
H
antong Liu

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Hantong Liu

A GQPSO Based Optimal Path
Planner for Autonomous Underwater
Vehicle with Waypoint Guidance
System

Master’s thesis in Marine Technology
Supervisor: Professor Martin Ludvigsen
June 2022

M
as

te
r’s

 th
es

is

Hantong Liu

A GQPSO Based Optimal Path Planner
for Autonomous Underwater Vehicle
with Waypoint Guidance System

Master’s thesis in Marine Technology
Supervisor: Professor Martin Ludvigsen
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Abstract

Autonomous underwater vehicle (AUV) has become a popular and important way
to do the exploration and exploitation of ocean areas where it’s not possible for
human to visit such as areas in higher depth. Most of the time, the operation
environment of them exists various obstacles, including known static obstacles
such as rock structure on seafloor, and unknown dynamic obstacles. Therefore,
considering the safe operation condition, the path planning methods with colli-
sion avoidance could be seen as the core technology for AUV. This master’s thesis
presents a literature review introducing the main path planning methods with
collision avoidance for AUV applications, including global path planning meth-
ods and local path planning methods. By going through all main state-of-the-art
path planning methods, a discussion is provided to conclude their advantages and
disadvantages. Moreover, further study in Particle Swarm Optimization (PSO) is
carried out as well as its modified version Quantum-behaved Particle Swarm Op-
timization (QPSO) and Gaussian Quantum-behaved Particle Swarm Optimization
(G-QPSO). By formulating the path planning problem, a PSO-based optimal path
planner is designed using MATLAB. Also, its modified versions with QPSO and
G-QPSO algorithms are also designed and deployed using MATLAB. 3 different
scenarios are simulated to test the performance of the path planner. The simu-
lation result shows that with well-tuned parameters, PSO-based path planner is
qualified for path planning for AUV. But the tuning process is difficult and it is hard
to avoid its convergence to local optimal solution. With the modified path planner,
the tuning process becomes much easier. The performance and convergence abil-
ity to global optimum of QPSO and GQPSO-based path planner are better than
that of PSO-based path planner. In conclusion, the GQPSO-based optimal path
planner is a high-performance path planner for AUV.

iii

Prefaces

This report is written based on the work of my master thesis in marine cybernetics
during the spring of 2022 at the Norwegian University of Science and Technology
(NTNU). The research work is based on the project thesis during the fall of 2021,
which gives an overview of state-of-the-art path planning methods and their ap-
plications.

The main research topics of the master’s thesis are the design and development
of an optimal path planner based on particle swarm optimization method with
waypoint guidance system.

It is assumed that the reader of this thesis retains basic knowledge within marine
technology and control systems.

Hantong Liu

Trondheim, June, 2022

v

Acknowledgements

I have put great effort behind this master’s thesis in this semester. In this process
I have also gained lots of knowledge. Along the way, I have received great help
and assistance from others. Here, I’d like to thank my supervisor, professor Mar-
tin Ludvigsen. I am thankful for his efforts in this whole academic year since he
has answered my questions, given me ideas when facing challenges and provided
feedback on my work. Furthermore, I would like to thank people who have helped
me solve technical problems during the work.

vii

Contents

Abstract . iii
Prefaces . v
Acknowledgements . vii
Contents . ix
Figures . xi
Tables . xiii
1 Introduction . 1

1.1 Background . 1
1.1.1 Autonomous Underwater Vehicles (AUVs) 1
1.1.2 Autonomy . 2

1.2 Motivation . 3
1.3 Research Topic and Objectives . 3
1.4 Scope and Limitations . 3
1.5 Structure of the Thesis . 4

2 Literature Review . 7
2.1 Main Path Planning Methods for AUV 7

2.1.1 Global Path-planning Methods 8
2.1.2 Local Path-planning Methods 11

2.2 Particle Swarm Optimization (PSO) for Path Planning 14
3 AUVs’ Guidance System and Map Processing 17

3.1 LAUV Thor . 17
3.2 Guidance System with Constant Jerk 19
3.3 Map Processing . 20

4 Optimization Theory . 25
4.1 Particle Swarm Optimization (PSO) . 25

4.1.1 Classical Particle Swarm Optimization (PSO) Algorithm . . . 26
4.1.2 A Deeper Look into the Algorithm and its Meta-parameters . 28

4.2 Quantum-behaved Particle Swarm Optimization (QPSO) 31
4.3 Quantum-behaved Particle Swarm Optimization with Gaussian Muta-

tion (G-QPSO) . 34
5 Problem Formulation and Algorithm Design 37

5.1 Problem Formulation . 37
5.1.1 Preliminary Modelling for Optimal Path Planning Problem . 38
5.1.2 Simplification and Modification to Apply PSO Algorithm . . 41

ix

x Hantong Liu: A G-QPSO based path planner for AUVs

5.1.3 Final Version of Modelling for Path Planning Problem 44
5.2 Algorithm Design . 44

5.2.1 Straight-line Method . 44
5.2.2 Design of Objective Functions 46
5.2.3 The PSO Algorithm for Path Planning Problem 48
5.2.4 The QPSO and G-QPSO Algorithm for Path Planning Problem 49

6 Results . 51
6.1 Path Planning with PSO algorithm . 51

6.1.1 2D Path Planning with Different c1 and c2 53
6.1.2 2D Path Planning with Different Definitions of Inertia Weight 55
6.1.3 2D Path Planning in Complex Environment with OBB-shape

Obstacles . 57
6.1.4 3D Path Planning with PSO Algorithm 58

6.2 Path Planning with QPSO Algorithm 62
6.2.1 2D Path Planning with Different c1 and c2 62
6.2.2 3D Path Planning with QPSO algorithm 65

6.3 Path Planning with G-QPSO Algorithm 67
6.3.1 2D Path Planning with G-QPSO algorithm 67
6.3.2 3D Path Planning with G-QPSO algorithm 70

7 Discussion . 73
7.1 Path Planning with PSO Algorithm . 73

7.1.1 Tuning of Cognitive and Social Coefficient c1 and c2 74
7.1.2 Choice of Definitions of Inertia Weight w 75
7.1.3 2D and 3D Path Planning with PSO Algorithm 75

7.2 Path Planning with QPSO Algorithm 76
7.2.1 Tuning for Cognitive and Social Coefficient c1 and c2 76
7.2.2 3D Path Planning with QPSO Algorithm 77

7.3 Path Planning with G-QPSO Algorithm 77
8 Conclusion . 79

8.1 Conclusion . 79
8.2 Future Work . 80

Bibliography . 81
A Matlab Code . 87

A.1 Code of GQPSO-based optimal path planner 87
A.1.1 Main.m . 87
A.1.2 CostFunction.m . 90

A.2 Code of PSO-based optimal path planner 92
A.2.1 Main.m . 92

A.3 Code of obstacles setting . 95
A.3.1 2D scenario with OBB-shape obstacle 95
A.3.2 3D scenario with sphere-shape obstacles 97

Figures

1.1 Picture of AUV . 1

2.1 Path Planning Methods for AUV . 8

3.1 Picture of the AUV - LAUV Thor . 18
3.2 Jerk, acceleration, velocity and position in transition[49] 19
3.3 Modelling of the obstacles with circumcircle 21
3.4 Original and expanded model of obstacles 21
3.5 Comparison between the circumcircle and oriented bounded block 21
3.6 Graphics illustration for obstacles in circle and rectangular shape . 22

4.1 Flowchart of particle swarm optimization method 28
4.2 Flowchart of Quantum-behaved Particle Swarm Optimization method 33

5.1 Graphics explanation of the distance between path and obstacle . . 40
5.2 Graphics explanation of the turning angle between path segments . 41
5.3 Comparison between paths with 4 and 8 interior points 45
5.4 Graphics illustration for geometric relationship between the point

and the rectangular . 47

6.1 Performance of the PSO algorithm with different pair of c1 and c2 . 54
6.2 Performance of the PSO algorithm with different strategies for in-

ertia weight w . 56
6.3 Performance of the PSO algorithm in complex environment with

OBB-shape obstacles . 57
6.4 Optimal path generated by PSO-based path planner in 3D scenario 59
6.5 Optimal path generated by PSO-based path planner in the NE-plane 59
6.6 Optimal path generated by PSO-based path planner in the DE-plane 60
6.7 The fitness value during iterations by PSO algorithm in 3D envir-

onment . 60
6.8 Performance of the QPSO algorithm with different pair of c1 and c2

in simple 2D scenario . 63
6.9 Performance of the QPSO algorithm with different pair of c1 and c2

in complex 2D scenario . 64
6.10 Optimal path generated by QPSO-based path planner in 3D scenario 65

xi

xii Hantong Liu: A G-QPSO based path planner for AUVs

6.11 Optimal path generated by QPSO-based path planner in the NE-plane 66
6.12 Optimal path generated by QPSO-based path planner in the DE-plane 66
6.13 The fitness value during iterations by QPSO algorithm in 3D envir-

onment . 67
6.14 Performance of the G-QPSO algorithm with random numbers in

Gaussian distribution in simple 2D scenario 68
6.15 PPerformance of the G-QPSO algorithm with random numbers in

Gaussian distribution in complex 2D scenario 69
6.16 Optimal path generated by GQPSO-based path planner in 3D scenario 70
6.17 Optimal path generated by GQPSO-based path planner in the NE-

plane . 71
6.18 Optimal path generated by GQPSO-based path planner in the DE-

plane . 71
6.19 The fitness value during iterations by GQPSO algorithm in 3D en-

vironment . 72

Tables

4.1 Strategies for defining inertia weight 30

6.1 Parameter setting for PSO algorithm 52
6.2 Map information in a simple 2D environment 52
6.3 Map information in a complex 2D scenario with OBB-shape obstacles 53
6.4 Map information in 3D scenario with sphere-shape obstacles 53
6.5 Positions of waypoints generated by three pairs of c1 and c2 55
6.6 Total length of the paths generated by three pairs of c1 and c2 . . . 55
6.7 tested parameters of inertia weight . 55
6.8 Positions of waypoints generated by PSO algorithm with different

strategies of inertia weight . 55
6.9 Total length of the paths generated by PSO algorithm with different

strategies of inertia weight . 55
6.10 Optimization Parameter in complex environment 57
6.11 Positions of waypoints in feasible and unfeasible path generated by

PSO algorithm . 58
6.12 The fitness value of the paths generated by PSO algorithm, includ-

ing feasible and unfeasible path . 58
6.13 Optimization Parameter in 3D scenario 58
6.14 Positions of waypoints generated by PSO algorithm in 3D scenario . 61
6.15 Optimization Parameter for β in QPSO algorithm 62
6.16 Total length of the paths with different (c1, c2) 63
6.17 Total length of the paths with different (c1, c2) 64
6.18 Optimization Parameter in 3D scenario 65
6.19 Positions of waypoints generated by QPSO algorithm in 3D scenario 65
6.20 Optimization Parameter for β in G-QPSO algorithm 67
6.21 Optimization Parameter in 3D scenario 70
6.22 Positions of waypoints generated by QPSO algorithm in 3D scenario 70

xiii

Chapter 1

Introduction

1.1 Background

1.1.1 Autonomous Underwater Vehicles (AUVs)

Autonomous underwater vehicles (AUVs) are a subclass of unmanned underwa-
ter vehicles (UUVs). As shown in Fig. 1.1, it is a self-propelled, unmanned, un-
tethered underwater vehicle which is able to complete simple tasks with little or
even without human intervention. The common task for AUVs is to work as the
survey platform to do scientific research such as mapping the seafloor or monit-
oring and analysing the chemical property of the water.

Figure 1.1: Picture of AUV

The first AUV in the world is developed in 1957 by Stan Murphy[1] and
with the fast development of techniques, a large variety of AUVs are in exist-
ence. Nowadays, AUV has become a popular and important way to explore the

1

2 Hantong Liu: A G-QPSO based path planner for AUVs

ocean area where it is not possible for human to visit, such as areas with higher
depth. Also, various subsea tasks in different fields, such as ocean pollution mon-
itoring, marine biology exploration and pipe following and inspection could be
achieved by those autonomous vehicles themselves[2]. The level of autonomy is
a key parameter for AUV and its definition is introduced later.

1.1.2 Autonomy

When it comes to the concept of autonomy, people always get confused and could
not tell the difference between autonomy and automation. Though these 2 words
look quite similar, their corresponding systems differ a lot. The system with auto-
mation is called automatic system, which could perform well-defined tasks without
any human intervention. If the task is not defined in advance, the automatic sys-
tem is not able to handle it without human’s help. While for the system with
autonomy, which is also called autonomous system, it could complete these tasks.
The autonomous system have more intelligent and adaptive functionalities. These
make it possible for the system to learn in the unknown environment, adapt to it
and improve itself. For these autonomous systems, there exist several definitions
of its autonomy level. US National Institute of Standards and Technology (NIST)
proposes one definition of the autonomy level, which divides autonomy into 4
levels shown as follows:

1. Automatic operation - Human in the loop: In this level, human interven-
tion is indispensable. In marine applications, the remotely operated under-
water vehicles (ROVs) belong to this level.

2. Management by consent - Human delegated: In this level of autonomy,
the human intervention is not always needed. Some of the operations could
be done by system itself and some of them should be done with humans’
consent. For example, the optimal heading control in Dynamics positioning
system is in this level.

3. Semi-autonomous - human supervisory control: Systems in this level of
autonomy could handle most tasks without human intervention. But some
specific tasks can only be done by humans. The emergency and safety sys-
tems are in this level of autonomy.

4. Highly autonomous - Human out of the loop: The system in this level
could perform complex tasks with high uncertainty without any human in-
tervention and could work well when unexpected events happen. An ideal
AUV is in this level of autonomy.

Nowadays, the system of AUV is not fully in the forth level of autonomy. In
some specific situation, human intervention is still necessary since the AUV could
not handle the unexpected events. Therefore, there is still potential of autonomy
for AUV and it is essential to increase its level.

Chapter 1: Introduction 3

1.2 Motivation

The motivation of this thesis is to increase the level of autonomy for AUVs focus-
ing on path planner based on Particle Swarm Optimization methods. Researchers
have claimed that the performance of the path planner is a key factor for achieving
persistent autonomy in AUVs. Hence, it is necessary for AUV to have a qualified
optimal path planner which could help to find the optimal path without human
intervention. In the field of path planning, particle swarm optimization method
has been developed for over 20 years and applied to solve engineering problems.
Several PSO-based optimal path planners designed for Unmanned Aerial Vehicles
(UAVs) have been tested in practical experiment and its performance is satisfying.
However, applying it in underwater environment is not popular. Since its per-
formance in UAV’s applications has been tested, it can be assumed that with some
modification, the PSO algorithm could be used to design optimal path planner for
Autonomous Underwater Vehicles (AUVs) with good performances.

1.3 Research Topic and Objectives

In general, this master’s thesis is based on the research hypothesis, that is, the
research about path planning method is a core technique for achieving high level
of autonomy for Autonomous Underwater Vehicles (AUVs) and Particle Swarm
Optimization (PSO) method could be utilized to design a high-performance path
planner for AUVs. According to this research hypothesis, the objectives of this
master’s thesis are presented as follows:

• Conduct a literature study about the state-of-the-art path planning methods
and study further in the field of PSO algorithm, focused on its development
and application on AUVs.
• Define the optimal path planning problem for AUV and propose its corres-

ponding mathematical model.
• Choose a proper guidance system for AUV, such that the optimal path plan-

ner could have good cooperation with the control system of AUV.
• Modify the mathematical model for path planning in consideration of en-

gineering aspect.
• Design an optimal path planner with PSO method based on the modified

engineering model.
• Examine the performance of the PSO-based optimal path planner in differ-

ent scenarios.

1.4 Scope and Limitations

The scope of this thesis is designing an optimal path planner with particle swarm
optimization (PSO) method and examining its performance in different scenarios

4 Hantong Liu: A G-QPSO based path planner for AUVs

by simulations. A deeper literature review is carried out focusing on the devel-
opment of PSO method. From the classical particle swarm optimization (PSO)
method to Quantum-behaved Particle Swarm Optimization method with Gaus-
sian Mutation (G-QPSO), this thesis covers the development of the optimal path
planning methods based on swarm evolutionary strategy, as well as the imple-
mentation of these methods into practical path planning problem. As a part of the
autonomy module in the AUV’s control system, the optimal path planner deployed
on AUVs is utilized to increase the level of autonomy and enable the AUV to com-
plete scientific tasks without human intervention. The PSO-based path planner is
developed using MATLAB and the simulations are all done with MATLAB.

One of the limitations of this thesis is lack of practical experiments. All results
shown in this thesis are from simulations in MATLAB. Hence, the performance
of the path planner in real marine environment is uncertain. Also, the testing
scenarios given in this thesis are not in large scales. In the testing scenarios of
2D and 3D, the modified GQPSO-based path planner shows good performance.
However, as for real environment in much larger scale, it is hard to say if the
optimal path planner could work well. These limitations could be solved by future
work presented in Chapter 8.

1.5 Structure of the Thesis

This section introduces the main structure of this thesis, which is outlined based
on the research objectives presented in Section 1.3. The main structure is shown
as follows:

Chapter 1 presents an introduction of this master’s thesis, including the back-
ground, the motivation of the thesis, as well as the research topic and objectives.
Also, the scope and limitations of the thesis are presented in this chapter.

Chapter 2 presents a literature review about the state-of-the-art path planning
methods as well as their applications in the marine environment. Since the PSO
algorithm is used in this thesis, a deeper literature review about it is presented,
focusing on its development and applications.

In Chapter 3, a practical AUV called LAUV Thor is introduced. Information
about its physical characteristics and devices installed on the vehicle is presented.
To ensure good cooperation between the path planner and the practical AUV, the
guidance system which works as the connection between them is introduced. Also,
the mathematical modelling of the obstacles is presented.

Chapter 4 provides the general frameworks of the optimization theory used
in the thesis, including PSO, QPSO and G-QPSO method. The basic concepts of
an optimization problem is presented, as well as a deeper look into the meta-
parameters in these optimization theories.

Chapter 5 presents the process of problem formulation. The preliminary model
of path planning problem is introduced and modified to an engineering model
which is suitable for applying PSO method. Based on this engineering model,
practical algorithm in MATLAB is presented.

Chapter 1: Introduction 5

Chapter 6 contains the simulation results using the PSO-based path planners
presented in Chapter 5. Their performances in three different scenarios including
2D and 3D are tested.

Chapter 7 presents the discussion of the results shown in Chapter 6.
In Chapter 8, the conclusions are drawn based on the discussion in Chapter

7. The limitations of the thesis are presented as well as the future work.

Chapter 2

Literature Review

In recent years, due to the fast development of techniques, autonomous underwa-
ter vehicle (AUV) has become a popular and important way to explore the ocean
area where it is not possible for human to visit, such as areas with higher depth.
Also, various subsea tasks in different fields, such as ocean pollution monitoring,
marine biology exploration and pipe following and inspection could be achieved
by those autonomous vehicles themselves[2]. Researchers all over the world have
proposed many path planning methods considering collision avoidance with sur-
rounding obstacles and other vehicles. However, due to the fast development of
artificial intelligence (AI), many recent advances and breakthroughs emerge in
the field of path planning for AUV. Like autonomous driving, applying autonomy
in underwater vehicles has become a hot topic and attracted the attention from
both industry and research institutes.

In this chapter, several state-of-the-art path planning methods are introduced
and their advantages and disadvantages are also discussed. Focusing on particle
swarm optimization (PSO) method, a deeper literature review is presented about
its development and applications in the field of path planning, especially for Auto-
nomous Underwater Vehicles (AUVs).

2.1 Main Path Planning Methods for AUV

The mission of path planning for AUV could be considered as a series of transla-
tions and heading angle changes from the starting point to the destination point.
By analyzing the operation environment of AUV and its main operations like map-
ping and monitoring, it could be found that most of the time, AUV will operate in
the environment which is full of obstacles, which are both static and dynamic.

Considering the simple case, that is the location and shape of the static obstacles
could be obtained beforehand by measurement or previous knowledge, a global
map of this environment with obstacles information could be achieved before path
planner works. Hence this global map could be used to figure out a desired path
without collision with obstacles between the starting point and destination point.
These methods are called global path planning method. Moreover, these global

7

8 Hantong Liu: A G-QPSO based path planner for AUVs

path planning methods could deal with path planning problem with other object-
ives, such as path length, energy consumption, as well as problems considering
the influence of underwater current.

However, if the information of some static obstacles could not be obtained in
advance, which means there are unknown static obstacles, these global path plan-
ning methods are not able to figure out a desired collision-free path. They could
not solve problems with dynamic obstacles either due to the same reason. Un-
fortunately, the real underwater environment is always dynamic and uncertain.
Hence, it is quite difficult, or even impossible to obtain information of all obstacles
in advance, which means the global path planning methods are not totally quali-
fied as a path planner. In these cases, the global path planner is still necessary to
figure out a general path, and an additional path planner is needed to help AUV
avoid those unknown static and dynamic obstacles, such as reefs, animals like
fish or other rock structure on seafloor. Therefore, in this report, the path plan-
ning methods for AUV are divided into 2 categories, one for global path planning
with known static obstacles, the other for local path planning with unknown static
and dynamic obstacles, which are shown in Fig. 2.1

Figure 2.1: Path Planning Methods for AUV

2.1.1 Global Path-planning Methods

In the field of global path-planning methods for AUV, scientists have proposed and
developed many popular and commonly used methods in recent decades, which
have been proved qualified as global path planner for AUV.

Chapter 2: Literature Review 9

In 1985, Dechter and Pearl[3] firstly proposed the A∗ algorithm, which is
the most effective direct search algorithm in the environment with known static
obstacles. It achieves the desired path by combining heuristic searching and search-
ing based on the shortest path. Considering the characteristics of underwater en-
vironment, A∗ method are modified in the heuristic function by Carroll[4], by
taking operation depth for AUV and corresponding current information into ac-
count. Furthermore, in order to reduce time for searching, a sparse A∗ method
is proposed by adding constraints of maximum path length and turning angle to
the original A∗ method by Szczerba[5]. Moreover, to make the desired path more
suitable for operation of AUV, scientists developed these basic A∗ method further.
Chen used randomly distributing points to construct the search space of obstacles
and added a constraints of maximum turning radius[6], which makes the path
smoother and easier to track for AUV. An obvious shortcoming of A∗ method is
time-consuming. To shorten the search time, a multi-directional A∗ method is pro-
posed by Li and Zhang[7], which reduces the number of searching nodes and then
shortens the searching time.

Not like the A∗ method, another famous global path-planning method, genetic
algorithm is proposed by Cobb and Grefenstette in 1993[8]with the inspiration of
natural selection and evolution and has been widely used when solving optimiza-
tion problems. In order to make genetic algorithms adapt to particularity of AUV
and underwater environment, these algorithms are commonly modified in the part
of genetic operator and evaluation factor. Alvarez and Caiti added a new genetic
operator to the genetic algorithm, which enables the ability of global convergence,
especially when there are several different local optimum in the field[9]. Further-
more, in order to enhance the capacity in environment with strong current, they
made an improvement on the previous genetic algorithm by adding an iterative
operator and a random migration operator[10], which are able to have a better
control on the initial population and mutation rate. Moreover, the converging rate
and energy consumption of the path could be improved through modification on
genetic algorithms. Sun and Zhang’s work[11] proves that using ocean current as
an evaluation factor could achieve a better path with lower energy consumption.
Cao [12] proved that improvement of initial population generation method could
greatly fasten the converging rate. All of these work have shown that the genetic
algorithm has achieved a great success in global path planning for AUV with a
global map in advance, which contains all information about the static obstacles.

Similar to the genetic algorithm introduced above, the differential evolution
method could be considered as a global path planning method for AUV. It was
proposed by Storn and Price in 1997 and consists of mutation, crossover and
selection operation. The difference between these 2 methods is, in differential
evolution, the mutation vector is formed by the parent generation’s difference
vector, which intersects with the parent generation’s individual vector to gener-
ate a new individual vector[13]. Hence, it could be expected that the differential
evolution method have a better performance than the genetic algorithm in the
field of path planning, especially when considering the efficiency. To make the

10 Hantong Liu: A G-QPSO based path planner for AUVs

algorithm suitable to scenarios of AUV application and improve its performance,
researchers always modified its cost function and combing it to the kinematics of
AUV’s model. Zhang applied adaptive strategy to the basic differential evolution
method[14]. He used penalty methods on the cost function and considered the
curvature constraints, path length and energy consumption. These considerations
are used to adaptively adjust the parameters based on the size and position of
the obstacles[14]. In some simple case, this method has been verified. Li imple-
mented the differential evolution algorithm on a simulation platform with task
for obstacle avoidance. The proposed method has been verified by conducting
experiments with single and multiple obstacles on a simulation platform[15].

Different from the method above, Eberhart and Kennedy proposed particle
swarm optimization method in 1995, which uses evolutionary computation tech-
nology based on random population[16]. Kind of like genetic algorithm, the in-
spiration of this method comes from the foraging behavior of birds. When birds
are seeking for food, they don’t know the exact position of the food, instead they
know where they are now and how far away the food is. Their search approach is
to follow the bird that is closest to food. In the application field for AUV, the particle
swarm optimization has been widely used, as well as its most famous modifica-
tion, quantum particle swarm optimization method. Yang and Zhang proposed
an adapted inertia-weight particle swarm optimization algorithm which takes the
current’s speed and direction into account in the fitness function[17]. By consid-
ering these factors, the AUV is able to complete the tasks with strong current.
Moreover, for off-line path planning of AUV, Lim presented a particle swarm op-
timization method with selected differential evolution. Selecting the best particle
for differential evolution hybridization can cut down on computation time signi-
ficantly[18]. Also, this method was tested and verified in an environment with
known obstacles and time-invariant non-uniform currents.

Similar to the particle swarm optimization method, the inspiration of ant
colony optimization, which is a heuristic optimization method proposed by Dorigo
in 1991, comes from the foraging behavior of any colony in nature[19]. The basic
principle behind the ant colony method is that, it represents one feasible solution
to the path optimization problem by using the behavior of a single ant, and the be-
havior of the entire ant colony defines the problem’s solution space. It works well
in solving optimization problem and could also work well after some modification
and adaptation to the application of AUV. Wang and Wei improved this method
and implemented it on AUV applications[20]. By adding a cutting operator and in-
sertion point operator, a smooth desired path could be achieved quickly and meet
the requirement of obstacle avoidance. In order to reduce invalid search, Ma ad-
ded an alarm pheromone in the original algorithm[21]. When an ant reaches the
inaccessible region, it sends out alarm signals the ants behind it. This enhances
its ability of obstacle avoidance. In addition to the objective of a collision-free
path, ant colony optimization method could solve problems with more object-
ives. A multi-objective any colony optimization method was proposed by Hu and
Zhang[22], which also considers the influence of current on energy consumption

Chapter 2: Literature Review 11

and safety performance of the AUV.
In summary, a general discussion about the advantages and disadvantages are

done and their pros and cons are concluded, as well as their suitable operation
environment.

A∗ method is the most effective algorithm using direct search strategy. In A∗

algorithm, a shortest and collision-free path could be achieved without any oper-
ation in advance. Though it is easy to understand and implement, A∗ method still
has some problem, especially when solving large-scale problems. Due to its own
searching strategy, it has to go through all nodes in the searching area and calcu-
late the cost function of these child nodes. This process is quite time-consuming
and influences the convergence rate especially when the task is given in a large-
scale problem. The genetic algorithm and differential evolution method have sim-
ilar process structure. Hence they suffer from the same disadvantages, that is,
the optimization process will occupy a large storage space and more parameters
should be calculated and adjusted. Though they have these drawbacks, these 2
methods are still widely used because of their strong ability of global searching
for optimal solution, as well as their superior robustness. Particle swarm optimiz-
ation and ant colony optimization are both inspired by the foraging behaviors of
animals in nature. With this property, they could adapt to the environment in a
short time. But the convergence rate of these 2 methods are different due to the
difference in algorithm structure. At the beginning, the searching period of ant
colony optimization method is quite long which results in a low convergence rate.
As time goes, the convergence rate becomes higher. But for particle swarm optim-
ization, its convergence rate is higher in the initial stage. However, the particle
swarm optimization method has higher tendency to converge at a local minimum,
which is a significant disadvantages.

2.1.2 Local Path-planning Methods

Unknown and dynamic obstacles could not be solved by global path-planning
methods, thus they are always tough problems for AUV’s path planning. Research-
ers try to solve this problem all the time and some classical methods were proposed
and verified, such as RRT method, artificial potential field method and fuzzy lo-
gic algorithm. In recent years, With quick development of artificial intelligence
(AI), more local path-planning methods with AI tech such as neural network and
reinforcement learning appear and attract researchers’ attention.

Considering dynamic constraints, Tan proposed the rapidly-exploring random
trees (RRT) algorithm, which a suitable candidate to solve local path-planning
problem in high-dimensional unknown environment[23]. In Tan’s algorithm, they
considered not only the algebraic constraints from interaction with obstacles, but
also the differential constraints with dynamics of AUV’s model. By taking both of
them into account, a desired path without any collision could be derived from this
method effectively between the starting point and destination point. To achieve
higher efficiency, Hernández proposed an modification method which is called ho-

12 Hantong Liu: A G-QPSO based path planner for AUVs

motopy rapidly-exploring random trees (HRRT) algorithm[24]. HRRT algorithm
could achieve high efficiency by reducing unnecessary space exploration. Further-
more, the transition rapidly-exploring random trees algorithm is modified and
implemented in AUV application[25], which has been proved qualified for ex-
ploration tasks near seabed. Based on different purposes, researchers have de-
veloped several modification of RRT algorithms, such as liveness-based RRT (Li-
RRT) by adding a liveness index to describe the nodes’ effectiveness[26], smooth-
RRT algorithm using greedy strategy to get smooth path[27], closed-loop rapidly-
exploring random tree (CL-RRT) algorithm solving the kinematic constraints from
the characteristics of AUV and obstacles[28], as well as RRT ∗ algorithm. All of
these methods have some progress in specific part of the path planning perform-
ance and have been proved in simulation environments.

Artificial potential field method is a real-time path planning method proposed
by Khatib in 1986[29]. Initially, it was widely used in mobile robot because of
its advantages of low cost. In 2005, Ding introduced this method to solve the
path planning problem for AUV[30]. They added an additional virtual force in
the algorithm and successfully avoided the defect of original algorithm. Moreover,
considering both the dynamic obstacle and influence of the current, Cheng mod-
ified the artificial potential field method and achieved good performance of over-
coming the influence of the environment and collision avoidance with dynamic
obstacles[31]. Also, this method could be used for multi-AUV scenario. Ge im-
proved this method and made AUV succeed in completing the searching task and
avoiding collision[32].

The concept of fuzzy logic algorithm was proposed by Cordón in 1996[33]. It
utilizes the expert’s knowledge to figure out a nonlinear mapping from the state
space to the control space. It is not a pure path planner but a controller which is
able to avoid the collision. Khanmohammadi applied this method to AUV and did
a simulation with this fuzzy logic algorithm. The simulation result show that it
achieved success in avoiding dynamic obstacles[34]. Even though it has the same
function as a local path planner, but actually the fuzzy logic algorithm works as
a controller in the system. Therefore, it will not be introduced too much in this
report.

With the fast development of artificial intelligence, the neural network is pro-
posed and well developed in recent years. Researchers have applied it into path
planning for AUV. In a traditional way, a well-trained neural network could figure
out the signals to avoid collision with data from sensors as input. However, the
training process is quite hard, time-consuming and even costly. In order to over-
come this, Yang and Meng proposed a bio-inspired neural network in 2003, which
has good performance without any prior training process[35]. Due to the partic-
ularity of AUV and underwater environment, the training process is more expens-
ive and dangerous than other cases. Therefore, the bio-inspired neural network
is widely used in the local path planning for AUV. With this convenient neural
network for AUV applications, several attempts are done by researchers by using
neural network as a the local path planner for AUV. Yan and Zhu proposed an

Chapter 2: Literature Review 13

improved bionic neural network to solve full coverage path planning problem for
AUV[36]. Zhu tested this bio-inspired neural network in an unknown dynamic
environment, by combining it to a map planning method[37]. Ni also proposed
an improved version of this neural network and the experiment results show that
it achieves success in solving path planning problem in large environment[38]. In
addition, this bio-inspired neural network could be used for multi-AUV obstacle
avoidance problems by using a improved version called leader–follower biological
inspired neural network[39].

Similar to neural network, reinforcement learning (RL) has experienced a fast
development in recent years and achieved success in path planning field. The main
idea of reinforcement learning is to help the agent learn a optimal policy by in-
teracting with the environment via trial, which could guide the agent performing
best actions to complete the task. In the field of path planning for AUV, the us-
age of reinforcement learning enables it to learn through its own experience and
gradually adapt to the environment without knowing the complete prior know-
ledge or even the prior knowledge at all[40]. Kawano and Ura applied reinforce-
ment learning to path planning for AUV, by using a Q-learning algorithm, which
is a basic algorithm with reinforcement learning tech, and combing with teaching
method and Bayesian network[41]. Furthermore, in order to improve the learning
speed, they proposed a modified version using hierarchical reinforcement learn-
ing approach and reached their goal. Considering the scenario with unknown and
dynamic obstacles, reinforcement learning tech has been proved qualified for the
path planning work. Gore’s work shows that by using reinforcement learning tech,
AUV can derive an optimal path with minimum deviation from obstacles from the
space by taking corresponding actions[42]. Moreover, researchers have modified
this method to adapt to more realistic problems. Bhopale proposed a modified
Q-learning algorithm which is suitable for large dimensional problems[2]. Also,
modern method combining reinforcement learning and deep learning achieves
great success, these method are called deep reinforcement learning (DRL). All
of these new methods give more opportunities to solve the local path planning
problem. With the introduction of reinforcement learning and neural network,
improving the autonomous level of path planning method for AUV has become
a hot topic and attracted researchers’ attention. Although many methods are im-
plemented and tested, there are still a lot of potential problems which need to be
solved.

Not like global path planning methods, local path planning methods have less
similarities between each other and have distinct advantages and disadvantages.
Here is a discussion of local path planning methods introduced above. Firstly, the
RRT method takes the algebraic constraints of obstacles as well as the differential
constraints into account, which achieves a suitable path considering the AUV’s
dynamics. Also, the searching strategy of RRT method makes it easier to explore
the unknown region, which is quite common in marine applications. These strong
ability of exploring unknown region makes it more suitable for path planning
in underwater environment. However, this strong exploration ability becomes a

14 Hantong Liu: A G-QPSO based path planner for AUVs

burden when considering the real-time computing performance. The artificial po-
tential field method achieves success in path planning because of its simple math-
ematical structure and easy implementation. However, not like the RRT method,
it does not consider the differential constraints derived from dynamics model of
AUV. And in some specific scenario such as multiple obstacles with same size, it
will have a bad performance. The fuzzy logic algorithm is more like a controller
instead of a path planner. Moreover, it is highly dependent on the expert’s know-
ledge to construct the fuzzy rules. Hence, it is not a proper choice for local path
planner in unknown environment.

Neural network and reinforcement learning tech have experienced a fast de-
velopment in recent years. Both of them belongs to the field of artificial intelli-
gence and could achieve a good performance after sufficient learning. However,
in marine applications, the cost of collecting data and training model is extremely
high and full of risk. In order to get rid of this, researchers have proposed many
methods which do not need too much training process in advance such as bio-
inspired neural network. Also, with the development of the simulation software,
the process of collecting data and training model may become easier.

2.2 Particle Swarm Optimization (PSO) for Path Planning

As mentioned in Section 2.1.1, Kennedy and Eberhart proposed a population-
based evolutionary computation algorithm called particle swarm optimization
(PSO) in 1995. Though the inspiration of it is quite similar to that of genetic
algorithm, the computational efficiency of them differs a lot. Researchers have
proved that the PSO algorithm is more efficient than the genetic algorithm in
terms of computational cost, even though their effectiveness are almost the same
on average[43]. Since the convergence ability to global optimum of the PSO al-
gorithm is not sufficiently strong, some modified versions of it are proposed. The
most well-known one is called Quantum-behaved Particle Swarm Optimization
(QPSO) algorithm, which is a new PSO algorithm based on the quantum mech-
anics of the particles. The nature of the particles in QPSO algorithm is totally
different from that in classical PSO algorithm. In quantum mechanics, the motion
of the particle is not described by the velocity vector, but by a δ-potential. By util-
izing this, the convergence ability to global optimum becomes much stronger than
that with classical PSO algorithm[44].

In order to improve the performance of the QPSO algorithm, lots of research
has been done by scientists and some modified versions of it are proposed. Sun
proposed several improved QPSO algorithms with the purpose of better global
convergence ability as well as the accuracy[45]. The GQPSO algorithm, which is
short for Quantum-behaved Particle Swarm Optimization with Gaussian mutation,
has been proposed by using Gaussian potential. The GQPSO algorithm makes it
possible to prevent premature convergence, which refers to convergence to local
optimal solution instead of the global optimal one. It has been utilized to solve
engineering problem by Coelho in 2007[46]. Moreover, by introducing a weight

Chapter 2: Literature Review 15

coefficient, a modified version called Weighted QPSO (W-QPSO) is proposed by
researchers. The weight coefficient is utilized in calculating the mean best posi-
tion (M best) in QPSO in order to render the importance of particles in popula-
tion when they are evolving[47]. In W-QPSO algorithm, the particles in the whole
swarm are ranked according to its fitness value (the value of the objective func-
tion), and then a linearly decreasing weight coefficient is applied[47].

In the field of path planning, the particle swarm optimization algorithm has
achieved great success and many scientists are trying to apply this algorithm to
solving different kinds of optimal path planning problem. An online path (tra-
jectory) planning method for Unmanned Aerial Vehicles (UAVs) based on QPSO
algorithm was proposed by Guo in 2009, which utilizes quadrinomial and quintic
polynomials to describe the path[48]. The main objectives in this application are
minimizing the total length of the path as well as the time expense.

In summary, the particle swarm optimization (PSO) method has been pro-
posed and developed for over 20 years. In order to overcome the drawbacks of
the original PSO algorithm such as weak global convergence ability, many modi-
fied versions of it have been proposed by researchers. In the engineering aspects,
PSO algorithm and its modified versions have been used to solve path planning
problem. The PSO-based path planner has achieved success in some way. There-
fore, the particle swarm optimization method could be seen as a good choice for
AUVs’ path planning.

Chapter 3

AUVs’ Guidance System and Map
Processing

The research of this thesis is based on the NTNU’s AUR-Lab’s property, the AUV
called LAUV Thor. In this chapter, an introduction about this vehicle is presented,
including its physical characteristics, the devices installed on the vehicle as well as
a glance of its structure. Since the path planning method talked about in this thesis
is used to output an optimal path which is also the input of the guidance system,
a common type of guidance system is introduced to demonstrate that the optimal
path generated by path planner could be used as the input to the guidance sys-
tem. Moreover, in the real underwater environment, the obstacles detected by the
sensor come in many shapes, some of them might have complicated shapes which
are difficult to model. Hence, the strategy of obstacles modelling is proposed and
presented in this chapter.

3.1 LAUV Thor

The Autonomous underwater vehicle LAUV Thor shown in Fig. 3.1 is the asset of
the NTNU research center for underwater robotics, Applied Underwater Robotics
Laboratory (AUR-Lab). The LAUV system of it was originally developed by the
Underwater Systems and Technology Laboratory (LSTS) from the Porto University
and has been further developed in cooperation with OceanScan - Marine Systems
& Technology, Lda.

The LAUV, which is short for Light Autonomous Underwater Vehicle, is a modu-
lar platform integrated with a set of different sensors and sonars with light weight.
The vehicle is designed to complete tasks about cost-effective oceanographic, en-
vironmental and inspection surveys and the modular design makes it suitable for
a wide range of scientific and civilian applications.

17

18 Hantong Liu: A G-QPSO based path planner for AUVs

Figure 3.1: Picture of the AUV - LAUV Thor

With the target of fulfilling various applications, many types of sensors have
been integrated with the vehicle. The devices installed here are shown as follows:

1. Environmental sensors measuring Conductivity, Temperature, Depth (CTD),
sound speed, fluorescence, turbidity

2. Forward looking sonar
3. Acoustic transducers (Long baseline (LBL) and Acoustic modem)
4. Illumination module
5. Multi-beam echo-sounder
6. DVL (Doppler Velocity Log)
7. IMU (Inertial Measurement Unit) or INS (Inertial Navigation System)
8. On-board CPU & solid-state hard disk
9. Communication and Navigation boards (Wi-Fi, GPS, GSM, Iridium, Com-

pass)
10. Batteries and cameras
11. Emergency pinger

The total length of this vehicle is 226 cm and its weight in air is 35 kg. The
maximum operational depth is 100 m and its speed is limited in the range of 0.5
to 2.0 m/s. The main structure of LAUV is designed to achieve a balance of many
factors, including its weight and buoyancy as well as the space for modular devices
installed on the AUV. Also, sufficiently good robustness is required.

Chapter 3: AUVs’ Guidance System and Map Processing 19

3.2 Guidance System with Constant Jerk

In the motion control system of the AUVs, the guidance module is used to gen-
erate desired states for the whole system and send the desired states as input to
the actuator module. Since the optimal path in this thesis consists of a sequence
of waypoints, a suitable guidance system which could complete the task based
on waypoints should be selected. The constant jerk guidance system for position
reference could be a good choice. Constant jerk is a guidance scheme based on
the waypoints. With this system, the optimal path generated by the path planner
does not need any modification and could be used as the input to the guidance
system, which could save the computational cost and improve the efficiency.

Given the desired path with a sequence of waypoints, the constant jerk guid-
ance system could generate the desired states and ensure smooth transition in
position and velocity. In this algorithm, some physical constraints about the velo-
city, acceleration and jerk are considered. With the known upper bound for these
states, the algorithm could ensure that the desired states are practical and not
beyond the ability of the actuators.

Figure 3.2: Jerk, acceleration, velocity and position in transition[49]

In the transition between 2 adjacent reference waypoints Pk and Pk+1, there
are seven phases shown as follows and the graphics illustration is shown in Fig.
3.2.

Phase 1: Start acceleration: constant jerk leads to increase in acceleration
Phase 2: Constant acceleration: jerk is equal to zero, constant acceleration leads to

increase in velocity
Phase 3: End acceleration: constant negative jerk leads to decrease in acceleration to

zero
Phase 4: Constant velocity: velocity reaches maximum and keeps constant (main

transit phase)
Phase 5: Start deceleration: constant negative jerk leads to increase in deceleration

20 Hantong Liu: A G-QPSO based path planner for AUVs

Phase 6: Constant deceleration: jerk is equal to zero, constant deceleration leads to
decrease in velocity

Phase 7: End deceleration: constant positive jerk leads to decrease in deceleration as
well as velocity to zero

With the algorithm presented above, the guidance system could generate the
desired states, including the velocities vi and positions pi at each time instant,
which describes the transition motion between waypoint Pk and Pk+1. Since the
candidate path generated by the path planner consists of a sequence of waypoints,
it could be used as the input to the guidance system without any modification.
Therefore, the path planner matches well with the guidance system as well as the
whole control system.

3.3 Map Processing

One main purpose of the path planning for AUV is to avoid collision with the
obstacles and ensure safety. In real underwater environment, the obstacles come
in all shapes and sizes. The AUVs identify these obstacles using different sensors
like radar and sonar. By observing the images from radar and sonar, the shape of
the obstacles identified by the AUVs might be complicated. In general, running
the path planner based on these unprocessed information of the obstacles, the
computation process costs a lot and the computation time is pretty long. In order
to save the computational cost and shorten the computation time, it is necessary to
pre-process the map before deploying the path planning algorithm. In this thesis,
the obstacles are all represented by algebraic models and the bounding volume is
used to simplify the shape of them. For obstacles with small length-width ratio,
the circumcircle is used. For that with large length-width ratio, it is modelled as a
Oriented Bounded Block (OBB).

For obstacles with small length-width ratio, using circumcircle to simplify its
shape leads to little loss of feasible path, Moreover, in the process of solving
path planning problem, the circle-shape model of the obstacles helps save com-
putational cost since judging if a point is inside a circle/sphere is always a one-
dimensional problem. The size of the circumcircle is defined by calculating the
length of the lines between each pair of vertices. The diameter of the circumcircle
is the length of the longest line and the center of it is the midpoint of the longest
line. Some examples are shown in Fig. 3.3.

Considering the uncertainties in the working process, such as uncertainty of
movement, actuators and the navigation system, models of the obstacles are ex-
panded. A safety threshold ε is used to expand the obstacles. The original and
expanded models are shown in Fig. 3.4.

Though the circumcircle model of the obstacles works well and is easy to apply,
it still has some disadvantages and is not suitable for all obstacles. As the Figure
3.5 shows, in this specific scenario, if the obstacle with large length-width ratio is
modelled by its circumcircle, the safe path in green line is not feasible anymore,

Chapter 3: AUVs’ Guidance System and Map Processing 21

Figure 3.3: Modelling of the obstacles with circumcircle

Figure 3.4: Original and expanded model of obstacles

while by using a oriented bounded box to model the obstacle, the path in green
line becomes feasible.

Figure 3.5: Comparison between the circumcircle and oriented bounded block

22 Hantong Liu: A G-QPSO based path planner for AUVs

Since in the marine environment, some common types of obstacles such as
large fish and ship have large length-width ratio. If these obstacles are modelled
as a circle, there could be much loss of the feasible region and paths. Therefore,
for these kind of obstacles, an oriented bounded box (OBB) is used. Though this
model leads to more computational cost in the practical algorithm, the feasible
region with it is larger and better paths could be generated. With the same con-
sideration of uncertainty, this OBB model is also expanded and shown in Fig. 3.4.

The mathematical representations of the 2-dimensional obstacles are shown
in Fig. 3.6.

Figure 3.6: Graphics illustration for obstacles in circle and rectangular shape

For a circle-shape obstacle, it is represented by two parameters, the position
of the center and the radius, which are expressed as:

Pi
obs = [x

i
obs, y i

obs] and r i
obs (3.1)

where i is the index of the circle shape obstacle.
For obstacles modelled as oriented bounded block, 4 parameters are used to

describe the obstacle, the length a and width b, the position of the center Pobb
and the orient angle φ, which are expressed as follows:

Pi
obb = [x

i
obb, y i

obb] , r i
obb , ai and bi (3.2)

where i is the index of the obstacle modelled as OBB. The positions of 4 vertices
could be generated with the parameters in Eq. 3.2 and the mathematical expres-
sion is shown as follows:

Pi
1 = [x

i
obb −

a
2

, y i
obb +

b
2
] ·R(φ i) (3.3a)

Pi
2 = [x

i
obb −

a
2

, y i
obb −

b
2
] ·R(φ i) (3.3b)

Pi
3 = [x

i
obb +

a
2

, y i
obb −

b
2
] ·R(φ i) (3.3c)

Pi
4 = [x

i
obb +

a
2

, y i
obb +

b
2
] ·R(φ i) (3.3d)

Chapter 3: AUVs’ Guidance System and Map Processing 23

where R is a 2× 2 rotation matrix and its definition is expressed in Eq. 3.4.

R(φ i) =

�

�

�

�

cosφ i sinφ i

− sinφ i cosφ i

�

�

�

�

(3.4)

Chapter 4

Optimization Theory

This chapter aims to provide general frameworks of the optimization theories used
in this thesis, including Particle Swarm Optimization (PSO), Quantum Behaved
Particle Swarm Optimization (QPSO) and Gaussian Quantum Behaved Particle
Swarm Optimization (G-QPSO). The basic concepts of optimization problem are
reviewed and classical algorithm with these techniques are also presented in this
chapter. Section 4.1 - 4.3 introduce these three techniques separately. Also, a
deeper look into the algorithms and meta-parameters is done in order to find
out their shortcomings.

4.1 Particle Swarm Optimization (PSO)

In science, the term "optimization" refers to the process of identifying the best
element (according to one or more user-specified criteria) among a set of pos-
sible alternatives[50]. When using mathematical languages for illustrating this
process , this is always accomplished by defining a goal in terms of a paramet-
erized function f , which is also called cost function or objective function. With
this parameterized function f , the process of optimization comes down to finding
out the specific values of these parameters, which minimize or maximize objective
function f . The choice for maximization or minimization depends on the task and
the requirement but maximization of f is equal to minimization of − f . Therefore,
only minimization problem is discussed in this chapter. Therefore, the optimiza-
tion problem could be defined as the following form.

Given f : Rn −→ R
F ind xoptimal | f (xoptimal)≤ f (x) ∀x ∈ Rn (4.1)

The parameter n in Eq .4.1 refers to the dimension of this optimization prob-
lem. The vector x is the candidate solutions. These solutions are in a n dimensional
domain, which is called search space and characterized as Rn. xoptimal is the op-
timal solution minimizing the objective function f . The function f , which is also

25

26 Hantong Liu: A G-QPSO based path planner for AUVs

called cost function or objective function, quantifies the fitness of the candidate
solutions for the specific problem.

4.1.1 Classical Particle Swarm Optimization (PSO) Algorithm

Particle swarm optimization (PSO) method uses evolutionary computation tech-
nology based on random population. The inspiration of this method comes from
the foraging behavior of birds. When birds are seeking for food, they don’t know
the exact position of the food, instead they know where they are now and how
far away the food is[51]. Their search approach is to follow the bird that is closest
to food. In other words, they find out food location through studying themselves
and exchanging information with others.

In theory, individuals of a group or swarm, may profit from the prior discov-
eries and experiences of all group members. Based on this, a hypothesis is posed
to develop the PSO, that is, the exchange of information among individuals in a
group provides an evolutionary advantage[16].

In PSO algorithm, each candidate solution is called a "particle" and repres-
ents a point in the search space. The whole swarm is constituted of N particles.
With these particles, PSO could explore the search space in the same way of other
population-based algorithms. In the process of searching for the optimal solution
of the problem, two important kinds of information are utilized, which are their
own experience and experiences from other particles. With their own experience,
each particle could explore around itself and find out how much progress these
movements could make. Experiences from other particles could help it know other
particles’ best choices.

When searching for the optimal solution, each particle keeps track of its posi-
tions in the search space by updating itself based on the following equation:

xi(t + 1) = xi(t) + vi(t + 1) (4.2)

In Eq .4.2, t and t + 1 are the indices of two successive iterations in the PSO
algorithm. It can be found that the most important thing in this updating rule
is vi(t + 1), which governs how particles move in the search space. This velocity
vector vi(t+1) is called particle velocity and associated with three terms. The first
one refers to the inertia of the particle. The second one is about the best choice it
has achieved so far from its own experience and the last one is associated with the
overall best choice from experiences of all particles, which is the global version of
the second one. The updating rule for the particle velocity is defined as below:

vi(t + 1) = wvi(t) + c1[pi(t)− xi(t)]R1 + c2[pg(t)− xi(t)]R2 (4.3)

In Eq .4.3, w is the inertia weight. pi is the personal best (pbest) of the ith
particle, which is based on its own experience, While pg(t) is the global best
(g best), which is the overall best solution from the previous experience of all
particles. c1 and c2 are constants and called cognitive and social coefficient, which

Chapter 4: Optimization Theory 27

will be talked about in section 4.1.2. R1 and R2 are two random diagonal matrices
which will also be introduced later.

By using the updating rule 4.2 and 4.3, each particle changes its position in the
search space and updates its velocity in each iteration. By using its own experience
pbest and others’ experience g best, the particles tend to find the optimal solution
after sufficient iterations.

The basic elements of the classical PSO algorithm are stated and defined as
follows:

• Particle xi(t), i = 1, ..., n: It is the basic component in PSO algorithm rep-
resenting the candidate solution in the form of a n-dimensional vector, n is
the dimension of the problem which is always the number of optimization
variables
• Swarm: It is the sum of moving particles distributed in the search space

disorderly and randomly. The components in the swarm tend to cluster to-
gether while the moving direction of each particle differs from one to others.
• Personal best position pi(t), i = 1, ..., n: It represents the best position for

the ith particle which corresponds to the minimum value of the cost function
(fitness value). As the particle moves, it compares the value of the cost func-
tion at the current position to the minimum value it has achieved before,
and updates the best position in each iteration.
• Global best position pg(t): It is the best position with the minimum fitness

value among personal best positions for all particles achieved so far.
• Particle velocity vi(t), i = 1, ..., n: It is the velocity of the ith moving particle

which is also in the form of a n-dimensional vector. The particle velocity is
updated with the rule in eq. 4.3 based on the previous speed, personal best
position and global best position. After obtaining the new velocity vector,
the movement of the particle is known and the position is updated with eq.
4.2

The scheme of the classical PSO algorithm is given by the following steps and
the flowchart is shown in Fig. 4.1

Step 1: Initialization of particles’ positions and velocities in the whole swarm: Ini-
tialize a pre-defined population of particles randomly, including their posi-
tions and velocities in the n-dimensional search space. A common way is to
use some uniform probability distribution function to obtain these values.

Step 2: Evaluation of particle’s fitness: Calculate the value of the objective function
(fitness value) for each particle. In this part, the main goal is minimizing
the objective function rather than maximizing.

Step 3: Comparison to fitness of pbest (personal best position): Compare each particle’s
fitness with the fitness of the personal best position. If the value at current
position is less than that at pbest, then set the current position as the pbest
position and update the fitness value of pbest with the current fitness value.

Step 4: Comparison to fitness of g best (global best position): Compare the fitness
of the current position with fitness of the population’s overall best positions

28 Hantong Liu: A G-QPSO based path planner for AUVs

achieved before. If the value at current space is less than that at g best, then
reset the global best position as the current position and do the same for
the fitness value.

Step 5: Updating of each particle’s velocity and position: Calculate the velocity vec-
tor vi(t+ 1) and update the particle’s position xi(t+ 1) according to Eqs. 4.3
and 4.2.

Step 6: Repeat of the evolutionary cycle: Return to Step 2 until a stopping criterion
is satisfied. Usually, if the fitness of the particles is good enough or the num-
ber of iterations reaches the upper bound, the iteration is stopped.

Figure 4.1: Flowchart of particle swarm optimization method

4.1.2 A Deeper Look into the Algorithm and its Meta-parameters

By analysing the scheme of the PSO algorithm and its updating rule, it can be
found that there exist several meta-parameters which need to be decided in ad-
vance, such as the constants c1 and c2. Like other heuristic methods, these meta-
parameters play an important rule in the algorithm and highly influence the per-
formance and efficiency when solving optimization problem. Therefore, the in-
fluence of these parameters on the algorithm performances, including the con-
vergence property and computation efficiency is concerned and discussed in this

Chapter 4: Optimization Theory 29

section. Moreover, the initialization process also plays an determinant role. In
this process, a good estimate of the particles’ positions and velocities could highly
improve the efficiency and lead to fast convergence. Hence, the strategy for ini-
tialization is also talked about here.

As the flowchart of the PSO algorithm shown in Fig. 4.1, the initialization
process is the first step in the algorithm. In this step, not only the particles’ po-
sitions and velocities are initialized, an initial estimate of these two values are
also required, which affect the convergence property of the solution. When talk-
ing about the initialization, there is a common way to complete this task, which
is also a general agreement in the literature, that is initializing particles’ positions
which are spread uniformly over the whole search space. In a mathematical way,
this initialization is:

x i j(0)∼ U(x j.min, x j.max) (4.4)

where i refers to the index of particle, j refers to the index of optimization
variable, x j.min and x j.max are the lower and upper bound of the jth optimiza-
tion variable, and U represents the uniform distribution. Scientists have proved
that this way of initialization ensures a good initial convergence property of the
search space and increase the exploration property of the algorithm[52]. These
two properties lead to a relatively fast convergence rate of the PSO algorithm.

For the initialization strategy for the particles’ velocities, the same way as the
position done, that is, setting the velocity using a uniform distribution so that the
velocities cover the search space as uniformly as possible, is suggested by many
scientists. However, this strategy does not have a good performance and leads to
a severe diversity of the whole swarm. This makes sense since in the updating rule
shown in Eq. 4.3, the inertia term dominates the velocity in the beginning, leads
to large initial step sizes and finally destroys the convergence property. Moreover,
larger step size makes particles violate the boundary of the search space more
frequently and causes the divergence of algorithm, which is also called "velocity
explosion". This is a general risk and highly influences the algorithm’s perform-
ance. Therefore, imperative modification should be done to get rid of it. There
are two popular approaches which are commonly used to solve this problem. The
first one is called "velocity clamping". As its name shows, this approach utilizes a
velocity threshold as the upper bound of velocity. By introducing this threshold,
the velocities are limited in a range as:

if vi j(t + 1)> vmax
j then vi j(t + 1) = vmax

j

if vi j(t + 1)< −vmax
j then vi j(t + 1) = −vmax

j

(4.5)

This strategy has a simple structure and many scientists have proved that it’s a
efficient way to solve common problems and provide a good trade-off between the
exploration and exploitation, which leads to a good exploration ability[53]. How-
ever, it’s not easy to get the proper velocity threshold, which is highly dependent
on the specific problem. There does not exist a general criterion or even rule of

30 Hantong Liu: A G-QPSO based path planner for AUVs

thumb to choose accurate value of the threshold. This is the main drawback of the
velocity clamping strategy. Even though this is a difficult task, using the interval
of the search space to estimate the threshold is agreed on by some authors, which
is represented as:

vmax
j = k×

xmax
j − xmin

j

2
, k ∈ (0,1] (4.6)

The second way to overcome "velocity explosion" is introducing an inertia
weight w. Since the domination of the inertia term finally leads to the divergence,
adding a weighting coefficient to limit its influence is a good way to solve this
problem. By adding the inertia weight, the contribution of velocity term in previ-
ous iteration is controlled and could be modulated as the iteration goes. Several
approaches to define the inertia weight have been used by scientists and proved
to improve the convergence property. Some common approaches for defining the
inertia weight is reported in Table. 4.1.

Strategy Definition of inertia weight

Constant inertia weight w(t) = w= constant

Random inertia weight w(t) = 0.5+ r
2 , r ∼ U(0,1)

Linearly decreasing inertia weight w(t) = wmax −
wmax−wmin

tmax
× t

Table 4.1: Strategies for defining inertia weight

Like the "velocity clamping" strategy, implementation of the inertia weight still
needs some pre-defined parameters which are dependent on the specific problem.
However, the choice of inertia weight is not as tough as for the velocity threshold.
Several scientists suggests that using wmax = 0.9 and wmin = 0.4 could achieve
good performances generally[54].

Although several modification introduced above could overcome the short-
coming of "velocity explosion", the simplest way, that is setting the initial velocities
to very small random values, is considered as a good choice. In this way, the risk
of velocity explosion could be significantly reduced, meanwhile the exploration
ability of the algorithm is still guaranteed[54].

Besides the initialization process, by observing the updating rule for particles’
velocity in eq. 4.3, there are still two parameters which need to be decided in
advance, which are two acceleration constants c1 and c2. These two parameters
represents how much contribution the personal best and global best make to the
particles’ movement. The values of the constants c1 and c2 determine the extent
to which the particles move towards the best position from its own experience
and experience of all particles. In other words, these two parameters modulate
the relative contributions of the social and cognitive terms[54]. Focusing on their
influence on the movement of particles and the convergence property of the whole
PSO algorithm, many investigations of these two parameters have been done. The

Chapter 4: Optimization Theory 31

result shows that, larger c1 and c2 we choose, larger oscillation frequency we get
around the optimal solution. Moreover, smaller values lead to some inadequate
result, i.e. sinusoidal patterns. In general, there is a common choice of c1 and
c2 which has been proved to work well for most of the applications[55], that is
shown as follows:

c1 = c2 = 2 (4.7)

In summary, the classical particle swarm optimization method could provide
good convergence property and efficiency after some modification such as intro-
ducing inertia weight and "velocity clamping". But the main drawback can not
be solved thoroughly, that it, there always exist some problem-based parameters
which are critical and hard to decide. To get rid of this disadvantages, similar ap-
proaches are proposed and a popular one which called Quantum-behaved Particle
Swarm Optimization (QPSO) is introduced later.

4.2 Quantum-behaved Particle Swarm Optimization (QPSO)

In terms of classical PSO algorithm, there are two elements representing the state
of each particle, the position vector xi and velocity vector vi. These two elements
depict the movement of each particle and determine particle’s trajectory. Like the
updating rule in Eq. 4.2, in PSO algorithm the particle moves in Newtonian mech-
anics. However, this mechanism does not work for the case in quantum mechanics.
In quantum world, previous updating rule for particles’ position is meaningless,
since xi and vi of a particle cannot be determined simultaneously according to
uncertainty principle. Therefore, if the quantum behavior of particles’ movement
is taken into consideration in a PSO system, the updating rule in classical PSO
algorithm does not work and the particles have to move in a different way.

In the quantum form of classical PSO problem, which is named Quantum-
behaved Particle Swarm Optimization (QPSO), instead of the position and velo-
city vector, the state of each particle is represented by a wave function ψ(x , t)
in Schrödinger equation[56]. With illustration of the Schrödinger equation, the
dynamic behavior of the particle is totally different from that one considered in
classical PSO algorithm, since xi and vi of a particle cannot be determined simul-
taneously according to uncertainty principle. In this context, a probability density
function |ψ(x , t)|2 is defined to quantify the probability of the particle’s appearing
in position xi.

According to the Monte Carlo method, the updating rule of the particles’ pos-
ition is shown in the following iterative equations[57]:

�

xi(t+ 1) = p+ β · |M best i − xi(t)| · ln(1/u), if k ≥ 0.5

xi(t+ 1) = p− β · |M best i − xi(t)| · ln(1/u), if k < 0.5
(4.8)

where β is a design parameter called contraction–expansion coefficient[58],
u and k are random values in the range [0,1], usually achieved by some uniform

32 Hantong Liu: A G-QPSO based path planner for AUVs

probability distribution functions.

u∼ U(0,1) k ∼ U(0, 1) (4.9)

Since the M best i term represents the global point defined as the mean value
of personal best positions of all particles found so far in the swarm , it is named
as Mainstream Thought or Mean Best[59], and its mathematical form is shown as
follows:

M best =
1
N

N
∑

i=1

Pi,d(t) (4.10)

where Pi,d represents the personal best position for the ith particle in the
swarm, Pg,d is the global best position among all personal best positions and g
is the index of the best particle.

Another term in the updating rule Eq. 4.8, p, is called particles’ local attractor,
which helps to achieve the convergence of the QPSO algorithm by using the fol-
lowing equation:

p=
c1 · pi,d + c2 · pg,d

c1 + c2
(4.11)

The scheme of the classical QPSO algorithm is given by the following steps
and the flowchart is shown in Fig. 4.2.

Step 1. Initialization of particles’ positions and velocities in the whole swarm: Ini-
tialize a pre-defined population of particles randomly with their positions
in the n-dimensional search space. A common way is to use some uniform
probability distribution function to obtain these values.

Step 2. Evaluation of particle’s fitness: Calculate the value of the objective function
(fitness value) for each particle. In this part, the main goal is minimizing
the objective function rather than maximizing.

Step 3. Updating of the global point: Calculate the M best using Eq. 4.10.
Step 4. Comparison to fitness of pbest (personal best position): Compare each particle’s

fitness with the fitness of the personal best position. If the value at current
position is less than that at pbest, then set the current position as the pbest
position and update the fitness value of pbest with the current fitness value.

Step 5. Comparison to fitness of g best (global best position): Compare the fitness
of the current position with fitness of the population’s overall best positions
achieved before. If the value at current space is less than that at g best, then
reset the global best position as the current position and do the same for
the fitness value.

Step 6. Updating of each particle’s velocity and position: Update the particle’s pos-
ition xi(t+ 1) according to Eqs. 4.8.

Step 7. Repeat of the evolutionary cycle: Return to Step 2 until a stopping criterion
is satisfied. Usually, if the fitness of the particles is good enough or the num-
ber of iterations reaches the upper bound, the iteration is stopped.

Chapter 4: Optimization Theory 33

Figure 4.2: Flowchart of Quantum-behaved Particle Swarm Optimization method

34 Hantong Liu: A G-QPSO based path planner for AUVs

By observing the updating rule for the particle’s positions shown in eq. 4.8,
it can be found that there still exist some problem-based parameters including
c1, c2 and β . For the parameter β , it can be chosen in the same way as for the
inertia weight w, whose common strategies are shown in Table. 4.1. But it is still
difficult to choose proper values for other two parameters. In order to get rid of
this, a modified version of Quantum-behaved particle swarm optimization using
Gaussian mutation is proposed by scientists and its details are introduced later.

4.3 Quantum-behaved Particle Swarm Optimization with
Gaussian Mutation (G-QPSO)

In the last few years, various versions of QPSO have been proposed and used to
solve practical optimization problems. In most of these applications, the uniform
probability distribution is deployed to set parameters as random values, including
c1, c2, u, and k in Eqs. 4.8. However, besides the uniform probability distribu-
tion, other ways of distribution are also used to generate random values for these
parameters, such as Gaussian, Cauchy and exponential probability distribution.
In this section, following the same line of study, a modified QPSO algorithm with
mutation operator using Gaussian probability distribution is presented, which is
named as Gaussian Quantum-behaved Particle Swarm Optimization (G-QPSO).

Compared with uniform probability distribution, Gaussian probability distri-
bution has better effect on the choice of parameters because of its mathemat-
ical properties, that is, Gaussian distribution sequences have zero mean and unit
variance. Applied to the stochastic coefficients in QPSO algorithm, this property
results in a good trade-off between the probability of generating movement with
small amplitudes around the current space and that with large amplitudes. The
former is considered as fine tuning and the latter is considered as mutation, which
may generate movement with large amplitude and make the particle escape from
the local minimum.

In this content, firstly, random numbers are generated by using the absolute
value of the Gaussian probability distribution with zero mean and unit variance
abs(N(0,1)). The updating rule with QPSO approach combined with Gaussian
mutation operator is presented as follows:

�

xi(t+ 1) = p+ β · |M best i − xi(t)| · ln(1/u), if k ≥ 0.5

xi(t+ 1) = p− β · |M best i − xi(t)| · ln(1/u), if k < 0.5
(4.12)

where G = abs(N(0, 1)), k ∼ U(0,1)
Moreover, to avoid choosing parameters c1 and c2, a new definition of p without

these two meta-parameters is proposed, by using random numbers instead of
them. The new definition of p is shown in the following equation:

p=
G · pi,d + g · pg,d

G + g
(4.13)

Chapter 4: Optimization Theory 35

where g = abs(N(0,1)), G = abs(N(0,1)), k ∼ U(0, 1)
Overall, the new updating rule of Gaussian Quantum-behaved Particle Swarm

Optimization (G-QPSO) is shown in Eq. 4.8. It can be found that there is only
one parameter β which need to be decided in advance. Since it can be treated
as the inertia weight, there are several ways to choose it. Therefore, in the G-
QPSO algorithm, the main drawbacks of PSO and QPSO are overcome. The tuning
process of parameters is extremely shortened. Since the scheme of G-QPSO is
quite similar to QPSO algorithm with a small change of the updating rule, it is not
presented here.

Chapter 5

Problem Formulation and
Algorithm Design

In chapter 3 and 4, the AUV’s guidance system and proposed optimization meth-
ods, including PSO, QPSO and G-QPSO methods are introduced. In order to solve
the path planning problem by using these methods and make the solution suit-
able for the AUV’s guidance system, a proper mathematical modelling for the path
planning problem is indispensable. Moreover, in consideration of the character-
istics for path planning, some new strategies are added to the basic algorithm to
improve efficiency.

In this section, firstly the problem formulation is presented, including the pre-
liminary modelling for path planning problem, its simplification and modification
as well as the final version of modelling. Later, the algorithm design is introduced.
The new strategy to define the dimension of the problem, the design of objective
function as well as the practical algorithms are presented in the second part.

5.1 Problem Formulation

As mentioned in chapter 4, the standard form of an optimization problem is shown
as follows:

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ I
ci(x)≥ 0, i ∈ E

(5.1)

where x is the optimization variable in a n-dimensional space, f(x) represents
the objective function, which is also called cost function or fitness. In general, only
one objective function is taken into consideration and f(x) changes to a scalar form
f (x), but when it comes to multiple objective functions, this form is still suitable.
ci(x) is called constraints, including equality constraints with indices i ∈ I and
inequality constraints with indices i ∈ E .

With this standard form of optimization problem, which is called standard

37

38 Hantong Liu: A G-QPSO based path planner for AUVs

constrained optimization problem, the path planning problem could be modelled
and transferred to this standard form according to our purposes.

5.1.1 Preliminary Modelling for Optimal Path Planning Problem

In the process of preliminary modelling, the first to do is define the optimization
variables x and its search space Rn. In order to fulfill the desired properties of
AUV’s guidance system, the desired output of the optimal path planner should
be a sequence of waypoints. Therefore, an optimal path which consists of n + 1
waypoints is defined as the form of output. Among these n+ 1 points, there are
two known and pre-defined points, which are the start position and destination
position of the AUV. In a 3D case, these 2 positions are defined as follows:

p0 = (x0, y0, z0) (5.2a)

pn+1 = (xn+1, yn+1, zn+1) (5.2b)

Besides these 2 known points, the internal points p1, ... ,pn need to be gen-
erated by solving the optimization problem. The number of the internal points,
denoted by n, is a design parameter and need to be determined in advance. Thus,
the desired output, which is the mathematical representation of the path is shown
in Eq. 5.3.

P = [p0, p1, ... ,pn, pn+1] (5.3)

For the search space Rn, it is defined based on the specific environment and
map information. In general, in a 3-dimensional environment for AUV, the search
space is defined within a global upper and lower bound in 3 directions including
north, east and down direction, which is shown as follows:

N : x i ∈ [xmin, xmax] (5.4a)

E : yi ∈ [ymin, ymax] (5.4b)

D : zi ∈ [zmin, zmax] (5.4c)

Commonly, the lower bound in down direction zmin can be set as 0, which
corresponds to the sea level and the upper bound could be set as zsea f loor , the
depth of the seafloor.

After defining the optimization variables, the next thing, which is also the
most important thing in problem formulation comes to the front, that is defin-
ing the objective functions. When it comes to the path planning problem for AUV,
two aspects should be taken into consideration. One is efficiency, the other one
is safety. In the aspect of efficiency, the total path length could be a good choice
of objective function. By minimizing the total path length, the travelling time and
energy consumption could reach minimum point with some assumption like con-
stant velocity. Hence, a good efficiency could be achieved. In consideration of
safety, a critical requirement is that there is no collision with obstacles during the
travel. Therefore, a objective function for collision avoidance with obstacles is in-
dispensable. Moreover, considering the physical property of the AUV, large turning

Chapter 5: Problem Formulation and Algorithm Design 39

angle during the travel should be avoided. This helps smooth the path and avoid
wear and tear on the actuators. In the preliminary modelling of the path planning
problem, these three objectives shown above are concerned and the mathematical
definitions are presented later.

Objective Function I: Path Length

Given the mathematical representation of the candidate path shown in Eq. 5.3,
the total length of the path which consists of n path segments and n unknown
waypoints could be achieved by using the Pythagorean theorem in 3D as follows:

f1(P) =
n
∑

k=0

Æ

(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (5.5)

With this objective function f1(P) in Eq. 5.5, the optimization method could
quantify the value of the total path length and candidate solutions with lower
values of f1(P) are preferred.

Objective Function II: Safety Margin

In consideration of safety in underwater environment, the second objective func-
tion concerning collision avoidance with obstacles is proposed. The margin of
safety, denoted by m,is pre-defined according to the safety requirement and phys-
ical property of the vehicles. Since the optimization method searches for the min-
imum point in the space, negative value is generated by this objective function if
the distance between the candidate path and obstacles is greater than the safety
margin. When the distance between the candidate path and obstacles is less than
this safety margin, a positive penalty function is added to the objective function.
The mathematical definition of the second objective function f2(P) is shown as
follows:

f2(P) =

¨

m− rmin , if rmin > m

ermin−m , otherwise
(5.6)

where m is a pre-defined parameter according to the environment and AUV,
rmin represents the minimum distance between the obstacle and path segments,
whose mathematical representation is presented later. With this objective func-
tion, it can be found that the greater rmin is, the more negative value f2(P) gen-
erates. Hence, the optimization method could output safety path with negative
value of f2(P).

As mentioned in chapter 3, after the map processing, the obstacles are clas-
sified to 2 types, circle/sphere and oriented bounding box (OBB) with known
positions and other information. For the circle-shape obstacles in a 2D environ-
ment, whose graphics explanation is shown in Fig. 5.1, the minimum distance

40 Hantong Liu: A G-QPSO based path planner for AUVs

rmin could be calculated as follows:

rmin = min
k=1...n

|(pobs − pk)× (pobs − pk+1)|
|(pk+1 − pk)|

(5.7)

Figure 5.1: Graphics explanation of the distance between path and obstacle

Given the objective function as Eq. 5.6, If the distance is less than the safety
margin, the objective function increases exponentially and works well as a penalty
function. Hence, the optimization method could output a path with more negative
value of f2(P).

The graphics illustration in Fig. 5.1 is considered in 2D environment. For the
sphere-shape obstacles in 3-dimensional environment, this mathematical repres-
entation still works. However, for those obstacles with rectangular shape and mod-
elled as oriented bounded box, this definition is not suitable. Thus, some modi-
fications should be applied to solve this problem, which are introduced in section
5.1.2.

Objective Function III: Avoidance of sharp turning angle

Besides the path length and collision avoidance with obstacles, the smoothness
of the path is also a consideration. In the underwater environment, the turning
action for AUV can not be easily taken because of the dynamics and physical limit-
ation on actuators. Moreover, sharp turns which will lead to wear and tear on the
power equipment of AUV. Hence, the objective function about the turning angle
is proposed.

Given four consecutive internal waypoints pk, pk+1, pk+2 and pk+3, as well
as three path segments between two adjacent waypoints lk+1, lk+1 and lk+2, the
turning angle, which is the path’s changes in heading, is defined in Eq. 5.8. The
graphics illustration is shown in Fig. 5.2.

ψk = arccos
�

lk · lk+1

|lk||lk+1|

�

(5.8)

With the mathematical representation of the turning angle in Eq. 5.8, the third
objective function f3(P) could be defined as the maximum turning angle during
the travel. Since there are n+2 waypoints in the total path and n+1 path segments,

Chapter 5: Problem Formulation and Algorithm Design 41

Figure 5.2: Graphics explanation of the turning angle between path segments

the number of turning angles between adjacent path segments is n. Therefore, the
mathematical representation of f3(P) is expressed as follows:

f3(P) =max
i
ψi , i = 1 ... n (5.9)

In summary, three objective functions are taken into consideration in the pre-
liminary modelling for optimal path planning problem. The first one is the total
path length, the second one is about safety margin in order to avoid collision with
obstacles, and the third one is used to smooth the path and avoid sharp turns. The
optimization variables is a sequence of waypoints, whose upper and lower bound
are determined according to the specific problem. The preliminary mathematical
model is shown as follows:

min
x∈Rn

fi(x), i = 1,2, 3 (5.10)

where

f1(P) =
n
∑

k=0

Æ

(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (5.11a)

f2(P) =

¨

m− rmin , if rmin > m

ermin−m , otherwise
(5.11b)

f3(P) =max
i
ψi , i = 1 ... n (5.11c)

5.1.2 Simplification and Modification to Apply PSO Algorithm

In the preliminary modelling, three objective functions in Eqs. 5.11 are defined to
optimize the path and the path planning problem is modelled as an unconstrained
multi-objective optimization problem. However, with the classical PSO algorithm
introduced in chapter 4, only unconstrained optimization problem with single ob-
jective function is taken into consideration and solved by deploying PSO method.
Therefore, in order to use PSO method solving this path planning problem, some
simplification and modification is necessary.

42 Hantong Liu: A G-QPSO based path planner for AUVs

The first thing to do is reduce the number of objective functions. Since the
main goal is to search for the optimal path with shortest path length, the objective
function f1(P) is reserved and used as new objective function, which is expressed
as follows:

f (P) =
n
∑

k=0

Æ

(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (5.12)

where P represents the optimization variables expressed as Eq. 5.13.

P = [p0, p1, ... ,pn, pn+1] (5.13)

For the second objective function f2(P) about the collision avoidance, it can
be simplified as an inequality constraint and then the number of objective func-
tion is reduced. Since the purpose of f2(P) is to ensure enough distance between
the path segment and obstacles, the same effect could be achieved by using an
inequality constraint gi(P) which makes the distance between path segment and
obstacles not less than a certain value. The mathematical representation of g(P)
is expressed as follows:

gi(P) = ri(P) ≥ c , i = 1, ..., n (5.14)

where

ri =
|(pobs − pi)× (pobs − pi+1)|

|(pi+1 − pi)|
(5.15)

The graphics explanation for Eq. 5.15 is shown in Fig. 5.7 and c is a pre-defined
distance threshold according to the environment and physical characteristics of
AUV.

Similarly, the third objective function f3(P) could also be transferred to an in-
equality constraint qi(P) which limits the turning angle using a specific threshold
as the upper bound. The new inequality constraint qi(P) is defined as follows:

qi(P) = ψi ≤ ψthreshold i = 1, ..., n (5.16)

where

ψi = arccos
�

li · li+1

|li||li+1|

�

(5.17)

The graphics illustration for Eq. 5.17 is shown in Fig. 5.2 and ψthreshold is
also a pre-defined parameter based on the turning ability of AUV and its physical
limitation.

With these two simplifications, the preliminary model of the path planning
problem has been changed to a constrained optimization problem with single ob-
jective function, which is expressed as follows:

min
P

f (P)

s.t. gi(P)≥ c , i = 1, ..., n

qi(P)≤ψthreshold , i = 1, ..., n

(5.18)

Chapter 5: Problem Formulation and Algorithm Design 43

When deploying PSO, QPSO and G-QPSO methods to solve this simplified path
planning problem in Eqs. 5.18, an indispensable problem is how to handle the con-
straints since the classical PSO algorithm is only suitable for unconstrained optim-
ization problem. Various methods have been proposed to handle these constraints
within evolutionary algorithm and swarm intelligence approaches[60], and could
be classified into several categories, including methods preserving solution feas-
ibility, methods with penalty function and other hybrid approaches[61].

In this thesis, a penalty-based method is used to handle the inequality con-
straints in the simplified optimization problem. In penalty-based method, a pen-
alty function is defined and added to the objective function when the constraints
is not fulfilled, which corresponds to the unfeasible solutions. Since there are two
inequality constraints, two penalty function psa f et y and pturn is proposed and the
modified objective function is expressed as follows:

fmod(P) =

f (P) , if P ∈ F
f (P) + psa f e(P) , if P ∈ U1

f (P) + pturn(P) , if P ∈ U2

f (P) + psa f e(P) + pturn(P) , if P ∈ U1 ∩ U2

(5.19)

where F is the feasible set, U1 is the unfeasible set for the first constraint about
safety, U2 is the unfeasible set for the first constraint about turning angle. The
penalty function psa f et y and pturn are equal to zero when the corresponding con-
straints are not violated by the candidate solution, and their mathematical rep-
resentation are shown in Eqs. 5.20.

psa f e(P) =
n
∑

i=1

pi
sa f e(P) (5.20a)

pturn(P) =
n
∑

i=1

pi
turn(P) (5.20b)

where

pi
sa f e(P) =

¨

0 , if gi(P)− c ≥ 0

β · (c − pi(P)), otherwise
(5.21)

pi
turn(P) =

¨

0 , if qi(P)−ψthreshold ≤ 0

β · (ψthreshold − qi(P)) , otherwise
(5.22)

where β is a pre-defined parameter which is used to enlarge the violation of the
constraints and quantify the penalty. In general, it is generated with a large value
like 500, 1000. The expressions for pi(P) and qi(P are shown in Eqs. 5.14 and
5.16.

44 Hantong Liu: A G-QPSO based path planner for AUVs

5.1.3 Final Version of Modelling for Path Planning Problem

With the simplification and modification in chapter 5.1.2, the preliminary model
with multiple objective functions has changed a lot. The new version is an uncon-
strained optimization model with single objective function using penalty-based
method, which is suitable for PSO, QPSO and G-QPSO approches. The final ver-
sion of modelling for the path planning problem is shown as follows:

min
P

f (P) + psa f e(P) + pturn(P) (5.23)

where

P = [p0, p1, ... ,pn, pn+1] (5.24a)

f (P) =
n
∑

k=0

Æ

(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (5.24b)

psa f e(P) =
n
∑

i=1

pi
sa f e(P) (5.24c)

pturn(P) =
n
∑

i=1

pi
turn(P) (5.24d)

pi
sa f e(P) =

¨

0 , if gi(P)− c ≥ 0

β · (c − gi(P)), otherwise
(5.24e)

pi
turn(P) =

¨

0 , if qi(P)−ψthreshold ≤ 0

β · (ψthreshold − qi(P)) , otherwise
(5.24f)

5.2 Algorithm Design

Given the modified model of the path planning problem in Eqs. 5.23, the classical
PSO, QPSO and G-QPSO algorithm presented in chapter 4 could be deployed to
solve this optimization problem. Based on the mathematical model, corresponding
engineering model for MATLAB is designed, including the objective function and
penalty function. In this part, the engineering model in MATLAB is presented and
a strategy to define the dimension of the problem is introduced, as well as the
pseudo-code of these algorithms.

5.2.1 Straight-line Method

As mentioned in section 5.1, the candidate path which consists of a sequence of
waypoints including known starting and destination point and n interior points is
defined as the optimization variable. The number of unknown points denoted by
n, which is also the dimension of the optimization problem, need to be determined
in advance. Since any path segment between two adjacent waypoints is a continu-
ous path and could be discretized, there could be infinite number of points to be

Chapter 5: Problem Formulation and Algorithm Design 45

optimized to depict the best path. To solve this problem, in general, the number of
unknown points is selected as smaller as possible. Thus, the optimization problem
changes to a reduced dimension and the computational cost reduces as well. The
examples shown in Fig. 5.3 corresponds to a possible path 8 interior points and
4 interior points. It can be found that these 2 paths both fulfill the requirement
and the computation process for the path with 4 unknown points is clearly faster
than that with 8 points. Therefore, a proper number of optimization variables is
essential to the algorithm’s performance and efficiency.

(a) Path with 4 interior points

(b) Path with 8 interior points

Figure 5.3: Comparison between paths with 4 and 8 interior points

In theory, if a path segment between 2 adjacent points collides with an obstacle
in convex shape, setting one additional turning point in the path segment could

46 Hantong Liu: A G-QPSO based path planner for AUVs

avoid the collision. Thus, the maximum number of unknown points required to
generate a path without collision with all obstacles is the number of obstacles in
the search space. Any path with more unknown points is unnecessary and wasteful
of computational resource. However, some obstacles could be far away from the
path and impossible to collide with it. It’s also a waste. Therefore, a simple method
to determine the number of unknown points is proposed by drawing a straight line
between the starting point and destination point. The number of unknown points
is equal to the number of obstacles crossed by the straight line. The experience
from other researchers shows that when the number of interior points is less than
3, some bad results such as path with much longer length and even unfeasible
paths could appear[62]. Therefore, at least 4 unknown points is guaranteed and
the pseudo-code is shown as follows:

Algorithm 1 Straight-line Method

1: Draw a straight line between the staring and destination point
2: if The straight line collides with obstacles then
3: Determine the number of obstacles crossed by the line, denoted by nobs
4: if nobs < 4 then
5: n= 4
6: else
7: n= nobs
8: end if
9: end if

5.2.2 Design of Objective Functions

In the mathematical modelling of the path planning problem shown as Eqs. 5.23,
the objective function consists of three parts, the total length of path f (P) and two
penalty function psa f e(P) and pturn(P). In this section, the engineering models of
them in MATLAB are presented.

For the first part, the total length of the path, it is calculated in the same way
shown in section 5.1, by using the Pythagorean theorem. The expression in 2D
case is shown as follows:

f (P) =
n
∑

k=0

Æ

(xk+1 − xk)2 + (yk+1 − yk)2 (5.25)

In terms of the penalty function of safety psa f e(P), there are some changes
with engineering concern. Since the mathematical model of it is not suitable for
obstacles in rectangular shape, another way to quantify the safety margin is used.
Instead of calculating the distance between the obstacle and the path segment,
linear interpolation is used to discrete the path segment and the penalty function
is described by the relationship between the interpolation points and the obstacles.

Chapter 5: Problem Formulation and Algorithm Design 47

For the obstacle in circle/sphere shape, it is easy to judge if the interpolation
point is inside the obstacle by calculating the distance between it and the center
of the obstacle. The engineering model of the penalty function is expressed in Eqs.
5.28.

psa f e,1(P) =
n
∑

i=1

m
∑

j=1

pi, j
sa f e,1(P) (5.26)

where i is the index of the path segment, j is the index of the interpolation point,
and

pi, j
sa f e,1(P) =

¨

0 , if gi, j(P)− c ≥ 0

β · (c − gi(P)), otherwise
(5.27a)

gi, j(P) =
q

(x i, j − xobs)2 + (yi, j − yobs)2 (5.27b)

The piecewise-defined function in Eqs. 5.29 could expressed by a maximum
function and the new form is shown as follows:

pi, j
sa f e,1(P) = β ·max

�

0, 1−
gi, j(P)

c

�

(5.27c)

For the obstacles in rectangular shape, the model presented above is no longer
applicable. There are several ways to judge if a certain point is inside a rectan-
gular, such as ray casting. In this thesis, the judgement is based on the geometric
relationship between the interpolation point and two parallel sides of the rectan-
gular.

Figure 5.4: Graphics illustration for geometric relationship between the point
and the rectangular

As shown in Fig. 5.4, it can be found that if the point is inside the rectangular,
the angles marked by red curve are all acute angles. If the point is on the side of
rectangular or outside, some of these angles become equal to, even greater than
π/2. The mathematical expression of this criterion is shown as follows:

psa f e,2(P) =
n
∑

i=1

m
∑

j=1

pi, j
sa f e,2(P) (5.28)

where i is the index of the path segment, j is the index of the interpolation point,

48 Hantong Liu: A G-QPSO based path planner for AUVs

and

pi, j
sa f e,2(P) =

¨

0 , if φk
i, j ∈ (0, π2) k = 1, 2, 3, 4

β · (c − gi(P)), otherwise
(5.29a)

gi, j(P) =
q

(x i, j − xobs)2 + (yi, j − yobs)2 (5.29b)

The angle could be calculated as the same way in Eq. 5.8 and the final expres-
sion for the penalty function is shown as follows:

psa f e(P) = psa f e,1(P) + psa f e,2(P) (5.30)

For the second penalty function about the turning angle, the engineering model
of it is quite similar to psa f e,1(P) and shown as follows:

pturn(P) =
n
∑

i=1

pi
turn(P) (5.31a)

pi
turn(P) =

¨

0 , if qi(P)−ψthreshold ≤ 0

β · (ψthreshold − qi(P)) , otherwise
(5.31b)

qi(P) = arccos
�

lk · lk+1

|lk||lk+1|

�

(5.31c)

The piecewise-defined function in Eqs. 5.31 could expressed by a maximum
function and the new form is shown as follows:

pi
turn(P) = β ·max

�

0,
qi(P)

ψthreshold
− 1
�

(5.31d)

In summary, three parts of the objective function are modified in the consider-
ation of engineering aspect. The new model solves some previous problems such
as unfitness to obstacles in rectangular shape. Also, with the discretization of the
path segments,it is easy to deploy these functions into MATLAB code. The practical
algorithm and code work are introduced later.

5.2.3 The PSO Algorithm for Path Planning Problem

As mentioned in chapter 4, the first step in PSO algorithm is initialization of the
swarm. In the classical PSO algorithm, the swarm is initialized by using random
distribution function. Since the straight line method has drawn a candidate path
which is a line between starting and destination point with the shortest path
length, it could be used as the initial values of the swarm by linear interpolation
along this path. The mathematical expression of the initialization is:

Pi = P0 + i ·
Pn+1 − P0

n
, i = 1,2, ..., n (5.32)

Chapter 5: Problem Formulation and Algorithm Design 49

Algorithm 2 Proposed PSO Algorithm

1: Define the dimension of problem n with Straight-line method in Algorithm 1
2: Initialize the swarm with eqs. 5.32 and 5.33
3: Evaluate the fitness of the swarm and set as the initial pbest and g best
4: for k = 1:K do
5: for i = 1:N do
6: Update the velocity v by using eq. 4.3
7: Check if the velocity violates the velocity bounds
8: Update the particle’s position with eq. 4.2
9: Check if the new position violates the position bounds

10: Evaluate the fitness value F(Pi) of the particle in new position with eqs.
5.23

11: if F(Pi)< pbest i then
12: pbest i = F(Pi)
13: end if
14: if F(Pi)< g best then
15: g best = F(Pi)
16: end if
17: end for
18: end for

For the initialization of the velocity v, it is equal to zero.

vi = 0 , i = 1,2, ..., n (5.33)

The pseudo-code of the proposed PSO algorithm is presented in Algorithm 2.
In this algorithm, K is the maximum iterations and N is the population of

the swarm. There are many parameters such as c1, c2, w and the velocity bound
vmin, vmax which need to be defined in advance.

5.2.4 The QPSO and G-QPSO Algorithm for Path Planning Problem

The initialization process in QPSO and G-QPSO algorithm is the same as the one
in PSO algorithm. Since the difference between QPSO and G-QPSO algorithm
is quite small, only the pseudo-code of QPSO is presented and the difference is
added. The pseudo-code of the proposed algorithm is presented in Algorithm 3.

50 Hantong Liu: A G-QPSO based path planner for AUVs

Algorithm 3 Proposed QPSO Algorithm

1: Define the dimension of problem n with Straight-line method in Algorithm 1
2: Initialize the swarm with eqs. 5.32 and 5.33
3: Evaluate the fitness of the swarm and set as the initial pbest and g best
4: for k = 1:K do
5: for i = 1:N do
6: Evaluate M best by using eq. 4.10
7: end for
8: for i = 1:N do
9: Calculate β by using eq. 4.3 and generate random number k

10: if k < 0.5 then
11: Update the particle’s position with positive sign in eq. 4.8(G-QPSO

with eq. 4.12)
12: else
13: Update the particle’s position with negative sign in eq. 4.8(G-QPSO

with eq. 4.12)
14: end if
15: Check if the new position violates the position bounds
16: Evaluate the fitness value F(Pi) of the particle in new position with eqs.

5.23
17: if F(Pi)< pbest i then
18: pbest i = F(Pi)
19: end if
20: if F(Pi)< g best then
21: g best = F(Pi)
22: end if
23: end for
24: end for

Chapter 6

Results

This chapter contains the results from different phases of the development of an
optimal path planner based on swarm evolutionary strategy, including the clas-
sical PSO algorithm, QPSO algorithm and G-QPSO algorithm. Note that the prac-
tical path planning problem is represented by the mathematical model in Eqs.
5.23 and engineering model in section 5.2.2, which is solved by deploying the
PSO/QPSO/G-QPSO algorithm presented in section 5.2. Overall, the results can
be divided into 3 parts with three different algorithms and a comparison part is
put at the end.

1. Results of the Matlab-coded PSO-based path planner, with the tuning pro-
cess of c1 and c2, as well as the comparison between strategies about inertia
weight w, including both 2D case and 3D case.

2. Results of the Matlab-coded QPSO-based path planner, with the tuning pro-
cess of c1 and c2, only 2D case is considered.

3. Results of the Matlab-coded GQPSO-based path planner, only 2D case is
considered and no tuning process is done with G-QPSO algorithm.

4. The comparison among the results achieved before in a 2D case.

6.1 Path Planning with PSO algorithm

In this section, the tuning process of c1 and c2 is shown and different strategies of
inertia weight w are tested. After choosing the best c1, c2 and w in 2D environment
with circle-shape obstacles, the path planner is tested in a complex environment
with both circle-shape and OBB-shape obstacles. Finally, a 3D case is done and
the performance in 3D environment is tested.

51

52 Hantong Liu: A G-QPSO based path planner for AUVs

In all results shown in this section, the general PSO parameter setting are as
given in Table 6.1.

Parameter Symbol Value

Population size N 150

Number of iterations K 150

Coefficient for velocity bound k 0.2

Number of segments between two adjacent points n 300

Safety threshold for obstacle expansion ε 5.52 (m)

Table 6.1: Parameter setting for PSO algorithm

The map information in a 2D environment including the sizes and positions
of the obstacles, the starting point and destination point is shown in Table 6.2.

Parameter Symbol Value Unit

Starting point (x0, y0) (0,0) [m]

Destination point (xn+1, yn+1) (80, 100) [m]

Obstacle 1 position (x1
obs, y1

obs) (30,90) [m]

Obstacle 2 position (x2
obs, y2

obs) (80,60) [m]

Obstacle 3 position (x3
obs, y3

obs) (24,30) [m]

Obstacle radius (r1
obs, r2

obs, r3
obs) (20,20, 18) [m]

Table 6.2: Map information in a simple 2D environment

Chapter 6: Results 53

For a complex scenario with OBB-shape obstacles, the map information is
shown in Table 6.3.

Parameter Symbol Value Unit

Starting point (x0, y0) (0, 0) [m]

Destination point (xn+1, yn+1) (80,100) [m]

Obstacle 1 position (x1
obs, y1

obs) (30, 90) [m]

Obstacle 2 position (x2
obs, y2

obs) (80, 60) [m]

Obstacle 3 position (x3
obs, y3

obs) (24, 30) [m]

Obstacle radius (r1
obs, r2

obs, r3
obs) (20, 20,18) [m]

Obstacle 4 position in OBB shape xobb, yobb,φobb (38, 10,−π6) [m, m, rad]

Obstacle 4 length and width (a, b) (10, 10) [m]

Table 6.3: Map information in a complex 2D scenario with OBB-shape obstacles

As for the 3-dimensional scenario, only sphere-shape obstacles are taken into
account and the map information is shown in Table 6.4.

Parameter Symbol Value Unit

Starting point (x0, y0, z0) (0, 0,0) [m]

Destination point (xn+1, yn+1, zn+1) (100,100, 100) [m]

Obstacle 1 position (x1
obs, y1

obs, z1
obs) (15,45, 15) [m]

Obstacle 2 position (x2
obs, y2

obs, z2
obs) (40,30, 30) [m]

Obstacle 3 position (x3
obs, y3

obs, z3
obs) (12,15, 20) [m]

Obstacle 4 position (x4
obs, y4

obs, z4
obs) (60,70, 70) [m]

Obstacle 5 position (x5
obs, y5

obs, z5
obs) (50,60, 50) [m]

Obstacle radius (r1
obs, r2

obs, r3
obs, r4

obs, r5
obs) (15, 15,8, 10,15) [m]

Table 6.4: Map information in 3D scenario with sphere-shape obstacles

6.1.1 2D Path Planning with Different c1 and c2

Firstly, three pairs of c1 and c2 are applied to the PSO algorithm shown in Al-
gorithm 2. The results are shown in Fig. 6.1.

1. c1 = 1, c2 = 2 (6.1)

2. c1 = 2, c2 = 2 (6.2)

3. c1 = 2, c1 = 1 (6.3)

54 Hantong Liu: A G-QPSO based path planner for AUVs

The information of obstacles is shown in Table 6.2.

(a) Optimal paths generated by PSO algorithm with different
pairs of c1 and c2

(b) The fitness value during iterations by PSO algorithm with
different pairs of c1 and c2

Figure 6.1: Performance of the PSO algorithm with different pair of c1 and c2

Figure 6.1 shows the optimal paths generated by the PSO-based path planner
with different pairs of c1 and c2. The changes of the fitness value during the it-
erations are also shown, which could be used to check its convergence property.
Detailed information about the optimal paths, including the position of waypoints
and total path length is shown in Table 6.5 and 6.6

Chapter 6: Results 55

P1 P2 P3 P4

(c1, c2) = (1,2) (7.05,37.20) (10.63,42.26) (34.65, 62.60) (61.78, 84.98)
(c1, c2) = (2,2) (21.92,6.98) (35.78,15.48) (44.90, 28.11) (66.35, 80.37)
(c1, c2) = (2,1) (6.38,35.03) (9.58,41.39) (47.16, 73.02) (70.61, 92.27)

Table 6.5: Positions of waypoints generated by three pairs of c1 and c2

(c1, c2) = (1, 2) (c1, c2) = (2,2) (c1, c2) = (2, 1)
Total path length [m] 134.32 135.23 134.34

Table 6.6: Total length of the paths generated by three pairs of c1 and c2

6.1.2 2D Path Planning with Different Definitions of Inertia Weight

As mentioned in chapter 4, there are several methods to define the inertia weight
w, which are shown in Table 4.1. In this part, two strategies are chosen and
tested, that is, constant inertia weight and linearly decreasing inertia weight,
whose mathematical representation is expressed as follows:

Constant inertia weight: w(t) = w (6.4)

Linearly decreasing inertia weight: w(t) = wmax −
wmax −wmin

tmax
× t (6.5)

where t is the index of the iteration and the tested parameters are shown in Table
6.7.

w wmax wmin tmax

0.65 0.65 0.2 150

Table 6.7: tested parameters of inertia weight

The results with these 2 strategies of inertia weight are shown in Fig. 6.2. The
detailed information about the optimal paths, including the position of waypoints
and total path length is shown in Table 6.8 and 6.9

P1 P2 P3 P4

constant w (34.39, 14.84) (44.50, 24.64) (61.81, 71.22) (73.71,89.21)
w(t) in Eq.6.5 (31.81, 13.11) (38.71, 18.78) (52.50, 48.46) (63.56,72.07)

Table 6.8: Positions of waypoints generated by PSO algorithm with different
strategies of inertia weight

constant w linearly decreased w
Total path length [m] 135.27 134.54

Table 6.9: Total length of the paths generated by PSO algorithm with different
strategies of inertia weight

56 Hantong Liu: A G-QPSO based path planner for AUVs

(a) Optimal paths generated by PSO algorithm with different
definition of inertia weight w

(b) The fitness value during iterations by PSO algorithm with
different definition of inertia weight w

Figure 6.2: Performance of the PSO algorithm with different strategies for inertia
weight w

Figure 6.2 shows the optimal paths generated by the PSO-based path planner
with different strategies of inertia weight w. The changes of the fitness value dur-
ing the iterations are also shown, which could be used to check its convergence
property. The discussion is presented later in chapter 7.

Chapter 6: Results 57

6.1.3 2D Path Planning in Complex Environment with OBB-shape
Obstacles

Based on the results of previous two tests, the optimization parameter used in this
section is set as the one which has best performance in the former tests and shown
in Table 6.10. The map information is presented in Table 6.3.

c1 c2 wmax wmin tmax

1 2 0.65 0.20 150

Table 6.10: Optimization Parameter in complex environment

(a) Optimal path and unfeasible path generated
by PSO algorithm in complex environment with
OBB-shape obstacles

(b) The fitness value during iterations by PSO
algorithm in complex environment with OBB-
shape obstacles

Figure 6.3: Performance of the PSO algorithm in complex environment with OBB-
shape obstacles

58 Hantong Liu: A G-QPSO based path planner for AUVs

Figure 6.3 contains two paths generated by the PSO algorithm, one in red is
feasible and the other one in black is not feasible and violates the safety constraint
defined in chapter 5. The reason about this will be introduced in chapter 7. The
change of the fitness value is also shown in this figure. The detailed information
about the optimal paths, including the position of waypoints and total path length
is shown in Table 6.11 and 6.12.

P1 P2 P3 P4

feasible path (35.21,15.27) (43.77,25.77) (59.00,53.81) (60.70,66.56)
unfeasible path (0.345,39.18) (2.185,43.73) (58.32,87.53) (60.17,88.62)

Table 6.11: Positions of waypoints in feasible and unfeasible path generated by
PSO algorithm

feasible path unfeasible path
Fitness value 135.26 1849.3

Table 6.12: The fitness value of the paths generated by PSO algorithm, including
feasible and unfeasible path

6.1.4 3D Path Planning with PSO Algorithm

Besides the tests in 2-dimensional scenario, the performance of PSO-based path
planner in 3-dimensional scenario is tested and analyzed. The map information
is shown in Table 6.4. Based on the results of previous tests, the optimization
parameter used in this section is set as the one which has best performance in the
former tests and shown in Table 6.13.

The optimal path generated by the PSO-based path planner in 3D scenario is
shown in Fig. 6.4. The views of the path in North-East (NE) Plane and East-Down
(ED) Plane are shown in Fig. 6.5 and 6.6.

c1 c2 wmax wmin tmax

1 2 0.65 0.20 150

Table 6.13: Optimization Parameter in 3D scenario

Chapter 6: Results 59

Figure 6.4: Optimal path generated by PSO-based path planner in 3D scenario

Figure 6.5: Optimal path generated by PSO-based path planner in the NE-plane

60 Hantong Liu: A G-QPSO based path planner for AUVs

Figure 6.6: Optimal path generated by PSO-based path planner in the DE-plane

The change of the fitness value is also shown in Fig. 6.7. The detailed inform-
ation about the optimal paths, including the position of waypoints is shown in
Table 6.14.

Figure 6.7: The fitness value during iterations by PSO algorithm in 3D environ-
ment

Chapter 6: Results 61

x [m] y [m] z [m]
P1 11.40 5.131 11.40
P2 39.88 18.35 39.88
P3 61.36 46.74 61.36
P4 90.90 87.46 90.90

Table 6.14: Positions of waypoints generated by PSO algorithm in 3D scenario

The fitness value of the optimal path, which is also the total path length of a
feasible path is shown as follows:

F(P) = Ltotal = 177.18 [m] (6.6)

62 Hantong Liu: A G-QPSO based path planner for AUVs

6.2 Path Planning with QPSO Algorithm

In this section, the tuning process of c1 and c2 is shown and different strategies
of choosing c1 and c2 are tested. After choosing the best c1, c2 in 2D environment
with circle-shape obstacles, the path planner is tested in a complex environment
with both circle-shape and OBB-shape obstacles. Finally, a 3D case is done and
the performance in 3D environment is tested.

The QPSO-based path planner is based on the QPSO algorithm introduced in
chapter 5, the Algorithm 3. The parameter β in the algorithm is defined as the
same way of inertia weight w, and its mathematical representation is expressed
as follows:

β = wmax −
wmax −wmin

tmax
× t (6.7)

where the parameters are shown in Table 6.15.

wmax wmin tmax

0.65 0.20 150

Table 6.15: Optimization Parameter for β in QPSO algorithm

6.2.1 2D Path Planning with Different c1 and c2

As mentioned in chapter 4, the parameters c1 and c2 modulate the relative contri-
bution of the social and cognitive terms to finding the optimum. Similarly, three
different pairs of c1 and c2 are tested. In addition, in order to simplify the tuning
process, c1 and c2 are set in the range of (0, 1) and their results are presented and
compared with previous ones. The parameter setting is shown as follows:

1. c1 = 1, c2 = 2 (6.8)

2. c1 = 2, c2 = 2 (6.9)

3. c1 = 2, c1 = 1 (6.10)

4. c1 = rand(0,1), c2 = rand(0,1) (6.11)

In a simple 2D environment with circle-shape obstacles, whose information
is shown in Table. 6.2, the optimal paths generated by QPSO-based path planner
with different pairs of c1 and c2 are shown in Fig. 6.8, as well as the fitness value
during the iterations.

Chapter 6: Results 63

(a) Optimal paths generated by QPSO algorithm with different
pairs of c1 and c2

(b) The fitness value during iterations by QPSO algorithm with
different pairs of c1 and c2

Figure 6.8: Performance of the QPSO algorithm with different pair of c1 and c2
in simple 2D scenario

The fitness values, which is equal to the path length for feasible paths, of the
paths shown in Fig. 6.8 is given in Table 6.16.

(c1, c2) (1,2) (2,2) (2,1) rand(1, 2)
Ltotal 134.54 134.98 135.81 134.70

Table 6.16: Total length of the paths with different (c1, c2)

64 Hantong Liu: A G-QPSO based path planner for AUVs

In a complex 2D environment with OBB-shape obstacles, whose information
is shown in Table. 6.3, the optimal paths generated by QPSO-based path planner
with different pairs of c1 and c2 are shown in Fig. 6.9, as well as the fitness value
during the iterations. The final fitness values are shown in Table 6.17.

(a) Optimal paths generated by QPSO algorithm with dif-
ferent pairs of c1 and c2

(b) The fitness value during iterations by QPSO algorithm
with different pairs of c1 and c2

Figure 6.9: Performance of the QPSO algorithm with different pair of c1 and c2
in complex 2D scenario

(c1, c2) (1,2) (2,2) (2,1) rand(1, 2)
Ltotal 137.16 144.13 151.34 137.77

Table 6.17: Total length of the paths with different (c1, c2)

Chapter 6: Results 65

6.2.2 3D Path Planning with QPSO algorithm

In a simple 3D environment with sphere-shape obstacles, whose information is
shown in Table. 6.4, the optimal paths generated by QPSO-based path planner
with different pairs of c1 and c2 are shown in Fig. 6.10, 6.11 and 6.12. The changes
of fitness value during the iterations are shown in Fig. 6.13.

c1 c2 wmax wmin tmax

rand(0,1) rand(0,1) 0.65 0.20 150

Table 6.18: Optimization Parameter in 3D scenario

Figure 6.10: Optimal path generated by QPSO-based path planner in 3D scenario

The detailed information about the optimal paths, including the position of
waypoints is shown in Table 6.19.

x [m] y [m] z [m]
P1 13.98 15.29 6.288
P2 34.08 38.50 18.53
P3 58.22 64.08 38.00
P4 74.11 77.08 57.57

Table 6.19: Positions of waypoints generated by QPSO algorithm in 3D scenario

The fitness value of the optimal path, which is also the total path length of a
feasible path is shown as follows:

F(P) = Ltotal = 177.99 [m] (6.12)

66 Hantong Liu: A G-QPSO based path planner for AUVs

Figure 6.11: Optimal path generated by QPSO-based path planner in the NE-
plane

Figure 6.12: Optimal path generated by QPSO-based path planner in the DE-
plane

Chapter 6: Results 67

Figure 6.13: The fitness value during iterations by QPSO algorithm in 3D envir-
onment

6.3 Path Planning with G-QPSO Algorithm

In this section, no tuning process is done since there is no parameters need to
be defined except for β . A 2D simple scenario is considered and then the path
planner is tested in a complex environment with both circle-shape and OBB-shape
obstacles. Finally, a 3D case is done and the performance in 3D environment is
tested.

The G-QPSO-based path planner is based on the G-QPSO algorithm intro-
duced in chapter 5, the Algorithm 3. The parameter β in the algorithm is defined
as the same way of inertia weight w, and its mathematical representation is ex-
pressed as follows:

β = wmax −
wmax −wmin

tmax
× t (6.13)

where the parameters are shown in Table 6.15.

wmax wmin tmax

0.65 0.20 150

Table 6.20: Optimization Parameter for β in G-QPSO algorithm

6.3.1 2D Path Planning with G-QPSO algorithm

In a simple 2D environment with circle-shape obstacles, whose information is
shown in Table. 6.2, the optimal path generated by GQPSO-based path planner

68 Hantong Liu: A G-QPSO based path planner for AUVs

with random numbers in Gaussian distribution is shown in Fig. 6.14, as well as
the fitness value during the iterations.

(a) Optimal paths generated by G-QPSO algorithm

(b) The fitness value during iterations by G-QPSO algorithm

Figure 6.14: Performance of the G-QPSO algorithm with random numbers in
Gaussian distribution in simple 2D scenario

The fitness value of the optimal path, which is also the total path length of a
feasible path is shown as follows:

F(P) = Ltotal = 134.53 [m] (6.14)

Chapter 6: Results 69

In a complex 2D environment with OBB-shape obstacles, whose information
is shown in Table. 6.3, the optimal path generated by QPSO-based path planner
is shown in Fig. 6.15, as well as the fitness value during the iterations.

(a) Optimal paths generated by G-QPSO algorithm

(b) The fitness value during iterations by G-QPSO algorithm

Figure 6.15: PPerformance of the G-QPSO algorithm with random numbers in
Gaussian distribution in complex 2D scenario

The fitness value of the optimal path, which is also the total path length of a
feasible path is shown as follows:

F(P) = Ltotal = 137.75 [m] (6.15)

70 Hantong Liu: A G-QPSO based path planner for AUVs

6.3.2 3D Path Planning with G-QPSO algorithm

In a simple 3D environment with sphere-shape obstacles, whose information is
shown in Table. 6.4, the optimal paths generated by QPSO-based path planner
with random numbers in Gaussian distribution are shown in Fig. 6.16, 6.17 and
6.18. The changes of fitness value during the iterations are shown in Fig. 6.19.

G g wmax wmin tmax

|randn(0,1)| |randn(0,1)| 0.65 0.20 150

Table 6.21: Optimization Parameter in 3D scenario

Figure 6.16: Optimal path generated by GQPSO-based path planner in 3D scen-
ario

The detailed information about the optimal paths, including the position of
waypoints is shown in Table 6.22.

x [m] y [m] z [m]
P1 13.98 15.29 6.288
P2 34.08 38.50 18.53
P3 58.22 64.08 38.00
P4 74.11 77.08 57.57

Table 6.22: Positions of waypoints generated by QPSO algorithm in 3D scenario

The fitness value of the optimal path, which is also the total path length of a

Chapter 6: Results 71

feasible path is shown as follows:

F(P) = Ltotal = 176.32 [m] (6.16)

Figure 6.17: Optimal path generated by GQPSO-based path planner in the NE-
plane

Figure 6.18: Optimal path generated by GQPSO-based path planner in the DE-
plane

72 Hantong Liu: A G-QPSO based path planner for AUVs

Figure 6.19: The fitness value during iterations by GQPSO algorithm in 3D en-
vironment

Chapter 7

Discussion

In this chapter, the discussion on the results shown in Chapter 6 is given. Corres-
ponding to the structure of Chapter 6, the discussion part is also divided into 3
categories which are given as follows:

• Discussion on the performance of the PSO-based path planner based on the
results presented in Section 6.1, as well as the tuning advice for multiple
parameters. This part is given in Section 7.1.
• Discussion on results generated by the QPSO-based path planner and com-

parison between them and the results with PSO algorithm. This part is given
in Section 7.2.
• Discussion on the performance of the GQPSO-based path planner based on

the results presented in Section 6.3 and comparison to other algorithms
applied before. This part is given in Section 7.3.

7.1 Path Planning with PSO Algorithm

Firstly, some attention should be paid on the general choices of PSO parameters
shown in Table 6.1. This set of parameters is used to solve the optimal path plan-
ning problems both in 2-dimensional and 3-dimensional scenario. Moreover, all
of these algorithms used in Chapter 6 utilize this set of parameters. Hence, a good
choice of them is necessary and could save lots of computational cost.

In this thesis, the population size denoted by N is set as 150, which means
there are 150 particles in the swarm. In some way, this parameter has an influ-
ence on the performance of the PSO algorithm as well as the PSO-based path
planner. If the population of the swarm is pretty large, the probability that some
of the particles drop on the optimal position in the initialization process is also
large, since the particles are initialized randomly in the search space. Though this
initialization process is not used in the path planner given in Chapter 5, large
population still increases the diversity of the swarm and the exploration ability
is increased at the same time, as well as the convergence ability. However, large
population is not always beneficial because it will cause increase of the computa-

73

74 Hantong Liu: A G-QPSO based path planner for AUVs

tional cost. Therefore, there should be a trade-off. Scientists have proved that, in
most cases, if the population size is greater than 50, the benefit it gives becomes
quite small and the PSO algorithm is not sensitive to its change[]. In this thesis,
since the testing scenario is not too complex, the population size could be chosen
as a large number in order to ensure the convergence. If it is applied to much more
complex scenario, the population size should be redesigned to achieve a balance.

For the number of iterations denoted by K , it is set as 150. This is used to
limit the times of iterations and as a part of the stopping criterion. Since the PSO
algorithm is easy to get stuck in some local optimum, which corresponds to un-
feasible paths, this parameter could help quit the loop and try again. Based on
the results given in Chapter 6, the path planner always converges to a candidate
solution quickly within 50 iterations. Just to be safe, the number of iterations is
set as 150 and it works well in all cases shown in Chapter 6.

The safety threshold ε is set as two times of the AUVs’ length with the con-
sideration of the uncertainty during the travel and used to expand the obstacles.
Since the vehicle is considered as a mass point in the simulation, the expansion
process of the obstacles is necessary.

The coefficient for velocity bound denoted by k is an important parameter in
PSO-based path planner. As mentioned in Chapter 4, this coefficient defines the
velocity bound based on Eqs. 4.5 and limits the step size of the particle’s move-
ment. At the beginning, it was set as 0.4 and caused violation of the search space.
The result is, the output path was always near the boundary of the search space,
which increased the length of the path significantly. After some modification, it is
set as 0.2 and the new coefficient works well both in the 2D and 3D scenario.

7.1.1 Tuning of Cognitive and Social Coefficient c1 and c2

As mentioned in Chapter 4, the cognitive and social coefficients c1 and c2 play
an important role in PSO algorithm. These two parameters represent how much
contribution the personal best and global best make to the particles’ movement.
The values of the constants c1 and c2 determine the extent to which the particles
move towards the best position from its own experience and experience of all
particles. In order to show its influence and find the best choice of them for differ-
ent scenarios, three sets of c1 and c2 are tested and the results are shown in Fig.
6.1.

By comparing the total path length shown in Table 6.6, there is not too much
difference between them, which means all three pairs of c1 and c2 could generate
a feasible path with short length. But when looking at the change of fitness value
during the iterations, it can be found that the convergence abilities of them are
different. For the second pair of c1 and c2, it converges to the final path much later
than other two pairs. It makes sense since it is a conservative choice by making
c1 equal to c2. It means the experience from particle itself and the whole swarm
makes equal contribution to the particle’s movement. However, these two parts
of experience are not always good at the same time. Sometimes, the particle’s

Chapter 7: Discussion 75

own experience is better than that from others, then the setting with larger c1
could have better performance and faster convergence. That’s why the first pair
converges faster than the second one, same for the third pair.

Considering both the convergence speed and the final path length, the first
pair of c1 and c2 is chosen as the best option and used in the following tests.

(c1, c2) = (1,2) (7.1)

Also, it can be found that the final path generated by the PSO-based path
planner is not always the global optimal one even though it’s feasible. The path in
black, which is generated by the second pair of c1 and c2, is quite different from
others and its length is slightly greater than others. This path is called local op-
timal path. Convergence to local optimum is a main drawback for PSO algorithm.
Since the difference of path length is quite small and the local optimal path is
also feasible, this PSO-based path planner could be seen as a good path planner
in some way.

7.1.2 Choice of Definitions of Inertia Weight w

As mentioned in chapter 4, there are several methods to define the inertia weight
w, which are shown in Table 4.1. In this thesis, two strategies are chosen and
tested, that is, constant inertia weight and linearly decreasing inertia weight.

By observing the final paths generated by path planner with different inertia
weight in Fig. 6.1, it can be found that path planner with the linearly decreas-
ing inertia weight converges to the optimal path much faster than the one with
constant inertia weight. It makes sense since the inertia weight is used to limit
the contribution of velocity term in previous iteration. At the beginning, because
of lack of exploration, the step size generated based on the experience from its
own and the whole swarm is not quite useful. As the iteration goes, the particle
becomes more and more experienced and the step size generated based on the
experience becomes more useful. If the inertia weight is constant, even though
this step size becomes better, its contribution to particle’s movement does not
change. With the linearly decreasing inertia weight, the more iterations goes, the
more contribution it gives to the particle. Thus, the path planner converges to the
optimal path much faster with linearly decreasing inertia weight.

Considering both the convergence speed and the final path length, the linearly
decreasing inertia weight is chosen as the best option.

w(t) = wmax −
wmax −wmin

tmax
× t (7.2)

7.1.3 2D and 3D Path Planning with PSO Algorithm

By using the best choice of (c1, c2) and inertia weight w, the path planner is tested
in more complex scenarios, including a 2D scenario with OBB-shape obstacle and
a 3D scenario. The results are shown in Fig. 6.3 and 6.4.

76 Hantong Liu: A G-QPSO based path planner for AUVs

Figure 6.3 contains two paths, the one in black, which is an unfeasible path in
collision with obstacles, the other one in red which is a feasible path. Similarly, this
figure also shows the main disadvantages of PSO-based path planner, that is, it is
easy to get stuck in local optimal solution. In previous test, though the final path
is not the optimal solution, it is still a feasible path without collision. However,
in this scenario with rectangular shape obstacles, it is stuck in a dangerous path
which does not fulfill the requirement. It can be also observed by the fitness value.
The fitness value of the unfeasible path is greater than 1000 because the penalty
function works when the path collides with obstacles.

In a 3D scenario with sphere-shape obstacles, the performance of the path
planner is good and the final path is satisfying and the convergence ability is good
enough.

In summary, with well-tuned parameters c1 and c2 as well as the linearly de-
creasing inertia weight w, the PSO-based path planner could generate a feasible
path with short total length. However, the main drawback of it may lead to some
unfeasible paths in complex scenario. Also, the tuning process of it is difficult
and problem-based. In different scenarios, the proper parameters could differ a
lot. This also causes some inconvenience. These two disadvantages makes its per-
formance turn down generally.

7.2 Path Planning with QPSO Algorithm

Since QPSO algorithm is a modified version of PSO algorithm with better con-
vergence ability to the global optimal solution, the scenarios simulated by the
QPSO-based path planner are the same as those for PSO-based path planner. The
results are shown in Figure. 6.8, 6.9 and 6.10 corresponding to the 2D simple
scenario, 2D complex scenario with OBB-shape obstacles and 3D scenario.

As mentioned in Chapter 4, even though the updating rule in QPSO algorithm
is different from the one in PSO algorithm, the cognitive and social coefficient c1
and c2 still represent how much contribution the personal best and global best
make to the particles’ movement. The values of the constants c1 and c2 determine
the extent to which the particles move towards the best position from its own
experience and experience of all particles. Therefore, the tuning choice of these
two parameter is discussed.

7.2.1 Tuning for Cognitive and Social Coefficient c1 and c2

In order to compare its performance with PSO-based path planner, same setting
of the cognitive coefficients is tested and the results are shown in Fig. 6.8. In
addition, a new strategy of choosing c1 and c2 is tested, that is, generating random
c1 and c2 with uniform probability distribution function in the range of (0,1).

By observing the optimal paths generated with different pairs of c1 and c2, it
can be found that, the convergence ability to global optimal solution of QPSO-
based path planner is better than that of PSO-based path planner, since in the

Chapter 7: Discussion 77

same scenario with the same c1 and c2, the PSO-based path planner gets stuck in
the local optimal solution as the line in black in Fig. 6.8 shows, while the global
optimal path is achieved by QPSO-based path planner as the line in black in Fig.
6.8 shows. Also, in the complex 2D scenario with OBB-shape obstacles, the better
convergence ability to global optimal solution could be proved. In Fig. 6.9, all
paths are feasible.

By comparing the path in blue, generated by random pair of c1 and c2, it can
be found that its performance is good enough. The difference between its total
length and the shortest length is less than 1 meter. It’s sufficiently small for a a
long path. Meanwhile, its converges speed is also satisfying. These shows that it
is a good way to generate random c1 and c2 with uniform probability distribution
function which does not lead to much loss in performance and convergence ability.

7.2.2 3D Path Planning with QPSO Algorithm

With the new strategy of choosing c1 and c2 by using uniform probability distri-
bution function in the range of (0,1), the QPSO-based path planner is tested in
a simple 3D scenario. The results are shown in Fig. 6.10 and 6.13. Same conclu-
sion could be drawn from this result, that is, in 3D scenario, generating random
c1 and c2 with uniform probability distribution function does not lead to too loss
in performance and convergence ability. The difference of path length is also less
than 1 meter and the path planner converges quickly.

In summary, the QPSO-based path planner has better convergence property to
global optimal solution than PSO-based path planner, both in 2D and 3D scenarios.
Also, due to the change in updating rule, some problem-defined parameters dis-
appear in QPSO algorithm such as the velocity bound and its coefficients. Though
cognitive coefficients c1 and c2 still exist, they could be achieved by generating
random numbers with uniform probability distribution function. The results have
shown that this new strategy is satisfying in terms of convergence ability and al-
gorithm performance. With this strategy, the tuning process becomes much easier.

7.3 Path Planning with G-QPSO Algorithm

In G-QPSO algorithm, instead of uniform probability distribution, Gaussian prob-
ability distribution is used to generate random numbers for c1 and c2. Compared
with uniform probability distribution, Gaussian probability distribution has better
effect on the choice of parameters because of its mathematical properties, that is,
Gaussian distribution sequences have zero mean and unit variance. Applied to the
stochastic coefficients in QPSO algorithm, this property results in a good trade-off
between the probability of generating movement with small amplitudes around
the current space and that with large amplitudes. To compare its performance, the
scenarios simulated by the GQPSO-based path planner are the same as those for
QPSO-based path planner. The results are shown in Figure. 6.14, 6.15 and 6.16

78 Hantong Liu: A G-QPSO based path planner for AUVs

corresponding to the 2D simple scenario, 2D complex scenario with OBB-shape
obstacles and 3D scenario.

By observing the total length of the paths and convergence speed in all scen-
arios, it can be found that the optimal paths achieved by GQPSO-based path plan-
ner always have less path length and faster convergence speed than the ones gen-
erated by QPSO-based path planner. However the difference is quite small, the
total length of the path is shorten by less than 1 meter and the convergence speed
is always fast enough.

In summary, the path planner based on G-QPSO method have good perform-
ance and strong convergence ability in all 3 testing scenarios including 2D scen-
arios with circle and OBB shape obstacles, and the 3D scenario with sphere-
shape obstacles. Compared to QPSO-based path planner, the improvement of it
is not quite large. If the scenario is larger and more complex, the performance of
GQPSO-based path planner might be much better. With the advantage of less tun-
ing parameters and strong convergence ability, GQPSO-based path planner could
be seen as a high-performance path planner for AUV.

Chapter 8

Conclusion

In this chapter, based on the discussions given in Chapter 7, some conclusion
are presented about the performance of the path planner designed in this thesis.
Also, the process of problem formulation and algorithm design is summarized and
discussed here. Corresponding to the limitation given in section 1.4, the future
work of this thesis is presented.

8.1 Conclusion

This master’s thesis is based on the research hypothesis, that is, the research about
path planning method is a core technique for achieving high level of autonomy
for Autonomous Underwater Vehicles (AUVs) and Particle Swarm Optimization
(PSO) method could be utilized to design a high-performance path planner for
AUVs. The contribution of this thesis is a GQPSO-based optimal path planner,
which allows the AUV generates paths without human intervention.

The optimal path planning problem for AUV is modelled as a multi-objective
optimization problem at the beginning, concerning the path length, the safety
margin and smoothness of the path. In order to apply PSO algorithm, the prelim-
inary model is modified to an unconstrained optimization problem with single ob-
jective function. To save computational cost, the obstacles are modelled as circles
and oriented bounded boxes in 2D scenarios and sphere in 3D scenario. To en-
sure good cooperation between the path planner and the control system of AUV,
a guidance system with constant jerk is chosen and introduced.

The optimal path planner is developed by applying PSO, QPSO and GQPSO
method to the optimal path planning problem, and their performances are ex-
amined through simulations in 2D scenarios and 3D scenario. After discussion
about the test results, some conclusion could be drawn:

1. With well-tuned parameters, the performance of PSO-based optimal path
planner is satisfying, while its weak convergence ability to global optimum
can not be overcome.

79

80 Hantong Liu: A G-QPSO based path planner for AUVs

2. For a PSO-based path planner, using linearly decreasing inertia weight could
make the algorithm converge faster.

3. Optimal path planner with QPSO/GQPSO method has stronger convergence
ability to global optimum than that with PSO method.

4. Using QPSO and GQPSO method could shorten the tuning process signific-
antly and could not lead to too much loss in path length.

5. The GQPSO-based optimal path planner could be seen as a high-performance
path planner for LAUV.

8.2 Future Work

During the work of the master’s thesis, the limitations of this research come for-
ward and corresponding topics for future work are determined. In the process of
problem formulation, the path planning problem is modelled as a multi-objective
optimization problem. In order to apply PSO algorithm, this preliminary model
is simplified and changed to an unconstrained optimization problem with single
objective function. In some way, this modification has a bad influence on the per-
formance of the path planner. In recent years, a modified version of PSO algorithm
called MOPSO method which could handle multiple objective functions is pro-
posed by scientists. In the future work, this modified PSO algorithm could be used
to design the optimal path planner.

Another limitation of the research is, all of the results shown in this thesis
are obtained from simulations in MATLAB and no practical experiments are done.
Though the uncertainty of real environment are taken into consideration, it is
hard to say if the PSO-based optimal path planner proposed in this thesis could
achieve good performance in real environment. In future work, some practical
experiments could be done to test its performance in real world.

Moreover, the testing scenarios in this thesis are not designed at a large scale.
The performance of the optimal path planner in large-scale scenarios is uncertain
and needs to be tested. Therefore, in the future work, some larger scenarios could
be simulated to test its performance.

Bibliography

[1] C. Von Alt, ‘Autonomous underwater vehicles,’ in Autonomous Underwater
Lagrangian Platforms and Sensors Workshop, vol. 3, 2003, p. 2.

[2] P. Bhopale, F. Kazi and N. Singh, ‘Reinforcement learning based obstacle
avoidance for autonomous underwater vehicle,’ Journal of Marine Science
and Application, vol. 18, no. 2, pp. 228–238, 2019.

[3] R. Dechter and J. Pearl, ‘Generalized best-first search strategies and the
optimality of a,’ Journal of the ACM (JACM), vol. 32, no. 3, pp. 505–536,
1985.

[4] K. P. Carroll, S. R. McClaran, E. L. Nelson, D. M. Barnett, D. K. Friesen
and G. N. William, ‘Auv path planning: An a* approach to path planning
with consideration of variable vehicle speeds and multiple, overlapping,
time-dependent exclusion zones,’ in Proceedings of the 1992 symposium on
autonomous underwater vehicle technology, IEEE, 1992, pp. 79–84.

[5] R. J. Szczerba, P. Galkowski, I. S. Glicktein and N. Ternullo, ‘Robust al-
gorithm for real-time route planning,’ IEEE Transactions on Aerospace and
Electronic Systems, vol. 36, no. 3, pp. 869–878, 2000.

[6] S. Chen, C. Liu, Z. Huang and G. Cai, ‘Global path planning for auv based
on sparse a* search algorithm,’ Torpedo Technology, vol. 20, no. 4, pp. 271–
275, 2012.

[7] M. Li and H. Zhang, ‘Auv 3d path planning based on a* algorithm,’ in 2020
Chinese Automation Congress (CAC), IEEE, 2020, pp. 11–16.

[8] H. G. Cobb and J. J. Grefenstette, ‘Genetic algorithms for tracking changing
environments.,’ Naval Research Lab Washington DC, Tech. Rep., 1993.

[9] A. Alvarez and A. Caiti, ‘A genetic algorithm for autonomous undetwater
vehicle route planning in ocean environments with complex space-time
variability,’ IFAC Proceedings Volumes, vol. 34, no. 7, pp. 237–242, 2001.

[10] A. Alvarez, A. Caiti and R. Onken, ‘Evolutionary path planning for autonom-
ous underwater vehicles in a variable ocean,’ IEEE Journal of Oceanic En-
gineering, vol. 29, no. 2, pp. 418–429, 2004.

[11] Y. Sun and R. Zhang, ‘Research on global path planning for auv based on
ga,’ in Mechanical Engineering and Technology, Springer, 2012, pp. 311–
318.

81

82 Hantong Liu: A G-QPSO based path planner for AUVs

[12] J. Cao, Y. Li, S. Zhao and X. Bi, ‘Genetic-algorithm-based global path plan-
ning for auv,’ in 2016 9th International Symposium on Computational Intel-
ligence and Design (ISCID), IEEE, vol. 2, 2016, pp. 79–82.

[13] C. Cheng, Q. Sha, B. He and G. Li, ‘Path planning and obstacle avoidance
for auv: A review,’ Ocean Engineering, vol. 235, p. 109 355, 2021.

[14] C.-B. Zhang, Y.-J. Gong, J.-J. Li and Y. Lin, ‘Automatic path planning for
autonomous underwater vehicles based on an adaptive differential evolu-
tion,’ in Proceedings of the 2014 Annual Conference on Genetic and Evolu-
tionary Computation, 2014, pp. 89–96.

[15] X. Li, D. Zhu and Y. Qian, ‘A survey on formation control algorithms for
multi-auv system,’ Unmanned Systems, vol. 2, no. 04, pp. 351–359, 2014.

[16] R. Eberhart and J. Kennedy, ‘A new optimizer using particle swarm the-
ory,’ in MHS’95. Proceedings of the sixth international symposium on micro
machine and human science, Ieee, 1995, pp. 39–43.

[17] G. Yang and R. Zhang, ‘Path planning of auv in turbulent ocean environ-
ments used adapted inertia-weight pso,’ in 2009 Fifth International Confer-
ence on Natural Computation, IEEE, vol. 3, 2009, pp. 299–302.

[18] H. S. Lim, S. Fan, C. K. Chin, S. Chai and N. Bose, ‘Particle swarm optimiza-
tion algorithms with selective differential evolution for auv path planning,’
International Journal of Robotics and Automation, vol. 9, no. 2, pp. 94–112,
2020.

[19] A. Colorni, M. Dorigo, V. Maniezzo et al., ‘Distributed optimization by ant
colonies,’ in Proceedings of the first European conference on artificial life,
Paris, France, vol. 142, 1991, pp. 134–142.

[20] H.-D. Wang, G. D. Stanwood, D. K. Grandy and A. Y. Deutch, ‘Dystrophic
dendrites in prefrontal cortical pyramidal cells of dopamine d1 and d2 but
not d4 receptor knockout mice,’ Brain research, vol. 1300, pp. 58–64, 2009.

[21] F. Ma, X. Wang, X. Liu, J. Yu, T. Wang and W. Zhang, ‘Application of segment-
ation threshold method and wavelet threshold denoising based on emd in
Φ-otdr system,’ in Tenth International Conference on Information Optics and
Photonics, International Society for Optics and Photonics, vol. 10964, 2018,
p. 1 096 435.

[22] C. Hu and F. Zhang, ‘Research on auv global path planning based on multi-
objective ant colony strategy,’ in 2019 Chinese Automation Congress (CAC),
IEEE, 2019, pp. 5512–5517.

[23] C. S. Tan, R. Sutton and J. Chudley, ‘An incremental stochastic motion
planning technique for autonomous underwater vehicles,’ IFAC Proceedings
Volumes, vol. 37, no. 10, pp. 483–488, 2004.

Bibliography 83

[24] E. Hernández, M. Carreras, J. Antich, P. Ridao and A. Ortiz, ‘A topologically
guided path planner for an auv using homotopy classes,’ in 2011 IEEE In-
ternational Conference on Robotics and Automation, IEEE, 2011, pp. 2337–
2343.

[25] J. D. Hernández, G. Vallicrosa, E. Vidal, È. Pairet, M. Carreras and P. Ridao,
‘On-line 3d path planning for close-proximity surveying with auvs,’ IFAC-
PapersOnLine, vol. 48, no. 2, pp. 50–55, 2015.

[26] Y. Li, Y. Wang and J. Sheng, ‘The evolution of cooperation on geographical
networks,’ Physica A: Statistical Mechanics and its Applications, vol. 485,
pp. 1–10, 2017.

[27] L. Yu, Z. Wei, Z. Wang, Y. Hu and H. Wang, ‘Path optimization of auv based
on smooth-rrt algorithm,’ in 2017 IEEE International Conference on Mechat-
ronics and Automation (ICMA), IEEE, 2017, pp. 1498–1502.

[28] E. Taheri, M. H. Ferdowsi and M. Danesh, ‘Closed-loop randomized kino-
dynamic path planning for an autonomous underwater vehicle,’ Applied
Ocean Research, vol. 83, pp. 48–64, 2019.

[29] O. Khatib, ‘Real-time obstacle avoidance for manipulators and mobile ro-
bots,’ in Autonomous robot vehicles, Springer, 1986, pp. 396–404.

[30] D. Fu-guang, J. Peng, B. Xin-qian and W. Hong-Jian, ‘Auv local path plan-
ning based on virtual potential field,’ in IEEE International Conference Mechat-
ronics and Automation, 2005, IEEE, vol. 4, 2005, pp. 1711–1716.

[31] C. Cheng, D. Zhu, B. Sun, Z. Chu, J. Nie and S. Zhang, ‘Path planning
for autonomous underwater vehicle based on artificial potential field and
velocity synthesis,’ in 2015 IEEE 28th Canadian Conference on Electrical and
Computer Engineering (CCECE), IEEE, 2015, pp. 717–721.

[32] L. Ge, H. Li, Q. Wang, G. Wei, Z. Hu, J. Liao and J. Li, ‘Design and optim-
ization of annular flow electromagnetic measurement system for drilling
engineering,’ Journal of Sensors, vol. 2018, 2018.

[33] O. Cordón, F. Herrera, E. Herrera-Viedma and M. Lozano, ‘Genetic algorithms
and fuzzy logic in control processes,’ Archives Of Control Science, vol. 5,
pp. 135–168, 1996.

[34] S. Khanmohammadi and O. Ghaderi, ‘Simultaneous coordinated tuning of
fuzzy pss and fuzzy facts device stabilizer for damping power system oscil-
lations in multi-machine power system,’ in 2007 IEEE International Fuzzy
Systems Conference, IEEE, 2007, pp. 1–6.

[35] S. X. Yang and M.-H. Meng, ‘Real-time collision-free motion planning of a
mobile robot using a neural dynamics-based approach,’ IEEE Transactions
on Neural Networks, vol. 14, no. 6, pp. 1541–1552, 2003.

[36] M. Z. Yan and D. Q. Zhu, ‘An algorithm of complete coverage path planning
for autonomous underwater vehicles,’ in Key Engineering Materials, Trans
Tech Publ, vol. 467, 2011, pp. 1377–1385.

84 Hantong Liu: A G-QPSO based path planner for AUVs

[37] D. Zhu, W. Li, M. Yan and S. X. Yang, ‘The path planning of auv based
on ds information fusion map building and bio-inspired neural network in
unknown dynamic environment,’ International Journal of Advanced Robotic
Systems, vol. 11, no. 3, p. 34, 2014.

[38] J. Ni, L. Wu, P. Shi and S. X. Yang, ‘A dynamic bioinspired neural net-
work based real-time path planning method for autonomous underwater
vehicles,’ Computational intelligence and neuroscience, vol. 2017, 2017.

[39] G. Ding, D. Zhu and B. Sun, ‘Formation control and obstacle avoidance
of multi-auv for 3-d underwater environment,’ in Proceedings of the 33rd
Chinese Control Conference, IEEE, 2014, pp. 8347–8352.

[40] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[41] H. Kawano and T. Ura, ‘Fast reinforcement learning algorithm for motion
planning of nonholonomic autonomous underwater vehicle in disturbance,’
in IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,
vol. 1, 2002, pp. 903–908.

[42] R. Gore, K. Pattanaik and S. Bharti, ‘Efficient re-planned path for autonom-
ous underwater vehicle in random obstacle scenario,’ in 2019 IEEE 5th In-
ternational Conference for Convergence in Technology (I2CT), IEEE, 2019,
pp. 1–5.

[43] R. Hassan, B. Cohanim, O. De Weck and G. Venter, ‘A comparison of particle
swarm optimization and the genetic algorithm,’ in 46th AIAA/ASME/AS-
CE/AHS/ASC structures, structural dynamics and materials conference, 2005,
p. 1897.

[44] J. Sun, B. Feng and W. Xu, ‘Particle swarm optimization with particles hav-
ing quantum behavior,’ in Proceedings of the 2004 congress on evolutionary
computation (IEEE Cat. No. 04TH8753), IEEE, vol. 1, 2004, pp. 325–331.

[45] J. Sun, X. Wu, V. Palade, W. Fang, C.-H. Lai and W. Xu, ‘Convergence ana-
lysis and improvements of quantum-behaved particle swarm optimization,’
Information Sciences, vol. 193, pp. 81–103, 2012.

[46] L. Coelho, ‘Novel gaussian quantum-behaved particle swarm optimiser ap-
plied to electromagnetic design,’ IET science, measurement & technology,
vol. 1, no. 5, pp. 290–294, 2007.

[47] M. Xi, J. Sun and W. Xu, ‘An improved quantum-behaved particle swarm
optimization algorithm with weighted mean best position,’ Applied Math-
ematics and Computation, vol. 205, no. 2, pp. 751–759, 2008.

[48] J. Guo, J. Wang and G. Cui, ‘Online path planning for uav navigation based
on quantum particle swarm optimization,’ in Advanced Technology in Teaching-
Proceedings of the 2009 3rd International Conference on Teaching and Com-
putational Science (WTCS 2009), Springer, 2012, pp. 291–302.

[49] F. Dukan, ‘Rov motion control systems,’ 2014.

Bibliography 85

[50] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[51] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh et al., ‘A review: On path plan-
ning strategies for navigation of mobile robot,’ Defence Technology, vol. 15,
no. 4, pp. 582–606, 2019.

[52] F. van den Bergh et al., ‘An analysis of particle swarm optimizers [ph. d.
thesis],’ Pretoria: Natural and Agricultural Science Department, University
of Pretoria, vol. 95, 2001.

[53] R. C. Eberhart, Y. Shi and J. Kennedy, Swarm intelligence. Elsevier, 2001.

[54] F. Marini and B. Walczak, ‘Particle swarm optimization (pso). a tutorial,’
Chemometrics and Intelligent Laboratory Systems, vol. 149, pp. 153–165,
2015.

[55] J. Kennedy and R. Eberhart, ‘Particle swarm optimization,’ in Proceedings
of ICNN’95-international conference on neural networks, IEEE, vol. 4, 1995,
pp. 1942–1948.

[56] W. Schweizer, Numerical quantum dynamics. Springer Science & Business
Media, 2001, vol. 9.

[57] Y. Cai, J. Sun, J. Wang, Y. Ding, N. Tian, X. Liao and W. Xu, ‘Optimizing the
codon usage of synthetic gene with qpso algorithm,’ Journal of Theoretical
Biology, vol. 254, no. 1, pp. 123–127, 2008.

[58] M. Clerc and J. Kennedy, ‘The particle swarm-explosion, stability, and con-
vergence in a multidimensional complex space,’ IEEE transactions on Evol-
utionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[59] L. dos Santos Coelho, ‘Gaussian quantum-behaved particle swarm optim-
ization approaches for constrained engineering design problems,’ Expert
Systems with Applications, vol. 37, no. 2, pp. 1676–1683, 2010.

[60] C. A. C. Coello, ‘Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: A survey of the state of the art,’ Com-
puter methods in applied mechanics and engineering, vol. 191, no. 11-12,
pp. 1245–1287, 2002.

[61] Z. Michalewicz and M. Schoenauer, ‘Evolutionary algorithms for constrained
parameter optimization problems,’ Evolutionary computation, vol. 4, no. 1,
pp. 1–32, 1996.

[62] P. B. Fernandes, R. C. L. De Oliveira and J. V. F. Neto, ‘A modified qpso
for robotic vehicle path planning,’ in 2018 IEEE Congress on Evolutionary
Computation (CEC), IEEE, 2018, pp. 1–7.

Appendix A

Matlab Code

In this appendix, the Matlab-code of the proposed optimal path planner is presen-
ted, including PSO-based and GQPSO-based algorithms. Since the code of QPSO-
based algorithm is quite similar to that of GQPSO-based algorithm. Therefore, the
code of QPSO algorithm is not presented and the difference is marked in the code.
The parameter setting is also presented here.

A.1 Code of GQPSO-based optimal path planner

A.1.1 Main.m

1
2 clc;
3 clear;
4 close all;
5
6 %% Problem Definition
7
8 model=CreateModel();
9

10 model.n=4; % number of Handle Points
11
12 CostFunction=@(x) MyCost(x,model); % Cost Function
13
14 nVar=model.n; % Number of Decision Variables
15
16 VarSize=[1 nVar]; % Size of Decision Variables Matrix
17
18 VarMin.x=model.xmin; % Lower Bound of Variables
19 VarMax.x=model.xmax; % Upper Bound of Variables
20 VarMin.y=model.ymin; % Lower Bound of Variables
21 VarMax.y=model.ymax; % Upper Bound of Variables
22
23
24 %% PSO Parameters
25
26 MaxIt=150; % Maximum Number of Iterations
27
28 nPop=150; % Population Size (Swarm Size)

87

88 Hantong Liu: A G-QPSO based path planner for AUVs

29
30 w1 = 0.2; % Minimum intertia weight
31
32 w2 = 0.65; % Maximum inertia weight
33
34
35 %% Initialization
36
37 % Create Empty Particle Structure
38 empty_particle.Position=[];
39 empty_particle.Velocity=[];
40 empty_particle.Cost=[];
41 empty_particle.Sol=[];
42 empty_particle.Best.Position=[];
43 empty_particle.Best.Cost=[];
44 empty_particle.Best.Sol=[];
45
46 % Initialize Global Best
47 GlobalBest.Cost=inf;
48
49 % Create Particles Matrix
50 particle=repmat(empty_particle,nPop,1);
51
52 % Initialization Loop
53 for i=1:nPop
54
55 % Initialize Position
56 if i > 1
57 particle(i).Position=CreateRandomSolution(model);
58 else
59 % Straight line from source to destination
60
61 xx = linspace(model.xs, model.xt, model.n+2);
62 yy = linspace(model.ys, model.yt, model.n+2);
63
64 particle(i).Position.x = xx(2:end-1);
65 particle(i).Position.y = yy(2:end-1);
66 end
67
68 % Evaluation of the fitness value
69 [particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position);
70
71 % Update Personal Best
72 particle(i).Best.Position=particle(i).Position;
73 particle(i).Best.Cost=particle(i).Cost;
74 particle(i).Best.Sol=particle(i).Sol;
75
76 % Update Global Best
77 if particle(i).Best.Cost<GlobalBest.Cost
78
79 GlobalBest=particle(i).Best;
80
81 end
82
83 end
84
85 % Array to Hold Best Cost Values at Each Iteration
86 BestCost=zeros(MaxIt,1);
87
88 %% Main Loop of GQPSO-based path planner

Chapter A: Matlab Code 89

89
90 for it=1:MaxIt
91
92 beta = w1 + (w2 - w1)*(MaxIt - it)/MaxIt; % generate beta
93 mbest_x = 0;
94 mbest_y = 0;
95
96 for j = 1:nPop
97 mbest_x = mbest_x + particle(j).Best.Position.x;
98 mbest_y = mbest_y + particle(j).Best.Position.y;
99 end

100
101 mbest_x = mbest_x/nPop; % Calculate Mbest
102 mbest_y = mbest_y/nPop;
103
104 for i=1:nPop
105
106 % x part
107 % Generate random numbers with Gaussian distribution fuinction
108 phi_x = abs(randn); % phi_x = rand for QPSO
109 G_x = abs(randn); % G_x = rand for QPSO
110 La_x = (G_x * particle(i).Best.Position.x + phi_x *...
111 GlobalBest.Position.x)/(G_x + phi_x);
112 A_x = beta * abs(mbest_x - particle(i).Position.x) * log(1/G_x);
113 if rand > 0.5
114 particle(i).Position.x = La_x + A_x;
115 else
116 particle(i).Position.x = La_x - A_x;
117 end
118
119 % Check if the particle violates the bound of search space
120 particle(i).Position.x = max(particle(i).Position.x,VarMin.x);
121 particle(i).Position.x = min(particle(i).Position.x,VarMax.x);
122
123 % y part
124
125 phi_y = abs(randn); % phi_y = rand for QPSO
126 G_y = abs(randn); % G_y = rand for QPSO
127 La_y = (G_y * particle(i).Best.Position.y + phi_y *...
128 GlobalBest.Position.y)/(G_y+phi_y);
129 A_y = beta * abs(mbest_y - particle(i).Position.y) * log(1/G_y);
130 if rand > 0.5
131 particle(i).Position.y = La_y + A_y;
132 else
133 particle(i).Position.y = La_y - A_y;
134 end
135
136 % Check if the particle violates the bound of search space
137 particle(i).Position.y = max(particle(i).Position.y,VarMin.y);
138 particle(i).Position.y = min(particle(i).Position.y,VarMax.y);
139
140 % Evaluation
141 [particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position);
142
143 % Update Personal Best
144 if particle(i).Cost<particle(i).Best.Cost
145
146 particle(i).Best.Position=particle(i).Position;
147 particle(i).Best.Cost=particle(i).Cost;
148 particle(i).Best.Sol=particle(i).Sol;

90 Hantong Liu: A G-QPSO based path planner for AUVs

149
150 % Update Global Best
151 if particle(i).Best.Cost<GlobalBest.Cost
152 GlobalBest=particle(i).Best;
153 end
154
155 end
156
157
158 end
159
160 % Update Best Cost Ever Found
161 BestCost(it)=GlobalBest.Cost;
162
163
164 % Show Iteration Information
165 if GlobalBest.Sol.IsFeasible
166 Flag= ’ * ’;
167 else
168 Flag=[’ , Violation = ’ num2str(GlobalBest.Sol.Violation)];
169 end
170 disp([’ Iteration ’ num2str(it) ’ : Best Cost = ’ num2str(BestCost(it)) Flag]);
171
172 % Plot Solution
173 figure(1);
174 PlotSolution(GlobalBest.Sol,model);
175 pause(0.01);
176
177 end
178
179 %% Results
180
181 figure;
182 plot(BestCost, ’ LineWidth ’,2);
183 xlabel(’ Iteration ’);
184 ylabel(’ Best Cost ’);
185 grid on;

A.1.2 CostFunction.m

1 function sol2=CostFunction(sol1,model)
2
3 x=sol1.x;
4 y=sol1.y;
5
6 xs=model.xs;
7 ys=model.ys;
8 xt=model.xt;
9 yt=model.yt;

10
11 xobs=model.xobs;
12 yobs=model.yobs;
13 robs=model.robs;
14 recobs_x = model.recobs_x;
15 recobs_y = model.recobs_y;
16 a = model.rec_a;
17 b = model.rec_b;
18 rec_ori_x = model.rec_ori_x;

Chapter A: Matlab Code 91

19 rec_ori_y = model.rec_ori_y;
20
21 XS=[xs x xt];
22 YS=[ys y yt];
23
24 k=numel(XS);
25 k1 = k-2;
26 TS=linspace(0,1,k);
27
28 % linear interpolation along the path segement
29 tt=linspace(0,1,100);
30 xx=interp1(TS,XS,tt);
31 yy=interp1(TS,YS,tt);
32
33 dx=diff(xx);
34 dy=diff(yy);
35
36 % Calculate the length of the path
37 L=sum(sqrt(dx.^2+dy.^2));
38
39 nobs = numel(xobs); % Number of Obstacles
40 Violation = 0;
41
42 % Check if the path collides with circle-shape obstacles
43
44 for k=1:nobs
45 d=sqrt((xx-xobs(k)).^2+(yy-yobs(k)).^2);
46 v=max(1-d/robs(k),0);
47 Violation=Violation+mean(v);
48 end
49
50 vec2 = [recobs_x(2)-recobs_x(1),recobs_y(2)-recobs_y(1)];
51 vec3 = [recobs_x(4)-recobs_x(1),recobs_y(4)-recobs_y(1)];
52 vec5 = [recobs_x(2)-recobs_x(3),recobs_y(2)-recobs_y(3)];
53 vec6 = [recobs_x(4)-recobs_x(3),recobs_y(4)-recobs_y(3)];
54
55 Violation_rec = 0;
56 v_rec = 0;
57 num_bad = 0;
58 dist_max = 0.5*sqrt(a^2 + b^2);
59
60 % Check if the path collides with OBB-shape obstacles
61
62 for k = 1:numel(xx)
63 v_rec = 0;
64 vec1 = [xx(k)-recobs_x(1),yy(k)-recobs_y(1)];
65 vec4 = [xx(k)-recobs_x(3),yy(k)-recobs_y(3)];
66 if dot(vec1,vec2)<0
67 v_rec = v_rec + 1;
68 end
69 if dot(vec1,vec3)<0
70 v_rec = v_rec + 1;
71 end
72 if dot(vec4,vec5)<0
73 v_rec = v_rec + 1;
74 end
75 if dot(vec4,vec6)<0
76 v_rec = v_rec + 1;
77 end
78

92 Hantong Liu: A G-QPSO based path planner for AUVs

79 if v_rec > 0
80 distance = sqrt((xx(k) - rec_ori_x)^2 +...
81 (yy(k) - rec_ori_y)^2);
82 Violation_rec = Violation_rec + max(1 - distance/dist_max,0);
83 num_bad = num_bad + 1;
84
85 end
86 end
87
88 Violation_rec = Violation_rec/num_bad;
89
90 % Check the turning angle
91 penl = 0;
92 for k = 1:k1
93 vector1 = [XS(k+1)-XS(k),YS(k+1)-YS(k)];
94 vector2 = [XS(k+2)-XS(k+1),YS(k+2)-YS(k+1)];
95 turn = abs(acos(dot(vector1,vector2)/(norm(vector1)*norm(vector2))));
96 penl = penl + max((1-(pi/6)/turn),0);
97 end
98
99 sol2.TS=TS;

100 sol2.XS=XS;
101 sol2.YS=YS;
102 sol2.tt=tt;
103 sol2.xx=xx;
104 sol2.yy=yy;
105 sol2.dx=dx;
106 sol2.dy=dy;
107 sol2.L=L;
108 sol2.Violation=Violation + penl + Violation_rec;
109 sol2.IsFeasible=(Violation + penl + Violation_rec == 0);
110
111 end

A.2 Code of PSO-based optimal path planner

A.2.1 Main.m

1 clc;
2 clear;
3 close all;
4
5 %% Problem Definition
6
7 model=CreateModel();
8
9 model.n=4; % number of Handle Points

10
11 CostFunction=@(x) MyCost(x,model); % Cost Function
12
13 nVar=model.n; % Number of Decision Variables
14
15 VarSize=[1 nVar]; % Size of Decision Variables Matrix
16
17 VarMin.x=model.xmin; % Lower Bound of Variables
18 VarMax.x=model.xmax; % Upper Bound of Variables
19 VarMin.y=model.ymin; % Lower Bound of Variables

Chapter A: Matlab Code 93

20 VarMax.y=model.ymax; % Upper Bound of Variables
21
22
23 %% PSO Parameters
24
25 MaxIt=150; % Maximum Number of Iterations
26
27 nPop=300; % Population Size (Swarm Size)
28
29 w=1; % Constant Inertia Weight
30
31 w1 = 0.2; % Minimum Inertia Weight
32 w2 = 0.65; % Maximum Inertia Weight
33
34 c1=1; % Personal Learning Coefficient
35 c2=2; % Global Learning Coefficient
36
37 alpha=0.1;
38 VelMax.x=alpha*(VarMax.x-VarMin.x); % Maximum Velocity
39 VelMin.x=-VelMax.x; % Minimum Velocity
40 VelMax.y=alpha*(VarMax.y-VarMin.y); % Maximum Velocity
41 VelMin.y=-VelMax.y; % Minimum Velocity
42
43 %% Initialization
44
45 % Create Empty Particle Structure
46 empty_particle.Position=[];
47 empty_particle.Velocity=[];
48 empty_particle.Cost=[];
49 empty_particle.Sol=[];
50 empty_particle.Best.Position=[];
51 empty_particle.Best.Cost=[];
52 empty_particle.Best.Sol=[];
53
54 % Initialize Global Best
55 GlobalBest.Cost=inf;
56
57 % Create Particles Matrix
58 particle=repmat(empty_particle,nPop,1);
59
60 % Initialization Loop
61 for i=1:nPop
62
63 % Initialize Position
64 if i > 1
65 particle(i).Position=CreateRandomSolution(model);
66 else
67 % Straight line from source to destinatio
68
69 xx = linspace(model.xs, model.xt, model.n+2);
70 yy = linspace(model.ys, model.yt, model.n+2);
71
72 particle(i).Position.x = xx(2:end-1);
73 particle(i).Position.y = yy(2:end-1);
74 end
75
76 % Initialize Velocity
77 particle(i).Velocity.x=zeros(VarSize);
78 particle(i).Velocity.y=zeros(VarSize);
79

94 Hantong Liu: A G-QPSO based path planner for AUVs

80 % Evaluation
81 [particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position);
82
83 % Update Personal Best
84 particle(i).Best.Position=particle(i).Position;
85 particle(i).Best.Cost=particle(i).Cost;
86 particle(i).Best.Sol=particle(i).Sol;
87
88 % Update Global Best
89 if particle(i).Best.Cost<GlobalBest.Cost
90
91 GlobalBest=particle(i).Best;
92
93 end
94
95 end
96
97 % Array to Hold Best Cost Values at Each Iteration
98 BestCost=zeros(MaxIt,1);
99

100 %% PSO Main Loop
101
102 for it=1:MaxIt
103
104 for i=1:nPop
105 % Calculate Linearly Decreasing Inertia Weight
106 w = w1 + (w2 - w1)*(MaxIt - it)/MaxIt;
107
108 % x Part
109
110 % Update Velocity
111 particle(i).Velocity.x = w*particle(i).Velocity.x ...
112 + c1*rand(VarSize).*(particle(i).Best.Position.x-particle(i).Position.x)
113 + c2*rand(VarSize).*(GlobalBest.Position.x-particle(i).Position.x);
114
115 % Check Velocity Bounds
116 particle(i).Velocity.x = max(particle(i).Velocity.x,VelMin.x);
117 particle(i).Velocity.x = min(particle(i).Velocity.x,VelMax.x);
118
119 % Update Position
120 particle(i).Position.x = particle(i).Position.x + particle(i).Velocity.x;
121
122
123 % Check Position Bounds
124 particle(i).Position.x = max(particle(i).Position.x,VarMin.x);
125 particle(i).Position.x = min(particle(i).Position.x,VarMax.x);
126
127 % y Part
128
129 % Update Velocity
130 particle(i).Velocity.y = w*particle(i).Velocity.y ...
131 + c1*rand(VarSize).*(particle(i).Best.Position.y-particle(i).Position.y)
132 + c2*rand(VarSize).*(GlobalBest.Position.y-particle(i).Position.y);
133
134 % Check Velocity Bounds
135 particle(i).Velocity.y = max(particle(i).Velocity.y,VelMin.y);
136 particle(i).Velocity.y = min(particle(i).Velocity.y,VelMax.y);
137
138 % Update Position
139 particle(i).Position.y = particle(i).Position.y + particle(i).Velocity.y;

Chapter A: Matlab Code 95

140
141
142 % Check Position Bounds
143 particle(i).Position.y = max(particle(i).Position.y,VarMin.y);
144 particle(i).Position.y = min(particle(i).Position.y,VarMax.y);
145
146 % Evaluate the fitness value
147 [particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position);
148
149 % Update Personal Best
150 if particle(i).Cost<particle(i).Best.Cost
151
152 particle(i).Best.Position=particle(i).Position;
153 particle(i).Best.Cost=particle(i).Cost;
154 particle(i).Best.Sol=particle(i).Sol;
155
156 % Update Global Best
157 if particle(i).Best.Cost<GlobalBest.Cost
158 GlobalBest=particle(i).Best;
159 end
160
161 end
162
163
164 end
165
166 % Update Best Cost Ever Found
167 BestCost(it)=GlobalBest.Cost;
168
169 % Show Iteration Information
170 if GlobalBest.Sol.IsFeasible
171 Flag= ’ * ’;
172 else
173 Flag=[’ , Violation = ’ num2str(GlobalBest.Sol.Violation)];
174 end
175 disp([’ Iteration ’ num2str(it) ’ : Best Cost = ’ num2str(BestCost(it)) Flag]);
176
177 figure(1);
178 PlotSolution(GlobalBest.Sol,model);
179 pause(0.01);
180
181 end
182
183 %% Results
184
185 figure;
186 plot(BestCost, ’ LineWidth ’,2);
187 xlabel(’ Iteration ’);
188 ylabel(’ Best Cost ’);
189 grid on;

A.3 Code of obstacles setting

A.3.1 2D scenario with OBB-shape obstacle

1 function model=CreateModel()
2

96 Hantong Liu: A G-QPSO based path planner for AUVs

3 % Starting point
4 xs=0;
5 ys=0;
6
7 % Destination point
8 xt=2*40;
9 yt=2*50;

10
11 % Obstacles setting
12
13 % Circle-shape obstacle
14
15 xobs=2*[15 40 12];
16 yobs=2*[45 30 15];
17 robs=2*[10 10 9];
18 n=3;
19
20 % OBB-shape obstacle
21
22 Rec_ori_x = 2*[20];
23 Rec_ori_y = 2*[30];
24 b = 2*19;
25 a = 2*5;
26 Rec_angle = [-pi/6];
27
28 Rec_obs_x = zeros(1,4);
29 Rec_obs_y = zeros(1,4);
30
31 % Calculate the position of vertices
32
33 Rec_obs_x(1) = Rec_ori_x(1) - 0.5*b*cos(Rec_angle(1)) -...
34 0.5*a*sin(Rec_angle(1));
35 Rec_obs_x(2) = Rec_ori_x(1) - 0.5*b*cos(Rec_angle(1)) +...
36 0.5*a*sin(Rec_angle(1));
37 Rec_obs_x(3) = Rec_ori_x(1) + 0.5*b*cos(Rec_angle(1)) +...
38 0.5*a*sin(Rec_angle(1));
39 Rec_obs_x(4) = Rec_ori_x(1) + 0.5*b*cos(Rec_angle(1)) -...
40 0.5*a*sin(Rec_angle(1));
41
42 Rec_obs_y(1) = Rec_ori_y(1) + 0.5*a*cos(Rec_angle(1)) -...
43 0.5*b*sin(Rec_angle(1));
44 Rec_obs_y(2) = Rec_ori_y(1) - 0.5*a*cos(Rec_angle(1)) -...
45 0.5*b*sin(Rec_angle(1));
46 Rec_obs_y(3) = Rec_ori_y(1) - 0.5*a*cos(Rec_angle(1)) +...
47 0.5*b*sin(Rec_angle(1));
48 Rec_obs_y(4) = Rec_ori_y(1) + 0.5*a*cos(Rec_angle(1)) +...
49 0.5*b*sin(Rec_angle(1));
50
51 Rec_obs_x1 = zeros(1,4);
52 Rec_obs_y1 = zeros(1,4);
53
54 b1 = b - 5.52;
55 a1 = a -5.52;
56
57 Rec_obs_x1(1) = Rec_ori_x(1) - 0.5*b1*cos(Rec_angle(1)) -...
58 0.5*a1*sin(Rec_angle(1));
59 Rec_obs_x1(2) = Rec_ori_x(1) - 0.5*b1*cos(Rec_angle(1)) +...
60 0.5*a1*sin(Rec_angle(1));
61 Rec_obs_x1(3) = Rec_ori_x(1) + 0.5*b1*cos(Rec_angle(1)) +...
62 0.5*a1*sin(Rec_angle(1));

Chapter A: Matlab Code 97

63 Rec_obs_x1(4) = Rec_ori_x(1) + 0.5*b1*cos(Rec_angle(1)) -...
64 0.5*a1*sin(Rec_angle(1));
65
66 Rec_obs_y1(1) = Rec_ori_y(1) + 0.5*a1*cos(Rec_angle(1)) -...
67 0.5*b1*sin(Rec_angle(1));
68 Rec_obs_y1(2) = Rec_ori_y(1) - 0.5*a1*cos(Rec_angle(1)) -...
69 0.5*b1*sin(Rec_angle(1));
70 Rec_obs_y1(3) = Rec_ori_y(1) - 0.5*a1*cos(Rec_angle(1)) +...
71 0.5*b1*sin(Rec_angle(1));
72 Rec_obs_y1(4) = Rec_ori_y(1) + 0.5*a1*cos(Rec_angle(1)) +...
73 0.5*b1*sin(Rec_angle(1));
74
75 % Define search space
76
77 xmin=0;
78 xmax= 120;
79
80 ymin=0;
81 ymax= 120;
82
83 model.xs=xs;
84 model.ys=ys;
85 model.xt=xt;
86 model.yt=yt;
87 model.xobs=xobs;
88 model.yobs=yobs;
89 model.robs=robs;
90 model.recobs_x = Rec_obs_x;
91 model.recobs_y = Rec_obs_y;
92 model.recobs_x1 = Rec_obs_x1;
93 model.recobs_y1 = Rec_obs_y1;
94 model.n=n;
95 model.xmin=xmin;
96 model.xmax=xmax;
97 model.ymin=ymin;
98 model.ymax=ymax;
99 model.rec_a = a;

100 model.rec_b = b;
101 model.rec_ori_x = Rec_ori_x;
102 model.rec_ori_y = Rec_ori_y;
103
104 end

A.3.2 3D scenario with sphere-shape obstacles

1 function model=CreateModel()
2
3 % Starting point
4 xs=0;
5 ys=0;
6 zs=0;
7
8 % Destination point
9 xt=100;

10 yt=100;
11 zt=100;
12
13 % Position of the center

98 Hantong Liu: A G-QPSO based path planner for AUVs

14
15 xobs=[15 40 12 60 50];
16 yobs=[45 30 15 70 60];
17 zobs=[15 30 20 70 50];
18
19 % Radius
20
21 robs=[15 15 8 10 15];
22
23 n=5;
24
25 % Define the search space
26
27 xmin=-200;
28 xmax= 200;
29
30 ymin=-200;
31 ymax= 200;
32
33 zmin=-100;
34 zmax= 100;
35
36
37 model.xs=xs;
38 model.ys=ys;
39 model.zs=zs;
40
41 model.xt=xt;
42 model.yt=yt;
43 model.zt=zt;
44
45 model.xobs=xobs;
46 model.yobs=yobs;
47 model.zobs=zobs;
48 model.robs=robs;
49 model.n=n;
50
51 model.xmin=xmin;
52 model.xmax=xmax;
53 model.ymin=ymin;
54 model.ymax=ymax;
55 model.zmin=zmin;
56 model.zmax=zmax;
57
58 end

H
antong Liu

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Hantong Liu

A GQPSO Based Optimal Path
Planner for Autonomous Underwater
Vehicle with Waypoint Guidance
System

Master’s thesis in Marine Technology
Supervisor: Professor Martin Ludvigsen
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Prefaces
	Acknowledgements
	Contents
	Figures
	Tables
	Introduction
	Background
	Autonomous Underwater Vehicles (AUVs)
	Autonomy

	Motivation
	Research Topic and Objectives
	Scope and Limitations
	Structure of the Thesis

	Literature Review
	Main Path Planning Methods for AUV
	Global Path-planning Methods
	Local Path-planning Methods

	Particle Swarm Optimization (PSO) for Path Planning

	AUVs' Guidance System and Map Processing
	LAUV Thor
	Guidance System with Constant Jerk
	Map Processing

	Optimization Theory
	Particle Swarm Optimization (PSO)
	Classical Particle Swarm Optimization (PSO) Algorithm
	A Deeper Look into the Algorithm and its Meta-parameters

	Quantum-behaved Particle Swarm Optimization (QPSO)
	Quantum-behaved Particle Swarm Optimization with Gaussian Mutation (G-QPSO)

	Problem Formulation and Algorithm Design
	Problem Formulation
	Preliminary Modelling for Optimal Path Planning Problem
	Simplification and Modification to Apply PSO Algorithm
	Final Version of Modelling for Path Planning Problem

	Algorithm Design
	Straight-line Method
	Design of Objective Functions
	The PSO Algorithm for Path Planning Problem
	The QPSO and G-QPSO Algorithm for Path Planning Problem

	Results
	Path Planning with PSO algorithm
	2D Path Planning with Different c1 and c2
	2D Path Planning with Different Definitions of Inertia Weight
	2D Path Planning in Complex Environment with OBB-shape Obstacles
	3D Path Planning with PSO Algorithm

	Path Planning with QPSO Algorithm
	2D Path Planning with Different c1 and c2
	3D Path Planning with QPSO algorithm

	Path Planning with G-QPSO Algorithm
	2D Path Planning with G-QPSO algorithm
	3D Path Planning with G-QPSO algorithm

	Discussion
	Path Planning with PSO Algorithm
	Tuning of Cognitive and Social Coefficient c1 and c2
	Choice of Definitions of Inertia Weight w
	2D and 3D Path Planning with PSO Algorithm

	Path Planning with QPSO Algorithm
	Tuning for Cognitive and Social Coefficient c1 and c2
	3D Path Planning with QPSO Algorithm

	Path Planning with G-QPSO Algorithm

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Matlab Code
	Code of GQPSO-based optimal path planner
	Main.m
	CostFunction.m

	Code of PSO-based optimal path planner
	Main.m

	Code of obstacles setting
	2D scenario with OBB-shape obstacle
	3D scenario with sphere-shape obstacles

