
Formalising Nondeterministic Communication in
Wireless Sensor Networks Using CSP

Sondre Ninive Andersen∗ , Asbjørn Engmark Espe† , Sverre Hendseth‡ , and Geir Mathisen§
Department of Engineering Cybernetics,

Norwegian University of Science and Technology, Trondheim, Norway
Email: {∗sondre.n.andersen, †asbjorn.e.espe, ‡sverre.hendseth, §geir.mathisen}@ntnu.no

Abstract—Using communicating sequential processes (CSP),
this paper presents a model for wireless sensor networks (WSNs)
to be used for formal verification of communication reliability
in mesh networks. Process models are derived for sensor nodes
and communication links, introducing nondeterminism in order to
capture the unreliability inherent in wireless communication. It is
shown that a guarantee may be issued concerning the CSP model’s
worst-case performance in terms of packet corruption. This guar-
antee is substantiated by transformation of the model, employing
a series of operations introduced to simplify the network while
preserving worst-case performance. The end result is a formal
proof of the entire network’s worst-case reliability. As long as the
nondeterminism of the communication links is modelled with care,
the packet corruption rate through the network will be equal to or
better than the worst-case performance of its most deterministic
path.

Index Terms—Communicating sequential processes, wireless
sensor network, reliability, network communication.

I. INTRODUCTION

Wireless sensor networks (WSNs) have become a ubiquitous
part of our modern society. A wide range of infrastructure,
machinery, processes, as well as natural structures are already
monitored by, or will in the future be instrumented with such
networks as part of maintenance scheduling or safety measures.
In many cases, WSNs operate using a mesh topology, meaning
that the nodes in the network also function as intermediate
relays and help propagate data through the network—often in
an ad hoc fashion [1]. Since distributed systems can be prone
to nonintuitive failures, formal verification can be a useful
approach to ensure robustness and reliability [2].

As a formal language, communicating sequential processes
(CSP) was first introduced by Hoare [3] to model and describe
the interaction of concurrent processes. The language was
further developed by Roscoe [4], and has evolved to become a
well-specified language for formal verification. In the literature,
CSP has been applied in similar efforts to guarantee behaviours
or performance goals. Jaskó and Simon [5] used the language to
prove deadlock-free operation in a sensor network architecture,
while Sakellariou et al. [6] incorporated CSP into programming
languages for constraint programming, and employed it as
a tool for distributed constraint satisfaction problems. Using
timed CSP, Liu et al. [7] introduced the concept of Wireless
Sensor Processes (WSP) to model contention-based wireless
sensor networking systems. In later years, Steyn and Gruner
[8] proposed an extension to the CSP language in the form of
a new parallelism operator to facilitate the modelling of WSNs.

II. MODEL

A general mesh WSN may be modelled as a network
of nodes connected by unreliable communication links. By
formulating an algebraic model that fully accommodates the
nondeterministic nature of the physical network, the implica-
tions of these unreliable communication links may be formally
examined.

The following analysis considers a single packet’s traversal
from a source node, through a homogeneous network, to a sink
node. An apt routing protocol running on top of the mesh WSN
allows the construction of a directed acyclic graph (DAG) as an
image of the network for the traversal of this single packet. The
nodes in the graph correspond to physical nodes relaying the
packet through the WSN, and the edges to physical links over
which the packet was transmitted. Importantly, it is assumed
that the routing protocol handles any conflict between packets,
allowing the real-world case of simultaneous packet traversal
to be considered as a superposition of single-packet cases.

By employing CSP to model this graph, certain guarantees
can be issued concerning its worst-case reliability. The CSP
formulation in the following splits the model into processes
describing the behaviour of each node and each communication
link in the graph. Pursuant to conventional naming for buffers
[3], input channels are named left, and output channels right.
The COPY -process introduced in [3] is also extensively used.
As defined in (1), the process copies any input on its left-
channel to its right-channel.

COPY = left?i→ right!i→ COPY (1)

A. Node

Upon receiving a packet on one of its input links, a node in
the graph will forward the packet on all of its output links. Since
only the reliability of the traversal graph is considered, each
node is permitted infinite memory capacity, thereby avoiding
any synchronisation or deadlock issues. A node may then be
modelled as

N(n,m) = NI(n) � NO(m) (2a)
NI(n) = left?i : Nn?p→ right!p→ NI(n) (2b)

NO(m) = ‖m
i=1

{|left|}

B∞[[right.i/right]] , (2c)

where n and m are the number of inputs and outputs, respec-
tively, and B∞ is an empty, unbounded buffer as in [4].

https://orcid.org/0000-0003-0039-5463
https://orcid.org/0000-0003-1687-889X
https://orcid.org/0000-0003-1687-889X

Nodes may be classified based on the number of inputs and
outputs they have, A single-input, single-output (SISO) node is
a special case of (2),

N(1, 1) = NSISO[[left.1, right.1/left, right]]

= NI(1)� B∞[[right.1/right]]

= B∞[[left.1, right.1/left, right]] , (3)

equivalent to a single unbounded buffer. To ease renaming later
on, the naming NSISO = B∞ is also introduced.

B. Link

Uncertain communication links are modelled as an unreliable
variant of COPY , which can nondeterministically elect to
corrupt c of every K packets delivered. This captures the
behaviour of a real-world link with a probability of corruption
equal to c/K. The confidence of the modelling can be brought
to an arbitrarily high level by choosing a sufficiently large K.
In a real-world network there are several reasons for which
a transmission might fail, such as total loss of signal, single-
or multi-bit faults, or other higher-level errors in the routing
protocol. However, all failed transmissions are captured by
this nondeterministic chance of corruption, assumed to be
detectable but not correctable. The resulting model is shown
in (4).

Li
j/c = left?p→

(
right!p→ Li+1

j/c

u right!p̃→ Li+1
j+1/c

)
(i < K, j < c) (4a)

Li
c/c = left?p→ right!p→ Li+1

c/c (i < K) (4b)

LK
j/c = left?p→

(
right!p→ L1

0/c

u right!p̃→ L1
0/c

)
(j < c) (4c)

LK
c/c = left?p→ right!p→ L1

0/c (4d)

The initial state, L1
0/c, represents a link that may either transmit

each received packet p correctly, or—if c > 0—transmit a
corrupted version, p̃. In the following, K is assumed to be a
global horizon, i.e. defined for the whole graph. For readability,
the shorthand L(c) = L1

0/c is introduced.
Do note that the relations

L(0) = COPY (5)
L(c) w L(c+ 1) (6)

L(c1)� L(c2 + 1) = L(c1 + 1)� L(c2) (7)

hold. (5) and (6) should be quite clear from the link definition.
The argument for (7) is that both sides of the equation have
equal traces and failures and are therefore equivalent. If values
are momentarily disregarded, it is apparent that both chains
behave like buffers of capacity 2, satisfying the specification

t ↓ right ≤ t ↓ left ≤ t ↓ right+ 2 , (8)

for all traces t.
Both chains will always accept any packet p on their left

channels. For the right channels, the failures of both the left
hand side and right hand side are equal. Both chains can refuse
to output both an uncorrupted packet and a corrupted packet

N

N

N×

N

N

L(c1)

L(c2
)

L(c3
)

L(c4)

N

N

N

N

N

N

N

N

L(c1
)

L(c1)

L(c2)

L(c2)

L(c3)

L(c4)

L(
c3)

L(c4
)

=⇒

Fig. 1: The first operation, illustrated for n = m = 2, allows
nodes to be split in order to form a set of disjoint paths form
source to sink. The grey arrows indicate potential connections
which are not relevant to the operation.

until c1+c2+1 packets have been corrupted by the chain. After
this, both sides may only deliver uncorrupted packets until a
total of K packets have been delivered, at which point the links
reset to their initial state.

III. METHOD

Presented in the following is a method for reducing an
arbitrary DAG of nodes and links into a trivial graph with a
single link, exhibiting the same worst-case performance. The
graph is assumed to be structured as described in the previous—
i.e. that it represents a single packet’s traversal through the
physical network from a source node to a sink node. The
method is composed of three basic operations which will be
presented in turn.

A. Operation 1: Node splitting

Illustrated in Figure 1, the first operation consists of splitting
a node with n inputs and m outputs into n × m nodes, one
for each distinct path through the junction. The operation only
considers the relevant subgraph, consisting of a set of n nodes
with links feeding into a single junction node N×, from which
links branch out again to a second set of m nodes. The input
nodes are disjoint from the output nodes, as any nodes in both
sets would cause a two-node cycle through N×, contradicting
the assumption that the graph is acyclic.

Since all nodes are on the form NI(n) � NO(m), it is
simpler to only consider the latter part for the input nodes, and
the former part for the output nodes. NO consists of a set of
unbounded buffers synchronising on the left event, permitting
all outputs not relevant to N× to be discarded. The same
holds for NI, for which all inputs are independent. The initial
subgraph G1 may then be expressed as (9).

G1 =

(
|||n

i=1
NO(1)[[right/right.1]]

� L(ci)[[right.i/right]]

)
� N×

�
(
|||m

j=1
L(c′j)[[

left.j/left]]

� NI(1)[[left/left.1]]

)
(9)

From the definition of refinement, P v Q ⇔ P = P u
Q, the two relations (10) and (11) must hold. Also note that

the worst-case performance in terms of packet corruption stays
invariant for both expressions.

L(c)�

 ‖k
i=1

{|left|}

B∞[[right.i/right]]


w ‖k

i=1
{|left|}

L(c)� B∞[[right.i/right]] (10)

(µ q.left?i : Nk!j?p→ right!j!p→ q)

� L(c)[[left.j, right.j/left, right]]

w
(
|||k

i=1
L(c)[[left.i.j, right.i.j/left, right]]

)
� (µ q.left?i : Nk!j?p→ right!j!p→ q) (11)

The junction node N× may be expanded as a set of n×m
parallel unbounded buffers, and renaming may be introduced
as shown in (12).

N× = NI(n)� NO(m)

= |||n
i=1

(
NI(1)[[left.i/left.1]]� NO(m)

)
= ‖n

i=1
{|left|}

‖m
j=1

{|left|}

B∞[[right.j, left.i/right, left]]

= ‖m
j=1

{|left|}

((
|||n

i=1
NSISO[[right.i.j, left.j.i/right, left]]

)
� (µ q.left?i : Nn!j?p→ right!j!p→ q))
[[left/left.j]] (12)

Subsequently, the links are extracted and (12) inserted into
(9). The two refinement expressions (10) and (11) are then
employed to obtain the following subgraph, in which all paths
are disjoint.

G1 w |||n
i=1

(
NO(m)[[right.i/right]]

)
�

|||n
i=1
|||m

j=1

(
L(ci)[[left.i.j/left]]

� NSISO � L(c′j)[[
right.j.i/right]]

)
� |||m

j=1

(
NI(n)[[left.j/left]]

)
(13)

It should be noted that (13) is refined by (9) and not necessarily
an equivalent process. However, its worst-case behaviour is still
retained, which is the sole invariant needed to proceed.

B. Operation 2: Serial merging

The second operation merges serial nodes and links, as
illustrated in Figure 2. The relevant, initial subgraph can be
formulated as

G2 = B∞ � L(c1)� NSISO � L(c2)� · · · � L(cn) , (14)

where the leading unbounded buffer is the output buffer of the
branch node.

N N N
L(c1) L(c2)

N N
L(ĉ)

=⇒

Fig. 2: The second operation, illustrated for n = 2, merges
sequential links and nodes into a single link. The grey arrows
indicate potential connections which are not relevant to the
operation.

The chain of links and nodes is to be reduced into a single
link whose weight is some function of the weights of the
individual links, as shown in (15).

G2
?
= B∞ � L(ĉ) , ĉ = f(c1, . . . , cn) (15)

To this end, three step laws are introduced, in which all nodes
NSISO = B∞ as per (3):

L(c)� NSISO = NSISO � L(c) (16)
NSISO � NSISO = NSISO (17)

NSISO � L(c1)� L(c2) = NSISO � L(c1 + c2) (18)

The first step law, (16), is self-explanatory; moving the
buffering before or after a nondeterministic link does not alter
the chain’s behaviour. The second law, (17), simply states that
an unbounded buffer chained with an unbounded buffer is an
unbounded buffer, as per the buffer laws in [4]. The third law,
(18), is a consequence of (7) combined with the buffer laws in
[4]. First, (7) is used repeatedly until the first link in the chain
becomes L(0) = COPY , at which point the buffer laws are
employed to merge this link with the unbounded buffer.

Utilising (16)–(18), (14) may be expressed on the form (15).
Initially, (16) is repeatedly employed to group all links and all
nodes.

G2 = B∞ � NSISO � · · · � NSISO

� L(c1)� · · · � L(cn) (19)

At this stage, the nodes are merged by (17), and subsequently
the links by (18). This results in

G2 = B∞ � L(ĉ) (20)
ĉ = c1 + · · ·+ cn , (21)

where the initial buffer is—as in (14)—the output buffer of the
branching node.

C. Operation 3: Parallel merging
The third operation takes a graph composed of two terminal

nodes connected by n parallel links, and reduces it by merging
all the parallel links into a single link, as illustrated in Figure 3.
It is assumed that the terminal nodes have no other connections.

The initial graph is defined as

N(1, n)�
|||n

i=1
L(ci)[[left.i, right.i/left, right]]

� N(n, 1) , (22)

and the goal in this stage is to reduce this parallel connection
of links into a single link whose weight is some function of
the weights of the individual links,

L(ĉ) , ĉ = f(c1, . . . , cn) . (23)

N N

L(c1)

L(c2)
N N

L(ĉ)
=⇒

Fig. 3: The third operation, illustrated for n = 2, merges one
or more parallel links into a single link.

It is essential to also consider that, as a result of the parallel
links, the sink node will receive n possibly corrupted duplicates
of each packet sent from the source node. The important metric
is the graph’s worst-case behaviour, i.e. the maximum number
of packets that may be corrupted between two nodes. Based
on the modelling assumption that corruption of packets can
be detected, a filtering process F (n) is introduced and defined
in (24), which forwards an uncorrupted packet among the n
duplicates if there is one, or otherwise an arbitrary packet. The
predicate X(p) represents error detection, and is true if and only
if p is not corrupt.

F (n) = left?p → Fn
p (n− 1) (24a)

Fn
p (i) = left?q →

(
Fn
q (i− 1)<I X(q)>I Fn

p (i− 1)
)

(0 < i < n) (24b)
Fn
p (0) = right!p→ F (n) (24c)

Appending the filtering process to the graph leads to (25).

G3 = N(1, n)�
|||n

i=1
L(ci)[[left.i, right.i/left, right]]

� N(n, 1)� F (n)[[left.1/left]] (25)

This graph will to the best of its ability output a single
uncorrupted packet for each inputted packet. The introduction
of the filtering process means that the parallel connection of
links may never perform worse than the worst-case performance
of its best link. In other words, all link coefficients ci may be
assigned the value ĉ = min(c1, . . . , cn) without altering the
graph’s behaviour. Indeed, since this filtering process essen-
tially “hides” all worse-performing links, all parallel links may
be replaced with a single link L(ĉ). It follows that the filtering
process F (1) = COPY becomes redundant resulting in the
reduced graph (26).

G3 = NSISO � L(ĉ)� NSISO (26)
ĉ = min(c1, . . . , cn) , (27)

D. Transforming the DAG

Using these three operations, the graph representation of
the single packet’s traversal can now be transformed without
affecting the worst-case rate of corruption. First, the graph is
stepped through through from the source node, in a breadth-first
order, and Operation 1 is applied to each node. The result is a
new graph in which every path is divorced from every other,
with the worst-case reliability unaffected. Next, each path is
merged into a single link using Operation 2. This results in an
equivalent graph consisting only of the source node and the
sink node, connected by a number of links. Finally, the third
operation is applied, resulting in the final graph in which a
single link connects the source node and the sink node.

The functions (21) and (27) can be used to derive the
coefficient C of the single remaining link in the transformed
graph as equal to the smallest sum of coefficients along the
paths through the original DAG. This leads to a guarantee that,
if the number of packets sent a satisfies C < a ≤ K, then at
least one packet will reach its destination uncorrupted.

IV. CONCLUSIONS

Introduced in this paper is a formal model to be employed
in analysis of the reliability of communication in mesh WSNs.
Initially, a DAG was constructed to capture how a single packet
propagates through the network from a source node to a sink
node. Based on this graph description, CSP was employed to
create a model of the nondeterministic behaviour of nodes and
communication links.

It was shown that this DAG could be reduced to a single
link connecting the endpoints, and formally proven that this
transformation does not alter the worst-case behaviour of the
graph. The result is that the reliability of the single link in the
graph reduction represents the worst-case performance of the
original network, and it was therefore possible to define a lower
bound on the number of packets that must be sent in order to
guarantee that at least one packet arrives uncorrupted.

It is important to note that the model is only an accurate
representation of the physical network to a certain degree; the
validity of the guarantees are limited by the confidence level of
the modelling. The model parameters must therefore be chosen
with care to sufficiently reflect the real-world nondeterminism.
As part of future work, this model and CSP in general has the
potential to be employed for other formal verification purposes,
such as proving deadlock-free operation.

REFERENCES

[1] I. F. Akyı̀ldı̀z, W. Su, Y. Sankarasubramaniam, and E. Çayırcı, “Wireless
sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,
Mar. 2002.

[2] D. He, L. Cui, H. Huang, and M. Ma, “Design and Verification of Enhanced
Secure Localization Scheme in Wireless Sensor Networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 7, pp. 1050–1058, Jul. 2009.

[3] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[4] A. W. Roscoe, The Theory and Practice of Concurrency. Prentice Hall,
2005.

[5] S. Jaskó and G. Simon, “CSP-Based Sensor Network Architecture for Re-
configurable Measurement Systems,” IEEE Trans. Instrum. Meas., vol. 60,
no. 6, pp. 2104–2117, Mar. 2011.

[6] I. Sakellariou, I. Vlahavas, I. Futo, Z. Pasztor, and J. Szeredi, “Com-
municating sequential processes for distributed constraint satisfaction,”
Information Sciences, vol. 176, no. 5, pp. 490–521, Mar. 2006.

[7] S. Liu, X. Wu, Q. Li, H. Zhu, and Q. Wang, “Formal Approaches
to Wireless Sensor Networks,” in 2011 Fifth International Conference
on Secure Software Integration and Reliability Improvement, Jeju, South
Korea, 2011, pp. 11–18.

[8] T. J. Steyn and S. Gruner, “A New Optional Parallelism Operator in
CSP for Wireless Sensor Networks,” in Proceedings of the South African
Institute of Computer Scientists and Information Technologists, Thaba
’Nchu, South Africa, 2017, pp. 1–8.

	Introduction
	Model
	Node
	Link

	Method
	Operation 1: Node splitting
	Operation 2: Serial merging
	Operation 3: Parallel merging
	Transforming the DAG

	Conclusions
	References

