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Abstract

Background and purpose: Single-shot spiral imaging is of high interest as an alternative to EPI due
to its increased time efficiency and decreased sensitivity to motion. However, spiral imaging is highly
susceptible to imperfections of the gradient system, which causes image distortions, blurring, and signal
loss due to k-space trajectory deviations and eddy-current induced temporal magnetic field fluctuations.
This project aims to develop an offline image reconstruction pipeline that uses field responses predicted
by an impulse response model of the gradient system at a 7T MR scanner.

Methods: Gradient system characterization was performed on a 7T system based on field response mea-
surements of a phantom with a thin-slice excitation approach. The measured gradient impulse response
function (GIRF) was used to predict field responses to single-shot spiral gradient sequences, which were
compared to measured responses in addition to the nominal gradients. Image reconstruction based on the
predicted trajectories was performed for phantom and in vivo data acquired with a 32-channel head re-
ceive coil, and the images were compared with reconstructions based on separate trajectory measurements
and the nominal trajectories.

Results: A GIRF was successfully characterized and yielded predictions that agreed well with the
separately measured gradients. The nominal spiral trajectories deviated significantly more from the
separately measured trajectories compared to the GIRF-predictions, even with delay-correction of the
nominal trajectories. Image reconstruction using the GIRF-predicted trajectories resulted in images that
were comparable to using separate trajectory measurements. There were observed image artifacts even
in the reconstructions based on measured trajectories. For low R-values, distortions and blurring due to
off-resonance effects were most prominent, and residual aliasing dominated for high R-values.

Conclusion: An offline image reconstruction pipeline for single-shot imaging with spiral k-space trajecto-
ries has been developed and tested for a 7T MR scanner. A GIRF with both self and 0th order cross-terms
can be determined with simple thin-slice excitation phantom measurements, and GIRF-predicted trajec-
tories yield highly accurate results for the 0th and 1st order field responses for technically challenging
single-shot spiral readouts. The GIRF-predicted field responses enable image reconstruction with the
same quality as separately measured field responses, although some image artifacts remain, which could
be addressed in later work.
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Sammendrag

Bakgrunn og form̊al: Spiralavbildning i MR er av stor interesse som et alternativ til EPI p̊a grunn
av økt tidseffektivitet og redusert sensitivitet for bevegelse. Men spiralavbildning er svært følsom for
avvik i oppførselen til gradientsystemet. Slike avvik vil føre til forvrengninger, uskarphet, og tap av
signal i det rekonstruerte bildet p̊a grunn av endringer i banen i k-rommet og tidsavhengige variasjoner
i det magnetiske feltet som følge av virvelstrømmer. Målet til dette prosjektet er å legge til rette for
bilderekonstruksjon som korrigerer for avvik i gradientsystemet ved å predikere endringer i k-romsbanen
og magnetfeltet p̊a en 7T MR-maskin. Prediksjonene skal gjennomføres med en impulsresponsmodell.

Metode: Karakteriseringen av gradientsystemet til et 7T-system ble gjennomført basert p̊a m̊alinger av
et fantom med en tynnsjiktmetode. Den m̊alte impulsresponsen til gradientsystemet (GIRF) ble deretter
brukt til å predikere feltresponser til spiralsekvenser som ble sammenliknet med faktiske m̊alinger av
feltresponsene og de ukorrigerte spiralbanene. De predikerte k-romsbanene ble brukt til bilderekonstruk-
sjon av b̊ade fantom- og in vivo-m̊alinger med en 32-kanal mottaksspole for hodeavbildning. De rekon-
struerte bildene ble sammenliknet med bilder rekonstruert med separate spiralm̊alinger og de ukorrigerte
k-romsbanene.

Resultater: En GIRF ble beregnet og ga gradientprediksjoner som samsvarte bra med de m̊alte spi-
ralgradientene. Det var et betydelig større avvik for de ukorrigerte spiralbanene sammenliknet med
GIRF-prediksjonene, selv n̊ar det ble medregnet en forsinkelse i de ukorrigerte spiralbanene. Bilderekon-
struksjonen med GIRF-prediksjoner resulterte i bilder som var sammenliknbare med bildene rekonstruert
med m̊alte spiralbaner. Selv med de m̊alte spiralene ble det observert artefakter i de rekonstruerte bildene.
For lave R-tall var det uskarpheter p̊a grunn av ujevnheter i magnetfeltet som var mest framtredende,
mens gjenværende foldningsfeil dominerte for høye R-tall.

Konklusjon: Bilderekonstruksjon for spiralavbildning har blitt utviklet og testet p̊a en 7T-maskin. En
GIRF som beskriver b̊ade 0. og 1. ordens feltrespons kan bli beregnet med enkle tynnsjiktm̊alinger av et
fantom. GIRF-prediksjoner av spiralbaner gir presise resultater for avvik i magnetfelt og gradientform for
avanserte spiralavlesninger. De predikerte feltresponsene oppn̊ar bilderekonstruksjon av samme kvalitet
som med m̊alte feltresponser, til tross for at enkelte artefakter fortsatt forekommer.
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1 Introduction

Magnetic resonance (MR) imaging is a non-invasive medical imaging technique that offers high-resolution
images with great soft-tissue contrast without ionizing radiation. In addition to regular anatomical
images, MR imaging may provide information about blood flow, diffusion, brain activity, and more.
While it has long been used clinically for imaging all body parts, the main disadvantage of MR imaging
is the long acquisition time needed for high-resolution images compared to alternative imaging techniques
such as computed tomography (CT) or ultrasound. Some MR scans might take up to several minutes,
resulting in reduced comfort for the patient and increased probability of motion, which will introduce
artifacts in the images.

Some applications of MR imaging rely on fast acquisition to achieve time-series data, increase the signal-
to-noise ratio (SNR), or limit the effects of patient movement. Some examples are blood oxygenation-level
dependent (BOLD) functional MR imaging (fMRI) [1], arterial spin labeling (ASL) [2], and diffusion-
weighted imaging (DWI) [3]. Single-shot imaging is needed to accomplish sufficiently short acquisition
times. Single-shot schemes such as echo-planar imaging (EPI) [4] and spiral imaging [5] are fast imaging
techniques that can collect all image data in a single readout by traversing all of k-space after one
excitation, whereas conventional two-dimensional imaging schemes require N readouts to produce an
image with N ×N pixels. Another technique that has been developed to decrease scan time is parallel
imaging, which in contrast to fast imaging allows this without compromising resolution. Parallel imaging
is a technique that utilizes the additional spatial information from multiple receiver coils to reduce the
amount of data needed per pixel, usually resulting in increasing imaging speed with a factor of 2-4 [6].
Single-shot and parallel imaging are complementary, and several MR imaging schemes that rely on fast
acquisition use a combination of these two techniques.

Today, most single-shot sequences are based on EPI, but there has been an increased interest in spiral
imaging since it has the potential for shorter acquisition time. As with all MR sequences, both EPI
and spiral imaging rely on linear magnetic field gradients for spatial encoding of the images, but how
these are implemented causes spiral imaging to be faster than EPI. However, there are still three main
issues preventing routine use of spiral imaging [7, 8]: First, it is highly sensitive to imperfections in
the gradient system, which will result in image distortion, blurring, and signal loss. Secondly, it is also
greatly influenced by inhomogeneities in the static magnetic field B0 inside the scanner, which is affected
by the local susceptibility differences of the imaged object. B0-inhomogeneities also cause blurring and
signal loss. Finally, spiral imaging causes a more complicated reconstruction problem in combination
with parallel imaging compared to EPI [9].

Several methods have been proposed to compensate or correct for errors due to gradient system imper-
fections. In most cases, these methods are sequence-specific. For EPI, a common method uses additional
reference readouts to correct for phase inconsistencies between odd and even readout lines [10], and other
post-processing strategies that do not require extra scans have also been proposed [11–13]. For spiral
imaging, a method that estimates and corrects for net delays of the linear gradient field chains has been
suggested [7]. However, sequence-specific correction strategies are limited by underlying model assump-
tions. A more robust approach is to measure the actual k-space trajectories due to gradient imperfections

1



CHAPTER 1. INTRODUCTION 2

and use them as the basis of image reconstruction [14–16]. The k-space measurements can either be per-
formed before image acquisition [16–18], which requires a longer scan time, or they can be performed
simultaneously [19–21], which requires additional expensive hardware.

Another solution to compensate for gradient system imperfections is to characterize the gradient system
in a one-time effort and use this knowledge to predict the actual gradient behavior for all later imaging
schemes. By assuming that the gradient system is linear and time-invariant (LTI) the behavior of the
system can be fully described by the gradient impulse response function (GIRF), which can be found by
measuring the field responses to known input gradients [22, 23]. Compensating for system imperfections
with a GIRF may be performed without additional hardware and does not increase the scan time after
the GIRF has been determined.

The two last issues that hinder the use of spiral imaging, B0-inhomogeneities and image reconstruction,
have recently been overcome by combining an extended signal model that incorporates static field imper-
fections and coil sensitivity encoding [24] with iterative reconstruction [9]. The extended signal model
also includes dynamic imperfections in the external magnetic field, which may be observed through
GIRF-predictions or k-space measurements before or during acquisition. Local B0-inhomogeneities may
be measured before the image acquisition and stored in a field map which is used to correct for errors
caused by susceptibility differences during image reconstruction.

This project aims to implement single-shot spiral imaging at the 7 Tesla (T) MR scanner in Trond-
heim. For this purpose, an offline image reconstruction pipeline will be set up that corrects for k-space
trajectory deviations and static field inhomogeneities. The k-space trajectories will be estimated with
GIRF-predictions, and the impact of the predictions in image reconstruction will be assessed by comparing
them with reconstructions based on the nominal k-space trajectories.



2 Theory

In this section, all the relevant theory required to understand the work performed in this project will be
presented. It will start with the basic principles of MR imaging such as signal origin, k-space formalism,
and static field inhomogeneity, before moving on to more advanced and specific subjects such as fast
imaging techniques, k-space trajectory measurements, gradient system characterization, and parallel
imaging.

2.1 Principles of MR imaging

MR imaging is an imaging technique that uses a strong external magnetic field and radiofrequency (RF)
pulses to create three-dimensional anatomical and functional images of tissue. It is based on the well-
known nuclear magnetic resonance (NMR) phenomenon, from which images are formed with spatial
encoding principles. This section will explain the origin of the MR signal and how it is manipulated to
provide spatial information. The content is mostly based on the book Principles of Magnetic Resonance
Imaging: A Signal Processing Perspective by Liang and Lauterbur [25] unless otherwise specified.

2.1.1 The NMR phenomenon

As the name implies, the NMR phenomenon involves nuclei in the object to be imaged, magnetic fields
that are applied externally by the radiologist, and the resonance phenomenon that follows from the
interaction between the nuclei and magnetic fields. A fundamental property of nuclei is that nuclei with
an odd number of protons and/or neutrons possess an angular momentum J⃗ , usually called spin, which
is a quantum mechanical property. Since nuclei are positively charged, they will also have an associated
magnetic moment µ⃗, which will interact with other magnetic fields. If nuclei with magnetic moments
are placed in an external magnetic field, they will align either parallel or anti-parallel to the field, and
they will start to precess about the direction of the field. This is illustrated in figure 2.1. The last effect
is known as nuclear precession, and the precession frequency, called the Larmor frequency ω0, is only
dependent on the type of nucleus and the magnetic field strength

ω0 = γB0, (2.1)

where γ is the gyromagnetic ratio of the nucleus and B0 is the magnetic field strength. In MR imaging,
the most common nucleus to image is the hydrogen nucleus 1H due to its relatively strong magnetic
moment and abundance in biological tissue.

Nuclear precession and magnetic resonance are quantum mechanical phenomena, but it is often more
useful to use a classical approach when discussing MR theory. This may be done by introducing the net
magnetization M⃗ , which is the sum of all magnetic moments in the field of view (FOV). At room or body
temperature, there will be a slight abundance of hydrogen nuclei, henceforth referred to as spins, aligned
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CHAPTER 2. THEORY 4

B0

Figure 2.1: When exposed to a magnetic field B⃗0, the spins will align either parallel or anti-parallel and
start to precess at the Larmor frequency ω0 about the direction of the field.

parallel to the magnetic field, resulting in a net positive magnetization. Although the individual spins
are at an angle to the field direction they will be out of phase at equilibrium, and the net magnetization
vector will be perfectly aligned with the external magnetic field. This is illustrated in figure 2.2. It is the
net magnetization vector that is measured in an MR experiment.

B0

Figure 2.2: Illustration of the net magnetization of an ensemble of spins at equilibrium. More spins are
aligned parallel to the field than antiparallel, which results in a net total magnetization M parallel to
B⃗0. The individual spins are out of phase, which results in no net magnetization perpendicular to the
magnetic field.

2.1.2 The MR signal

To measure the magnetization of a sample, the net magnetization vector must have a component in the
transverse plane perpendicular to the static magnetic field B⃗0. In MR, this is achieved by ”pushing” the
net magnetization into the transverse plane using an RF-pulse. If an RF-pulse with the same frequency
as the Larmor frequency is applied perpendicular to the static magnetic field, the net magnetization will
start to precess about the applied magnetic field of the RF-pulse. This causes the net magnetization to
spiral down towards the transversal plane in the laboratory frame of reference as shown in figure 2.3a. By
changing the frame of reference to one that is rotating about the direction of B⃗0 at the Larmor frequency,
the spiraling motion is reduced to a tilting of the magnetization into the x’y’-plane. The x’- and y’-axis
are the axes of the rotating frame of reference. This is illustrated in figure 2.3b. The tilting angle, or flip
angle (FA), of the net magnetization, is decided by the duration of the RF-pulse.

Now that the net magnetization vector is perpendicular to B⃗0, and still precessing at the Larmor fre-
quency, the time varying magnetization can induce a voltage V (t) in a receiver coil, as stated by the
Faraday law of induction

V (t) = −dΦB(t)

dt
, (2.2)

where ΦB(t) is the flux of magnetic field lines through the receiver coil at time t.

Neglecting relaxation effects, the signal S(t) at time t after RF excitation detected by the receive coil is
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Figure 2.3: Illustration of the RF-excitation of the net magnetization vector in (a) the laboratory frame
of reference and (b) the rotating frame of reference.

proportional to the volume integral of the spin density ρ(r⃗)

S(t) ∝
∫
V

ρ(r⃗)e−iϕs(r⃗,t)d3r, (2.3)

where ϕs(r⃗, t) is the phase of the signal at time t which is given by the time integral of the frequency
ω(r⃗, t)

ϕs(r⃗, t) =

∫ t

0

ω(r⃗, τ)dτ. (2.4)

2.1.3 Spatial encoding

In order to form images from the received signal, which part of the signal that comes from each voxel in
the subject must be distinguished. In MR, this is achieved by applying linear field gradients G⃗(t) such
that the total magnetic field along the z-direction at position r⃗ is

B(r⃗) = B0 + G⃗(t) · r⃗, (2.5)

when the static magnetic field B0 is applied along the z-direction. As can be seen from the Larmor
equation (2.1), this translates into a spatially varying frequency that can be used to locate the signal

ω(r⃗, t) = ω0 + γG⃗(t) · r⃗. (2.6)

If a linear field gradient is applied during excitation of the sample it is termed a slice selective gradient,
and if it is applied after excitation to spatially encode the signal it is termed a spatial encoding gradient.
In the case of a slice selective gradient, the frequency of the RF-pulse determines which slice along the
direction of the gradient is excited. Since the spins outside the slice have different resonance frequencies
they will not be affected by the RF-pulse. Usually, slice selective and spatial encoding gradients are
combined to form images. First, a slice selective gradient is applied in one direction, and then spatial
encoding gradients are applied in the two remaining spatial directions.

2.1.4 k-space formalism

A useful concept for MR image acquisition is k-space. By applying a spatial encoding gradient for a given
amount of time, the spins will get a phase shift corresponding to their location in space as described by

ϕs(r⃗, t) = ω0t+ γr⃗ ·
∫ t

0

G⃗(τ)dτ, (2.7)
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Figure 2.4: Illustration of the spatial frequency induced by the spatial encoding gradients. The first figure
shows an array of spins after RF excitation. Then, the spins are exposed to a gradient Gy for a given
time, which induces a phase shift along the y-direction. In the third figure, the spins are also exposed to
a gradient Gx which induces a phase shift along the x-direction as well.

which is simply the time integral of the frequency presented in equation (2.5), thus creating a spatial
frequency. This is illustrated in figure 2.4 after applying gradients in the x- and y-directions in a slice.

When acquiring data for an MR image, the data is sampled and stored in k-space. The k-space of an
image is usually stored slice-wise, with a two-dimensional k-space for each image slice. The axes of these
slices are commonly termed kx and ky and are defined as follows

kx(t) = γ

∫ t

0

Gx(τ)dτ (2.8a)

ky(t) = γ

∫ t

0

Gy(τ)dτ, (2.8b)

where Gx and Gy are spatial encoding gradients applied in the x- and y-direction, respectively.

Assume that a slice selective gradient is applied in the z-direction, parallel to B⃗0, so that only one slice at
a given z-position is excited. By substituting the expressions in equations (2.7) and (2.8) into the signal
equation presented in equation (2.3), and demodulating to remove the carrier signal (ω0), one gets

S(kx, ky) ∝
∫ ∞

−∞

∫ ∞

−∞
ρ(x, y)e−i(kxx+kyy)dxdy, (2.9)

where the time dependency is given implicitly through kx = kx(t) and ky = ky(t). Thus, the trajectory
along which the signal is being sampled in time is given by the strength and direction of the applied
gradients over time. By varying the gradients, it is theoretically possible to maneuver through k-space
in any desired pattern. In other words, the role of the spatial encoding gradients Gx(t) and Gy(t) is to
map the measured time signal from the object onto a spatial frequency signal in k-space. Based on this
knowledge, different gradient sequences can be designed to traverse k-space along selected paths known
as k-space trajectories.

From equation (2.9), the MR signal can be recognized as the two-dimensional Fourier transform of the spin
density distribution within the imaged object. An image of the spin distribution can then be recovered by
doing an inverse Fourier transform of the signal. Note that to form an image in this way, the k-space of
the image must be fully sampled. For k-space to be fully sampled means that there are enough sampling
points with the right density so that an image with the desired resolution and FOV can be reconstructed.
There must be an equal number of k-space sampling points as pixels in the reconstructed image, and
the FOV and resolution are defined by the density and maximum values of the k-space sampling points,
respectively. This is illustrated in figure 2.5, where the relationship is given by

∆k =
1

FOV
∆x =

1

2kmax
. (2.10)
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Δx

k-space Image space

Figure 2.5: Illustration of the relationship between k-space sampling density and resolution (∆x) and
FOV in the image.

2.1.5 B0-inhomogeneity and B0-mapping

When an object is placed inside the MR scanner, it will be magnetized according to its magnetic sus-
ceptibility χ, which describes the amount of internal polarization for a given external magnetic field
strength. Materials are classified as diamagnetic, paramagnetic, or ferromagnetic depending on how they
are magnetized in an external magnetic field. Diamagnetic materials have a negative susceptibility, and
the internal magnetization will oppose the external magnetic field, resulting in a lower total field. Para-
magnetic and ferromagnetic materials have positive susceptibilities, and their internal magnetization is
parallel to the external field, resulting in a higher total field. This is illustrated in figure 2.6. Most bio-
logical materials are diamagnetic since they consist of water, while air is slightly paramagnetic. Different
tissues and tissue-air interfaces will cause magnetic field inhomogeneities when placed inside the scanner,
which will cause mismapping of data and artifacts due to varying precessional frequencies.

χ< 0 χ >0

B0

J J

Figure 2.6: How materials with different magnetic susceptibilities affect the total field when placed inside
an external magnetic field B0. Diamagnetic materials (χ < 0) will get an internal polarization J that
opposes the external field, while the internal polarization in para-/ferromagnetic materials (χ > 0) will
be in the same direction as the external field.

It is therefore useful to have a map that provides information about the static inhomogeneities in the
magnetic field. This can be achieved by acquiring the same image at two different echo times (TE),
which simply denotes the center of the acquisition window. Both images can be acquired after a single
excitation. Since the precessional frequency is directly proportional to the magnetic field strength, as
described by equation (2.1), and the two images have been exposed to the same linear field gradients,
the phase difference at a given position will be proportional to the magnetic field strength B(r⃗). Note
that the signal has been demodulated to remove the carrier, or resonance, frequency ω0 = γB0, so that
the phase difference at position r⃗ is due to the field offset from the assumed value of the magnetic field
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∆B0(r⃗) = B(r⃗)−B0:

ϕ(r⃗, TE2)− ϕ(r⃗, TE1) = γ∆B0(r⃗)(TE2 − TE1)

∆B0(r⃗) =
1

γ

ϕ(r⃗, TE2)− ϕ(r⃗, TE1)

TE2 − TE1
, (2.11)

where ϕ(r⃗, TE1) and ϕ(r⃗, TE2) are the phases at position r⃗ of the images acquired at echo times TE1 and
TE2, respectively. Equation 2.11 can then be used to calculate a B0-map, or field map, from the double-
echo gradient echo sequence which describes the field offset on a voxel-level. Note that this method will
not be able to account for temporal changes in the magnetic field.
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2.1.6 Concomitant fields

In MR theory it is generally assumed that the magnitude of the magnetic field is equal to the z-component
Bz. The magnitude at position r⃗ = xx̂+ yŷ + zẑ is given by equation (2.5), and can be expanded to

Bz = B0 + xGx + yGy + zGz, (2.12)

with G⃗ = Gxx̂ + Gy ŷ + Gz ẑ. However, for Maxwell’s equations to hold, there must also appear one or
two transverse components Bx and By when applying a linear field gradient [7]. These transverse field
terms are known as concomitant fields, and the true magnitude of the magnetic field when applying the
linear field gradients is

B =
√
B2

x +B2
y +B2

z (2.13)

where Bz is given by equation (2.12).

The size and direction of the concomitant fields can be computed from Maxwell’s equations and are as
follows [7]

Apply Gx −→ Bx = zGx,

Apply Gy −→ By = zGy,

Apply Gz −→ Bx = −x

2
Gz and By = −y

2
Gz.

Due to the transverse concomitant fields, the magnitude of the magnetic field will be slightly larger
than what is predicted with the assumption in equation (2.12), as is illustrated in figure 2.7. Since the
Larmor frequency depends on the magnetic field strength, this will result in a phase error over time

dϕc = γ∆Bcdt where ∆Bc =
√
B2

x +B2
y +B2

z −Bz. By expanding ∆Bc as a Taylor series to first order,

which is sufficient for field strengths of B0 > 1T, one gets [7]

dϕc =
γ

2

dt

B0

(
z2(G2

x +G2
y) +

1

4
(x2 + y2)G2

z − xzGxGy − yzGyGz

)
. (2.14)

Note that since ∆Bc > 0, the phase error is always positive irrespective of the polarity of the applied
gradients. The phase error will also decrease with increasing static magnetic field B0, as seen from the
factor 1/B0.

xGx

B0

xGx

B0

Bc

Btot

0 +z-z

Figure 2.7: Illustration of concomitant fields as a result of applying a linear field gradient Gx, and how
it makes the total magnetic field Btot deviate from the static magnetic field B0 as the distance from the
isocenter along with the z-direction increases. Note that the x-value is constant.
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2.2 Fast imaging sequences

Fast imaging is one of the most significant areas of MR imaging and is one of the main topics in this
project. It is therefore essential to have a good intuition on how it works and be familiar with the benefits
and drawbacks of sampling larger areas of k-space at once. Two imaging sequences that are of particular
interest in this project are EPI and spiral imaging, since they have the possibility of sampling all of
k-space in one excitation.

2.2.1 Echo-planar imaging

EPI is an ultra-fast MR imaging sequence that covers all or large portions of k-space after a single RF-
excitation, yielding total image acquisition in a fraction of a second. This section will consider the case
of full k-space coverage after each excitation, known as single-shot EPI.

A typical rectilinear EPI gradient sequence is presented in figure 2.8a with the corresponding k-space
trajectory presented in figure 2.8b. The sequence initiates with a slice selection along the z-direction,
which excites a slice in the xy-plane. Then, prephasing gradients are applied in both the x- and y-direction
before the data acquisition, which specifies the starting position in k-space. Finally, a series of periodic
bipolar gradients and gradient blips are applied in the x- and y-directions, respectively, during which
the data is sampled. The bipolar gradients along the x-direction shift the position back and forth in the
kx-direction while the gradient blips along the y-direction shift the position in ky between each line until
all of k-space is covered.

Since single-shot EPI needs to cover all of k-space between each RF excitation, special demands are
placed on the MR hardware. Because the acquisition needs to be fast to avoid signal decay, the gradients
have to be strong and able to change polarity quickly. The illustration in figure 2.8a does not account
for the rise-time of the gradients, and such immediate responses as illustrated are not realistic. EPI
requires gradient systems with slew rates of about 200 T/m/s and maximum gradient strengths of about
20 mT/m. In comparison, normal imaging sequences usually have slew rates of about 17 T/m/s and
maximum gradient strengths of about 10 mT/m.

RF

Gz

Gx

Gy

(a)

kx

ky

(b)

Figure 2.8: (a) Single-shot EPI sequence and (b) corresponding k-space trajectory. The rise-time of the
gradients has been ignored for simplicity.

Due to the large bipolar gradients during readout, EPI is prone to artifacts such as blurring, distortion,
and ghosting. This is due to the high sensitivity of phase errors that follows from the strong gradients
and the long readout time that results in a low bandwidth (BW). Ghosting in EPI is an artifact that
appears as two distinct copies of the object shifted N/2 pixels along the phase encoding direction, which
is the direction along which the blips are applied. An example of the ghosting artifact is presented in
figure 2.9 toghether with an illustration of the cause of the artifact.
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kx

ky

δ

δ

δ

δ

Figure 2.9: Illustration of EPI ghosting due to eddy current-induced phase shifts in the alternating
frequency encoding lines in EPI. The figure is adapted from the article by Grieve, Blamire, and Styles
[26].

If the forward and backward readout lines in EPI are not exact mirror images of each other, artifacts will
be the result. If there is a phase shift between the alternating lines, as illustrated to the right in figure
2.9, the result will be discrete ghosts, as shown to the left in figure 2.9. Such phase shifts are usually
caused by the induction of eddy currents in the gradient hardware due to the alternating polarity of the
strong frequency encoding gradients.

2.2.2 Spiral imaging

Spiral imaging utilizes increasing sinusoidal gradients in both the x- and y-direction to create a spiraling
k-space trajectory that covers all of k-space. The efficient use of the gradient system that avoids the sharp
turns in k-space as seen in EPI, as well as not needing to sample the outer edges of k-space, causes spiral
imaging to have a shorter readout length for a given resolution and FOV compared to EPI. There are
many ways to design spiral trajectories, but the most common trajectory is the archimedean spiral where
the successive turns of the spiral have a constant separation [27], which is the type of spiral sequence
that will be used in this project.

An archimedean spiral imaging gradient sequence is presented in figure 2.10a with the corresponding
k-space trajectory presented in figure 2.10b. The principle of the gradient sequence is similar to the one
presented for EPI, with a slice selection and k-space sampling with oscillating spatial encoding gradients.
In contrast to rectilinear EPI, the oscillating gradients have a gradually increasing strength, and the
data points are not located on a cartesian grid. Thus, spiral imaging is more susceptible to experimental
errors such as hardware imperfections and eddy currents. Such errors will cause the gradients to deviate
from the planned shapes which will cause the measured k-space trajectory to diverge from the ideal, or
nominal, track. If this is not accounted for during image reconstruction, there may occur severe blurring,
signal loss, or other artifacts in the image.

RF

Gz

Gx

Gy

(a)

kx

ky

(b)

Figure 2.10: (a) Archimedean spiral imaging sequence and (b) corresponding k-space trajectory. The
rise-time of the slice-selective gradient has been ignored for simplicity.
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2.3 Sources to gradient imperfections

As previously stated, fast imaging sequences such as EPI and spiral imaging are highly sensitive to
imperfections in the gradient waveforms. Gradient imperfections may occur for several reasons, and two
of them are eddy currents effects and hardware imperfections, which will be described in this section.

Eddy current induction

When there is a changing magnetic field in proximity to a conducting wire, Faraday’s law states that
there will be induced an electromotoric force (emf) ϵ in the wire as given by [28]

ϵ = −dΦB

dt
, (2.15)

where ΦB is the flux of magnetic field lines through the conducting wire. The minus sign was introduced
by Lenz [28] and indicates that the emf will drive a current in the loop that induces a magnetic field that
opposes the changing flux.

When applying time-varying linear field gradients in an MR system, there will be a change in flux through
all the conducting hardware that the MR system consists of. This will induce an emf that will drive eddy
currents in the hardware, which cause unwanted time-varying gradients and changes in the static magnetic
field. As can be seen from equation (2.15), stronger and more rapidly changing gradients will give rise to
larger eddy current effects, which explains why fast imaging schemes such as EPI and spiral imaging are
prone to eddy current induced artifacts.

Eddy currents can be modeled as a linear response to the changing gradient field [29]

Be(t) = −
dG

dt
∗ he(t), (2.16)

where Be(r, t) represents the eddy current field induced by the changing gradient field G, ∗ is the con-
volution operator, and he describes the eddy current response of the MR system. For a more in-depth
description of the properties of linear systems, see section 2.5.

Eddy currents have a non-linear spatial dependence [30], but in many cases, it is sufficient to use a linear
approximation,

Be(r, t) = B0e(t) +Ge(t) · r, (2.17)

where B0e(t) andGe(t) are the 0th and 1st order spatial components of the eddy current field, respectively,
and r is the spatial location.

2.3.1 Mechanical vibrations of gradient hardware

When a current I passes through a wire segment d⃗l in the presence of a magnetic field B⃗, the wire
experiences a force known as the Lorentz force [28], which is given by

dF⃗ = I⃗dl × B⃗. (2.18)

To generate linear field gradients in MR imaging, currents are run through gradient coils. Since these coils
are in the presence of the static magnetic field, they will experience a force as stated in equation (2.18).
In the case of rapidly switched gradient fields, strong time-dependent mechanical forces are produced that
can stimulate modes of vibration in the gradient coils and cause vibrations under resonance conditions
[31]. Vibrations in the gradient coils can cause unwanted shifts [31] and fluctuations [32] in the magnetic
field.
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2.4 Measuring k-space trajectories

Due to the mechanisms described in section 2.3, the actual k-space trajectories will deviate from the
planned ones. It is necessary to have a way to measure the actual trajectories to describe the error
and to predict the true trajectories at a later stage. This section will present a method for measuring
the correct k-space trajectory of a gradient waveform which makes use of a thin-slice excitation, as first
described by Duyn et al. [16] and extended by Robison et al. [29]. This method enables corrections for the
eddy current induced modulation of the linear gradients, as well as correcting the effects of eddy current-
induced magnetic field fluctuations B0e(t). Most modern MR systems compensate for the modulation of
gradients, and some scanners also have built-in B0e-correction. Despite this, residual B0 eddy currents
may remain uncorrected.

The proposed method measures the signal phase from a uniform spherical phantom to measure the k-space
trajectory. It requires four measurements in order to determine the trajectory kx(t) from the gradient
field pulse Gx(t), which are illustrated in figure 2.11. Each measurement starts with a slice selective pulse
that excites the slice at position x0 or −x0 and then applies the gradient pulse to be measured Gx(t)
during signal detection. At each position, the measurement is repeated with a positive and negative
gradient.

-x0 x0

x

yz

(a)

Gx

RF

Readout

Gx

RF

Readout

(b)

Figure 2.11: Measuring k-space. The illustration in (a) depicts the experimental setup and (b) shows the
sequence diagrams of the measurements. Figure adapted from [29].

In the absence of motion, the phase of the MR signal at position x0 with the applied gradient Gx(t) at
time t after excitation is given by

ϕ(x0, t) = γ

∫ t

0

(G(τ) · x0 +Be(x0, τ)) dτ +∆ω0(x0)t+ ϕc(x0, t) + ϕss(x0, t) + ϕtr(x0), (2.19)

where ∆ω0 is the susceptibility-induced off-resonance frequency, ϕc is the phase resulting from concomi-
tant gradient fields, ϕss is the phase from the slice selective gradient, and ϕtr is the phase due to the
location of the transmit and receive coils. By using the assumption presented in equation (2.17), the
phase can be presented as

ϕ(x0, t) = k̂x(t)x0 + ϕB0
(t) + ∆ω0(x0)t+ ϕc(x0, t) + ϕss(x0, t) + ϕtr(x0), (2.20)

where k̂x is the actual k-space trajectory and ϕB0
is the B0 eddy current phase. Note that equation (2.20)

assumes all eddy currents from gradients in previous repetitions have decayed away by the start of the
readout.
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+x0

+x0

-x0

-x0

I

II

III

IV

+Gx

-Gx

+Gx

-Gx

Gradient polarity
Slice

location Phase term

Figure 2.12: Overview of the four measurements used to measure the k-space trajectory with the corre-
sponding phase terms. Figure adapted from the article by Robison et al. [29].

In order to measure k̂x and ϕB0
, the four measurements are combined as shown in figure 2.12. By

subtracting the phase of the two measurements at position x0, where ϕI(t) has positive and ϕII(t) has
negative gradient polarity, the unwanted field terms are removed

ϕI(t)− ϕII(t) = 2k̂x(t)x0 + 2ϕB0
(t) ≡ ϕA(t). (2.21)

This is also achieved for the phase of the measurements at position −x0, where ϕIII(t) has positive and
ϕIV (t) has negative gradient polarity

ϕIV (t)− ϕIII(t) = 2k̂x(t)x0 − 2ϕB0
(t) ≡ ϕB(t). (2.22)

Finally, ϕA(t) and ϕB(t) can be combined to get the k-space trajectory k̂x(t) and the B0 phase ϕB0
as

follows

k̂x(t) =
ϕA(t) + ϕB(t)

4x0
and ϕB0

(t) =
ϕA(t)− ϕB(t)

4
. (2.23)

One way to obtain the phase difference between two measurements is to divide the complex-valued signal
from one measurement with the other. To get to equation (2.21), the signal from measurement I is
divided by the signal from measurement II such that

SI

SII
∝ eiϕI

eiϕII
= ei(ϕI−ϕII) = eiϕA , (2.24)

and then the phase difference can be extracted by retrieving the phase of the result.
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2.5 Linear time-invariant systems

This section will introduce the concept of LTI systems and present some of their main properties. The
content is based on the description provided by Schetzen in Linear Time-Invariant (LTI) Systems [33],
unless otherwise specified.

An illustration of a simple system is presented in figure 2.13, which produces the output o(t) from the input
i(t). This response will be denoted as i(t)→ o(t). For a linear system, if i1(t)→ o1(t) and i2(t)→ o2(t),
this would mean that C1i1(t) + C2i2(t) → C1o1(t) + C2o2(t), where C1 and C2 are arbitrary complex
constants. In other words, in a linear system, the response of a linear combination of inputs is the same
linear combination of the individual responses of each input. If the system is also time-invariant, it has
the property that the characteristics of the system is fixed in time. This means that if i(t)→ o(t), then
i(t− τ)→ o(t− τ), where τ is an arbitrary time point.

i(t) o(t)
SYSTEM

Figure 2.13: Illustration of a system with input i(t) and output o(t).

By combining these properties into a linear and time-invariant, or LTI, system, if the input is a linear
combination of a waveform f(t) and translates of that waveform f(t− τ)

i(t) =
∑
n

Cnf(t− τn), (2.25a)

then the system response is given by

o(t) =
∑
n

Cng(t− τn), (2.25b)

where g(t) is the system response to f(t).

Consider a segment of some arbitrary waveform i(t), for example as illustrated in figure 2.14a. Any input
waveform can be approximated by a piecewise constant curve iϵ(t), which consists of a sum of rectangles
under the curve with width ϵ and height i(nϵ) that are centered at time points nϵ

iϵ(t) =
∞∑

nϵ=−∞
ϵ i(nϵ)δϵ(t− nϵ), (2.26)

where δϵ(t) is defined as

δϵ(t) =

{
1
ϵ if − ϵ

2 < t < ϵ
2 ,

0 otherwise,
(2.27)

which has an area of one, and is illustrated in figure 2.14b.

From equations (2.25), the LTI system response to iϵ(t) is

oϵ(t) =

∞∑
nϵ=−∞

ϵ i(nϵ)hϵ(t− nϵ), (2.28)

where hϵ(t) is the system response to δϵ(t). To obtain the continuous output o(t), let ϵ→ 0, which yields

o(t) =

∫ ∞

−∞
i(τ)h(t− τ)dτ, (2.29)

where
h(t) = lim

ϵ→0
hϵ(t).
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Figure 2.14: Illustration of (a) an arbitrary input waveform i(t) and the corresponding step approximation
iϵ(t), and (b) the function δϵ(t).

The integral in equation (2.29) is recognized as a convolution integral. Also, note that in the limit ϵ→ 0,
δϵ(t) is the dirac delta δ(t), also known as the impulse function. Therefore, as h(t) is the system response
to δ(t), it is known as the impulse response function.

If the impulse response function h(t) of an LTI system is known, the output of the system can be
determined for any input by taking the convolution of the input with h(t). This means that the impulse
response of an LTI system can be used to completely characterize the system. The convolution operation
can be simplified by taking the Fourier transform since, in the frequency domain, a convolution becomes
a simple product

O(ω) = I(ω) ·H(ω), (2.30)

where ω is the angular frequency, and O(ω), I(ω), and H(ω) are the Fourier transforms of o(t), i(t), and
h(t), respectively. Note that in system theory, the Fourier transform of the impulse response function
H(ω) is known as the transfer function. Unfortunately, due to earlier conventions in the MR field, the
term impulse response will be used for both h(t) and H(ω) when describing an MR gradient system.
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2.6 Gradient system characterization

In this project, the behavior of the gradient system will be characterized in order to predict the k-space
trajectories of spiral sequences. This section will present the theory behind the method that will be used
to determine the response of the gradient system.

By treating an MR gradient system as LTI, one may completely characterize it by determining its gradient
impulse response function, or GIRF. This can be performed by measuring the actual gradient waveforms
for a set of known input waveforms and calculating the GIRF based on the relation presented in equation
(2.30). The method for gradient system characterization that will be presented in this section is based
on the description by Vannesjo et al. [23].

Let Ô(ω) = O(ω)+η(ω) denote the measured gradient output in the frequency domain, where η(ω) is the
noise in the measurement with standard deviation σ(ω). Inserting this into equation (2.30), the resulting
estimate of the GIRF in the frequency domain, denoted H(ω), is

Ĥ(ω) =
Ô(ω)

I(ω)
= H(ω) +

η(ω)

I(ω)
, (2.31)

where I(ω) denotes the input gradient in the frequency domain. To get a good estimate of H(ω), I(ω)
should ideally be large and equal for all frequencies of interest. As that corresponds to a dirac delta in
the time domain and is impossible to generate, Vannesjo et al. proposes to use a series of short triangular
pulses, where each pulse is described by

i(t) =

{
p · (T − |t|), |t| ≤ T
0, |t| > T,

(2.32)

where T is half the duration of the triangular pulse, and p is the slope. Figure 2.15a illustrates several
such triangular pulses with the same slope but with different lengths, and figure 2.15b illustrates the
frequency composition of the triangle pulses. The reason for using several pulses is that the Fourier
transform of each triangle has zeros, as can be seen in figure 2.15b, which amounts to blind spots at
frequencies

ω|I=0 =
2πn

T
, n = ±1, 2, 3... (2.33)

Thus, by including several pulses of different lengths, one obtains complementary response information.
To combine the information from the separate input and output measurements, the least-squares estimate
is calculated for Ĥ(ω) by

Ĥ(ω) =

∑
j I

∗
j (ω) · Ôj(ω)∑
j |Ij(ω)|2

= H(ω) +

∑
j I

∗
j (ω) · η̂(ω)∑
j |Ij(ω)|2

, (2.34)

where I∗(ω) is the complex conjugate of I(ω), and j counts the input gradients.

Until now, the method only determines the self-response of the gradient field components. It can easily
be extended to include cross-responses between other undesired field components, such as changes in the
static magnetic field due to an applied linear field gradient. To do this, the measured outputs must be
expanded to a suitable set of spatial basis functions such as the spherical harmonics, where each harmonic
makes up a separate output channel m. Also, each controlled input of the system makes up an input
channel l, which, for a gradient system, usually consists of the x-, y-, and z-gradient channels. For each
combination of input and output channels, separate impulse responses can be determined. This gives the
following complete description

Om(ω) =
∑
l

Il(ω) ·Hl,m(ω), (2.35a)

Ĥl,m(ω) =

∑
j I

∗
l,j(ω) · Ôl,m,j(ω)∑

j |Il,j(ω)|2
. (2.35b)
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Figure 2.15: (a) Triangular input pulses with slope p, where the longest pulse has duration 2T , and (b)
the frequency composition of the same pulses.

Note that the number of available output channels is limited by the measurement technique.

The measured gradient waveform in output channel m, ôm(t) can be determined based on k-space tra-
jectory measurements, for example as described in section 2.4, by using the relation

ôm(t) =
1

γ

dk̂m(t)

dt
, (2.36)

where γ is the gyromagnetic ratio of the hydrogen-nuclei, and k̂m(t) is the time-varying phase accumulated
due to fields of the respective output channel. For the technique presented in section 2.4, only the 0th
and 1st order field responses is measured, such that m = 0, x, y, z. For better readability, the 0th order
phase (k̂0) and the 1st order phases (k̂x,y,z) will be referred to by the notations used in section 2.4,

which are ϕB0 and k̂x,y,z respectively. The corresponding outputs are ô0 = B0e and ôx,y,z = Ĝx,y,z.
Furthermore, the only cross-responses available with the technique presented in section 2.4 are between
the input channel and the 0th order response. As a result, the GIRFs that can be determined with this
technique is

Ĥxx(ω), Ĥx0(ω), Ĥyy(ω), Ĥy0(ω), Ĥzz(ω), and Ĥz0(ω).

After determining the GIRF, it can be used to predict the actual shapes of planned gradient waveforms.
These predictions can be used during image reconstruction to correct for deviations of the k-space tra-
jectories and has been shown to improve image quality [34]. Having defined the gradient waveform in
each of the input channels il(t), the output waveforms ôm(t) can be predicted as follows:

ôm(t) =
∑
l

∫ ∞

−∞
il(t) · ĥl,m(t− τ)dτ

FT←→ Ôm(ω) =
∑
l

Il(ω) · Ĥl,m(ω). (2.37)
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2.7 Parallel imaging

This project will use parallel imaging to achieve higher resolutions and reduce artifacts from phase
accumulation in the signal. This section will introduce the concept behind parallel imaging in general
and present the theory behind SENSE, which is the specific method used to reconstruct the images in
this project.

Current MR scanners operate at the limits of potential imaging speed because of the hardware and
safety restrictions caused by the rapidly switching of linear field gradients. However, a further increase in
imaging speed can be achieved with parallel imaging, which utilizes the spatial information from several
receiver coils as spatial encoding. In modern MR scanners, receiver coil arrays typically consist of 32 or
64 individual coils. The signal intensity in a receiver coil decreases with the distance to the source so that
the signal can be located based on the relative signal strength in the coils, known as the coil sensitivity
c. See figure 2.16a for a simple illustration of how this is used to determine the position of a voxel.

Using parallel imaging as spatial encoding allows for partial sampling, or undersampling, of k-space while
maintaining full spatial resolution. The amount of undersampling is described by the reduction factor
R, which usually ranges from 2-6. Typically the undersampling is performed by reducing the sampling
density in k-space, which amounts to reducing the FOV, as illustrated in figure 2.16b for a simple cartesian
sampling scheme. Without the additional spatial information from parallel imaging, a reduced FOV would
cause aliasing artifacts. If the maximal k-value had been reduced instead, the resolution in the final image
would be reduced which is not desirable. Several image reconstruction schemes for parallel imaging have
been developed, with some of the most known being SMASH [35], GRAPPA [36], and SENSE [37]. This
section will present SENSE, which is a shorthand notation for SENSitivity Encoding.

(a)

FFT

FFT

FOV

FOV

Δk

2Δk

k-space Image space

1
2

(b)

Figure 2.16: Parallel imaging concepts. (a) The signal from the gray voxel will have different intensities in
the four coils around the subject, depending on the distance. (b) Undersampling in k-space with R = 2.
By doubling the distance between the readout lines the FOV is reduced by half, introducing aliasing in
the reconstructed image without parallel imaging.

2.7.1 Sensitivity encoding (SENSE)

This section will first describe SENSE in terms of sampling on a cartesian grid in k-space, which amounts
to a simple unfolding of the signal in image space. Then, it will provide a more general, albeit less
intuitive, description which allows for an arbitrary k-space trajectory in two dimensions, and finally, how
B0-correction is performed with SENSE reconstruction.
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Cartesian k-space trajectories

In cartesian sampling, each pixel in the image will periodically repeat itself with a spacing determined
by the distribution of data in k-space. In a fully sampled k-space, this repetition occurs only once within
the FOV. By undersampling with a factor R, by sampling every Rth line in k-space, the pixels will repeat
R times along the undersampled direction in the reduced FOV. This is illustrated in figure 2.17. With
Nc coils, one will get Nc aliased images where the pixels are weighed by the coil sensitivity c at the
corresponding position in the full FOV. The signal intensity in position (x, y) in the image from coil γ is
given by

Iγ(x, y) = cγ(x, y1)ρ(x, y1) + cγ(x, y2)ρ(x, y2) + ...+ cγ(x, yR)ρ(x, yR), (2.38)

where ρ describes the true signal intensities in the R superimposed pixels when y is the undersampled
direction. This can be rewritten as

Iγ =

R∑
l=1

cklρl (2.39)

where the index l counts from 1 to R, specifying the location of the superimposed pixels.

By including all Nc coils, a set of linear equations can be constructed per pixel, described by the following
matrix equation

I⃗ = Cρ⃗, (2.40)

where I⃗ is a column vector with Nc elements describing the intensity of the same voxel in the reduced
FOV in different coils, C is the coil sensitivity matrix with dimensions Nc× R, and ρ⃗ is a column vector
with R elements describing the intensities of the R unfolded pixels in the full FOV.

To reconstruct the full FOV image, the vector ρ⃗ must be determined for all pixels in the reduced FOV.
This can be performed by using a generalized inverse of the sensitivity matrix

ρ⃗ = (CHC)−1CH I⃗ , (2.41)

where the superscripts H and −1 denote the complex-conjugate and inverse, respectively. Equation (2.41)
can be solved as long as R < Nc. Note that equation (2.41) does not account for noise correlation, which
may be an issue if the coils are not entirely decoupled. A detailed description of how to account for this
is provided by Pruessmann et al. [37].

Aliased pixel

Unaliased pixel
(outside full FOV)

Reduced FOV
(imaged) 

Repeated image

Full FOV 
(reconstructed)

Figure 2.17: Aliasing in cartesian sampling with a reduction factor of R = 4, where the undersampling is
performed by reducing the number of k-space lines. The reduced FOV which is being sampled is repeated
in both directions. The four black pixels all contribute to the signal that is measured in the pixel in the
reduced FOV, and the goal of cartesian SENSE is to unfold the signal into the four separate pixels in the
full FOV.
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Arbitrary k-space trajectories

With non-cartesian k-space trajectories, the situation is more complicated since the aliasing that occurs
due to undersampling is complex and does not allow for a simple unfolding in the image. Therefore,
a different method is required to reconstruct undersampled data where the k-space is not sampled in a
cartesian manner.

Consider an imaging experiment with Nc coils where the whole subject is located within the volume V .
After demodulating the carrier signal, the received signal in coil number γ is given by

Sγ(t) =

∫
V

m(r⃗)e−ik⃗(t)·r⃗cγ(r⃗)dV, (2.42)

where t is the sampling time, m(r⃗) is the magnetization at position r⃗, and k⃗(t) is the k-space position at
time t, and cγ(r⃗) is the coil sensitivity at position r⃗.

Assume that the image to be reconstructed has N × N pixels and that the total number of sampling
points in k-space is Nκ. Equation (2.42) can then be discretized in space and time to yield

s(γ,τ) =

N2∑
ρ=1

E(γ,τ),ρmρ,
γ = 1, ..., Nc

τ = 1, ..., Nκ
(2.43)

where mρ = m(r⃗ρ), and the indices τ and ρ count sampling time points and image voxels, respectively.
E denotes the encoding matrix with elements

E(γ,τ),ρ = cγ(r⃗ρ)e
−ik⃗τ ·r⃗ρ . (2.44)

By placing the measured data from all coils in a vector s⃗ of size Nc × Nκ and the reconstructed image
values in a vector m⃗ of size N2, equation (2.43) can be rewritten as a matrix equation

s⃗ = Em⃗, (2.45)

where the encoding matrix E has dimensions (Nc ×Nκ)×N2. Equation (2.45) may be solved for m⃗ in
order to reconstruct the image by using a generalized inverse

m⃗ = (EHE)−1EH s⃗. (2.46)

However, the right-hand side of equation (2.46) is too large to invert, and it is more efficient to solve the
system iteratively using the conjugate-gradient (CG) method [9, 38]. By rearranging the equation as

(EHE)m⃗ = EH s⃗, (2.47)

fast Fourier transform (FFT) with forward and reverse gridding operations can be combined with the CG
iteration loops to increase reconstruction speed. For a more in-depth description of this, see the article
by Pruessmann et al. [9].

B0-correction

B0-correction during SENSE reconstruction can be performed with an extended signal model if a map of
the static inhomogeneity is acquired, for example with the method described in section 2.1.5. Since an
offset in B0 causes an offset in resonance frequency of the spins, it will cause an accumulation of phase
in the acquired signal over time. By introducing a resonance offset of ∆ω0(r⃗) = γ∆B0(r⃗), the signal in
equation (2.42) can be expressed as

Sγ(t) =

∫
V

m(r⃗)cγ(r⃗)e
−ik⃗(t)·r⃗−i∆ω0(r⃗)tdV. (2.48)

In order to discretize equation (2.48) and end up with the same expression as in equation (2.43), the
encoding matrix E now reads

E(γ,τ),ρ = cγ(r⃗ρ)e
−ik⃗τ ·r⃗ρ−i(∆ω0)ρtτ , (2.49)

where (∆ω0)ρ = ∆ω0(r⃗ρ). By substituting the new encoding matrix into equation (2.47), the reconstruc-
tion can still be performed iteratively with the CG method.



3 Methods

All measurements for the work presented in this report were acquired on a Siemens MAGNETOM Terra
7T MR scanner at St. Olavs hospital in Trondheim, Norway. The work consists of three parts in
the following order: First, the gradient system was characterized by calculating a GIRF. Second, spiral
trajectory measurements were performed and compared to GIRF predictions. Third, image reconstruction
was performed for spiral imaging with k-space trajectory correction provided by GIRF predictions.

3.1 Gradient system characterization

The GIRF was determined with the method presented in section 2.6. In total, seven triangular pulses
with a slew rate of 190 T/m/s and time-to-peak ranging from 20-140 µs at 20 µs increments were used
to calculate the system response.

To measure the triangular pulses, the method described in section 2.4 was used to determine the k-space
trajectories, from which the gradient waveforms can be found. First, the data acquisition was performed
on a spherical phantom with a one-channel head-coil. The measurements included 15 gradient waveforms
in all three directions, consisting of 7 pairs with opposite polarities plus one reference acquisition with
no gradient. All measurements were repeated eight times for averaging purposes. The acquisition time
was TA = 40.96 ms and began 4.52 ms after RF excitation, and the triangular pulses were centered at
1/32 of the acquisition. The total scan time for all measurements in one direction was 720 s so that all
necessary data for GIRF calculation was acquired in 36 minutes. The distance from the isocenter to the
slices used for further processing was 5.1 cm, and the slice thickness was 1 mm. Secondly, the acquired
data was further processed in MATLAB version R2021b (9.11.0), and the code is shown in appendix
A.1. The mapVBVD-function from the toolbox FID-A (version 1.2) was used to import the Siemens raw
data into MATLAB. The actual k-space trajectories and the 0th-order phase ϕB0

of the measurements
were calculated according to equations (2.21-2.23) for all applied gradients and averaged over the eight
repeated measurements. Finally, the actual gradients and B0e were calculated according to equation
(2.36).

The calculation yielded seven triangle pulses with corresponding B0e-responses along the x-, y-, and z-
direction, which were used as output in the GIRF calculation. A least-square estimate of the GIRF was
calculated according to equation (2.35) using the open-source GIRF-package provided with the paper by
Vannesjo et al. [23]. In the end, a raised cosine filter with full width at half maximum (FWHM) of 60
kHz and a roll-off factor of 1/4 was applied to the GIRF.

A similar procedure was used to determine the GIRF with a 32-channel head-coil with the same phantom
and sequences. However, the center of the phantom was not centered at the isocenter, and as a result,
some of the slices 5.1 cm away from the isocenter contained only a small part of the phantom. This yielded
a low SNR and the slices located 3.4 cm away from the isocenter were used for further processing off-site
instead. The GIRF calculation was performed using the same method as described for the one-channel

22
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coil. In addition to averaging over the eight repeated measurements, the data were also averaged over the
32 receive channels. Due to the nature of the k-space trajectory calculation, no additional step was needed
to remove the receive coil-specific phase shifts in the data. After calculating the gradient waveforms and
corresponding Be0-responses, the GIRF was calculated as described in the previous paragraph.

3.2 Spiral trajectory measurements

Spiral sequences with different sequence parameters as described in table 3.1 were designed, and the
nominal gradient waveforms were calculated based on the approach first described by Pipe and Zwart
[39]. The in-plane resolution ranged from 0.74−2.40 mm, and acquisition acceleration by parallel imaging
was used for the higher resolutions with acceleration factors R = 2−4. An example trajectory is presented
in figure 3.1a along with the corresponding gradient waveforms in figure 3.1b. The frequency composition
of the gradients of a selection of the spiral trajectories is presented in figure 3.2. Then, k-space trajectory
measurements of all the spiral sequences in table 3.1 were performed on a spherical phantom, with
repetition time TR = 4000 ms and FA = 90◦, with eight averages. Some measurements were performed
with a one-channel head coil and others with a 32-channel head coil, as specified in table 3.1. The
distance from the isocenter to the slices used for further processing was 5.1 cm for the one-channel
receive coil and 3.4 cm for the 32-channel receive coil, and the thickness was 1 mm for both coil setups.
Note that the values of TR and slice thickness in table 3.1 refer to the sequence parameters for the
spiral image acquisition and thus differ from the values used during k-space trajectory measurements.
The measurements and calculations to retrieve the true k-space trajectories and ϕB0

were performed as
described in section 2.4, and the gradients and B0e were calculated according to equation (2.36).

Predictions were made for the spiral gradients using the GIRF-package [23] along with the previously
acquired GIRF, and comparisons were made between the measured, nominal, and predicted k-space
trajectories, gradient waveforms, and B0e. There was observed a time delay between the measured and
nominal waveforms, which was determined numerically by minimizing the root mean square (RMS) error
as a function of time shift and corrected for before comparing the waveforms.

Table 3.1: Imaging parameters of the acquired spiral trajectories in this work. The acceleration factor R
describes the undersampling during image acquisition.

FOV (mm) Slice (mm) R Res (mm) TE (ms) TR (ms) TRO (ms) Coil setup
140 2.0 1 2.00 2.1 2000 31.3 1ch
192 2.0 1 2.40 2.4 2000 32.7 1ch, 32ch
192 2.0 2 1.39 2.5 2000 37.3 32ch
192 2.0 3 1.00 2.5 2000 39.3 32ch
164 2.0 1 2.00 2.4 2000 36.7 32ch
164 2.0 2 1.21 2.5 2000 39.5 32ch
140 2.0 1 1.71 2.4 2000 37.8 32ch
140 2.0 2 1.08 2.5 2000 40.0 32ch
140 2.0 4 0.74 2.7 2000 40.5 32ch

3.3 Spiral imaging

3.3.1 Data acquisition

Image data of a spherical water-filled phantom and a healthy volunteer was acquired with a 32-channel
head receive-coil. Written informed consent was obtained from the volunteer before imaging.

Single-shot spiral imaging was performed with the imaging parameters presented for the rows with the
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Figure 3.1: A representative input spiral sequence. (a) Nominal k-space sampling trajectories. (b) Input
readout gradients.
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Figure 3.2: Frequency spectra of a selection of spiral input gradients.
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32-channel coil in table 3.1, with resolutions ranging from 0.74− 2.40 mm and acceleration factors up to
R = 4. The spiral trajectories were the same as used during spiral trajectory measurements as described
in the previous section, and they were designed with the approach described by Pipe and Zwart [39] to
get the desired k-space coverage. Each sequence consisted of 20 repeated measurements of one slice at
the isocenter in the transverse orientation. The slice thickness was 2 mm, and the FOV ranged from
140− 192 mm, with TR = 2000 ms. The readout length (TRO) and TE varied with trajectory, and the
TE was kept as short as possible for all measurements.

For correction of static inhomogeneities in B0, field map measurements were acquired from two gradient-
echo images with different TEs. For the phantom measurements, the following parameters were used:
FOV = 192 mm, resolution = 2.0 mm isotropic, slice thickness = 2.0 mm, TE1/TE2 = 4.08/5.10 ms,
TR = 200 ms. For the in-vivo measurements, the FOV was increased to 220 mm, keeping the other
parameters the same as for the phantom measurement. The field maps were calculated from the phase
difference between the voxels in the two images with different TEs according to equation (2.11). The
gradient echo acquisitions with the shortest TE were used to calculate the coil sensitivity profiles for the
32-channel head receive coil, which was later used for iterative SENSE reconstruction.

3.3.2 Image reconstruction

Image reconstruction was performed with the open-source MR imaging package MRIReco [40], which
is written in Julia [41], that offers a high-performance and flexible reconstruction framework. It of-
fers standard cartesian and non-cartesian reconstruction in addition to iterative SENSE-reconstruction,
built-in methods for calculating coil sensitivity maps, and B0-correction. All images in this work were
reconstructed with the iterative SENSE scheme in MRIReco which is based on the approach described
by Pruessmann et al. [9], using sensitivity profiles based on the ESPIRiT approach [42]. The built-in
B0-correction in MRIReco was used with the field maps calculated from the gradient-echo images. The
version of Julia used in this work was 1.7.3.

Each acquired image was reconstructed with nominal, GIRF-predicted, and measured k-space trajectories.
The images were reconstructed with and without time shift of the nominal trajectories to investigate the
effect of a simple delay-correction. The time shift was determined from the spiral trajectory measurements
described in section 3.2. To account for the spatially uniform phase modulations due to eddy current
effects the imaging data was demodulated by the predicted or measured ϕB0

before image reconstruction.
The GIRF-predicted trajectories were reconstructed both with and without ϕB0

-correction to investigate
the effects on the reconstructed image. The ϕB0

was assumed to be zero throughout the acquisition for
both nominal cases. To summarize, the following five trajectories were used to reconstruct each spiral
image: measured (used as reference), GIRF-predicted with ϕB0 -correction, GIRF-predicted without ϕB0-
correction, nominal delay-corrected, and nominal without delay-correction.

As mentioned for the spiral trajectory measurements, the positioning device for the phantom was not
tailored for the 32-channel head coil, and the center of the phantom was located above the isocenter. More
accurately it was displaced along the anterior-posterior axis, towards the anterior side. This yielded a
wrap-around of the signal over to the posterior side of the reconstructed image since the edge of the
phantom was outside the FOV. To avoid wrap-around, a linear phase was added to the image data along
the phase encoding direction before reconstruction so that the image was shifted 1.0 cm in the posterior
direction. This was done for both the gradient echo sequence and the spiral sequences.

The FOVs smaller than 192 mm were too small to encapsulate the entire phantom during phantom
measurements, even when shifting the image as described in the paragraph above. To avoid additional
image artifacts due to a reduced FOV all phantom images were reconstructed onto a FOV of 192 mm.
This resulted in an increase of undersampling with a factor of 1.2 and 1.4 for the images with FOVs of
164 and 140 mm compared to the values presented in table 3.1, respectively.

For the in vivo measurements, a phase shift was added in the phase encoding direction that shifted the
images 7 mm towards the posterior side before reconstruction. This was performed for all spiral sequences
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and the gradient echo sequence. All in vivo images were reconstructed onto a FOV of 220 mm, resulting
in increased R-values with a factor of 1.1, 1.3, and 1.6 for the images with FOVs of 192, 164, and 140
mm, respectively.

3.4 Handling of time axes

For the GIRF predictions to correctly predict the time delay of the system, the handling of the time axis
needs to be consistent during GIRF calculation and gradient predictions. This can be done in several
ways, but figure 3.3 shows how consistent time axes have been achieved in the work presented in this
report. As all the acquired data was discrete in time, the time point of the measurements has been chosen
to be in the center of the time intervals with widths of ∆t.

The system input was discretized into time steps of 10 µs with the initial time point being located at 5 µs,
and the measurements had a time step of 2.5 µs with the initial point at 1.25 µs. As the gradients were
found by differentiation of the measured k-space trajectories, the time axes of the calculated gradients
were shifted with ∆t/2. As the GIRF calculation needed the time axes of the input and output to have
the same size, the input triangles were gridded onto the same time axis as the output gradients.
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Figure 3.3: Handling of time axes. The gray boxes visualize the time intervals of the discrete measure-
ments, and the lines depict where the data points are chosen to be placed within the time intervals.



4 Results

4.1 Gradient system characterization

The k-space trajectories for the largest triangle pulse is shown in figure 4.1 along with ϕB0
, measured with

the one-channel head-coil. The ϕB0 -data has been filtered with a raised cosine filter with FWHM of 60
kHz and a roll-off factor of 1/4 to remove noise. The figures to the left show the entire acquisition, while
the figures to the right are zoomed in around the time the triangle pulses were applied. Upon applying
the triangle pulses, the k-space position changes in a step-wise fashion as expected. The nominal k-space
trajectory has a small delay during the triangle pulse compared to the measured trajectory. After the
gradient pulse, the measured trajectory oscillates about the constant nominal k-space value, and this
behavior is observed in all three directions. Towards the end of the acquisition, the k-space position
seems to diverge from the nominal value. The rate and direction depend on the strength and direction
of the applied gradient.

There was induced a ϕB0
due to the applied linear gradients, or else the bottom row in figure 4.1 would

have been zero for all times. Note that the direction of the phases indicates the direction of the applied
gradients that induced the phase, as a phase has no direction in itself. During the application of the
gradient, the largest phase is seen along the y- and z-direction of the scanner. After the gradient has
been applied, a distinct oscillation of the phase is observed in the z-direction. The oscillations are smaller
along the x- and y-directions, and there is observed a drift of the phase along y. Note that the results
shown in figure 4.1 are only for the largest triangle pulse but that all pulses exhibit the same behavior.

The gradient output of the triangle pulses is shown in figure 4.2 along with the B0e response for the
measurements of the largest triangle gradient pulse obtained with the one-channel head coil. The gradient
and B0e data have been filtered with a raised cosine filter with FWHM of 60 kHz and a roll-off factor
of 1/4 to remove noise. The figures to the left show the gradient and field for the whole acquisition,
and the figures to the right show the details around the time the triangle pulses were applied. Just as
for the k-space trajectories, the nominal gradient has a slight lag compared to the measured gradients.
The peaks of the measured gradients are smoother than the nominal, which results in a lower maximum
amplitude. The value of the measured maximum varies between the x-, y-, and z-directions. After the
applied gradient, there is observed a slight oscillation in the measured gradient in all three directions,
where the amplitude decreases with time. The measured eddy current field B0e shows similar properties
as the ϕB0 , with the largest values being observed during the application of the gradient followed by an
oscillation that is the largest along the z-direction. The strength of the induced field depends on the
gradient strength, but the evolution in time is similar for all triangle input pulses.
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Figure 4.1: Measured k (upper row) and ϕB0
(lower row) of the largest triangle gradient with a maximum

amplitude of 26.6 mT/m. The column to the left shows the entire acquisition, while the column to the
right displays the data for a short time interval around the application of the gradient.
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Figure 4.2: Measured G (upper row) and B0e (lower row) of the largest triangle gradient with a maximum
amplitude of 26.6 mT/m. The column to the left shows the entire acquisition, while the column to the
right displays the data for a short time interval around the application of the gradient.
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The magnitude and phase plots of the GIRF describing the self-response of the system with a one-channel
head-coil are shown in figure 4.3. The GIRF has low-pass characteristics for all three directions, with
FWHM of approximately 30-40 kHz, where the response of the z-direction is the broadest. It tapers off
towards zero around ±40 kHz, which is mostly due to the applied low-pass filter. For frequencies below
15 kHz the y- and z-responses are approximately the same, while the x-response is slightly lower and
more narrow. For frequencies above 15 kHz, the GIRF is noisier as the power of the input gradients
is low. Here, the z-response is the highest while the x- and y-response are about the same. For some
frequencies, peaks can be observed in the GIRF. This is seen more clearly in the graph in the upper
right of figure 4.3, which displays the magnitude of the response for low frequencies. Here it can be seen
that the x- and y-response follow each other’s shapes more closely than the z-directions, as their peaks
appear on different frequencies compared to the z-response. The x- and y-responses exhibit a peak at
0.562 kHz, and dips at 1.099 kHz, 1.172 kHz, and 1.343 kHz. The z-response exhibits peaks at 1.343 kHz
and 1.636 kHz and has a dip at 1.367 kHz. For higher frequencies, there is also a broader peak around
12 kHz. More specifically the peaks are located at 11.79 kHz, 11.99 kHz, and 12.40 kHz for the x-, y-,
and z-responses, respectively.

The phase response has a positive slope for all gradient channels at frequencies above 15 kHz. For
frequencies below 15 kHz, there is a small positive slope for the x-direction, no slope for the y-direction,
and a slightly negative slope for the z-direction. Note that for both ranges, the slope shows a linear
behavior. A slope in the phase indicates a delay of the gradients, which was indeed observed in the
gradient measurements shown in figure 4.2. The slope of the phase response of the z-gradient is less
steep than the x- and y-gradient for all frequencies, indicating a smaller delay. The slightly negative
slope of the z-gradient for lower frequencies indicates that the B0e response is seen before the onset of
the input gradients, although only barely. For frequencies up to ∼1.5 kHz, the x- and y-gradient exhibit
approximately the same slope. For higher frequencies, the x-gradient has a steeper slope and thus larger
delays compared to the y-gradient. The phase response also has peaks and dips for lower frequencies that
seem to align with the ones observed in the magnitude response, albeit with opposite polarity. For the
x- and y-response there is a dip at 0.562 kHz, and peaks at 1.099 kHz, 1.172 kHz, and 1.367 kHz. The
z-response has a narrow dip at 1.343 kHz, a broader one at 1.685 kHz, and a smaller one at 1.953 kHz,
as well as a peak at 1.538 kHz.

The parts of the GIRF that describe the cross responses between the 0th-order field (B0e) and the 1st-
order field (linear gradients) are shown in figure 4.4, scaled to the percent of the input. To compare
field responses with different spatial orders, such as B0e and linear field gradients, the responses were
compared on the surface of a sphere with a radius of 10 cm, centered at gradient isocenter [23]. This
means that a gradient of 10 mT/m will amount to a B0e of 1 mT. The same shape can be observed for
the responses at all gradient channels, with almost zero response for low frequencies and then an increase
for frequencies up to ∼25 kHz before it falls off to zero at 40 kHz. The response in the y-direction is
the weakest, and it is difficult to determine the frequency with the highest response due to the noise.
The x-direction shows a higher response at high frequencies, with a maximum of 4% at 27.3 kHz. The
largest response, and thus induced magnetic field, is seen in the z-direction where the maximum response
is 13% at 26.7 kHz. There is also a distinct peak in the lower frequency range for the z-response, located
at 1.44 kHz, which is not observed in any other direction. This frequency matches the main frequency
component of the measured B0e-field along the z-direction shown in the lower left of figure 4.2.

The phase of the cross-response GIRF is shown before unwrapping due to the large jumps in phase caused
by low signal. The phase for low frequencies (≤ 5 kHz) is very noisy, which is due to the low magnitude in
this region. The less noisy parts, such as the phases of the x- and z-responses for frequencies above 5 kHz,
shows a linearly increasing behavior for frequencies above 15 kHz, and the z-direction has a flat region
with some peaks for frequencies lower than 15 kHz. It is also likely that the x- and y- phase responses
are zero for frequencies close to zero, although the lack of unwrapping makes it appear different. The
phase of the x-response exhibit a slightly more steep behavior than the z-direction. The cross-response
in the y-direction is weak and noisy, making the phase response hard to interpret.



CHAPTER 4. RESULTS 31

-40 -20 0 20 40

Frequency [kHz]

0

0.2

0.4

0.6

0.8

1

1.2
G

IR
F

 m
ag

ni
tu

de

H
xx

H
yy

H
zz

0 0.5 1 1.5 2 2.5

Frequency [kHz]

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

G
IR

F
 m

ag
ni

tu
de

H
xx

H
yy

H
zz

-40 -20 0 20 40

Frequency [kHz]

-6

-4

-2

0

2

4

6

G
IR

F
 p

ha
se

 [r
ad

]

H
xx

H
yy

H
zz

0 0.5 1 1.5 2 2.5

Frequency [kHz]

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

G
IR

F
 p

ha
se

 [r
ad

]

H
xx

H
yy

H
zz

Figure 4.3: Magnitude (upper row) and phase (lower row) of the GIRF describing the self-response of
the system with a one-channel head-coil. The column to the left shows the whole frequency domain, and
the column to the right is zoomed in on low positive frequencies.
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Figure 4.4: Magnitude scaled to the percent of input (left) and phase (right) of the GIRF describing the
cross-response of the system with a one-channel head-coil.
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Figure 4.5: GIRF in the time domain for the gradient (left) and B0e (right) responses for the system with
a one-channel head-coil. Vertical shifts (∆) are added to the y- and z-components for better readability.

Figure 4.5 shows the impulse response in the time domain for all three gradient channels with the one-
channel head-coil. The gradient response is shown to the left and the B0e response is shown to the right.
The gradient responses rise slightly faster than they fall, and there is a tendency for a delayed second
lobe before they go to zero. There is also a slight oscillation before the main lobes. The responses start
to rise before t = 0, which indicates that there is observed a field response before the application of the
nominal gradient. This is mainly due to the delay-correction applied in the MR system, which consists
of a constant shift in the time of the nominal gradient relative to the acquisition. It is also observed that
the main lobes of the z-responses are slightly behind the other directions, which is reflected in the less
steep slopes of the phases of the z-direction in figure 4.3 and 4.4. The B0e response has a more oscillating
appearance, and the amplitudes vary greatly between the x-, y- and z-directions. As is reflected in figure
4.4, the z-response is the largest, followed by the x-direction and then the y-direction.

The results from the GIRF-measurements with the 32-channel head-coil are presented in appendix B. As
expected, they look rather similar to the results of the one-channel coil presented above. Figure B.1 shows
the k-space trajectories and ϕB0

measured with the 32-channel coil. The k-space trajectories are almost
identical to the ones measured with the one-channel coil, except that the delays between the measured
and nominal trajectories are visibly larger for the 32-channel coil. The time evolution of ϕB0 in the
32-channel coil after the application of the triangle pulse is almost identical along the x- and z-directions,
whereas the drift of the ϕB0

in the y-direction is smaller for the 32-channel coil. Also, the amplitude of
the oscillations in the ϕB0

along z is larger for the 32-channel coil. During the application of the pulse
the induced ϕB0 looks rather different for the two coil setups, although the phase along the z-direction
has the same general shape. After approximately 1.35 ms, the phase induced in the x-direction is almost
twice as large for the 32-channel coil than for the one-channel coil. And in the y-direction, the phase
measured with the 32-channel coil is much smaller and has a different shape in time compared to the
phase measured with the one-channel coil.

The gradients and fields measured with the 32-channel head-coil are shown in figure B.2 in appendix
B. Just as for the k-space trajectories, the measured gradient shapes are similar to the ones acquired
with the one-channel coil, one difference being a larger delay between the measured and nominal gradient
waveforms. The measured B0e-field during the application of the pulse has the same shape but is slightly
larger for the 32-channel coil along the x- and z-directions. Along y, the induced field is smaller and has
opposite polarity in the 32-channel coil compared to the one-channel coil.

The GIRF describing the self-response of the system with the 32-channel coil is shown in figure B.3 in
appendix B. Both the magnitude and phase have the same shape and location of peaks as the GIRF for
the one-channel setup. The main difference between the two is that the 32-channel GIRF has lower noise
levels for high frequencies, which is due to the increased signal from the 32 coils. Another difference can
be seen in the phase of the GIRF for low frequencies, where the phase has a more steep increase with
higher frequencies for the 32-channel setup than for the one-channel setup in all directions, indicating a
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larger delay just as observed. The cross-response part of the GIRFs, shown in figure B.4 in appendix B
for the 32-channel coil setup, are also very similar for the two coil setups. However, in addition to a lower
noise level due to the increased SNR of the 32-channel measurements, the phase along the y-direction
seems to have a negative slope for the 32-channel setup. The low magnitude of the cross-response GIRF
causes unwrapping of the phase to be impossible, and it is difficult to say how the phase behaves for very
high and low frequencies.
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4.2 Spiral trajectory measurements

Figure 4.6 shows the nominal, nominal delay-corrected, measured, and predicted k-space trajectories
of a representative spiral imaging sequence, as well as the distance to the measured trajectory ∆k to
better visualize the errors. The nominal and measured trajectories gradually separate in the center of
k-space and keep an approximately constant ∆k during the remaining acquisition, which yields a lower
maximal k-value kmax for the measured trajectory compared to the nominal. This will lead to a lower
resolution if left uncorrected. In both nominal cases, there is observed a high-frequency oscillation in
∆k, and the error steadily increases as the trajectories separate until it reaches a plateau that exhibits
low-frequency oscillations. From the error, it is also clear that delay-correction improves the accuracy
during the beginning of the gradient, although the oscillating behavior is still present.

The GIRF-predicted trajectory closely follows the measured, and the error is considerably smaller than
for the nominal cases. It is also noted that both the high and low-frequency oscillations seen in the
∆k of the nominal trajectories are less pronounced than the predicted trajectories. The RMS of the
difference to the measured trajectory shown at the bottom of figure 4.6 is 0.8 rad/m, 10.0 rad/m, and
16.7 rad/m for the nominal, nominal delay-corrected, and predicted trajectories, respectively. For all
spiral trajectories included in this work, the RMS of the difference to the measured trajectories was,
presented as median (range): 1.1 (0.8 − 2.1) rad/m, 12.1 (9.2 − 16.1) rad/m, and 19.8 (12.7 − 22.3)
rad/m for the predicted, nominal delay-corrected, and nominal trajectories, respectively. There were
not seen any major differences in the results for the two coil setups. However, this is based on only
two measurements with the one-channel head coil and more measurements are required to say this with
certainty. The RMS-values for all measured spiral trajectories are presented in table C.1 in appendix C.

Figure 4.7a shows the gradient time course of the nominal, nominal delay-corrected, measured, and
predicted data. The difference to measured data is shown in the lower plot. The measured time course
has slightly reduced peak values compared to the nominal, which is caused by the smoothing by the
low-pass characteristics of the gradient system. As seen in the figure, the nominal gradient deviates
the most from the measured. Delay-correction reduces the difference, but not enough to surpass the
predicted gradient. The results from all spiral measurements in this work are as followed, presented as
median (range): The deviation between the measured and nominal gradients has RMS-values of 0.26
(0.15− 0.29) mT/m and maximum values of 0.74 (0.53− 0.98) mT/m, which are reduced to RMS-values
of 0.13 (0.07−0.15) mT/m and max values of 0.65 (0.47−0.88) mT/m by delay-correction of the nominal
gradient. The RMS-values and largest deviations between the measured and GIRF-predicted gradients
are 0.02 (0.01− 0.03) mT/m and 0.08 (0.05− 0.13) mT/m, respectively.

The measured and predicted time course of B0e is displayed in figure 4.7b. The lower plots show the
deviation of the predicted and nominal time courses compared to the measured. The measured 0th order
field component exhibits oscillations at the readout gradient frequency with peak values up to 2.7 µT.
This behavior is predicted by the GIRF, although the amplitude is often slightly underestimated. The
RMS of the difference between the nominal and measured B0e as shown in the figure is 0.81 µT, and
the RMS of the difference between the predicted and measured B0e is 0.25 µT. The results for all spiral
trajectories in this work, presented as median (range), are as follows: The RMS and max error of the
difference between the nominal and measured B0e are 0.78 (0.52 − 1.20) µT and 2.71 (1.50 − 4.23) µT,
respectively. This is equivalent to the RMS and peak values to the measured B0e field since the nominal
field is zero. The difference between the GIRF-predicted and measured B0e had RMS-values and max
errors of 0.25 (0.20− 0.34) µT and 1.05 (0.88− 4.81) µT, respectively.



CHAPTER 4. RESULTS 35

Figure 4.6: Comparison of nominal, nominal delay-corrected, measured and predicted k-space trajectories
of a representative sequence. The lower figure shows the difference to the measured trajectory as a function
of time.
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(a)

(b)

Figure 4.7: Comparison of nominal, nominal delay-corrected, measured and predicted (a) readout gradi-
ents Gx and (b) B0e for a representative sequence. The lower plots show the differences to the measured
data.
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4.3 Image reconstruction

4.3.1 Phantom images

The acquired B0-map for the phantom measurements is shown to the left in figure 4.8. There is a strong
increase in the magnetic field at the bottom of the figure, which corresponds to the posterior direction in
the transversal plane. There are also observed smaller variations when moving right-left in the images,
with peak values seen in the center of the anterior-posterior axis. These inhomogeneities result in image
distortions and blurring, which are visible in the center image of figure 4.8 which displays a reconstructed
spiral image with resolution = 1.0 mm and R = 2 without B0-correction. The most prominent distortion
is seen at the bottom of the figure and is due to the increased field strength in that area. By applying
B0-correction during reconstruction, the artifacts due to B0-inhomogeneities are greatly reduced. This
is illustrated in the rightmost image in figure 4.8. However, there are still some imperfections remaining
even after B0-correction, especially at the bottom of the image.

Figure 4.9 shows magnitude images of the phantom for all reconstruction types as described in section 3.3.2
in the following order from left to right: measured trajectories (reference), GIRF-predicted trajectories
with ϕB0

-correction, GIRF-predicted trajectories without ϕB0
-correction, nominal trajectories with delay-

correction, and nominal trajectories. All reconstruction types have been B0-corrected. Underneath the
magnitude images, the voxel-wise difference between the corresponding reconstruction and the reference
reconstruction is displayed. The difference images are scaled to the percentage of the maximum values
in the reference reconstruction.

All reconstructions based on the nominal trajectories show artifacts in the form of ringing-like circles that
gets more prominent towards the edges of the phantom. For higher acceleration factors, aliasing artifacts
can be seen in the center of the phantom and are easily distinguishable in figure 4.9b-c. These artifacts
have a slight resemblance to the appearance of aliasing in EPI, but due to the nature of the spiral k-space
trajectories, the signal is distributed over the entire image and not in discrete ghosts. All artifacts in the
nominal reconstruction are often seen in spiral MR images as a result of aliasing and k-space trajectory
deviations. By introducing delay-correction to the nominal trajectories, the reconstructed image quality
does improve slightly. However, there are still visible artifacts, especially in the form of ringing parallel
to the edge of the phantom. The delay-correction seems to have the largest effect on the central aliasing
artifact for reconstructions with R > 1.

The reconstructions based on the GIRF-corrections show a large increase in quality compared to the
nominal, and the magnitude images are almost indistinguishable from the reference reconstructions.
The difference images show that there are small differences to the reference reconstructions, but for all
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Figure 4.8: B0-inhomogeneity during phantom measurements, and the effect of B0-correction. The B0-
map is windowed to [-200 rad/s, 400 rad/s], and the reconstructed image has a resolution of 1.0 mm and
an acceleration factor of R = 3.
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Figure 4.9: Phantom images of selected spiral imaging sequences in transverse orientation. All recon-
struction types performed in this work are shown including difference images with the reconstruction with
measured k-space trajectories as reference. The difference images are scaled to ±20% of the maximum
image value in the measured image. The R-value in parenthesis shows the true value when considering
the increase in reconstructed FOV.



CHAPTER 4. RESULTS 39

reconstructions in figure 4.9, the maximum differences to the reference reconstructions are less than 6%
both with and without ϕB0

-correction. The results also show that applying ϕB0
has little effect on the

reconstructed images in the transversal orientation. Note that this may differ depending on the slice
orientation as it decides which gradient axis will play out the spiral sequence. In the transversal case,
it is the gradients along the x- and y-direction that create the spiral trajectory, which also happens to
be the directions with the smallest B0e-responses (as seen in figure 4.4). The ϕB0

-correction is therefore
expected to be more important for the sagittal and coronal slice orientations, which uses a gradient along
the z-direction of the scanner.

The reference reconstructions based on the measured trajectory show a high quality for R-values up to
3. More artifacts are seen for higher R-values, but for reconstructions with R < 4, the images have a
high quality despite the artifacts. However, for R-values above 4, more severe artifacts appear in the
reconstructed images, as seen in figure 4.9d. On the other hand, this kind of behavior is expected for
spiral imaging when the k-space sampling gets too sparse, since the sensitivity profiles do not provide
sufficient spatial information to unfold aliasing with high undersampling factors. In this case, the limit
seems to lie around R = 4 − 5. Also, the B0-correction seems to improve with higher R-values and
resolutions, as can be seen from the decrease in the distortion in the lower parts of the phantom in figures
4.9a-d. In figure 4.9a with R = 1.2 the artifact causes severe distortion, whereas in figure 4.9d with R =
5.5 it is almost completely corrected for.

Using the reconstructed images with measured trajectories as reference, the results of the reconstructions
are quantified in figure 4.10. The figure shows the RMS of the difference in magnitude images, scaled
to the percentage of the maximum value in the reference image, for all reconstruction types and spiral
sequences. The results presented in figure 4.10 reflects what is seen in the reconstructions in figure 4.9.
There is a large improvement of quality when using the GIRF-predicted trajectory during reconstruction
compared to using the nominal, where most spiral images see an improvement from an RMS-value of over
5% with the nominal to an RMS-value of less than 1% for the GIRF-predicted trajectories. Figure 4.10
also shows more clearly that while delay-correction does improve the RMS slightly in some cases, there are
also cases where the RMS-value stays the same or increases by a fraction when applying delay-correction.
The latter is seen for R = 1 − 2 with resolutions ranging from 1.71 − 1.21 mm. By applying ϕB0

-
correction to the reconstructions with GIRF-predicted trajectories, the RMS-values are slightly reduced,
as was observed in the reconstructed images. No systematic difference in the RMS values is observed for
the different resolutions or acceleration factors.

1x 2x 3x 4xSENSE:

Res (mm):

φB0

Figure 4.10: The root-mean-square difference over all voxels in a selection of difference images, where the
measured k-space trajectory reconstruction was used as reference.
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4.3.2 In vivo images

The B0-map acquired for the in vivo measurements is displayed in figure 4.11 along with a reconstructed
image without B0-correction and a reconstructed image with B0-correction. The in vivo field map is less
homogeneous and has higher field deviations compared to the phantom measurements. This is to be
expected due to the increased complexity of a human brain compared to a phantom, with more interfaces
between tissues with different magnetic susceptibilities. Especially the frontal part of the brain, which is
in the proximity of the sinuses, shows large field disturbances due to the air-tissue interface. This results
in a severe off-resonance artifact in the frontal region which is typical for spiral images. By applying
B0-correction to the image, the severity of the artifacts is reduced, especially near the sinuses. More
subtle corrections can also be seen on the skull encapsulating the brain and in the central and posterior
parts of the brain. There are still some off-resonance artifacts left in the corrected reconstruction, but it
is clear that the B0-correction did have a large impact on the image quality

In vivo magnitude images of all the different reconstruction types with B0-correction are shown in figure
4.12 along with the corresponding difference images. The difference images were calculated and scaled
in the same fashion as for the phantom measurements. Despite the short TE, there is still sufficient
contrast and resolution to distinguish between white and gray matter in all images, and increasing the
TE would increase the contrast. Compared to the phantom measurements, the in vivo images have a
smaller visual difference depending on which trajectory was used during reconstruction. Some visual
differences can be seen in the magnitude images and figure 4.13 points out some examples in the image
with 1.0 mm resolution and R = 3. By considering the difference images, it is more clear to see that
the quality of the images changes depending on the reconstruction type. In the difference images of the
nominal trajectories, dark shades can be seen followed by lighter areas close to the edges of the brain,
indicating that the nominal image is more blurred than the reference. By introducing delay-correction
to the images, the area inside the brain shows a more homogeneous difference from the reference image,
but the blurring effect on the edges is still present as can be seen in the difference images.

By applying GIRF predictions during reconstruction, the image quality is increased when compared to
the reference image just as seen in the phantom case. Improvements are seen in the magnitude images
as shown in figure 4.13, but is perhaps more convincing in the difference images shown in figure 4.12.
The average RMS of the difference images shown in figure 4.12 is reduced from 5.1% in the nominal case
to 0.4% with GIRF-correction. Whether or not ϕB0

-correction is applied does not seem to increase the
quality substantially. The average RMS of the difference images in figure 4.12 is only reduced by 0.03%
when applying ϕB0-correction. Note that just as for the phantom reconstructions, all results are from
images acquired in the transversal orientation, and it might be reasonable to expect larger improvements
with ϕB0

-correction for different slice orientations.
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Figure 4.11: B0-inhomogeneity during in vivo measurements, and the effect of B0-correction. The B0-
map is windowed to [-600 rad/s, 600 rad/s], and the reconstructed image has a resolution of 1.0 mm and
an acceleration factor of R = 3 during acquisition. Due to the increased FOV during reconstruction, the
reconstructed R-value is closer to 3.4. The arrows are pointing out the more subtle differences in the
images.
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Figure 4.12: In vivo images of selected spiral imaging sequences in transverse orientation. All reconstruc-
tion types performed in this work are shown including difference images with the reconstruction with
measured k-space trajectories as reference. The difference images are scaled to ±20% of the maximum
image value in the measured image. The R-value in parenthesis shows the true value when considering
the increase in reconstructed FOV.
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Measured GIRF Nominal

Figure 4.13: Differences in magnitude images for the measured, GIRF, and nominal reconstruction types
for the spiral sequence with 1.0 mm resolution and R = 3. The lower row is zoomed in on the rectangles
in the upper row, and the arrows point out the main visual differences in the images.

For R ≥ 2, ring-like intensity variations can be seen in the central region of the brain images even for the
reconstructions based on the measured trajectories. In figure 4.12b with R = 2.3, these are barely visible
and have a broader appearance than in figure 4.12c with R = 3.4. For very high R-values, as shown in
figure 4.12d with R = 6.3, the rings appear with sharp edges, similar to the phantom images with the
highest R-value. Such artifacts are typical to see when there are residual aliasing in spiral images. But
despite seeing more severe aliasing artifacts for higher R-values, the B0-corrections seem to improve with
increasing R, just as for the phantom measurements. For the highest R-value shown in figure 4.12 the
distortion due to the field variations in the frontal area is almost entirely gone after B0-correction.



5 Discussion

In this section, the chosen methods and acquired results will be discussed in four steps. First, the
results will be interpreted and compared with other works and literature. Second, the choice of methods
will be discussed and the limitations and restrictions of the methods will be laid bare. Third, possible
applications for the results will be discussed. In the fourth and final part, possible extensions and further
work will be presented.

5.1 Interpretation of the results

In the first part of the work presented in this report, a GIRF was determined for a 7T system for two
different coil setups. The GIRF was made to include all responses between two relevant end-points for
the user, which are gradient input on the scanner and the actual field behavior seen by the object placed
inside the scanner. The results show that GIRF-characterization based on trajectory measurements
acquired with a thin-slice excitation method is straightforward and fast. Due to limitations of the
trajectory measurements, only self-responses and the cross response between 1st and 0th order fields
were determined, although the GIRF-model is easily extended to include more cross-responses of higher-
order fields.

The GIRF-results can be interpreted by comparing them to an ideal system. In an ideal system, the
self-response would have had a magnitude of one and zero phase for all frequencies. This is not the case
for the self-response of the system looked at in this work. The system has a low-pass behavior, where
the magnitude of the response starts to fall off for frequencies above 10 kHz. It should be noted that the
frequency composition of the input gradients does not cover infinite frequencies, so the response might not
be accurate for very high frequencies. Luckily, frequencies of 10 kHz and above are rarely used in spiral
imaging, and the spiral sequences looked at in this work all had frequencies well below 4 kHz. In this
range (≤ 4 kHz) the magnitude of the response is close to one but does show a very frequency-dependent
behavior with all the distinct peaks. An ideal response with a constant group delay would have a linear
phase response where the slope of the phase determined the duration of the delay. For low frequencies, the
phase of the measured response is approximately linear, indicating that delay-correction will have a good
effect on trajectory correction, but in similarity to the magnitude response, it has frequency-dependent
peaks and bumps that a simple delay-correction will not be able to correct for. All of these deviations
from the ideal system, with or without group delay, indicate that improvements are expected when using
the GIRF to correct for gradient, and thus k-space trajectory, deviations.

The GIRF can also be used for more than just trajectory correction, as the GIRF determined in this
work also includes a cross-response that describes the time-dependent behavior of eddy-current induced
0th order fields. An ideal system would not have any eddy currents, and an ideal cross-response is zero
for all frequencies, both in magnitude and phase. The cross-response measured for the 7T system in this
work is highly frequency-dependent and displays a high-pass behavior. The magnitude of the response
varies greatly over the three input directions. A gradient in the z-direction induces a much larger 0th
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order field than a gradient in the x-direction. If this is not corrected for, one might expect worse quality
in images that use gradients along the z-direction. The z-direction also shows resonance peaks at 1.44
kHz, which is within the range of frequencies covered by the spiral sequences in this work. Unfortunately,
later parts of the work only included transversal measurements which mainly utilize gradients along the
x- and y-directions, so the effects of this resonance have not been investigated.

When the GIRF is defined and determined as in this work, it combines the response of all linear distor-
tions of the gradient waveforms from the gradient design on the scanner to the field measurements. It is
therefore impossible to separate the origins of the response without performing additional measurements
that measure both input and output of isolated stages in the gradient processing chain. Some examples
that will affect the frequency composition of the gradient are software signal processing, eddy-current
compensation, gradient amplifier characteristics, cable effects, coil coupling, eddy currents, and mechan-
ical responses of the gradient system [23]. However, some steps might add such distinct responses to
the gradient that they might be distinguished from the shape of the GIRF. One such example is the
channel-specific characteristic peaks that were observed in the self-response of the GIRF. Based on their
frequencies these peaks are most likely due to mechanical resonances of the gradient coils. This is sup-
ported by earlier observations of acoustic responses at similar frequencies [43, 44]. Furthermore, in the
work presented by Vannesjo et al., which the GIRF-calculation in this work is based on, they measure
peaks in the range of 1.0 - 1.7 kHz which they also ascribe to mechanical resonances of the gradient coils
[23].

Despite being called a one-time effort, the GIRF might need to be determined once for each coil setup
that is to be used alongside GIRF-predictions. The results of this work show differences between the field
responses of a one-channel and 32-channel head receive coil. The reason for this is unknown, but a leading
theory is that the eddy currents that are induced in a coil will vary depending on the coil geometry, and
as a result, the unique response will affect the image encoding in a coil-specific manner. It is therefore
important to measure coil-specific GIRFs by performing separate field measurements inside the relevant
coils if the responses are too different. It has been shown in some cases that the effects of different coils
are negligible [34], but this must be determined on a coil-to-coil basis. Note that the effect of different
GIRFs on the trajectory predictions and image reconstructions has not been investigated in the current
work, so it has not been shown whether the differences between the coils will impact the image quality.

In the second part of the work, spiral sequences were measured and compared to the nominal and
GIRF-predicted gradient waveforms. This part had two main aims, (i) to measure the true deviation of
the nominal trajectories from the measured trajectories, and (ii) to assess the quality of the GIRF by
comparing the GIRF-predictions to the measured field responses. If the GIRF was determined correctly,
all deviations between the measured and predicted trajectories are expected to be due to either non-
linear effects, insufficient frequency coverage of the input used for GIRF-calculation, or higher-order field
terms. The results show that (i) there is a large difference between the nominal and measured gradients.
By introducing a simple delay correction, the error is reduced but it still causes deviations in the k-
space trajectories that are expected to negatively affect the quality of the reconstructed images. The
results also show that (ii) the GIRF-predicted trajectories only have small deviations from the measured
waveforms, and greatly increase the quality compared to nominal trajectories. The median RMS error
over all measured gradients in this work falls from 0.26 to 0.02 mT/m when using nominal and predicted
trajectories, respectively. In addition, the nominal trajectory provides no information about the time
fluctuation of the magnetic field, and the RMS difference to the measured B0e field is reduced from 0.78
to 0.25 µT when applying GIRF-correction to the nominal response.

The third part of the work demonstrated that the GIRF-predictions can be used to achieve spiral image
reconstructions that have the same level of quality as those made with measured trajectories. It further
emphasizes and demonstrates why the nominal trajectories are not sufficient and that a simple delay-
correction will have little effect on improving the image quality for this system in the transversal slice
orientation. Another interesting observation was that inclusion of the 0th order field term, ϕB0

, had
little effect on the image quality. It has earlier been shown to affect spiral imaging [29, 34], but it has
also been shown to have an even larger effect on other imaging schemes such as EPI [34]. The results
also show that further measures may be required to achieve a sufficient reconstruction quality as even
the images reconstructed with the measured trajectories show artifacts and blurring for the in-vivo case.
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This might also cause the images with the different trajectories to look almost identical, despite voxel-by-
voxel difference maps showing an improvement with GIRF-predictions when compared to reconstructions
with measured trajectories. Overall, GIRF-prediction holds great promise towards being a key trajectory
correction strategy, as it yields reconstructions with RMS differences of > 1% over entire slices compared
to measured trajectories.

Although the quality may seem low for the reconstructed in vivo images, the images are promising
considering earlier work on single-shot spiral imaging. Spiral imaging was introduced in the early days of
fast imaging, before the introduction of gradient systems capable of handling EPI [45]. Due to the arrival
of EPI and issues relating to gradient deviations and computationally demanding reconstructions, the
effort put into spiral imaging was later reduced. However, in the last few years, several published works
have shown great potential for spiral imaging. In a study by Engel et al. [46], single-shot spiral imaging
was performed on a 7T system, and examples of their results are shown in figure 5.1. Figure 5.1a shows
an image with similar parameters as in this work, with TE = 3 ms, TRO = 18.5 ms, and a resolution of
1.5 mm. Figure 5.1b shows a higher-resolution image from the same work resulting from a longer readout
with TE = 25 ms, TRO = 53 ms, and a resolution of 0.8 mm. Both images were acquired with R = 4.

Compared to the images in figure 5.1, the reconstructions shown in this work have more artifacts in the
form of off-resonance distortions, residual aliasing, and blurring in the areas around the brain. However,
there are three main reasons for this. First, whereas the sequences in the study by Engel et al. either had
low resolutions with short acquisition times (1.5 mm, 20 ms) or high resolutions with longer acquisition
times (0.8 mm, 60 ms), this work attempted to use higher resolutions with slightly lower acquisition times
(1.0 mm, 40 ms). This indicates higher acceleration factors which are expected to increase the amount
of noise and residual aliasing in the images. Second, the trajectory corrections in the current work were
based on pre-measured trajectories from thin-slice excitation, whereas the work by Engel et al. included
concurrent field monitoring with field probes. Third, more time was probably invested in getting the
correct parameters in every reconstruction step for the results presented in figure 5.1. Especially the
quality of the B0-maps used for B0-correction and the sensitivity maps used for SENSE reconstruction is
expected to be higher in the study by Engel et al. All in all the reconstructions shown in this work look
promising, although there is still work to do to improve the reconstruction quality.

The artifacts in the in-vivo measurements pose an issue for future applications of the spiral reconstruction
in this work, which will be discussed later in section 5.3. It is therefore important to understand what
exactly is causing the artifacts and how they can be reduced. Due to the high similarity between the
measured and predicted spiral trajectories and image reconstructions, the reasons for the low image
quality are most likely not due to flaws in the GIRF correction. Besides that, more investigations must
be performed to isolate the origins of the image artifacts, but speculations based on observations in this
work and other literature can be made. Firstly, spiral imaging is highly susceptible to B0-inhomogeneities
as observed in this work, and even after corrections, there were still strong off-resonance artifacts present

(a) (b)

Figure 5.1: Single-shot spiral-out MR images acquired at a 7T scanner with R = 4. (a) TE = 3 ms, TRO

= 18.5 ms, resolution = 1.5 mm. (b) TE = 25 ms, TRO = 53 ms, resolution = 0.8 mm. The images are
retrieved from the study by Engel et al. [46].
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in the reconstructions. Since the precessional frequency of the nuclei is proportional to the field strength,
off-resonance effects are expected to be worse at the 7T compared to the 3T scanners. Unfortunately,
as B0-correction is somewhat outside of scope for this work, there was not enough time to optimize the
acquisition and calculation of the B0-maps. The result of B0-correction strongly depends on the quality of
the field maps, so putting more effort into creating high-quality and high-resolution field maps is expected
to decrease the appearance of off-resonance effects. Secondly, the residual aliasing seen for high R-values
is most likely due to errors during the SENSE reconstruction, which is often caused by imperfections
in the sensitivity maps. Just as for the B0-maps, there was not enough time to optimize the sensitivity
maps, and improving these might reduce the residual aliasing. At some point, however, there is a limit to
the unfolding that can be achieved with a given coil setup, which means that an increase in acceleration
factor will only introduce new artifacts no matter how optimized the sensitivity maps are. Based on the
results in this work, this limit seems to be around R = 4 - 5.

Another issue is that the GIRF-predictions are not better than the measurements they were based on,
which were made with thin-slice excitations that only account for the 0th and 1st order field terms. Cross-
responses between higher-order field terms were not recorded, and their effects are thus not included
in the reconstructions with measured or predicted field responses. An example of a higher. Higher-
order cross-terms have been reported to affect DWI [24], which is a key application of spiral imaging.
However, whether higher-order cross-terms contribute to the low image quality of the results in this work
remains unknown. More details about the restrictions of thin-slice excitation as a means for trajectory
measurement will be discussed in more detail in section 5.2.

An interesting observation that can be done from the image reconstructions is that the distortions due
to B0 inhomogeneities are less prominent for higher R-values and resolutions. This is not unexpected
and can be explained by looking at the speed through k-space during image acquisition. Since the image
artifacts caused by off-resonance effects occur due to an accumulation of phase over time, the longer an
acquisition is, the worse the artifact will be. By reducing the readout time by increasing the speed through
k-space, the amount of phase that accumulates will be smaller and easier to correct. By just looking at
the acquisition times of the different spiral acquisitions in this work, however, one might see that the
increase in resolution causes the readout time to be approximately the same for all R-values. However,
since a high resolution corresponds to higher k-space values, the speed through k-space is considerably
greater for the high R-values. Also, most information about the image lies at low frequencies. Thus,
despite having the same readout length, sequences with high R-values will spend a shorter time at low
frequencies, thus being less strongly affected by off-resonance. In other words, increasing the acceleration
factor does not only allow for higher resolutions within reasonable times but also reduces off-resonance
artifacts, which are a big issue in spiral imaging, especially at 7T.

5.2 Advantages and limitations of methods

The method used for field measurements in this work was a scheme based on a thin-slice excitation
approach. This method was primarily chosen for its simplicity, given that no additional equipment is
needed other than a phantom. The main limitation of such a thin-slice approach is that it is restricted
to one direction at a time and that it is limited to 0th and 1st order field measurements. Also, the field
response measurements must be obtained separately from the image acquisition. The fact that only one
direction can be measured at a time, and that twice as many gradient waveforms must be measured to
include the effects of B0 eddy currents, causes such measurements to be rather time-consuming. To achieve
good SNR in the measurements, several averages were also performed, resulting in a total acquisition
time of 36 minutes for the triangle gradient measurements that were required for the GIRF-calculation.

Other more sophisticated field measurement techniques, such as dynamic field cameras based on NMR
field probes [19, 20, 30], allows for concurrent field monitoring as well as recording the full spatiotemporal
field evolution in one acquisition. In other words, it is faster and provides higher-order field information
compared to the thin-slice method in this work. However, field probe measurements require additional
advanced hardware, and are probably beyond the capabilities of most MR sites. Overall, the thin-slice
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excitation approach does deliver high-quality results within its limitations. By accepting longer scan
times and limited spatial field terms, this approach well serves the aim of determining a GIRF at any
site. Should these restrictions limit the quality of the GIRF-predictions, however, another method for
measuring field dynamics can be considered.

The main reason why GIRF-correction is of high interest in fast imaging is that it enables high-quality
k-space trajectory corrections, potentially along with other field terms, without the additional time or
hardware that other trajectory correction approaches demand. This is especially relevant to spiral imaging
as there are a limited number of alternative correction strategies compared to more standard imaging
schemes such as EPI. However, GIRF-correction is limited by the underlying assumptions of an LTI
system. In other words, any system response that is not linear and time-invariant will not be accounted
for by the GIRF-predictions. Luckily, the most important sources of dynamic field imperfections are
well modeled as LTI, but smaller deviations from the LTI model are expected due to various reasons
[47–49]. Some non-linear contributions to the gradient processing chain may include gradient amplifier
non-linearities and concomitant fields, and some time-dependent contributions include external sources
that induce field fluctuations as well as thermal heating of the gradient coils. The latter might be a
problem for extensive EPI or spiral imaging schemes that tests the limits of gradient systems. Some of
these effects might be dealt with by applying model extensions or complementary measurements. In a
recent work by Nussbaum et al., thermal variation in gradient response was accounted for with a linear
thermal extension of the LTI model [49].

When being used as a post-correction strategy, the GIRF-corrections are only applicable if the acquired
data contains all necessary image information. This means that the actual k-space sampling must fulfill
the Nyquist criterion, or if parallel imaging is used, it must be sampled sufficiently densely given the
number and sensitivity profiles of the receive coils. If the field perturbations due to system imperfections
cause too large trajectory deviations, the sampled k-space may provide insufficient image information
and the reconstructed image will display artifacts. This must be taken into account, especially for high
R-values, since the GIRF-correction simply estimates the true k-space trajectory without taking into
account whether it will have sufficient coverage or not. As will be described more in detail in section 5.3,
insufficient k-space coverage due to gradient imperfections could be accounted for by using the GIRF for
pre-emphasis.

To achieve sufficient resolution within a reasonable acquisition time, undersampling with iterative SENSE
reconstruction was used in this work. Longer acquisition times will on one side cause increased off-
resonance effects and blurring due to T∗

2-decay along the trajectory [46], but on the other side allow for
higher resolutions or FOVs by sampling higher or more dense k-values, respectively. What acquisition
time or resolution is of interest depends on what kind of application the MR image is meant for, which
be discussed in section 5.3. Nevertheless, the higher a resolution that can be achieved within a given
acquisition time the better, and parallel imaging is therefore an essential part of any high-resolution MR
acquisition.

However, parallel imaging such as SENSE does come at a cost. Since it samples less signal than what is
usually necessary to reconstruct an image, the SNR decreases with a factor of

√
R [37]. In addition, noise

in the image can be enhanced during reconstruction if the coil geometry is suboptimal and regions in the
coil sensitivity profiles are too similar [6]. Another artifact that may be caused by SENSE reconstruction
is residual aliasing, which occurs when there is an error in the unfolding process. Such errors arise if the
coil sensitivity maps are inaccurate or if the R-value is too high for the given coil geometry. Inaccuracies
in the coil sensitivity profiles can be caused by patient movement or in areas with low signal. Residual
aliasing is hard to distinguish in spiral imaging, as opposed to cartesian sampling schemes, as the signal
from one pixel in the full FOV is folded into all the pixels in the reduced FOV. In EPI, residual aliasing is
seen as discrete ghosts repeated R times over the full FOV, whereas aliasing is more difficult to distinguish
in spiral images. An illustration of the effect of aliasing in EPI and spiral imaging is provided in figure 5.2.
Therefore, it is essential to have a coil geometry with good coverage along with high-quality sensitivity
profiles when using high acceleration factors in SENSE.
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(a) (b)

Figure 5.2: Illustration of aliasing for (a) an EPI sequence and (b) a spiral sequence with an undersampling
of R = 2. The images are retrieved from the review paper by Delattre et al. [27].

5.3 Applications

Despite only being applied to spirals in this work, the GIRF-based correction approach is not limited to
just spiral trajectories. Studies have shown promising results for several fast imaging schemes, such as
in the work by Vannesjo et al. for EPI and variable speed EPI (VS-EPI) [34]. This indicates that GIRF-
based predictions might have the potential to remove the need for sequence-specific correction techniques,
which usually require additional scan time or sequence alterations. GIRF-predicted k-space trajectories
also pose as a good substitute for more hardware- or time-demanding techniques for k-space trajectory
or gradient measurements when the time or hardware is lacking. Also, the GIRF-based method used
in this work has the potential of correcting for cross-term field responses of any order, if they can be
measured [23]. Effects of cross-term responses could then be accounted for by using a higher-order image
reconstruction like the one proposed by Wilm et al. [24].

In cases where the altered gradient waveforms cause insufficient encoding, the GIRF could be used as a
basis to calculate pre-emphasis filters that can be used to determine nominal gradients that will result
in the desired trajectory shapes [50]. This will help solve the issue described in section 5.2 of insufficient
k-space sampling due to trajectory deviations caused by the system response. Such filters will attempt to
boost the input for the frequencies that are attenuated most by the system response. However, boosting
the signal requires more power and might be limited by the hardware. A solution that accounts for the
hardware restrictions is to combine pre-emphasis filters with post-acquisition GIRF-correction. Applying
pre-emphasis within the limitations of the hardware will still provide improved trajectory coverage, and
the remaining errors can be corrected post-acquisition.

The results in this work, along with earlier published results on 3T scanners [29, 34], shows that GIRF-
correction might be an important step in the direction of implementing spiral imaging in clinical settings
when combined with B0-correction. Single-shot spiral imaging is especially interesting for neuroimaging
applications such as BOLD fMRI [45, 51], DWI [52], and ASL [53]. BOLD fMRI uses T∗

2-weighted
imaging to detect neural metabolism by detecting changes in the oxygenation of hemoglobin [1]. When
the fraction of oxygenated hemoglobin (oxyhemoglobin) increases due to neural metabolism, the local T∗

2

increases and results in a higher signal in the MR image. By acquiring a series of T∗
2-weighted images over

time, it is possible to study which parts of the brain that are activated and undergo neural metabolism.
DWI is an imaging technique that visualizes the diffusion rates in different tissues by utilizing strong
phase-encoding gradients [3], and is reliant on fast imaging to remove contributions from all motion that
is not diffusion. ASL is an MR method for measurement of cerebral blood flow and uses fast imaging to
ensure a sufficient SNR [2].

Currently, these methods are typically performed with EPI, which does not provide the same acquisition
efficiency as spiral imaging. Also, EPI is more sensitive to motion and pulsatory flow compared to spiral
imaging. Patient movement will cause discrete ghosting in EPI, whereas spiral will show blurring which
is often more desirable. The movement of spins during and between acquisitions can cause artifacts such
as signal loss and distortions, which will scale with the additional phase of the spins which is proportional
to the size of the gradient moments [45]. In EPI, the gradient moments at the center of k-space, albeit
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being zero, grow rapidly at a slight distance to the center. In single-shot spiral-out imaging, however, the
center of k-space is sampled at the very beginning of the acquisition, meaning that the gradient moments
remain small at the center of k-space. As a result, spiral imaging is less sensitive to pulsatile flow.

The improvements in image quality due to GIRF-correction, as shown in the results, are of particular
interest for quantitative MR imaging (qMRI), where the acquired signal is used to calculate quantitative
measures. An example of qMRI is when the signal from DWI is used to calculate a map of the apparent
diffusion coefficient (ADC). In qMRI, physical values such as ADC, velocity, and relaxation times are
determined on a voxel level and are highly dependent on precise signal localization. Thus, even though
the in vivo reconstructions presented in the results do not improve much visually, the improvements on
a voxel level, as shown in the difference images, show that the GIRF-predictions hold promise for qMRI
applications.

What distinguishes the results in this project from the similar works by Robison et al. [29] and Vannesjo
et al. [23] is that the measurements in this work were performed on a 7T scanner. Ultra high field MR
imaging provides a higher SNR and enables sub-millimeter resolution in fast imaging, which is especially
attractive for BOLD fMRI. In a study by Kasper et al., promising results have been found for spiral
BOLD fMRI at 7T using concurrent field monitoring with NMR field probes, where a single-shot spiral
sequence with a resolution of 0.8 mm provided high-quality fMRI results [51]. ASL usually targets lower
resolutions, but benefits from the high duty cycle and short TE that spiral imaging has to offer. The
same is true for DWI, although high resolutions at higher field strengths are of increasing interest [54].

The spirals investigated in this project have short TEs and acquisition times. TEs of about 3 ms are
mostly relevant for DWI and ASL, as the BOLD fMRI relies on T∗

2-weighed images with TEs in the
range of 20-30 ms. However, there are no reasons not to increase the TE-values beyond what is presented
in the current work. Due to image artifacts, the highest reasonable R-value that can safely be applied
during reconstruction with the GIRF-correction method seems to lie around R = 3, which limits the
resolutions to approximately 1.0 mm. However, by increasing the acquisition lengths of the spirals, even
higher resolutions may be achieved without increasing the undersampling factor further as long as the
resulting increase in off-resonance effects and T∗

2-blurring is not too large. Note that since the thin-slice
method for measuring k-space trajectories in this work was limited to an acquisition length of 41 ms, one
would not be able to measure the true trajectories before reconstruction, but there is no such limit to
the GIRF-predictions. For most applications, acquisition times of approximately 60 ms are sufficient to
achieve an acceptable temporal resolution [51]. However, shorter acquisition times can allow for multiple
images per readout, as demonstrated with a spiral in-out scheme at 7T by Kasper et al. which increased
the contrast-to-noise ratio (CNR) by about 20% [51].

5.4 Further work

The measurements in this work were limited to one slice at isocenter in transversal orientation. Therefore,
a natural next step would be to look into other slice orientations as well as multiple slices. Earlier work
by Vannesjo et al. on GIRF-predictions on a 3T scanner has reported small differences between the slice
orientations [34], but due to the difference in methods for GIRF-determination, it would still be advisable
to perform such measurements as a quality measure. Also, the GIRF that was determined by Vannesjo
et al. seems to have smaller differences between the responses of the three axes compared to what has
been reported in this project. As for more slices, it would be interesting to look into the quality of the
reconstructions off-isocenter. In the transversal orientation, a two-dimensional spiral scheme will cause
larger concomitant fields further away from the isocenter, which will scale with the square of the gradient
strength. This is expected to affect the image quality and may require concomitant field corrections
to achieve sufficient quality since the LTI model is incapable of correcting non-linear terms such as
concomitant fields. To a first approximation, the concomitant fields amount to a set of second-order
field terms, as shown in equation (2.14). Thus, concomitant fields could be corrected for by combining
equation (2.14) with a higher-order image reconstruction as in Ref. [24].
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The offline reconstruction pipeline presented in this work is time-consuming and depends on a series of
steps on different software and locations. For this method to be useful in a clinical context, more work
has to be performed to reduce the time and effort in each step and in-between steps. Since the GIRF
only has to be determined once and the spiral measurements are only needed as quality assurance, these
steps are not as important to streamline compared to the GIRF-prediction and image reconstruction.
First of all, there is currently no efficient way to retrieve the gradient waveform from the sequence. In
the current pipeline, this is performed by copying a file from the scanner after the sequence has been
applied. This file will also be overwritten for each new spiral sequence. Second, the way the code is
presented in appendix A, the GIRF-prediction is implemented in Matlab and the image reconstruction is
implemented in Julia. Ideally, all steps should be transferred from Matlab and implemented in Julia since
that is where the reconstruction is provided and should be the most efficient. Third, the reconstruction
code at the point of finishing this project is custom-made for single-shot single-slice spiral sequences. It
should ideally be more flexible and allow for multiple slices, contrasts, and interleaves.

To improve the results of the image reconstruction, independent of trajectory type, more work should be
put into improving the B0-correction and sensitivity maps for SENSE to reduce the number of artifacts.
The B0-correction will most likely improve with better field maps, and this should be a priority to get
image reconstructions with acceptable levels of off-resonance artifacts. Improved sensitivity maps might
mitigate the reduction of residual aliasing that is seen for higher R-values, but is of lesser importance
than B0-correction as the severity of the artifacts is low for R-values below 3. There might also be other
causes for the aliasing that has not been covered in the earlier discussion. However, reducing the residual
aliasing in the images and allowing for higher R-values will also aid in reducing the off-resonance artifacts
in the images. In that sense, improving the B0-maps and the sensitivity maps will serve the same purpose.

Depending on the future aim for the spiral sequences to be studied, there are several alternatives to
single-shot archimedean spirals that might be interesting to look more into, such as interleaved spirals
and variable density spirals. The different spiral trajectories are illustrated in figure 5.3, and provide
additional advantages or disadvantages depending on the application. Spirals with multiple interleaves
will have a higher SNR and fewer artifacts due to phase accumulation, such as off-resonance effects and
T∗

2-blurring for higher resolutions, compared to single-shot imaging. This is because each interleave will
have a shorter acquisition time while the combination of all interleaves can cover large areas of k-space.
However, the overall acquisition time per slice will increase with the number of interleaves, resulting in a
lower temporal resolution during time-series imaging which might be undesirable for some applications.
Variable density spirals have a higher sampling density at low frequencies before increasing the sampling
spacing for higher k-space values, resulting in an oversampling of the central part of k-space which
improves the SNR and reduces aliasing artifacts. Despite being faster than multi-leaf spiral imaging,
variable density spirals are still less efficient than archimedean spirals in terms of time. Also, variable-
density imaging will spend more time at low k-values which might cause more severe off-resonance effects.

(a) (b) (c)

Figure 5.3: Illustrations of different spiral trajecories. (a) Single-shot archimedean spiral, (b) Multi-leaved
archimedean spiral, and (c) variable density spiral.



6 Conclusion

In this project, an offline image reconstruction pipeline for single-shot imaging with spiral k-space trajec-
tories has been developed and tested for a 7T MR scanner. The results demonstrate that a GIRF with
both self and cross-terms can be determined with simple thin-slice excitation phantom measurements
and that the trajectory predictions based on this GIRF yield highly accurate results for the 0th and 1st
order field responses for technically challenging single-shot spiral readouts. The results also show that
the GIRF-predicted trajectories, together with the predicted B0 response, enable image reconstruction
with the same quality as separately measured trajectories and B0-responses. Due to off-resonance effects
and residual aliasing, the image quality was reduced, and further work should be performed to improve
the field maps and sensitivity maps used during reconstruction before the reconstructions can be applied
to other projects.

Throughout the different steps of the reconstruction pipeline, from GIRF characterization to iterative
reconstruction, the methods have been kept as general as possible in the sense that they are available
to all MR sites. The thin-slice excitation method for k-space trajectory measurement does not require
any additional hardware, and the code for calculating the GIRF and reconstructing the images is based
on open-source code. The measurements and calculations for the GIRF-determination only need to be
performed once, and the GIRF can correct for imperfections in any trajectory. In other words, the GIRF-
correction pipeline for spiral imaging is available to all MR sites as a feasible and easy way to achieve
high-precision trajectory predictions that result in increased MR image quality.
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A Code

In this appendix, the code that was implemented to calculate the k-space trajectories and GIRF, as
well as the reconstruction code will be presented. The k-space trajectories and GIRF was calculated in
MATLAB version R2021b (9.11.0) and is shown in section A.1. The image reconstruction was performed
in Julia version 1.7.3 and is provided in section A.2.

A.1 MATLAB

The following MATLAB code is divided into two functions get_data and get_outputs, and two scripts
calculate_GIRF and measured_spiral. get_data is used to retrieve the measurement data from the raw Siemens
file in the right format for later calculations. get_outputs calculates the the k-space trajectory k̂ and ϕB0

from the data retrieved with get_data, as well as the corresponding Ĝ and B0e. calculate_GIRF displays
all steps in calculating the GIRF based on raw data from the k-space measurements. measured_spiral

calculates k̂, Ĝ, ϕB0
, and B0e for the spiral trajectory measurements, as well as performing GIRF-

predictions based on the nominal trajectories. Finally, it calculates a time-shift that minimizes the RMS
error between the nominal and measured trajectories before all information is stored in a .mat-file.

get data()

1 function [data , dt, x0] = get_data(path_to_file , slices)

2 % Retrieves the raw data for the given slices.

3 %

4 % slices is an optional input. If not provided , it will be assigned the

5 % values [1, 4] which corresponds to the outer slices when there is 7

6 % slices in total.

7 %

8 % IN

9 % path_to_file [string] path to .dat file with raw data

10 % slices [1 x nr_slices] array with desired slice indices

11 %

12 % OUT

13 % data [nr_samples x nr_inputs x nr_slices x nr_averages]

14 % array with output data

15 % dt [float] dwell time (time step) in [s]

16 % x0 [float] slice position in [m]

17

18 disp(" Retrieving data ...")

19

20 % Add necessary files to path

21 addpath(’code_dependencies\mapVBVD ’);

22

23 % Retrieve a twix object for the sata

24 twix_obj = mapVBVD(path_to_file);

25

56
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26 % Read out dt and x0 from the twix object

27 dt = twix_obj.hdr.MeasYaps.sRXSPEC.alDwellTime {1}*1e-9; % dwelltime in [s]

28 x0 = abs(twix_obj.image.slicePos(3, slices (1)))*1e-3; % distance in [m]

29

30 % Squeeze the image data and select desired slices

31 data = twix_obj.image{’’};

32 data = data(:, :, slices , :, :);

33

34 end

get outputs()

1 function [k, G, B0_phase , B0] = get_outputs(data , dt, x0)

2 % Calculates the gradient (G), 0th order spatial component of variations in

3 % B0, and the k-space trajectory (k) based on the data provided.

4 %

5 % The method used for calculation is the one described by Robison et. al

6 % (2018).

7 % NB: assumes only two slices , i.e. nr_slices = 2, where slice 1 is -x0

8 % and slice 2 is x0.

9 %

10 % IN:

11 % data [nr_samples x nr_inputs x nr_slices

12 % x nr_averages x nr_dimensions] array with sample data

13 % dt [double] time step in [s] of samples

14 % x0 [single] distance in [m] to the slice at position x0

15 %

16 % OUT:

17 % k [nr_samples x nr_pos_gradients x nr_dimensions]

18 % k-space trajectory in [rad/m]

19 % G [nr_samples -1 x nr_pos_gradients x nr_dimensions]

20 % gradient in [T/m]

21 % B0_phase [nr_samples x nr_pos_gradients x nr_dimensions]

22 % phase in [rad] of the 0th order spatial component of variations in B0

23 % B0 [nr_samples -1 x nr_pos_gradients x nr_dimensions]

24 % 0th order spatial component of variations in B0 in [T]

25

26 disp(" Calculating measurements ...")

27

28 % Crop the first input measurement since there is no need for no gradients.

29 data = data(:, 2:end , :, :, :);

30

31 % Constants

32 gamma = 2.6752218744e+08; % gyromagnetic ratio of protons in [rad/(sT)]

33 dims = size(data);

34 nTs = dims (1); % number of timesteps

35 nGs = dims (2); % number of applied gradient pulses

36 nSls = dims (3); % number of slices

37 nAvs = dims (4); % number of averages

38 nDims = dims (5); % number of dimensions

39

40 % Ensure that only two slices is included , and that there is an even number

41 % of inputs

42 assert(nSls == 2, "Ensure that only the slices at -x0 and +x0 is included in the data .");

43 assert (~mod(nGs , 2), "Number of gradients must be an even number .");

44

45 % Allocate space for results

46 k = zeros(nTs , nGs/2, nAvs , nDims);

47 G = zeros(nTs -1, nGs/2, nAvs , nDims);

48 B0_phase = zeros(nTs , nGs/2, nAvs , nDims);

49 B0 = zeros(nTs -1, nGs/2, nAvs , nDims);

50

51 % Calculate k and B0 phase

52 for dim = 1:nDims

53 % counter for gradient inputs

54 i = 1;

55 for g = 1:2: nGs

56 for av = 1:nAvs
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57 % Calculate the relative phase at +x0 and -x0

58 phase_posx0 = unwrap(angle(data(:, g, 2, av, dim) ./ data(:, g+1, 2, av, dim)

));

59 phase_negx0 = unwrap(angle(data(:, g, 1, av, dim) ./ data(:, g+1, 1, av, dim)

));

60

61 % Calculate results

62 k(:, i, av , dim) = (phase_posx0 - phase_negx0) / (4*x0);

63 G(:, i, av , dim) = diff(k(:, i, av, dim)) / (dt*gamma);

64 B0_phase(:, i, av, dim) = (phase_posx0 + phase_negx0) / 4;

65 B0(:, i, av, dim) = diff(B0_phase(:, i, av , dim)) / (dt*gamma);

66 end

67 i = i+1;

68 end

69 end

70

71 % Calculate average over the eight repeated measurements

72 k = squeeze(mean(k, 3));

73 G = squeeze(mean(G, 3));

74 B0_phase = squeeze(mean(B0_phase , 3));

75 B0 = squeeze(mean(B0, 3));

76

77 disp("Done !")

78

79 end

calculate GIRF.m

1 clear , clc

2

3 % Add all necessary files to path

4 addpath(genpath(’./code/Matlab ’));

5 addpath(genpath(’./ code_dependencies ’));

6

7 % Path to data

8 filepath = ’D:\220314 _Maren ’;

9 filenames = {

10 ’meas_MID00116_FID41408_t01dt_fid_girf_X.dat’,

11 ’meas_MID00117_FID41409_t01dt_fid_girf_Y.dat’,

12 ’meas_MID00118_FID41410_t01dt_fid_girf_Z.dat’

13 };

14

15

16 % Necessary data and constant

17 slices = [1, 4];

18 gamma = 2.6752218744e+08; % gyromagnetic ratio of protons in [rad/(sT)]

19

20

21 % Calculate k, G, B0_phase , and B0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 % x-, y- and z are calculated from different measured files

23 switch_dim = [2, 1, 3];

24 for dim = 1:3

25 fprintf (" Solving for dimension %i\n", dim)

26

27 % Fetch data , time step (dt) and distance to slices (x0)

28 filename = filenames{dim};

29 [data , dt, x0] = get_data ([ filepath filesep filename], slices);

30

31 % Calculate outputs with concomitant field correction

32 [ki , Gi , B0_phasei , B0i] = get_outputs(data , dt, x0);

33

34 k(:, :, switch_dim(dim)) = ki(:, :, dim);

35 G(:, :, switch_dim(dim)) = Gi(:, :, dim);

36 B0_phase(:, :, switch_dim(dim)) = B0_phasei (:, :, dim);

37 B0(:, :, switch_dim(dim)) = B0i(:, :, dim);

38 end

39

40 % More constants
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41 dims = size(G);

42 nTs = dims (1);

43 nIns = dims (2);

44 nDims = dims (3);

45

46 % Time axes

47 tMeas = (1: size(k, 1))*dt - dt/2; % measured signals (k and B0_phase)

48 tOut = (1:nTs)*dt; % calculated output signals (G and B0)

49

50

51 % Filter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

52 G_filtered = BWfilter_ft(G, tOut , 60e3, ’rc’, 1/4);

53 B0_filtered = BWfilter_ft(B0, tOut , 60e3 , ’rc’, 1/4);

54 B0_phase_filtered = BWfilter_ft(B0_phase , tMeas , 60e3, ’rc’, 1/4);

55

56

57 % Create the input gradient blips %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58 tBlips = (1:4096) *10e-6 - 5e-6;

59 nBlips = 7;

60 interval = 20e-6;

61 slewRate = 190.0;

62 tCenter = tBlips (128); % located at 1/32 of adc (tBlips), i.e. position 128

63

64 % Create blips on the time axis of measured output (G/B0)

65 inBlips = input_blips(tOut , nBlips , tCenter , interval , slewRate);

66 % nominal k-space trajectory

67 % NB: the first point will be located at tMeas (2)!

68 k_nom = gamma*cumsum(inBlips)*dt; % [rad/m]

69

70

71 % Calculate GIRF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

72 % Prepare data

73 inChannels = {’X’, ’Y’, ’Z’};

74 nWs = nIns*nDims; % Total number of input waves in all directions

75 tIn = tOut ’;

76 tOut = tOut ’;

77 outBasis = 1:4;

78 in = zeros(nTs , length(inChannels), nWs);

79 out = zeros(nTs , length(outBasis), nWs);

80

81 % Fill the input and outputs for GIRF calculation

82 for nW = 1:nWs

83 dim = 1+fix((nW -1)/nIns);

84 nIn = nW - (dim -1)*nIns;

85 in(:, dim , nW) = inBlips(:, nIn);

86 out(:, 1, nW) = B0(:, nIn , dim);

87 out(:, dim+1, nW) = G(:, nIn , dim);

88 end

89

90 % Calculate GIRF

91 girf = GirfProvider(tIn , in , tOut , out , inChannels , outBasis);

92 girf.ComputeGirf ();

93 girf.WindowFreq (60e3, ’rc’, 1/4);

94

95 % save GIRF

96 savepath = ’./ results/GIRF’;

97 savename = ’girf_1ch ’;

98 girf.Save([ savepath filesep savename ])

99

100 disp(fprintf ("Girf saved as %s", savename));

measured spiral.m

1 %% CALCULATE MEASURED SPIRAL k-SPACE TRAJECTORIES %%%%%%%%%%%%%%%%%%%%%%%%

2 clear , clc

3

4 filepath = ’D:\220523 _Maren ’;

5
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6 filenames = {

7 ’meas_MID00132_FID46756_t01dt_fid_girf_spiral192mm2p40mmR1.dat’,

8 ’meas_MID00133_FID46757_t01dt_fid_girf_spiral192mm1p39mmR2.dat’,

9 ’meas_MID00134_FID46758_t01dt_fid_girf_spiral192mm1p00mmR3.dat’,

10 ’meas_MID00135_FID46759_t01dt_fid_girf_spiral192mm1p00mmR4.dat’,

11 ’meas_MID00136_FID46760_t01dt_fid_girf_spiral164mm2p00mmR1.dat’,

12 ’meas_MID00137_FID46761_t01dt_fid_girf_spiral164mm1p21mmR2.dat’,

13 ’meas_MID00138_FID46762_t01dt_fid_girf_spiral164mm0p95mmR3.dat’,

14 ’meas_MID00141_FID46763_t01dt_fid_girf_spiral140mm1p71mmR1.dat’,

15 ’meas_MID00143_FID46764_t01dt_fid_girf_spiral140mm1p08mmR2.dat’,

16 ’meas_MID00146_FID46765_t01dt_fid_girf_spiral140mm0p74mmR4.dat’

17 };

18

19 % Size restriction of G_nom

20 size_res = 4096;

21

22 % Add all necessary files to path

23 addpath(genpath(’./code/Matlab ’));

24 addpath(genpath(’./ code_dependencies ’));

25

26 % constants

27 gamma = 2.6752218744e+08; % gyromagnetic ratio of protons in [1/(sT)]

28 slices = [5, 7];

29

30 for spiral = 1: length(filenames)

31 fprintf (" Spiral nr. %i/%i\n", spiral , length(filenames))

32

33 filename = filenames{spiral };

34 G_nom_file = sprintf(’ArbGradientRO_%s.txt’, filename(end -16:end -4));

35

36 % Retrieve data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

37 [data , dt, x0] = get_data_32ch ([ filepath filesep filename], slices);

38

39 % Sort waveform entries in data to match the structure needed in

40 % get_outputs

41 data = data(:, :, [3, 1, 2, 4, 5], :, :, [2, 1, 3]);

42

43 % Calculate k, G, B0 and B0 -phase %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44 [k, G, B0_phase , B0] = get_outputs_32ch(data , dt, x0);

45

46 % Average over index 2 (nr_channels)

47 k = squeeze(mean(k, 2));

48 G = squeeze(mean(G, 2));

49 B0_phase = squeeze(mean(B0_phase , 2));

50 B0 = squeeze(mean(B0, 2));

51

52 % Time axes

53 tMeas = (1: size(k, 1))*dt - dt/2; % Time axis of the measured signals (k and

B0_phase)

54 tOut = tMeas (1:end -1) + dt/2; % Time axis of the calculated input signals (G and B0

)

55

56

57 % Filter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58 k_filtered = BWfilter_ft(k, tMeas , 60e3 , ’rc’, 1/4);

59 G_filtered = BWfilter_ft(G, tOut , 60e3, ’rc’, 1/4);

60 B0_phase_filtered = BWfilter_ft(B0_phase , tMeas , 60e3, ’rc’, 1/4);

61 B0_filtered = BWfilter_ft(B0, tOut , 60e3, ’rc’, 1/4);

62

63 % Compare with nominal spiral trajectory %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

64 G_nom = load([ filepath filesep G_nom_file ]);

65

66 % In all spirals , the gradient input was switched , s.t. G_nom(:, 1) was

67 % applied along the y-direction , and G_nom(:, 2) was applied along the

68 % x-direction

69 G_nom = G_nom *1e-3; % change units to [T/m]

70 tIn = (1: size(G_nom , 1))*1e-5 - 5e-6; % time axis of nominal gradient

71

72 % Extend G_nom as zeroes to avoid errors when extrapolating

73 G_nom_length = size(G_nom , 1);
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74 ext = size_res - size(G_nom , 1);

75 G_nom(end+1: end+ext , :) = zeros(ext , 3);

76 tIn(end+1:end+ext) = tIn(end) + (1: ext)*10e-6;

77

78 % nominal k-space trajectory

79 % NB: time axis is tIn + 5e-6!

80 k_nom = gamma*cumsum(G_nom)*10e-6;

81

82

83 % PREDICT SPIRAL TRAJECTORIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

84 % Load calculated GIRF

85 girfE = GirfEssential ();

86 girfE.Load ("./ results/GIRF/girf_32ch_34mm.mat");

87

88

89 % Make prediction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

90 girfA = GirfApplier(girfE);

91 % Regrid results to tOut

92 [gOut , kOut , tK] = girfA.PredictGrad(tIn ’, G_nom , tOut ’);

93

94

95 % Calculate time shift between nominal and measured gradient %%%%%%%%%%%%%

96 % Time shifts to iterate through in [s]

97 tshifts = linspace(-1e-5, 2e-5, 3001);

98

99 % Interpolate G_nom to tOut

100 G_nom_interp = interp1(tIn , G_nom , tOut , "linear", "extrap ");

101

102 % Find the timeshift that results in the lowest RMS error

103 [tshiftx , rms_resultsx] = find_delay(G_nom_interp (:, 1), G(:, 1, 1), tOut , tshifts);

104 [tshifty , rms_resultsy] = find_delay(G_nom_interp (:, 2), G(:, 2, 2), tOut , tshifts);

105

106 % Shift the nominal gradient according to the result

107 G_shifted(:, 1) = interp1(tOut , G_nom_interp (:, 1), tOut + tshiftx , ’linear ’, ’extrap

’)’;

108 G_shifted(:, 2) = interp1(tOut , G_nom_interp (:, 2), tOut + tshifty , ’linear ’, ’extrap

’)’;

109

110 % Shift k as well

111 k_nom_interp = interp1(tIn+5e-6, k_nom , tK, "linear", "extrap ");

112 k_shifted(:, 1) = interp1(tK, k_nom_interp (:, 1), tK + tshiftx , ’linear ’, ’extrap ’)’;

113 k_shifted(:, 2) = interp1(tK, k_nom_interp (:, 2), tK + tshifty , ’linear ’, ’extrap ’)’;

114

115 % Print the thime shift

116 fprintf(’Delay: %f us in x, %f us in y\n\n’, [tshiftx *1e6, tshifty *1e6]);

117

118 % Store results in a struct %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119 spiral_results.gradient.nominal(:, :, spiral) = G_nom;

120 spiral_results.gradient.nominal_interp (:, :, spiral) = G_nom_interp;

121 spiral_results.gradient.nominal_shifted (:, :, spiral) = G_shifted;

122 spiral_results.gradient.measured(:, :, :, spiral) = G;

123 spiral_results.gradient.measured_filtered (:, :, :, spiral) = G_filtered;

124 spiral_results.gradient.B0(:, :, :, spiral) = B0;

125 spiral_results.gradient.B0_filtered (:, :, :, spiral) = B0_filtered;

126 spiral_results.gradient.predicted (:, :, spiral) = gOut;

127 spiral_results.gradient.t(:, spiral) = tOut;

128 spiral_results.gradient.tNom(:, spiral) = tIn;

129

130 spiral_results.k.nominal(:, :, spiral) = k_nom;

131 spiral_results.k.nominal_interp (:, :, spiral) = k_nom_interp;

132 spiral_results.k.nominal_shifted (:, :, spiral) = k_shifted;

133 spiral_results.k.measured(:, :, :, spiral) = k;

134 spiral_results.k.measured_filtered (:, :, :, spiral) = k_filtered;

135 spiral_results.k.B0phase(:, :, :, spiral) = B0_phase;

136 spiral_results.k.B0phase_filtered (:, :, :, spiral) = B0_phase_filtered;

137 spiral_results.k.predicted(:, :, spiral) = kOut;

138 spiral_results.k.t(:, spiral) = tK;

139 spiral_results.k.tNom(:, spiral) = tIn + 5e-6;

140

141 spiral_results.tshiftx(:, spiral) = tshiftx;
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142 spiral_results.tshifty(:, spiral) = tshifty;

143 spiral_results.specs{spiral} = filename(end -16:end -4);

144 spiral_results.nom_length(spiral) = G_nom_length;

145 end

146

147 % Save results to file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

148 fprintf (" Saving results ... ")

149 save ("./ results/SpiralMeasurements/spiral_results_32ch_34mm_ny.mat", ...

150 "-struct", "spiral_results ");

151 fprintf ("Done !")
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A.2 Julia

The following Julia code consists of three files: Utils.jl, CartesianRecon.jl, and SingleShotSpiralRecon.jl.

Utils.jl consists of two functions that is used in CartesianRecon.jl for calculating B0-maps and removing
oversampling. CartesianRecon.jl uses the acquired field map measurements to calculate a sensitivity profile
and B0-map. The sensitivity profile is calculated from the raw measurement data, while the B0-map is
calculated from the reconstructed images. SingleShotSpiralRecon.jl reconstructs single-shot spiral images.

Utils.jl

1 using ROMEO , PyPlot , HDF5 , MRIReco

2

3 ## function to calculate the B0 maps from the two images with different echo times

4 function calculateB0Maps(imData ,slices)

5

6 b0Maps = mapslices(x -> ROMEO.unwrap(x), angle.( imData[:,:,slices ,2 ,1].* conj(imData

[:,:,slices ,1 ,1])),dims =(1 ,2))./((5.1 -4.08) /1000)

7

8 end

9

10

11 """

12 removeOversampling !(raw:: RawAcquisitionData; dims = 1)

13 removes 2x readout oversampling in specified raw data dimensions by iFFT , cropping FOV

and FFT

14 # Arguments

15 * ‘raw:: RawAcquisitionData{T}‘ - RawAcquisitionData object

16 * ‘dims ‘ - dimension alongside which oversampling is

removed (default: 1)

17 """

18 function removeOversampling !(raw:: RawAcquisitionData; dims = [1])

19 idxDim = dims [1]

20 Ns = raw.params["encodedSize"][ idxDim]

21 idxCropFov = convert(Vector{Int64}, [1: floor(Ns/4); ceil (3/4* Ns+1):Ns])

22 # For every profile in the acquisition

23 for iProfile = 1: length(raw.profiles)

24 # IFFT to image space , crop , FFT back to k-space

25 ifft!(raw.profiles[iProfile ].data , idxDim)

26 raw.profiles[iProfile ].data = fft!(raw.profiles[iProfile ].data[idxCropFov ,:],

idxDim)

27

28 end

29

30 # halve encoding size of first dimension

31 raw.params["encodedSize"][ idxDim] /= 2

32 raw.params["encodedFOV"][ idxDim] /= 2

33

34 end

CartesianRecon.jl

1 using PyPlot , HDF5 , MRIReco , LinearAlgebra , DSP , FourierTools , ROMEO

2

3 include("../ utils/Utils.jl")

4

5 ## Load data files

6 filepath = "data/Fieldmaps/inVivo_fieldMap_220mm.h5"

7 resolution = 2

8

9 @info "Loading Data Files"

10 dataFileCartesian = ISMRMRDFile(filepath)

11
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12 # read in the raw data from the ISMRMRD file into a RawAcquisitionData object

13 r = RawAcquisitionData(dataFileCartesian)

14 removeOversampling !(r)

15

16 # Convert to acquisitionData

17 acqDataCartesian = AcquisitionData(r, estimateProfileCenter=true)

18

19 # Shift image to the left

20 mmshift = 10

21 for s = 1:size(acqDataCartesian.kdata , 1)

22 local k = acqDataCartesian.traj[s].nodes[2, :]

23 for c = 1:size(acqDataCartesian.kdata[s], 2)

24 acqDataCartesian.kdata[s][:, c] = acqDataCartesian.kdata[s][:, c] .* exp.((im*2*

pi*mmshift/resolution) .* k)

25 end

26 end

27

28 # Define coils and slices

29 nCoils = size(acqDataCartesian.kdata[1], 2)

30 nSlices = numSlices(acqDataCartesian)

31

32

33 @info "Calculating Sense Maps"

34 senseCartesian = espirit(acqDataCartesian , (6,6), 30, eigThresh_1 =0.01, eigThresh_2 =0.98)

35

36

37 @info "Setting Parameters"

38 paramsCartesian = Dict{Symbol ,Any }() # instantiate dictionary

39 paramsCartesian [:reco] = "multiCoil" # choose multicoil reconstruction

40 paramsCartesian [: reconSize] = (acqDataCartesian.encodingSize [1], acqDataCartesian.

encodingSize [2])

41 paramsCartesian [: regularization] = "L2" # choose regularization for the recon algorithm

42 paramsCartesian [: lambda] = 1.e-9 # recon parameter (there may be more of these , need to

dig into code to identify them for solvers other than cgnr)

43 paramsCartesian [: iterations] = 5 # number of CG iterations

44 paramsCartesian [: solver] = "cgnr" # inverse problem solver method

45 paramsCartesian [: solverInfo] = SolverInfo(ComplexF32 ,store_solutions=false) # turn on

store solutions if you want to see the reconstruction convergence (uses more memory)

46 paramsCartesian [: senseMaps] = ComplexF32 .( senseCartesian) # set sensitivity map array

47

48

49 @info "Performing Reconstruction"

50 cartesianReco = reconstruction(acqDataCartesian , paramsCartesian)

51 resampledRecon = mapslices(x->FourierTools.resample(x, (200, 200)), cartesianReco.data;

dims=[1, 2])

52

53 ## Calculate B0 maps from the acquired images (if two TEs)

54 b0Maps = calculateB0Maps(resampledRecon , 1)

55

56 # Apply a mask to remove contributions from outside the phantom

57 absData = abs.( resampledRecon [:, :, 1, 1, 1]) ./ maximum(abs.( resampledRecon [:, :, 1, 1,

1]))

58 mask = absData .> 0.09

SingleShotSpiralRecon.jl

1 using MRIReco , PyPlot , DSP , MAT , Dierckx , ROMEO , JLD , DelimitedFiles

2

3

4 # Retrieve sensitivity and B0-maps from fieldMap measurement

5 include("../ recon/CartesianRecon.jl")

6 ref107 = matread("data/Fieldmaps /107 _Ref.mat")

7 b0Maps = reverse(ref107["B0map"], dims =2)

8 mask = reverse(ref107["reconMask"], dims =2)

9

10 # Input info , change this to change which measurement to recontstruct

11 fov = 192 # Field of view [mm]

12 resolution = 1.00 # Resolution [mm]
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13 R = 3 # Acceleration factor

14 trajType = "meas" # "nom", "nom_dc", "pred", or "meas"

15 applyk0corr = true

16 applyB0corr = true

17 saveImage = false

18

19 # Find names of files

20 (fres , ires) = modf(resolution)

21 fres = Int16(round(fres , digits =2) *100)

22 ires = Int16(ires)

23

24 spiral = "$(fov)mm$(ires)p$(lpad(fres , 2, ’0’))mmR$R"

25

26 # Input filenames

27 dataFilename = "data/Spirals /32 ch_$spiral.h5"

28 trajFilename = "data/Trajectories/k_$( trajType)_$( spiral).txt"

29

30 # Set encoding and reconstruction FOV

31 encFOV = (fov , fov)

32 reconFOV = (192, 192)

33

34 # Calculate encoding size from resolution and fov

35 # NB: must be an even number

36 if iseven(round(fov/resolution))

37 eS = Int64(round(fov/resolution))

38 else

39 eS = Int64(round(fov/resolution)) - 1

40 end

41

42 # Calculate recon size from resolution and fov

43 # NB: must be an even number

44 if iseven(round(reconFOV [1]/ resolution))

45 rS = Int64(round(reconFOV [1]/ resolution))

46 else

47 rS = Int64(round(reconFOV [1]/ resolution)) - 1

48 end

49

50 # Set parameters relevant for reconstruction

51 encSize = (eS , eS)

52 reconSize = (rS, rS)

53 delay = 0.0

54 dt_s = 2.5*10^( -6)

55 dt_k = 2.5*10^( -6)

56

57

58 @info "Loading data files"

59 # Read in as ISMRMRD -format

60 dataFile = ISMRMRDFile(dataFilename)

61

62 # Read in RawAcquisitionData from ISMRMRD -file

63 rawData = RawAcquisitionData(dataFile)

64

65 ## Update information in rawData

66 rawData.params["reconSize"][2] = reconSize [2]

67 rawData.params["reconFOV"][2] = reconFOV [2]

68 rawData.params["encodedSize"][2] = encSize [2]

69 rawData.params["encodedFOV"][2] = encFOV [2]

70 if size(rawData.profiles , 1) == 22

71 rawData.profiles = rawData.profiles [3: end]

72 end

73

74

75 @info "Loading trajectory"

76 # Retrieve trajectory from gradient file

77 trajData = readdlm(trajFilename ,’,’,’\n’)

78

79 B0_phase = trajData[:, 1]; # in [rad]

80 k_traj = trajData[:, 2:end]; # in [rad/m]

81

82 # Convert to to [1/m]
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83 k_traj ./= (2*pi)

84

85 # Convert to dimensionless form used by MRIReco (k = [-0.5, 0.5])

86 k_traj[:, 1] = k_traj[:, 1] .* encFOV [1] / encSize [1] / 1000;

87 k_traj[:, 2] = k_traj[:, 2] .* encFOV [2] / encSize [2] / 1000;

88

89 # Permute directions to [sample_nr , dimension]

90 k_traj = permutedims(k_traj , [2, 1])

91

92 # Create trajectory object

93 traj = Trajectory(k_traj , 1, size(k_traj , 2), TE=0.0, AQ=size(k_traj , 2)*1e-6, numSlices

=1, cartesian=false , circular=true)

94

95

96 @info "Synchronizes trajectory data and k-space data onto same time grid"

97 ## Interpolate trajectory onto same times as the sampled signal

98 ### Get size of trajectory and signal vectors

99 Ns = size(rawData.profiles [1].data , 1)

100 Nk = size(traj.nodes , 2)

101

102 ### Define time vectors for signal and trajectory

103 t_s = (1:Ns)*dt_s .- dt_s/2

104 if trajType == "meas"

105 t_k = (1:Nk)*dt_k .- dt_k/2

106 else

107 t_k = (1:Nk)*dt_k .+ dt_k/2

108 end

109

110 ### Interpolate trajectory onto the same sample times as the sampled signal

111 trajNodes_interpolated_X = Spline1D(t_k , traj.nodes [1,:], w=ones(length(traj.nodes [1,:]))

, k=3)

112 trajNodes_interpolated_Y = Spline1D(t_k , traj.nodes [2,:], w=ones(length(traj.nodes [1,:]))

, k=3)

113 B0_phase_spline = Spline1D(t_k , B0_phase , w=ones(length(B0_phase)), k=3)

114 B0_phase = B0_phase_spline(t_s)

115

116 ### Concatenate the trajectory node kx and ky positions

117 adjustedTraj = vcat(trajNodes_interpolated_X(t_s)’, trajNodes_interpolated_Y(t_s)’)

118

119 ## Add trajectory to RawAcquisitionData.profiles[i]

120 if idx_crop != 0

121 for i = 1: length(rawData.profiles)

122 rawData.profiles[i].traj = adjustedTraj [:, 1: idx_crop]

123 rawData.profiles[i].data = rawData.profiles[i].data [1: idx_crop , :]

124 end

125 t_s = t_s [1: idx_crop]

126 B0_phase = B0_phase [1: idx_crop]

127 else

128 for i = 1: length(rawData.profiles)

129 rawData.profiles[i].traj = adjustedTraj

130 end

131 end

132

133 # Adjust header (see adjustHeader! in Utils.jl:223)

134 for i = 1: length(rawData.profiles)

135

136 # Set the discard post to 0 (don ’t discard any samples from the end of the

acquisition)

137 rawData.profiles[i].head.discard_post = 0

138

139 # Set the discard pre to 0 (don ’t discard any samples from the beginning of the

acqusition)

140 rawData.profiles[i].head.discard_pre = 0

141

142 ## Set the number of samples properly

143 rawData.profiles[i].head.number_of_samples = Ns

144

145 ## Set center sample to 0 (only for spiral scans)

146 rawData.profiles[i].head.center_sample = 0

147
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148 end

149

150 # Convert RawAcquisitionData to AcquisitionData

151 @info "Converting RawAcquisitionData to AcquisitionData"

152 acqData = AcquisitionData(rawData , estimateProfileCenter=true)

153

154 ## Update acqData.traj

155 for i = 1: length(acqData.traj)

156 acqData.traj[i].times = t_s # set times to the total time vector

157 acqData.traj[i].TE = 0.00 # set the TE to 0

158 acqData.traj[i].AQ = t_s[end] # set the acquisition time to the last element of the

time vector (should be the latest time)

159 acqData.traj[i]. circular = false # set whether to use a circular filter on the kspace

data

160 end

161

162 # Shift image to the left

163 mmshift = 10

164 k = acqData.traj [1]. nodes[2, :]

165 for s = 1:size(acqData.kdata , 3)

166 for c = 1:size(acqData.kdata[s], 2)

167 acqData.kdata[s][:, c] = acqData.kdata[s][:, c] .* exp.((im*2*pi*mmshift/

resolution) .* k)

168 end

169 end

170

171 if applyk0corr

172 @info "Correct for B0-phase"

173 for numRep = 1:20

174 acqData.kdata[numRep] = acqData.kdata[numRep] .* exp.(-1im .* B0_phase)

175 end

176 end

177

178 # Check acquisition nodes

179 acqData.traj [1]. nodes[acqData.traj [1]. nodes [:] .> 0.5] .= 0.5

180 acqData.traj [1]. nodes[acqData.traj [1]. nodes [:] .< -0.5] .= -0.5

181

182

183 @info "Validating Sense Maps \n"

184 # Resize sense maps to match encoding size of data matrix

185 sensitivity = mapslices(x->imresize(x, (reconSize [1], reconSize [2])), senseCartesian ,

dims =[1 ,2])

186

187

188 @info "Validating B0 Maps \n"

189 # Resize B0-maps and signal mask to match encoding size of data matrix

190 resizedB0 = mapslices(x->imresize(x, (reconSize [1], reconSize [2])), b0Maps , dims =[1 ,2])

191 resized_mask = mapslices(x->imresize(x, (reconSize [1], reconSize [2])), mask , dims =[1 ,2])

192

193

194 @info "Setting reconstruction parameters"

195 # Set reconstruction parameters

196 params = Dict{Symbol ,Any}()

197 params [:reco] = "multiCoil"

198 params [: reconSize] = reconSize

199 params [: regularization] = "L2"

200 params [: lambda] = 1.0e-9

201 params [: iterations] = 10

202 params [: solver] = "cgnr"

203 params [: normalizeReg] = true

204 params [: solverInfo] = SolverInfo(ComplexF32 , store_solutions=false)

205 params [: senseMaps] = ComplexF32 .( sensitivity [: ,: ,[1],:])

206 if applyB0corr

207 params [: correctionMap] = ComplexF32 .(1im.* resizedB0)

208 end

209

210

211 @info "Performing reconstruction"

212 # Perform reconstruction

213 reco = reconstruction(acqData , params)
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214

215 # Save images

216 if saveImage

217 @info "Saving images to file"

218 filename = "./data/Reconstructions /$( spiral)_$( trajType)"

219 if applyB0corr

220 filename = "$( filename)_wB0"

221 end

222 if applyk0corr

223 filename = "$( filename)_wk0"

224 end

225 save("$( filename).jld", "reco", reco.data)

226 end



B GIRF for 32-channel head-coil

This appendix presents the results of the triangle gradient measurements and GIRF-calculation for the
32-channel head receive coil. For a more detailed description and comparison with the one-channel head
receive coil, see Results section 4.1.

B.1 Measured response to triangle gradients

The upper row of figure B.1 shows the calculated k-space trajectory and the lower row shows the ϕB0

of the triangle gradient measurements. The column to the left shows the entire time course of the
measurements, while the column to the right is zoomed in on times around the application of the triangle
pulses.

The upper row of figure B.2 shows the calculated gradient and the lower row shows the B0e of the triangle
gradient measurements. The column to the left shows the entire time course of the measurements, while
the column to the right is zoomed in on times around the application of the triangle pulses.

69
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Figure B.1: Measured k (upper row) and B0-phase ϕB0 (lower row) of the largest triangle gradient with a
maximum amplitude of 26.6 mT/m measured with a 32-channel head-coil. The column to the left show
the entire acquisition, while the column to the right displays the data for a short time interval around
the application of the gradient pulse.
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Figure B.2: Measured G (upper row) and B0 (lower row) of the largest triangle gradient with a maximum
amplitude of 26.6 mT/m measured with a 32-channel head-coil. The column to the left show the entire
acquisition, while the column to the right displays the data for a short time interval around the application
of the gradient pulse.



APPENDIX B. GIRF FOR 32-CHANNEL HEAD-COIL 72

B.2 GIRF

Figure B.4 shows the calculated cross-response of the gradient system with the 32-channel head coil. The
upper row shows the magnitude of the response, and the phase of the response is presented in the lower
row. The left column shows the response for the whole frequency range until the magnitude response
reaches zero, while the right column is zoomed in on positive frequencies below 2.5 kHz.

Figure B.3 shows the calculated self-response of the gradient system with the 32-channel head coil. The
figure to the left contains the magnitude of the response and the figure to the left displays the phase of
the response. The phase has not been unwrapped due to the low signal that causes a lot of noise for
frequencies near zero.

Figure B.5 shows the GIRF of the gradient system with the 32-channel head coil in the time domain.
The self- and cross-responses are displayed in the left and right figures, respectively. To better see the
differences between the responses along the x-, y-, and z-directions, a vertical shift has been applied.
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Figure B.3: Magnitude (upper row) and phase (lower row) of the GIRF describing the self-response of the
gradient system with a 32-channel head coil. The column to the left shows the whole frequency domain,
and the column to the right is zoomed in to low positive frequencies.
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Figure B.4: Magnitude scaled to percent of input (left) and phase (right) of the GIRF describing the
cross-response of the gradient system with a 32-channel head coil
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Figure B.5: GIRF in the time domain for the gradient (left) and B0 (right) responses of the gradient
system with a 32-channel head coil. Vertical shifts (∆) are added to the y- and z-components for better
readability.



C RMS for all spiral trajectory mea-
surements

This appendix contains the RMS values of the difference between the measured values and the nominal,
nominal delay-corrected, or predicted values for all spiral sequences included in this project. The values
included in table C.1 are the RMS difference of k̂, Ĝ, and B0e.

Table C.1: RMS-values of the difference between the measured values and the GIRF-predicted (pred),
nominal delay-corrected (nom dc), and nominal (nom) values, for all spiral trajectories included in this
work.

Res
[mm]

SENSE Coil
RMS for k [rad/m] RMS for Gx [mT/m] RMS for B0 [µT]

Pred Nom dc Nom Pred Nom dc Nom Pred Nom
2.40 1x 1ch 1.4 11.0 12.8 0.023 0.143 0.190 0.34 1.20
2.00 1x 1ch 0.9 11.5 12.7 0.017 0.137 0.172 0.20 0.93
2.40 1x 32ch 0.8 10.0 16.7 0.018 0.123 0.275 0.25 0.82
1.39 2x 32ch 1.0 13.6 20.5 0.018 0.129 0.266 0.24 0.69
1.00 3x 32ch 1.8 16.1 22.3 0.025 0.144 0.268 0.27 0.84
2.00 1x 32ch 0.9 11.3 18.6 0.018 0.127 0.283 0.25 0.78
1.21 2x 32ch 1.2 14.7 21.1 0.019 0.133 0.259 0.25 0.70
1.71 1x 32ch 1.0 12.6 20.2 0.019 0.132 0.288 0.25 0.76
1.08 2x 32ch 1.5 14.8 20.5 0.022 0.132 0.245 0.25 0.79
0.74 4x 32ch 1.3 10.8 19.5 0.017 0.077 0.179 0.29 0.62
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