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A B S T R A C T

Recently, various waste materials and industrial by‐products such as supplementary cementitious materials
(SCMs) have been proposed to improve the properties of self‐compacting concrete (SCC). This profitable waste
management strategy results in lowering the costs and carbon emission, and a more sustainable, cleaner and
eco‐friendly production of SCC (Eco‐SCC). The properties of such a complex material are commonly measured
through costly experiments. Researchers also proposed experimental data analysis and predictive modeling
methods such as machine learning (ML) algorithms for prediction of the properties of concrete. However, pro-
posed models commonly relate the properties to the proportion of constituents only and ignore the effect of
their type and properties, and other influential factors. This paper aims to engineer the concept and develop
a more efficient ML model for prediction of the 28‐day uniaxial compressive strength (UCS28d) of SCC contain-
ing SCMs. A comprehensive dataset is collected through a precise literature survey. Some dimensionless ratios
are proposed to reduce the dimensionality of variables and reflect the effects of considered influential factors in
different ML models. Two separate datasets are considered to test the predictability of models where one has
new proportions of materials only and the other contains new type of material with new properties. After val-
idation and comparison between various ML models, Gaussian process regression (GPR) model proved to per-
form well on both considered Test datasets with R2, RMSE and MAE of around 0.96, 3.66 and 2.49 respectively.
Sensitivity analysis results confirm the contribution and importance of considering type and properties of mate-
rials as model variables. This paper demonstrates and highlights that all influential factors must be considered
to develop engineered ML models to use as universal tools for indirect estimation of properties of composite
materials such as Eco‐SCC.
1. Introduction

Self‐Compacting Concrete (SCC), also named as self‐consolidating
concrete, is a class of concrete that is designed to flow and pass
through congested reinforcement under its own weight without the
need for getting externally vibrated after casting (Okamura et al.,
2000). It offers many advantages over conventional concrete such as
ease of placement resulting in reducing labour and overall cost, better
segregation resistance, producing a denser and more homogenous con-
crete (Okamura et al., 2000). SCC is composed of aggregates and a bin-
der paste consisting of water and cementitious material, typically
Portland cement. The mixture design and choosing the type of con-
stituents are dependent upon the requirements. Traditional SCC often
requires higher amount of cement which increases its production cost
and risk of thermal cracks (Long et al., 2015). Cement production is
very energy‐intensive and leads to emitting a large volume of carbon
dioxide (CO2) that is not environmentally‐friendly. CO2 is a reason
of global warming and the reduction of CO2 emission has become
increasingly crucial nowadays. Researchers have recently proposed
partial replacement of cement with some waste material and by‐
products, known as supplementary cementitious materials (SCMs).
This profitable waste management strategy results in lowering the pro-
duction costs and carbon emission and a more sustainable and eco‐
friendly SCC (Eco‐SCC). SCMs may enhance the properties of a cemen-
titious mixture like SCC through their pozzolanic and or hydraulic
activity, or they can be used as filler to provide an improved mixture
(Pacewska and Wilińska, 2020). SCMs include a wide range of materi-
als and by‐products such as ground granulated blast‐furnace slag
akani@u-
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(GGBS or GGBFS), fly ash (FA), meta‐kaolin (MK), silica fume (SF)
lime powder (LP), and waste glass powder (WGP). FA and GGBS are
by‐products of coal combustion and steel manufacturing respectively
while MK is a product of thermal treatment and calcination of kaolin
clay in temperatures between 500 °C and 900 °C.

Specifications classify cement differently. In terms of compressive
strength, EN 197–1 (EN197) classifies cement into three classes,
namely 32.5, 42.5 and 52.5. According to ASTM C150 / C150M‐20,
cement is classified into ten types including type I, IA, II, IIA, II
(MH), II(MH)A, III, IIIA, IV and V with different properties (C150M‐
20, 2020). The chemical composition of cement in this specification
must include: aluminum oxide or alumina (AL2O3), iron oxide
(Fe2O3), magnesium oxide (MgO), sulfur trioxide (SO3), dicalcium sil-
icate (Ca2SiO4 or C2S), tricalcium aluminate (Ca3Al2O6 or C3A), trical-
cium silicate (Ca3SiO5 or C3S), and tetracalcium aluminofernite (4CaO.
Al2O3Fe2O3 or C4AF). During the hydration process and reactions
between ions in cementitious material, various compounds such as cal-
cium silicate hydrates (CSH), calcium aluminate hydrates (CAH) and
calcium aluminium silicate hydrates (CASH) may form and strengthen
the final product (Harrisson, 2019; L’Hôpital et al., 2015). Calcium sil-
icate hydrate (CaO‐SiO2‐H2O or CSH) which is the product of the reac-
tion of C3S and C2S in Portland cement with water is the main
compound responsible for gaining strength, hydraulic and self‐
cementing properties in presence of water (Harrisson, 2019). Calcium
hydroxide (Ca(OH)2 or CH) is another product of the hydration pro-
cess; it may crystallize with CSH in an appropriate pH and produce a
form of crystals interlocked with other constituents such as aggregates.
Although carbonation may heighten the strength of concrete, the pH
decreases and causes corrosion in steel reinforcements such as rebars.

SCMs contain different amounts of calcium oxide (CaO), silicon
oxide or silica (SiO2), both amorphous and crystalline, AL2O3, Fe2O3,
MgO and other oxides in form of different minerals or compounds
which are responsible for the cementitious properties. SCMs are usu-
ally in form of powder and as fine as cement with a considerable speci-
fic surface area. Pozzolanic SCMs such as SF, volcanic FA, low‐calcium
FA and MK mainly contain silica or aluminosilicate (Al2SiO5) compo-
nents. They do not have self‐cementing properties per se but they
are able to react with CH in presence of water (Pacewska and
Wilińska, 2020). Therefore, they commonly need a cementing agent
such as Portland cement to harden. SCMs such as GGBS or high‐
calcium fly ash can exhibit hydraulic and self‐cementing properties
that develop the strength of concrete (Pal et al., 2003; Saleh Ahari
et al., 2015). The hydration of hydraulic SCMs is different from PC.
For example, GGBS may contain minerals which can produce CSH in
the presence of water, or consume CH to form additional CSH which
is responsible for self‐cementing (Lee and Lee, 2020; Pal et al.,
2003). Pozzolanic SCMs may also react with CH to reduce carbonation
and use it to produce other compounds which can improve the perfor-
mance of concrete. Some SCMs such as SF may assist in gaining faster
strength at early age, while some like GGBS may cause an increase in
later ages (Saleh Ahari et al., 2015; Siddique and Bennacer, 2012).
Based on the physical and chemical properties and proportion of SCMs
in the mixture, strength may increase or decrease (Dadsetan and Bai,
2017; Vivek and Dhinakaran, 2017). They may also enhance the work-
ability, pumpability, durability of concrete such as SCC (Dinakar et al.,
2013; Siddique and Bennacer, 2012). Importantly, by partially replac-
ing cement with one or more SCMs, a binder that is more sustainable
and eco‐friendlier but with comparable or better properties can be pro-
duced as opposed to the mixture containing only cement as the binder
(Ahmed et al., 2021; Elchalakani et al., 2017; Rahla et al., 2019).

The chemical composition of cementitious materials has the main
role in the formation of reaction and properties of concrete, assuming
that physical properties such as specific surface area and particle size
distribution are appropriate. Reviewing the literature indicates that
five oxides of CaO, SiO2, MgO, Fe2O3 and Al2O3 are commonly consid-
ered by researchers to evaluate the chemical composition of cementi-
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tious materials. Researchers and specifications proposed different
ratios or conditions based on chemical composition to classify and
evaluate cementitious materials used in concrete. Some of the pro-
posed indices and terms for classification of ashes, raw or natural poz-
zolans and slags as material with pozzolanic and hydraulic properties
are summarised in Table 1 (ASTM International, 2019a; EN197; Pal
et al., 2003; Xie and Visintin, 2018).

The proportion of fine and coarse aggregates in concrete must be
designed in a way to reduce voids and achieve the optimal particle
packing. Regardless of the mineralogy or morphology of aggregates,
SCC mixes containing aggregates with higher packing density show
higher UCS, while there is no significant change when aggregates have
the same packing density (Nanthagopalan and Santhanam, 2012). Sev-
eral other raw or waste materials and by‐products such as recycled
glass, limestone powder, marble powder, pumice powder, quartz pow-
der and so forth have been proposed to use as SCMs or as inert filler in
Eco‐SCC to improve properties such as density and strength (Bani
Ardalan et al., 2017; Elemam et al., 2020; Long et al., 2015). LP can
be used as an inert filler to increase the paste content or viscosity of
the mixture or it can be used as a replacement of unreacted cement
(Bonavetti et al., 2003; Elemam et al., 2020; Moosberg‐Bustnes
et al., 2004). In general, inert fillers are used to enhance particle pack-
ing and fresh state properties with no significant influence on the UCS
and hydration process (Bonavetti et al., 2003; Moosberg‐Bustnes et al.,
2004). In this paper, LP is considered to be an inert filler used as an
admixture in Eco‐SCC mixture.

Moreover, superplasticiser (SP) is a necessary chemical admixture
in Eco‐SCC to get the required properties, particularly in fresh state
such as flowability, viscosity and workability. Polycarboxylate SP is
one of the widely used SPs consisting of water and polycarboxylate
polymers, mainly polyethylene glycols (Ilg and Plank, 2019). They typ-
ically benefit the properties of concrete through reducing the water to
cement/binder ratio, e.g. by 40%, without negatively affecting the
workability but increasing the strength in the same proportion of con-
stituents (Houst et al., 2008). Moreover, there are several other admix-
tures such as those provided in ASTM C494 / C494M‐19 (ASTM
International, 2019b) that can be used in concrete. According to (Xie
et al., 2021), there are significant variations in the fresh properties
of Eco‐SCC such as V‐funnel, slump flow, U‐Box, L‐Box and J‐ring
results (Meko et al., 2021). Such variations can be due to many factors
such as mixture proportions, quality of materials but above all is the
admixture content and their chemical compositions. Vital information
such as chemical composition of the admixtures including SP, wide
range of water reducing admixture, and viscosity modifying agents
(VMA) are not commonly published in the literature (Xie et al.,
2021; Xie and Visintin, 2018). Fresh state properties of Eco‐SCC can
be improved using some well‐known admixtures such as SP with no
significant change of the hardened state properties. But, it would be
difficult to do the same for properties at hardened state such as com-
pressive strength as it takes time to prepare specimens and test them.

Compressive strength is the major mechanical property of concrete
which reflects its quality in different applications, particularly for
structural concrete. Compressive strength of Eco‐SCC and other types
of concrete is typically measured through lab uniaxial compressive
strength (UCS) tests on specimens, typically after curing for 28 days
(UCS28d). In order to reduce the testing costs and logistics, researchers
proposed predictive modeling, data analysis methods that enable pre-
diction of the properties of concrete such as UCS28d. In this regard,
artificial intelligence (AI) and machine learning (ML) approaches have
been applied for predictive modeling of different properties of SCC
such as (Siddique et al., 2008). These algorithms are able to find
high‐accuracy nonlinear models relating the output to input variables
in a set of data. Several ML algorithms such as support vector machines
(SVMs), artificial neural networks (ANNs), genetic programming (GP),
and so forth have been successfully utilized for solving engineering
problems (Abbassi et al., 2013; Ilyas et al., 2021; Javed et al., 2020;



Table 1
Classification of slags and fly ash and natural pozzolans based on their chemical composition for use in concrete.

Material Ratio/Index Requirement

Coal fly ash and raw or calcined natural pozzolan SiO2 + Al2O3 + Fe2O3 (%) Class N ≥ 70 Class F ≥ 70 Class C ≥ 50
Max. Sulfur trioxide (SO3) (%) Class N ≤ 4 Class F ≤ 5 Class C ≤ 5
Max. Na2O + 0.658 K2O Class N ≤ 1.5 Class F ≤ 1.5 Class C ≤ 1.5
Max. loss on ignition Class N ≤ 10 Class F ≤ 6 Class C ≤ 6

Hydraulicity of slags (CaO+MgO)/SiO2 >1.0
CaO/SiO2 1.3–1.4
(CaO+MgO+ Al2O3)/SiO2 >1.0

In Japan, ≥ 1.4
In South Korea, ≥ 1.6

(CaO+ 0.56Al2O3 + 1.4MgO)/SiO2 ≥1.65
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Onyelowe et al., 2021; Sadrossadat et al., 2019). Although several
efforts have been made to propose efficient models, whether and
how complicated properties of concrete, such as the compressive
strength can be modelled to use for prediction aims are still open
research questions (DeRousseau et al., 2018; Young et al., 2019).

Researchers have demonstrated the capability of different
approaches for predictive modeling of properties of concrete
(Aslam et al., 2020; Farooq et al., 2021a; Farooq et al., 2021b;
Farooq et al., 2020; Nafees et al., 2021; Sadrossadat and Basarir,
2019). Proposed models often relate the properties of concrete such
as UCS to only the amount of constituents of the mixture. This is
merely correct in case the only influential parameter is the amount
or proportion of materials. However, problem arises when it comes
to use such models and make predictions. They cannot differentiate
the type of material and the influence of their properties and output
the same results e.g. the same UCS28d for an Eco‐SCC containing
Cement type I and Type V with the same mixture proportions. There
are several other uncertainties and influential factors which must be
reduced and considered to develop reliable models. When dealing
with different types of materials in collected datasets, particularly
to develop predictive models, factors such as the type of con-
stituents pertaining to their chemical or physical properties are
influential. However, they have been overlooked in the existing lit-
erature of AI‐based concrete modelling. This paper aims to better
engineer the problem and propose a more efficient model which
can consider the proportion and type of constituents of Eco‐SCC
to predict the UCS28d using different ML and regression methods.
For this aim, a database consisting of UCS28d test results conducted
by different researchers worldwide on cubic SCC specimens with
various mixture proportions of different types of materials is col-
lected. Some indices and dimensionless ratios are reasonably consid-
ered and proposed to reduce the dimensionality of variables and
reflect the effects of considered factors in models. Different ML algo-
rithms are used and evaluated for predictive modeling of the UCS28d
of Eco‐SCC. In order to develop reliable ML models, several steps
must be implemented and the accuracy model must be validated.
The most important step is to verify whether the model can perform
accurately when it comes to unseen proportion and type of materi-
als which can be called predictability. After a process of validation,
the predictability of the efficient model is confirmed.
2. Method

Predictive modeling of the properties of concrete is challenging due
to the large number of influential factors and nonlinear relationships.
In this paper, quadratic regression with interaction terms (QRI), and
two variants of powerful ML algorithms namely, Gaussian process
regression (GPR) and support vector regression (SVR) algorithms are
used to develop UCS28d prediction models.
3

2.1. Quadratic regression with interaction terms

The general form of the quadratic regression with interaction terms
(QRI) model used here is as follows:

y ¼ ∑aix2
i þ∑bixi þ∑cixixj þ ɛ ð1Þ

where y is called dependent or model output variable, xi is the indepen-
dent or design variables, and ai, bi and ci are coefficients obtained using
statistical analysis of variances after fitting the model on data. ε is the
constant or bias term of model which is the mean for the response when
all of the explanatory variables are kept equal to 0. These coefficients or
parameters can be found using analysis of variance (ANOVA) using the
ordinary least squares (OLS) approach through minimising the sum of
the squares of the error between the measured and estimated value
of dependent variable for a given dataset.

2.2. Svr

SVR is a data‐driven and supervised ML algorithms which aims to
find a model, f(x), with at most ε deviation from the target (y) which
is the output variable in the database (Cortes and Vapnik, 1995; Li
et al., 2020). Note that support vector machines (SVMs) are typically
used for classification aims with support vector methods, and SVR is
commonly used for regression. Consider that a linear relationship
exists between vectors of X={x1, x2, x3, …, xi,…, xn} as input and cor-
responding Y={y1, y2, y3, …, yi, …, yn} as output variables. The gen-
eral form of the SVR model can be represented as follows:

Y ¼ f Xð Þ ¼ WTX þ b ð2Þ
W is the vector of coefficients and b is the constant. As there might

be a nonlinear relationship, the vector X can be transformed using ker-
nel function φ(X).

Therefore, the above equation can be changed to the following
expression:

y ¼ f Xð Þ ¼ WTφðXÞ þ b ð3Þ
In SVR, the input space is mapped to a higher infinite dimensional

feature space through a nonlinear kernel function, namely φ(X), to find
a higher accuracy model. There are various types of kernel functions
such as polynomial, Gaussian, and radial basis functions (Chou et al.,
2011). The general form of polynomial kernel function is as follows:

K W ;Xð Þ ¼ ð1þWTXÞd ð4Þ
where d is equal to 1, 2 and 3, the polynomial kernel functions is called
linear, quadratic and cubic kernel function. In simple form, a least
squares algorithm is used to minimize the existing error between f(X)
and Y. In order to minimize deviations within the dimensional feature
space and accordingly overfitting, Lagrange multipliers are used.
Finally, the SVR problem is considered as a constrained mathematical
optimization problem using the structural risk minimization principle.



Table 2
Common kernel functions commonly used in GPR models.

Type Equation

Squared Exponential (Gaussian) k xi; xj
� � ¼ σ2f exp � r2

2σ2l

� �

Rational Quadratic k xi; xj
� � ¼ σ2f ð1þ r2

2ασ2l
Þ�α

Matern 5/2 k xi; xj
� � ¼ σ2f 1þ

ffiffi
5

p
r

σl
þ 5r2

3σ2l

� �
exp

ffiffi
5

p
r

σl

� �

Exponential k xi; xj
� � ¼ σ2f exp � r

σl

� �
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Solving the following risk optimisation problem yield in finding the
coefficients w and b (Heidaripanah et al., 2017; Vapnik, 1999):

Minimise
1
2
kWk2 þ Cp ∑

n

i¼1
ðξi þ ξ�i Þ ð5Þ

subject to:

yi �Wxi � b≤ ɛ þ ξi
Wxi þ b� yi ≤ ɛ þ ξ�i

ξi; ξ
�
i ≥ 0i ¼ 1;2; 3; � � � ; n

8><
>: ð6Þ

where ξi þ ξ�i are positive slack variables; ε is the dimension of the
insensitive zone; and CP is a penalty parameter and determines the
trade‐off for ε.

2.3. Gpr

GPR is a nonparametric supervised machine learning algorithm for
predictive modeling, regresion and data analysis (Hoang et al., 2016;
Zhang et al., 2018). Given a linear function as follows:

y ¼ wx þ ɛ (7)

this approach specifies a prior distribution, p(w), on the parameters
or coefficient matrix, w, and apply probabilities depending on data
using Bayes’ Rule:

P wjy;Xð Þ ¼ p yjx;wð ÞpðwÞ
p yjxð Þ ð8Þ

p(w|y,X) is named posterior distribution which gets data from both
prior distributions of w and dataset, i.e. p(y|x,w) and p(y|x). Posterior
probability is the conditional probability based on the Bayes theorem
(Sadrossadat et al., 2021). Therefore, GPR is considered as a Bayesian
approach. In order to predict new x, i.e. x*, with f* values, the predic-
tion distribution is updated through weighting all possible x values
using their obtained posterior distribution as follows:

p f �jx�; y; xð Þ ¼
Z
w
p f �jx�;wð Þp wjy; xð Þdw ð9Þ

By considering the prior distribution as a Gaussian distribution, a
prediction can be made using the mean and variance values. The Gaus-
sian processes term is due to the use of the Gaussian distribution for
transforming the multiple‐dimensional generalization of multiple‐
variable normal distributions (Sadrossadat et al., 2021; Zhang et al.,
2018). GPR calculates the probability distribution over all functions
fitting the data used, i.e. training data, instead of merely the coeffi-
cients or parameters. This is why this approach is called non‐
parametric.

Similar to other regression methods, GPR can be used to find mod-
els existing between data. Given a dataset D = {(xi, yi)} |i= 1,.., n},
where xi∈ℝd and yi∈ℝn are the input and output vectors, taken from
an unknown distribution. GPR considers y as the following function
(Hoang et al., 2016):

y ¼ f xð Þ þ ɛ ð10Þ
where ε∼N(0, σ2n). ε follows the Gaussian distribution with an average
value of 0 and error variance of σ2n considering the output values or yi.

If {f(x), x∈ℝd} is a Gaussian process, then for a set of i observations
x1,x2,…,xi, Gaussian transformed function is a combined distribution
of variables f(x1),f(x2),…,f(xi). Given two xi and xj, a GP can be defined
by m(x) and k(xi,xj) which are the mean and covariance kernel func-
tions respectively as represented as follows:

mðxÞ ¼ Eðf ðxÞÞ ð11Þ

kðxi; xjÞ ¼ Covðf ðxiÞ; f ðxjÞÞ ¼ E½ff ðxiÞ �mðxiÞgff ðxjÞ �mðxjÞ ð12Þ
where k(xi,xj) determines the covariance between xi and xj. Therefore:
4

f ðxÞ∼GPðmðxÞ; kðxi; xjÞÞ ð13Þ
and accordingly:

y ∼ GP (m(x), k(xi,xj) + σ2
n (xi-xj)) ð14Þ

m(x) is the mean function is normally a constant and can be zero or
the average of the training dataset. The general forms of some common
kernel functions used in GPR is represented in Table 2.

In the equations listed in Table 2, the maximum allowable covari-
ance is considered as σ2f, σl is the length scale of the kernel function, α
is a non‐negative parameter of covariance, and r is defined as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞTðxi � xjÞ

q
ð15Þ

The parameters or hyper‐parameters of the GPR model, such as σ2n,
σl, α or σ2f are updated during the modeling process by Bayesian infer-
ence until convergence is reached or a stop criterion is met. These
parameters are calculated by optimizing the log likelihood function
using a Bayesian optimization and gradient‐based optimization algo-
rithms (Bishop, 2006; Liu et al., 2017).
3. Dataset and variable selection

A comprehensive dataset is collected through a careful survey of
the literature. The dataset contains test results conducted on cubic
specimens of Eco‐SCC with different mix designs to measure their
UCS28d and a wide range of different parameters of constituents. The
database includes 456 data taken from 20 published papers in the lit-
erature and is attached as a supplementary document (Almuwbber
et al., 2018; Bani Ardalan et al., 2017; Bingöl and Tohumcu, 2013;
Elemam et al., 2020; Esen and Orhan, 2016; Gill and Siddique,
2017; Güneyisi and Gesoğlu, 2011; Güneyisi et al., 2010; Kannan,
2018; Kannan and Ganesan, 2014a, Kannan and Ganesan, 2014b; Le
and Ludwig, 2016; Liu, 2010; Nikbin et al., 2014; Niknezhad et al.,
2017; Turk et al., 2012; Uysal, 2012; Uysal and Sumer, 2011; Vivek
and Dhinakaran, 2017; Zhao et al., 2015). The database includes
reported proportions of Eco‐SCC’s constituents, chemical compositions
of cementitious material such as main oxides (CaO, SiO2, Al2O3, Fe2O3,
MgO), some physical properties of materials such as maximum size of
coarse aggregates (Dmax), water absorption (WA) of aggregates as
reported by researchers. The description of materials and specimens
are also given such as different types of cement (C) such as Portland
type I, II or IV, different types of ash (A) such as rice husk ash
(RHA), fly ash class F (FAF), pulverised fly ash (PFA), GGBS, SF, MK
and LP, water (W), fine aggregates (FAgg) and coarse aggregates
(CAgg) with different types such as natural or crushed aggregates, var-
ious superplasticisers (SP) and so forth. Finally, there are 38 indepen-
dent variables in the collected database where the goal is to develop a
model for predicting the UCS28d.

The more data and variables, the more comprehensive the model. It
was strived to collect as large number of data and influential factors as
possible with the least uncertainties to develop ML models. The UCS28d
of cylindrical specimens with different aspect ratio is different from
the cubic ones (Li et al., 2018). Therefore, the UCS of cubic specimens
are merely considered in this database rather than cylindrical or other



Fig. 2. A scatter plot to classify cementitious material in terms of hydraulic or
pozzolanic reactivity.
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shapes. Other factors and experimental procedure issues are compulso-
rily considered here as systematic experimental error in data. Note that
such factors were not reported in some papers and therefore were not
possible to be considered.

Fig. 1 represents a ternary plot of chemical composition of avail-
able types of cement and SCMs in the collected database. It can be seen
that SF and RHA have a high content of SiO2 and MK and FA are low in
CaO+MgO. GGBS and Cement are close but cement has certainly a
higher content of CaO +MgO. It can be seen that cement types do
not have the same chemical composition. Different chemical composi-
tion may produce different compounds. Obviously, each type of mate-
rial with a different chemical composition have a different influence
on properties of mixture such as UCS. Therefore, chemical composition
of cementitious materials are important and must be considered as
variables to develop predictive models which have been ignored.

In terms of modeling, each oxide such as CaO can be considered as
an independent variable which leads to 25 variables for 5 types of
cementitious materials, i.e. cement, ash, GGBS, SF and MK. It is possi-
ble to consider CaO+MgO, SiO2 and Al2O3 + Fe2O3 yielding in 15
variables. In order to reflect the chemical compositions and reduce
the dimensionality, this paper proposes the following pozzolanic and
hydraulic reactivity indices, PRI and HRI respectively, can be proposed
as were also considered in Table 1:

PRI ¼ ðSiO2 þ Al2O3 þ Fe2O3Þ=100 ð16Þ

HRI ¼ ðCaOþ Al2O3 þMgOÞ=SiO2 ð17Þ
Fig. 2 can be used for classification of cementitious materials in

terms of pozzolanic or hydraulic reactivity only. HRI and PRI are con-
sidered to reflect the type of cementitious material in the database.
The reason why PRI is divided by 100 is to scale it within the range
of other variables as it affects the regression model performance. Con-
sidering HRI and PRI indices instead of chemical composition such as
SiO2 and CaO results in a meaningful dimensionality reduction of
model variables, from 25 to 10 variables.

Typically, 4.75 mm is considered to classify aggregates in terms of
size. Below this threshold, particles are considered as fine aggregates
(FAgg) and above it they are considered as coarse aggregates (CAgg).
The maximum size index (MSI) is the ratio of the maximum size of
coarse to fine aggregates:
Fig. 1. A ternary plot of chemical composition of cementitious material in
database.

5

MSI ¼ Dmax=4:75 ð18Þ
Additionally, water absorption of aggregates (WA) is considered as

a factor reflecting the nature of aggregates in the model. Fig. 3 illus-
trates the PSD of some fine and coarse aggregates used by different
researchers in the literature for producing SCC (Almuwbber et al.,
2018; Anjos et al., 2020; Bani Ardalan et al., 2017; Güneyisi and
Gesoğlu, 2011; Güneyisi et al., 2010; Kannan and Ganesan, 2014a,
Kannan and Ganesan, 2014b; Nikbin et al., 2014; Zhao et al., 2015).
When there is no idea about the optimal PSD of FAgg or CAgg, analysis
of data can be helpful such as that provided in Fig. 3. Note that guide-
lines and specifications are also based on experimental data. In the pre-
sent paper Fig. 3 and MSI are proposed to consider optimal particle
size distribution of aggregates for mixture design. Packing density
and specific gravity of constituents of the mixture are other important
factors which can be considered in future studies where relevant data
is avilable.

Furthermore, the weight (Wt) of water to weight of cement or bin-
der ratio (WtW/WtC or WtW/WtB) is a dimensionless and a more inter-
pretable variable compared to weight of water in the mixture, e.g. with
the unit of kg or kg/m3. Here, the weight of binder (B) is considered as
the sum of weights of C, A, GGBS, SF and MK of SCC mixes reported.
The ratio of the weight of constituent i to the binder (Wti/WtB) is a
dimensionless which is considered instead of considering the amount
of material (kg or kg/m3) in the mix. This way, the control mix is
the one where B equals C. Therefore, when cement is replaced with
SCMs a binary, ternary or composite binder is produced.

Although the raw form of features can be considered as model
input variables, some new indices and ratios are proposed in the pre-
sent paper. The proposed variables are normalised and dimensionless.
Additionally, the number of input variables is reduced from 38 to 23
input variables without ignoring any features. Obviously, the less the
number of input variables, the less the chance of complexity and over-
fitting, particularly when there is a limited number of data. Although
LP can be used as replacement of cement, it is considered as an admix-
ture to indicate the feasibility of considering different variables. Due to
the lack of reported characteristics, LP, water and SP are considered to
be the same in terms of type. Therefore, only their proportions in the
mixture were considered as variables. Finally, the UCS28d can be rep-
resented as a function of the developed independent input variables
as follows:

UCS28d ¼ f ðWtC
WtB

;
WtA
WtB

;
WtGGBS
WtB

;
WtSF
WtB

;
WtMK

WtB
;
WtLP
WtB

;
WtCAgg
WtB

;
WtFAgg
WtB

;
WtW
WtB

;
WtSP
WtB

;



Fig. 3. Some PSD analysis results of aggregates in the database used to produce SCC.
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MSI;WACAgg ;WAFAgg ;HRIC ; PRIC ;HRIA; PRIA;HRIS; PRIS;HRISF ;PRISF ;HRIMK ; PRIMKÞ
ð19Þ

Note that Wti/WtB are proportional variables which reflect the
amount and MSI, WAi, HRIi and PRIi are representatives of character-
istics and type of ith material in the model.

Values of collected raw data and model variables are attached as
supplementary document for more details and considerations. Descrip-
tive statistics of variables considered here are given in Table 3‐5.

4. Model development and results

In present study, the experimental data provided by (Kannan and
Ganesan, 2014a), including 17 UCS28d test results, is considered as
Test data to examine the generalization performance of UCS28 models
on mixtures with new material type and proportions. The remainder
dataset is separated into two groups, Train and Validation data. 70%
of the data published in each research paper including 328 data points
are used to develop the models, Train data, and 30% including 111
experimental results are considered as Validation data. Models are
trained using only Train Data. This scenario and data split form is con-
sidered to check the performance of the model on some unseen mix-
ture proportions only while the material type is known in trained
model, i.e. Validation Data. Test data is chosen to assess models on a
dataset from consisting of new type of constituents. The coefficient
of correlation (R), coefficient of determination (R2), the root mean
square error (RMSE) and the mean absolute error (MAE) between
the predicted and experimental values of UCS28d as the output are used
for the initial accuracy evaluation of the models.

As already noted, the coefficients of variables and bias term in
QRI model are obtained using OLS method and analysis of variances
similar to linear regression but with quadratic and interaction terms.
GPR and SVR are nonlinear models with a number of parameters and
hyper‐parameters which need to be adjusted based on data. ML tech-
niques assumes that data are normally distributed. However, all
dataset may not meet this. To transform the distribution of data to
a normal and also scale their range, all data are standardised using
z‐score method. In order to develop GPR and SVR models, a 5‐fold
cross validation is implemented to train the models using Train data.
Cross‐validation aims to validate the performance of models on dif-
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ferent subsets of data that was not used in the training process
(Zhang et al., 2019; Zhang et al., 2018). In this process, the dataset
is firstly divided to k equal‐sized folds or subsets of data. Then, the
algorithm trains the model using k‐1 folds of data, namely train
folds, and hold out one fold, i.e. validation fold. In other words,
the parameters are tuned using k‐1 subsets, i.e. training process,
and the first fold is used for validation. Then, the second fold
becomes the validation fold and the model is trained on the other
k‐1 folds. This process is summarised in Fig. 4. The parameters
and hyper‐parameters of the model are updated after each iteration.
The number of iterations can be a user‐defined parameter or a crite-
rion such as a fitness function or condition, e.g. R > 0.9. The k‐fold
validation method enables updating the parameters of the model k
times on different k folds of data which results in reducing
overfitting.

After developing several GPR and SVR models with different kernel
functions, those models with higher accuracy based on initial error
evaluation using R, RMSE and MAE values are chosen for further eval-
uation. Amongst GPR models with different kernel functions, the
model with rational quadratic kernel function, namely rational quad-
ratic GPR (RQGPR) model, outperformed other models. Similarly,
the SVR model with quadratic kernel function (QSVR) outperformed
other SVR models with different kernel functions. These models are
black‐box due to the number of parameters and hyper‐parameters,
but they can be recalled by a computer for accuracy assessment, vali-
dation, prediction and further use.

Fig. 5 illustrates scatter plots of the predicted versus experimental
values of UCS28d obtained by models on Train and Validation data.
The values of R, RMSE and MAE are also given in Table 6 to have
an overall viewpoint on the accuracy and error of prediction. It is rec-
ommended by researchers that a regression model which gives
R > 0.8 is acceptable and accordingly R2 > 0.64 (Sadrossadat et al.,
2020; Sadrossadat et al., 2013). According to Table 6 and Fig. 4 (a),
all models perform well on Train data. Although QRI perform better
than other models on Train data, it gives large error when it comes
to Validation data as is represented in Fig. 4 (b) and Table 6. As was
mentioned, the coefficients of QRI are obtained using the analysis of
variances. Therefore, they are mainly useful on data they are cali-
brated and no more.



Table 3
Descriptive statistics of variables reflecting the proportions of materials in SCC.

Indicator WtC/WtB WtA/WtB WtGGBS/WtB WtSF/WtB WtMK/WtB WtLP/WtB WtCAgg/WtB WtFAgg/Wt/B WtW/WtB WtSP/WtB

Mean 0.74 0.14 0.08 0.02 0.02 0.13 1.56 1.90 0.43 0.02
St. D. 0.18 0.14 0.18 0.04 0.05 0.17 0.47 0.38 0.07 0.01
Sample Var. 0.03 0.02 0.03 0.002 0.003 0.03 0.22 0.14 0.005 0.0001
Min. 0 0 0 0 0 0 0.893 0.84 0.26 0.0024
Max. 1 0.745 1 0.25 0.3 1 3.787 3.105 0.702 0.034

Table 4
Descriptive statistics of variables reflecting type and properties of materials in SCC.

Indicator MSI WACAgg WAFAgg HRIC PRIC HRIA PRIA HRIGGBS PRIGGBS HRISF PRISF HRIMK PRIMK

Mean 2.9 0.92 1.11 3.38 0.29 0.29 0.48 0.36 0.10 0.01 0.29 0.15 0.19
StD 0.53 0.44 0.48 0.25 0.02 0.29 0.42 0.69 0.20 0.02 0.43 0.31 0.37
Sample Var. 0.28 0.19 0.23 0.06 3e-4 0.09 0.17 0.48 0.04 5e-4 0.18 0.10 0.14
Min. 2.1 0.22 0.08 1.95 0.26 0 0 0 0 0 0 0 0
Max. 5.3 2.0 2.490 3.76 0.45 0.73 0.95 1.86 0.56 0.058 0.98 0.89 0.96

Table 5
Target or output variable.

Indicator UCS28d (MPa)

Mean 56.00
StD 16.92
Sample Var. 286.37
Min. 16
Max. 118.404

Fig. 4. K-fold cross validation used to develop SVR and GPR models using
Train data.

Fig. 5. Scatter plots of the predicted versus experimental values of UCS28d
obtained by GPR model on (a) Train and (b) Validation data.

E. Sadrossadat et al. Cleaner Materials 4 (2022) 100072
RQGPR and QSVR still represent high accuracy on Validation data
according to Fig. 5 (b) and Table 6. Hence, it can be concluded that
these models can predict the UCS28d for unseen mixture proportions
when the type of constituents is known. This also confirms that these
models neither underfit nor overfit for this scenario. The second sce-
nario questions whether it is possible to use QSVR and RQGPR models
for new materials with different properties or proportions. This can be
called the predictability on new types of material. As already men-
tioned, some experimental data provided by (Kannan and Ganesan,
2014a) are reserved to address this question where type of FA and
accordingly the mixtures are new to the model. The experimental
and predicted values of UCS28d and the residual error (RE) values for
Test data is summarised in Table 7. The details of Test data is provided
in attached supplementary document for more information.

According to Table 7, QSVR and QRI models produce large errors
for mixtures containing new type of fly ash and only RQGPR model
still performs with high accuracy. MAE values as overall error indica-
tor for QRI, QSVR and RQGPR predictions are respectively 2.07, 12.05,
46.21, while RMSE values are 2.65, 15.24 and 60.01. These results
7

impose the deficiency of QRI model for predictive modeling of the
UCS. As already noted, QRI is the quadratic form of multiple variable
polynomial regression methods, which also reflect the interaction
effects of variables. The structure of the QRI model is known in
advance. The coefficient of terms in QRI model are calculated using



Table 6
Performance of models on Train and Test data.

Parameter Train Data Validation data

QRI QSVR RQGPR QRI QSVR RQGPR

R 0.99 0.96 0.98 −0.09 0.97 0.97
R2 0.97 0.92 0.96 0.01 0.94 0.93
RMSE 2.90 4.70 3.66 175.16 4.41 4.55
MAE 1.70 2.86 2.49 166.50 3.02 3.26
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analysis of variances of variables after fitting the model on data using
OLS approach. Although QRI was able to successfully model the UCS
on Train Data, its prediction performance considerably decreased
when it came to Validation and Test datasets. This weakness arises
due to the fact that parameters of QRI model are calibrated for only
those data used to develop the model and are not validated for unseen
data which is called overfitting.

ML models are commonly developed using a process of validation
on different sets of data, which results in better prediction perfor-
mance. GPR and SVR to apply kernel‐based ML algorithms for predic-
tive modeling of the UCS of SCC based on the properties and
proportions of materials which have been less applied so far. Both
QSVR and RQGPR models are non‐parametric, i.e. they are not limited
by a functional form, and are kernel‐based models. Kernel function
convert data from an original input space into a higher dimensional
feature space in which a dominated hyper‐plane can be found to con-
sider a functional mapping between a set of input variables and the
output. Therefore, kernel functions are useful to find the best model.
ML methods also use regularisation techniques to add a penalty to
model parameters, except for constants or intercepts, to make them
robust against problems such as multicollinearity and overfitting.
These are the reasons why they perform well on validation data.
SVR models commonly map data into a higher dimensional space
using kernel transformation functions which was a quadratic function
in this paper. The quadratic kernel function was chosen in SVR and
GPR models to allow for the quadratic response in the output. The rea-
son why RQGPR outperforms the QSVR model can be realised form
Fig. 6. The bar chart in Fig. 6 represents the experimental and pre-
dicted values of UCS28d in Test data. The polynomial lines indicate
the trends of experimental values UCS28d when C is partially replaced
with different percentages of FA, MK and FA +MK and those pre-
dicted by RQGPR and QSVR models. Both experimental and RQGPR
increase and start decreasing after a specific replacement of C with
FA while QSVR tends to merely decrease which does not conform to
experimental results. It can be seen in Fig. 6 (a) and (c) that RQGPR
Table 7
The performance of different models for predicting the UCS of SCC with unseen typ

No Mix Label Experimental UCS28 (MPa) Predicted U

RQGPR

1 SCC (100% OPC) 40.77 42.37
2 SCC-FA05 42.73 46.03
3 SCC-FA10 44.31 45.12
4 SCC-FA15 48.99 43.96
5 SCC-FA20 46.43 42.48
6 SCC-FA25 40.25 40.70
7 SCC-FA30 39.43 38.70
8 SCC-MK05 48.28 47.64
9 SCC-MK10 51.91 51.42
10 SCC-MK15 54.53 54.53
11 SCC-MK20 57.17 54.72
12 SCC-MK25 53.74 52.59
13 SCC-MK30 51.40 50.88
14 SCC-MK05 + FA05 46.88 49.85
15 SCC-MK10 + FA10 47.48 51.95
16 SCC-MK15 + FA15 53.62 51.97
17 SCC-MK20 + FA20 44.68 49.61
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model trends follow the experimental, while those of QSVR model
are not correct. This incorrect sensitivity or parametric response of
predictive models results in prediction errors and vice versa.

The better performance of RQGPR compared to QSVR is due to the
fact that RQGPR uses probability distributions over all acceptable rela-
tionships fitting the data. This means that the Gaussian probability dis-
tribution and more accurate covariance kernels between variables
helped better prediction for the considered new types of materials in
this paper. Here, according to results, only RQGPR performed well
on all subsets of data and met the conditions. Considering the results
of model performance analyses in the present paper, RQGPR is pro-
posed as a robust tool for predictive modeling of the UCS28d of SCC
based on type and proportions of mixture constituents.
5. Sensitivity analysis

In order to realise the contribution and importance of considered
variables, a sensitivity analysis (SA) can be done on the RQGPR model
as the best model found. Several SA approaches have been proposed
for different purposes (Pianosi et al., 2016; Sadrossadat and Basarir,
2019; Sadrossadat et al., 2013) Typically, SA aims to investigate
how and which input variables change the output. When it comes to
nonlinear models such as RQGPR, a proper SA can be complicated as
the output may change differently in local changes of an input variable
or due to correlations of variables. According to (Pianosi et al., 2016),
SA can be used to rank input factors with respect to their relative con-
tribution to the output variability. The method proposed here is based
on measuring the amount of output variation or prediction error when
an input variable is removed from the model. RMSE between predicted
and experimental values of output is chosen as the indictor of error.
For this aim, RMSE is calculated for the output using the training data
as they are assumed to be available, named Actual RMSE. Then, the
values of one variable are changed to zero in the same dataset, while
the amounts of all other variables are unchanged. After calculating the
output using the RQGPR model, the new RMSE is calculated again.
e of material.

CS28 (MPa) Error (MPa)

QSVR QRI RQGPR QSVR QRI

47.47 40.77 1.60 6.70 0
30.89 −37.93 3.30 −11.84 −80.66
28.81 −37.93 0.81 −15.51 −82.24
26.41 −37.93 −5.03 –22.58 −86.92
23.71 −37.93 −3.94 –22.72 −84.36
20.69 −37.93 0.46 −19.56 −78.18
17.36 −37.93 −0.73 –22.07 −77.36
49.65 46.44 −0.64 1.37 −1.84
51.48 51.89 −0.49 −0.43 −0.02
52.75 55.15 0.00 −1.78 0.62
53.46 56.21 −2.45 −3.71 −0.96
53.60 55.08 −1.15 −0.14 1.34
53.19 51.75 −0.52 1.79 0.35
37.85 −24.61 2.97 −9.02 −71.49
33.16 −24.56 4.46 −14.33 −72.04
27.15 −24.51 −1.65 −26.47 −78.13
19.83 −24.46 4.93 −24.85 −69.14



Fig. 6. Bar chart values and trend lines obtained by experimental and predicted UCS28d on Test data where C is replaced with different percentages of (a) FA, (b)
MK and (c) FA +MK.
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Obviously, the larger variation of RMSE is caused by the most influen-
tial factor. This process is done for all variables in RQGPR model and
the results are given in Fig. 7.

Fig. 7 shows that removing WtW/WtB from the RQGPR model
changes the prediction error significantly from RMSE of 3.66 to
33.27. This increase in prediction error demonstrates the importance
of WtW/WtB. Interestingly, the respective largest RMSE increase are
caused by HRIC, PRIC and MSI which proves the prominence of consid-
ering properties and type of materials as influential factors. This indi-
cates the contribution of the type of cement and particle size and grade
of aggregates to the UCS28d of Eco‐SCC, which have been represented
by several researchers using experimental studies such as those
researched by (Niknezhad et al., 2017). However, such variables have
commonly been ignored in previously proposed models. The main
objective of this paper was to demonstrate that all influential factors
9

such as type and properties of constituents of composite materials such
as Eco‐SCC must be considered as variables for predictive modeling of
mixture factors such as UCS28d. This issue is validated by the proposed
SA and the results shown in Fig. 7. In order to have more comprehen-
sive models, better understanding of effect of variables and decision‐
making, a more comprehensive dataset containing larger number of
experimental data and variables is necessary.
6. Conclusion

This paper represented that each constituent of concrete mixtures
has specific type, chemical and physical properties which influence
its properties such as UCS28d where previously proposed models
merely relate such properties to the amount or proportions of con-



Fig. 7. SA for ranking and relative importance of considered factors for
prediction of the UCS28d using RQGPR model.
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stituents only. Such models cannot differentiate the type of material
and the influence of their properties and output the same results e.g.
the same UCS28d for an SCC containing Cement type I and Type V with
the same mixture proportions. There are several other uncertainties
and influential factors which must be reduced or considered as vari-
ables to develop reliable models. For example, this paper only consid-
ered UCS28d of cubic specimens while there are experimental data
conducted on cylindrical samples which have different UCS. There-
fore, such results cannot be merged. This paper also provides new
insights into data‐pre‐processing, feature transformation and selection
and dimensionality reduction for development of ML models. HRI and
PRI were proposed for classification of cementitious material in terms
of hydraulic and pozzolanic reactivity and reducing the dimensionality
of variables.

As a project, two separate datasets were considered to test the pre-
dictability of the models, validation data had new proportions of mate-
rials only and the other set, i.e. test data, contained a new type of
material. As already noted, GPR was successful to find a model which
can perform well on both considered Test datasets. Showing the capa-
bility of ML methods to find an efficient model working well when it
comes to new proportion and new type of materials was the main
objective of the paper, where only GPR is successful. SVR was used
for comparisons and show that a model may perform well on data with
new proportions, Validation data here, but it may fail when it comes to
new type of material, i.e. Test data. QRI is used to represent the incom-
petence of classical ANOVA‐based approaches for prediction aims.
10
Such models are merely calibrated for the Train data and may not per-
form well on unseen data. Data pre‐processing, regularisation and
training process in ML methods enable them to perform accurately
in prediction.

This paper aimed to demonstrate that all influential factors such as
type and properties of constituents of composite materials such as Eco‐
SCC must also be considered as variables for an appropriate predictive
modeling of mixture factors such as UCS28d. However, such variables
have commonly been ignored in previously proposed models. The
SA confirmed the importance of considering properties of materials
as influential factors as HRIC, PRIC and MSI had largest effects on pre-
diction after the amount of water in the mixture compared to other
variables. In this paper, RQGPR outperformed other models with
regard to the considered variables, dataset and scenarios. Considering
the results, RQGPR is proposed as a robust tool for predictive modeling
of properties of concrete.

Although several other variables can be considered, this research
confirmed that a comprehensive model is achievable that can predict
the properties of concrete such as UCS28d of Eco‐SCC with high accu-
racy. Such models can be used worldwide to avoid conducting costly
and time‐consuming tests, or at least to find the first trial mix design
which is difficult due to the large number of materials and factors.
An efficient model requires sufficient number of data points, suitable
variables and appropriate modeling tool which have been investigated
in this paper. Note that the designer must be aware of the properties of
materials such as cement and SCMs which are usually reported by their
producers and retailers or can be acquired using experiments. Consid-
ering the large number of materials and variables, it is expected that a
cloud repository is required to collect data and use for development of
ML models, similar to image databases used for image processing and
computer vision. Models such as RQGPR can also be used for optimi-
sation and multi‐objective mixture design purposes, which greatly
helps sustainability of the construction and concrete industries.
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