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Abstract: Extended reality (XR) technologies such as virtual reality (VR) provide a promising alter-
native for training users through serious games (SGs). VR SGs allow people to train in emergency
scenarios and improve their likelihood of survival in high-risk situations. Studies have shown that
incorporating design elements such as wayfinding cues enhances the spatial knowledge of users
in VR. However, the impact of these wayfinding cues on users’ psychological and psychometric
behaviors needs thorough investigation. An SG was designed to investigate wayfinding cues’ psy-
chological and psychometric effects on user-perceived experiences in an immersive VR environment.
Thirty-nine participants experienced three variants of the VR SG using Oculus Rift- S. Participants in
the control condition were exposed to the VR with no wayfinding cues, and the experimental groups
were exposed to VR with static and dynamic wayfinding cues. Results showed that VR SG with
wayfinding cues induced less tension, challenge, and negative affects in users’ overall perceived expe-
rience. Similarly higher positive affects were observed for the experimental groups with wayfinding
cues. It was interesting to observe that there were no significant effects of wayfinding on competence,
flow, and immersion; however, heart rate was significantly high in the control group. These findings
suggest that wayfinding cues can promote the users perceived quality of experience in the VR.

Keywords: virtual reality; serious games; exended reality; training simulations; user studies; spatial
information; perception

1. Introduction

Extended reality (XR) technologies have evolved into ultra-high-definition, immer-
sive displays due to breakthroughs in data acquisition, data transmission, and playback
output devices for media content [1,2]. XR technologies such as virtual reality (VR) can
now provide more interactive and immersive experiences due to rapid technological ad-
vances such as state-of-the-art full-body motion tracking, gyroscopes, motion sensors,
stereoscopic displays, and audio [3]. Although VR is primarily focused on entertainment,
recent research studies highlight its implications in numerous other fields such as educa-
tion [4], healthcare [5,6], and training for disaster preparedness of natural hazards such as
flooding [7].

Recent research has shown that VR can administer a narrative-rich, high-fidelity envi-
ronment that administers a fully immersive and interactive experience for serious games
(SGs) such as disaster preparedness and evacuation training for hazardous situations [8].
Although VR SGs can be entertaining, their fundamental purpose is to provide training
and education to its users. VR-based serious games offer a secure space to conduct training
that would be risky and costly in real life [9]. Studies have been conducted to show that the
skills learned during a well-designed VR SGs are long-lasting [10] and depend mainly on
the efficiency and wayfinding capabilities of participants [11]. Wayfinding capabilities of
the VR users can be enhanced by aiding the spatial knowledge through contextual cues [12].
These contextualized VR games can improve behavioral responses, learning outcomes
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and evacuation preparedness of users [13]. However, the role of contextual cues such as
wayfinding in virtual reality environments (VRE) and its influences on user-perceived
quality of experience is yet to be thoroughly researched [14].

In the current study, we designed an experiment to investigate the impact of wayfind-
ing cues on users’ behavioral and physiological responses using Oculus Rift S head-
mounted display (HMD). Thirty-nine participants were presented with VRE of a flooded
city and asked to navigate the city to find a safe zone in a timed scenario. Participants
were divided into three groups, i.e., a controlled group without any wayfinding cues,
an experimental group with static wayfinding cues (directions only), and an experimental
group with dynamic wayfinding cues i.e., assistive lights along with directions. It was
hypothesized that wayfinding cues would significantly impact players’ physiological and
psychological behavior in VRE. Our findings suggest that integrating contextual wayfind-
ing cues in VR training simulations can result in effective VR design and enhance users
perceived experiences of these applications.

The research article presents a detailed review of existing studies on VRE wayfinding
in the next section. Section 3 explains the materials and methods used in the experimental
design, followed by a detailed result section. Section 4 discusses the research findings,
followed by a conclusion.

2. Related Work
2.1. Virtual Reality Serious Games for Natural Disasters

Floods are one of the most recurring and damaging natural disasters, universally,
with adverse aftermaths and economic losses affecting 1.6 billion people worldwide [15].
In the last 20 years, the Center for Research on the Epidemiology of Disasters (CRED) emer-
gency events’ database recorded 7348 natural disasters, claiming approximately 1.2 million
lives. The majority of these natural disasters were floods and storms, with an average of
44% and 28%, respectively. Numerous hazardous flooding events in Kyushu, Nepal, Indian,
and most recent ones in Uttarakhand have repeatedly reminded humans of this imminent
threat. Training people for disaster preparedness or emergency evacuation during floods
can reduce the risk of injury and provide a better likelihood of survival.

In contrast to traditional disaster preparedness methods such as drills or seminars,
extended reality (XR) technologies such as VR have gained prominence for training people
at low cost through serious games (SGs) [16,17]. SGs are defined as “digital games that
are used for purposes other than entertainment [18]” VR SGs allow its users to experience
digitally simulated scenarios that are impossible to be experienced in the real world due to
cost, time, and safety.

These VR SGs engage users by providing life-like scenarios, where they can interact
with in-game objects, solve challenges, and become familiar with disaster preparedness
methods [19] thus developing life-saving skills. Various VR SGs studies have been per-
formed on the use of VR as a procedural training tool and provide empirical evidence
on how VR training skills can be transferred to real-world [20]. Researchers [21] have
investigated the impact of game-based learning for flood risk management and researched
how training-based SGs can support lifelong learning in people.

Several research studies have focused on understanding the underlying concepts and
principles of disaster preparedness in VREs. A VR framework for disaster awareness and
emergency response training was proposed by Yusuf Sermet et al. [19] which presented a
realistic VR gaming environment to increase public awareness, train and evaluate respon-
dents in emergencies using simulated real-time flooding scenarios. Research has shown
that participants experiencing a VR simulation of flooding showed increased motivation to
evacuate, seek information, and preference to buy flood insurance compared to the other
disaster preparedness methods tested [22].

VR simulates a realistic environment in which a person can navigate and interact
freely in the virtual environment. When VR is used to create training simulations such
as flood evacuation, complex scenarios are formed inside the VRE. In order to guide the
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VR users inside these complex representations, effective design strategies incorporating
navigational aids such as wayfinding cues are required [23].

2.2. Wayfinding in Virtual Reality Training Simulations

Wayfinding is defined as “the ways in which people orient themselves in physical
space and navigate from origin to destination [24]”. When people try to find their way
to a destination in a foreign environment, they look for external information that will
complement their orientation and navigation processes in this unfamiliar environment.
When VR training simulations are designed for flood evacuation, it is difficult for VR users
to navigate inside the unfamiliar immersive environment.

Researches have shown that when people evacuate flooded areas, their wayfinding
capabilities are crucial in determining the efficiency of their evacuation and hence their
chances of survival. Therefore, VR environments should be designed to ensure the transfer
of flood evacuation knowledge and skills gained in the VRE to the real world by incor-
porating wayfinding cues [24]. Jerald [25] used the term signifier to describe wayfinding
cues by stating that “any perceivable indicator (a signal) that communicates appropriate
purpose, structure, operation, and behavior of an object to a user”.

Wayfinding has been used extensively in evacuation and navigation experiments,
since it creates affordances by prompting human actions [26,27]. Various studies have
investigated design, and implementation of navigation processes such as wayfinding cues
inside the VRE for training and evacuation applications [28]. Researchers have suggested
that VR game designers need to incorporate wayfinding processes in the VR to aid users in
navigating the environment. A recent study proposed several wayfinding affordances that
need to be incorporated in the VR design to assist users in constructing mental models in
virtual environments [29]. Further studies have shown the use of contextual cues such as
wayfinding installations, signage systems to improve users’ ability to navigate through the
complex VR environments [30].

Various risk mitigation institutes across the globe are adapting VR applications to
train users in hazardous situations that cannot be portrayed through traditional methods.
A recent study proposed two methods to encourage early evacuations during flash floods
by implementing environmental or social cues in VR [31]. Results revealed the effectiveness
of using VR to promote evacuation during natural disasters. Panos Kostakos et al. [32]
used VR wayfinding installations to investigate the effect of wayfinding lights on be-
havioral, physiological, and psychological outcomes in indoor fire evacuation scenarios.
Results showed that wayfinding affordances could be used to reduce cognitive demands,
and wayfinding installations along with visual stimulus can also contribute to improved
brain wiring connectivity during the game.

In the past, wayfinding studies have been conducted in indoor environments [31,33]
and mostly for fire [27,34,35], underground rock-related hazards safety training [33] and
earthquake evacuations [10,14]. These researches have [32] suggested that further studies
should be conducted to improve the evaluation process for VR evacuation trainings.

Measuring the impact of wayfinding installations on user behavior and improving
their effectiveness is a very important task [36]. Although VR training simulations are
becoming well accepted because of the cost-effective way of providing training, few studies
have used VR experiments to test flood-related behaviors. Similarly, the validity of user
behaviors in VR SGs is not widely researched [31] and is critical as VR applications are
increasingly being used for training. Furthermore, the methodologies to measure these VR
applications’ emotional impact and influence need to be developed and tested.

We used a mixed-method approach to fully capture the impact of wayfinding cues in
VRE to gain comprehensive understanding of user behaviors inside the VRE. The research
question addressed was: What is the impact of wayfinding cues on users physiological
signals and perceived quality of experience in a VR SG for flood evacuation training?
Based on the research question, we hypothesized that implementing wayfinding cues in
the VR-SG will result in a lower heart rate (HR) and enhanced user perceived quality of
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experience. Materials and methods used to investigate the emotional impact and influence
of wayfinding cues in VR SG is presented in the next section.

2.3. Materials
2.3.1. Participants

Thirty-nine participants (13 females and 26 males; aged 18–54) volunteered to take
part in the study. 20.51% of the participants were between the age group of 18–51. Most
of the participants (61.53%) were aged between 25 and 34 years old and rest were older
than 34. A total of 69.23% of the participants had intermedia computer skills and 23.08% of
participants had expert level computer skills. 69.23% of participants had not experienced
VR before, however 30.77% percent of the participants had experienced it once or twice
before taking part in the study. All the participants were given detailed instructions and
thorough demonstration despite their computer and VR skills. Participants with visual
disturbances such as colour blindness (color vision deficiency) were not included in the
study however, since Rift HMD allows for a comfortable viewing with glasses participants
with farsightedness, near-slightness were included as mentioned in Rec. ITU-T G.1035
(05/2020) [37].

2.3.2. Equipment

In this study, Oculus Rift S was used for the VR gameplay. The high level of accuracy
and precision (display resolution of 1280 × 1440 pixels per eye) combined with the low
cost of the Oculus Rift S HMD and its use of inside-out tracking made it a viable option to
be used in this experiment [38]. Five cameras inside the Oculus VR headset enable inside
out tracking by tracking and translating the objects to 3D position in real time [39]. Studies
show that Oculus Rift S is a powerful tool for research and provides a greater degree of
immersivity and reduces motion sickness [40]. The experiment was run on an Asus ROG
STRIX gaming laptop with Intel(R) Core(TM) i7-8750H processor with NVIDIA GeForce
GTX 1070 graphics card. Figure 1 shows the equipment used in the study.

Figure 1. Figure illustrating the equipment used in the experiment: (A) Oculus Rift S head-mounted
display (HMD) (B) Gaming laptop with GeForce GTX 1070 graphics card to run the virtual reality
(VR) application (C) Fitbit Sense for measuring the HR (D) Instructions to perform the tasks and
detailed manual to use the VR HMD.
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2.3.3. Virtual Reality Environment

The VR training simulation used in this project was developed under a Research
project titled “World of Wild Waters” (https://www.woww.no/, accessed on 19 July 2021).
This disaster training and emergency preparedness project is part of NTNU’s digital
transformation initiative to reduce the casualties and effects of the disaster. The VRE serves
as an assessment tool to measure the impact of wayfinding cues on users’ perceived quality
of experience in a serious game setting.

Unity 3D (https://unity.com/, accessed on 19 July 2021). was used to design, develop
and render the virtual reality environment using several open-source libraries as shown
in Figure 2. In order to ensure proper content delivery during the VR experience, VRE was
a development based on the recommendations of ITU-T G.1035 [37]. Spatial audio through
Oculus Spatializer Plugin [41] was implemented for a fully immersive audio experience. It
allows pinpointing sounds in the VRE accurately. The VRE was deployed on the Oculus
Rift S using a gaming laptop. The participants were exposed to the custom designed VRE.
Schematics of the VRE experiment are illustrated in Figure 2.

Figure 2. Figure shows the schematics of the experiment. VR SG was developed with unity game
engine and deployed on Oculus Rift S via high performance gaming PC.

Participants were exposed to a VRE with an underground parking lot and several
routes to navigate through the game, as shown in Figure 3. Once the users were inside the
VRE, they found themselves in a flooded parking lot. Participants could hear the sirens
and an emergency flood warning and were asked to evacuate immediately by performing
two tasks i.e.,

1. Exit the building through the emergency exit door (see Figure 4A)
2. After evacuating the building, reach a safe zone (see Figure 4B) through the flooded

city to complete the evacuation process.

In the VRE, the participants could navigate through the city both by physical locomo-
tion and teleportation using HMD controllers. Both types of locomotion were implemented
to enhance immersion and avoid simulator sickness [42]. Locomotion techniques were
used because of their advantage over constant (walking-like) motion for the estimation of
distances, which is an important basic spatial measure in navigation [43].

The level of flooded water was kept lower, so it was easier for the participants to
move through the VRE. Underwater effect with partial submersion and water physics were
implemented to allow the participants to experience as if they are navigating through real
water using Crest water system (https://assetstore.unity.com/packages/tools/particles-
effects/crest-ocean-system-urp-141674, accessed on 19 July 2021). A unity plugin called
Enviro sky manager was used to implement a dynamic weather system for realistic thunder
and rain effects. A time limit of 8 min was given to the participants to complete the tasks.
The timer was visible to the participants at all times, as shown in Figure 5.

https://www.woww.no/
https://unity.com/
https://assetstore.unity.com/packages/tools/particles-effects/crest-ocean-system-urp-141674
https://assetstore.unity.com/packages/tools/particles-effects/crest-ocean-system-urp-141674
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Figure 3. The figure illustrates an aerial view of the VRE. Point A indicates the location of the underground parking lot
(starting point of the VR game), and Point B indicates the safe zone (the endpoint of the VR game). Red markings highlight
the possible navigation routes that could be followed to complete the evacuation task.

Figure 4. (A) Figure illustrates the view of the parking lot in the VRE. Users were asked to exit the parking lot like their first
task. (B) The figure illustrates the safe zone in VRE. Participants were asked to evacuate the flooded city and reach the safe
zone in under 8 minutes to save themselves from the flood.
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Figure 5. Detailed view of the VRE as seen by the participants inside the HMD. A timer was displayed in front of the
participants while they navigated through the city.

Three variations of the VRE were made in order to examine the impact of wayfinding
cues in detail, and only wayfinding cues were varied in the three VREs. These three VRE
demonstrated the three experimental conditions as shown in Table 1.

Table 1. Table presents the three experimental conditions investigated with and without wayfind-
ing cues.

No Condition Variations

1 Control Condition (CC) No wayfinding cues
2 Experimental Condition 1 (EC1) Static wayfinding cues
3 Experimental Condition 2 (EC2) Dynamic wayfinding cues with visual stimulus

There were no wayfinding cues implemented in the VRE for the control condition
(CC). Static wayfinding cues i.e., signage, were implemented in the first experimental con-
dition (EC1) as shown in Figure 6A. In the second experimental condition (EC2), dynamic
wayfinding cues with visual stimulus were implemented as shown in Figure 6B. The design
of wayfinding cues such as flashing LED lights were implemented following evacuation
design guidelines [28,44,45]. We tested the VREs using a between-group design and an
equal number of participants (n = 13). Details of the procedure are given in Section 2.5.
To measure the impact of wayfinding on user perceived experiences, physiological and
psychometric evaluations were recorded, as explained in the next section.

2.4. Evaluation Measures
2.4.1. Physiological Evaluation

Heart-rate (HR) measurements were recorded for all 39 participants throughout the
experiment using the latest Fitbit Sense smartwatch. Fitbit Sense was used to measure the
HR with a multi-path optical heart rate sensor that delivers PurePulse 2.0 (https://www.
fitbit.com/global/us/products/smartwatches/sense, accessed on 19 July 2021) as shown
in Figure 7. It offers continuous heart rate tracking and tracks heart rate variability (HRV),
which varies between each heartbeat. The Fitbit devices have been used in several studies
and shown to produce consistent and reliable results [46,47]. Several studies have reported
the computational precision of HR through a photoplethysmogram (PPG) sensors used in
Fitbit sense [48].

https://www.fitbit.com/global/us/products/smartwatches/sense
https://www.fitbit.com/global/us/products/smartwatches/sense
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Figure 6. (A) Figure shows the directional wayfinding cues used in EC1. Signage system was
implemented throughout the VRE to guide the users to safe zone. (B) Figure shows the wayfinding
cues with visual stimulus used in EC2.

Figure 7. Fitbit HR sensor showing multi-path optical heart rate sensor.

2.4.2. Psychometric Evaluation

A post-test game experience questionnaire (GEQ) was used [49,50] to collect user
perceived experiences after the VR experiment. GEQ is widely used in assessing the game
experience of end users in virtual environments [51] and contain four modules: (1) the
core questionnaire; (2) the social presence module; (3) the post-game module; (4) the
in-game module.

All modules are meant to be administered immediately after the game session has
finished. The in-game experience core module probes the players’ feelings and thoughts
while playing the game and was used in this study. It measures game experience as scores
on seven components i.e., Immersion, Flow, Competence, Positive and Negative Affect,
Tension, and Challenge [49], as shown in Table A1. Details of the results collected from the
modules is presented in the result section.

In addition to the GEQ, we used a pre-study questionnaire to gather demographic
information about participant age, gender, nationality, and education. The questionnaire
also measured sociodemographic information such as familiarity with VR games, com-
puter skills, and familiarity with evacuation drills. The questions categorized in relevant
categories are presented in Appendix A Table A1.

Participants rated their experience independently on a category scale using the Ab-
solute Category Rating (ACR) System as recommended by ITU-T P.910 [52] as shown
in Table 2. Player competence was measured using five questions. Immersion was cap-
tured through 6 questions. The flow was captured by measuring attributes. Tension was
measured using players’ annoyance, irritability, and frustration while playing the game.
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Challenge was measured through constructs like the challenge, time pressure, and effort
required by the player while experiencing the VRE.

Table 2. ACR used in this study.

Absolute Category Rating Scale

1 2 3 4 5

not at all slightly moderately fairly extremely

2.5. Procedure

Interested participants joined a volunteer list by signing up for the experiment. Infor-
mation about their age, gender, educational background, visual disturbances, and availabil-
ity to attend the experiment was collected. Selected participants were informed through
email and, upon confirmation, notified about the venue and time. The experiment was held
at Sense-IT lab at the Department of Electronic Systems, Faculty of Information Technology
and Electrical Engineering, NTNU in Norway.

On the day of the experiment, participants were welcomed in the lab and briefed
about the COVID Standard Operating Procedures (SOPS) they were supposed to follow.
Once comfortable, the participants signed the consent form and were informed about the
scope of the experiment and the content of the VR SG. Participants were asked to wear the
Fitbit sensor, and the baseline HR reading was recorded. Next, they were presented with
written instructions on using the Oculus Rift S and its controllers.

Participants played a short demo VR game to learn to use the Oculus Rift S HMD’s
controllers for locomotion and teleportation inside the VRE. To ensure participants’ safety,
a Guardian Boundary was set up inside the Oculus around the lab’s play area of 4 m × 6 m.
The virtual guardian boundary helped the participants stay inside the designated play area
and appeared inside the VR when the participants crossed the designated area.

After completing the demo, participants were randomly placed into one of the three
experimental conditions(CC, EC1 or EC2). Before starting the task, participants were
briefed about the tasks, both orally and in written form, by the experimenter. They were
shown the map of the game before and during the game . Details of the tasks given to the
participants was as follows:

Flood has taken over your city. You are in an underground parking lot and hear an
emergency announcement that the flood water will rise soon. You have 8 min to evacuate
the parking lot and reach the safe zone. You have two tasks in this experiment.

• Task 1: There are four doors in the parking lot. Find the Fire Exit Door. The door will
open once you get closer and press the trigger button. You will find yourself in the
city streets once you exit the door.

• Task 2: Find the safe zone (water tank building) and climb up to save yourself. Make
sure to climb up on the tank. You will find instructions on how to quit the game once
you reach the top.

Participants put on their HMD and played the VR SG as shown in Figure 8.
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Figure 8. Participant wearing Fitbit HR sensor and Oculus Rift S HMD attached with the high
performance gaming PC during the experiment.

After the participants finished the VR experience, their HR was re-recorded using
the Fitbit. Participants were asked to complete the GEQ. HR device was removed after
the last step. It took approximately forty minutes (or less) for the whole experiment to be
completed. Participants were compensated with a cinema ticket for their time and effort.
Results from the study are presented in the following section.

3. Results
3.1. Physiological Evaluation

Figure 9 demonstrates the time series scatter graph of HR mean values between the
three experimental groups. Preliminary inspection of the graph illustrates higher HR
values (mean = 97.69) in the control group with no wayfinding during the VR experience,
i.e., the section marked with red dotted lines. Participants in the experimental group with
static and dynamic wayfinding exhibited a similar trend, with mean values of 80.5 and
79.8, respectively (Table 3). ANOVA was applied to examine any significant effects in the
three groups, and results showed that the HR for the controlled group with no wayfinding
was significantly higher, p < 0.05 (see Table 4) than the experimental groups.

Figure 9. The graph illustrates HR data (beats per minute) recorded using an advanced HR sensor
during the training and testing phase. The x-axis shows time elapsed in minutes. HR data between
the red checkpoints exhibit the HR during the actual VR experience for the three groups.



Appl. Sci. 2021, 11, 7822 11 of 18

Table 3. Mean scores of HR for the three groups.

Control Condition (n = 13) Experimental Condition 1 (n = 13) Experimental Condition 2 (n = 13)

Means SD Means SD Means SD

Heart Rate 97.69 9.60 80.53 10.134 79.83 7.57

Table 4. Results from one-way Analysis of Variance (ANOVA) for the HR measurements of the
three groups.

Sum of Squares df Mean Square F Sig.

Heart Rate
Between Groups 2660.839 2 1330.419 15.818 0.000
Within Groups 3027.957 36 84.110
Total 5688.796 38

3.2. Psychometric Evaluation

Game experience questionnaire [53] was issued to record the psychometric data in
the three groups (n = 39), i.e., one control group (CC) and two experimental groups (EC1,
EC2) where each group had 13 participants. A one-way analysis of variance (ANOVA)
was performed to compute the effect of wayfinding cues on the users’ perceived quality of
experience using seven metrics [53] (Appendix A Table A1).

Control group with no wayfinding cues exhibited a significant main effect on ratings of
feeling challenged, F(2,36) = 4.907, p = 0.013. Post hoc comparisons using the Tukey HSD test
on feeling challenged indicates that the mean score for the CC (M = 2.5846 SD = 0.51291)
was significantly different from the EC1 condition (M= 1.8769 SD = 0.58045). However,
the EC1 (M = 2.3077 SD = 0.64091) did not significantly differ from CC and EC2 conditions
as shown in Table 5. These results indicate that the control group with no wayfinding
perceived the VRE as challenging compared to the two experimental groups.

The test also revealed a statistically significant difference in mean scores of tension
between at least two groups (F(2,36) = 15.700, p < 0.001). Tukey’s HSD test for multiple
comparisons found that the mean value of tension was significantly different between
CC and EC2 (p < 0.001, 95% C.I. = [0.6490, l.6490]). There was no statistically significant
difference between the experimental groups (p = 1.000). These findings reveal that the
level of tension was higher in the group with no wayfinding cues. However, there was no
difference in the level of tension or annoyance in the two experimental groups with static
and dynamic wayfinding installations.

For positive and negative affect, the significance level of p < 0.05 was observed for
the three groups, and mean scores for positive affect and negative affect in CC were
significantly different from EC2 (see Table 5). Although there was a difference in means
for immersion, flow, and competence, ANOVA did not exhibit significant main effects of
feeling immersed, competent, and inflow during the VRE as shown in Figure 10.

Table 5. Mean scores of GEQ metrics for the three groups.

Control Condition
(n = 13)

Experimental
Condition 1 (n = 13)

Experimental
Condition 2 (n = 13)

Means SD Means SD Means SD

Challenge 2.58 0.51 2.30 0.64 1.87 0.58
Tension 2.10 0.59 0.79 0.73 0.79 0.71
Positive Affect 2.44 0.68 2.78 0.77 3.27 0.46
Negative Affect 1.46 0.49 0.73 057 0.44 0.44
Competence 2.33 1.06 2.21 0.82 2.70 0.50
Immersion 2.66 0.69 2.91 0.72 3.03 0.51
Flow 3.01 0.51 2.70 0.60 2.67 0.75
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Figure 10. Clustered bar mean of GEQ items administered in this study.

4. Discussion

Recent developments in immersive multimedia technologies have allowed VR SGs to
be used in training people for disaster preparedness. The present study was designed to
compare the perceived experiences of participants in an immersive VR training simulation
depicting a stressful flooding scenario by controlling the experimental conditions with
static and dynamic wayfinding cues. Three groups of participants played the same VR
game, with and without wayfinding cues guiding them to the safe zone. We hypothesized
that participants in the experimental group with dynamic wayfinding (assistive lights
and signage) would have a higher perceived experience than those in the control group.
Furthermore, we hypothesized that participants in the control group would exhibit higher
heart rates as compared to the two experimental groups due to a lack of wayfinding cues.
We used Fitbit Sense to perform a physiological evaluation through HR measurements and
a post-test GEQ questionnaire for psychometric evaluation to measure the user-perceived
quality of experience inside the VR game.

4.1. Effects of Wayfinding on Physiological Evaluation

Results from the ANOVA test demonstrates that the HR values were significantly
higher for the control group with no wayfinding while lower for the two experimental
groups with wayfinding cues. These findings suggest that the presence of wayfinding
cues in EC1 and EC2 may have helped the users to create spatial knowledge of the im-
mersive VRE while navigating through the environment, thus lowering their cognitive
workload [30,54]. A related study supports these findings [32] in which the HR of 17 users
in two groups was observed during a navigation task in an underground tunnel. The study
found HR to be significantly higher in the experimental group exposed to directional signs
in the underground tunnel. Physiological measures observed in the present study sug-
gest that implementing wayfinding cues in VR training simulations can positively create
mental models inside users’ brains, thus lowering the cognitive load and improving their
perception of the immersive VR system.

4.2. Effect of Wayfinding on Psychometric Evaluation

Effects on challenge: Challenge was used to measure the impact of wayfinding cues
on the user-perceived experience of VR application used in this study, since the challenge
is a crucial metric to evaluate the gameplay experience [55]. Wayfinding cues were found
to substantially elevate the element of challenge in controlled conditions, as shown in
Table 6. The mean values for the challenge were significantly lower for EC2 with dynamic
wayfinding cues as compared to the other two conditions. Our findings are consistent with
the existing research, which states that players use emotional and cognitive efforts to un-
derstand the disposition of the game and solve the challenges presented to them [56]. Since



Appl. Sci. 2021, 11, 7822 13 of 18

EC2 in this study presented the participants with wayfinding cues in the VR environment,
their cognitive ability to perceive the sense of direction inside the VR was better; hence
they felt less pressured. Similarly, they had to put less effort and perceived the overall
experience to be less challenging as compared to the CC with no wayfinding. For EC1,
the mean values of challenge were between CC and EC2 and can be explained by the fact
that static cues were used in the VR experience and didn’t grasp the participants’ attention
when they were stressful in the VRE.

Table 6. One-Way ANOVA results showing the significance of wayfinding on users perceived behavior.

Sum of Squares df Mean Square F Sig.

Challenge
Between Groups 3.307 2 1.653 4.907 0.013
Within Groups 12.129 36 0.337
Total 15.436 38

Tension
Between Groups 14.821 2 7.410 15.700 0.000
Within Groups 16.991 36 0.472
Total 31.812 38

Positive Affect
Between Groups 4.537 2 2.269 5.286 0.010
Within Groups 15.452 36 0.429
Total 19.990 38

Negative Affect
Between Groups 7.176 2 3.588 13.878 0.000
Within Groups 9.308 36 0.259
Total 16.484 38

Competence
Between Groups 1.707 2 0.853 1.233 0.303
Within Groups 24.917 36 0.692
Total 26.624 38

Immersion
Between Groups 0.927 2 0.464 1.090 0.347
Within Groups 15.321 36 0.426
Total 16.248 38

Flow
Between Groups 0.911 2 0.455 1.122 0.337
Within Groups 14.609 36 0.406
Total 15.520 38

Effects on Tension: Feelings of annoyance, irritation, and frustration during the
gameplay can lower the quality of perceived experience in users. VR serious games should
be designed in such a way to lower the feelings of annoyance and tension [57] to improve
the perceived user experience. Our study found that the level of tension was significantly
lower in experimental groups, i.e., EC1 and EC2, compared to the control condition with
no wayfinding. Since the VRE was kept consistent in all groups except for the wayfinding
cues, we can deduce that the participants in these groups perceived the VR simulation as
less annoying to navigate due to wayfinding. The results are supported via a study by
Lin et al. [34]. Other research studies [34,58] have demonstrated similar results of lower
tension and annoyance in spatially oriented VR applications in various domains.

Effects on Positive and negative Affects: Wayfinding cues were found to considerably
elevate the positive affects and lessen the negative affects on the users in the VR environ-
ment [34]. We measured the positive affects through their level of enjoyment, contentment,
fun, and happiness. Positive affects were highest (mean = 3.27), and negative affects were
lowest (mean = 0.44) in the EC2 with dynamic wayfinding as compared to the other two
groups (see Table 5).

Effects on Competence: Effects of wayfinding on competence were also observed.
Although there were some differences in the mean values, our results did not show any
significant effects of these three metrics on the participant’s perceived experience in VR.
All the participants felt successful and competent while playing the VR simulation and
reached their target.

Effects on Immersion: Various studies have shown that immersion inside a VR envi-
ronment can be increased by increasing spatial affordances [59,60]. However, our study
showed no significant differences in immersion in all the groups, although the mean value
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of immersion was slightly higher in the EC2 condition. These results are in alliance with a
study that explores the effects of wayfinding affordances in underground facilities during
a fire emergency [32].

Effects on Flow: The flow inside a game is attributed to participants’ concentration
in the game, how they forget about the outer world and things around them, and the
loose notion of time. We observed no significant differences in the three groups for flow
measures. However, the mean value of flow in CC (Mean = 3.01, see Table 5) was higher
than the experimental conditions. This abnormal increase in the flow in the no-wayfinding
control condition can be explained by the fact that there was no guidance inside the VR.
Hence, participants were more concentrated on the end goal. They lost the notion of time
and surroundings since they were in a stressful situation (timer, sirens, and announcements
in the background) and wanted to exit immediately.

The effects of immersion and flow did not show any significant differences in the
study on VR training in stressful situations and align with our results [61]. This can be
explained by the fact that VRE was kept consistent for all the groups and only wayfinding
cues were varied [62].

This particular study investigates user behaviors in both indoor and outdoor VR
settings (Task 1 and Task 2 in our study; see figure for more details Figure 4). We can
conclude that carefully installed cues in VR training applications can help reduce tension
in users, thus improving their overall perceived experience. The present study advances
the understanding of wayfinding on users’ psychological and psychometric behaviors
and provides essential design implications. Further research could be done to explore
the impact of wayfinding on simulator sickness in VR and how it correlates with the
physiological and psychometric metrics. The findings can be used to support building
better VR SGs for evacuation training.

5. Conclusions

The present study aimed to investigate the impact of wayfinding cues in a VR SG for
disaster preparedness. Three groups of participants were asked to perform two tasks while
navigating through a flooded VR simulation. Physiological and psychometric evaluation
was performed to observe the effects of wayfinding cues on their HR and perceived VR
experience. We found statistically significant differences in the HR of participants in the
two experimental conditions with wayfinding cues (EC1 and EC2) compared to controlled
conditions with no wayfinding cues (CC). However, there was no significant difference
between EC1 and EC2. In terms of user-perceived quality of experience, we found that
participants found it more challenging and tension-inducing to navigate through a flood
simulation without wayfinding cues. The present study suggests that contextual cues are
an essential element in VR SG design, and carefully introducing these contextual cues
can increase the affordance of end-users and thus their overall perceived experience. This
may improve the users’ performance and learning outcomes from VR training simulations.
Future studies may attempt to use advance physiological evaluations, such as electrodermal
activity, and in depth analysis to better understand the relationship between immersive
environments, training, and affordances.
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Appendix A. GEQ Questionnaire

Table A1. Post-Test GEQ Questionnaire.

Questions

Q2 I felt skilful

Competence
Q10 I felt competent

Q15 I was good at it

Q17 I felt successful

Q21 I was fast at reaching the game’s targets

Q3 I was interested in the game’s story

Immersion

Q12 It was aesthetically pleasing

Q18 I felt imaginative

Q19 I felt that I could explore things

Q27 I found it impressive

Q30 It felt like a rich experience

Q5 I was fully occupied with the game

Q13 I forgot everything around me

https://github.com/shafaq41/VR_wayfinding
https://github.com/shafaq41/VR_wayfinding
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Table A1. Cont.

Questions

Flow Q25 I lost track of time

Q28 I was deeply concentrated in the game

Q31 I lost connection with the outside world

Tension
Q22 I felt annoyed

Q24 I felt irritable

Q29 I felt frustrated

Q11 I thought it was hard

Challenge
Q23 I felt pressured

Q26 I felt challenged

Q32 I felt time pressure

Q33 I had to put a lot of effort into it

Positive Affects

Q1 I felt content

Q4 I thought it was fun

Q6 I felt happy

Q14 I felt good

Q20 I enjoyed it

Negative Affects

Q7 It gave me a bad mood

Q8 I thought about other things

Q9 I found it tiresome

Q16 I felt bored
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