkML, one datastream is used for
only one element; an array holding the centroids. We have expanded the KMeans
implementation to support multiple arrays of centroids, one for each domain. These
elements are stored in MapStates at operators, and when a point comes, the correct
array of centroids is retrieved. All centroid and point objects also have a domain
attached as a field. Figure 5.2 shows an example of the centroid datastream after
initial centroids have been chosen.

Features

ids in Domain 3| [Centroids in Domain 2| [Centorids in Domain 1
SelectRandom . j ) Datastream
Centorids id 1 Centorid 1 Centorid 1 containing centorids
oid 2 Centroid 2 Centroid 2

Figure 5.2: Diagram showing the centroid datastream after random centroids have
been selected.

This adjustment has been made to the Offline and Online fit implementations in
FlinkML and the transform method.

5.2 New framework for k-means on Apache Flink

This new framework is used in our experiments to make each artefact as similar as
possible, and for adjusting k-means in FlinkML to support multiple improvements.

To make each implementation as similar as possible, as one of the requirements
for the experiments states (Table 4.4), we placed each improvement’s unique logic in
objects. All points and centroid objects have information relevant to the improvement
stored in them and have updating methods that update internal fields like bounds
and other fields based on all centroids. In the framework, we combine [lterationBody
from the FlinkML library, different datastreams and some operators that call these
unique methods in the objects.

The Point object has fields for the Euclidean vector, the ID of the assigned cluster
(initial value: —1) and a field for indicating the domain. The Point object also has
an update method that takes in the centroids and updates the assigned cluster-1D
field and eventually other improvement-specific fields. The Centroid objects have
fields for the mean vector of the cluster, the cluster-ID and the domain identification.
The Centroid objects have two methods. The first is called move and moves the
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centroid to a new mean vector. The second is called update and takes in the other
centroids and updates eventual improvement-specific fields.

The framework can be adjusted to support multiple modes of operation, and all
adjustments to the modes of operations are given in this section. In the framework, we
have three central operators that are used. These are PointUpdater, Centroid Updater
and CentroidInitialiser. Pseudo-codes for those operators are given in Algorithms
5.1, 5.2 and 5.3, respectively. Explanation of the different operators follows.

The PointUpdater takes broadcasted centroids and calls update on the points
using the stored centroids in the correct domain.

Algorithm 5.1 Pseudo-code for PointUpdater
operator PointUpdater:
processElement (point) :
centroids = getState()
# If centroids not present, store point in buffer,
# and process point when centroids arrive.
point.update(centroids)
emit point
processBroadcastElement (centroids) :
storeInState(centroids)

The CentroidUpdater takes in centroid objects and vectors that are used to
move the centroids. Firstly, each centroid is called with move using the corresponding
updating value as an argument. After this, each centroid is called on with update
using all centroids as arguments. This is done when both the values and centroids for
the domain are present; otherwise, we buffer the objects. Please note that one of the
streams needs to either be broadcasted or the stream has to be keyed for domain-pair
to operate on each other.

The CentroidInitialiser operator does the same as the UpdateCentroids operator
but it does not call move on the centroids. The operator has just one input stream.

5.2.1 Offline/batch MoO adjusted for our framework

Figure 5.3 shows the information flow in this implementation. Points and centroids
that enter the iteration are used in the PointUpdater. The finished points and
centroids are sent out of the iteration and are emitted as output (Section 5.3 goes
into detail about the blue operators in the figure). The updated points split into
two streams, one for the next iteration and one that goes through the NCVOperator.
The NCVOperator stand for NewCentroidValuesOperator, It produces new values
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Algorithm 5.2 Pseudo-code for CentroidUpdater
operator CentroidUpdater:
processElement (value) :
centroids = getState()
# If centroids not present, store value in buffer,

# and process value when centroids arrive.

for centroid in centroids:
centroid.move(value)

for centroid in centroids:
centroid.update(centroids)

emit centroids

processBroadcastElement (centroids) :
storeInState(centorids)

Algorithm 5.3 Pseudo-code for CentroidInitialiser
operator CentroidInitialiser:

processElement (centroids):
for centroid in centroids:
centroid.update(centroids)
emit centroids

for the centroids that are input into the CentroidUpdater along with the centroids
themself. The updated centroids are sent to the next iteration.

5.2.2 Transform MoO adjusted for our framework

Unlike in the offline version, an IterationBody is not used in this mode of operation.
After the centroids have been initialised, the points are updated using the centroids.
The finished points are emitted directly. The data flow can be seen in Figure 5.4.

5.2.3 Sequential MoO adjusted for our framework

In this mode of operation, a new field is included in the centroid objects. The field
is called weight and essentially symbolises the cardinality of the cluster. The move
method works a bit differently from the other centroids in this MoO. The input is
not a new value of the cluster’s mean but a new point that is included in the cluster.
The new mean is calculated using the stored weight and the Equation (2.2).

Figure 5.5 shows that the centroids are initialised before entering the iteration.
The IterationBody works much like the offline version but does not calculate new
centroid values in a NC'VOperator. It just emits updated centroids based on updated
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Figure 5.3: The data flow of offline k-means implemented in our framework.
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Figure 5.4: The data flow of transforming k-means implemented in our framework.

points directly. Also, no points are iterated multiple times, just emitted directly after
being updated and assigned a cluster.

The initial centroids can be the first points arriving or two points randomly picked
from the first 1000 points. Then, the initial weight will be 1. However, the initial
centroid can also be based on centroids after training. In that case, the initial weight
needs to be the cardinality of the clusters the corresponding centroids represent.
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Figure 5.5: The data flow of sequential k-means implemented in our framework.

5.3 Adjusting offline k-means in FlinkML to stop when the
algorithm has converged

The original offline k-means implementation in FlinkML has a fixed number of
iterations that the user sets when initialising the KMeans object. The correct
implementation should involve looking at when the algorithm converges, i.e., when
points have stopped changing clusters and all centroids’ movements are zero.

We have changed the data flow in the KMeans program in FlinkML to support
convergence by introducing a filter that emits centroids and points when the algorithm
has converged. The data flow is given in Figure 5.3.

All centroids in offline implementation have a field for the movement that is used
to determine when the algorithm has converged. This field is initialised with the
maximum value. This field is updated in the move method, where the distances
between the new and old values are used.

After the centroids have been updated in the operator called CentoridUpdater,
the centroids may have a movement of 0. If so, the centroids are fed into a new
iteration so the PointUpdater can mark the points as finished. After this, the points
with the finished flag and the centroids with movement = 0 are filtered out of the
stream.

Note that domains can converge at different times. For example, if all centroids
in a domain have stopped moving, the domain can be marked as finished, and the
output of that particular domain can be emitted. It will save time ending calculations
on domains that are finished.

The concept of convergence does not apply to online algorithms, so the move
method in the Centroid objects does not update a movement field.
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5.4 Adjusting improvements to fit into Apache Flink

By using the framework presented in Section 5.2, we have reduced the improvement-
dependent side of the implementation to just Centroid and Point objects. In this
section, we show the adjustments we make to the already-proposed improvements
of the k-mean algorithm, so they fit Apache Flink and are adapted for our new
framework for offline k-means. For each improvement, pseudo-code for the update
functions of Centroids and Points are presented, as well as data structures inside
these objects. A naive version is also be given for completeness, adjusted for Flink
and our framework.

The Centroid and Point objects in these adjustments extend those presented in
Section 5.2, i.e., they have the same fields.

5.4.1 Naive k-means adjusted for our framework

This implementation is relatively straightforward. The update method in Point and
Centroid objects is given in Algorithms 5.4 and 5.5. As we can see, the update
methods in Centroid objects are empty as there are no unique logic or fields in points
or centroids that need to be updated. The update method in Point objects will just
find the closest centroid and update the assigned field.

Algorithm 5.4 Naive k-means: PointUpdater

update (centroids) :
minDistance = MAX
assigned = -1
for centroid in centroids:
distance = distance(centroid)
if (distance < minDistance):
minDistance = distance
assigned = centroid.ID

Algorithm 5.5 Naive k-means: CentoridUpdater

update(centroids):
empty

5.4.2 Philips’ algorithm adjusted for our framework

Philips presented two versions of his improvement that reduce distance calculations
[Phi02]. The first version, Compare-Means, calculates the inter-means distances for
each pair of centroids (numbered 0 < %,j < k) in a matrix, D[i][j], and uses these
when looping through the centroids when checking for closest centroid to a point.
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The second version, Sort-Means, calculates one more matrix, M|[i][z], where M][i]
is an array representing centroids in increasing order of their distance to the ith
centroid. For each point (whose assigned centroid has id assigned), the algorithm
checks the centroids in the order given by M [assigned] and skips to the next point
if the distance between the currently-assigned centroid and the candidate centroid is
larger than twice the distance to its currently-assigned centroid.

Since we adjust Philips’ algorithm for application in streaming, we do not have a
globally defined D[i][j] but rather one array per centroid object holding distances to
other centroids. Sort-Means is a good improvement over compare-means when k > 2.
However, in our case, k = 2. Therefore, we do not present a Sort-Means version
for Flink, but the adjustment presented here can be easily expanded to support
Sort-Means.

Our algorithms for Philips’ algorithm on Flink and the framework presented in
Section 5.2 are presented in Algorithms 5.6 and 5.7. Centroid objects also has a field
called distanceArray that holds distances to other centroids.

Algorithm 5.6 Philips’ improvement: PointUpdater

update(centroids):
minDistance = MAX
assigned = -1
for centroid in centroids:
if (not first iteration):
if (2+distance(centroids[assigned]) <=
centroids[assigned] .distanceArray[centroid]):
continue
distance = distance(centroid)
if (distance < minDistance):
minDistance = distance
assigned = centroid.ID

Algorithm 5.7 Philips’ improvement: CentroidUpdater

update(centroids):
update distanceArray

5.4.3 Elkan’s algorithm adjusted for our framework

The Point objects in Elkan’s version have a field for upperBound and an array holding
lowerBounds to other centroids. The Centroid objects have an array containing dis-
tances to different centroids called distanceArray. The Centroid objects also hold half
the distance to the closest other centroid in a field called halfDistToClosestCentroid.
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Pseudo-codes for update methods in the Point and Centroid objects are given
in Algorithms 5.8 and 5.9. Central in work at making these pseudo-codes are the
work done by [Al +17]. [Cell5] and [Elk03] are used as sources to the original
improvements suggested by Elkan.

5.4.4 Hamerly’s algorithm adjusted for our framework

Each Point object has fields called lowerBound and upperBound. The Centroid
objects hold half the distance to the closest other centroid in a field called halfDistTo-
ClosestCentroid. Pseudo-codes for update methods in the Point and Centroid objects
are given in Algorithms 5.10 and 5.11. Both [Cell5] and [Ham10] were used as a
source for the original improvement by Hamerly.

5.5 Triangle inequality in online k-means algorithms

Triangle inequality can also be used in the online mode of operations, like Transform
and Sequential. However, not all proposed ideas to improve the k-means algorithm
are applicable. For instance, extra information that involves points and are updated
for each iteration, are not a good fit for online modes. Examples are Elkan’s and
Hamerly’s algorithms, that have bounds between points and centroids. However,
using the triangle inequality on distances between centroids will work and can be
used in Transform and Sequential modes. This is the idea we utilise and stems from
Philips’ Compare-Means algorithm. The pseudo-codes for update methods in Point
and Centroid objects is the same as in algorithms 5.6 and 5.7.
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Algorithm 5.8 Elkan’s improvement: PointUpdater

updateFirstIteration(centroids):
lowerBounds = array with k values set to 0
minDistance = MAX
skipStatus[] = array with k boolean values set to false
for (0 <= j < k):
if skipStatus[j]: continue
distance = distance(centroids([j])
lowerBounds[j] = distance
if (distance <= minDistance) {
minDistance = distance
upperBound = minDistance
assigned = j
for (j < z < k):
if (centroids[j].distanceArray[z] != null):
distToZCentroid = centroids[j].distanceArray[z]
else:
distToZCentroid = centroids[j].distance(centroids[z])
centroids[j].distanceArray[z] = distToZCentroid
centroids[z] .distanceArray[j] = distToZCentroid
if (distToZCentroid >= 2*distance):
skipStatus[z] = true

update(centroids):
# Update bounds
for (0 <= j < k):
lowerBound [j] = max(lowerBound[j]-centroids[j].movement, 0)
upperBound += centroid[assigned] .movement
updateUpperBound = true
# Find closest centroid
if (upperBound <= centroids[assigned] .halfDistToClosestCentroid) :
return
di, d2 =0
for (0 <= j < k):
if (j != assigned && upperBound > lowerBounds[j] &&
upperBound>0.5%centroids [assigned] .distanceArray[centroids[j].ID])):
if (updateUpperBound) :
dl = distance(centroids[assigned])
upperBound = dil
lowerBounds [assigned] = d1
updateUpperBound = false
else:
dl = upperBound
if (d1 > lowerBounds[j] ||
d1>0.5*centroids[assigned] .distanceArray[centroids[j].ID]):
d2 = distance(centorids[j])
lowerBounds[j] = 42
if (d2 < d1):
assigned =
upperBound = false

.
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Algorithm 5.9 Elkan’s improvement: CentoridUpdater

update(centroids) :

minDist = MAX

for centroid in centroids:
if centorid.movement == 0 and this.movement == 0: continue
if centroid.ID <= ID: continue
dist = distance(centroid)
distanceArray[centroid.ID] = dist
centroid.distanceArray[ID] = dist
if (dist < minDist): minDist = dist

halfDistToClosestCentroid = minDist / 2

Algorithm 5.10 Hamerly’s improvement: PointUpdater

update(centroids) :
# Update bounds
upperBound = upperBound + centroids[assigned].movement
biggestMovement = 0
for centroid in centroids:
if (centroid.movement > biggestMovement) :
biggestMovement = centroid.movement
lowerBound = lowerBound - biggestMovement
# Find closest centroid
z = max(lowerBound, centroids[assigned].halfDistToSecClosest)
if (upperBound <= z): return
upperBound = distance(centroids[assigned])
if (upperBound <= z): return
bestDist, secBestDist = MAX
bestC, secBestC = 0
for (0 <= i < k):
candidateDist = distance(centroids[i])
if (candidateDist < bestDist):
secBestDist = bestDist
secBestC = bestC
bestDist = candidateDist
bestC = i
continue
if (candidateDist < secBestDist):
secBestDist = candidateDist
secBestC = 1
if (bestC != assigned):
assigned = bestC;
upperBound = distance(centroids[assigned])
lowerBound = distance(centroids[secBestC])
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Algorithm 5.11 Hamerly’s improvement: CentoridUpdater

update(centroids):
update halfDistToSecClosest







Preliminary results

6.1 Treatment A

Literature can tell us about the differences between the improvements of k-means
regarding speed. In [Cell5, ch. 2.7] we can see that Hamerly’s algorithm is much
faster than Elkan’s algorithm in low and medium-dimension data sets. In data
sets where distance calculations are costly, i.e., high dimensions (d = 32), Elkan’s
algorithm outperforms the other improvements. Philips’ algorithm does not perform
very well compared to naive k-means when the dimensions are high in reducing
distance calculations.

In Section 3, we looked at the work done in [Rin20]. There, Elkan’s improvement
would not be faster than naive k-means unless the parallelism were four or higher.
We will also probably achieve the same result since we in Section 5.2 have introduced
significant overhead to implement the IDS in Flink.

For reference, the different improvements of the k-means algorithm utilising the
triangle inequality are expected to be equally accurate and produce the same result
as the naive version (as already stated in Section 1.4).

6.2 Treatment B

As B.1 k-means runs the algorithm using multiple iterations and allows points to
change clusters, this mode of operation is believed to be the most accurate. The
larger the batchSize, the more accurate the algorithm should be, but the slower it
should get.

Since the model does not change using B.2, this mode will probably perform
the poorest. However, since the test data is not over a larger time frame where the
centroids should have shifted, the resulted accuracy should be acceptable when using
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our test data. Sequential k-means are expected to perform better than the transform
MoO since we update the model.

B.2 and B3 will have a number of distance calculations equal to the number of
points times k£ and should be speedy. However, B.2 should be a bit faster since new
centroids do not need to be calculated (even if the calculation is not very complex).



Experimental work

In this section, the experimental work is presented. This chapter is split into the
part where the results when applying treatment A are presented and the part where
the results when applying treatment B are given. First, we look at the experimental
setup that is common for both treatments and how the results are presented and
calculated.

7.1 Experimental setup

This section describes the data set we used in our experiments for both treatments.
Also, we present the experiment environment. The implementations of MoO for our
experiments are also included.

7.1.1 Test data

The NSL KDD dataset includes 41 features and is a subset of the KDD CUP’99
dataset[DG17; UNB]. The original KDD CUP’99 data set had some problems, and
NSL KDD (as proposed in [TBLGO09]) is a subset trying to solve some of these
problems related to KDD CUP’99. Although the authors in [TBLGO09] still admit
the NSL KDD data set "may not be a perfect representative of existing real networks,
because of the lack of public data sets for network-based IDSs", they still believe
it can be applied as an "effective benchmark data set to help researchers compare
different intrusion detection methods".

Most of the features in NSL KDD are numbers that can be treated fine with
Euclidean distance measure in the k-means algorithm. Four of the points are boolean
according to the included ARFF file. We include these points in measuring distance
by assigning true to 1 and false to 0. Two more Boolean points, root shell and
su__attempted exist according to [UCI99]. However, we only confirmed root__shell
to be Boolean as su__attempted had rows containing the value "2". This feature is
included as a numeric value.
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The three remaining points, protocol_type, service and flag, are nominal. This
challenge is already outlined in Section 2.3.3. The solution called domain is described
in Section 5.1 and will be realized.

NSL KDD is labelled, meaning there is one more column in the dataset. This
attribute is included in the Point objects to do calculations later but is not included
in the k-means algorithm. Ideally, this would not be included in the Point objects,
and for finding correct labels afterwards, unique IDs would be calculated from domain
and vector. Still, a unique ID on domains and vectors did not exist.

One feature is connected to the "difficulty level" of the data point (in [UNB] called
successful Prediction) and was not included in our experiments.

The NSL KDD data set consists of two sets, one for training machine mearning
(ML) algorithms and one for testing ML algorithms. For testing treatment A, we
used the training data set for the offline mode and test data for the online modes.
For treatment B, we used the test data set. The train data set is used if the mode
of operation requires a trained model. Then, the initial centroids are the resulting
centroids after running offline k-means on the training data.

Table 7.1 shows an analysis of the two data sets in NSL KDD when taking
domains into account. Section 5.1 states that domains with too few points (< k) will
not be considered for clustering. This means only 258 domains are processed in the
training data set. 174 of the 258 domains processed in the train data set are also
found in the test set, meaning only 174 pairs of centroids will be the initial centroids
in B.2 and B.3. Domains with no initial centroids will not be included in the k-means
algorithm in B.2 and B.3, or in the accuracy calculations afterwards. As mentioned
in Section 4.2.2, domains with no points in one of the classes would not be included
in the accuracy calculation.

7.1.2 Implementation

The implementation is performed using Flink 1.15.0 and FlinkML 2.0.0. The DataS-
treamAPI is used in the programs. The framework introduced in Section 5.2 is used
to implement the different MoO and the improvements of k-means based on triangle
inequality are implemented using pseudo-code from Section 5.4. In this section,
we dive into some specific comments regarding the implementation of the artifacts
to run them in experiments and to validate/evaluate them, as well as making the
environment to run experiments in. Source code used in the experimental work can

be found at GitHub!.

Lhttps://github.com/astyrmoe/MSc-thesis-experiments
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Table 7.1: Analysis of NSL KDD data sets.

Train set Test set

Number of points 125973 22544
Number of domains 336 189
Number of domains with just one point —78 -30
Remaining domains = 258 =159
Remaining points 125895 22514
Domains with no points in a class, of the remaining ones —204 —130
Domains included in accuracy calculation =54 =29
Points included in accuracy calculation 88461 17348
Nomalies included in accuracy calculation 66590 9666
Anomalies included in accuracy calculation 21871 7682

Two objects, Point and Centroid, are used in our k-means implementations, both
inheriting from a Vector object. Both objects have a method called distance that is
used to calculate the Euclidean distance to another Vector. This method includes a
counter so we can get the number of distance calculations done later.

In some MoO, centroids and points have some additional fields. For example,
in sequential MoO, the Centroid objects also have a weight. When implementing
triangle inequality utilised in the k-means algorithm, we make objects inheriting from
Point and Centroid objects to make sure we change them as little as possible, only
adding the improvements. This means the Flink Job still makes the same method
calls for each version, but the implementation of move and update methods inside
the objects are overwritten. Sections 5.4 and 5.5 describe the logic inside the objects.

The data gets loaded into Flink from a CSV file. Flink comes with a datatype for
double vectors called DenseVector, which we use to represent vectors in the Euclidean
space. The domain is also stored as a string. The string (unique identifiers for
domains) was made by conjugating all non-numeric fields in the dataset. The label
is also stored in these objects for later pre-processing as is is not possible to derive a
primary key from the domain and vector as multiple points shared the same values
on these fields.

The Flink Job retrieves the test data, as described above, and runs the mode of
operation. After the Flink Job has received the resulting points (and centroids) with
its assigned clusters another FlinkJob calculates measurements as already explained
in Section 4.2.2.
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In online MoO, where trained centroids are needed, centroids are loaded from a
file containing trained centroids during the start of the Flink Job.

Some comments regarding offline/batch MoO

As a starting point, we chose to use the OfflineKMeans implementation that comes
out of the box of FlinkML. We changed the KMeans class to support our objects as
described above, removed the Estimator interface and changed the return value of the
fit method to be both the resulted Centroid object datastream and the resulted Point
object datastream. Also, the API was changed from TableAPI to DatastreamAPI.
The KMeanslterationBody inside the KMeans object was further changed to match
what Figure 5.3 describes. The flow inside the fit method of the KMeans object
is shown in Figure 7.1. The initial centroids are selected randomly. However, by
using the same seed, we are able to use the same centroids each time to create a
comparable accuracy measurement and a mean runtime. Batch mode is implemented
by running multiple instances of our offline k-means implementation and assigning
input points to different instances with fixed batch sizes. Resulted domains are not
mixed between the instances before the labelling is complete, when calculating the
accuracy.

TestData

v

InitFeatures —> InitCentroids

\—H

lterationBody

—

ResultedFeatures ResultedCentroids

Figure 7.1: The data flow in our k-means implementation.

7.1.3 Environment

The experiments were performed by executing a fat JAR on a virtual computer from
NTNU’s Skyhigh solution. The VM had Debian 11 installed, had 8 GB of RAM and
Java 11.0.15.

7.1.4 Reviewing the requirements for the experiments

RE1, in Table 4.4, is solved by introducing a counter on each distance call in the
Vector objects. RE2 is solved by storing the label inside Point objects. RE3 is solved
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by using the framework presented in 5.2. Finally, RE4 is solved by making our offline
MoO emit the final centroids for later usage.

7.2 Presentation of results

7.2.1 Speed in treatment A: Speed comparisons to A.1

The thesis use the relative speedup (rel.speedup) compared to the naive implementa-
tion when presenting the speed of artefacts where treatment A is varied. To calculate
the relative speedup, equation (7.1) is used. The times used in calculating rel.speedup
are the mean of five executions. The percentage of skipped distance calculations
compared to naive k-means, Ad, are calculated using Equation (7.2), where d is
the sum of distance calculations. Ad is also used when comparing artefacts where
treatment A vary.

ti naive
Rel.speedup = _MCnaive (7.1)

1TMEimprovement

Ad = narve = dimprovement 1, (7.2)

dn aive

7.2.2 Speed in treatment B: Speed comparisons between artefacts

When comparing artefacts what vary in treatment B regarding speed, we provide
the mean execution time, not the relative speed up, as there is no natural artefact
to compare against. Also, the number of distance calculations is provided, not the
percentage of skipped calculations, for the same reason.

7.2.3 Accuracy

As already mentioned, PPV is used to present the accuracy of the different artefacts.
Equations (7.3) and (7.4) are used to calculate TPR and FPR, respectively. As given
in Equation (7.5), BR tells us about the probability of an attack in our test data.
PPV is calculated using Equation (7.6).

TP

TPR =75 PN (73)
FP

FPR (7.4)

“FP+TN
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TP+ FN
BR*TP+FP+TN+FN (7.5)

P
PPV BR«TPR (7.6)

" BR+«TPR+ (1- BR) * FPR

7.3 Treatment A

In this section, we investigate the experiments run to explore treatment A, i.e., the
use of triangle inequality to skip distance calculations. A.1-A.4 can be applied to
Offline MoO, but as stated in Section 5.5, we cannot apply A.3 and A.4 to online
k-means MoO. In Section 5.5, we suggest using Philip’s idea (A.2) on the online
k-means version. This is also what we have done.

Firstly, we tested A.1-A.4 on offline mode by testing each artefact five times and
calculating the mean speed and number of distance calculations (d is the same for all
artefacts). We used the NSL KDD Train data set in the same order, and the same
initial centroids were chosen. The accuracy of each artefact was calculated to verify
that A.1-A.4 provide the same result.

Secondly, the transform MoO was tested using A.1 (No TI) and A.2 (TI using
Philip’s idea). Also, here, we ran the experiments five times and calculated the mean
speed. Finally, accuracy was calculated for validation. The NSL KDD Test data
set was used in the same order for both artefacts and all executions. The initial
centroids were the resulting centroids from running offline k-means on the NSL. KDD
Train data set.

Lastly, A.1 and A.2 were tested on sequential MoO in the same way as for the
transform MoO.

7.3.1 Results of treatment A with Offline MoO

The results regarding the speed and capacity of the artefacts using different versions
of treatment A in offline mode are presented in Table 7.2. The accuracy of the
artefacts using different versions of treatment A is presented in Table 7.3. The
table shows the TPR, FPR and the PPV of the various experiments performed.
All artefacts perform the same when it comes to accuracy. Consequently, all four
treatments are validated. Only A.2 shows a speedup compared to the rest despite
reducing the number of distance calculations. In A.3 and A.4, the overhead may be
too significant.
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Table 7.2: Results of relevant speed calculations of treatment A in offline MoO.

Artefact Rel.speedup Ad
A.1 Naive k-means 1.000 0.0%
A.2 Philips’ algorithm 1.046 39.0%
A.3 Elkan’s algorithm 0.923 81.1%
A.4 Hamerly’s algorithm 0.983 59.8%

Table 7.3: Accuracy results for treatment A in offline MoO.

Artefact TPR FPR PPV
A.1 Nailve k-means 0.641 0.078 0.729
A2 Philips’ algorithm 0.641 0.078 0.729
A.3 Elkan’s algorithm 0.641 0.078 0.729
A.4 Hamerly’s algorithm  0.641 0.078 0.729

Our implementation of k-means may be better in some domains than others.
Therefore, in those domains, where both nomalies and anomalies exist, we can see
the T/FPR and PPV for each domain in Appendix B when running our naive
implementation for reference.

7.3.2 Results of treatment A with Transform MoO

The results regarding the speed and capacity of the different artefacts using treatment
A in the transform MoO are presented in Table 7.4. To validate the treatment (TT),
both artefacts perform the same when it comes to accuracy. With TPR = 0.323 and
FPR =0.075, PPV becomes 0.774. A minor speedup is registered when using TT
on the Transform MoO.

Table 7.4: Results of relevant speed calculations of treatment A in transform MoO.

Artefact Rel.speedup Ad
A.1 No TI 1.000 0.0%
A2 TI 1.016 26.2%

7.3.3 Results of treatment A with Sequential MoO

The results regarding the speed and capacity of the different artefacts using treatment
A in the sequential MoO are presented in Table 7.5. To validate the treatment (TT),
both artefacts perform the same when it comes to accuracy. With TPR = 0.323 and
FPR =0.074 PPV becomes 0.775. The number of distance calculations increases
when applying T1.
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Table 7.5: Results of relevant speed calculations of treatment A in sequential MoO.

Artefact Rel.speedup Ad
A.1 No TI 1.000 0.0%
A2 TI 0.991 —23.7%

7.4 Treatment B

In this part of our experimental work, we compare the different artefacts where
treatment B vary, when the k-means algorithm are put in IDS. No triangle inequality
is used.

As already stated, some artefacts testing treatments B differ in accuracy depending
on the input order. Although this only applies to B.1 and B.3 (referencing Table 4.3),
we test each artefact using five different input orders (the same five for all artefacts).
Each order of input is further executed five times. This means that each artefact is
executed 5 * 5 = 25 times, and a mean is calculated after that.

7.4.1 Comparing the accuracy of different MoO

The accuracy of the different artefacts varying treatment B is presented in Table
7.6. The table shows the BR, TPR, FPR and the PPV of the various experiments
performed. B.1 performs the poorest concerning PPV. However, the difference in
PPV between the artefacts is tiny. B.3 performs the best. Note that B.1 has another
BR than B.2 and B.3 since it have another starting point in terms of not having a
trained model.

Table 7.6: Accuracy results for treatment B.

Artefact BR TPR FPR PPV
B.1 Batch 0.331 0.463 0.072 0.767
B.2 Transform 0.443 0.323 0.075 0.774
B.3 Sequential 0.443 0.323 0.074 0.775

7.4.2 Comparing the speed of different MoO

The results regarding the speed and capacity of the different artefacts varying
treatment B are presented in Table 7.7. Both B.2 and B.3 have 44254 distance
calculations. This corresponds to each point calculating distances to both centroids
(22127 % 2 = 44254). B.3 has a mean execution time of about 6 minutes. However, it
varied a lot with the order of input. For example, one seed gave an execution time of
1404340.4 milliseconds, while the four others had a mean of 82894.15 milliseconds.
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Table 7.7: Results of relevant speed calculations of treatment B.

Artefact Mean milliseconds Distance calculations
B.1 Batch 13647.96 187834.8
B.2 Transform 2218.84 44254.0

B.3 Sequential 347183.40 44254.0
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Discussion

In this chapter, we discuss the work done in this thesis. We start with some general
points regarding making a k-means-based IDS. After that, we will dive into the
theoretical contributions and, by doing so, discuss how we have answered RQ1 and
RQ2. Later in this chapter, we move on to our experimental work and answer RQ3
and RQ4. Finally, we discuss how one could build a better IDS based on the work
done in this thesis. We also address limitations, drawbacks and implications in this
chapter.

This thesis has explored different ways to speed up k-means-clustering-based
IDS. A lot of effort is put into speeding up the k-means algorithm. However, not
many of these improvements have been put in IDS, although efficient algorithms are
crucial. Also, other forms of operating the k-means algorithm that may be faster
but decrease the accuracy are interesting in IDS. As we can see, there is a trade-off
between accuracy and speed. Also, we have explored the Apache Flink framework
for application in IDS as it is a relatively new platform. Not much research has been
put into studying the functionality that may support different modes of operation of
the k-means algorithm.

8.1 Building an IDS

This section contains essential discoveries we have made while building an IDS.

8.1.1 Introducing domains

We have formalised the pre- and post-processing of data in k-means-based IDS by
introducing domains in this thesis. Although the solution to non-numerical data
in k-means was proposed in [YT11], we cannot see much research done on using
the concept of domains in k-means-based IDS. Therefore, we have taken the idea
presented in [YT11] and taken it further by integrating domains as a part of the
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k-means system on a streaming platform. Future work may address these ideas of
integrating domains in the k-means system on classical computing platforms.

Domains were among the most significant contributions as they had many impli-
cations for interpreting results and operating the IDS. Therefore, some considerations
are stated here. However, when diving into the experimental results, we will discover
more implications later in this chapter.

First, we need to label clusters in each domain separately as two "normal" labelled
clusters in two different domains may not correspond. This affects the process of
measuring how accurate a k-means-based IDS using domains is and how these IDS
will operate with the labelling algorithm.

Second, a signature-based IDS should assist an anomaly detection system in
handling the domains that are malicious by nature. As discussed in Section 5.1,
one should not automatically approve a domain since it may later be a source of a
zero-day attack. At this point, we will revisit the No Free Lunch theorem that states
that without any assumptions, there is no single algorithm that solves any problem.
Assuming all domains have both anomalies and normal traffic, k-means-based IDS
using domains may fit perfectly. However, this is not an assumption that holds for
networks today, so we need signature-based IDS to support our system.

Third, points in one domain may arrive less frequently, making the domain wait
(online) or being dropped (batch) in the clustering process. This also supports the
statement that signature-based IDS should assist anomaly-based IDS.

8.1.2 Different modes of operation (MoO)

We have explored and concretised different modes of operation (MoO). We have also
operated with two distinctions when talking about the different MoOs.

Offline k-means and online versions of k-means

Offline k-means works when all points are presented in advance. When put in IDS
context, we call offline batch as we divide the continuous stream of data into batches
on which the offline k-means algorithm performs.

On the other hand, online modes will not require all points to be known in
advance and will assign a cluster to each point when it arrives. Two online modes
have been used in this thesis.

Sequential k-means is a mode that updates the centroids each time an incoming
point has been assigned a cluster. The transforming k-means mode is not a mode we
can read about in the literature. Technically, transforming k-means is not a k-means



8.2. APACHE FLINK FOR IDS AND K-MEANS IMPROVEMENTS 57

algorithm, in the sense of not calculating centroids, just assigning points to their
nearest centroid. It is just a classifier trained by running offline k-means that outputs
centroids the transforming k-means will use. However, this mode may be interesting
for application in IDS as it is fast.

Trained and not trained k-means

In k-means, there is nothing that is called training. However, we have introduced
training to the k-means algorithm to explore different ways to operate the algorithm.
Trained k-means means the initial centroids are calculated from another execution of
the k-means algorithm, for example, the transforming k-means.

In batch k-means, this means the initial centroids are not chosen randomly from
the pool of points in the batch or by using k-means++, but rather stem from another
execution of the k-means algorithms—for example, the former batch. Sequential
k-means’ initial centroids may be the first points that arrive, chosen randomly from
the first 1000 points (not trained) or stem from another execution of the k-means
algorithm (trained). As already pointed out, the weight of each centroid must be set
accordingly.

When introducing training in k-means, we also need to revisit the previously
discussed challenges with machine learning as described in Section 2.2.2. Querfitting
is not originally a problem in k-means-based machine learning systems as no training
is involved. However, in this thesis, we have introduced training. So, overfitting is
a problem in transforming k-means. Not as much in batch and sequential k-means
since the centroids are allowed to change and update.

8.2 Apache Flink for IDS and k-means improvements

8.2.1 The new framework for implementing k-means

Using the framework introduced in Section 5.2 and the adjusted pseudo-codes in
Section 5.4, the improvements to the k-means algorithm based on triangle inequality
can be implemented in Apache Flink. There are many ways to do this. We introduced
objects and may introduced further overhead to ensure the implementations were
comparable. However, there is no doubt there exist more efficient ways to implement
each improvement if it should not be compared.

Although we had k = 2 in our IDS, we have developed a framework that supports
k> 2. If k > 2, Sort-Means and Drake’s algorithm (see Section 2.3.2) would be
interesting to test and compare. However, a method for labelling £ > 2 clusters
should be further investigated.
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Also, different operation modes were built using building blocks from Section 5.2.
These included operators such as PointUpdater, CentroidUpdater and CentroidIni-
tialiser. These building blocks give the community a framework when discussing and
describing improvements and modes of operation of the k-means algorithm.

8.2.2 Triangle inequality in online algorithms

In Section 5.5, we also introduced triangle inequality to online k-means, by taking
Philip’s idea of using centre-to-centre distances, into online modes.

8.2.3 Adjusting existing solutions

We also based our k-means implementation on the built-in OfflineKMeans Imple-
mentation in FlinkML. However, the convergence of this implementation needed to
be fixed. By introducing filters after the UpdatePoint operator, we could filter out
finished points and centroids, leaving points and centroids of domains that had not
yet converged. One may argue our introduction of domains makes the algorithm
converge faster, besides being a correct way to solve non-numerical attributes instead
of ignoring these attributes or assigning these nominal values to numbers as other
research may have done.

8.2.4 Answering RQ1 and RQ2

RQ1: How can the different improvements of the k-means algorithm be adjusted to
operate with Apache Flink?

By introducing the framework presented in Section 5.2 with the adjusted improve-
ments of the k-means algorithm presented in Section 5.4, we have made it possible
to implement Philips’, Elkan’s and Hamerly’s improvements in Apache Flink, as well
as a naive implementation.

RQ2: How can k-means on Apache Flink be used in intrusion detection applications?

Working with this research question has introduced multiple concepts to make an
IDS in Flink. It gave rise to an analysis of some already known, and introduction of
new, modes of operations in Chapter 4 and earlier in this chapter. It also gave us the
concept of domains, and we altered the OfflineKMeans implementation in FlinkML
to stop when the algorithm had converged.
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8.3 Interpretations of the experimental results

8.3.1 Treatment A

In this part of the experiments, we wanted to test the different improvements of the
k-means algorithm utilizing the triangle inequality to compare the speed when put
in an IDS.

Offline mode

As we have seen, the improvements’ overhead outweighs the gained speed from
reducing distance calculations, at least when parallelism is 1. This is also what
Ringdalen found out in [Rin20] when he only tested Elkan’s algorithm. However,
we also tested Hamerly’s and Philips’ algorithms and got a minor speedup using
only centroid-to-centroid-distances (Philips’ Compare-Means algorithm). Probably
this is because Philips’ algorithm does not have a very advanced logic for each point
update, and the overhead, in general, is smaller than for Elkan’s and Hamerly’s
algorithms (where also all points need to store extra information, not just the
centroids). Therefore, future work can concentrate on one method and use Tuples
instead of Objects in the datastream to decrease overhead.

Online modes

As already mentioned, we took triangle inequality to the online algorithms to test.
However, as already stated, triangle inequality was only effective in the transform
mode of operation. As we can see in the results for Transform MoO, not allowing
centroids to move is beneficial when using TI in an online version, as opposed
to Sequential MoO. Distance-to-distance calculations are only performed once in
Transform MoO. However, the benefit of applying TI in online k-means are minor.
Using triangle inequality in sequential k-means will not be more effective since the
number of distance calculations increases when utilizing TT on Sequential MoO. This
proves that TT in sequential k-means is not exactly a great idea. This is because new
centroid-to-centroid-distances must be calculated each time a point leaves. In batch
mode, this only happens after one batch/iteration.

8.3.2 Treatment B

In the second part of our experiments, we want to compare different modes of
operation. Some modes work faster than others, and some modes are more accurate
than others. The question we wanted to answer was how much decrease in accuracy
we tolerate in our IDS to increase the speed?

Both B.2 and B.3 perform better than B.1 in terms of accuracy. This is surprising
as batch mode allows points to change clusters and further adjust based on future
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points. However, the batchSize may be too small, or this results from different initial
centroids as B.2 and B.3 share initial centroids (trained), and B.1 chooses centroids
randomly from the test data set. As we know, k-means will only find a local optimum,
meaning other initial centroids will provide a different result and is essential for the
outcome.

Another reason may illustrate the difference between trained and untrained modes
of operation in k-means. The trained model given B.2 and B.3 may be too well
suited for our test data set and give us a fake good result. This is substantiated by
the fact that B.2 and B.3 have a poorer TPR and FPR than B.1. To underline the
difference, we can look at the BR. B.1 has a different BR than the others since it does
not depend on training data and will therefore include all domains with sufficient
cardinality (not just the domains that had initial centroids provided). When training
a model, i.e., getting "trained" centroids after running offline k-means, the algorithm
will not perform clustering on domains with cardinality less than k. The test data
set have domains that were not accepted during the training. Consequently, as we
can read in Section 7.1, 174 of the 189 domains in the test data set will be included,
not the remaining 15. The difference in domains included in the test set affects
the BR (the probability of an attack). If TPR decreases in Equation 7.6, PPV will
decrease. However, in the case of B.2 and B.3, this is compensated with increasing
BR. This illustrates the importance of the relation between the training data and the
real-world (here: test data), especially when working with domains. When working
with domains, the requirements for our training data gets stricter (also on a domain
level).

B.3 is surprisingly slow. This may be due to a combination of events that make
points block the pipeline since all data points go through one operator. If a new point
of the same domain as the former point arrives, it has to wait before new centroids
for this domain enter the iteration. This may be solved using higher parallelism.
However, domains must be grouped to ensure all operators have correct centroids.
The fact that different orders influenced the speed that much (as seen in Section 7.7)
supports this.

The fastest MoO is B.2, and the accuracy is quite good, considering the fact that
this mode does not update the centroids at all. This is, again, maybe because the
data set may have a bad BR that leads to a fake good result. Also, the test data
is not a stream of ordered events that may make centroids shift in batch (B.1) and
sequential (B.3) mode.

8.3.3 Answering RQ3 and RQ4

RQ3 was about the accuracy of IDS using the different versions of the k-means
algorithm. RQ4 was about the speed of IDS applying the various versions of the
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k-means algorithm. Both questions are answered in Chapter 7 and summarized
above.

Generally, our IDS is quite bad in accuracy, especially when looking at TPR. This
may be because NSL KDD has many features and our IDS suffers from the curse of
dimensionality, as described in Section 2.2.2. Therefore, signature-based IDS should
support our system.

8.3.4 Limitations and drawbacks

Our experimental work bears the mark that we have not run the experiments in
parallel on a distributed Flink cluster. Instead, it was only run by executing fat JARs.
This significantly influences our speed results (not distance calculations or accuracy).
It would be interesting to run these experiments by increasing the parallelism and
running the artefacts on an actual Flink cluster.

Future work can also test with data sets where events are ordered by timestamp,
meaning we can observe a realistic drift in centroids in batch and sequential modes
while the centroids stay the same in transforming k-means. How bad will the accuracy
of transforming k-means be then?

As briefly discussed in Section 8.1.2, there are multiple ways to operate k-means
regarding the MoQO, choice of initial centroids (trained or not trained) and other
parameters. When we compared B.1-B.3, these settings were not the same. For
instance, we did not train B.1 from training data as the other two were. This also
gave us the accuracy results as previously discussed. We chose the settings like
how one would have used each artefact in an IDS setting. Future work may find
combinations of settings, initial centroids and MoO that are more comparable.

8.4 Building a better IDS

We have tested different treatments to the problem that naive k-means sometimes is
too slow for application in IDS. If offline or batch mode, Philip’s improvement to
the k-means algorithm is a good choice if parallelism is 1. However, if parallelism
increases, Elkan’s or Hamerly’s algorithms may be a good choice.

Since IDS work in real-time, online algorithms are desirable. Transforming k-
means is very fast, even if parallelism is 1. Sequential k-means may be a good solution
if the speed increases and gets better with higher parallelism. TT can be applied to
transforming k-means, not sequential.

At this point, we revisit the functional requirements (FRs) stated in Table 4.1.
FR3 is solved by using Philips’ algorithm on offline/transform if the parallelism is
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one. Future work may give more options when parallelism is higher. The rest of the
FRs are trivial and are answered in this thesis.

8.4.1 Proposal for new MoO: Online-Batch

To bridge the gap between the different MoOs, we present a new conceptual MoO
that has not been tested, but the idea is shown here. This mode works in online
mode by assigning incoming points to a cluster immediately from already-trained
centroids and emitting this point (much like transform MoQ). The point is stored,
and for every 1000 points, the offline k-means algorithm is run until we have a new
set of centroids that will be used to transform new points. Among the benefits, we
get the speed of transformation MoO and can update the centroids used with the
evolution of the network traffic.

Figure 8.1 shows the concept using the framework presented in Section 5.2. In
the figure, we see an IterationBody that takes in new points, points from the last
iteration and centroids from the previous iteration. The new points are updated in a
UpdatePoint operator (as in Section 5.4) and then emitted. Each newly updated point
is sent to a window operator that accumulates 1000 (can be another number) points
before sending them and joins this datastream with a datastream in the orange area
(offline k-means). These joint datastreams are sent to an NC'VOperator and the next
iteration. The rest is offline (referencing Section 5.3). However, the FilterCentroid
operator will send finished centroids to the "transform part" of the algorithm, and
the FilterPoints operator will not emit finished points, just terminate these points.

8.4.2 An IDS architecture

As k-means only will find a local optimum, we can use this fact to make an IDS
architecture that consists of multiple k-means systems, each having different centroids.
These systems may form a majority decision system or work like a Swiss cheese
model[Rea00]. The initial centroids to these systems can be decided by giving each
instance unique trained models (where the offline executions had different initial
centroids or training data). The research on faster execution times for k-means may
allow multiple instances of batch k-means to be part of this system. Here the initial
centroids of a batch may be former resulted centroids from its own instance. This is
an architecture that future work may look into to make anomaly-based IDS more
robust.
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Figure 8.1: Online-Batch - Proposal for a new IDS bridging the gap between MoO.

8.5 Consequences

8.5.1 Consequences of the answers to RQ3 and RQ4

The clustering problem, to minimise the sum-squared error (SSE), see equation 2.1,
is an NP-hard problem. The k-means algorithm is a widely used clustering algorithm
in many fields that finds a local optimum in linear time (the optima depend on initial
centroids, among other things). As a result, research on speeding up the k-means
algorithm will have significant consequences for multiple fields.

The first method to speed up k-means-clustering we investigated, was the use of
triangle inequality that we could not read much about in literature regarding IDS.
Another method is varying the mode of operation. In some settings speeding up
means lowering the accuracy as anomaly detection is a trade-off between speed and
accuracy.

Speeding up the k-means algorithm may allow for finding multiple local optima
in runtime (beneficial in the architecture proposed in Section 8.4.2). The findings in
this thesis will be useful in the IDS community and other fields where clustering is
used as an unsupervised machine learning method.
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8.5.2 Consequences of the answers to RQ1 and RQ2

We have introduced a flexible framework for k-means on streaming platforms. Differ-
ent improvements and operation modes are easy to implement and describe using
this framework. The research community on the k-means algorithm may further use
this framework when working with improving and exploring the possibilities and
constraints in the k-means algorithm. Also, more effective initialisation techniques
can be chosen and adjusted in Flink and our framework.

We have also contributed to the Apache Flink community by proposing methods
to make the OfflineKMeans implementation converge and by implementing different
improvements based on triangle inequality of the k-means algorithm and different
modes of operation of the k-means algorithm.

Implications of introducing domains

One main contribution we have made is introducing domains. However, while doing
this, we have seen multiple implications and considerations that need to be taken.

Labelling in cluster-based IDS is essential. Labelling of domains should be done
separately, as already discussed. As pointed out in Section 2.2.1, the cluster with the
highest cardinality often gets labelled "normal". When introducing domains, it is
crucial to not use this labelling method as it is less likely that the highest-cardinality
cluster is the "normal" cluster, as seen in Appendix B.

We also introduce multiple issues we cannot read about in literature by introducing
domains. As domains should be included in a k-means-based IDS as a k-means-based
IDS without domains should not be effective, we should address these issues. These
issues are either solved by having a signature-based IDS or stricter requirements for
our training data (if trained k-means).

As already discussed, some domains may be malicious by nature, giving the need
for signature-based IDS to support our anomaly-based one.

Our k-means-based IDS perform poorly when tested on NSL KDD (in case of
accuracy). This is because there should be enough normal and anomalies in each
domain, but this is not the case in NSL KDD. Especially when testing trained
k-means. The cut between domains in the training and test data sets with enough
normal traffic and anomalies may be too small. And those domains that pass the
training phase may give faulty results during the test phase. NSL KDD may still
be a good data set for other detection systems, but when introducing domains in
k-means, NSL. KDD may not be an ideal data set. This emphasises the importance
of using a data set that reflects the real world and using signature-based IDS on
those domains where IDS performed poorly.
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Also, a limitation to the results given during the experimental work of this thesis
is due to the difference in domains included (which is an already described problem
when using NSL KDD with domains). Therefore, it would be interesting to test a
modified version of NSL KDD where small domains are not present in both sets or
other data sets.

Some requirements for a trained k-means system follow. First, as already men-
tioned, 15 domains were not tested when testing B.2 and B.3 since we did not train
our IDS for those domains. In our implementation, these domains would not be
processed. If we meet a case where the trained algorithm does not have a model
for a domain, signature-based IDS should assist. Secondly, our training data need
enough normal and abnormal data points in all domains the k-means-system should
process.






Conclusion

This thesis explores new ways to think of k-means. We have built a better k-means-
cluster-based IDS by investigating different options for speeding up the k-means
algorithm and exploring different operation modes.

We have taken improvements of k-means and put them in the IDS context. We
have also explored different modes of operation for k-means that may be suitable
for IDS. And even further, we have implemented those improvements and different
modes of operations of the k-means algorithm in Apache Flink. These improvements
have then been compared in terms of speed, and the modes have been compared in
terms of both speed and accuracy.

In this chapter, we will go through the answers to our research questions and
describe what future work may be. Proposal for a new and better IDS is outlined in
Section 8.4.

9.1 Answering RQs

RQ1: How can the different improvements of the k-means algorithm be adjusted to
operate with Apache Flink?

By introducing the framework presented in Section 5.2 with the adjusted improve-
ments of the k-means algorithm presented in Section 5.4, we have made it possible
to implement Philips’, Elkan’s and Hamerly’s improvements in Apache Flink, as well
as a naive implementation.

The framework consisted of IterationBody, datastreams, some new objects and
operators. The operators were the PointUpdater, CentoridUpdater and CentroidIni-
tialiser. The objects were the Point and Centroid objects that consisted of the unique
logic of each improvement of the k-means algorithm. By using methods in those
objects, we have made a flexible framework that may be used in the research and
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education area of k-means.
RQ2: How can k-means on Apache Flink be used in intrusion detection applications?

Working with this research question has introduced multiple concepts to make an
IDS in Flink. It gave rise to an analysis of some already known, and introduction
of new, modes of operations in Chapters 4 and 8. It also gave us the concept of
domains as a solution to data sent to IDS that contain non-numeric features that
cannot be included in the k-means algorithm. Also, we altered the OffiineKMeans
implementation in FlinkML to stop when the algorithm had converged. The already
mentioned framework enabled us to implement different modes of operation in Apache
Flink easily.

RQ3: What is the accuracy of an IDS using the different versions of the k-means
algorithm?

This question was answered by utilising and testing treatments A and B in Chapter
7 and discussed in Section 8.3. All improvements based on triangle inequality have
the same accuracy as a naive implementation, as already hypothesised.

Our experiments showed that sequential k-means perform better than transforming
k-means in terms of accuracy. This was already hypothesised. However, transforming
k-means performed surprisingly good. This may be due to the data set used (as
already discussed). We have concluded that the data set in combination with
domains is why batch k-means perform surprisingly poorly in the case of accuracy.
The complete results are shown in Appendix A.

RQ4: What is the speed of an IDS applying the different versions of the k-means
algorithm?

This question was answered by adjusting treatments A and B in Chapter 7 and
discussed in Section 8.3. Philips’s approach using centroid-to-centroid distances is a
good choice if parallelism is 1. Philips’ algorithm can be used offline/batch mode or
transform mode. Elkan’s and Hamerly’s algorithms do not perform better due to the
overhead introduced. However, this might change if parallelism is higher.

The modes of operation also differ in speed. For example, sequential may be
too slow for application in IDS, especially if parallelism is 1. On the other hand,
transforming k-means is a really fast MoO. The complete results are shown in
Appendix A.
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9.2 Future work

Much future work is proposed in Chapter 8. However, some key points are summarized
here. First, future work may implement and test our newly proposed mode of
operation called Online-Batch, as described in Section 8.4.1.

Multiple limitations of our experimental work have been pointed out in Section
8.3.4 that may give rise to future work. One of the most important ones is that we
did not test with higher parallelism than one and did not execute the Flink Job in a
Flink Cluster but instead as a fat JAR. This execution environment has influenced
the speed comparisons in our experiments. Future work should test these artefacts
with higher parallelism. Probably, some MoO and improvements of k-means may
perform better. Especially sequential mode, as it still is a very interesting MoO
to put in IDS. Another thing that may influence the experimental results is that
different initial centroids were used when testing treatment B. Future work may
explore different combinations of choosing initial centroids (referencing Section 8.3.4).

Regarding k-means in other applications, Drake’s method is a significant improve-
ment of the k-means algorithm that should be included. Sort-Means should also be
tested. Treatments A and B with k& > 2 should be investigated as well.

B.1 and B.3 artefacts will adjust with the change of networks. Transforming
k-means will not. Future work may find test data ordered by timestamp and test
B.1-B.3 to see how bad the accuracy is for transforming k-means when centroids are
not allowed to drift.
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Results of experiments performed

The following table shows each experiment that was run. Each row is executed
five times, and the mean speed is provided in milliseconds. The first column is for
treatment A, i.e., show if triangle inequality was used and, if so, which variant. The
second column is for treatment B or shows the mode of operation. For example,
when comparing artefacts comparing treatment A in offline mode, B.1 (batch) was
not used but rather an offline mode where the whole data set was run not in batches
(Section 7.3.1).

The column Data shows whether the train or test data set of NSL KDD is used.
The number after "test" in the Data column indicated which order of events was used
(seed to generate a new random order).

In Section 7.3, we compared varying treatment A artefacts using different MoO
(offline, B.2 and B.3). No variation in test data was used.

In Section 7.4, we compared varying treatment B artefacts without triangle
inequality (just A.1). The mean of TestO-Test4 was used.

(0]
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A B/MoO Data TPR FPR PPV Mean speed Dist. calcs.

Al Offline  Train 0,641 0,078 0,729 34527,2 2549834
A2 Offine  Train 0,641 0,078 0,729 33005,4 1556577
A3 Offine  Train 0,641 0,078 0,729 37403,6 482019
A4 Offline  Train 0,641 0,078 0,729 35129,2 1024901
Testd 0475 0,071 0,769 132436 182410
Testl 0,452 0,075 0,761 11967,8 178448
Al B.1
Test2 0478 0,078 0,752 15686,4 186510
Test3 0,462 0,067 0,783 13629,8 195576
Testd 0446 0,070 0,771 13712,2 196230
A2 Bl Test0 0,475 0,071 0,769 12133,2 122131
A3 Bl Test0 0,475 0,071 0,769 12423 8 69477
A4 Bl Testd 0475 0,071 0,769 12210,8 157265
Test0 0,323 0,075 0,774 2124,2 44254
Testl 0,323 0,075 0,774 2166,0 44254
Al B2
Test2 0,323 0,075 0,774 2273,6 44254
Test3 0,323 0,075 0,774 2217,8 44254
Testd 0,323 0,075 0,774 2312,6 44254
A2 B2 Test0 0,323 0,075 0,774 2091,4 32675
Testd 0,323 0,074 0,775 1404340,4 44254
Testl 0,322 0,075 0,775 93761,6 44254
Al B3
Test2 0,323 0,074 0,775 65114,4 44254
Test3 0,323 0,075 0,773 73959,4 44254
Test4 0,323 0,074 0,775 98741,2 44254

A2 B3 Test0 0,0323 0,074 0,775 1417594,6 54721




Accuracy results by domain

The following table shows the results for each domain that had both normal points
and anomalies in test data after running offline mode. In addition, the table shows
the number of points assigned to two clusters, A and B, and the number of normal
points in each of the clusters (N+CA and N+CB).
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