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Abstract

Organizations deploying Machine Learning (ML) models at scale report numer-
ous benefits of having centrally defined and reusable ML features when building
new models, such as reduced Feature Engineering (FE) efforts and consistency
in features in both training and operations. Federated Learning (FL) is a recent
and actively researched area of distributed ML that aims to address data privacy
issues in ML model training. While FL is still in a very early phase of adoption, it
is reasonable to assume that it will be increasingly used as the number of Inter-
net of Things (IoT) and other edge devices grow. Extrapolating from the reported
benefits of feature reuse in centralized ML contexts, one may expect that feature
reuse can achieve similar benefits for FL applications. However, current systems
addressing feature reuse, Feature Stores (FSs), assume that data is centrally ac-
cessible, and thus they do not satisfy the constraints of FL. To address this limita-
tion, the thesis poses the RQ: How can we reuse ML features across different
applications in an FL environment to increase resource efficiency on client
devices?

The RQ is answered by following a Design Science Research (DSR) method-
ology to design and implement a system for feature reuse in FL, the Federated
Feature Store (FFS). The FFS is evaluated by first applying it to two different FL
tasks, then measuring resource consumption during FE and feature ingestion for
varying levels of feature reuse. The evaluation demonstrates a linear decrease in
resource usage for increasing levels of feature reuse during FE and feature inges-
tion. The decreased resource usage implies reduced energy consumption, which
is not only crucial for battery–powered mobile devices but also provides economic
and environmental benefits.

The thesis results shed light on opportunities for further research into feature
reuse in vertical FL, security and access-control measures for feature reuse, and
design improvements to improve performance in cross–silo FL applications. Re-
searchers are encouraged to study not only the engineering and technical benefits
of ML feature reuse but also examine the environmental and economic impacts.
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Sammendrag

Organisasjoner som deployerer maskinlæringsmodeller (ML-modeller) i stor skala
melder om en rekke fordeler ved å ha sentralt definerte og gjenbrukbare ML fea-
tures når nye modeller skal bygges, slik som ved redusert dataprosesseringsinnsats
og konsekvente features både ved trening og bruk av modeller. Federated Learn-
ing (FL) er en ny teknikk innen distribuert ML som søker å håndtere utfordringer
rundt privat og distribuert data ved trening av ML-modeller. Til tross for at FL
fortsatt er i et veldig tidlig stadium, er det rimelig å forvente at det vil bli brukt
i økende grad i takt med veksten av Internet of Things (IoT) og andre edge-
enheter. Med utgangspunkt i de rapporterte fordelene ved gjenbruk av features
i sentralisert ML, kan en forvente at feature-gjenbruk kan gi lignende fordeler
for FL-anvendelser. Men, nåværende løsninger for å gjenbruke features, Feature
Stores (FSs), antar at all data er sentralt aksesserbar, og de kan derfor ikke opp-
fylle kravene FL stiller. For å addressere denne begrensningen i eksisterende løs-
ninger, vil denne oppgaven forsøke å besvare problemstillingen: Hvordan kan
vi gjenbruke ML-features mellom ulike anvendelser av FL for å effektivisere
ressursbruken på klientenheter?

Problemstillingen besvares ved å følge en Design Science Research (DSR)-
metodologi for å designe og implementere et system for gjenbruk av features i
FL, kalt Federated Feature Store (FFS). Systemet evalueres ved først å anvende
det på to ulike FL-oppgaver, for deretter å måle ressursbruken under prosesser-
ing og inntak av data ved ulike gjenbruksnivåer av features. Evalueringen viser
at ressursbruken i forbindelse med dataprosessering og -inntak avtar lineært med
økende gjenbruksnivå. Den reduserte ressursbruken antyder et lavere energifor-
bruk, som ikke bare er viktig for eksempelvis batteridrevne mobile enheter, men
også har økonomiske og miljømessige gevinster.

Resultatene fra oppgaven belyser muligheter for videre forskning på gjenbruk
av features i Vertical FL (VFL), tiltak for sikkerhet og tilgangskontroll av features,
og designforbedringer for å øke ytelsen i kryss-silo anvendelser av FL. Forskere
oppfordres også til å ikke bare undersøke tekniske og ingeniørmessige fordeler ved
gjenbruk av features, men også å se på miljømessige og økonomiske virkninger.
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Chapter 1

Introduction

1.1 Background and Motivation

Federated Learning (FL) is a recent technique for achieving privacy-preserving
Machine Learning (ML) on distributed data [1]. ML on centralized data has al-
ready become a widespread commercial technology in the past decade [2]. En-
abling collaborative model training on distributed private data, such as that gen-
erated by Internet of Things (IoT) devices, could unlock many opportunities for
value creation [3–5].

However, deploying ML applications at scale has proved to be challenging
from a Software Engineering (SE) standpoint [6, 7]. Much of the complexity arises
because of the vast software infrastructure required for building and maintaining
ML systems, particularly for handling data [8].

Organizations deploying Machine Learning (ML) models at scale, such as Uber
[9], Facebook [10], and Microsoft [11], report numerous benefits of having cen-
trally defined and reusable ML features when building new models. Some benefits
include reduced Feature Engineering (FE) efforts and consistency in features in
both training and operations.

Currently, the lack of solutions enabling feature reuse for FL is not a prob-
lem. FL is still an emerging technology and has rarely been applied in large-scale
real-world use cases, such as in the Google Gboard [12]. However, it should be ex-
pected that FL will face similar (or more significant) data challenges as centralized
ML when deploying many different applications simultaneously.

While the large-scale use cases of FL have only been realized to a minimal
degree, there is reason to expect that such use cases will become more prevalent.
Judging by the large amount of work on FL, the growth of IoT adoption and edge
computing, and the increasing usage of ML, more widespread large-scale deploy-
ments should be expected as FL matures.

However, no work has been done on feature reuse for FL. For the centralized
ML case, feature reuse is addressed with Feature Stores (FSs), such as Hopsworks
[13] or Feast [14]. Existing FSs cannot be used with FL for multiple reasons:

1



2 Kolltveit: Feature Reuse in Federated Learning

• Current FSs are heavily focused on cloud deployment.
• Current FSs are built for centrally accessible data, contrary to the funda-

mental principles of FL.
• An FS for FL requires that feature data is stored locally on the clients while

adhering to the centralized feature definitions.

To the author’s knowledge, there has been no research to date into reusing ML
features in an FL environment. As a result, the current solution is potentially re-
dundantly computing and storing features across different FL applications. Each
project would have to deploy and manage a storage mechanism for its data, re-
sulting in resource inefficiencies from redundant computation (the same feature
is computed multiple times) and storage (the same feature is stored in multiple
locations). Further, it could be challenging to reuse old features when creating
new models, as feature computation code may not be compatible and may be en-
tangled with other pipeline parts or poorly documented. Lastly, it would also be
challenging to discover reusable features created by other teams in the organiza-
tion.

1.2 Research Question and Methodology

Given the current lack of solutions for reusing ML features in FL, the RQ of this
thesis is: How can we reuse ML features across different applications in an FL
environment to increase resource efficiency on client devices? To answer the
RQ, a Design Science Research (DSR) approach is used to design and implement
a proof of concept for a system that enables feature reuse in an FL environment.
The system is evaluated with three experiments.

The first two experiments evaluate the system’s compatibility with FL. Each
experiment trains two identical models in parallel with feature reuse levels rang-
ing from 0%–60%. The first experiment is a multivariate regression problem on
the Superconductivity [15, 16] dataset, while the second experiment is a binary
classification problem on the Adult [15] dataset.

The third experiment evaluates the impact of feature reuse on client resource
usage during FE and data ingestion. At feature reuse levels ranging from 0%–
60%, client CPU usage is measured during processing and ingestion of the Adult,
Superconductivity, and Wisconsin Breast Cancer [15, 17] datasets, after which disk
usage is measured.

The evaluation shows that the system design is compatible with FL and can
be used with many different levels of feature reuse. The evaluation also demon-
strated a marked decrease in client resource consumption from data processing
and ingestion with increasing feature reuse levels.
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1.3 Contributions

The main contribution of the thesis is a novel architecture and design of a sys-
tem for feature reuse in a general FL environment, achieved by extending the FS
concept. Compared to related work on feature reuse, this thesis addresses the chal-
lenge of reusing centrally defined features on distributed clients with private data.
The evaluation demonstrates that increasing reuse of features decreases CPU and
disk usage, which has numerous technical, economic, and environmental benefits.

1.4 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 provides background in-
formation on FL and challenges in SE for ML. Chapter 3 reviews previous work on
reusing ML features. Chapter 4 outlines the DSR methodology followed. Chapter 5
presents the resulting system design and experimental results. Chapter 6 discusses
how the presented design compares to the related work and its impact on industry
and academia and addresses the limitations of the thesis. Finally, Chapter 7 sum-
marizes the thesis highlights and proposes some possible directions for further
work on the design.





Chapter 2

Background

This chapter will provide some background on SE for ML, FL, and FSs.

2.1 Federated Learning

There are growing concerns about the privacy of data and how well the individ-
ual’s sensitive information is preserved throughout the model training process, so
companies have to consider privacy-aware approaches [7], as privacy is a signifi-
cant challenge in ML systems [18].

Mobile devices collect a lot of personal information about its user that could
be used to train ML models to provide personalization, for example, with appli-
cations such as word prediction when typing. However, training an ML model on
each device individually currently appears infeasible due to inherent constraints
of mobile devices, such as limited computational resources and battery capacity.
Training a fully-fledged word-prediction model would likely degrade the user ex-
perience more than personalization would improve it. However, training models
in the cloud with personal data from mobile devices also appears problematic.
From a privacy perspective, uploading personal data to a central server for train-
ing puts the user at risk. From a technical perspective, uploading training data
could be challenging because of network constraints or because the sheer volume
of incoming data to the cloud would be too much for the receiving server.

First introduced by McMahan et al. [1], FL is a proposed solution to the prob-
lems presented above. The technique, as originally presented, assumes a setting
with many devices and works as follows. A Central Server (CS) coordinates the
model training and starts by broadcasting some initial global model to all par-
ticipants, the Federated Learning Clients (FLCs). The CS selects some fixed-size
random subset of the FLCs for training, which then proceed to train their local
model copies on a small number of training examples. The FLCs then send their
model updates to the CS, where they are aggregated and applied to the global
model. The updated global model is distributed to the FLCs, concluding a single
round of training. Many rounds of training may be performed before a model is
ready.

5



6 Kolltveit: Feature Reuse in Federated Learning

Table 2.1: Some characteristics of different types of Federated Learning (FL)

FL type Characteristics

HFL Clients have different samples with identical features
VFL Clients have the same samples with different features
FTL Clients may have both different samples and different features
Cross-device Many devices which may be unreliable, may have only low

number of samples per clients
Cross-silo Few devices, more capable client hardware

The above description is a high-level overview of the FL process as presented
by McMahan et al. [1]. Kairouz et al. [19] describes FL in more general terms
as a collaborative ML setting setting where a CS coordinates multiple clients in
achieving a learning objective while keeping their data local and private.

FL can be divided into categories based on multiple characteristics. One way
to categorize FL is based on how data is partitioned among FLCs [20]. In Hori-
zontal FL (HFL) or sample-based FL, the data is said to be horizontally partitioned,
meaning that local data across FLCs share the same set of features but represent
different data samples. When the data partitioning is vertical or feature-based,
where data across FLCs have different features, it is called VFL. In vertical data
partitioning, a single data sample with all its features is typically distributed be-
tween FLCs, with some common sample ID to align samples during a training
round. The participants must perform what is known as encrypted entity align-
ment or private set intersection to coordinate which samples should be trained on
for a given training round [21]. The third category of FL on this axis is Federated
Transfer Learning (FTL). In this case, the data can be interpreted as horizontally
and vertically partitioned, meaning that a client may have features or samples
others do not have.

A second categorization is based on the characteristics of the FLCs. Kairouz
et al. [19] makes the distinction between cross-device and cross-silo FL. The FL
process, as described by McMahan et al. [1], illustrates a case of cross-device FL,
where the FLCs are highly numerous and may be unreliable. In this case, com-
munications cost is a big challenge, which may even become a bottleneck during
training due to high-dimensionality model updates, communications bandwidth
limitations and unreliable networks [22]. On the other hand, cross-silo FL is the
case of having a relatively small number of reliable FLCs, typically representing
collaborating organizations or geo-distributed datacenters.

While there is no lack of proposed application domains for FL, such as mobile
edge computing [22], IoT [4], smart retail [20], urban computing [23], [20, 22],
there are fewer reports of real-world applications. Some highlights include the
next-word prediction model in the Gboard [12], outcome prediction for COVID-
19 patients [3], browser history suggestion ranking [24], and content recommen-
dation [25].
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2.2 Data and Software Engineering Challenges for Ma-
chine Learning

Developing ML systems has become relatively easy and cheap while maintaining
them over time is difficult and expensive [8]. ML systems are inherently data-
dependent, causing many SE challenges in addition to the existing code challenges
found in traditional software systems. Data-related challenges are some of the
most frequently cited challenges of ML systems in the literature [6, 26, 27] and
arise because data is inherently more challenging and complex to deal with than
code, in terms of discovery, collection, access, management, and versioning [8,
11].

Typically, raw input data cannot be fed directly to ML models but has to
be cleaned, processed, labeled, and transformed, which is laborious and time-
consuming [18]. Data integration, the process of joining data from multiple sources
to create datasets, increases the difficulty even further, as different sources may
use different semantics, conventions, and schemas [6, 7], which may even change
over time without the data consumers’ knowledge [8, 28].

Data consistency across model training and inference is another potentially
challenging issue. Suppose data transformations are implemented separately for
use in training and inference. In that case, any differences may lead to incorrect
behavior [29], but applying the same data transformations for training and infer-
ence data can impose significant maintenance effort when done manually [18].
Ideally, the same data processing implementation should be used during training
and serving [30].

Data needs to be versioned to facilitate model provenance and reproducibil-
ity and is also essential for system maintenance [6]. Managing existing data has
proven to be a difficult part of ML system maintenance [26]. Configuring and ver-
sioning data is essential for maintenance, and includes versioning of both data
and metadata [6].

Discovering data can be a significant challenge in larger organizations [7],
which may have several negative consequences. Knowing what data is available
is essential for understanding what potential ML solutions can achieve. Undiscov-
ered feature data could lead to redundant cleaning, Feature Engineering (FE), and
computation, which increases the overall time spent on a modeling problem [31].

Data dependencies cost more than code dependencies for multiple reasons.
The data dependencies may be unstable, meaning that the data’s shape, statistical
properties, or semantics may change over time without the consumers’ knowledge
[8, 28]. Data scientists often exert much manual effort over time to maintain data
sources for multiple deployed models [32]. Data pipelines that are created ad-
hoc, as is typical in exploratory phases of a project, increase in complexity over
time, making feature reuse across pipelines complex [29]. For these reasons, data
pipelines are quite costly to build and manage [30]. It stands to reason, then,
that being able to reuse already engineered features by accessing them from a
centralized location would be a significant advantage at a certain scale.
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2.3 Feature Reuse and Feature Stores

An organization deploying many models may experience significant overlap in
the features consumed by different models [9]. However, data scientists and ML
engineers often recreate the same features for different models, resulting in du-
plicate engineering efforts, superfluous feature computations, and a higher total
cost of maintenance [31]. Sharing and reusing features would reduce the redun-
dant effort in creating the same feature multiple times across different teams and
could provide significant value in organizations with many models and features,
such as Uber [30] and Microsoft [11]. Patel [31] names this the democratization
of ML features, i.e., making features available, discoverable and reusable across
an organization.

The FS concept is a proposed solution to many of the challenges mentioned
in Section 2.2, such as discovery, access, management, and versioning, and—
pertinent to this thesis—it also addresses feature reuse. The idea was first intro-
duced by Uber [9, 28], and later adopted by other large organizations like Face-
book [10], Doordash [33], Airbnb1, Spotify2, and LinkedIn3, but has not been
studied to any great extent in the academic literature. An FS is a software compo-
nent that centrally stores, manages, versions, and serves features for use during
both ML model training and inference in an organization [28, 34]. It can signifi-
cantly reduce both the model building time and the time and processing required
to retrieve and compute features [34].

2.4 Green Information Technology

Computers and other Information Technology (IT) infrastructure have a signif-
icant environmental impact throughout their lifecycles [35]. From production,
which consumes both electricity and raw materials and generates hazardous waste;
to use, which consumes much electricity; and finally to disposal, which often
means polluting and contaminating the environment with electronic equipment.
Green IT is the study and practice of environmentally sound IT throughout the
whole lifecycle of IT equipment, minimizing negative environmental impact. One
area of green IT is energy–efficient computing, which can be achieved to a consid-
erable extent through improved software design [36]. In the world of ML, feature
reuse appears to be an opportunity for eliminating computational waste through
software design.

In addition to ethical reasons, other incentives for businesses to move toward
green IT can also be found. Environmental concern is an essential part of the
financial Environmental, Social, and Governance (ESG) criteria, a set of invest-
ment criteria for sustainable investment practices. Studies suggest that a com-
pany’s focus on ESG factors positively affects its corporate financial performance

1https://databricks.com/session/zipline-airbnbs-machine-learning-data-management-platform
2https://engineering.atspotify.com/2019/12/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow/
3https://linkedin.github.io/feathr/

https://databricks.com/session/zipline-airbnbs-machine-learning-data-management-platform
https://engineering.atspotify.com/2019/12/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow/
https://linkedin.github.io/feathr/
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[37]. Eliminating the waste of hardware and energy also reduces capital and oper-
ating expenditure. Further, reputation, customer demands and expectations, and
regulation and legislation have been identified as key drivers for corporate sus-
tainability [38]. Thus, businesses’ adoption of green IT can be motivated not only
from an environmental perspective but also from legal, economic, and publicity
perspectives.





Chapter 3

Related Work

This chapter will discuss the related work on reusing ML features. While many
solutions for feature reuse exist1, they are all based on centralized data and are
limited in their differentiation. Hence, only a few examples will be discussed in
detail.

3.1 Michelangelo Feature Store

Li et al. [9] provide the first published description of an FS as part of the Michelan-
gelo system, the internal ML platform at Uber. It was found that enabling feature
sharing across teams and projects was highly valuable, as many modeling prob-
lems required similar features [30]. The system is designed to be used at a large
scale, with hundreds of models being constantly retrained and redeployed. The
platform combines feature computation and feature storage to ensure that all fea-
tures are computed by the same code path.

The authors of [9] identify some distinct challenges for batch usage (for model
training and batch predictions) and real-time usage (for real-time predictions),
leading to their choice of a dual-database architecture, as seen in Figure 3.1. One
of the issues is the difference in performance characteristics required for train-
ing/batch prediction versus real-time prediction. Model training and batch pre-
diction require efficient bulk access, while real-time prediction serving requires
low-latency access to individual records. Another issue is that query patterns are
different for training or batch prediction and real-time prediction. The variability
in usage characteristics leads to having a database with performant bulk access,
called the offline store, storing historical features, and a database with low-latency
point access called the online store, which stores real-time features. Historical
features from the offline store are imported to the online store after each fea-
ture computation job, letting models serving real-time requests access historical
features with low latency. Features are computed differently depending on their
requirements for recency: Near real-time features are at most 5 minutes old and

1https://www.featurestore.org/ lists 27 existing FSs as of writing this.

11
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Figure 3.1: Michelangelo platform architecture [30].

are computed from streaming data sources, while historical features are based on
data from a longer time span and are computed in batch jobs.

Feature Groups (FGs) are the atomic unit for storage, and consist of related
features that are convenient to compute and access together, optimizing storage
and access patterns. Each FG is a table with individual features as columns. An
FG is defined by a YAML file with metadata and source files for use during com-
putation, all of which are version-controlled. The metadata from the YAML file is
published in a feature directory, which is a browsable registry of all available FGs.
Deployed features should not have their semantics changed, and feature depre-
cation requires notifying all existing users, which are known, as feature usage is
logged.

Consuming features from the FS is done by simply referencing the canoni-
cal feature name in the model configuration, and the Michelangelo platform takes
care of joining the correct data for training, batch prediction and online predic-
tions [30]. As features from the FS may not be in the exact format required for
a particular model, a Domain-Specific Language (DSL) was developed to select,
transform and combine features as they are sent to the model. The DSL expres-
sions form part of the model configuration, such that it is versioned together with
the model and the same transformations are applied during both training and
prediction.

3.2 Hopsworks

Hopsworks [13] is an open-source, horizontally scalable platform for building
end-to-end ML pipelines [29] [39]. It features a collaborative environment for
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Figure 3.2: Hopsworks architecture. Taken from https://docs.hopsworks.ai/.

developing and deploying ML models to production and supports role-based ac-
cess controls. Models can be served, managed, and monitored in production with
Hopsworks. A high-level architecture diagram can be found in Figure 3.2.

An important component of Hopsworks is the FS, which computes, stores,
and serves engineered features for use during both training and inference and
thus acts as a central management component for all feature data in an organi-
zation. It supports versioning, documentation, access control, and time travel for
features, which allows looking up the value of a feature at a specific time [40]
[41]. Similar to Li et al. [9], the FS is based on an offline store for training and
batch use cases and an online store for real-time features used during inference.
Like Michelangelo, it also is centered around the concept of FGs, the logical group-
ings of features that often originate from the same data source. FGs can be created
by specifying some metadata and inserting a Spark or Pandas dataframe.

Feature reuse is facilitated with the Hopsworks query constructor, which pro-
vides a Pandas2-like fluent Application Programming Interface (API)3 for select-
ing, joining, and filtering features and FGs. The option to specify queries as raw
SQL is also provided. A dataset can be created for training by materializing the
created query, with the option to specify dataset split sizes (training, testing, val-
idation). Datasets can be exported to external storage for use on other platforms.

An FG can be constructed from external data and existing features in the FS,
and a new feature based entirely on reused features from the FS is called a derived
feature.

2https://pandas.pydata.org/
3https://www.martinfowler.com/bliki/FluentInterface.html

https://docs.hopsworks.ai/
https://pandas.pydata.org/
https://www.martinfowler.com/bliki/FluentInterface.html
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Figure 3.3: Feast architecture. Taken from https://docs.feast.dev/
getting-started/architecture-and-components/overview.

3.3 Feast

Feast4 is an open-source FS for ML, similar to the FS module of Hopsworks. It
provides a platform for centralized feature definitions, storage, and access, for
both training and serving. As seen in Figure 3.3, Feast uses a similar dual-database
architecture as Michelangelo and Hopsworks [14].

The Feast Feature Store is configured declaratively as code in a repository,
consisting of a YAML file for configuring infrastructure and Python files with fea-
ture definitions. All feature definitions and related metadata are cataloged in the
feature registry component, making features searchable and discoverable. Feast
stores all features as historic time-series values in the offline store, allowing the
reproduction of feature values from any point in time. The offline store is used to
build training datasets and load the latest feature values into the online store for
low-latency serving.

Each project in Feast has a set of feature views, an extension of the FG concept
found in Michelangelo and Hopsworks. A feature view references a data source,
such as a database table or an Apache Parquet5 file, containing the raw data of
which features are made. It may relate to one or more entities, which are a collec-
tion of semantically related features, such as a user entity or an order entity, which

4https://feast.dev/
5https://parquet.apache.org/

https://docs.feast.dev/getting-started/architecture-and-components/overview
https://docs.feast.dev/getting-started/architecture-and-components/overview
https://feast.dev/
https://parquet.apache.org/
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are intended to be reused across different feature views. Finally, each feature view
also has one or more feature definition, which is essentially just a schema speci-
fying the name and data type of the feature. Together with the data source, the
feature definitions indicate to Feast where to find a specific feature value. For ex-
ample, a data source may be given as a specific external database table whence
the raw data is retrieved, while the feature is a column of the table.

An ML model consumes features from Feast through a feature service, which
the user creates per model and model version. The feature service is a grouping
of features from one or more feature views and is used when generating training
datasets, batch scoring models, and for real-time inference.

3.4 Federated Feature Engineering

Fang et al. [42] present a framework for automated and privacy-preserving multi-
party FE, the FLFE. The framework addresses the vertical data partitioning variant
of the problem, i.e., clients share samples but have different features, as in the case
of VFL. Using a structure similar to FL, a central parameter server with a deep neu-
ral network classifier determines which feature transformations are useful based
on quantile sketch arrays [43] uploaded by the participants.

While the FLFE addresses FE in an FL context, it does not contribute to feature
reuse. Rather, it represents a complementary component to feature reuse, enhanc-
ing the utility of a feature reuse system by potentially being able to create better
features securely.

3.5 Limitations of Related Work

Current solutions for ML feature reuse are designed for data that is centrally ac-
cessible, which conflicts with FL’s fundamental principle of data being private and
partitioned among client devices. FL raises the following challenges that are not
addressed by existing solutions:

• Data is distributed among participants, while model training is centrally co-
ordinated. While data is local with participants, features should still conform
to the expectations of the centrally defined model.
• Participating devices may be significantly resource-constrained and unreli-

able.
• Clients in cross-device FL cannot be indexed or accessed directly.
• Data volume for an FL application may be locally small, but enormous when

aggregated over participants. Combined with the previous item, it means
that though it is still desirable to reuse features, a dual-database architecture
may be both unnecessary for adequate performance and infeasible due to
the additional overhead of having more than one database.
• Participating devices may be heterogeneous in both software and hardware.
• Communications costs are high and networks are unreliable.
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As a result, none of the related work can be directly applied to achieve feature
reuse for FL. This thesis addresses the first challenge: separating the storage of
feature definitions and feature data. Because of time constraints, the scope is lim-
ited to focusing on the HFL use case.



Chapter 4

Research Design

This chapter will first present the research motivation and RQ of this thesis, fol-
lowed by a description of the methodology used to answer the RQ.

4.1 Problem Identification and Motivation

As described in Section 2.1, FL is still an emerging field of research with few
real-world applications. However, given the rise of edge computing and increased
privacy concerns, it may not be far-fetched to assume that FL will become an im-
portant privacy-preserving ML technique. With large engineering organizations
benefiting from infrastructure for feature reuse in centralized ML, as described in
Section 2.3, the possibility of enabling feature reuse in FL environments should
be explored. Feature reuse could, among other benefits, decrease client resource
consumption, which is an essential step towards greener IT, as described in Sec-
tion 2.4. Related work on reusing ML features is based on using centralized FSs,
which do not fit the requirements of FL, as described in Section 3.5. This limitation
of existing FSs motivates the RQ of this thesis: How can we reuse ML features
across different applications in an FL environment to increase resource effi-
ciency on client devices?

4.2 Research Method

As the thesis relies on an objectivist/positivist worldview and has an IT system as
its instantiated artiface, the Design Science Research Methodology (DSRM) [44]
is used as the fundamental methodological framework. Additionally, the general
design science guidelines of Hevner et al. [45] and evaluation guidelines of Ven-
able et al. [46] are used as supplementary methodology resources.

Peffers et al. [44] describe the DSRM as consisting of the following six stages:

1. Problem identification and motivation
2. Define the objectives for a solution
3. Design and development

17
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Figure 4.1: Overview of the research process

4. Demonstration
5. Evaluation
6. Communication

The six stages are not meant to be followed sequentially, but can be iterated over
in almost any order.

The first activity of the DSRM is problem identification and motivation, where
the research problem and solution value is justified. This step is covered in Sec-
tion 4.1.

The second activity of the DSRM is to define the objectives for a solution based
on the problem definition. Given the problem and RQ stated in Section 4.1, the
main objective for a solution is to demonstrate the essential idea of an FS for FL
and that it can provide benefits in reducing client resource consumption. Due to
the time constraints of the project, the thesis focus is limited to achieving this
objective for structured datasets, but this should not lead to a loss of generality
for other classes of data such as images and text.

In the design and development stage, the artifact is designed and built. The
system design comprises the system structure, components and interactions. The
design and concepts of the artifact will be inspired by the existing work on reusing
ML features described in Chapter 3 and will be adapted to the structural con-
straints of FL described in Section 2.1. Development is the process of instantiating
the design into a working system, the instantiated artiface. It can help researchers
learn about the drawbacks and advantages of the design decisions and concepts
used, which adds to the body of knowledge and can inform later redesigns of the
system [47]. A prototype is often built in systems development research to demon-
strate the feasibility of the design and the usability of the system’s functionalities.
However, developing a system from a prototype to a full product and transfer-
ring it into an organization is necessary to test the system in a real-world setting.
Building the system is also required to conduct empirical studies of the essential
ideas of the system.



Chapter 4: Research Design 19

In the demonstration stage, it should be demonstrated that the instantiated
artiface can solve one or more problem instances, possibly through experiments,
simulations, etc. [44].

The artifact implementation in this thesis is carried out in two iterations of de-
sign and development and demonstration, followed by an evaluation. An overview
of the order of the research process stages can be seen in Figure 4.1.

The first iteration focused on implementing the bare-bones client-server archi-
tecture. Related work was reviewed to understand the design concepts and princi-
ples typically used in FSs. A conceptual data model was then created to represent
the different types of data in the system. Initial versions of database schemas and
APIs were designed, and a first version of the system was developed. The demon-
stration stage was carried out by reusing features in a simulated FL environment
on the Wisconsin Breast Cancer dataset1. This artifact version successfully demon-
strated that features and datasets could be defined on the server, and local data
can be stored and used on the client according to the definitions from the server.

The next iteration focused on enabling feature reuse across different applica-
tions and adapting the system to being run in a simulated FL environment. The
system demonstrated the ability to reuse features in two parallel applications of
FL on the Wisconsin Breast Cancer dataset.

Following the two design-and-development iterations, the system was evalu-
ated as described in the following section.

4.3 Evaluation Design

In the evaluation stage, the contribution of an artifact to solving the stated prob-
lem is observed and measured [44]. The evaluation in this thesis is guided by
[46], which provides the Framework for Evaluation in Design Science (FEDS)
and a four-step method for constructing the specific evaluation process.

Venable et al. [46] present evaluation strategies as paths in a plane, with the
first axis being the functional purpose of the evaluation and the second axis be-
ing the paradigm of the evaluation study (see Figure 4.2). The functional purpose
axis ranges from formative to summative, while the paradigm axis ranges from
artificial to naturalistic. All proposed evaluation strategies start out with more
formative and artificial evaluation episodes and end with a more summative and
naturalistic evaluation episode, but the strategies differ in the number of evalua-
tion episodes and their trajectory along the axes.

4.3.1 Step 1: Explicating Goals

The first step of the FEDS process is to make explicit the goals of evaluation.
Venable et al. [46] list four possibly competing goals of an evaluation project:
Rigor, uncertainty and risk reduction, ethics, and efficiency.

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Figure 4.2: Illustration of the Framework for Evaluation in Design Science
(FEDS) framework with the different proposed evaluation strategies. Taken from
[46].

According to Venable et al. [46], there are two aspects to rigor in DSR: efficacy
and effectiveness. Effectiveness refers to the rigor in establishing that the artifact
works in a real-world setting, while efficacy is the rigor in establishing cause/effect
while eliminating confounding variables. While the effectiveness aspect of rigor is
important, it requires observation of system use in a real-world scenario, which is
difficult in this project (in part due to FL still being an emerging technology). For
this reason, the evaluation will have a lower emphasis on rigor.

The goal of uncertainty and risk reduction is concerned with reducing risk
and uncertainty relating to human social/use risks and technical risks [46]. An
example of a human risk is the artifact not working well in the social setting,
while a technical risk would be that technological limitations make it impossible
to get the artifact working. As FL is an emerging field of research with relatively
few real-world applications reported so far [48], and the literature on FSs being
even more scarce, it follows that research combining FL and FSs is affected by a
high degree of design uncertainty. Mitigating this uncertainty is an important goal
of the evaluation in this thesis.

Ethics relates to addressing risks to people, animals, the environment, etc.,
both currently and in the future, and is especially important for safety-critical
systems [46].

Efficiency relates to resource usage, mainly in terms of time and money [46].
Being a thesis, there is a fixed deadline, a single researcher, and virtually no bud-
get, so resource usage must be highly efficient. Efficiency is thus an important goal
in artifact evaluation.

The four evaluation goals listed by Venable et al. [46] have the following pri-
orities in this thesis:
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1. Efficiency (high)
2. Uncertainty and risk reduction (high)
3. Rigor (moderate)
4. Ethics (low)

4.3.2 Step 2: Choosing the Evaluation Strategy

The second step of the FEDS process it to choose a strategy for evaluation. Ac-
cording to Venable et al. [46], there are four different evaluation strategies. The
Quick & Simple strategy is suitable for small and simple designs with low risk and
uncertainty relating to technical or social aspects. The Human Risk & Effective-
ness strategy may be appropriate in any of the following circumstances: 1) The
major design risk relates to users or social aspects, 2) performing a real-world
evaluation with real users is relatively cheap, 3) it is a critical evaluation goal to
establish real-world utility. The Technical Risk & Efficacy strategy may be appropri-
ate in any of the following circumstances: 1) The major design risk is technical,
2) real-world evaluation is prohibitively expensive, 3) a critical goal of the evalu-
ation is to establish that the utility of the artifact is not due to something else. The
Purely Technical Artifact strategy is only appropriate for purely technical artifacts,
or if the artifact will only be deployed well into the future.

This thesis employs the Purely Technical Artifact evaluation strategy for two
reasons: 1) The uncertainties of the project are mainly technical and not social,
as the FS concept has previously been successfully applied in multiple large orga-
nizations (see Section 2.3), and the novel application to FL is a technical detail.
2) The artifact will not be deployed anytime soon.

4.3.3 Step 3: Determining Properties to Evaluate

The third step of the FEDS process is to determine which properties of the arti-
fact to evaluate. Following the guidelines of Venable et al. [46], artifact evaluation
properties are determined by first framing potential evaluands, then aligning the
candidate evaluands with the goals stated in Section 4.3.1, and, finally, consider-
ing the nature of the evaluation strategy chosen in Section 4.3.2.

Based on the RQ from Section 4.1 and stated solution objectives in Section 4.2,
at least two candidate evaluands can be inferred: 1) The ability to reuse features
across different FL applications, and 2) system resource usage with respect to the
level feature reuse. System resource usage metrics such as, CPU, memory, disk
and network usage, all of which are common metrics used for evaluation in FL
research [48], are relevant potential evaluands. Resource usage is an important
issue for FL applications as clients may be limited in hardware capabilities and
computations should not affect system performance or stability [19]. Given that
FL is commonly applied to sensitive data, security and privacy are also relevant
properties to evaluate. Further, as the client devices in FL can be highly heteroge-
neous [19], production deployment of the artifact would require a high degree of
portability and interoperability.
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To answer the RQ, the evaluation must necessarily verify that features are
reusable across FL applications and is compatible with the constraints of FL. This
achieves reduction of uncertainty and risk, and should be quite resource-efficient,
thus aligning with the two highest-priority evaluation goals. Additionally, it miti-
gates technical design risks, which aligns with the evaluation strategy Purely Tech-
nical Artifact [46]. Further, to verify that feature reuse decreases resource usage
on clients, CPU and disk usage are also used as metrics in the evaluation.

4.3.4 Step 4: Designing Individual Evaluation Episodes

The final step in the FEDS process is designing the actual evaluation episodes,
which should take into account constraints in the environment and resources [46].
This thesis is constrained in both time (21 weeks), human resources (one master’s
student) and budget (nigh non-existent). In the interest of evaluation efficiency,
only a single evaluation episode is planned.

Evaluation is conducted by the author after the artifact design iterations by
simulating use of the artifact in an FL environment, and comprises two parts. The
first part of the evaluation consists of two experiments and verifies that the design
is compatible with FL and enables feature reuse across different applications. The
second part measures CPU and disk usage metrics to verify the claim that feature
reuse decreases resource usage.

Federated Learning Compatibility Evaluation

The Superconductivity2 [15, 16] dataset is used in the first experiment for a regres-
sion task. It is already cleaned, has a high number of pre-engineered numerical
features, making it convenient to use in this experiment. The second experiment
uses the Adult3 [15] dataset for binary classification. It requires some cleaning and
processing before usage, such as removing rows with missing data, one-hot encod-
ing categorical features, etc. The Wisconsin Breast Cancer4 dataset, while small, is
useful for efficiently testing the system between design iterations. The datasets are
chosen because they are structured (tabular), represent different types of learning
tasks (classification and regression), and the Adult and Superconductivity datasets
have previously been used as structured data sources for FL research, as in [49–
53] and [54–58]. A summary of the datasets can be found in Table 4.1.

Rather than attempting to find multiple different applications requiring over-
lapping features, a more contrived approach will be taken to simulate real-world
feature reuse. Two instances of the same application (e.g. predicting income over/un-
der USD $50,000 in the case of Adult) are run in parallel at four quintiles of
feature reuse, ranging from 0% to 60%. For the first part of the evaluation—
demonstrating compatibility with FL—it suffices to validate that the system op-
erates as intended during FL tasks. This part is conducted with one CS and five

2https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
3https://archive.ics.uci.edu/ml/datasets/adult
4https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)

https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
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Table 4.1: Datasets used in evaluation.

Dataset Task type Samples Features

Superconductivity [15, 16] Regression 21,263 81
Adult [15] Classification 48,842 14 (22 after FE)
Wisconsin Breast Cancer [15, 17] Classification 699 10

Figure 4.3: CPU and disk usage are measured for the indicated steps on the client
device.

clients. The classification tasks (Adult dataset) and regression task (Superconduc-
tivity) are run separately, with two models in parallel.

Resource Usage Evaluation

For the second part of the evaluation, total CPU and disk usage of clients is mea-
sured during the FE stage. Reduced CPU and disk usage should be observed with
increasing levels of feature reuse. Total CPU time for one client is measured for
the duration of the client initialization, dataset loading and FE process (see Fig-
ure 4.3), and total disk usage (measured by database file size) is measured after
feature ingestion at different levels of feature reuse, ranging from 0% to 60%. The
Adult, Superconductivity, and Wisconsin Breast Cancer datasets are used concur-
rently for this experiment.

Definition of Feature Reuse Level

The level of feature reuse is defined as follows: Given two applications A1, A2, let
F1 and F2 be the set of features used by each application, respectively. The level
of feature reuse for A2 with respect to A1, ρ(F1, F2), is then calculated as

ρ(F1, F2) =

�

�F1
⋂

F2

�

�

�

�F2

�

�

(4.1)

The experiments in this thesis use two applications per dataset with identical fea-
ture set sizes, i.e., |F1|= |F2|, so the feature reuse level is effectively symmetrical
(ρ(F1, F2) = ρ(F2, F1)).





Chapter 5

Results

This chapter will present the design and implementation of a system for feature
reuse in HFL, named the Federated Feature Store (FFS), followed by the experi-
mental setup and evaluation results.

5.1 Design and Implementation of the Federated Feature
Store

To achieve feature reuse on FL client devices, feature data needs to be both 1)
private and local—to satisfy the FL constraint—and 2) locally centralized on each
device—to avoid redundant resource consumption. Feature definitions are man-
aged by the organization deploying the FL application, so it should have control
over the single source of truth of features definitions to be used on clients. This
suggests a client-server architecture for the system, with a server component man-
aging feature definitions and a client component storing the actual local feature
data on each client device. The server component is called the Feature Registry
(FR), as it fulfills essentially the same purpose as the Registry component in Feast,
and the client component is called the Client Feature Store (CFS), as this is where
the local feature data is stored on each client device. The overall system architec-
ture is illustrated in Figure 5.1.

As multiple features are often naturally grouped together for convenience of
computation and/or consumption, the FG will be used as the atomic unit of feature
storage, following the convention of previous FSs (see Chapter 3). This means
that all features will be defined as part of an FG (though, if necessary, it could be
a singleton group with only one feature). The feature data used for a particular
FL application can then be constructed by combining the FGs containing all the
necessary features. Consuming feature data, which may consist of features from
many different FGs, should be straightforward for FL applications, and the set
of FGs in use for an application, as well as their method of combination, should
be well-defined. This means that the knowledge of how to construct and query
a dataset should not lie with the FL application, but should be the responsibility

25
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Figure 5.1: Architectural overview of the two main system components in the
Federated Feature Store (FFS): the Client Feature Store (CFS) and the Feature
Registry (FR). The FR hosts and manages definitions for datasets and Feature
Groups (FGs) on a server. The CFS runs on each client device participating in
Federated Learning (FL) and manages local feature data.

of the FFS. For these reasons, datasets should also be defined alongside FGs in
the FFS. Feature reuse across different applications is then achieved by using an
existing FG in the definition of a new dataset.

As the FR is responsible for holding the single source of truth for definitions,
it stores definitions for both FGs and datasets. To facilitate feature reuse, it is not
enough for FG definitions to only dictate the structure and data types of their com-
ponent features (the schema); there should be some descriptive metadata along-
side it to further document the features and help feature consumers understand if
a given FG is suitable for their specific application needs. The design in this thesis
specifies the basic metadata fields Name, which is used to identify the FG, Version,
to enable FG definition versioning, and a Description, which may provide details
such as semantics and business rules of the component features. A dataset defi-
nition needs to specify how the FGs should be combined to construct the dataset
on the client, and should also document intended use and pertinent details, be
versionable, and be addressable by a human-friendly name. Dataset definitions
therefore have the metadata fields Name, Version, Description, and Training data
query. For convenience, the Target variable of a dataset is also specified, as the
FFS then can return the input variables of the dataset separately from the tar-
get variable when retrieving training data samples. There should also be some
relation between FG definitions and dataset definitions so that the necessary FG
definitions can be found when a given dataset definition is requested. As a dataset
may be constructed from many FGs and an FG may be used in many datasets, this
relation is many-to-many. For the sake of simplicity, the many-to-many relation
between datasets and FGs in the CFS is not present in the artifact implementa-
tion, as the queries specified in the dataset definitions exclusively query the FG
tables, so the relation is not actually needed for querying the data. However, the
relation would likely be desirable in a production implementation, for example
to ensure data integrity or to easily determine which FGs are in use by which (if
any) datasets. Figure 5.2 illustrates the conceptual data models for datasets, FGs,
and their respective definitions. Figure 5.2a illustrates the data model for the FR,
where a dataset may combine many FGs, and, crucially for feature reuse, an FG
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(a) Data model for the Feature Registry
(FR) illustrating the relationship between
datasets and Feature Groups (FGs). One
dataset may use multiple FGs, and an
FG may be reused across many different
datasets.

(b) Data model for the Client Feature Store
(CFS). The dataset entity mirrors the one for
the Feature Registry (FR), while the entities
for Feature Groups (FGs) are dynamically
created based on the schema found in the
FG definition. One dataset may use multiple
FGs, and an FG may be reused across many
different datasets.

Figure 5.2: Conceptual data models for the Feature Registry (FR) and Client Fea-
ture Store (CFS).

may be used in many different datasets. Figure 5.2b shows the CFS data model, in
which each FG is a separate entity with a many-to-many relation with the dataset
definitions entity.

In the multitenant FL scenario (i.e., multiple different FL applications running
on the same client device), all the FLCs retrieve their training data from the CFS,
as illustrated in Figure 5.3. During local inference, the trained models may also
use data from the CFS to make predictions. The FR and all CSs are depicted as
residing on the same server for the sake of simplicity, but this is by no means
necessary. It is entirely possible to have both the FR and each of the CSs residing
on different servers.

5.1.1 Feature Registry Design

The FR is responsible for creating, storing and serving definitions of FGs and
datasets to CFSs, fulfilling roughly the same role as the Registry component of
Feast described in Section 3.3. Users should be able to create new dataset and FG
definitions, and CFSs should be able to download definitions to the client devices
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Figure 5.3: Use of the Federated Feature Store (FFS) in a multitenant Federated
Learning (FL) scenario. Each client device may have multiple Federated Learning
Clients (FLCs), which all retrieve feature data from a single Client Feature Store
(CFS). While FL generally involves many clients, only a single client device is
depicted for the sake of simplicity.
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Figure 5.4: Feature Registry (FR) design.

on which they reside. Thus, the FR must have a storage mechanism, network com-
munications capability, and a definitions management interface and correspond-
ing logic, illustrated in Figure 5.4.

FG and dataset definitions are structured (tabular) and relational in nature, so
a relational database is used for definitions storage in the FFS implementation The
definitions management logic ties together the database, the CFS communications
and the user-facing API, and is responsible for executing the processes described
in Section 5.1.2. The database schemas for the FR are based on the data model
seen in Figure 5.2a, and can be found in Appendix B.

5.1.2 Feature Registry Processes

The FR must be able to execute three different processes to fulfill its role as a cen-
tralized definitions management component: 1) create FG definitions, 2) create
dataset definitions, and 3) respond to dataset definition requests received from
CFSs.

An FG definition is created through the FR API from user-supplied FG meta-
data (name, description) and sample feature data. The FG schema (columns and
data types) is automatically inferred from the sample data for the sake of imple-
mentation convenience. FG metadata and schema are then inserted into the FR
database and available for download by CFSs, as seen in Figure 5.5a.

Dataset definitions are created through the FR API with user-supplied meta-
data (name, description, target variable), names of required FGs, and queries for
retrieving training data. The dataset metadata and queries are inserted into the
FR database, followed by the creation of the FG dependency relations in the FG-
dataset junction table (see Appendix B). The process is illustrated in Figure 5.5b.

Upon receiving a request for a dataset definition from a CFS, the FR does
a database lookup for the requested dataset definition based on the name and
version specified in the request. The FG dependencies of the dataset are then
retrieved by performing an INNER JOIN between FG definitions table and the FG-
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(a) Feature Group (FG) definition creation process.

(b) Dataset definition creation process.

(c) Dataset definition request handling.

Figure 5.5: Flowcharts illustrating processes of the Feature Registry (FR).

dataset junction table (see Appendix B for further details on the FR tables). Finally,
the FR responds to the CFS request with the dataset and FG definitions, as seen
in Figure 5.5c.

5.1.3 Client Feature Store Design

The CFS is responsible for ingesting and storing local feature data on the client
devices following the FG definitions from the FR and providing FLCs access to the
data for use during training and inference. Thus, the client must have a storage
mechanism, a communications component for downloading definitions, an API
ingesting local feature data, and an API providing access to the local feature data.
The high-level CFS design can be found in Figure 5.6.

A relational database is used for the purpose of data storage, despite no en-
tity relations being explicitly modeled in the CFS (see explanation earlier in Sec-
tion 5.1). This is to have the convenience of specifying and storing queries as SQL,
and because the thesis is focused on use cases with structured data, for which re-
lational databases are well-suited as a storage mechanism.

The communications component is responsible for sending dataset definition
requests to the FR and relaying the response back to the management logic.

It should be easy for FLCs to retrieve a new batch of training data in each round
of FL training, so it is desirable to make the CFS responsible for maintaining the
state of iteration over the local feature data between each round of FL training.
The Dataset Instance (DI) component fulfills this purpose, representing a usage
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Figure 5.6: Client Feature Store (CFS) design.

instance of a given dataset, similar to a dataset in Hopsworks or a feature service
in Feast.

Finally, the management logic is responsible for the overall execution of most
CFS processes described in Section 5.1.4, such as determining dataset definitions
that need to be downloaded, creating FG tables, handling feature data insertion,
and providing DIs.

5.1.4 Client Feature Store Processes

To satisfy the responsibilities outlined in Section 5.1.3, the CFS should have pro-
cesses for downloading required datasets, ingesting feature data, retrieving train-
ing data, and retrieving inference data.

At CFS startup, the FR address and required datasets for all applications on the
client are specified by the user. The CFS queries its internal database to determine
if any required dataset definitions are missing. For each missing dataset definition,
a request is sent to the FR, which responds with the dataset definition and all its
FG dependency definitions. Downloaded dataset definitions are inserted into the
CFS database, while a new table is created for each new FG definition. The CFS
is then ready for operation. See Figure 5.7a for an illustration.

Before any data can be retrieved from the CFS, the local feature data must first
be inserted. Using the CFS API, the user specifies the FG name and provides the
feature data, which is then written to the correct FG database table (Figure 5.7b).

As the FL training process begins, the FLC requests the relevant dataset by
name from the CFS API. A DI is returned, which can be used to retrieve training
batches of feature data from the database (Figure 5.7c). The reason for not directly
retrieving data through the CFS is to simplify the logic that maintains iteration
state between FL training rounds.

When the FLC is selected for a training round by the CS, it requests a batch of
training data from the DI, which executes the training data query from the dataset
definition to join FGs and create the resulting training data samples (Figure 5.7d).
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The DI operates lazily, so the query is only executed on the first batch request,
while subsequent requests are handled by simply iterating over the database cur-
sor and returning batches.

In the inference stage of operations, the client requests feature data from the
CFS, which queries the database with the inference data query specified in the
dataset definition (Figure 5.7e).

5.1.5 User Interactions With the Federated Feature Store

Figure 5.8 provides a flowchart describing user interactions with the system when
deploying a new FL task. Users of the FFS will interact with the system on both the
server-side and client-side. When a new FL application is going to be deployed,
a dataset definition for the particular task should be created. This is done on the
server, where the FR resides, managing all definitions. The dataset is defined by
specifying metadata (name, description, etc.), FG dependencies (FGs necessary
to construct the dataset), and queries for retrieving training data. Existing FGs
should first be searched by the user to discover any potentially reusable features,
while any new features should be defined with metadata (name, description, etc.)
and their schema (columns and data types). This concludes user interactions on
the server.

On the client devices, the required dataset(s, if multitenant) is specified be-
fore CFS initialization. If the dataset (or alternatively, all the FGs in the dataset)
was already in use, the CFS is already populated with the necessary data and the
client is ready to proceed with the training, otherwise local feature data should
be inserted first. To use a dataset for a given application, a DI is obtained from the
CFS, which provides access to batches of training data samples for the FLC.

5.1.6 Implementation Details

The entire FFS is implemented in Python for the sake of easy compatibility with
ML and FL frameworks. The CFS and FR each have a SQLite database for stor-
ing data and definitions, respectively. Client-server communications between the
components is implemented over RPC using gRPC.

Pandas DataFrames are used in all data handling in the FFS. In the CFS, they
are used for ingesting and returning feature data. In the FR, sample data for new
FG definitions is provided by the user in a Pandas DataFrame. The FG schema can
then be automatically inferred using the pandas.io.sql.get_schema(), which
generates the CREATE TABLE statement for the FG table.

Only a few SQL statements are manually written, namely the CREATE TABLE
statements for the dataset definitions table on the CFS, and the CREATE TABLE
statements for the dataset definitions, FG definitions and dataset-FG junction ta-
ble on the FR. All other SQL statements are generated via the PyPika library, (or
Pandas, in the case of schema generation, as described in the previous paragraph).

An overview of the packages used to implement the FFS can be found in Ta-
ble 5.1.
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(a) The CFS initializes by downloading any missing dataset definitions and creating miss-
ing FG tables.

(b) Feature data insertion.

(c) Request for dataset.

(d) Request for a batch of training data. The query is only executed on the first
call, subsequent calls iterate over the database cursor.

(e) Request for inference data.

Figure 5.7: Flowcharts illustrating the processes on the Client Feature Store
(CFS).
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Figure 5.8: Flowchart illustrating usage of the Federated Feature Store (FFS).
Green shapes are interactions on the client device, while blue shapes indicate
interactions on the server.
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Table 5.1: Packages used to implement the Federated Feature Store (FFS).

Package Version Use

Python1 3.10 Implementation language for whole system
SQLite2 3.38.5 Storage in both FR and CFS
sqlite33 2.6.0 Python SQLite API, used to access the SQLite

databases
grpcio4 1.43 Provides RPC communications between FR and CFS
grpcio-tools5 1.43 Code-generation for the RPC interfaces
PyPika6 0.48.9 SQL query builder on FR and CFS
Pandas7 1.4.1 DataFrames used for all data interactions and for SQL

schema generation

Table 5.2: Software used in the experimental environment.

Software Version Use

Arch Linux8 5.17.6 Operating system
Python 3.10 Implementation language of experimental en-

vironment
Scikit-learn9 [59] 1.0.2 ML models
Flower10 [60] 0.18 FL simulation

5.2 Experimental Setup

5.2.1 Environment

Experiments are run on a single desktop machine with a 4 GHz AMD FX8350, 16
GB DDR3 RAM at 1600 MHz, running Arch Linux with kernel 5.17.6. Python is
used to build the environment in which the system is tested. The Flower frame-
work is used to simulate an FL environment with the FedAvg model update aggre-
gation strategy. The SGDRegressor and LogisticRegression Scikit-learn models
were used for regression and classification, respectively.

An overview of the software used in the experimental environment can be
seen in Table 5.2.

5.2.2 Creating Synthetic Feature Groups for Experiments

To evaluate the system at different levels of feature reuse, as planned in Sec-
tion 4.3.4, a method is needed to simulate different levels of feature reuse for a
given dataset. As most available structured datasets come in the form of a sin-
gle denormalized table, it is most convenient to create FGs synthetically by split-
ting up the datasets into different tables with roughly equal numbers of feature
columns. A primary key column is added to reconstruct each training sample (i.e.,
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Figure 5.9: Illustration of how synthetic Feature Groups (FGs) are created from
a dataset. The original dataset with features F1–F7 and primary key PK is split
into FGs FG_A–FG_D.

a row in the dataset). The grouping process is entirely deterministic, grouping fea-
tures by their column adjacency in the original dataset file. The resulting FGs are
dubbed synthetic because it would not be natural in a real-world scenario to split
the dataset and join it again shortly after. See Figure 5.9 for an illustration of the
creation process for synthetic FGs. To retrieve training samples from the created
FGs, an SQL query is specified in the dataset definition as a simple inner join
between all the FG tables of the dataset on the primary key column.

5.2.3 Experimental Feature Group Reuse

FG reuse at four different quintiles, 0%–60%, is simulated for each experiment.
All datasets are split into five different FGs, as described in Section 5.2.2. FGs are
reused based on the order of their features in the original dataset. At 0% reuse,
all FGs are stored twice, and the models use disjoint sets of FGs. At 60% reuse,
40% of the FGs are stored redundantly, while both m1 and m2 use the remaining
60%. See Equation (4.1) for the mathematical definition of feature reuse level in
this thesis.

Example: For a dataset with feature columns A, B, C, D, E, F, G, H, I, and J,
the features are grouped AB, CD, EF, GH, and IJ. At 0% reuse, the database will
contain FGs AB1–IJ1 used by m1 and AB2–IJ2 used by m2. At 20% reuse, the
FG AB will be reused for both FL models while CD–IJ are duplicated. Duplication
means that the CFS database will contain one table for AB and two tables for each
of the FGs CD–IJ, such that the database contains the following tables: AB (used
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Figure 5.10: Process tree for compatibility evaluation. Client devices 2–4 are
omitted for brevity. Each client device has two FLCs training models concurrently
on applications A and B, coordinated by Central Server (CS) A and B running as
child processes of the server process. A and B are based on the same dataset, with
varying levels of feature reuse between, as described in Section 5.2.3.

by both m1 and m2), CD1–IJ1 (used only by m1), CD2–IJ2 (used only by m2).

5.2.4 Federated Learning Compatibility Evaluation

The system is used in two experiments to evaluate its compatibility with FL and
to demonstrate that the system can operate with a wide range of feature reuse
levels in concurrent applications. The specific regression and classification models
used are chosen for the sake of simplicity in integration with the FL simulation
framework.

Each experiment trains two identical models, m1 and m2, in parallel on five
different client devices. One hundred rounds of FL training are performed per
experiment repetition. Each client has a single CFS, from which both local models
retrieve training data. 80% of the training data is divided equally among the five
clients, while the remaining 20% is used for model evaluation by the CS post-
training. The FL training process is repeated ten times for each level of feature
reuse. Figure 5.10 illustrates the experiment with a process tree.

Superconductivity Dataset Experiment

This experiment uses the Superconductivity dataset11, with 81 features and 21,263
samples, for multivariate regression. Each sample is a feature-engineered data
point of a superconductor, with the critical temperature of the material being
the target variable to predict. An ID column is added as the primary key for
the dataset. The SGDRegressor model from Scikit-learn is used with the param-
eters max_iter=1 (we only want a single iteration per training round of FL) and
warm_start=True (to start with the weights received from the CS).

11https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data

https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
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Adult Dataset Experiment

This experiment uses the Adult dataset12, which has 14 features and 48,842 sam-
ples. The dataset is used for binary classification of adult income based on US
census data, where each sample is labeled either >50K or <=50K. The dataset is
cleaned13 and categorical features are one-hot encoded during the FE process.
The LogisticRegression classifier from Scikit-learn is used with the parame-
ters penalty="l2", max_iter=1, and warm_start=True as suggested in the Flower
quickstart guide14.

5.2.5 Evaluation of Resource Usage

To verify that increased feature reuse results in lowered resource consumption
during FE and feature ingestion, CPU and disk usage are measured during and
after FE and feature ingestion, respectively. The resource usage experiment is re-
peated ten times per level of feature reuse (described in Section 5.2.3) for all four
levels. The Adult, Superconductivity, and Wisconsin Breast Cancer datasets are used
concurrently for this experiment.

CPU Usage During Feature Engineering and Ingestion

CPU usage is measured for a single client at varying levels of feature reuse from
the client process spawns until the FS is populated with data, involving the steps
of data loading, data processing/FE, and data ingestion, as indicated in Figure 4.3.

CPU usage is measured with the getrusage() function from the Python re-
source package, which uses the platform implementation of the getrusage()
POSIX system call. The function is called in the client process with the RUSAGE_SELF
flag. The function returns cumulative CPU time in user and system mode, among
other platform-dependent statistics. Only the user time is considered for this ex-
periment, but system CPU usage can also be found in Table 5.3 under the column
STIME. The process tree in Figure 5.11 illustrates for which processes CPU usage
is measured.

Disk Usage After Feature Engineering and Ingestion

Disk usage for a single client is measured at varying levels of feature reuse after
FE and feature ingestion are completed. The file size of the CFS SQLite database
is used as the metric for client disk usage and is measured with the du command
using the -k flag to get a 1K block size. The database file is deleted before each
repetition to ensure identical circumstances in each experiment iteration.

12https://archive.ics.uci.edu/ml/datasets/Adult
13Data cleaning follows the steps from https://ryanwingate.com/projects/

machine-learning-data-prep/adult/adult-cleaning/.
14https://flower.dev/docs/quickstart-scikitlearn.html

https://archive.ics.uci.edu/ml/datasets/Adult
https://ryanwingate.com/projects/machine-learning-data-prep/adult/adult-cleaning/
https://ryanwingate.com/projects/machine-learning-data-prep/adult/adult-cleaning/
https://flower.dev/docs/quickstart-scikitlearn.html
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Figure 5.11: Process tree during the resource usage experiment. Yellow ellipses
indicate for which processes the CPU usage is measured.

5.3 Experimental Results

This section will present the results from performing the evaluation episode de-
signed in Section 4.3.4.

5.3.1 Compatibility With Federated Learning

The first part of the evaluation, simulating concurrent FL training with varying
levels of feature reuse, demonstrates that the system is compatible with FL and
enables feature reuse at different levels between simultaneous FL applications. A
logistic regression model is trained with FL on the Adult dataset. An SGD regres-
sion model is trained with FL on the Superconductivity dataset, achieving an R2

score of 0.7. Models displayed the same performance across all levels of feature
reuse, which should be expected as the underlying data used is identical.

5.3.2 Resource Consumption Versus Feature Reuse

The results from the second part of the evaluation, measuring client resource us-
age during data processing and ingestion of the Adult, Superconductivity, and
Wisconsin Breast Cancer datasets, indicate that resource usage decreases when
feature reuse increases. A box plot of the CPU time spent in user mode on the
simulated client device can be seen in Figure 5.12a. The median CPU time ap-
pears to decrease linearly, from 51.4 seconds at 0% reuse to 35.6 seconds at 60%
reuse, representing a 30.8% decrease. The database file size shows a similar trend,
decreasing apparently linearly from 29644 kB to 20188 kB representing a 31.9%
decrease, as seen in the box plot in Figure 5.12b. The database file size has no
variance within each level of feature reuse because the data stored is entirely de-
terministic.
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(a) Box plot of CPU time spent in user mode for each level of FG reuse.

(b) Box plot of disk usage for each level of FG reuse as measured by database file size.

Figure 5.12: Cumulative resource usage during Feature Engineering (FE) and
feature ingestion at 0%, 20%, 40% and 60% reuse of Feature Groups (FGs).
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Table 5.3: Raw data from the resource usage experiment. Reuse level is given as
a fraction, the repetition column indicates the experiment repetition of the given
reuse level, UTIME is CPU time spent in user mode, STIME is CPU time spent in
system mode. The last column, database file size kb, is the size of the database file
in kilobytes.

reuse level repetition UTIME STIME database file size kb

0 1 51.3301 0.645832 29644
0 2 51.5774 0.602151 29644
0 3 52.5518 0.638851 29644
0 4 51.1421 0.665091 29644
0 5 51.2776 0.722154 29644
0 6 52.0592 0.668615 29644
0 7 51.1929 0.641776 29644
0 8 50.935 0.675845 29644
0 9 51.5596 0.675058 29644
0 10 52.2442 0.721064 29644
.2 1 46.2626 0.672219 26104
.2 2 45.9704 0.49879 26104
.2 3 46.4982 0.615765 26104
.2 4 46.1433 0.641844 26104
.2 5 46.457 0.588945 26104
.2 6 46.1394 0.622193 26104
.2 7 46.3187 0.668287 26104
.2 8 46.2129 0.63767 26104
.2 9 47.1615 0.604763 26104
.2 10 46.4841 0.654651 26104
.4 1 41.2704 0.69114 23200
.4 2 40.823 0.530406 23200
.4 3 40.6827 0.565794 23200
.4 4 41.2422 0.515866 23200
.4 5 42.1258 0.612158 23200
.4 6 41.6381 0.608666 23200
.4 7 41.5852 0.547482 23200
.4 8 41.6816 0.508913 23200
.4 9 40.7615 0.584763 23200
.4 10 41.0769 0.59241 23200
.6 1 37.2916 0.557683 20188
.6 2 35.3865 0.528577 20188
.6 3 35.6075 0.469202 20188
.6 4 35.3097 0.558961 20188
.6 5 35.4761 0.501945 20188
.6 6 35.6358 0.538826 20188
.6 7 35.4112 0.47594 20188
.6 8 36.4456 0.498433 20188
.6 9 35.7011 0.378996 20188
.6 10 35.9446 0.426089 20188
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5.4 Evaluation of Results

The results presented in Section 5.3 nominally have two implications:

• It is possible to reuse features across different FL applications using the
proposed design from Section 5.1.
• Increasing feature reuse reduces resource consumption from FE and feature

ingestion on the client.

The resulting system is shown to be compatible with the simulated FL environ-
ment on both a regression and a classification problem with structured datasets.
Consequently, it can be concluded that the design presented in Section 5.1 is a
solution to the RQ of the thesis.



Chapter 6

Discussion

This chapter will evaluate the experimental results from Section 5.3, compare the
study results to the related work presented in Chapter 3, discuss implications for
industry and academia, and address threats to validity.

6.1 Comparison to Related Work

While the FFS design directly addresses the thesis RQ and some limitations of the
related work noted in Section 3.5, it is a highly simplified version of what would
likely be expected in a production system, judging by the related work.

6.1.1 Architecture

While virtually all existing FSs are built on a dual-database architecture to enable
high throughput for batch queries and low latency for real-time queries, the FFS
design in this thesis only specifies a single database. Depending on the specific
use case, this could potentially be a performance bottleneck. For cross-device FL
(see Section 2.1), where the model is only trained on a few samples per FLC,
having both performant batch and singleton queries may not be necessary. More-
over, individual client devices may not even have enough data where database
performance would make any significant difference. However, database perfor-
mance would more likely be an important consideration with cross-silo FL (see
Section 2.1), as the data is distributed among a small number of clients. This is
further discussed in Section 6.2.

6.1.2 Software Features

Existing FSs also typically have some support for versioning FE code together with
the corresponding feature definition and executing it on ingested data, ensuring
that the same code is always used to generate features. This has not been con-
sidered for the FFS design and could present a limitation compared with related
work.

43
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Although the artifact enables feature reuse from a technical perspective, it
lacks the possibility for users to browse and discover existing feature definitions. A
browsable registry letting users discover feature definitions and understand their
data sources and business rules is crucial for facilitating feature reuse in an orga-
nization [31].

Organizations with multiple teams may want access-controlled feature defi-
nitions, as client data in FL is typically privacy-sensitive. This is offered in some
existing FSs, such as Hopsworks, but is not addressed in the FFS design. Access-
controlled feature definitions could be desirable in organizations with restrictions
for which teams can use certain features for their models.

Many existing FSs have time-travel functionality, i.e., being able to access the
feature values of different points in the past, essentially treating every feature as
a time-series. This solves the problem of future information leaking into training
data, but is something not considered in the FFS design, representing a limitation
compared to related work.

6.2 Applications to Different Types of Federated Learning

The design of the FFS is first and foremost aimed at HFL, as it assumes that all
participants in an FL task will use the same set of features. However, this is not
the case for VFL applications. Participants in a VFL application have different fea-
tures, meaning that defining datasets and FGs in the FR as done in the FFS may
not make sense in practice. However, it may still be desirable to centrally man-
age definitions analogously to how a single CS manages the FL training. Further
study is needed to determine a good way of achieving this for VFL, but it will
likely require modifications in both the data model and architecture. Additionally,
encrypted entity alignment (see Section 2.1) could be integrated as part of the
FFS. Whether alignment should fall under the responsibilities of the FFS is not
clear. However, as this is required for all VFL applications, it seems natural that
it should at least be abstracted away from the specific FL application. If the FFS
design can be adapted to accommodate both HFL and VFL, it could also open the
door to use with federated transfer learning.

For large volumes of feature data, which may be expected in cross-silo ap-
plications, the single-database design may result in unsatisfactory performance,
particularly for multitenant applications. The cross-silo FL scenario is similar to
the conventional centralized ML, in which the FSs need both low-latency single-
ton queries for operations and high-throughput batch queries for training. The
reliance on a single database, rather than the online/offline database design usu-
ally found in FSs, means that the FFS is currently better suited for cross-device FL
scenarios, where the data volume may be significantly lower. More importantly,
communications represent a much more significant performance bottleneck for
cross-device FL as a result of high-dimensionality model updates and limited com-
munications bandwidth for participating devices. The inherent difference in re-
source constraints between cross-silo and cross-device FL likely means that the
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Table 6.1: Summary of suitability of the Federated Feature Store (FFS) to dif-
ferent types of Federated Learning (FL). 1: suitable, 0: may need accommoda-
tion, N/A: not applicable. Cross-silo and cross-device mainly describe participant
characteristics, and are therefore mostly affected by system architecture. The FFS
design is most suitable to cross-device Horizontal FL (HFL) applications.

Type Data model Architecture Software features

HFL 1 1 1
VFL 0 0 0
Cross-silo N/A 0 N/A
Cross-device N/A 1 N/A

two types require different FS architectures.
Table 6.1 summarizes the suitability of the FFS to different types of FL in terms

of the data model, the architecture, and the software features.

6.3 Implications to Industry

While the FFS is far from ready for production, it demonstrates the design for
a novel application of the already established and industry-proven FS concept.
Given the assumptions presented in Chapter 2, namely that we will see growing
adoption of FL, the presented design can serve as a starting point for implementing
a production-ready system for reusing ML features in an FL context. This would
be useful to organizations with multiple FL applications per client device, partic-
ularly for larger organizations that use thousands of different features, such as
those mentioned in Section 2.3. The method of adoption would likely depend on
the hardware/software environment of the client devices in use. While devices
with more limited capabilities may need more specialized designs/implementa-
tions, scenarios with more performant hardware, typically cross-silo FL, could use
existing FSs adapted for FL.

The evaluation results showing a decrease in resource usage with increased
feature reuse indicate some benefits businesses may reap from eliminating dupli-
cate features. The reduced resource consumption, and hence lower energy con-
sumption, may facilitate businesses in complying with legislation and shareholder
demands for ESG and give more legitimacy to their commitment to going green
and reducing environmental impact. Further, the lower energy and resource con-
sumption also results in lower operating expenditures for businesses through re-
duced electricity or cloud computing bills.

6.4 Implications to Academia

The evaluation demonstrated that a higher degree of feature reuse results in lower
resource consumption in terms of both CPU and disk usage. While this is a goal
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unto itself for resource-constrained devices, other benefits of more feature reuse
should also be studied. Research into the environmental and economic benefits
of feature reuse as a consequence of lower energy consumption should be inves-
tigated, in addition to studying the economic benefits of eliminating duplicate FE
efforts. Future studies should also examine how feature reuse scales with orga-
nizations in terms of the number of models, features, and people. While larger
organizations such as Uber and Facebook report substantial benefits in being able
to reuse features (see Section 2.3), it is not known how well it scales down to
smaller organizations.

Though the FFS design is reasonably suited to HFL, it may not be practical
for the purposes of VFL, as discussed in Section 6.2. Further studies should be
conducted to better enable feature reuse for VFL. Additionally, Further, secure
entity alignment should be investiatged as apossible responsibility of the FFS, or
more generally as a separate

The more general case of edge ML, of which FL can be viewed as a subset,
could potentially use a similar design as the one proposed in this thesis. With
more relaxed constraints on data privacy, there could be opportunities to bring
FSs to edge devices and servers, thereby reducing latency and improving quality
of service.

As FL typically involves sensitive data, privacy and security should not be taken
lightly. Researchers should therefore study the implications of feature reuse and
FSs to security and privacy of participant data.

6.5 Threats to Validity

6.5.1 Threats to Internal Validity

As the artifact was only tested in a simulated FL environment on a local machine,
compatibility with FL in a real-world scenario may not be conclusive. The FL
framework used is built for real-world use cases. It has been tested on millions
of clients on a single machine [61] and with physical mobile and edge devices
[60] (albeit with a maximum of 10 devices), so any uncertainty of FL compatibil-
ity would mainly lie with the internal communications of the FFS, between CFSs
and the FR. The method of internal communications is left as an implementation
detail in the design, as this should generally make no functional difference in the
system’s operation. The implemented artifact, like the FL framework, uses RPC
for communications, so it should be reasonable to conclude that the design is at
least structurally compatible with FL.

CPU usage was measured with the getrusage system call, which has a low
level of overhead and intrusiveness, i.e., it imposes little performance degrada-
tion and task interference [62]. While the specific getrusage implementation only
returned time with millisecond precision, this should not be an issue, as the mea-
sured tasks ran on the order of tens of seconds (see Section 5.3).

Network communications for downloading dataset and FG definitions were
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included in the measured CPU time, but this should not skew the measurements
to a significant degree for two reasons: 1) the number of network requests is
constant for all levels of feature reuse, as the same number of datasets were used
each time, and 2) the connection was purely local, i.e., no packets ever left the
machine, meaning that network latency is a negligible factor.

The evaluated artifact is a naïve implementation of the design and is only
tested in a simulated environment and does not adhere to any constraints on
security, privacy, etc. It is not a given that implementing the design while adhering
to more realistic requirements would yield a system exhibiting the same resource
usage trends or compatibility with FL.

6.5.2 Threats to External Validity

Perhaps the biggest threat to the external validity of the thesis is that it rests on the
assumption that FL use will increase in the future, so the presented artifact and
design are solutions to an as of yet hypothetical (or at least unreported) problem.
Consequently, the results are not immediately useful or relevant to any real-world
applications. However, given the growth observed in edge devices, ML, and data
privacy concerns, as discussed in Section 2.1, the future of FL seems promising.

The evaluation strictly used structured datasets (the only type of data the ar-
tifact was implemented to handle). In contrast, most papers on FL use other types
of data, such as images and text [48]. However, the literature consists of few ap-
plications of FL in production, as most papers describe applications at the proof-
of-concept stage, so this may not be a big concern for real-world usage. Moreover,
there is no apparent limitation on possible feature data types in the presented ar-
chitecture, so it should be possible to implement a system supporting other types
of data based on the FFS design.





Chapter 7

Conclusions and Further Work

This thesis presents a novel design for a system enabling reuse of ML features in
FL, a previously unserved area of ML by existing FS solutions. A proof of con-
cept is implemented to establish the feasibility of the design. Experimental results
show decreasing levels of resource usage for the client device with increasing lev-
els of feature reuse, indicating a performance benefit when reducing duplicate
feature management efforts through reusing existing features. The decreased re-
source usage also has implications for green IT and ESG, allowing organizations
to decrease their negative environmental impact by reducing energy consumption
through feature reuse.

While the results suggest that applying the FS concept to the problem of FL
is feasible, there are still many possible directions for further work to increase
the utility of the system: The FR should be browsable to make feature discovery
easy for data scientists and other practitioners, the system should have support for
versioning and executing FE code, it should be possible to create derived features,
automatic cleanup of old data to limit disk usage on resource-constrained devices,
time-travel capabilities, etc.
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Appendix A

API Specification

A.1 Registry API

A.1.1 Registry.create_feature_group

Arguments

• name – feature group name
• version – feature group version number
• description – description of feature group
• dataframe – dataframe with a sample data

The create_feature_group method creates a new feature group definition
with the given metadata. A CREATE TABLE statement is generated automatically
based on data types inferred from the dataframe argument.

A.1.2 Registry.create_dataset

Arguments:

• name – dataset name
• version – dataset version number
• description – dataset description
• training_sql – SQL query for retrieving training data
• inference_sql – SQL query for retrieving feature data during inference
• feature_group_dependencies – names of feature groups used by this dataset
• target_variable – name of target variable for inference

Creates a new dataset definition.

A.2 Client Feature Store API

A.2.1 ClientFeatureStore.get_dataset_instance

Arguments:
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• name – dataset name
• version – dataset version number

Returns a ClientDataset instance which can be used to efficiently retrieve batches
of training samples.

A.2.2 ClientFeatureStore.insert_feature_data

• feature_group_name – name of feature group to insert data for
• feature_group_version – version of feature group
• df – dataframe containing the feature data to be inserted

Inserts data from df into the feature group feature_group_name in the local
database.

A.2.3 ClientDataset.get_training_data

Arguments:

• batch_size – number of samples to return per batch

Returns a generator yielding batches of size batch_size with training samples.



Appendix B

Database Schemas

B.1 Client Feature Store Database Schema

Name Datatype Description

name string Name of dataset
description string Dataset description
sql_get_training_samples_query string SQL query for fetching training

samples during training
id integer Internal primary key for conve-

nience

Table B.1: Schema for the dataset table on the Client Feature Store (CFS), which
is identical to the dataset table on the Feature Registry (FR)

B.2 Feature Registry Database Schema

Name Datatype Description

name string Name of feature group
description string Description of the feature

group
sql_create_statement string SQL statement for creating the

feature group table on the
clients

id integer Internal primary key for conve-
nience

Table B.2: Database schema for the feature group definition table on the FR.
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Name Datatype Description

name string Name of dataset
description string Dataset description
sql_get_training_samples_query string SQL query for fetching training

samples during training
id integer Internal primary key for conve-

nience

Table B.3: Schema for the dataset table on the Feature Registry (FR).

Name Datatype Description

feature_group_id integer ID of the feature group
dataset_id integer ID of the dataset

Table B.4: Schema for the table representing the many-to-many relationship be-
tween feature groups and datasets in the Feature Registry (FR). feature_group_id
is a foreign key to the feature group definition table Table B.2 and dataset_id is a
foreign key to the dataset table Table B.3.
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