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Abstract: Pollution in the form of litter in the natural environment is one of the great challenges
of our times. Automated litter detection can help assess waste occurrences in the environment.
Different machine learning solutions have been explored to develop litter detection tools, thereby
supporting research, citizen science, and volunteer clean-up initiatives. However, to the best of
our knowledge, no work has investigated the performance of state-of-the-art deep learning object
detection approaches in the context of litter detection. In particular, no studies have focused on the
assessment of those methods aiming their use in devices with low processing capabilities, e.g., mobile
phones, typically employed in citizen science activities. In this paper, we fill this literature gap. We
performed a comparative study involving state-of-the-art CNN architectures (e.g., Faster RCNN,
Mask-RCNN, EfficientDet, RetinaNet and YOLO-v5), two litter image datasets and a smartphone.
We also introduce a new dataset for litter detection, named PlastOPol, composed of 2418 images and
5300 annotations. The experimental results demonstrate that object detectors based on the YOLO
family are promising for the construction of litter detection solutions, with superior performance in
terms of detection accuracy, processing time, and memory footprint.

Keywords: litter; marine litter; citizen science; litter detection; object detection; neural networks;
deep learning; machine learning; portable devices

1. Introduction

Nowadays, litter is one of the greatest challenges [1], due to its ubiquity, nature and
scale, with dire consequences not only for freshwater and marine ecosystems [2–5], but also,
arguably, for urban environments and human health. For example, plastic items can cause
lethal damage to aquatic and terrestrial species through entanglement, gut perforation,
and starvation [6]. Moreover, plastic decomposes, creates microplastics and, ultimately,
nanoplastics which easily enter the food chain [7].

Additionally, one of the main concerns is the accumulation of litter not only in the
urban area [8], but, mainly, in ecological areas [9,10]. To investigate and tackle this chal-
lenge, decision-makers require reliable data—not only on the sources of waste, but also
on its composition, distribution and magnitude over large geographic areas. One way
of providing technological support is to automate the process of litter logging and litter
detection, especially in areas of difficult access, such as forest and mountains, so as to make
the process more effective for volunteers and researchers and enable the processing of large
datasets, while minimizing resources, fatigue, and even risks.
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During the last years, some research initiatives have investigated suitable compu-
tational approaches to support surveys on waste and litter occurrence and distribution.
Several works are focused on the Internet of Things (IoT), where sensors are used to monitor
city cleanliness [11–13]. Researchers have also focused efforts on image-based approaches
for marine debris, plastic and even microplastic identification [14–19]. However, image
acquisition procedures rely on microscopes, webcams, and even aerial surveys, which are
costly and often unavailable to volunteers and citizen scientists. Detection and recognition
often explore color and shape information, combined with threshold-based classification
methods, costly and time-consuming visual inspection. However, none of these alterna-
tives consider the use of mobile-based image acquisition procedures. Moreover, the use
of deep learning approaches, especially adapted for devices with constrained processing
capabilities, such as mobile phones, has not yet been investigated, a gap that still needs to
be filled.

Currently, most of the state-of-the-art solutions for object detection and recognition
exploit CNN approaches [20], which rely on the use of deep architectures, such as VGG [21].
Despite their success, such solutions are computationally costly in terms of processing, as
well as memory and storage footprints. Therefore, their use is unfeasible in practice, in
several applications with computational constraints, such as mobile devices. A suitable
alternative explored in the literature refers to the use of “mobile” CNN architectures [22–24],
i.e., lightweight CNN architectures specifically designed for mobile devices. However, to
the best of our knowledge, there is currently no study concerning the assessment of suitable
litter detectors using neural network architectures, especially in scenarios involving devices
with low-processing capabilities.

Moreover, despite the numerous cloud computing services for machine learning,
its response time is not enough for real-time applications, especially in natural settings,
such as beaches and forests, among others, impacted by latency fluctuation or even with-
out network coverage. Moreover, data transfer over the network involves more energy
consumption [25,26]. In this vein, efficiency, local processing and lower energy consump-
tion are some of the advantages of using lightweight neural networks [25,27].

We performed a comparative study in the context of litter and waste detection using
well-known state-of-the-art CNN architectures (e.g., Faster RCNN [28], Mask-RCNN [29],
EfficientDet [30], RetinaNet [31] and YOLO-v5 [32]) and lightweight neural networks
approaches (e.g., EfficientDet-d0 [30] and YOLO-v5s [32]). Those approaches were com-
pared not only in terms of their effectiveness (detection quality), but also in terms of their
efficiency, i.e., detection time and storage requirements. Additionally, the identification
of effective machine learning approaches to confront the issue of litter demands the use
of comprehensive datasets, i.e., the set of images used to train the models impacts the
performance of the methods when tested in real-world settings. Detecting litter in such
scenarios is a very challenging problem. Figure 1 provides examples where complex natural
backgrounds and the presence of different kinds of litter complicate the detection task.
Currently, there exist some litter datasets; however, most of them were built in controlled
setups, i.e., with only one instance of litter per image [33,34] or taken in indoor scenarios
for recycling [35,36]. Approaches developed based on such image collections cannot be
generalized for real-world scenarios. To the best of our knowledge, TACO [37] is the only
publicly available dataset containing 1500 images from realistic outdoor scenario. For this
reason, herein, we present a new dataset, named “PlastOPol,” which is based on images
taken through the Marine Debris Tracker with the goal of giving, to the computer science
and environmental communities, a new set of 2418 images with the presence of litter in a
realistic context covering several types of environments, i.e., urban, beaches, forests and
flint fields, and including different types of litter, including plastic, glass, metal, paper,
cloth and rubber, among others.
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Figure 1. Litter detection in real scenarios.

In summary, this paper aims to fill the following gaps in the literature: assessing
the effectiveness of lightweight neural networks in detecting litter in real-world settings
and crowded image backgrounds and their ability to run in mobile devices with memory
constraints (henceforth referred to as efficiency). The ultimate aim is to aid the scien-
tific community in developing simple, cost-effective tools to automate part of the work
conducted by volunteers and citizen scientists when collecting and recording litter in the
environment, to make more data available to science and ultimately inform targeted policies
and management measures. Our contributions are twofold, as follows:

1. Comparative study of state-of-the-art deep learning solutions to support image-based
litter and waste detection;

2. Introduction of a new dataset, PlastOPol, composed of 2418 images in real-world
settings with 5300 litter annotations.

The experiments considered two datasets, namely, PlastOPol and TACO [37], and
aimed to assess the performance of the detectors using mobile devices. The experimental
results showed that YOLO-v5x [32] outperformed the other state-of-the-art methods in both
datasets. Moreover, YOLO-v5s [32] proved to be the most promising approach to be run in
mobile devices due to its competitive results and its ability to process up to 5.19 frames per
second (FPS) in a commercial smartphone.

The remaining of the paper is organized as follows: Section 2 presents and discusses
related work. Section 3 introduces PlastOPol, a new dataset for litter detection. Section 4
describes the evaluation protocol adopted for the purpose of the comparison. Section 5
presents and discusses the results and possible limitations of the study. Finally, Section 6
states our conclusions and points out possible research avenues for future work.

2. Related Work

This section presents relevant concepts and works related to the object detection
problem using deep learning (Section 2.1) and an overview of well-known object detection
networks (Section 2.2).

2.1. Object Detection Using Deep Learning

Object detection is a computer vision task that involves both localizing and classifying
objects within an image, where each detected object is wrapped by a bounding box. Object
detection is widely used in several applications, such as self-driving technologies [38],
surveillance and security [39] and robotics [40], among others.

As an overview, a neural network for object detection follows the next pipeline; as
a first step, looking for regions where objects could be placed, an initial set of bounding
boxes is defined via the prior boxes or region proposal techniques. Prior boxes are a
predefined set of bounding boxes with different sizes and aspect ratios distributed for the
entire image [30,32,41]; on the other hand, region proposal techniques look for regions
of interest (RoIs) where the network considers there is a high likelihood of containing an
object [28,42,43]. Then, the detector analyzes all the pre-selected regions and makes two
predictions for each one of them, (i) coordinates of the predicted bounding boxes and (ii)
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their corresponding classes. At the end of the process, the network may find multiple
bounding boxes surrounding each object. For this, most of the methods use non-maximum
suppression (NMS) to discard bounding boxes based on their intersection over union (IoU)
and confidence score.

Readers may refer to [20] for more details regarding the state of the art on
object detection.

2.2. Overview of Deep Learning Approaches for Object Detection

Next, we provide a brief introduction to some of the most popular object detection
networks.

• Faster R-CNN [28] is based on Fast R-CNN [42]. Faster R-CNN uses a region proposal
network (RPN) to propose RoIs. RPN determines where in the image a potential object
could be. Additionally, an RoI pooling layer is used to extract fixed-size RoIs that are
passed into two fully connected layers, (i) a softmax layer for object classification and
(ii) a bounding-box regressor to predict the final location. The pipeline of this method
is end-to-end trainable and accelerates the testing time to near-real-time performance.

• Mask R-CNN [43] adds a segmentation module in parallel with the existing branches
for the class classification and bounding-box regression presented in Faster R-CNN [28].
Mask R-CNN outputs a binary mask at pixel level of the object, bounding-box/class
labels and bounding-box regressions.

• You Only Look Once (YOLO) [44] is a family of fast object detection networks that
can be optimized to achieve real-time performance. YOLO splits the input image into
a grid of cells where each cell predicts a bounding box and object classification. There
exist several versions of YOLO that use different backbones. Recently, using genetic
programming to adjust the set of prior boxes, YOLO-v5 [32] has appeared as the most
promising approach for object detection with a fast training stage and outperforming
its previous YOLO versions.

• EfficientDet [30] is a new scalable and efficient object detection family that uses
EfficientNet [45] as backbone. Additionally, a weighted bi-directional feature pyramid
network (BiFPN) allows easy and fast multi-scale feature extraction to be performed.
Traditional FPN treats features equally, while BiFPN flows in both the top-down and
bottom-up directions and adds an additional weight to each input feature, allowing
the network to learn the importance of each. Both BiFPN and class/box net layers are
repeated multiple times based on different resource constraints.

• RetinaNet [41] is a single-stage unified network composed of an FPN on top of an
off-the-shelf ResNet and two task-specific subnets. The first task-specific subnet is re-
sponsible for predicting the class on the feature maps produced by the backbone, while
the second performs bounding box regression. The authors also introduced a novel
focal loss function to prevent the vast number of easy negatives from overwhelming
the detector during the training.

Table 1 shows some specifications of the approaches presented for object detection;
those specifications were taken from their papers or official GitHubs. All the methods
could be divided into two well-defined categories, (i) methods that use a predefined set
of anchor boxes with different sizes and ratios for prediction (one-stage methods) and
(ii) methods which generate region proposals before defining candidate bounding boxes
(two-stage methods). Approaches such as RetinaNet [41], EfficientDet [30], and YOLO [44]
are one-stage methods, while R-CNN [46], Fast R-CNN [42], Faster R-CNN [28] and Mask
R-CNN [43] belong to the two-stage category.
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Table 1. Comparison of deep learning approaches for object detection.

CNN Methods One-Stage Two-Stage Backbone Inference Scale Model Size
(MB)

Faster R-CNN X VGG-16 [21] Shorter side 600 580.0
X ZF [21] Shorter side 600 242.5

Mask R-CNN X ResNet-101-FPN Shorter side 600 491.0

RetinaNet X ResNet-50-FPN 500× 500 297.0
ResNet-101-FPN 500× 500 442.0
ResNet-101-FPN 800× 800 442.0

EfficientDet X EfficientNet-B0-BiFPN 512× 512 17.0
X EfficientNet-B1-BiFPN 640× 640 28.0
X EfficientNet-B2-BiFPN 768× 768 35.0
X EfficientNet-B3-BiFPN 896× 896 51.0
X EfficientNet-B4-BiFPN 1024× 1024 85.0
X EfficientNet-B5-BiFPN 1280× 1280 136.0
X EfficientNet-B6-BiFPN 1280× 1280 206.0
X EfficientNet-B7-BiFPN 1536× 1536 208.0

YOLO X Own 448× 448 –
X VGG-16 [21] 448× 448 –

YOLOv2 X Own-Darknet-19 480× 480 194.0
X Own-Darknet-19 544× 544 194.0

YOLOv3 X Own-Darknet-53 320× 320 237.0
X Own-Darknet-53 416× 416 237.0
X Own-Darknet-53 608× 608 237.0

YOLOv4 X CSPDarknet53 [47] 416× 416 246.0
X CSPDarknet53 [47] 512× 512 246.0
X CSPDarknet53 [47] 608× 608 246.0

YOLOv5 X Own-5s 640× 640 15.0
X Own-5m 640× 640 42.0
X Own-5l 640× 640 92.0
X Own-5x 640× 640 171.0

Moreover, as we can see, those methods use well-known backbone structures, such as
VGG-16 [21], ResNet [48], and ZF [21], or they propose their own backbone, such as Effi-
cientDet [30] and YOLO [44]. Additionally, these approaches use different inference scales
during testing. The inference scale along with their model size give us insights into whether
it is possible or not to run them in devices with computational constraints and/or use them
for real time applications. In this context, EfficientDet [30] and YOLO-v5 [32] proposed
two promising neural network versions for running in mobile devices, EfficientDet-d0 and
YOLO-v5s, respectively. EfficientDet-d0 uses EfficientNet-B0 [45] along with a BiFPN as
backbone, which produces a model size of 17 Megabytes. In the case of YOLO-v5s, the
authors used a small version of their own backbone, building a model of just 15 Megabytes.

3. PlastOPol Dataset

There are few datasets dealing with the issue of littering. Proença and Simões [37]
presented TACO for litter segmentation with the presence of indoor and outdoor scenes. In
the same vein, MJU [33] is another dataset for segmentation; however, unlike TACO, this
dataset contains only indoor images with people holding the litter instances in their hands.
For its part, Aquatrash [49] is an alternative dataset composed of a subset of images from
TACO [37]. Additionally, there are also datasets proposed for sorting recyclable litter, some
of them involve detection of waste in industrial plants [35,36] and others for classification in
a more controlled set-up with the presence of a single litter instance per image [34]. Except
for TACO [37], none the above mentioned datasets present outdoor backgrounds, which is
a limitation to build computational solutions for detecting litter in the environment.

Herein, as one of the main contributions of this work, we present a new dataset for
litter detection, named “PlastOPol”. The proposal of this dataset has the goal of giving to
the computer science and environmental science communities a new set of images with
the presence of litter in several types of environments. We hope that PlastOPol serves as
basis for the proposal of automatic detection methods which can support the furthering
of research on litter in the environment. The images were collected by the Marine Debris
Tracker available under an open access Creative Commons Attribution license.
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Building the dataset involved the meticulous task of labeling each litter instance in
each image. PlastOPol is a one-class labeled dataset, where all the data corresponds to the
“litter” class as its super category. This dataset has 2418 images collected by the Marine
Debris Tracker with a total of 5300 instances of litter. Each instance is wrapped within a
rectangular bounding box represented by four values (x1, y1, width and height), where (x1,
y1) corresponds to the upper left corner of the bounding box.

Based on the bounding boxes areas, 90.98% are considered as large, 8.40% medium
and 0.62% small (see Table 2 for details). Additionally, as can be observed in Figure 2, our
dataset presents images involving diverse types of environments as background, e.g., water,
snow, sand, flint fields, streets, etc.; and various types of litter, including plastic, glass, wood,
metal, paper, cloth and rubber, among others. Moreover, PlastOPol contains images with
different lighting, occlusion and background conditions, which lead to very challenging
detection scenarios. All these elements make the PlastOPol dataset very complete and
ideal for training object detection models. Detecting litter from different materials, colors
and shapes present in different natural backgrounds with varying illumination conditions
increases the chance of confusing or not detecting litter, even more with the presence of
small litter instances.

Table 2. Datasets employed in the comparative study.

# # Bounding Boxes by Area #
Dataset Images Small 1 Medium 2 Large 3 Annotations

TACO [37] 1500 384 1305 3095 4784
PlastOpol 2418 33 445 4822 5300

1 Small→ area ≤ 322. 2 Medium→ 322 < area ≤ 962. 3 Large→ area > 962.

(a)

(b)

(c)

Figure 2. Cont.
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(d)

(e)

Figure 2. Examples from PlastOPol dataset. (a) Types of litter. (b) Types of environment. (c) Natural
Backgrounds. (d) Occlusion. (e) Lighting.

Figure 3a shows the distribution of bounding boxes based on their width and height. As we
can see, our dataset has diverse bounding box sizes, ranging from 36× 8 to 4515× 2821 pixels.
Moreover, it shows a large concentration in the area of 500× 500 pixels. Figure 4a shows
how the entire set of bounding boxes are located in the images, with most of them being in
the center of their respective images; nevertheless, there are also bounding boxes located
over the whole image area.

Figures 3 and 4 present some details about the PlastOPol (outdoor scenes), MJU [33]
(indoor scenes), and TACO [37] (indoor/outdoor scenes) datasets. PlastOPol contains a
wider diversity in terms of the size of bounding boxes, compared with TACO and MJU
(see Figure 3). Moreover, PlastOPol (5344× 4008 pixels) and TACO (6000× 4000 pixels)
are composed of images with higher resolution than MJU (640× 480 pixels). Regarding
the bounding box location, Figure 4 shows the distribution of bounding boxes inside the
images. MJU, an indoor dataset created in a controlled set-up, presents almost all their litter
instances located in the center of the image, while PlastOPol and TACO have more sparse
bounding boxes, covering most of the image area in a realistic and challenging scenario for
litter detection.
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Figure 3. Bounding boxes by size. (a) PlastOPol. (b) TACO [37]. (c) MJU-waste [33].
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Figure 4. Bounding boxes by location. (a) PlastOPol. (b) TACO [37]. (c) MJU-waste [33].

4. Experimental Setup

This section introduces the experimental setup employed in the comparative study,
including information about datasets and metrics (Section 4.1), the adopted experimental
protocol (Section 4.2) and the procedures for assessing the performance of methods on
mobile devices (Section 4.3).

4.1. Datasets and Metrics

To evaluate the performance of different deep learning approaches in the context
of litter detection, we used two publicly available datasets, (i) our dataset, called “Plas-
tOPol” (the PlastOPol dataset is publicly available under the Creative Commons Attribution
license (CC BY 4.0), presented in Section 3; and (ii) TACO [37]. These datasets present litter
in several areas, for instance, streets, rivers, beaches, etc.

The TACO dataset [37] presents 1500 images involving 4784 annotations, where most of
the annotations are considered as large, with images ranging from 842 × 474 to
6000 × 4000 pixels. This dataset labeled its images under 60 categories corresponding
to 28 super categories; however, an experimental one-category set-up was also proposed
by the authors where all the litter instances belong to the “litter” class. TACO is a very
challenging dataset due to the presence of bottles, bottle caps, glass, rope, strings, etc.
(see Figure 5). Additionally, there is a large number of samples from the cigarette class in
the ground truth. This type of litter is covered by bounding boxes with a size less than
64× 64 pixels, which makes it a very complex scenario for detection. More details are
presented in Table 2.

Figure 5. Examples from TACO dataset.
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In order to evaluate the performance of the evaluated deep neural network approaches,
we measured (i) the effectiveness in terms of average precision (AP) at an intersection over
union (IoU) of 50%, along with the AP@, AR@ and F-measure (F1@); and (ii) the efficiency
in terms of model size in Megabytes (MB) and processing time in frames per second (FPS).
The COCO metrics (https://cocodataset.org/#detection-eval (accessed on 2 August 2021))
AP@ and AR@ refer to the average precision and average recall, respectively, considering
the average of 10 precision-recall pairs computed through changing the IoU value from
50% to 95%, at steps of 5%.

4.2. Experimental Protocol

For the experiments, we partitioned the datasets into training, validation, and testing
sets. First, we divided the whole dataset in 80% for training and 20% for testing. Then, for
training, we used a 5-fold cross validation [50], creating five subsets randomly from the
training set, four of them for training and the remaining for validation (this procedure was
repeated 5 times). Then, we selected the best model in the validation set from the 5 folds
and used it to compute the final results on the test set.

To assess the effectiveness of the evaluated approaches, we considered the same hyper-
parameters used by the authors of each approach [28,30,32,41,43]. Table 3 presents details
about the hyper-parameters’ values, along with the GitHub repositories for the source
codes used in this study (as of 2 July 2021). For the experiments, we used the same code as
the GitHub repositories.

Table 3. Training protocol values.

Hyper-Parameters
Method Input Size Lr Epochs Batch Size Lrdecay Post-Processing Confidence Threshold

EfficientDet-d0 1 512× 512 0.08 300 48 200, 250 Soft-NMS 0.4
EfficientDet-d5 1 1280× 1280 0.08 300 12 200, 250 Soft-NMS 0.4
Faster R-CNN 2 800× 800 0.0001 300 8 243 NMS 0.5
Mask R-CNN 2 800× 800 0.0001 300 8 243 NMS 0.5

RetinaNet 2 800× 800 0.0001 300 8 243 NMS 0.5
YOLO-v5x 3 640× 640 0.0032 100 12 – NMS 0.001
YOLO-v5s 3 640× 640 0.0032 100 12 – NMS 0.001

1 https://github.com/google/automl/tree/master/efficientdet (accessed on 2 July 2021). 2 https://github.com/
facebookresearch/detectron2 (accessed on 2 July 2021). 3 https://github.com/ultralytics/yolov5 (accessed on 2
July 2021). Lr—learning rate. Lrdecay—epochs in which the learning rate is decayed.

4.3. Experimental Protocol for Performance Assessment on Mobile Devices

In this study, we also report the results of two tiny neural networks (YOLO-v5s [32]
and EfficientDet-d0 [30]) on mobile devices. We selected these neural network approaches
because of their compact models and competitive results, 17 MB for EfficientDet-d0 and
15 MB for YOLO-v5s.

These experiments have the goal of giving insights into the performance of these two
models in the context of devices with computational constraints such as smartphones and
drones, among others. We believe that insights and conclusions found in these experiments
will be helpful for other researchers that aim to create real-time applications deployed in
computationally restricted devices.

To perform the experiments, we used a commercial smartphone, Motorola Moto-G6,
with the following specifications:

• Platform: Android 9;
• CPU architecture: ARMv7;
• Memory: 3 GB;
• Processor: Octa-core—8x1.4 GHz Cortex-A53.

Moreover, in order to evaluate the performance of these approaches and the impact of
the input size in devices with computational constraints, we executed experiments using

https://cocodataset.org/##detection-eval
https://github.com/google/automl/tree/master/efficientdet
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/ultralytics/yolov5
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six widely used scales as input: 224× 224, 320× 320, 384× 384, 512× 512, 640× 640 and
768× 768 pixels. To measure the speed of YOLO-v5s [32] and EfficientDet-d0 [30], we used
the test set of PlastOPol (484 images) and reported the average time of 5 runs for each scale.

For these experiments, we built a basic Android app; our implementation was based on
three GitHub repositories corresponding to PyTorch (https://github.com/pytorch/android-
demo-app/tree/master/ObjectDetection (accessed on 2 August 2021)), Tensorflow (https://
github.com/tensorflow/examples/tree/master/lite/examples/object_detection/android
(accessed on 2 August 2021)) and YOLO-v5 (https://github.com/ultralytics/yolov5/issues/
251 (accessed on 2 August 2021)) implementations.

5. Results and Discussion

This section presents the results of seven state-of-the-art deep neural networks when
applied in the context of litter detection over two datasets, PlastOPol (Section 5.1) and
TACO (Section 5.2). We then discuss the effectiveness and efficiency of two compact neural
networks (YOLO-v5s [32] and EfficientDet-d0 [30]) on a mobile set-up (Section 5.4). In our
comparative study, we considered these tiny deep neural networks with the goal of evalu-
ating the trade-off between effectiveness and efficiency when running these approaches on
devices with computational constraints.

5.1. Results on PlastOPol

Table 4 presents the effectiveness of the evaluated deep neural networks on the Plas-
tOPol dataset. As we can see, YOLO-v5x [32] reached promising results on this dataset,
outperforming the remaining methods with at least 5.0 percentage points in terms of
AP50. Moreover, YOLO-v5x was 5.0, 9.6, 11.2, 11.6, 11.7 and 19.9 percentage points
more accurate than YOLO-v5s [32], Faster R-CNN [28], Mask R-CNN [43], RetinaNet [41],
EfficientDet-d5 [30] and EfficientDet-d0 [30], respectively. Additionally, regarding the tiny
approaches, YOLO-v5s surpassed EfficientDet-d0 by 14.9 percentage points.

Table 4. Litter detection results on PlastOPol (best results appear in bold).

Methods AP50 AP@ AR@ F1@

RetinaNet [41] 73.3 47.2 56.4 51.4

Faster R-CNN [28] 75.3 49.6 57.0 53.0

Mask R-CNN [43] 73.7 50.2 57.2 53.5

EfficientDet-d0 [30] 65.0 51.1 56.1 53.5

EfficientDet-d5 [30] 73.2 69.1 66.4 67.7

YOLO-v5s [32] 79.9 62.4 76.9 68.9

YOLO-v5x [32] 84.9 71.1 82.1 76.2

Table 5 shows some visual results on the PlastOPol dataset. Those results are associated
with different types of litter and natural backgrounds. The expected detection (ground
truth) is presented in the first column; the confidence threshold for plotting the bounding
boxes are the same as the ones used in the papers or GitHub, for instance, 0.4 for EfficientDet,
0.25 for YOLO-v5 and 0.5 for Faster R-CNN, Mask R-CNN and RetinaNet. In the first row
of images, we present a case where almost all the methods reached 100% of effectiveness.
However, there are a couple of cases corresponding to Faster R-CNN and RetinaNet where
false positives were found, i.e., small flints considered as litter. Moreover, the shadow
of a bottle caused small errors in the detection of RetinaNet, EfficientDet-d0 and YOLO-
v5s, where we can see that these methods covered the bottle with a larger bounding box
wrapping it along with its shadow. In the second image, showing litter in an urban context,
all the methods missed one instance of litter. Additionally, RetinaNet had some false
positives, even considering a car as litter.

https://github.com/pytorch/android-demo-app/tree/master/ObjectDetection
https://github.com/pytorch/android-demo-app/tree/master/ObjectDetection
https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/android
https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/android
 https://github.com/ultralytics/yolov5/issues/251
 https://github.com/ultralytics/yolov5/issues/251
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The third row presents scenarios with challenging natural backgrounds. In this case,
almost all the methods produced erroneous detection results, except for EfficientDet-d5.
In the fourth row, the image presents several instances of litter with different types of
materials, different sizes, colors and shapes. In that image, Faster R-CNN and RetinaNet
had a lot of false positives, EfficientDet-d0 missed some detections and there was one
occluded litter item located almost at the center of the image that was not detected for any
of the approaches.

Finally, the last two rows present results associated with special detection scenarios.
The penultimate row shows a plastic bag as litter, but we can see that most of the methods
detected the recycling bins as litter as well. This scenario illustrates how the definition
of litter depends on the context of the image and the place where it was taken, i.e., some
artifacts, such as the recycling bins, could be considered as litter if they were in another
area, such as a beach, a forest, a water course etc. The last row presents an image with
the presence of cigarette butts, which are small litter instances. As we can observe, none
of the evaluated methods could detect all of the items and some (RetinaNet and Faster
R-CNN) led to more detection errors than others (Mask R-CNN, EfficientDet and YOLO-v5).
Detecting small items, in a crowded image and with a noisy background, is one of the
hurdles for the evaluated methods.

5.2. Results on TACO

We also measured the effectiveness of the evaluated approaches on TACO [37].This
dataset presents overlapping litter and small litter instances which make the detection more
challenging. On this dataset, in terms of AP50, YOLO-v5x [32] outperformed the other
methods with at least 8.6 percentage points, with an AP50 of 63.3, showing its superiority
on this dataset over the other methods (see Table 6). As for YOLO-v5s [32] and Mask R-
CNN [43], the second and third best performing methods, YOLO-v5x reduced the detection
errors of these approaches by 18.98% and 23.06%, respectively. YOLO-v5x and YOLO-
v5s achieved better results in the detection of medium and large objects. Nonetheless,
all the methods had issues detecting small objects. Additionally, among the approaches
with smaller model size, YOLO-v5s obtained better results than EfficientDet-d0 with a
considerable AP50 difference of 22 percentage points.
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Table 5. PlastOPol visual results.

Ground Truth Faster R-CNN Mask R-CNN RetinaNet EfficientDet-d0 EfficientDet-d5 YOLO-v5s YOLO-v5x
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Table 6. Litter detection results on TACO (best results appear in bold).

Methods AP50 AP@ AR@ F1@

RetinaNet [41] 50.6 26.7 37.1 31.1

Faster R-CNN [28] 51.1 28.1 36.9 31.9

Mask R-CNN [43] 52.3 29.2 38.6 33.2

EfficientDet-d0 [30] 32.7 23.8 28.4 25.9

EfficientDet-d5 [30] 42.3 35.2 40.3 37.6

YOLO-v5s [32] 54.7 38.8 58.1 46.5

YOLO-v5x [32] 63.3 48.4 66.4 56.0

In Table 7, we present some visual results to illustrate the performance of the meth-
ods in challenging scenarios for detection on TACO [37]. As mentioned before, TACO
annotations involve several cases with bounding boxes inside one another, which creates
a more complex scenario. To plot the bounding boxes, we used the same threshold value
of confidence scores suggested in the original papers or implementations, i.e., 0.4 for Ef-
ficientDet [30], 0.25 for YOLO-v5 [32] and 0.5 for Faster R-CNN [28], Mask R-CNN [43],
and RetinaNet [41].

In the first row, we can see an apparently “simple” scenario, with the presence of three
instances of litter. According to the TACO annotations, the cup is divided in two litter
instances, i.e., the cup itself and its lid, which makes it a very challenging scenario for litter
detection. In this case, all the methods detected the cup along with its lid as one instance.
Moreover, Faster R-CNN and YOLO-v5x had some overlap bounding boxes in one of the
litter instances. In the second image, another “simple” example is presented where only
RetinaNet [41], EfficientDet-d0 [45] and EfficientDet-d5 [45] could detect the only instance
correctly; the remaining methods generated overlapping bounding boxes. Similar behavior
was observed in the third image, in which only EfficientDet-d5 [45] detected correctly all
the litter instances without false positives. Moreover, as we can see, Faster R-CNN [28],
Mask R-CNN [43] and RetinaNet [41] produced erroneous overlapping bounding boxes
when different instances of litter were placed close together.

The last three images present challenging natural backgrounds where none of the
evaluated methods could detect all the litter instances. In the fourth image, only Faster
R-CNN [28] and RetinaNet [41] detected the three instances of litter, but both with a false
positive. In the penultimate row, RetinaNet [41], EfficientDet-d5 [45], and YOLO-v5x [44]
performed best; nevertheless, all of them had errors. Finally, the last image presents a very
complex scenario, including very small objects (labeled as A, B, C and D in the ground
truth image). None of the methods could detect those objects, possibly due to their sizes
combined with the complex natural background.

5.3. Effectiveness vs. Efficiency

When it comes to the trade-off between effectiveness and efficiency, we took into
account the results on both datasets, the model sizes and processing time to compare
the networks. In the case of processing time, we considered only the network time pro-
cess. The pre- and post-processing stages are not reported in the next results. On an
NVIDIA GeForce Titan X with 12 GB, as expected, the approaches with light models
were the fastest. YOLO-v5s [32] and EfficientDet-d0 [30] were capable of processing up
to 73.75 FPS and 59.35 FPS, respectively. Considering the best methods that produce
“heavy” models, YOLO-v5x was 2.93× and 3.33× faster than Faster R-CNN [28] and
Mask R-CNN [43], respectively.
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Table 7. TACO visual results.

Ground Truth Faster R-CNN Mask R-CNN RetinaNet EfficientDet-d0 EfficientDet-d5 YOLO-v5s YOLO-v5x
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Figure 6 clarifies the differences between the methods in terms of trade-off between
effectiveness (AP50) and efficiency, considering model size and FPS. In this set-up, clearly,
YOLO-v5s [32] offered the best trade-off, with an AP50 of 79.9 and 54.7 for the PlastOPol
and TACO datasets, respectively. Moreover, this network presents a model size of 15 MB
and a processing time of at least 14.4 FPS more than its counterparts and being capable of
processing up to 73.75 FPS.

0 10 20 30 40 50 60 70 80
FPS 

0

20

40

60

80

100
A

P5
0

580.0MB

491.0MB
297.0MB

171.0MB

136.0MB

17.0MB

15.0MB

        Methods
Faster R-CNN
Mask R-CNN
RetinaNet
Yolo-v5x
EfficientDet-d5
EfficientDet-d0
Yolo-v5s

(a)

0 10 20 30 40 50 60 70 80
FPS

0

20

40

60

80

100

A
P5

0

580.0MB491.0MB

297.0MB

171.0MB

136.0MB

17.0MB

15.0MB

         Methods
Faster R-CNN
Mask R-CNN
RetinaNet
Yolo-v5x
EfficientDet-d5
EfficientDet-d0
Yolo-v5s

(b)
Figure 6. Efficiency (GPU) vs. effectiveness vs. model size. (a) PlastOPol. (b) TACO.

EfficientDet-d0 [30] also presented promising results, especially considering its model
size and FPS. However, this network presented a considerable miss detection rate, which
could be improved without impacting its current efficiency too much. On the other hand,
YOLO-v5x [32] is a very powerful approach that obtained the best AP50 in both datasets
with a model size of 171 MB and 40.65 FPS processing. Nevertheless, the model size of
YOLO-v5x limits this network from running in devices with computational constraints for
real-time applications.

5.4. Efficiency on Mobile Devices

This section presents some experiments to evaluate the performance of YOLO-v5s [32]
and EfficientDet-d0 [30] on mobile devices. These two approaches are presented in their
respective papers as compact versions of their original proposals focusing on the trade-off
between effectiveness and efficiency. First, we prepared both models to run on a mobile
environment according to their official GitHubs (https://github.com/google/automl/
tree/master/efficientdet (accessed on 2 August 2021); https://github.com/ultralytics/
yolov5/pull/1127 (accessed on 2 August 2021)), obtaining their corresponding TFlite
models, 17 Megabytes for EfficientDet-d0 and 28 Megabytes for YOLO-v5s.

For this purpose, we used a Motorola Moto-G6 as a commercial smartphone to run our
experiments. Details about the smartphone, app and protocol are described in Section 4.3.
For comparative purposes, the experiments considered only the neural network processing
time and neither pre- nor post-processing phases were taken into account.

Figure 7 shows the results using six commonly used input sizes, 224× 224, 320× 320,
384× 384, 512× 512, 640× 640 and 768× 768. Both neural networks had a similar behavior,
i.e., increasing the size of the input impacted directly on the processing time. Using an
input size of 224× 224, the methods were able to process up to 5.19 FPS for YOLO-v5s and
4.42 for EfficientDet-d0. In all the experiments, YOLO-v5s was faster than EfficientDet-d0,
with a speedup ranging from 1.17× to 1.30× across the different scales. Furthermore, the
figure shows that, despite the use of compact models, the FPS rate dropped dramatically
when larger images were processed. The FPS rate decreased from 5.19 FPS (224× 224) to
0.48 FPS (768× 768) in the case of YOLO-v5s and decreased from 4.42 FPS (224× 224) to
0.36 FPS (768× 768) when EfficientDet-d0 was considered.

https://github.com/google/automl/tree/master/efficientdet
https://github.com/google/automl/tree/master/efficientdet
https://github.com/ultralytics/yolov5/pull/1127
https://github.com/ultralytics/yolov5/pull/1127
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Figure 7. Efficiency on Motorola Moto-G6.

6. Conclusions

One of the most pressing environmental challenges of our time is how to mitigate
the impact of littering in the environment. In this work, we present a new dataset, called
“PlastOPol,” which contains images of various types and sizes of litter with different real-
world backgrounds (streets, forest and beaches, among others) and annotations locating
the litter within the images. Our goal is to foster the creation of more effective and efficient
machine learning solutions for litter detection and classification with the ultimate aim of
automating the process.

We performed a comparative study involving state-of-the-art approaches for object
detection using the PlastOPol and TACO datasets. The overall performance of the evaluated
methods was similar for both datasets. We also observed that the YOLO-v5-based object
detectors performed best. On PlastOPol, YOLO-v5x reached an AP50 of 84.9, followed by
YOLO-v5s with 79.9. On TACO, the AP50 observed was 63.3 and 54.7 for YOLO-v5x and
YOLO-v5s, respectively. There were challenging backgrounds where several methods had
false positives, confusing wood with litter, for instance. Moreover, all the methods had
problems detecting small objects, such as cigarette butts.

We also evaluated the performance of the methods. On GPU, YOLO-v5s and EfficientDet-
d0 were the fastest approaches, processing up to 73.75 and 59.35 FPS, respectively, and
YOLO-v5x was capable of processing at 40.65 FPS. As for the remaining methods, YOLO-v5s
was 4.87×, 5.31×, 6.05× and 13.38× faster than RetinaNet, Faster R-CNN, Mask R-CNN
and EfficientDet-d5, respectively.

In the last years, most of the approaches proposed to improve object detection have
been using very deep neural network architectures, which increases their model size,
making it, in practice, almost impossible to use in devices with computational restrictions
and real-time applications. Unlike other areas, the optimization of automatic litter detection
involves searching for litter, even in areas of difficult access, using devices, such as drones
or mobile devices. For this reason, we also compared the performance of EfficientDet-d0
and YOLO-v5s, which are two light models, in a real mobile set-up using a commercial
smartphone. YOLO-v5s was the fastest one in all the experiments. With an image input
size of 224× 224, YOLO-v5s was capable of processing at 5.19 FPS, being 1.17× faster than
EfficientDet-d0. Moreover, increasing the input size reduced the efficiency of the models
drastically. With an input size of 768× 768 pixels, YOLO-v5s and EfficientDet-d0 processed
at just 0.48 and 0.36 FPS, respectively.

In summary, we demonstrated how well state-of-the-art object detection methods
performed on two challenging datasets for litter detection, as well as their strengths and
weaknesses. All methods had limitations when presented with difficult scenarios, with com-
plex natural background and very small litter instances. Future research efforts should focus
on improving the litter detection of the state-of-the-art methods using fusion strategies [51].
We also plan to continue investigating how tiny deep neural networks can run on devices
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with computational constraints, also considering well-known lightweight object detection
methods, such as MobileNet [52], ShuffleNet [53] and Pelee [54], among others. Moreover,
having few samples of small instances impacts the detection rate in these types of instances,
as the detectors do not have enough information to capture a better description of this
type of litter during training. Therefore, there is a greater probability of not detecting these
instances during testing. For this reason, the extension of our dataset using smart data
augmentation strategies, especially for very small litter instances, will be investigated.

Finally, PlastOPol does not contain annotations related to the types of litters (e.g., plas-
tic, paper and metal, among others) found within images. We plan to provide such
multiclass annotations in the future, assess the performance of the state-of-the-art methods
and also propose a new approach to detecting litter in a multiclass set-up. Furthermore,
with the proposal of a multiclass dataset, we intend to analyze the balance of instances per
class and its impact on efficiency. In addition, it is also important to evaluate the impact of
the dataset size by evaluating the effectiveness of the methods on a subset of images with
the goal of prioritizing the dataset distribution rather than its size.
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