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Abstract
We prove several results on homogeneous plurisubharmonic polynomials on C

n ,
n ∈ Z≥2. Said results are relevant to the problem of constructing local bumpings
at boundary points of pseudoconvex domains of finite D’Angelo 1-type in C

n+1.
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1 Introduction

Local bumpings at boundary points of certain bounded, smoothly bounded pseudo-
convex domains of finite D’Angelo 1-type in C

n+1, n ∈ Z≥1, have been used both
in the construction of peak functions (e.g. [1,5,8]) and in the construction of integral
kernels for solving the ∂-equation (e.g. [4,9]).

As explained in [2,3], the problem of constructing such local bumpings naturally
leads to the study of homogeneous plurisubharmonic polynomials on C

n . Further-
more, in [7], results on homogeneous plurisubharmonic polynomials onC

2 byBharali,
Stensønes [3], applied in combination with results from [6], played an important role
in establishing sup-norm estimates for solutions to the ∂-equation for a large class
of pseudoconvex domains in C

3. Specifically, the crucial results on homogeneous
plurisubharmonic polynomials on C

2 are the following:

Result ([3, Proposition 1]) Let P be a homogeneous, plurisubharmonic, non-
pluriharmonic polynomial on C

2. Then there are at most finitely many complex lines
through the origin in C

2 along which P is harmonic.
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Result ([3, Theorem 2]) Let P : C
2 → R be a non-constant, homogeneous, plurisub-

harmonic polynomial without pluriharmonic terms. Assume that there exists a
holomorphic function g : C

2 → C, nonsingular on a non-empty open set U ⊆ C
2,

such that P is harmonic along every level set of g|U .
Then there exist a homogeneous, subharmonic polynomial s : C → R and a homoge-
neous holomorphic polynomial h : C

2 → C, such that P = s ◦ h on C
2.

Result ([3, Theorem 3]) Let P : C
2 → R be a non-constant, homogeneous, plurisub-

harmonic polynomial without pluriharmonic terms and assume that P is homogeneous
of degree 2d1 in z1, z1 and homogeneous of degree 2d2 in z2, z2, where d1, d2 ∈ Z≥1.
Then, there exist a homogeneous, subharmonic polynomial s : C → R without har-
monic terms and integers j, l ∈ Z≥1, such that

P(z1, z2) = s(z1
j z2

l) for all (z1, z2) ∈ C
2.

When attempting to adapt the methods from [7] to higher dimensions, it is natural
to ask for generalizations of the above-mentioned results on homogeneous plurisub-
harmonic polynomials on C

2 to higher dimensions. Specifically, it is natural to ask
the following questions:

Question A Given a homogeneous, plurisubharmonic, non-pluriharmonic polynomial
P on C

n, n ≥ 2, is it true that there are at most finitely many complex hyperplanes
through the origin in C

n along which P is pluriharmonic?

Question B Let P : C
n → R, n ∈ Z≥2, be a non-constant, homogeneous, plurisub-

harmonic polynomial without pluriharmonic terms. Assume that there exists a
holomorphic map G : C

n → C
m, 1 ≤ m ≤ n − 1, nonsingular on a non-empty

open set U ⊆ C
n, such that P is pluriharmonic along every level set of G|U .

Are there necessarily a homogeneous, plurisubharmonic polynomial Q : C
m → R

and holomorphic polynomials F1, . . . , Fm : C
n → C, all homogeneous of the same

degree, such that P = Q ◦ (F1, . . . , Fm) on C
n?

Question C Let P : C
n → R, n ∈ Z≥2, be a non-constant, homogeneous, plurisub-

harmonic polynomial without pluriharmonic terms and assume P is homogeneous in
l variables separately, 1 ≤ l ≤ n − 1.
Are there necessarily a homogeneous, plurisubharmonic polynomial Q : C

n−l → R

and holomorphic polynomials F1, . . . , Fn−l : C
n → C, all homogeneous of the same

degree, such that P = Q ◦ (F1, . . . , Fn−l) on C
n?

The purpose of this paper is to provide a detailed answer to Questions A, B and C.
A formal statement of the results can be found in Sect. 2.

The answer to Question A is “yes” (Proposition 2.1).
The answer to Question B is “no” in general, even if we additionally assume that the

component functions of G are holomorphic polynomials which are all homogeneous
of the same degree (Proposition 2.2). However, the answer is “yes” in the special case
m = 1, i.e., when the polynomial is pluriharmonic along the level sets of a single
holomorphic function (Theorem 2.3).
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The answer to Question C is “no” in general (Proposition 2.2). However, in the
special case where the polynomial is homogeneous in all n variables separately, the
answer is “yes” (Corollary 2.5). Furthermore, we get that the answer is “almost yes”,
or “yes, up to certain singular holomorphic coordinate changes” in the general setting
(Theorem2.4). Inmany cases, the latter theoremcan be used to get the desired bumping
results. This is important, since Proposition 2.2 shows that the result by Bharali,
Stensønes [3, Theorem 3] does not generalize in this setting.

2 Statement of Results

In this section, we state the results of this paper. All the proofs can be found in the
later sections.

The answer to Question A is “yes”. We have:

Proposition 2.1 Let P : C
n → R, n ∈ Z≥2, be a homogeneous, plurisubharmonic,

non-pluriharmonic polynomial. Then there are at most finitely many complex hyper-
planes through the origin in C

n along which P is pluriharmonic.

The answer to Question B is “no”, even if we additionally assume that the compo-
nent functions of G are holomorphic polynomials which are all homogeneous of the
same degree. The answer to Question C is “no” as well. All of this is implied by the
following:

Proposition 2.2 Let P : C
3 → R,

P(z, w1, w2) = |z|2 · (|w1|4 + |w2
1 − w1w2|2 + |w2|4).

Then P is a non-constant, homogeneous, plurisubharmonic polynomial without pluri-
harmonic terms and P is homogeneous in one variable separately (see Definition 3.3).
Furthermore, away from the coordinate hyperplanes, P is pluriharmonic along the
level sets of G : C

3 → C
2, G(z, w1, w2) = (zw2

1, zw
2
2).

However, there do not exist a homogeneous, plurisubharmonic polynomial Q : C
2 →

R and holomorphic polynomials F1, F2 : C
3 → C, homogeneous of the same degree,

such that P = Q ◦ (F1, F2) on C
3.

Nevertheless, the answer to Question B in the special case where m = 1 is “yes”:

Theorem 2.3 Let P : C
n → R, n ∈ Z≥2, be a non-constant, homogeneous,

plurisubharmonic polynomial without pluriharmonic terms. Assume that there exists
a holomorphic function G : C

n → C, nonsingular on a non-empty open set U ⊆ C
n,

such that P is pluriharmonic along every level set of G|U .
Then, there exist a homogeneous, subharmonic polynomial s : C → R without har-
monic terms and a homogeneous holomorphic polynomial h : C

n → C, such that
P = s ◦ h on C

n.

Note that Theorem2.3 generalizes the uppermentioned result byBharali, Stensønes
[3, Theorem 2] to higher dimension.
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Although the answer to Question C is “no”, we get the following result, which says
that the answer is “yes, up to singular holomorphic coordinate changes”:

Theorem 2.4 Let P : C
n → R, n ∈ Z≥2, be a non-constant plurisubharmonic poly-

nomial without pluriharmonic terms and assume that P is homogeneous of degree
2k, k ∈ Z≥1. Let 1 ≤ l ≤ n − 1 and assume that P is homogeneous of degree 2d j ,
d j ∈ Z>0, in z j , z j for j = 1, . . . , l (see Definition 3.3). Assume furthermore that
k − D > 0, where D = d1 + · · · + dl . Write d := gcd(d1, . . . , dl , k) ∈ Z≥1.
Then, there exists a plurisubharmonic polynomial Q : C

n−l → R without pluri-
harmonic terms, homogeneous of degree 2k − 2D, with the property that both the
holomorphic and the anti-holomorphic degree (see Sect. 3) of every term appearing in
Q are divisible by the integer (k− D)/d, such that we have for all (z1, . . . , zn) ∈ C

n:

P(z1, . . . , zn) = Q(τ zl+1, . . . , τ zn),

for every solution τ ∈ C of τ (k−D)/d = zd1/d1 · · · zdl/dl .

Alternatively, we can carry out a singular holomorphic coordinate change
� : C

n → C
n , (z1, . . . , zn) �→ (z1(k−D)/d , . . . , zl (k−D)/d , zl+1, . . . , zn) and write

(P ◦ �)(z1, . . . , zn) = Q(zd1/d1 · · · zdl/dl zl+1, . . . , z
d1/d
1 · · · zdl/dl zn).

Note that, without the assumptions d1, . . . , dl , k − D > 0 in Theorem 2.4, P is
effectively a polynomial in fewer than n variables, hence we can ignore that case.

As a corollary (of the proof) of Theorem 2.4 we get that the answer to Question C
in the special case where P is homogeneous in all n variables separately is “yes”:

Corollary 2.5 Let P : C
n → R, n ∈ Z≥2, be a non-constant, homogeneous, plurisub-

harmonic polynomial without pluriharmonic terms and assume that P is homogeneous
of degree 2d j , d j ∈ Z>0, in z j , z j for j = 1, . . . , n (see Definition 3.3). Write
d := gcd(d1, . . . , dn) ∈ Z≥1.
Then, there exists a homogeneous, subharmonic polynomial s : C → R without har-
monic terms, such that

P(z1, . . . , zn) = s(z1
d1/d · · · zndn/d)

for all (z1, . . . , zn) ∈ C
n.

Note thatCorollary 2.5 generalizes the uppermentioned result byBharali, Stensønes
[3, Theorem 3] to higher dimension.

3 Preliminaries

For the remainder of this sectionwefix an integer n ≥ 2 and a non-constant polynomial
P : C

n → R with the following properties:

• P is R-homogeneous of degree 2k, for some positive integer k,
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• P is plurisubharmonic,
• P does not have any pluriharmonic terms (i.e., purely holomorphic or purely anti-
holomorphic terms).

In particular, there exists a collection (aα,β)(α,β)∈J of complex numbers where

• J is the set of all pairs (α, β) ∈ (Z≥0)
n × (Z≥0)

n satisfying |α| > 0, |β| > 0 and
|α| + |β| = 2k,

• aα,β = aβ,α for all (α, β) ∈ J ,

such that

P(z) =
∑

(α,β)∈J
aα,β z

αzβ

for all z = (z1, . . . , zn) ∈ C
n . Here we are making use of the usual multi-index

notation: |α| = α1 + · · · + αn and zα = zα11 · · · zαnn (and analogously for β and zβ ). If
aα,β 	= 0, then we say that |α| (resp. |β|) is the holomorphic (resp. anti-holomorphic)
degree of the term aα,β zαzβ .

Furthermore, let L(P; p, V ) denote the Levi form of P at the point p ∈ C
n in

direction V = (V1, . . . , Vn)t ∈ C
n , i.e.,

L(P; p, V ) = (V1, . . . , Vn)

⎛

⎜⎜⎜⎝

∂2P
∂z1∂z1

(p) . . . ∂2P
∂z1∂zn

(p)

...
. . .

...

∂2P
∂zn∂z1

(p) . . . ∂2P
∂zn∂zn

(p)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎝

V1
...

Vn

⎞

⎟⎟⎠ .

Lemma 3.1 Let A = {α ∈ (Z≥0)
n : |α| = k and aα,α 	= 0} and let

C =
⎧
⎨

⎩(c1, . . . , cn) ∈ C
n :

n∑

j=1

α j c j = 0 for all α ∈ A
⎫
⎬

⎭ .

Then we have for all (c1, . . . , cn) ∈ C and for all z = (z1, . . . , zn) ∈ C
n:

L(P; z, (c1z1, . . . , cnzn)t ) = 0.

Proof For all z = (z1, . . . , zn) ∈ C
n , (c1, . . . , cn) ∈ C

n a straightforward calculation
shows that

L(P; z, (c1z1, . . . , cnzn)t ) =
∑

(α,β)∈J
aα,β ·

( n∑

j=1

α j c j

)
·
( n∑

j=1

β j c j

)
· zαzβ .

Assume for the sake of a contradiction that the claim is wrong. We then find some
(c1, . . . , cn) ∈ C and some r1, . . . , rn ∈ R≥0, φ1, . . . , φn ∈ [0, 2π), such that:

L(P; (r1e
iφ1 , . . . , rne

iφn ), (c1r1e
iφ1 , . . . , cnrne

iφn )t ) 	= 0.
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By continuity, and since P is plurisubharmonic, we then get:

0 <

∫ 2π

0
. . .

∫ 2π

0
L(P; (r1e

iθ1 , . . . , rne
iθn ), (c1r1e

iθ1 , . . . , cnrne
iθn )t )dθ1 . . . dθn

=
∑

(α,β)∈J
aα,β ·

( n∑

j=1

α j c j

)
·
( n∑

j=1

β j c j

)
· r1α1+β1 · · · rnαn+βn

·
(∫ 2π

0
ei(α1−β1)θ1dθ1

)
· · ·

(∫ 2π

0
ei(αn−βn)θn dθn

)

= (2π)n
∑

α∈A
aα,α ·

∣∣∣∣
n∑

j=1

α j c j

∣∣∣∣
2

· r1α1+α1 · · · rnαn+αn

= 0,

where the last equality is due to the fact that (c1, . . . , cn) ∈ C. We have arrived at the
desired contradiction; the claim follows. 
�

For all β ∈ (Z≥0)
n with 1 ≤ |β| ≤ 2k − 1 we define a homogeneous holomorphic

polynomial Pβ : C
n → C,

Pβ(z) =
∑

α : |α|=2k−|β|
aα,β z

α .

In particular, we can write

P(z) =
∑

β : 1≤|β|≤2k−1

zβ Pβ(z).

Lemma 3.2 Assume that there exists a holomorphic map G : C
n → C

m, 1 ≤ m ≤
n − 1, nonsingular on a non-empty open set U ⊆ C

n, such that P is pluriharmonic
along every level set of G|U .
Then, for all i1, . . . , im, L ∈ {1, . . . , n} (not necessarily pairwise distinct) and for all
β ∈ (Z≥0)

n with 1 ≤ |β| ≤ 2k − 1, the following equality holds on C
n:

det

⎛

⎜⎜⎜⎝

∂G1
∂zi1

. . . ∂G1
∂zim

...
. . .

...

∂Gm
∂zi1

. . . ∂Gm
∂zim

⎞

⎟⎟⎟⎠ · ∂Pβ

∂zL
=

m∑

j=1

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1
∂zi1

. . . ∂G1
∂zim

...
. . .

...
∂G j−1
∂zi1

. . .
∂G j−1
∂zim

∂Pβ

∂zi1
. . .

∂Pβ

∂zim
∂G j+1
∂zi1

. . .
∂G j+1
∂zim

...
. . .

...
∂Gm
∂zi1

. . . ∂Gm
∂zim

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· ∂G j

∂zL
.
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Proof Fix a point p ∈ U . Then there exist an open neighborhood W ⊆ U of p and
holomorphic maps K1, . . . , Kn−m : W → C

n \ {0}, such that {K1(z), . . . , Kn−m(z)}
is a basis for the null space of G ′(z) ∈ C

m×n for all z ∈ W . For l = 1, . . . , n − m,
denote the component functions of Kl as Kl

(1), . . . , Kl
(n). Since P is pluriharmonic

along every level set of G|U , we get

0 = (Kl
(1), . . . , Kl

(n))

⎛

⎜⎜⎜⎝

∂2P
∂z1∂z1

. . . ∂2P
∂z1∂zn

...
. . .

...

∂2P
∂zn∂z1

. . . ∂2P
∂zn∂zn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎝

Kl
(1)

...

Kl
(n)

⎞

⎟⎟⎠

on W for l = 1, . . . , n − m; but since the Complex Hessian matrix of P is positive
semidefinite, we even get

(0, . . . , 0) = (Kl
(1), . . . , Kl

(n))

⎛

⎜⎜⎜⎝

∂2P
∂z1∂z1

. . . ∂2P
∂z1∂zn

...
. . .

...

∂2P
∂zn∂z1

. . . ∂2P
∂zn∂zn

⎞

⎟⎟⎟⎠ .

Writing

P(z) =
∑

β : 1≤|β|≤2k−1

zβ Pβ(z),

as above, we get for I = 1, . . . , n:

0 =
n∑

J=1

Kl
(J )(z) · ∂2P

∂z J ∂zI
(z)

=
∑

β : 1≤|β|≤2k−1

(
βI z1

β1 · · · zI βI−1 · · · znβn ·
n∑

J=1

Kl
(J )(z)

∂Pβ

∂z J
(z)

)

for all z ∈ W , l = 1, . . . , n − m; hence

0 =
n∑

I=1

zI · 0

=
∑

β : 1≤|β|≤2k−1

(
|β| · zβ ·

n∑

J=1

Kl
(J )(z)

∂Pβ

∂z J
(z)

)
.
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Owing to the fact that the Kl
(J ) and the Pβ are holomorphic, we then get for all

β ∈ (Z≥0)
n with 1 ≤ |β| ≤ 2k − 1:

0 =
n∑

J=1

Kl
(J )(z)

∂Pβ

∂z J
(z) for all z ∈ W , l ∈ {1, . . . , n − m},

i.e., Kl(z) = (Kl
(1)(z), . . . , Kl

(n)(z))t is in the null space of thematrix P ′
β(z) ∈ C

1×n .
But this implies that the null space of the matrix

⎛

⎜⎜⎜⎜⎜⎜⎝

∂G1
∂z1

(z) . . . ∂G1
∂zn

(z)

...
. . .

...

∂Gm
∂z1

(z) . . . ∂Gm
∂zn

(z)
∂Pβ

∂z1
(z) . . .

∂Pβ

∂zn
(z)

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ C

(m+1)×n, z ∈ W ,

is (n − m)-dimensional for all β with 1 ≤ |β| ≤ 2k − 1, so the rank of said matrix is
m. Hence, given i1, . . . , im, L ∈ {1, . . . , n}, we have

0 = det

⎛

⎜⎜⎜⎜⎜⎜⎝

∂G1
∂zi1

. . . ∂G1
∂zim

∂G1
∂zL

...
. . .

...
...

∂Gm
∂zi1

. . . ∂Gm
∂zim

∂Gm
∂zL

∂Pβ

∂zi1
. . .

∂Pβ

∂zim

∂Pβ

∂zL

⎞

⎟⎟⎟⎟⎟⎟⎠

onW for all β with 1 ≤ |β| ≤ 2k−1; noting that all the entries of the latter matrix are
holomorphic on C

n , the identity theorem gives that the determinant vanishes on all of
C
n . The claim follows by Laplace expanding by the last column and calculating. 
�

Definition 3.3 Given l ∈ {1, . . . , n}, we say that P is homogeneous in l variables
separately, provided there exist integers 1 ≤ i1 < · · · < il ≤ n and inte-
gers di1 , . . . , dil ≥ 1, such that for every (α, β) ∈ J with aα,β 	= 0 we have
αi1 + βi1 = 2di1 , . . . , αil + βil = 2dil . In this case we say that P is homogeneous of
degree 2di j in zi j , zi j for all j ∈ {1, . . . , l}.
Note 3.4 We restrict attention to even degrees in Definition 3.3 due to the plurisubhar-
monicity requirement. Note furthermore that, in the case l = n − 1, the polynomial
P is necessarily homogeneous in all n variables separately, since P is homogeneous.

Lemma 3.5 Let 1 ≤ l ≤ n − 1 and assume that P is homogeneous of degree 2d j ,
d j ∈ Z>0, in z j , z j for j = 1, . . . , l. Assume furthermore that k − D > 0, where
D = d1 + · · · + dl .
Then, away from the coordinate hyperplanes, P is pluriharmonic along the level sets
of G : C

n → C
n−l ,

G(z1, . . . , zn) = z1
d1 · · · zl dl ·

(
zl+1

k−D, zl+2
k−D, . . . , zn

k−D
)
.
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Proof G is nonsingular on U := {(z1, . . . , zn) ∈ C
n : z1 	= 0, . . . , zn 	= 0}. Given

z ∈ U , we have to show that L(P; z, V ) = 0 for all V in the null space of G ′(z) ∈
C

(n−l)×n . But since the Complex Hessian matrix of P is positive semidefinite, it
suffices to verify this for a basis of said null space. If z ∈ U , then the collection of
vectors

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0
...

0
(k − D)z j j th entry

0
...

0
−d j zl+1 (l + 1)th entry

...

−d j zn

, where j ∈ {1, . . . , l}

forms a basis for the null space of G ′(z) ∈ C
(n−l)×n . Hence, with A and C as in

Lemma 3.1, it suffices to show that C j ∈ C for j ∈ {1, . . . , l}, where
( )

C j := 0, . . . , 0, k − D, 0, . . . , 0, −d j , . . . , −d j ∈ C
n .

j th (l + 1)th

To this end, we consider some j ∈ {1, . . . , l} and some α ∈ A. Since aα,α 	= 0 and by
assumption on P we then have α1 = d1, . . . , αl = dl , and αl+1 + · · · + αn = k − D.
Writing C j =: (c1( j), . . . , cn ( j)), we then have:

n∑

s=1

αscs
( j) = (k − D)α j − d j (αl+1 + · · · + αn) = 0,

as desired. 
�

4 Proof of Proposition 2.1

Proof of Proposition 2.1 We proceed by induction on the dimension n. The 2-
dimensional case was handled by Bharali, Stensønes [3], so let n ≥ 3 and assume
the claim holds in dimensions 2, . . . , n − 1. Let P be as in the statement of the theo-
rem and assume for the sake of a contradiction that P is pluriharmonic along infinitely
many complex hyperplanes through 0 ∈ C

n . We then find a sequence (H j ) j∈Z≥1 of
pairwise distinct such hyperplanes. It is furthermore easy to see that there exists a
complex hyperplane A through 0 ∈ C

n , such that P is not pluriharmonic along A.
Since P is pluriharmonic along each H j , j ∈ Z≥1, we get that P is pluriharmonic

123
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along A ∩ H j for all j ∈ Z≥1. Hence, by induction, the set {A ∩ H j : j ∈ Z≥1} is
finite. So, there exists an (n − 2)-dimensional complex vector subspace V of A, such
that A ∩ H j = V for infinitely many j ∈ Z≥1. Thus, after deleting some members of
the sequence if necessary, we can assume that

A ∩ H j = V for all j ∈ Z≥1.

It is easy to verify that there exists a complex hyperplane B through 0 ∈ C
n , such

that P is not pluriharmonic along B and B does not contain V . By repeating the same
argument and again deleting some members of the sequence if necessary, we find an
(n − 2)-dimensional complex vector subspace W of B, such that

B ∩ H j = W for all j ∈ Z≥1.

Hence everyH j contains V +W . However, B contains W but does not contain V , so
we get that V + W is at least (n − 1)-dimensional. We conclude that H j = V + W
for all j ∈ Z≥1. Since the members of the sequence (H j ) j∈Z≥1 were chosen to be
pairwise distinct, we have arrived at the desired contradiction. 
�

5 Proof of Proposition 2.2

Let P and G be as in the statement of Proposition 2.2. It is obvious that P is indeed
a non-constant, homogeneous, plurisubharmonic polynomial without pluriharmonic
terms and that P is homogeneous of degree 2 in z, z, so P is homogeneous in one
variable separately. Furthermore, away from the coordinate hyperplanes, P is pluri-
harmonic along the level sets of G by Lemma 3.5.

Assume for the sake of a contradiction that there exist a homogeneous, plurisub-
harmonic polynomial Q : C

2 → R and holomorphic polynomials F1, F2 : C
3 → C,

homogeneous of the same degree, such that P = Q ◦ (F1, F2) on C
3. As in Sect. 3

we write

P(z, w1, w2) =z · w1
2 · (

2zw1
2 − zw1w2

) + z · w1 · w2 · (
zw1w2 − zw1

2)

+ z · w2
2 · (

zw2
2).

Even though the holomorphic map (F1, F2) : C
3 → C

2 is (a priori) not necessarily
non-singular, an argument analogous to the proof of Lemma 3.2 gives that the matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∂F1
∂z

∂F1
∂w1

∂F1
∂w2

∂F2
∂z

∂F2
∂w1

∂F2
∂w2

2w1
2 − w1w2 4zw1 − zw2 −zw1

w1w2 − w1
2 −2zw1 + zw2 zw1

w2
2 0 2zw2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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has the same rank as the matrix

(
∂F1
∂z

∂F1
∂w1

∂F1
∂w2

∂F2
∂z

∂F2
∂w1

∂F2
∂w2

)

at every point of some non-empty open subset U of C
3, which does not meet the

coordinate hyperplanes. In particular, said rank is 2 and (F1, F2) is non-singular on
U ; hence F1 and F2 are both non-constant and homogeneous of degree d := deg F1 =
deg F2 ≥ 1. After adding the fourth row (of the former matrix) to the third row and
applying the identity theorem, we get that the following holds on C

3 for j ∈ {1, 2}:

0 = det

⎛

⎜⎝

∂Fj
∂z

∂Fj
∂w1

∂Fj
∂w2

w1
2 2zw1 0

w2
2 0 2zw2

⎞

⎟⎠ ,

and, using that Fj is homogeneous, a calculation then gives

3z
∂Fj

∂z
= z

∂Fj

∂z
+ w1

∂Fj

∂w1
+ w2

∂Fj

∂w2
= d · Fj .

From this we readily deduce that d/3 is a positive integer and that there exist holo-
morphic polynomials 0 	≡ f1, f2 : C

2 → C, homogeneous of degree 2d/3, such
that

Fj (z, w1, w2) = z
d
3 · f j (w1, w2) on C

3

for j ∈ {1, 2}. Since Q : C
2 → R is a homogeneous, plurisubharmonic (and clearly

also non-pluriharmonic) polynomial, its degree deg Q is even. But d/3 is an integer
and 6 = deg P = d · deg Q, so we necessarily have deg Q = 2 and d = 3. In
particular, f j is homogeneous of degree 2 and Fj (z, w1, w2) = z · f j (w1, w2) on C

3

for j ∈ {1, 2}. Since P does not have any pluriharmonic terms, we can assume that
Q does not have any pluriharmonic terms either. So there exist a, c ∈ R, b ∈ C, such
that we have for all (x, y) ∈ C

2:

Q(x, y) = a · |x |2 + b · x y + b · x y + c · |y|2.

For j ∈ {1, 2}we furthermorefindσ j , ρ j , μ j ∈ C, such thatwehave for all (w1, w2) ∈
C
2:

f j (w1, w2) = σ jw1
2 + ρ jw1w2 + μ jw2

2.

A calculation then shows that
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Q(z · f1(w1, w2), z · f2(w1, w2))

= |z|2 ·
(
w1

2 · g1(w1, w2) + w1w2 · h(w1, w2) + w2
2 · g2(w1, w2)

)

for some g1, h, g2 : C
2 → C contained in the C-vector space V spanned by f1 and

f2; we trivially have dimC V ≤ 2. Recalling that P = Q ◦ (F1, F2), we necessarily
have

g1(w1, w2) = 2w1
2 − w1w2, h(w1, w2) = w1w2 − w1

2, g2(w1, w2) = w2
2

which implies that dimC V ≥ 3. We have arrived at the desired contradiction.

6 Proof of Theorem 2.3

In this section we will (without further comment) identify holomorphic polynomials
C
n → C with elements of the polynomial ring C[z1, . . . , zn] in the obvious way.

Notation 6.1 Let 0 	= g ∈ C[z1, . . . , zn] be a homogeneous polynomial of positive
degree. Then the set

{m ∈ Z>0 : g = g̃m for some homogeneous g̃ ∈ C[z1, . . . , zn]}
is clearly non-empty and bounded from above. Hence it has a maximum, which we
denote as Mg ∈ Z>0.

Lemma 6.2 Let 0 	= g ∈ C[z1, . . . , zn] be a homogeneous polynomial of positive
degree and let h ∈ C[z1, . . . , zn] be any homogeneous polynomial with g = hMg (see
Notation 6.1). If 0 	= f ∈ C[z1, . . . , zn] is a homogeneous polynomial of positive
degree satisfying

(deg g) · g · ∂ f

∂zl
= (deg f ) · f · ∂g

∂zl
for all l ∈ {1, . . . , n},

then Mg · (deg f )/(deg g) is a positive integer and there exists a c ∈ C \ {0}, such
that f = c · hMg · deg f

deg g .

Proof Let g, h, f ∈ C[z1, . . . , zn] be as in the statement of the lemma. Write

g = u p1
α1 · · · pmαm ,

where m is a positive integer (since deg g > 0), u ∈ C \ {0} is a unit, p1, . . . , pm ∈
C[z1, . . . , zn] are pairwise non-associate primes, and α1, . . . , αm are positive integers.
Since deg f > 0, we get that g divides f · (∂g)/(∂zl) for l = 1, . . . , n. Hence,
considering any s ∈ {1, . . . ,m}, we get that psαs divides

f · ∂g

∂zl
= f · u ·

m∑

j=1

p1
α1 · · · p̂ j

α j · · · pmαm · α j · p j
α j−1 · ∂ p j

∂zl
.
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If j 	= s, then the corresponding summand is trivially divisible by psαs . But this
implies that psαs divides

f · u · p1α1 · · · p̂sαs · · · pmαm · αs · psαs−1 · ∂ ps
∂zl

.

Hence

ps

∣∣∣∣ f · p1α1 · · · p̂sαs · · · pmαm · ∂ ps
∂zl

.

Since ps is prime, it divides one of the factors. Since the primes p1, . . . , pm are
pairwise non-associate, we get for all l ∈ {1, . . . , n}:

ps
∣∣ f or ps

∣∣∣∣
∂ ps
∂zl

.

But since ps is prime and hence (∂ ps)/(∂zls ) 	= 0 for some ls ∈ {1, . . . , n}, we get
ps

∣∣ f . We have shown that every prime factor of g divides f . But by reversing the
roles of f and g and repeating the same argument, we also get that every prime factor
of f divides g. We conclude that there exist a unit v ∈ C \ {0} and positive integers
β1, . . . , βm , such that

f = v p1
β1 · · · pmβm .

By assumption we then have for all l ∈ {1, . . . , n}:

(deg g) · u p1α1 · · · pmαm · v ·
m∑

j=1

p1
β1 · · · ̂p j

β j · · · pmβm · β j · p j
β j−1 · ∂ p j

∂zl

= (deg f ) · v p1
β1 · · · pmβm · u ·

m∑

j=1

p1
α1 · · · p̂ j

α j · · · pmαm · α j · p j
α j−1 · ∂ p j

∂zl
,

and hence

0 =
m∑

j=1

p1 · · · p̂ j · · · pm · ∂ p j

∂zl
· (β j (deg g) − α j (deg f )).

Considering any s ∈ {1, . . . ,m}, we note that ps obviously divides the j th summand
for j 	= s, and hence

ps

∣∣∣∣ p1 · · · p̂s · · · pm · ∂ ps
∂zl

· (βs(deg g) − αs(deg f )).

123



Homogeneous Plurisubharmonic Polynomials in Higher Dimensions 11597

Using again that the primes p1, . . . , pm are pairwise non-associate and considering
some ls ∈ {1, . . . , n} with (∂ ps)/(∂zls ) 	= 0, we get

ps
∣∣ (βs(deg g) − αs(deg f )),

i.e., βs(deg g) − αs(deg f ) = 0. So, since s was chosen arbitrarily, we have

β j

α j
= deg f

deg g
for all j ∈ {1, . . . ,m}.

Since g = hMg , we can write

h = wp1
γ1 · · · pmγm ,

where w ∈ C \ {0}, wMg = u, and γ j = α j/Mg is a positive integer for j =
1, . . . ,m. Due to the defining properties of Mg (see Notation 6.1) we furthermore
have gcd(γ1, . . . , γm) = 1, i.e., there exist d1, . . . , dm ∈ Z, such that

1 =
m∑

j=1

d jγ j .

Hence

Mg · deg f

deg g
=

m∑

j=1

d j · γ j · Mg · deg f

deg g
=

m∑

j=1

d j · α j

Mg
· Mg · β j

α j
=

m∑

j=1

d jβ j

is a (positive) integer, as desired. Finally, we compute

hMg · deg f
deg g = w

Mg · deg f
deg g ·

m∏

j=1

(
p j

γ j
)Mg · β j

α j

= w
Mg · deg f

deg g ·
m∏

j=1

(
p j

α j
Mg

)Mg · β j
α j

= w
Mg · deg f

deg g p1
β1 · · · pmβm

= w
Mg · deg f

deg g

v
· f ,

and the claim follows. 
�
Armed with Lemma 6.2, we can provide a proof for Theorem 2.3.
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Proof of Theorem 2.3 As in Sect. 3 we write

P(z) =
∑

β : 1≤|β|≤2k−1

zβ Pβ(z).

We then apply Lemma 3.2 and get for all β ∈ (Z≥0)
n with 1 ≤ |β| ≤ 2k − 1 and for

all j, l ∈ {1, . . . , n}:
∂Pβ

∂zl

∂G

∂z j
= ∂Pβ

∂z j

∂G

∂zl
on C

n .

Writing G = G(0) + q + R, where q : C
n → C is a non-constant, homogeneous,

holomorphic polynomial and R : C
n → C is a holomorphic function whose Taylor

series at 0 does not involve any terms of degree ≤ deg q, we get, owing to the fact that
the Pβ are homogeneous:

∂Pβ

∂zl

∂q

∂z j
= ∂Pβ

∂z j

∂q

∂zl
on C

n

for all β ∈ (Z≥0)
n with 1 ≤ |β| ≤ 2k−1 and for all j, l ∈ {1, . . . , n}. By multiplying

with z j and then summing over j , we get, using that both Pβ and q are homogeneous:

(deg Pβ) · Pβ · ∂q

∂zl
= (deg q) · q · ∂Pβ

∂zl
on C

n

for all β, l. Let h : C
n → C be any homogeneous, holomorphic polynomial with

q = hMq (see Notation 6.1). Lemma 6.2 then implies that, for a given β, the following
is true:

• if Mq · deg Pβ

deg q = Mq · deg Pβ

Mq ·deg h = 2k−|β|
deg h is not a positive integer, then Pβ ≡ 0,

• if 2k−|β|
deg h is a positive integer, then there exists a cβ ∈ C, such that

Pβ = cβ · hMq · deg Pβ
deg q = cβ · h 2k−|β|

deg h

(if Pβ ≡ 0, take cβ = 0, otherwise apply Lemma 6.2).

Since P 	≡ 0, there exists a positive integer L , such that

{1, . . . , L} =
{
2k − |β|
deg h

: β ∈ (Z≥0)
n, 1 ≤ |β| ≤ 2k − 1,

2k − |β|
deg h

∈ Z>0

}
.

Hence we can write on C
n :

P(z) =
L∑

l=1

∑

β : |β|=2k−l·deg h
zβ · cβ · (h(z))l
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=
L∑

l=1

(h(z))l ·
∑

β : |β|=2k−l·deg h
cβ · zβ

=
L∑

l=1

h(z)
l ·

∑

β : |β|=2k−l·deg h
cβ · zβ ,

where the last equality is due to the fact that P is real-valued. Since hl 	≡ 0, we can
find an αl ∈ (Z≥0)

n with |αl | = l ·deg h, such that zαl appears with coefficient γl 	= 0
in the Taylor expansion of hl at 0 (note that αl is not uniquely determined in general).
Recalling that

P(z) =
∑

β : 1≤|β|≤2k−1

zβ Pβ(z),

we see that we necessarily have (recall that h is homogeneous):

Pαl (z) = γl ·
∑

β : |β|=2k−l·deg h
cβ · zβ ,

and hence

P(z) =
L∑

l=1

h(z)
l · 1

γl
· Pαl (z).

Assume for the sake of a contradiction that 2k/(deg h) is not an integer. Then we have
for all l = 1, . . . , L that

2k − |αl |
deg h

= 2k

deg h
− l /∈ Z,

which implies that Pαl ≡ 0 (see above). But then P ≡ 0 and we arrive at the desired
contradiction. Hence 2k/(deg h) ∈ Z. But then we have that 2k−|αl |

deg h is a positive
integer for l = 1, . . . , L , which, using the above, implies that

Pαl = cαl · h
2k−|αl |
deg h = cαl · h 2k

deg h −l .

We now define s : C → R,

τ �→
L∑

l=1

cαl

γl
· τ l · τ

2k
deg h −l .

Note that s is indeed real-valued. It is now easy to see that s and h have all the desired
properties. 
�
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7 Proof of Theorem 2.4 and Corollary 2.5

In this section we will provide a proof for Theorem 2.4. We will not provide a separate
proof for Corollary 2.5, since it will be obvious from the proof of Theorem 2.4.

Proof of Theorem 2.4 We adapt the notation from Sect. 3. In particular we write

P(z) =
∑

β : 1≤|β|≤2k−1

zβ Pβ(z) =
∑

β∈B
zβ Pβ(z),

where B = {β ∈ (Z≥0)
n : 1 ≤ |β| ≤ 2k − 1 and Pβ 	≡ 0}. By assumption on P we

find, for every β ∈ B, a holomorphic polynomial qβ : C
n−l → C, homogeneous of

degree 2k − (2d1 + · · · + 2dl + βl+1 + · · · + βn), such that

Pβ(z1, . . . , zn) = z1
2d1−β1 · · · zl2dl−βl qβ(zl+1, . . . , zn).

For ease of notation we write m = n − l and (w1, . . . , wm) = (zl+1, . . . , zn). We
will switch back and forth between notations whenever convenient. By Lemma 3.5,
away from the coordinate hyperplanes, P is pluriharmonic along the level sets of
G : C

n → C
m ,

G(z1, . . . , zl , w1, . . . , wm) = z1
d1 · · · zl dl ·

(
w1

k−D, . . . , wm
k−D

)
.

Lemma 3.2 then gives that the following holds on C
n for all β ∈ B and for all

ν ∈ {1, . . . , n}:

det

⎛

⎜⎜⎜⎝

∂G1
∂w1

. . . ∂G1
∂wm

...
. . .

...

∂Gm
∂w1

. . . ∂Gm
∂wm

⎞

⎟⎟⎟⎠ · ∂Pβ

∂zν
=

m∑

j=1

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1
∂w1

. . . ∂G1
∂wm

...
. . .

...
∂G j−1
∂w1

. . .
∂G j−1
∂wm

∂Pβ

∂w1
. . .

∂Pβ

∂wm
∂G j+1
∂w1

. . .
∂G j+1
∂wm

...
. . .

...
∂Gm
∂w1

. . . ∂Gm
∂wm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· ∂G j

∂zν
.

A calculation then shows that the following holds on C
n for all β ∈ B, ν ∈ {1, . . . , l}:

(k − D)(2dν − βν)qβ(w1, . . . , wm) = dν

m∑

j=1

w j
∂qβ

∂w j
(w1, . . . , wm),

but since qβ 	≡ 0 is homogeneous, this simplifies to

(k − D)(2dν − βν)qβ(w1, . . . , wm)

= dν · (2k − (2d1 + · · · + 2dl + βl+1 + · · · + βn)) · qβ(w1, . . . , wm).
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For β ∈ B we have qβ 	≡ 0, so we get for all β ∈ B, ν ∈ {1, . . . , l}:

(k − D)(2dν − βν) =dν · (2k − (2d1 + · · · + 2dl + βl+1 + · · · + βn))

=dν · Mβ ,

where Mβ is defined in the obvious way. Since d = gcd(d1, . . . , dl , k), there exist
c, c1, . . . , cl ∈ Z, such that d = c · (k − D) + ∑l

ν=1 cν · dν . But then we have for all
β ∈ B:

d · Mβ

k − D
= c · Mβ +

l∑

ν=1

cνdν

Mβ

k − D
= c · Mβ +

l∑

ν=1

cν(2dν − βν),

so d · Mβ/(k − D) is an integer for all β ∈ B. If Mβ was 0 for some β ∈ B, then
2dν − βν would be 0 for ν ∈ {1, . . . , l}, implying that |β| = 2k, in contradiction to
β ∈ B. Hence d · Mβ/(k − D) is a positive integer for all β ∈ B. This implies that
for all β ∈ B we have

Pβ(z1, . . . , zn) =
(
z1

d1
d · · · zl

dl
d

) d·Mβ
k−D · qβ(zl+1, . . . , zn),

where all occurring exponents are positive integers. If β ∈ B, then Mβ ≤ 2(k− D). If
this was an equality, then, similarly to above, we would get |β| = 0, in contradiction
to β ∈ B. Hence we have for all β ∈ B:

d · Mβ

k − D
, 2d − d · Mβ

k − D
∈ {1, 2, . . . , 2d − 1}.

For β ∈ B, ν ∈ {1, . . . , l} we have

βν = 2dν − dν · Mβ

k − D
= dν

d
·
(
2d − d · Mβ

k − D

)
,

and both factors in the latter equality are positive integers. We now calculate, noting
that all occurring exponents are positive integers:

P(z) =
∑

β∈B
zβ Pβ(z)

=
∑

β∈B

(
z1

d1
d · · · zl

dl
d

) d·Mβ
k−D ·

(
z1

d1
d · · · zl

dl
d

)2d− d·Mβ
k−D

· zl+1
βl+1 · · · znβn qβ(zl+1, . . . , zn)

=
2d−1∑

j=1

(
z1

d1
d · · · zl

dl
d

) j
·
(
z1

d1
d · · · zl

dl
d

)2d− j
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·
∑

β∈B : d·Mβ
k−D = j

zl+1
βl+1 · · · znβn qβ(zl+1, . . . , zn).

Now if β ∈ B and j ∈ {1, . . . , 2d − 1} satisfy d · Mβ/(k − D) = j , then every
term occurring in zl+1

βl+1 · · · znβn qβ(zl+1, . . . , zn) has holomorphic degree Mβ =
j · (k − D)/d and anti-holomorphic degree βl+1 + · · · + βn = (2d − j) · (k − D)/d.
This implies that the polynomial Q : C

m → R,

Q(w1, . . . , wm) =
2d−1∑

j=1

∑

β∈B : d·Mβ
k−D = j

w1
β1+l · · · wm

βm+l qβ(w1, . . . , wm),

has the property that both the holomorphic and the anti-holomorphic degree of
every term appearing in Q are divisible by the integer (k − D)/d. Furthermore
Q(w1, . . . , wm) = P(1, . . . , 1, w1, . . . , wm), so Q is (indeed real-valued and)
plurisubharmonic. It is now easy to see that Q has all the other desired properties.


�
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