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Abstract

The performance of modern conventional computers are often limited by the
memory latency of a system as the increase in processor performance has mas-
sively outperformed the increase in memory latency throughout the years. This
causes the slow memory to act as a bottleneck, and is especially problematic for
memory-intense applications. One common solution for reducing the memory la-
tency is the use of caches, but these are only effective if they retain relevant data.

Deciding what data should be kept in a cache is decided by cache replacement
polices, but these can often become complex and have non-trivial effects on other
components in a memory system. Cache simulators are often used to quickly test
the performance of replacement policies with varying cache sizes and memory
hierarchy designs.

One interesting area of study is how inclusive cache policies affect multi-core
systems – like Graphic Processing Units (GPUs) – with multiple levels of caches.
While several open-source simulators exists, a literature review revealed no sim-
ulator that can simulate individual cores in a multi-core system with inclusive
caches.

This thesis presents COCOASIM – a COncurrent Cache Operating Access SIMu-
lator. The simulator is able to simulate advanced user-defined systems with multi-
ple cores and L1 caches. COCOASIM also uses "Instruction Set Architecture (ISA)"
agnostic memory traces – making it possible to define and test architecture in-
dependent systems. Experimental testing show that COCOASIM can more than
8000 Instructions per Second (IPS) for small traces (8192 operations), and more
than 4000 IPS for larger traces (2097152 operations). The simulator also provides
multiple fully customizable components like systems, caches, cache replacement
polices, and also supports logging and dumping of statistics at certain checkpoints.
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Sammendrag

Ytelsen til moderne datasystemer er ofte begrenset av hastigheten til minnet da
hastigheten til prosessorer har økt mye mer enn hastigheten til minnesystemer
over flere år. Dette har ført til at minnesystemer ofte blir en flaskehals for ytelsen til
systemet da prosessoren må vente at minnet blir ferdig. Dette er særlig et problem
for programmer med mange minneoperasjoner. En løsning for å redusere venteti-
den på minner er å bruke hurtigbuffere, men disse er bare effektive hvis bufferne
inneholder relevant data.

Hvis et hurtigbuffer blir fullt må noe kastes ut for å få plass til nye datablokker.
Dette bestemmes av "erstatningspolicyer" ("cache replacement policies"), men disse
kan fort bli avanserte siden det ofte ikke er enkelt å finne ut hva som er optimalt
å kaste ut. I tillegg kan policyen påvirke (eller bli påvirket) av andre faktorer i
systemet. Det er derfor vanlig å bruke simulatorer for å simulere prototyper av
policyer med forskjellige parametere før de blir brukt i hardware.

Et interessant scenario det kan være verdt å se nærmere på er hvordan en
inklusiv policy oppfører seg i et system med flere kjerner og nivåer med hurtig-
buffere. Dette omfatter for eksempel graffik-prosessorer da disse ofte har noen
private buffere med data og noen delte buffere mellom seg. Det finnes mange
åpne akademiske simulatorer på nettet men virtuelt alle har begrensinger på som
kan gjøres og hva som ikke kan gjøres. Ingen av de simulatorene som ble sett på
i starten av dette prosjektet var i stand til å simulere minneoperasjoner per pros-
essorkjerne i et system med flere prosessorkjerner og nivåer med hurtigbuffere.

Denne masteroppgaven presenterer simulatoren COCOASIM – en "COncurrent
Cache Operating Access SIMulator". Simulatoren er bygget helt fra bunnen av i
C++, og er designet spesifikt for å simulere minnesystemer med flere prosessork-
jerner og spesifiserte tråder til hver kjerne. Simulatoren tar filer med formatterte
minneoperasjoner som input, og kjører disse gjennom et virtuelt system til alle op-
erasjonene er ferdige. Siden simulatoren baserer seg eksklusivt på filer med min-
neoperasjoner er den helt uavhengig av dataarkitekturen som datamaskiner i den
virkelige verden må forholde seg til. Eksperimentell testing viser at COCOASIM
kan simulere mer enn 8000 instruksjoner i sekundet for små filer (med 8192 op-
erasjoner) og mer enn 4000 instruksjoner i sekundet for store filer (med 2097152
operasjoner). Simulatoren har også flere nyttige funksjoner som f.eks. muligheten
til å lage egendefinerte hurtigbuffere, policyer, eller systemer, og kan også logge
alt som skjer i en simulasjon samt dumpe statistikk over tid under simuleringen.
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Chapter 1

Introduction

In a modern and continuously technological advanced world, the demand for in-
telligent technology and novel solutions is higher than ever before. As humankind
enters an age of world-wide digitization, smart devices and integrated compo-
nents can be found virtually everywhere - from smartphones to sensor-equipped
refrigerators and Bluetooth-compatible cars. Ignoring conventional "offline" de-
vices and integrated systems, there are about 14.9 billion mobile devices in the
world as of 2021 - each containing embedded processors and other smart hard-
ware. Furthermore, the number is expected to only rise in the future to an estimate
of over 18 billion by 2025 [1].

With an ever-increasing demand for higher performance, these devices are
often equipped with multiple processor cores, fast specialized memory (known
as "caches"), or/and accelerators like Neural Processor Units (NPUs) for machine
learning or Graphic Processor Units (GPUs) for graphic workloads. Whereas accel-
erator conventionally were reserved for desktops and larger computer, they have
become increasingly common in all types of computers. This makes the devices
faster, smaller, and more efficient, but also increasingly complex as they require
advanced hardware.

While the technological progress of the last decades is impressive, it also comes
with challenges. To maintain a increasing performance in technological devices
over time, new solutions or specialized components need to be developed. The
increased performance that could be harnessed from continuously smaller tran-
sistors is no longer possible to use due to power constrains, so researchers need
to find new ways make system more efficient. One solution that has become in-
creasingly more common over the last few decades is to introduce multiple cores
– allowing a device to perform logic in parallel. While it is no longer feasible to in-
crease a system’s clock rate as it will lead to a disproportionate increase in energy
usage, it is possible to increase the number of cores while still using a lower clock
rate. By parallelizing programs and workloads over multiple cores, the overall per-
formance can be increased while keeping an acceptable energy usage. In the end,
this leads to better energy efficiency than if using a single core with a higher clock
rate. However this requires programs to be designed in a way that makes it possi-
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ble to run operations in parallel over multiple cores. Though increasing core count
is not a silver bullet, this approach is especially effective for highly parallelizable
programs. Coincidentally, there are many prime examples of workloads that bene-
fit greatly from parallelization – like machine learning, cryptography, and graphic
processing.

Both performance and energy efficiency are important when performing graphic
processing. Though Graphic Processor Units (GPUs) have high power usage, they
are able to achieve high performance because of their innate parallelism. How-
ever, as a consequence of the "Memory Wall" [2], high-speed memory storage is
needed to keep up with the speed of the computation for a workload to avoid
being slowed by a memory bottleneck. This is often solved by introducing caches
– a fast but expensive memory typically located close to the processor cores. The
caches increase performance by decreasing the latency of looking up a memory
address given that the requested data is present in the cache. As caches only have
a capacity equal to a small fraction of the main memory, the data in caches are con-
tinuously replaced using replacement policies – acting as rules for what to place in
or evict from a cache. Though caches often are associated with Central Processing
Units (CPUs) rather than Graphic Processor Units GPUs, they are critical for keep-
ing a high throughput and performance when dealing with graphic workloads and
other GPU-compatible workloads.

As systems – both CPUs and GPUs – become increasingly more advanced, find-
ing efficient replacement policies and other novel performance-increasing meth-
ods become harder to find. Testing new ideas on real-world hardware may be
infeasible, slow, and expensive as custom components and logic need to be taped
out physically. A feasible alternate to this is to test the behavior in software using
a simulator. This enables a user to experiment with an implementation – like a
cache replacement policy – and continuously make changes or variations by alter-
ing the code. Advanced accelerators and cache replacement policies do often have
a non-trivial impact on the behavior of a program – making software simulations
often the only practical way of testing new ideas.

Due to their high practicality, software simulators for computer architecture
have been used and developed continuously since the 1990s [3]. Many simula-
tors are created by computer system manufacturers for internal use, but several
open-source simulators – like gem5 [4] and Sniper [5] – also exist. However, as a
simulator only is a virtual, imperfect representation of real-world hardware, each
simulator often have distinct strengths and weaknesses. Open-source simulators
are often created to be as generic as possible, but do not act as a silver bullet for
every use-case or experiment. As the list of possible modifications one could do to
a computer system is virtually endless, the simulator often needs to be specialized
or at the very least have rigid limitations. Consequently, the only practical way to
guarantee that a specific use-case can be tested is either to make alterations to an
existing simulator, or develop one from scratch.
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As a consequence of the natural limitations of software representations of
cache systems, a desired feature is not guaranteed to be supported in every sim-
ulator. When experimenting with a new accelerator or replacement policy, a few
requirements therefore need to be fulfilled:

• The simulator needs to support the desired feature – be it a new accelerator
component, a custom replacement policy, or something different.
• The simulator needs to represent an underlying architecture that the feature

should be tested with.
• The simulator needs to be easily configurable and scalable so that differ-

ent variations, architectures, and programs can be tested with the desired
feature.
• The simulator must have an acceptable scaling for large inputs in both mem-

ory usage and time so that inputs of all sizes can be appropriately tested.

This thesis presents the custom-made simulator COCOASIM, which meets the
aforementioned requirements when testing coherent memory accesses to distinct
caches in a system. The simulator accepts realistic trace representations of mem-
ory operations supplied by Ole Henrik Jahren from Arm, Trondheim, and mimics
the behavior of the memory hierarchy of a multi-core GPU. Opposed to other
common simulators, COCOASIM accepts memory traces directed to individual
cores/caches instead of a signle input/output interface. As the simulator accepts
memory traces rather than emulating an executed application, the systems can
be simulated independently of the underlying Instruction Set Architecture (ISA)
that other simulators need to consider. Thus, other simulators that can generate
memory traces from ISA-specific applications can be used to generate input for
COCOASIM. Additionally, the simulator is highly configurable, and accepts a wide
array of user-defined cache configurations with pre-made or custom cache replace-
ment policies. The simulator was also developed with performance in mind, and
uses an event-based programming paradigm to simulate cache accesses as distinct
events. The following chapters consider the motivation, design, and performance
of COCOASIM, but also presents results of replacement polices and cache config-
urations tested using the simulator.

One thing that makes this thesis special is that it focuses on two different topics
rather than a single one: 1) The software paradigms and design choices used when
developing the simulator, and 2) The architectural design of computer systems
– including components like caches and replacement policies – that are used in
simulation. As COCOASIM is a software simulator used to simulate hardware,
these subjects often overlap with each other throughout the thesis.





Chapter 2

Related Work

2.1 Introduction

Simulators for computer systems and cache behavior have been developed and
published free of charge in the past, and new simulators still appear from time
to time. Many simulators – especially the more popular ones – are maintained
and expanded upon as scalable open-source projects, and continuously gain more
features and increased compatibility over time.

This section presents three existing cache simulators:

1. The popular gem5 simulator is presented in Section 2.2.
2. GPGPU-Sim – a simulator designed to analyze Nvidia CUDA workloads – is

presented in Section 2.3.
3. Lastly, the Sniper simulator that uses analytical modeling when emulating

programs is discussed in Section 2.4.

2.2 gem5

The gem5 simulator [4] is described as a merge between the ISA- and CPU-focused
M5 simulator [6], and the memory- and coherency-focused GEMS simulator [7].
Combined, they form the gem5 simulator, which is able to simulate entire com-
puter systems – including CPU, caches, and bus activity. This makes gem5 a full
system simulator rather than just a cache simulator, and the memory and cache be-
havior is just one part of many components being simulated. Out of the box, gem5
provides ready-to-use CPU, memory, and ISA models that all can be used with
relative ease. Additionally, the simulator is highly configurable – including cus-
tomizable architectures, CPUs, memories, and interconnects. Furthermore, gem5
includes an advanced cache coherency interface that can be utilized to create a
wide array of coherence protocols [8]. This coherency protocol – while advanced
and highly flexible – is meant to describe cache states and coherency rather than
replacement policy.

5
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Every component in gem5 that can be used in a simulation is defined as a
"SimObject". In practice, all components are built on top of the C++ class which
the components with a minimal interface so that gem5 is able to call certain func-
tions on them. For example, every SimObject has to be initialized by the gem5
simulator and thus needs to have methods such as init() or load_state(). Since
every component derives from the same super-class, gem5 is able to use a com-
mon way of communicating with all of them – despite every component being
unique behavior.

Though gem5 simulator was initially designed for CPU and memory emula-
tion, it does currently also support simulation of GPU systems thanks to new fea-
tures being added over time. This is made possible due to the generic and scalable
development interface of gem5 that makes it possible for new, custom components
to communicate with the rest of the system. There are currently two ways of sim-
ulating GPU behavior in gem5: using the bundled GCN3 GPU model [9, 10], or
with the help of the gem5-gpu fork [11].

In addition to several bundled CPU models, gem5 also includes AMD’s Graphic
Core Next 3 (GCN3) GPU model. This model is able to accurately simulate GPU
behavior for workloads, but only for GPUs built on the GCN3 architecture. In re-
turn, the model comes with a powerful software stack that can be used by devel-
opers to, i.e., create advanced GPU cache coherency models. The GCN3 model is
able to simulate a program in gem5’s system-call mode, but requires the emulated
program to be built and compiled using AMD’s Radeon Open Compute platform
(ROCm). In the end however, when the GCN3 GPU model is used in a simulation
that runs a binary compiled with the ROCm tool-chain, gem5 is able to accurately
simulate GPU behavior.

There is also a fork of the gem5 repository named gem5-gpu that extends gem5
by integrating it with the GPU capabilities of the GPU simulator GPGPUSim [12].
In practice, this is a merge between the two simulators where gem5 sends and
receives data to and from GPGUSim. Operations - such as loads and stores - are
initially handled by the gem5 simulator, but are propagated to GPGPUSim through
gem5’s generic port interface. In short, this allows gem5 to run programs as nor-
mal and re-route requests to GPGPUSim through an interface while still having
control over timing and the overall state of the system. The GPGPUSim itself is
discussed further in Section 2.3.

2.3 GPGPUSim

The GPGPU-Sim simulator [12] is a GPU simulator released in 2009 made to an-
alyze general-purpose GPU workloads. The simulator uses Nvidia’s CUDA pro-
gramming model [13] to run instructions using the same data as parallel threads
distributed over the GPU’s many cores in what is called a "single instruction, mul-
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tiple thread" (SIMT) model. While the simulator originally was created to analyze
the behavior of CUDA workloads, GPGPU-Sim can run any compiled CUDA or
OpenCL [14] executable. An overview of the design of GPGPU-Sim as well as the
logic flow of simulating applications can be seen in Figure 2.1.

Figure 2.1: The design and logic flow of GPGPU-Sim.

In short, GPGPU-Sim works by defining the simulator as a highly parallell
processor in the CUDA model. This results in the CUDA instructions being sent to
the simulator which in turn can simulate their behavior. Note that GPGPU-Sim is
not primarily a cache simulator, but still provides the option of experimenting with
different cache sizes. Otherwise, it is also possible to alter several other properties
like the number of maximum threads or registers per core or the DRAM latency.

While GPGPU-Sim is designed to simulate the behavior of GPUs executing non-
graphic workloads, it does only accept application compiled along with CUDA or
OpenCL libraries. In the same way as gem5’s GCN3 GPU only accept applications
built with ROC platform, the programs simulated by GPGPU-Sim must be created
using CUDA.
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2.4 Sniper

Sniper [5] is a simulator that can be used to emulate behavior for systems that
use multiple cores. As with gem5, Sniper can run emulate complete computer
systems, but has also the option of exclusively simulating cache behavior.

What makes Sniper unique is that it simulates system using interval simula-
tion [15] rather that conventional emulation. In short, Sniper uses an analytical
model to estimate the delay caused by various misses like branch mispredictions,
and cache- and Translation Lookaside Buffer (TLB) misses instead of tracking the
individual instructions. For example, on a cache miss Sniper does not actually
perform a propagating request to the lower memory but rather estimates when
the requested data is fetched. For example, if a cache miss occurs Sniper does not
propagate the request to lower level memory, but rather estimates when the refer-
enced data block arrives in the cache. Likewise, the simulator also uses analytical
modeling to estimate how many cycles are spent on branch mispredictions and
TLB misses. This makes the system less cycle-accurate as the analytical model is
based on prediction and not actual simulation, but also result in a notably higher
performance as the interval simulation enables Sniper to simulate the cores in
parallel. The developers of Sniper also shows that interval simulation actually
increases the overall accuracy of a simulation compared to the conventional one-
instruction-per-cycle approach. This happens primarily because the approach used
for comparison only commits one instruction per cycle regardless of the amount
of cores – thus entirely ignoring Instruction Level Parallelism (ILP).

Sniper can simulate the behavior of a program either through emulating an
application or by parsing an instruction trace. This is made possible by using the
Graphite simulator [16] and Intel’s Pin tool [17] as a base. In short, Pin is able
to extract instructions and addresses from a x86-binary. Sniper uses Pin as an
interface to capture instructions in a given application which it then simulates.



Chapter 3

Background

This section introduces the required background knowledge to fully understand
how COCOASIM works. Note that because of the interdisciplinary nature of this
thesis, both computer architecture – including caches and replacement policies)
– and software development – including classes, polymorphism, and event-driven
designs – is covered in this section. In summary, four important concepts are in-
troduced:

1. Caches, Section 3.1 – Explaining how caches work and why they are used.
2. Cache Simulation, Section 3.2 – Motivates why performing simulation of

cache systems is feasible, and how it is achieved.
3. Inheritance & Subtype Polymorphism, Section 3.3 – Introduces impor-

tant software concept used to create the simulator.
4. Discrete-event Simulation, Section 3.4 – Describes a simulation paradigm

of "discrete-event simulation", and why it is useful.

3.1 Caches

3.1.1 Motivation

While memory performance has increased significantly over the past years, it
severely lags behind the increase in CPU performance. This concept is often re-
ferred to as the memory wall [2], and leads to the memory acting as a bottleneck
for overall system performance. To counter this, small but fast memories called
caches are added close to the CPU. The caches are designed to be significantly
faster to access than the main memory, but are larger and more expensive. As a
practical consequence, caches have a limited capacity and needs to maintain its
content intelligently.

There are two forms of modern computer memory: Static Random-Access
Memory (SRAM) and Dynamic Random-Access Memory (DRAM). Both of these
forms enable a computer to read and write data as it pleases, but are designed in
different ways. One "memory cell" of Dynamic RAM can be built using only two
components – a capacitor and a transistor – while a Static RAM cell requires six.

9
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This in turn makes DRAM smaller and cheaper to produce. However, there are pri-
marily two disadvantages with DRAM cells: 1) The cells need to be continuously
refreshed to retain its state as the capacitor discharges over time, and 2) They are
significantly slower than the SRAM counterpart. While the refresh takes up time
and somewhat affects the performance of a DRAM cell, the main reason for the
slow access is because of the small transistor size. In short, this happens because
smaller transistors take longer to switch a bit than larger transistor. SRAM cells on
the other hand have larger transistor – making them bigger but also slower. Ad-
ditionally, SRAM cells do not require refreshing as it is not reliant on a capacitor.
This leads to DRAM being highly preferred for memory where capacity is impor-
tant – like the main memory – and SRAM only being reserved for memory that
need to be exceptionally fast - like registers and caches.

3.1.2 Design

As SRAM cells are larger and more expensive than DRAM cells, cache capacity
is typically only a fraction of the total main memory capacity. While the RAM of
an average desktop computer often is in the range of 8 GiB to 32 GB, caches are
typically of sizes between 256 KiB and 8 MiB. This makes it practically impossible
to store any substantial amount of data in the caches perpetually. Instead, data
in caches are continuously replaced to ensure that only the most relevant data
stays in the cache at any time. More specifically, caches want to retain data that
is likely to be requested multiple times in the future, while evicting data that
is not being used. How to do this naturally depend on what program is being
run, but virtually all computers follow a pattern known as "Locality of Reference"
that makes it easier to predict what data is going to be reused in the future. The
phenomenon of "Locality of Reference" dictates the following:

1. Data with addresses close to previously accessed addresses are more likely to
be accessed in the future. This is called spatial locality or locality in space.
As caches fetch more than a few bits at a time, the surplus data fetched
have a high probability of being used. Caches may also use this property to
perform an operation known as prefetching, but this is outside the scope of
this project.

2. After an address has been referenced once, it is likely to also be referenced
some time in the future. This is called temporal locality or locality in time.
This is widely used in caches as it always tries to store the referenced address
in the cache. Additionally, efficient replacement policies – discussed later in
this section – like LRU attempt to keep relevant data in the cache for as long
as possible.

If requested data is present in the cache, the system saves a substantial amount
of time by only having to access the quick cache instead of the slower main mem-
ory. This is often referred to as a cache hit, while requesting data that is not present
is called a cache miss.



Chapter 3: Background 11

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char **argv)
{

char* string = argv[1];
int as = 0;

char c;
int i = 0;
do
{

c = string[i];
printf("%c", c);

if (c == 'a')
as++; // Increment number of as

i++;
}
while (c != '\0');

printf("\nThere are ");
printf("%i", as);
printf(" as in the input");

return 0;
}

Listing 1: Example of a program that can be exploited by caches

Consider the example presented in Listing 1. This simple program takes a sin-
gle string argument, reads it, count the number of times the letter a occurs, and
then prints every letter to standard output. Keep in mind that the cache itself does
not know how the program looks, but instead reacts on the memory requests is-
sued by the CPU. Note the following:

• There are two arrays in the code: argv – the list of arguments – and string
– the list of characters making up a string. While argv is only used once, the
string array is used in the while-loop and thus accessed multiple times.
Since the elements of the array are placed next to each other, this results in
string having spatial locality. This should cause the cache to miss once the
first time it is accessed, but hit on the other loops as a large part of the array
(often 64 Bytes) exist in the cache.
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• Note that c and as are accessed repeatedly inside of the loop. Technically,
the c may be inlined by the compiler, but the as needs to be present as it is
accessed at run-time. This implies that the as variable has temporal locality
as it is accessed multiple times in succession.

Note that in both of these cases the caches do not know that these addresses
are reused, but rather "discover" it as the program is executed. Data put in the
cache is often reused either because an address in an already fetched range next
is used, or because the exact same address is reused multiple times.

In Listing 1, it is easy to see that as should remain in the cache, while the
other data like argc can be safely evicted. However, for most programs, no simple
answer exists on what should be cached and what should be not. When a cache
miss happens in a full cache, the system needs to choose one entry to evict from
the cache (or more specifically the cache cache set, more on this later). To figure
out what to evict and what to keep, the cache uses an algorithm known as a re-
placement policy. When something misses – or hits in the case of some replacement
policies – the cache queries the replacement policy what to evict. There are many
different replacement policies, but some include Random, First In First Out (FIFO),
and Least Recently Used (LRU) [18]. These works as follows:

• Random will simply choose one entry to evict at random.
• FIFO will put the requests in a queue, and evict the one at the front when

missing, while putting the new entry in the back.
• LRU will tag each entry with a counter, where higher values indicates that

the entry has been more recently used. These counters are updated when a
request hits in the cache, and the entry with the lowest counter is evicted
upon a cache miss.

In addition to cache replacement policies, the cache also uses a placement
policy to place a data block depending on its address. While replacement policies
tell the cache what to replace upon a cache miss, cache placement policies tell
the cache where in the cache to place the new entry. There are three categories of
cache placement policies:

• Direct-mapped: When given a memory address, the cache knows exactly
where to place the data block. Each memory address is assigned exactly one
slot, but multiple addresses may map to the same slot.
• Fully associative: Any memory address may exist anywhere in the cache.

The cache treats every memory address the same, and all entries share the
cache capacity.
• Set-associative: Memory addresses are filtered to different sets in the cache,

but otherwise share the capacity of each set. This is seen as a trade-off be-
tween the direct-mapped policy and the fully associative policy.

Each of the three placement policy categories have their own advantages and
disadvantages:
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Direct mapped caches are simple, energy efficient, and do not need any re-
placement policy. The cache can check if an access leads to a hit or miss easily,
as it simply needs to check the content of the direct mapped slot – which in turn
also requires less energy. If this leads to a miss, it simply needs to evict the old
block and insert the new – eliminating the need for a replacement policy. How-
ever, direct-mapped caches often have a lower hit-rate than the other variants, as
every new memory access mapped to the same slot will cause a miss.

Fully associative caches work in the opposite way of direct-mapped caches by
enabling every access to be mapped to anywhere in the shared cache. This enables
full utilization of the cache as no "slots" are unused since the cache will eventually
fill up completely. This approach also generally achieves the highest hit rate of all
variations, as all recent memory access are cached regardless of their address. The
disadvantage to this design is that every entry of the cache needs to be checked on
a new access to determine if the access is a hit or miss. This process also has a high
power consumption, as the cache needs to go through all of its content before it
can fully determine if an access is a miss. Additionally, the metadata overhead is
large as every entry must use a long bit-tag to properly distinguish each address
– making the hardware requirements for these caches expensive.

Set-associative caches work as a trade-off between the two opposites. Instead
of directly mapped "slots", set-associative caches divide the cache into sets. De-
pending on the size of each set, the cache is said to be n-way associative - where n
indicates how many "slots" exist in each set. As implied, this makes direct-mapped
caches "1-way associative", while fully associative caches only have a single set and
thus the maximum number of slots. Set-associative caches tries to balance the
performance of fully associative caches with the cost/energy-efficiency of direct-
mapped caches. Though no objectively optimal balance exist, many caches use an
associativity of either four or eight. Larger caches – primarily L2s and lower – may
also have an even higher associativity to create large enough sets.

In practice, the "slots" mentioned in the paragraphs above are commonly re-
ferred to as cache lines or cache blocks. Whenever a cache miss occurs, the cache
(often) fetches more data than needed in order to fill an entire cache line. As men-
tioned earlier, the reason for this is to enable spatial locality as other data in that
line is likely to be used in the future. While the size of cache lines theoretically
may differ from cache to cache, a cache line is more often than not 64 Bytes.

3.1.3 Implementation

Though early computer systems would simply connect a single cache between the
main memory and the CPU, the implementation of caches have greatly changed
since then. Caches are now placed in a cache hierarchy, with multiple levels of
different caches that support each other. The first level of caches are typically
called L1 caches, and is what all memory requests from the CPU initially access.
If a memory request miss in the L1 cache, it is forwarded to the level below it,
which in this case is the L2 caches. This continues until the request eventually hit
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or there are no more levels of cache. If the request miss in the final level of cache
(often called the Last Level Cache or LLC), the request is instead forwarded to the
main memory. Though there are no limits on how many levels of cache that may
exist, most system operate with two, three, or rarely even four levels of cache as
of 2022.

Figure 3.1: A basic cache hierarchy with three levels.

An example of a basic cache hierarchy with three levels can be seen in Fig-
ure 3.1. Note the following:

1. The L1 cache is shown as a single entity. While this was normal for early
computer systems, it is now much more common to split the L1 cache into
an Instruction cache (L1-I) and a Data cache (L1-D). As the names suggest,
the L1-I stores instructions while the L1-D stores data. With that in mind,
figures and examples in this document will only display one singular L1 for
the sake of simplicity.

2. The hierarchy consists of only a single cache on each level. While this works
for single-core processor systems, multi-core processors – which dominate
the modern market – usually have a L1 cache dedicated to each core. This
often makes the design of the cache hierarchy resemble an inverse tree, as
seen in the example in Figure 3.2.
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Figure 3.2: A cache hierarchy with four cores/L1s.

In addition to having a placement and replacement policy, caches also operate
with an inclusion policy. This policy indicate what relationship there should be
between instances of the same data in different caches in a cache hierarchy. In
other words, can a data entry in the L2 affect the content of a L1 cache – and
if so, how? There are three options of implementing this: either by including or
excluding data in the lower levels, or by not enforcing any restraints at all.

There are three types of inclusion policies:

1. Inclusive Policy dictates that every entry in a L1 also exist in the caches of
lower levels. This means that every entry of a L1 is guaranteed to also exist
in a L2. Note that data may exist in the L2 without being in any L1 caches,
and that if an entry is removed from the L2,2 it must also be removed from
the L1 to ensure that the rule holds. When a data block is loaded from the
main memory, it is stored in all levels of the cache - ensuring that every
cache has their own copy.

2. Exclusive Policy is practically the opposite of the inclusive policy. When
data is loaded from the main memory, it is exclusively placed in the L1.
Whenever something is evicted from the L1, it is moved to the L2 instead of
disappearing from the cache hierarchy.

3. Non-Inclusive Non-Exclusive (NINE) Policy is – as the name suggests – not
inclusive nor exclusive. It does not impose any rules on where a data block
may exist, but does install a data block in all cache levels when loading an
address.



16 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

3.1.4 Non-blocking caches

As discussed earlier in this section, the significant advantage of caches is the de-
creased memory access latency when accessing data present in the cache. Caches
lead to an increase in overall performance regardless of its implementation due to
caches and SRAM simply being faster than the DRAM of the main memory. How-
ever, this is all under the assumption that the program hits in the cache. When
a memory request misses in the cache - and all other caches in the hierarchy -
it needs to fetch the data from the main memory. The caches want to maximize
its hit rate to minimize the times the data has to be retrieved from the slower
memory. For simplicity, the rest of the section will assume the following:

1. All requests are sent by a CPU to a single L1 cache.
2. The cache contains A and B (meaning these will hit), but not X (meaning

this will miss).
3. The CPU sends three requests to the cache for the addresses A, X, and B - as

shown in Table 3.1.

Cycle Request In cache?
1 A ✓

2 X ✗

3 B ✓

Table 3.1: Example of three requests accessing a cache.

Depending on the design of the cache, every cache miss may act as a bottle-
neck. Whenever a memory request results in a cache hit, it may simply return the
data on a read or store the new data on a write. After responding to the cache hit,
the cache is immediately ready for any new requests. However, this is not the case
for cache misses. Every miss causes the cache to perform replacement logic, an
eviction, and a request for the data from a lower level cache or the main memory.
Depending on the implementation, the cache may need to wait and stall for the
requested data to appear before returning the data to the CPU. The CPU has no
knowledge of if the requested data is present or not, so it simply waits for the data
until it is ready. This type of cache is called a blocking cache, as misses causes the
pipeline to stall as it is blocked.

Consider the example of Figure 3.3. As request A hits in the cache, its data can
be returned immediately, and the CPU is able to continue as normal. However,
when request X misses, the CPU must stall until the data of X is fetched and for-
warded. Note that request B hits, but the data cannot be returned before after the
miss logic of request X has finished.

The opposite of a blocking cache – a non-blocking cache – is designed to cir-
cumvent the penalties of cache misses. Note that while the miss logic of request
X was pending in Figure 3.3, the cache could in theory handle another request
in the meantime. A cache hit – as with request B – makes it possible to return
the data of another request while simultaneously waiting for the return of re-
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Figure 3.3: A blocking cache - request X stalls the cache pipeline

quest X, but would require support for Out-of-Order (OoO) processing. Another
cache miss would cause the cache to issue a new request in parallel with the old
one – ultimately hiding the delay. Though non-blocking caches are more advanced
than their blocking counterpart, this implementation circumvents the problems of
blocked pipelines and only stalls when the CPU signals that it needs certain data
to continue. The same example using a non-blocking cache is shown in Figure 3.4.

Figure 3.4: A non-blocking cache – reducing the stall from request X.
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3.2 Cache Simulation

While caches are fast and efficient, they can only keep a finite amount of data at
a time due to their limited size. Thus, it is important to only retain the relevant
data while evicting unused addresses. How software simulators can be used to
experiment with virtual caches is discussed in Section 3.2.1, while different types
of cache simulation is discussed in Section 3.2.2.

3.2.1 Features of Cache Simulation

Creating simulators to test a desired behavior has become increasingly common
for both the industrial and scientific community. As accelerators and replacement
policies become increasingly complex and specialized, testing new functionality is
practically impossible without a simulation tool. Emulating a system in software
rather than hardware makes it easy to implement a feature, test it, and adapt and
make changes. Though the simulated system is an imperfect representation of
real world computer systems, new features can be tested using code without the
need of actual hardware. Though this section will focus on simulators for caches
in particular, many of the mentioned concepts apply to all simulators in general.

In addition to simulator tools used by the industry for internal projects, there
are multiple open-source simulators cache that available for the general public.
The scope of these simulator varies greatly in what they are meant to do – with
some simulators testing entire computer systems while others being limited to
smaller subsystems. When designing simulators in software, many aspects may
make it feasible to limit the simulator in one way or another. One natural reason
for this is time as it is virtually always possible to add new features to a simulator.
However, software projects in general tend to have a diminishing return for every
new feature added. For a cache simulator, that means that major components like
CPUs or caches bring much more functionality than specialized components like
Write Buffers (WBs) or Translation Lookaside Buffers (TLBs). As such, a proto-
type with limited functionality can be created rather quickly, while an advanced,
realistic simulator may take a long time to develop. However, it may still be feasi-
ble to limit a simulator despite given infinite time as to curb the complexity. The
number of features a simulator needs to have for it to be a viable representation
of a real world system is ultimately decided by scope of the development process.
A system that is meant to simulate cache behavior essentially only needs to con-
sider the memory hierarchy, and not other logical components that may be part
of a larger computer system. Simpler systems may also be easier to use, and can
represent a broader array of computer architectures at the cost of decreased re-
alism and less accurate results. The balance between simplicity and complexity
is ultimately decided by the developer – making sure the simulator is advanced
enough while being simple to use.
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As each simulator is uniquely designed and has its own strengths and limita-
tions, there is no "silver bullet" simulator that can do everything. Instead, a sim-
ulator may have a feature not available in another, and vice versa. The choice of
what simulator to use is therefore driven by the requirements or features needed
to conduct an experiment. Though many of the essential features of a simulator
is communicated clearly, limitations and assumptions are often vague. When sur-
veying 28 different CPU cache simulators, Brais et al. classifies simulators using a
list of properties [19]:

• Type – Either Functional – with no notion of time - or Timing – keeping track
of time by counting cycles.
• Mode – The way the simulator works – either by Executing or Emulation, or

through the use of a Instruction Trace or Memory Trace.
• Level – Either on an Application or Full System level – indicating if simulator

supports instructions from a single program or the entire operating system.
• Scope – The confinement of the simulator – essentially if the simulator is

for caches only, or support entire computer systems.

3.2.2 Simulator Classes

Type

Functional simulation is relatively simple as the simulator only need a notion of
order and not time. The input memory requests interact with the same logical
components as in a timing simulation, but the simulator does not know when
events happen. A functional simulator may know that some logical operation will
happen in a memory hierarchy – like a cache hit or miss – but not know when this
operation starts, ends, or what happens in the meantime. Thus, a developer only
needs to consider the logical behavior of a component when receiving a memory
request – like the replacement logic of a cache miss – and not the convoluted
logic of correctly timing each event. This makes functional simulation generally
much simpler than timing simulation, but also less realistic. However, functional
simulation has several uses – e.g., verifying that the components work as intended
or getting a rough overview of important events like number of accesses to a cache.

Timing simulation works in many ways as an opposite to functional simulation
as it is more complex to develop but also a more realistic representation of a real
system. The simulator needs to keep track of time by knowing when something is
happening, how long some operation takes, and how many simulated cycles have
passed since the simulator started. Time is often measured in a number of "cycles"
– where each cycle represent a tiny unit of time. The simulator can then schedule
the effects of each logical operation using a delay in cycles to emulate a passing a
time. For example, the simulator may receive a memory access from the CPU that is
meant to access a L1 cache. If this happens 20 cycles after the simulator began and
the access to the L1 cache is going to take 5 cycles, the simulator needs to execute
the actual access in cycle 25. Many other events may happen in the meantime
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– e.g., another request accessing the same L1 cache in cycle 23. Furthermore, an
independent access to the main memory may happen simultaneously – forcing the
simulator to keep track of every operation to every component all the time. This
makes designing timing simulators considerably more complex than functional
simulators, but allows for more realistic and advanced interaction between events
in the system.

Ensuring that every logical operation happens at the right time in a timing
simulator can be done in mainly two different ways. One solution is to simulate
every component for every cycle in case something affects it. For example, a com-
ponent – e.g., a L1 cache – may know that something going to access it in five
cycles. As the simulator emulates the behavior of every component the next cy-
cles, the L1 cache has no change in the first four cycles. On the fifth cycle however,
the simulator executes the logical operation of the cache access. In this way, the
simulator has accurately represented the desired logic as it took five cycles from
the access was scheduled until it was executed. In practice, this could be achieved
by telling a component to perform some behavior on cycle 5 and simply wait for
a function call. A basic example of this is shown in Listing 2.

#include ...

#include <cstdint>
#include <vector>

class Component;

int main()
{

std::vector<Component*> components = get_components();

uint64_t cycle = 0;
while (!simulation_is_finished())
{

for (auto * component : components)
{

component->simulate(cycle);
}

cycle++;
}

}

Listing 2: Simulating a system by performing some behavior on every component
every cycle.
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However, this approach is inefficient – especially for systems with many com-
ponents or long delays between scheduling an operation and executing it. Con-
sider a system with several cores, and that a L1 cache is assigned to each core.
Regardless of how many of the caches actually are active in a given cycle, they
all need to simulated to account for an access taking place. Each added cache in
a configured system corresponds with another component that needs to be sim-
ulated every cycle – meaning that the performance will suffer disproportionately
with the number of caches. Likewise, a simulation with long execution delays will
lead to a lot of cycles with nothing happening. If the simulator is fed a single in-
struction that takes a very long time to execute – e.g., a load that takes 10 000
cycles – the system is forced to simulate every cycle until something eventually
happens.

An alternate approach to representing time can be done by keeping track of
the events themselves. Instead of simulating every component every cycle, it is
possible to only simulate the events on the cycles when some sort of logical oper-
ation executes. As every event – like memory accesses – knows where in the system
it happens and how long it takes to execute, the system may simulate the events
as they happen. Instead of iterating over every component and simulating them
every cycle, the simulator may instead over a queue of events and simulate them
at certain moments. This is much more efficient than the previously mentioned
approach as the system is agnostic to the actual components in the simulated
environment and the delay between issuing and executing operations. Consider
the same examples mentioned above using this approach. As the number events
– rather than components – dictate the performance, an increase of simulated
components do not directly increase the time spent. As many components may
be inactive most of the time – i.e., not have any logical operation manipulating it
– the simulation of these can be skipped. Likewise, the simulator does not need
simulate every cycle for operations with long delays. Given a theoretical program
of a single load using 10 000 cycles, the simulator may only simulate the initial
cycle and the one 10 000 cycles after it as nothing happens in the meantime. The
gem5 simulator uses this technique, and calls it event-driven simulation. This is
further discussed in Section 3.4.

Note that very few simulators are actually 100% cycle-accurate as virtually
every simulator makes some of assumption that makes the software an imperfect
representation of real hardware. In summary, timing simulation is more accurate
(but also slower) than functional simulation, but will still deviate from an actual
real-life system. There are also varying degrees of tradeoffs between accuracy and
performance within timing simulators – like the analytical modeling and interval
simulation done by Sniper discussed in Section 2.4. It might be possible to create
sub-categories for how timing simulators perform simulation, but this thesis will
only focus on the timing and functional simulation types for the sake of simplicity.
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Mode

Every simulator has the same base goal – i.e., simulating the logical operations in
a computer system – but may often differ in the way they achieve this. Though
all simulators are uniquely designed, one major reason for this difference is that
the simulators uses and manipulates input distinctly. While some simulators are
able to run another application natively, other simulators may only accept a trace-
representation of a program. For example, gem5 can run a simulation through
emulation or by feeding it an instruction trace. Note that mode refers to more than
input as the way the simulation is conducted is vastly different for e.g. emulation
and execution than a memory or instruction trace.

A simulator that works by execution will run a given program natively while
capturing its behavior. The executed application then communicates with the sim-
ulator through the low-level software interface known as the Application Binary
Interface (ABI). However, for this to work the run application needs to have a
compatible interface with the simulator. In return, the application runs fast and
accurately.

Emulation is reminiscent of execution, but is more general and scalable for
the executed application. Instead of running the program natively, the applica-
tion runs in an encapsulated environment. The benefit of this approach is that
any application can be used – including programs without a compatible Appli-
cation Binary Interface. The trade-off for this is that emulation requires a higher
overhead in form of environment management. Additionally, emulating is done
by performing system calls for both the application and OS. When testing cache
behavior for a program, the OS system calls may not be relevant or desired.

Lastly, simulators accepting instruction and memory traces are often far easier
to develop than ones using execution or emulation. Instead of running a program
and having it communicate with the simulator, the system is instead given a file
with instructions or memory accesses. In its simplest form, this may be no more
than a text file where each line represents an address to access. The format of these
input trace files may differ greatly among simulators based on what information
the simulator needs. During simulation, the trace files are read and converted
into operations that manipulate the system. Though this approach is simple and
contains no additional overhead, large traces may not fit in the working memory
and lead to slow I/O operations and following reduce performance. Additionally,
the trace files themselves need to be generated in some way for the simulation to
be able to run. While execution and emulation modes simply need an application,
trace-based modes require the program to be converted into a trace. This is usually
done by other software tools – e.g., functional simulators. As with emulation,
trace-based simulators are not reliant on any specific interface as the instructions
of the traces are independent of the target architecture.
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Level & Scope

In addition to type and mode, Brais et al. also considers simulators to be of a
certain level and scope.

The level of a simulator is either classified as "application" or "full system",
and represent if the simulator is limited to only simulating applications or whole
operating systems. Among these, application-level simulators are easier to imple-
ment and often faster as the simulator only needs to consider operations done in a
single application. On the other side is "full-system"-simulators that capture every
operation – including those that are either directly or indirectly made because of
another operation in the application. As such, these are often more accurate, but
also slower and more complex.

Lastly, simulators may either be confined or complete. As discussed in Sec-
tion 3.2.1, this is determined by what the simulator wants to be accomplish.
Though many cache simulators are just meant to simulate the cache behavior,
some simulators attempt to simulate whole computer system.

3.3 Inheritance & Subtype Polymorphism

When developing a simulator, it is often beneficial to use the Object-Oriented Pro-
gramming (OOP) paradigm which represents abstract concepts as "objects". The
"objects" in OOP are often abstract representations of real-world entities, and con-
tain data and logic local to each object. Programs written in an object-oriented
programming language often create and manipulate objects to solve some sort of
problem.

An object-oriented programming language follows five basic design principles:

• It features Objects or/and Classes that may be initialized to create distinct
entities which contains data, variables, and logic unique to every entity.
• It allows for Information Hiding – meaning that members of a class may

be configured to restrict access of its data or logic. In practice, this is often
defined by the keywords public, protected, and private.
• It includes Interfaces or Prototypes – which essentially is the ability for

some code to inform other code of the signature of methods and functions.
In practice, this means that code may use a function defined elsewhere with-
out implementing the function itself as long as it knows its signature. The
signature includes properties like output type, parameter types, and param-
eter count.
• It allows the objects to have Inheritance – meaning that objects can be

created as "extensions" of other through the use of "sub-classes". A "subclass"
contains all the data and logic fields of its "super-class", but may come with
new additions or even override existing logic.
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• It has Subtype Polymorphism – i.e., the ability to swap an object with an
"sub-class" object. This means that the programming language knows that a
"sub-class" object is an extension of a parent object, and that they thus share
the same type.

Defining new classes as sub-classes allows developers to create a hierarchy
of classes that expand on each other. Paired with polymorphism, it is possible to
create wide definition in base classes that are narrowed down to specialized sub-
classes through leveled inheritance.

Figure 3.5: Hierarchical inheritance with ’Animal’ as the common super-class.

Consider the example in Figure 3.5. All sub-classes derive from the same "An-
imal" class despite that the dog, cat, and goldfish classes are different from each
other. However, all the animals have a weight, height, and a common method for
eating food. The animals are all also able to make a sound, but each animal will
say something different based on what type of animal they are. Note that all land
animals are animals, and that since dogs are land animals they are implicitly ani-
mals as well. In other words, the dog class is an extension of the land animal class
which in turn is an extension of the base animal class. This means that the "dog"
class has all the attributes of land animals – like the number of legs – as well the
data and logic of animals - weight and height.

As a programming language knows of every class – including super-classes
and sub-classes – at compile-time, it is able to determine what classes derive from
other. An example of a C++ header files for the "dog" class of Figure 3.5 can be
seen in Listing 3.
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#include <string>

class Animal
{

int weight;
...

virtual std::string make_sound();
...

}

class LandAnimal : public Animal
{

...
}

class Dog : public LandAnimal
{

virtual std::string make_sound() override;
...

}

Listing 3: The "Dog" class and its parent classes

When analyzing the type of attributes and variables in the code, the program-
ming language is able to perform sub-typing by accepting a subclass attribute
in place of a super-class attribute. In the aforementioned example, the language
knows that "Dog" objects may be substituted with "Animal" objects as all dogs are
animals. This enables the behavior shown in Listing 4.

Note that the code in Listing 4 calls the virtual method make_sound() on the
animal. This is defined in the Animal class, but overridden in each subclass. This
implies that every animal makes some kind of sound, but this is up to each animal
themselves to implement.

Lastly, it is worth considering that while the "dog" class can be linked to a
real world entity – i.e., a physical dog – other classes may not. For example, the
"land animal", "water animal", and "animal" classes are all ambiguous as there is
no single animal that can represent all these. During programming, it may not
make sense to initialize a "land animal" object as the class is just meant as an
interface to extend upon. This makes "land animal" – and transitively also "animal"
– an abstract class. For C++, an abstract class is any class that contain a "pure
virtual function". Compilers will usually prevent developers from creating abstract
objects, and fail when compiling code with pure virtual functions that are not
overridden elsewhere.
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#include <iostream>
#include <vector>

...

int main(int argc, char **argv)
{

// All dogs are animals, but not the other way around:
Animal dog_as_animal = Dog(); // OK; dog is an animal
// Dog animal_as_dog = Animal(); // Not OK

std::vector<Animal> animals; // A list of animals
animals.push_back(Dog()); // OK to add dog
animals.push_back(Cat()); // OK to add cat

for (auto & animal : animals) // For each animal:
{

std::cout << animal.make_sound() << "\n"; // - make animal sound
}

}

Listing 4: Subtyping with Animal sub-classes - C++

3.4 Discrete-event simulation

Discrete-event simulation is a way of simulating a system where events manipulate
the internal this As mentioned in Section 3.2.2, an effective way of simulating sys-
tems is by discrete-event simulation. This is an efficient way of simulating behavior
for scenarios where certain events change the state of the system at certain mo-
ments in time, but no change happens between these events [20]. The events may
be deterministic, but are often added dynamically – e.g., by other events. There
are multiple way of performing discrete-event simulation, but the most common
is by having the software "jump" from event to event. Once an event has been
simulated, the simulator may jump to the next event as it is guaranteed that there
will be no change in between.

The gem5 simulator uses this approach when simulating computer systems.
The main logic of the simulator is performed by a single, infinite loop that con-
tinuously fetches and fires events. Each event may spawn another event at a later
point in time, so the simulator does not necessarily end when after the initial
events are executed. Instead, it fires and and processes the effects of each event
as they happen, and only stops when it cannot fetch any new events.
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Figure 3.6: A cache access event to L1 leading to two other events

An example of a very simple cache simulation with a single access to can be
seen in Figure 3.6. Assume that the simulator has just started, and that the current
cycle/time counter is set to 0. Also assume that the requested data is available in
the L2 cache, but not the L1 cache. This may lead to the following:

0. Event 1 is set to access the L1 cache. As the time to access the L1 cache is 1
cycle, the simulator schedules the access for the next cycle.

1. At cycle 1, event 1 fires – accessing the L1 cache. Given the assumption that
the data is only available in the L2 cache, this will lead to a miss. Thus, event
1 will create a new event – event 2 – and schedule this five cycles into the
future at cycle 6.

2. At cycle 6, event 2 fires the memory request event which results in a hit.
This should trigger the creation of another new event. Depending on the
implementation, this may be a message of acknowledgment sent to either
the L1 or the source. For simplicity, assume that the message is sent directly
to the source. This takes a total of 6 cycles, so event 3 is scheduled for cycle
12.

3. Lastly, event 3 fires at cycle 12 – telling the system that the message has
been received. This is the last event in the simulation, as this doesn’t spawn
any new events. Thus, the simulation ends at cycle 12.
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Motivation

4.1 Goal

As mentioned in Chapter 1, the use of a cache simulator is essential to efficiently
research new and advanced accelerators, configurations, and replacement poli-
cies. Open-source simulators may be extremely useful in testing new ideas, as they
allow researchers to focus on getting results quickly instead of worrying about the
underlying logic of a simulator. Together, many different open-source simulators
cover a large amount of features and platforms that can be experimented on. Ad-
ditionally, some of the larger, long maintained simulators – like gem5 [4] – has a
wide array of features and configurations. In the end, however, these simulators
are only meant as assisting tools, and not every problem is automatically compat-
ible with any simulator.

Though many powerful CPU cache simulators exist, there are relatively few
simulators focusing on GPU and multi-core behavior. The aforementioned simu-
lators capable of this behavior – i.e., gem5 and its gem5-gpu fork, GPGPU-Sim,
and Sniper for multi-core simulation – are exceptions rather than the rule. Ad-
ditionally, these come with various assumptions – like GPGPU-Sim requiring the
application to be built on the CUDA framework. The lack of GPU simulator is not
directly surprising however as memory latency is a dominant bottleneck for CPUs
rather than GPUs because of the aforementioned "Memory Wall" [2], and the de-
mand to reduce CPU latency has been (and still is) an area of focus. Additionally,
GPUs often value throughput over memory latency, as the number of operations
– i.e., throughput – is viewed as more important than the latency of each indi-
vidual operation. Still, with GPU systems being increasingly more advanced and
utilized more for non-graphical workloads, GPU caches have become more im-
portant. This does not mean that cache behavior in GPU systems is unexplored,
but rather that there exist a myriad of different implementations and ideas with
have non-trivial solutions that can be tested. One such idea may be the effect of
an inclusive cache policy in multi-core cache hierarchies, and how this is affected
by different graphic workloads.

29
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As mentioned in Section 3.1.3, inclusion policies may increase cache hit rate
for certain implementations. In particular, an inclusive cache policy generally per-
forms well for multi-core CPUs. Recall that every entry of a L1 also exist in the
L2 when following an inclusive policy. This works well for multiple cores, as the
threads of a program often reference the same addresses in memory. If one thread
installs a data block in its local L1 cache, it will also forward the data to the L2
(and L3 and so on). This makes it possible for individual threads to hit in the L2
(or L3) cache when requesting addresses that another thread has loaded. This be-
havior should also carry over to GPUs, as the cache hierarchy structure stays the
same despite the change in workload.

The last few paragraphs create the basis for the goal of the project this thesis
is based upon:

Explore the effects of memory hierarchy consisting of coherent inclusive
caches on programs divided between multiple cores.

As mentioned above, the motivation for this is that data shared across a pro-
gram should lead to hit rates in the lower level caches. Assuming that multiple
threads use the same data, only one miss is needed by one of the threads before
it is available in the L2 or L3 cache.

For example, consider the matrix multiplication function of Listing 5. Note
that except for a small sequential part at the start of the function, the matrix
multiplication are parallelized for each row. Though most of the variables refer to
a unique address, the variable b uses the same access pattern across all threads.
In other words, after one thread requests a variant of this – say, matB[0,0] – it
should be available in the shared L2 or/and L3 cache due to the inclusive cache
policy.

Another example can be seen in Figure 4.1. Each colored circle represent a
data block that is derived from a unique address. Note that each L1 caches some
data that is shared between both L1s and some data that is unique to each cache.
However, as the hierarchy consists of inclusive caches the textitall of the data is
present in the L2. This is beneficial as it is quite likely that one L1 receives a request
for data that is present in the other. For example, a request for the red block in
the left L1 will initially miss, but hit when propagating to the L2 cach.

4.2 Requirements

4.2.1 Simulator Requirements

To test the previously described behavior, two things are needed: a data set with
GPU-compatible memory operations, and a simulator that mimics the behavior of
a GPU cache hierarchy while accepting the format of the data sets. Though feasible
data sets may be hard to find, a large batch of generated memory traces from GPU
emulation was generously provided by Ole Henrik Jahren of ARM Trondheim.

This section will focus on the 11 requirements presented in Table 4.1, and
discuss the reasons for these in the following subsections.
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using ...

// Example borrowed from:
// https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/
// how-to-write-a-simple-parallel-for-loop#matrix-and-stopwatch-example
// Code is slightly altered to fit better
public class MatrixSharedDataExample
{

static void MultiplyMatrices(double[,] matA, double[,] matB, double[,] result)
{

// Get rows, cols from matrices
int matACols = matA.GetLength(1);
int matBCols = matB.GetLength(1);
int matARows = matA.GetLength(0);

// Parallelize the outer loop:
Parallel.For(0, matARows, i =>
{

// Each thread will have the same amount of iterations
for (int j = 0; j < matBCols; j++)
{

double temp = 0;
for (int k = 0; k < matACols; k++)
{

// a is unique for all thread because of i...
double a = matA[i, k];
// But b is shared between all threads!
double b = matB[k, j];

temp += a * B;
}
result[i, j] = temp;

}
});

}
}

Listing 5: Example of a matrix multiplication in C# where data is shared among
threads.

The requirements of Table 4.1 are divided into three groups for the sake of
readability. The requisites are grouped as follows:
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Figure 4.1: A cache hierarchy sharing some of the same data across cores.

• Group A indicates the provisions of the simulator in terms of its minimum
base features – i.e., what the simulator must be capable of to be able to
simulate the problem in the first place. Though a simulator may feature an
advanced coherency or inclusion policy protocol, it cannot be used if it lacks
an interface for memory traces per core.
• Group B consists of the requirements of features in the simulated system

itself. These include what components are possible to implement in the sim-
ulator, and how advanced the configuration of these needs to be. For exam-
ple, the system must not only support caches that replace entries on cache
misses, but rather a configurable cache replacement policy. As with group
A, it is not enough for the simulator to accept the memory trace format if it
cannot test the desired systems due to, e.g., non-configurable caches.
• Group C is closer to strong recommendations than absolute requirements,

but important nonetheless. For practical reasons, the simulator should strive
to achieve a high performance as to limit simulation times for larger pro-
grams. Traces consisting of millions or more of operations should also be
handled in a way to limit their resource footprint.

The requirements of category A and B as well as their implications are further
discussed in the Section 4.2.2 and Section 4.2.3.
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# Requirement
A1 The simulator must emulate cache behavior in a GPU environment
A2 The simulator must be able to simulate distinct caches and cache

hierarchies
A3 The simulator must accept a memory trace per core – i.e., each

individual L1 must be able to read from its own trace
A4 The simulator must accept memory traces in a custom binary Google

Protocol Buffer format
B1 The simulator must be scalable and configurable
B2 The simulator must support highly configurable caches in terms of size,

associativity, cache line size, etc
B3 The simulator must allow for an inclusive cache policy
B4 The simulator must allow for a cache being able to handle a

configurable number of requests without blocking
B5 The simulator must be able to handle dependencies between memory

operations
B6 The caches in the simulated cache hierarchy must have a configurable

cache coherency protocol, cache placement policy, and cache
replacement policy

C1 The simulator should use an appropriate amount of resources (especially
memory usage) under simulation

C2 The simulator should attempt to scale its performance as optimally as
possible – i.e., the time spent simulating a program should scale as
linearly to its size as possible

Table 4.1: Requirements

4.2.2 Requirements – Group A (Simulator Features)

The requirements of group A are based on the following reflections:

• A1 – The main goal of the simulator is to simulator the behavior of a GPU
system with caches, so the system cannot be designed exclusively for CPU
behavior. Some simulators may be built on the assumption that the caches
receive requests from the CPU, and these cannot be used here. In other
words, a CPU cache simulator should not be used to solve a GPU cache
simulation problem.
• A2 – The simulator must treat every cache distinctly and make it so that

the caches can be connected through a hierarchy. The simulation behavior
cannot be limited to one cache, and the caches need to communicate seam-
lessly with each other e.g. when forwarding a cache miss or when eviction
of a dirty block leads to a write-back. The simulator must also keep track
of an user-defined number of caches and how these are connected while
leaving the configuration of the system to the user.



34 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

• A3 – Each individual L1 cache must be able to access a separate input of
memory operations assigned exclusively for that L1 cache. Instead of a sin-
gle memory trace file, there are multiple smaller files consisting of oper-
ations where each file is meant for one (and only one L1 cache). This is
needed as each core creates their own separate set of instructions indepen-
dently from the other cores, and only the L1 assigned to each core receives
this trace.
• A4 The memory trace files of requirement A3 is provided in a custom-made

binary format based on Google’s Protocol Buffer. The simulator needs to pro-
vide an interface for reading the files this format. The details surrounding
the trace files will be discussed later in Section 5.3.3.

4.2.3 Requirements – Group B (System Features)

• B1 – The simulator must be scalable and easily configurable so that different
configurations and options may be tested with relative ease. For example, a
user should easily be able to manage the design of a cache hierarchy as well
of the number of caches, or what caches read from which files. Additionally,
the simulator should not (as far as it is possible) put any limits on the size
of the memory, number of caches, how caches are connected in a memory
hierarchy, etc.
• B2 – The caches of the simulator need to have several configurable options

– like size and associativity – so that different configurations can be eas-
ily tested. Thus, the caches should have as few hard-coded assumptions as
possible.
• B3 – A large part of the main goal of the simulator is to explore the behavior

of inclusive caches of a GPU system. To achieve this, the simulator must
know the rules of the inclusive cache policy. The details of inclusive cache
policies are discussed in Section 3.1.3.
• B4 – In order to generate realistic results, the caches of the simulated system

should be non-blocking – meaning that the cache should be able to handle
new incoming requests continuously without stalling. This should also be
configurable – i.e., it should be possible to indicate how many operations
a cache can process while still continuing without blocking. Non-blocking
caches are discussed further in Section 3.1.4.
• B5 – The operations of the memory trace might be dependent on another

operation before it being completed before being allowed to execute. Thus,
the simulator should be able to recognize and buffer certain operations so
that these are only executed once all dependencies are completed.
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• B6 – In addition to size, associativity, etc., the caches of a system need to
have configurable coherency protocol as well as placement and replacement
policies. All these factors may have a significant impact on performance, and
different combinations or variants of these should be possible to test. Per-
haps the most important of these is the cache replacement policy, so it should
be possible for a user to define a new replacement policy and compare its
results to other policies.

4.2.4 Discussion

Note that the requirements of Table 4.1 varies in how specific they are. The re-
quirements of group B are quite general, as the majority of these (with the possible
exception of B3) might persist for any simulation – not only this experiment. How-
ever, the support for an inclusive cache policy is naturally required as it sets the
basis of the project, but this is not necessarily a rare feature for a simulator to
have. Not all open-source simulators may meet all requirements of group B, but
most have at least a way of configuring cache size and manipulating the cache
replacement policy.

The requirements of group A are however more specific to this project in par-
ticular. Recall that the group A is meant to describe the requirements of the simu-
lator itself, and that the goal of this project is to explore the behavior of inclusive
caches in coherent multi-core cache hierarchies. Also recall that the project itself
is made possible by custom memory traces provided by ARM, but that these also
requires a specific interface to be interpreted correctly. This leads to a list of re-
quirements for the simulator in general rather than the underlying system, and
results in the items of group A. To define these, the goal of the project as well as
the trace format can be used as a starting point. The first three requirements may
be derived directly from the project goal itself: The simulator needs to emulate
GPU behavior, simulate a hierarchy of distinct caches, and allow each individual
L1 to read from a separate file representing a thread. Likewise, the last require-
ment may be described using the trace format itself: The simulator must know
how to translate the information from the trace into internal representations that
it can use to simulate a system. All in all, these requirements are much less generic
than the ones of group B, and are less likely to be supported in any open-source
simulator.

Though multiple open-source simulators exist freely on the web, the largest
and most maintained of these is arguably gem5 [4]. The gem5 simulator is dis-
cussed further in Section 2.2, but is in short a full-system simulator capable of
emulating cache behavior. As mentioned earlier, there is no guarantee that gem5
is compatible with every single problem or project, but it still has a large array of
features and configurable options.



36 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

# Short requirement Supported?
A1 Multi-core GPU environment N/A*
A2 Multiple caches and hierarchies ✓

A3 Memory trace per core ✗

A4 Accept memory traces in a custom format ✗

B1 Scalable + configurable simulator ✓

B2 Configurable caches ✓

B3 Inclusive cache policy ✓

B4 Non-blocking caches ✓

B5 Request dependencies ✗

B6 Cache coherency, cache placement policy, cache replace-
ment policy

✓

C1 Acceptable resource usage ✓

C2 Scalable for larger programs ✓

Table 4.2: Desired features supported by gem5.

Consider the checklist of Table 4.2. Note that while gem5 is highly config-
urable and covers a lot of the requirements, it still fails on at least two of the
items of group A and one item in group B. Though gem5 supports advanced fea-
tures like non-blocking cache, inclusive caches, and coherency protocols, it is not
enough to simulate the desired problem. The simulator fails to meet the following
requirements:

• A3: The gem5 simulator may simulate programs in two ways: either by
emulating a given application, or by providing a TraceCPU-component with
a custom generated trace. However, the latter is for practical reasons only
meant for replaying simulations after generating the trace from emulation.
Nevertheless, gem5 does not support manual routing of memory traces to
exclusively L1s/cores.
• A4: As the provided traces come in a custom binary format, it is not surpris-

ing that gem5 does not know how to translate the input to an appropriate
representation. Additionally, the component responsible for reading traces
– TraceCPU is: 1) a CPU, 2) only capable of replaying traces in a specific for-
mat, and 3) made for reading instruction traces rather than memory traces.
This makes TraceCPU unfit for accepting the custom trace files of this project.
• B5: One special requirement for this project was to put dependencies be-

tween the completion and initialization of certain memory operations. As of
May 2022, there is no easy way to force a such dependency in a trace format.
Though dependencies probably are resolved automatically when gem5 em-
ulates an application, there does not seem to be support for this when sim-
ulating from traces. However, this is not really surprising given that gem5
is meant for simulation through emulation and not through memory traces.
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Additionally, there are a few other points that should be addresses: A1 – sup-
port for GPUs – is technically achieved, but gem5 only simulates the architecture of
either a Nvidia system (through gem5-gpu) or an AMD system (through the bun-
dled GCN3). For the purposes of this project, this requirement is not adequately
fulfilled. Secondly, B3 is fulfilled through gem5’s advanced cache coherency in-
terface. Though gem5 is bundled with several pre-made coherency protocols, the
protocols with inclusion would probably have to be altered to fit the project. Nev-
ertheless, this should be possible, so the requirement is marked as fulfilled.

Lastly, it might be interesting to note that the TraceCPU actually uses Google
Protocol Buffer to create custom traces when generating and replaying traces.
However, Google Protocol Buffer is only a framework for creating binary-formatted
input files. The base of these custom traces may be similar, but their contents are
not.

4.2.5 Conclusion

As discussed, the specificity of the goal of this project makes it hard to simulate the
desired behavior out-of-the-box using an open-source simulator. While gem5 is the
only simulator discussed and compared against the requirements, it is highly likely
the simulator with the most features of all cache simulator available. Though other
simulators – like Sniper [5] or GPGPUSim [12] – may have unique features that
gem5 lack, the simulation is still hindered by several very specific requirements.
This is especially true for A3 and A4, as these require a custom-made interface to
be fulfilled. In the end, this results in a limited number of potential options:

1. Test the implementation on real hardware: This is not a practical option
and should not be considered. As motivated earlier, this makes it practically
impossible to tweak parameters and test different systems. While the use of
FPGAs might be slightly more feasible, this option brings a massive technical
overhead for a project that is limited to an exploration of cache behavior.

2. Modify existing simulators to meet the requirements: This option is much
more realistic. Though gem5, Sniper, or GPGPU-Sim (to name a few) do not
have any compatible interface for, e.g., the custom trace format, this might
be still possible to develop. In fact, one argument for this option is that code
is made open-source partly for this very reason – enabling developers to add
new features over time. However, the complexity of this may vary greatly.
In the case of gem5, this might change a lot of the underlying logic of the
simulator. Recall that gem5 runs applications through emulation, and that
the requests are generated by a CPU. All this would need to be modified
or expanded upon to first allow gem5 to read from any memory trace, and
then further changes would be needed to allow it to read from this mem-
ory trace in particular. This might be easier for other simulators accepting
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memory traces in the first place, but would still be significantly complex
for the A3 requirement. Furthermore, these types of simulators might miss
functionality gem5 has. Though this option may be theoretically possible, it
is still a great endeavor.

3. Develop a specialized simulator from scratch: This may sound like an
even greater undertaking than the option above, but does not necessarily
have to be. Any new simulator would have to meet all the requirements
of Table 4.1, but does not need additional advanced features like intercon-
nects or CPU logic that gem5 has. This will effectively allow for tailoring the
software to the exact needs of the project and ensure that all needed config-
urations and features are present. However, this approach should still take
a lot of development time before the actual problem of the project could be
tested. While any advanced non-essential features could be safely ignored,
basic functionality like caches, memory, request representation, and I/O-
interfaces would all need to be developed from scratch. There is also a high
chance of encountering bugs or errors along the way that existing simula-
tors already have identified and fixed. Ultimately, though, this is the only
realistic option for ensuring that all the requirements are met. Recall that
group A of Table 4.1 is reserved for requirements of the simulator itself, and
the only way to guarantee that these are met is to have full control of the
simulator.

While developing a simulator is hard and a time-consuming process, it seems
to be the most feasible of the options above. The rest of the thesis introduces CO-
COASIM: a Concurrent Cache Operating Access Simulator capable of simulating
multi-core systems using an inclusive cache policy. The simulator is custom-made
specifically to solve the problems described in this chapter, but is able to simulate
highly configurable systems.
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Simulator Overview

The decision to develop an entirely new cache simulator from scratch eventually
culminated in COCOASIM – a COncurrent Cache Operating Access SIMulator. The
simulator itself is written almost entirely in pure C++, but also includes Makefile
code to simplify building the COCOASIM binaries, and also uses Python to con-
tinuously integrate and test new features as they were added in the development
process. Building the source of COCOASIM using the Makefile results in three bi-
nary files: cocoasim, cocoasim-fast, and cocoasim-fast. All of these simulate
a user-defined system in the same way, but varies in terms of performance and
debugging support.

In summary, COCOASIM comes with multiple practical features. While the
simulator was created to solve a very specific problem, many of the features are
problem-agnostic and can be useful for any simulation. Some of the things CO-
COASIM is capable of are listed below:

• Simulate in three different "modes" – each with varying performance and
debugging support.
• Direct individual traces to individual cores/L1s –allowing for fine-grained

input configurations.
• Read from highly compact binary traces through streams. Additionally, the

streams are only read from when needed – thus minimizing memory usage.
• Use highly configurable user-defined systems: either through creating the

system in C++ or by providing the simulator with a configuration file in
JSON.
• Perform logging at a user-defined level – ranging from nothing to extensive

logging.
• Create dumps of each simulation with logs and statistics. The simulator as-

signs either a unique ID or a user-defined name to the dump – making it
easy to organize the results of multiple simulations.

Using the simulator classes discussed in Section 3.2.2, COCOASIM can be de-
fined as the following:

39
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• Type: Timing - The simulator keeps track of time in cycles. Events in the
simulator are first initialized, and then scheduled for whenever the opera-
tion finishes. COCOASIM keeps track of what events finishes when and what
how many cycles have passed since the simulation started. The simulation
ends only when all events are finished.
• Mode: Memory Trace - As mentioned earlier, COCOASIM reads from traces

consisting of memory instruction at runtime to simulate a system. These
traces tell COCOASIM things like the operation executed, the address ac-
cessed, any dependencies on other requests, and more.
• Level: N/A - Since COCOASIM only simulates the provided operations, it

does not need to consider the level like simulator that rely on execution or
emulation do. This can be viewed as a double-edged sword; The simulated
system does not to run other applications, but in turn require generated
memory traces. These traces are typically generated from other functional
simulators.
• Scope: Cache simulator - COCOASIM is limited to being only a cache sim-

ulator as the main motivation for its development is to explore cache be-
havior.

While COCOASIM is designed specifically to meet the requirements of Ta-
ble 4.1, the simulator is also designed to be scalable and have a generic and con-
figurable interface. This is done to ensure that new features can be added without
making major changes, and make it possible to test different variants of systems
and components. For example, COCOASIM allows for any number of cores in a
simulated system. This makes it just as easy to test a traditional single-core system
as a GPU with 20 streaming multiprocessors or improbable designs with thousands
of L1 caches. Furthermore, every component in a simulated system is represented
by an object, and may be modified or replaced as needed. New objects can also
be added with relative ease as long as they inhibit an interface that COCOASIM
recognizes. For example, new replacement policies can be created by a user as
long as the simulator know what to do on cache hits and misses.

While the interface and internal logic of COCOASIM greatly differs from that
of other cache simulators, the simulator is inspired by some of gem5’s design
decisions. Most notably, COCOASIM simulates the passing of time in the same
way as gem5 – i.e., through discrete event simulation. Though the implementation
differs between the two simulators, both build on the same concept of jumping
between events at set timestamps. Discrete event simulation is discussed further
in Section 3.4.

A quick comparison between gem5, Sniper, and COCOASIM is presented in
Table 5.1. All simulators have a notion of time, but use different input when sim-
ulating. Note that gem5 and Sniper provide a larger scope of features, while the
main focus of COCOASIM is to simulate a specific type of problem.
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Simulator Level Type Mode Scope
gem5 Timing Application /

Full System
Emulation / In-
struction Trace

Full system sim-
ulation

Sniper Timing Application Execution / In-
struction Trace

Configurable

COCOASIM Timing N/A* Memory Trace Cache simulator

Table 5.1: Comparison of gem5, Sniper, and COCOASIM.

5.1 Software requirements

5.1.1 Simulation

In theory, simply executing one of the COCOASIM binaries should be possible
without the need of any other library or external program. The simulator only
needs to know what program it should run in what type of system. To achieve
this, COCOASIM needs:

1. a collection of traces in the custom Google Protocol Buffer Format.
2. a representation of the system to simulate.

For technical reasons, it is highly recommended that the simulator binary is
run from within the COCOASIM repository. There are two reasons for this:

1. The simulator will attempt to write to and move files during execution. A
dump containing statistics and logs will be dumped in the same location as
the binary.

2. The simulator needs to use another software module usually bundled with
the COCOASIM repository called pbtrace. The code of COCOASIM will at-
tempt load a header from this project during compilation. Though the ex-
ternal repository can be extracted along the binary and still work, it is rec-
ommended to leave things as they are.

5.1.2 Developing

While the code of COCOASIM tries to have as few dependencies as possible, a
developer working with the source code of the simulator needs to have some
software installed. These prerequisites are shown in Table 5.2.

5.2 Running COCOASIM

Simulations in COCOASIM can be run by executing a binary along with a list of
parameters from the command line. The format of a hypothetical configuration
using every available (and compatible) option is shown in Listing 6.
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Requirement Needed to Used for
C+11 (or newer) Compile Code, especially for simplifying for-loops

and creating objects through the use of
the auto keyword

Boost (C++ library) Compile Various code, logging, JSON parsing,
algorithms, etc.

GNU Make Compile Run Makefile, build project
Python Test Run tests

Table 5.2: Requirements for compiling and testing COCOASIM

./<binary>
> -L
> -l LOG_SETTING
> -i INPUT_DIR
> [-c CONFIG_FILE] OR [-s SYSTEM_NAME]
> -o OUTPUT_DIR
> -F

Listing 6: How to run COCOASIM – featuring the available options.

An overview of the possible arguments that COCOASIM can use can be seen
in Table 5.3. Note that while the simulator only needs a single argument telling
it what system to use, more options can be used for increased configurability.
Note that while only one argument is needed, the simulator needs to actually
have access to the collection of traces and the configuration file. In other words,
if COCOASIM is run using ./cocoasim -C it assumes that the directory traces –
as well of as its files – and configs/test_system.json actually exist.

The flags of Table 5.3 have the following effects:

• -L / –loud: Causing the simulator to be "verbose" when logging. All log
messages are written to standard output in addition to the log file.
• -l / –log-level: Takes an integer argument in the range 0-3 which determines

the amount of logging. The numbers represent the following levels:

0. NONE: Might be slightly misleading as COCOASIM logs only the abso-
lute essential – like if the simulation completed with or without errors.
In other words, almost nothing is logged.

1. BASIC: Logs things like setup logic and confirmations of the chosen
configuration, but nothing else. This is the default option.

2. INTERNALS: Logs a lot of internal logic – like memcopy requests ac-
cessing caches, or eviction of tags in cache sets – but not details.
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Flag Long option Argument R? Default C
-L –loud - ✗ False L
-l –log-level int [0-3] ✗ 1 L
-i –input-dir string/path ✗ "traces" I
-c –config string/path * - S
-C –config-default - * "configs/test_system.json" S
-s –system string * - S
-S –system-default - * "TestSystem" S
-o –output-dir string ✗ PID of COCOASIM O
-F –full-simulation - ✗ False D

R?: Required?, C: Category, L: Logging, I: Input. S: System, O: Output, D: Debug

One – and only one – of the options marked with * must be specified

Table 5.3: The arguments that can be parsed by COCOASIM.

3. ALL: Logs virtually every event and operation happening during exe-
cution. Dumps a lot of data of components as they change state. Used
primarily in debugging as much of the information at this level is just
the simulator checking that everything works correctly.

• -c / –config: Tells the simulator to load the system configuration file at a
given path. The file must be in the custom JSON format shown in Figure 5.7.
The details regarding configuration files are presented in Section 5.3.4.
• -C / –config-default: The same as -c configs/test_system.json. Sepa-

rated from -c to avoid optional arguments.
• -s / –system: Tells the simulator to use a system defined by a C++ class.

Assumes that the class exists and is added to a custom catalog interface that
the simulator has access to. This is discussed further in Section 5.3.4.
• -S / –system-default: The same as -s TestSystem. Separated from -s to

avoid optional arguments.
• -o / –output-dir: Specifies the name of the directory which COCOASIM logs

messages and statistics to. If the -o flag is absent, the simulator will use the
current Process ID (PID) as the directory name.
• -F / –full-simulation: Toggles full data simulation. Since hit and miss rates

are fully independent of the data in the cache, the simulator only considers
the actual addresses when handling memory accesses. However, enabling
full data simulation makes COCOASIM also keep track of the data at any
given address. This is primarily meant as a secondary feature to be used
to ensure that the correct data is being read and written as it is resource-
demanding for large traces.

A couple of examples on different argument configurations are shown in List-
ing 7.
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# 1
# Run simulator with already existing files
# Uses "traces" as default input directory
# and existing C++ class TestSystem as system
./cocoasim -S

# 2
# Run simulator with custom trace directory
# and custom configuration file
# Use fastest version
./cocoasim-opt -i memcpy -c configs/my-8-core-config.json

# 3
# Run simulator with maximum level of logging
# and log verbosely to terminal output
# Output statistics and results to new directory
# named "results" in addition to terminal output
./cocoasim -L -l 3 -C -o results

# 4
# After adding a new system class in C++,
# run simulator with test traces
./cocoasim-fast -s MyNewCPPSystem -i test_traces

# 5
# Run multiple simulations (in sequence), but map
# output to different dumps - allowing for easy
# comparison between the two of them
./cocoasim-opt -s MyNewCPPSystem -o sim1 &&
./cocoasim-opt -c configs/my_config_system.json -o sim2

Listing 7: Examples of configurations for running COCOASIM

5.3 Configurations & Arguments

While COCOASIM has several features that are not visible to the user, much of the
underlying logic of the simulator can be linked directly to the arguments given to
the simulator during run-time. This section will use the options of Table 5.3 to
discuss how these are supported through the design of COCOASIM.

This section discusses the six available arguments and explains what implica-
tion they have on a simulation:

1. Binary Variants, Section 5.3.1 - How the binary choice affect debugging
and performance, and why.
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2. Logging, Section 5.3.2 - How logging works in COCOASIM.
3. Inputs & Traces, Section 5.3.3 - The traces used by COCOASIM, their for-

mat, and why these are used.
4. Systems, Section 5.3.4 - How to specify, modify, and ultimately run a sys-

tem.
5. Output, Section 5.3.5 - What output a simulation in COCOASIM generates.
6. Full Data Simulation, Section 5.3.6 - The full data simulation option.

5.3.1 Binary variants

The simulator can be run using one of the three binaries – i.e., either cocoasim,
cocoasim-fast, or cocoasim-opt. The binaries have the same interface and uses
the same input parameters, but cocoasim-fast and cocoasim-opt will ignore any
logging options. In short, cocoasim-fast runs significantly faster than cocoasim,
and cococasim-opt is slightly faster than cocasim-fast. Stable versions of CO-
COASIM should produce the same results regardless of the binary used, but the
cocoasim binary is recommended for testing new features as this provides the best
debugging support.

Version Performance OF S? AT? L?
cocoasim Good -O0 ✓ ✓ ✓

cocoasim-fast Better -O3 ✓ ✓ ✗

cocoasim-opt Best -O3 ✓ ✗ ✗

OF: Optimization Flag, S?: Statistics?, AT?: Assertion Testing, L?: Logging?

Table 5.4: Comparison of the three variants of COCOASIM

A comparison of the three binary variants is shown in Table 5.4. As seen, while
cocoasim-opt is the fastest of the three it also has the least features. The features
of the table are briefly explained in the following list:

• OF / Optimization Flag - The optimization flag option provided to g++
when compiling the COCOASIM source. Ranges from O0 (zero optimiza-
tions) to O3 (heavy optimizations).
• S? / Statistics? - If the simulation produces results/statistics. As shown, all

version do this – meaning all can be used to gather results from a simulation.
• AT? / Assertion Testing? - The simulator contain a high number of asser-

tions for certain statements that should be true. These are scattered all over
the source code, and are meant to check that the simulator behaves as ex-
pected. When an assertion test fails, the simulator exits with an error code.
For example, an assertion in COCOASIM is that all cache lines contain data
and not waiting for any load from e.g. the main memory. These tests do not
impact the actual simulation in any way, but use some computational time
to verify that the simulator is working correctly.
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• L? / Logging? - The unoptimized version of COCOASIM logs a lot of mes-
sages describing the internal state of the system. The level of logging can
be configured in cocoasim, but is ignored in the other versions. The reason
for this is that the I/O operations of writing the logs take a lot of time, and
is thus only used in practice when debugging.

Lastly, a small technical detail about COCOASIM is that the Makefile can either
build all binaries at once using make -j ‘nproc‘, or a specific version through
make <binary-name> -j ‘nproc‘.

5.3.2 Logging

Logging in COCOASIM is done through a custom C++ function that logs a given
message if certain conditions are met. The logging function itself does not impact
the simulated system in any way, and – as shown in Table 5.4 – is completely re-
moved by the compiler when building either cocoasim-fast or cocoasim-opt.
When running the cocoasim binary however, the simulator will consider cer-
tain conditions to decide if it should log a message. Furthermore, if COCOASIM
chooses to log a message, it must also consider where to log. The simulator will
always log to a log file, but also prints the message to standard output if the -loud
flag is set.

It should also be noted that COCOASIM may log to an additional file depend-
ing on the log condition. This is done to have a split the main log file into certain
categories depending on what was logged. The goal of this is to make it possible
for a user that is only interested in logs for e.g. the event logic of the simulator to
open a filtered log file with only events.

// Logging function, slightly altered for readability
void log(

std::string& string, // 1
LogChannelName& channel, // 2
LogConfiguration required_level, // 3
std::string& source, // 4
LogSeverity log_severity // 5
);

Listing 8: The prototype of the logging function in COCOASIM

While this section will attempt to refrain from going into the technical details
of the logging function, the header prototype of it is shown in Listing 8. As shown,
there are a total of five arguments:

1. string - The string/message to be logged. Can be any string.
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2. channel - The channel to log to. The LogChannelName type is only an alias of
the string type, but is encapsulated as it needs to be equal to a predefined
string. Some options for this include default, setup, and events. This makes
it possible to write the log message to certain fragments depending on the
message being logged.

3. required_level - What level must be specified by the -log_level flag for
this message to be logged. This is the main condition of the log function,
and uses an enum in the following range: NONE, BASIC, INTERNALS, ALL.
The simulator only logs the message if the log level is at least the enum in
the function. In other words, a log level of 2 will allow all messages marked
with NONE, BASIC or INTERNALS to be logged, but not the ones marked
with ALL.

4. source - The string that should be listed as the source of this log message.
For example, if a log message originates in a cache, the source should be
something akin to "Cache". This is done to make it easier to filter the logs
when debugging later.

5. log_severity - An enum used to indicate if something is a standard message
(INFO) or something that probably shouldn’t happen (WARNING). For the
vast majority of logs, this is set to INFO.

An experienced programmer might wonder why COCOASIM uses string aliases
in place of enums for the channel argument. The answer to this is to ensure scala-
bility. The logger itself is a class that is designed to be expanded by a subclass if a
user finds it necessary. Simply explained, new string-based channels can be added
without problems, but there is no easy way to do this with enum-based channels.

// Code is slightly edited for readability
std::string log_entry = (boost::format

("@%lu: <%s> %s%s\n") // Format
% engine->get_cycle() // 1
% source // 2
% severity_tag // 3
% string // 4

).str();

Listing 9: How a log message is constructed inside the log function.

The format of the log messages is shown in Listing 9. The messages are always
formatted in this way – i.e., @cycle: <source> <optional_tag><message> – but
the vast majority of messages leave the <optional_tag> blank. The cycle is de-
termined by the simulator, while the source, severity tag, and message string are
fetched from the arguments. A simple representation of the log-function’s logic
flow is visualized in Figure 5.1.
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Figure 5.1: Logic flow of COCOASIM’s log function
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5.3.3 Inputs & Traces

Google Protocol Buffer

As mentioned earlier, the simulator uses custom Google Protocol Buffer [21] files
to represent a collection of operations that access the simulated system in order.In
short, Google Protocol Buffer – also called protobuf – is a framework architecture
for structuring serialized data. Protobuf’s own developer web-page [21] describe
it as "[...] XML, but smaller, faster, and simpler.". The reason for this is that protobuf
– contrary to XML – is encoded to a binary wire format. While XML files can be
altered directly through editing the file, the encoding of protobuf files make them
impossible for humans to read. However, this is also a much smaller and more
compressed format that eliminates the need of text parsing.

Figure 5.2: A simplified explanation of how protobuf works.

The basic workflow of protobuf is shown in Figure 5.2. First, a developer de-
fines the format of custom messages in the .protobuf file. This is written in a
custom but single language to define things like the fields of a message, their
types, and if it is required or optional. Secondly, the protoc compiler parses the
file and generates code in a language of the developers choice – e.g., C++. The
generated code then contains all of the necessary information for it to send and
receive information. This makes it possible for other code in the project to easily
translate, read, or write data using the generated code. Lastly, a language specific
compiler – e.g., g++ – can compile can combine the source code and the generated
into a single program.
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This project uses a bundled .proto file and its generated classes to represent
memory operations in C++. When reading from a protobuf trace, the generated
code decodes the binary wire format of the protobuf files into object representa-
tions. Afterwards, other code in COCOASIM can access the decoded data through
the generated code’s class interface. An example of how this is done in practice
is shown in Figure 5.3. The same example can also be reversed to visualize how
encoded protobuf files are created, as seen in Figure 5.4. Both of these examples
convert to and from the class Request which has a single variable called Address.
While most real-world.proto files are more advanced than this one, the same
base principle persists when reading and writing to and from encoded files.

Figure 5.3: An example of how protobuf reads from encoded files.
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Figure 5.4: An example of how protobuf creates the encoded protobuf files.

Note that COCOASIM only reads from protobuf files, and does not write or
create new protobuf files. Instead, all files used for simulation is provided exter-
nally by Ole Henrik Jahren of ARM, Trondheim. However, the source repository
of COCOASIM is bundled with another module called pbtrace that is capable of
converting files in a custom JSON format to the protobuf format. This is also what
is used to generate the traces used in this project. The process of generating traces
is shown in Figure 5.5.

There are two major benefits of using protobuf to represent the memory traces:

1. As the traces are encoded using a compressed binary format, the simulator
can quickly handle input without parsing string based formats like XML or
JSON.
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Figure 5.5: How traces are generated and used.

2. Since the data of the protobuf is serialized, items can be read one by one –
ultimately minimizing the memory usage. The simulator does not need to
read the entire trace, but can instead read individual items separately. This is
highly beneficial for cache simulators in particular as the traces often consist
of millions of operations. COCOASIM does not need to read new items from
the trace if it already knows that the simulated system cannot handle more
requests – e.g, when the pipeline stalls. Instead, the read can be paused and
continued when appropriate.

Reading Traces

As seen in Table 5.3, COCOASIM does not take a filename as the input argument
but rather a directory path. The reason for this is that the simulator is designed
to handle multiple traces simultaneously, and the simulator treats each trace as a
distinct core which communicates with its own exclusive L1 cache. An input di-
rectory may contain any number of trace files, but there must be an equal number
of L1 caches and traces. Furthermore, each trace must be named in the format of
X.pbtrace, where 0<= X < n and n is the number of traces. Traces not named in
this format will simply be ignored. When running a simulation, COCOASIM will
assign 0.pbtrace to the first L1, 1.pbtrace to the second L1, and so on. A simple
example of how this is done in a system with with four L1 caches can be seen in
Figure 5.6. Note that while the example connects all L1s to a common L2, any
hierarchical structure can be used as long as there are four L1 caches.

The very first access of each trace is scheduled (through the use of discrete-
event simulation, see Section 3.4) for cycle 1 – meaning that all accesses happen in
the same cycle. This should always result in a cache miss as every cache is empty,
and accesses will propagate to a L2 that usually is shared by at least two L1s.
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Figure 5.6: COCOASIM assigns each trace in the input directory to a separate L1
cache.

Assuming that the delay of every L1 is the same, this will cause multiple request
to arrive in the same cycle. In these cases, whatever request was scheduled first
gets priority while the other requests are stalled for one cycle. For all practical
purposes, the requests with lower indices are scheduled first while higher indices
are scheduled later. This means that if a user wants a certain trace to have priority,
it should be assigned a lower index – e.g., 0.pbtrace.

As an example, assume that COCOASIM has just started simulating the system
of Figure 5.6, that the delay of each L1 is 1 cycle, and that the delay of the L2 is
10 cycles. This should result in the behavior shown in Table 5.5.

Trace Content

As mentioned in Section 5.3.3, the format of a protobuf traces is defined using a
.proto file. This means that there are no predefined members of a protobuf trace,
and that the traces can be custom-tailored to the needs of an application. For this
project, the protobuf traces contain serialized memory requests with the following
fields:
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Cycle Trace #0 Trace #1 Trace #2 Trace #3
0 Schedule

access to L1#0
Schedule
access to L1#1

Schedule
access to L1#2

Schedule
access to L1#3

1 Access L1#0 Access L1#1 Access L1#2 Access L1#3
11 Access L2 Stall Stall Stall
12 - Access L2 Stall Stall
13 - - Access L2 Stall
14 - - - Access L2
... ... ... ... ...

Table 5.5: Accesses happening in the same cycle if possible – if not, lower indices
are prioritized.

• cycle - The cycle that the request was issued. In the majority of cases, this
is set to 0 as the entire program is set to execute instantly. It is important to
note that a cache can only handle one operation each cycle, so the simulator
will schedule requests to prevent them from all accessing the same cache on
the first cycle.
• op_id - Each request/item has a unique id. This is used to resolve depen-

dencies and to simplify debugging.
• group_id - What group a request belongs to. Groups are used to group col-

lections of requests that use the same operation. The motivation behind this
is that specialized caches can continue unblocked – see Section 3.1.4 – for
a limited amount of unique groups, but must block if exceeding this limit.
• op_type - Type of operation – i.e., if the operation is a load/store/etc.
• mem_type - Memory type determining the memory type of the physical

address mapping. Defines if the mapped memory is cacheable/coherent/etc.
• paddr - Physical address.
• asid - Unique address space ID of the address mapping.
• vaddr - Virtual address.
• msg_type - Message type indicating what type of memory operation should

be performed. For example, if the aforementioned op_type is a read, this
determines what type of read it is.
• byte_en - Byte enable. A 64-bit integer determining which of the 64 bytes

of data is affected by the operation.
• reason - The reason for the operation (if any).
• alloc - Allocation hint. One request may contain multiple allocation hint

– one for each level of caches. Determines if the cache should attempt to
allocate the tag and data in a cache.
• dep_id - Dependency ids. IDs that this operation rely on. All requests with ID

present in this list must be completed before this request can be scheduled.
• flag - Special flag associated with the request, if any.
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5.3.4 Systems

Using a System

As seen in Table 5.3, there are two modes of defining what system COCOASIM
should simulate. If the -c flag is specified, the simulator will load a configura-
tion from a custom JSON file, and translate this into a system object. If the -s is
specified however, the simulator will search through a catalog of existing systems
and use it if it exists. As it only makes sense to simulate a single system for each
simulation, only one of these flags can be present at the same time. Note that each
of these options have their own default alternative – i.e., -C and -S – that can be
used in their place. When running a simulation using the -C, note that this flag will
simply default to the filename/path of configs/test_system.json. Thus, the file
must exist for the simulation to work. The -S flag will however use the bundled
TestSystem, and is guaranteed to work.

Feature Configuration Mode System Mode
Systems are defined in ... JSON C++

System created by ... Building blocks Code
Architecture limitations? Few None

Configurable cache parameters? ✓ ✓

Can use any replacement policy? ✓ ✓

Control over cache hierarchy design? ✓ ✓

File-location agnostic? ✗ ✓

Can be changed without rebuilding? ✓ ✗

Table 5.6: Comparison between "Configuration" mode and "System" mode.

A comparison of the "Configuration" mode – used by the -c option – and the
"System" mode – used by the -s option – is shown in Table 5.6. Note that the
"System" has virtually no limitations on the system (as long as COCOASIM knows
how to use it), while the "Configuration" mode is limited by the configuration
file. Still, most system without any radical changes to the caches or the cache
hierarchy should be possible to represent using the configuration mode. While
both modes are perfectly fine for setting up systems, the "Configuration" mode is
recommended for most users. The reason for this is twofold: 1) Users can define
systems in a simple JSON configuration file without having to touch the code of
the simulator, and 2) Multiple variations in size, associativity, etc. can be done
repeatedly without rebuilding COCOASIM.

Systems in COCOASIM consists of two components: the cache hierarchy, and
the main memory. In addition, the simulator also uses a I/O interface compo-
nent to forward the memory requests from input to the system itself. The three
components are described below:
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1. The I/O interface - Every request COCOASIM handles originates from an
interface that reads and forwards the content of the protobuf trace files.
In addition to decoding the protobuf format, the interface is responsible
for sending each memory requests to the appropriate L1 cache. In the CO-
COASIM source code, this interface is called DataOutput as every request
returns here after performing a read or a write. The nearest equivalent of
this in other simulators is perhaps gem5’s memory bus connecting the CPU
and L1 cache, but this is only a rough analogue as the DataOutput is also
responsible for e.g., decoding requests and pausing and continuing reads
from input.

2. The cache hierarchy - The main component of a system in COCOASIM is
the cache hierarchy. This includes every cache in the system as well of their
sizes, replacement policies, latencies, and info on how they are connected to
each other. The cache hierarchy is not explicitly described in a system, but
rather implicitly as every cache know of the cache – or main memory – below
it. A large number of properties – including how the caches are connected
to each other, how many L1 caches there are, how many levels there are,
the cache sizes, the associativity of each cache, and the replacement policies
used in each cache – are fully configurable, and can be changed using either
of the two modes.

3. The main memory - The last component in every system is the main mem-
ory. The simulator assumes that all data is present in the main memory at all
times, and any memory request that misses in the lowest level cache (LLC)
will eventually hit here. While most cache configurations – like associativ-
ity or block size – don’t make sense for the main memory, it is possible to
change the memory access latency.

System Mode

When using the -s flag, the simulator uses a system already defined in C++.
There is no need – or even possible for that matter – to provide COCOASIM with
the properties of the system as these are already defined in the system. For exam-
ple, loading TestSystem will simply use the system as it is – including its cache
hierarchy, cache sizes, replacement policies, and memory access latencies. Differ-
ent traces can naturally be used for the same system, but the system itself cannot
be changed easily. For example, if a user wants to change size of the caches in a
system this way (say, from 128kB to 256kB), this would have to be changed in the
code itself. For most cases, this would only amount to changing a couple of lines
in a single file, but would still require rebuilding the source.

As with most abstractions in object-oriented programming, systems in CO-
COASIM are represented by a class. In this way, a system is treated as a separate
object when initialized, and has access to its own variables and methods. More
specifically, systems are represented by sub-classes derived from the CacheSys-
tem super-class. While individual sub-classes may differ greatly in their designs
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and available features, they must all derive from CacheSystem to ensure that CO-
COASIM has a minimum interface. For example, COCOASIM must have access
to the system’s L1 caches to connect the input from the traces to each individual
cache.

// The class template of CacheSystem.hh

class CacheSystem : public BaseSystem {
public:

CacheSystem();
~CacheSystem() override;

TraceNumberSize get_number_of_l1_caches() const;

std::vector<Cache*> l1_caches;

protected:
void do_setup() override;
void do_integrity_check() const override;
void ignite() override;

void destroy_l1_caches();

};

Listing 10: The CacheSystem class.

The CacheSystem class used as the template for all other systems is shown in
Listing 10. Note that the class has a couple of public members – i.e., l1_caches
and get_number_of_l1_caches() – that will persist for all classes that derive from
CacheSystem. This way, COCOASIM is able to access the l1_caches of any system
that derives from the super-class. Additionally, the class has several methods that
override basic functionally, and thus also implicitly can be overridden themselves.
Of the listed methods, do_setup() is the most interesting as this initializes the
system. This is useful as classes that derive from CacheSystem may override this
method to define how that specific system is initialized.

As an example, consider two of the simulator’s bundled systems – TestSys-
tem and MinimumSystem. As its name suggests, TestSystem is used to test that the
very basics of COCOASIM work as intended. As such, it only contains a single L1
cache that is connected directly to the main memory, and does only read from
one protobuf trace – i.e., 0.pbtrace. For simulator tests that use multiple traces,
MinimumSystem can be used. While this also only have a single level cache hier-
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archy, the system contains up to a total of eight L1 caches. As all of the provided
trace sets have a total of eight trace files, this system is the minimum that can be
used to handle every memory operation. Fragments of the C++ header files of
TestSystem and MinimumSystem can be seen in Listing 11.

// TestSystem derives from CacheSystem...
class TestSystem : public CacheSystem {

...
protected:

// Unique setup override for TestSystem
void do_setup() override;
...

};

// ... and so does MinimumSystem
class MinimumSystem : public CacheSystem {

...
protected:

// Unique setup override for MinimumSystem
void do_setup() override;
...

};

Listing 11: The CacheSystem class.

While both TestSystem and MinimumSystem derive from CacheSystem, they
are distinct systems with different designs. Thus, each system overrides the do_setup()
individually with their own code.

The overridden do_setup function for TestSystem and MinimumSystem can be
seen in Listing 12 and Listing 13 respectively. Whereas TestSystem only initializes
a single cache, MinimumSystem uses a for-loop to set up as many as there are
traces. Note that while the systems use different associativity and replacement
policies, all caches and cache line are of the same size. This is done purely for
simplicity, and different variations of the systems can easily be created by simply
changing e.g. the l1_size variable.

After defining the system itself in C++, the simulator also needs to know of the
system’s existence. In other words, the command -s MinimumSystem must lead to
the MinimumSystem class actually being used. This is done through a simple map-
ping between a string – e.g. "MinimumSystem" – and the actual object in a simple
helper class. The simulator will simply call a function named get_system(argument),
and the catalog will return the appropriate system if it exists.



Chapter 5: Simulator Overview 59

// The do_setup() method of TestSystem.cc
void TestSystem::do_setup()
{

CacheSystem::do_setup();

Size main_memory_size = Size(1, memory_size_order::gigaByte);

delete output;
output = new DataOutput(this);

delete main_memory;
main_memory = new MainMemory(this);
main_memory->initialize_main_memory(main_memory_size);

// Cache size
const Size l1_size = Size(8, memory_size_order::kiloByte);
const Size block_size = Size(64, memory_size_order::byte);
const unsigned associativity =

Cache::calculate_full_associativity(l1_size, block_size);

// Scale cache number to number of traces
destroy_l1_caches();

auto * cache = new Cache(this);
cache->initialize_cache(l1_size,

associativity,
new LRU(),
block_size);

cache->connect_to_child_memory(main_memory);

l1_caches.resize(1);
l1_caches[0] = cache;

}

Listing 12: The setup method of TestSystem.

In summary, the "System" mode makes it possible for a user to create their
own system in C++, and then use the -s flag to use the system in a simulation. As
discussed in Table 5.6, this comes with the advantage of being able to define any
possible design. On the other hand, this approach requires frequent rebuilding of
COCOASIM for every change done to the system. Every property – like cache sizes
– needs to be hard coded into the system file as there is no way to communicate
changes at execution-time.
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// The do_setup() method of MinimumSystem.cc
void MinimumSystem::do_setup()
{

CacheSystem::do_setup();

Size main_memory_size = Size(1, memory_size_order::gigaByte);

delete output;
output = new DataOutput(this);

delete main_memory;
main_memory = new MainMemory(this);
main_memory->initialize_main_memory(main_memory_size);

// Cache size
Size l1_size = Size(8, memory_size_order::kiloByte);
Size block_size = Size(64, memory_size_order::byte);

// Scale cache number to number of traces
destroy_l1_caches();
l1_caches.resize(number_of_traces);

for (TraceNumberSize i = 0; i < number_of_traces; ++i)
{

auto* cache = new Cache(this);
cache->initialize_cache(l1_size,

4,
new RandomReplacementPolicy(0),
block_size);

cache->connect_to_child_memory(main_memory);
cache->set_access_latency(1);
cache->set_name("Cache", static_cast<unsigned>(i));

l1_caches[i] = cache;
}

}

Listing 13: The setup method of MinimumSystem.

Configuration Mode

When using the -c flag, the simulator will attempt to load a configuration from
a file and translate it into a system. Contrary to "System" mode, this approach re-
quires the file to contain all the required information to represent a system while
COCOASIM only parses it. As implied, the advantage of this is that the config-
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uration file is completely independent of the simulator. Making changes in the
configuration file has no impact on the simulator – allowing systems to be defined
at run-time rather than compile time. Note that loading test_system.json will
not load a single static system as with "System" mode, but rather a dynamic system
based on the contents of the configuration file.

When discussing systems defined in C++ in the previous segment, it was em-
phasized that changes to a system would require recompiling code as these are
statically declared. As there are no way to communicate changes to a system at
run-time, this would have to be done by changing the code itself. While this is still
true, there is one system that circumvents this requirement: ConfigurableSystem.

// A fragment of ConfigurableSystem.hh
class ConfigurableSystem : public CacheSystem {
public:

ConfigurableSystem();
~ConfigurableSystem() override;

void load_system(const boost::filesystem::path& path);
...

};

Listing 14: The header of the ConfigurableSystem class

The header of ConfigurableSystem is shown in Listing 14. There is two as-
pects of this header that are worth noting: 1) It inherits from the CacheSystem
class – allowing it to expose its L1 caches to COCOASIM and ultimately allow for
simulation, and 2) It contains the method load_system() and does not override
the do_setup() method that TestSystem and MinimumSystem do. As the system
never sets up any logic in the do_setup() function, it is completely empty. Thus, it
makes no sense running system using "System" mode. When running a simulation
using "Configuration" mode however, COCOASIM will initialize a (empty) Con-
figurableSystem and invoke its load_system(). The system will then attempt to
load the content of the given path, and translate it into components like caches
and replacement policies. The load_system() assumes that the provided file is a
JSON file in the correct format, and iterates through its content while translating
strings to mapped objects. While the function itself is quite long and complex,
the external boost library [22] is used to simplify the parsing process. The data
hierarchy of the JSON configuration is shown in Figure 5.7.

All possible configurable options are listed in Table 5.7 and can described as
the following:

• main_memory - The main memory. Every system needs to have this compo-
nent, so if this is specified in the configuration the simulator will initialize
a default main memory instead.
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The only required property is caches – all others are optional.

Figure 5.7: The data structure of the configuration file.

• caches - A list of cache objects. The list itself is required, but it can contain
any number of caches. However, an array of zero caches would not make
any sense and cause the simulator to crash.
• cache - A cache. Any number of caches can be added in the "caches" array

this way. The caches themselves do not require any data, so an empty cache
object will instead use default values. However, it is recommended to at
least provide each cache with a distinct name as to distinguish them from
each other in the logs. Also note that all caches are added in the same way,
and that the id and child_id is used to connect the caches to each other.
• name - The name for either a main memory or cache. Used for logging

behavior, and can be ignored if the plan is to use either cocoasim-fast or
cocoasim-opt.
• delay - The access latency in cycles it takes to access this components. De-

faults to 1 cycle for caches, and 100 cycles for the main memory.
• size - The size of either a main memory or cache. Has no practical use for the

main memory, but will limit the capacities of caches. The simulator accepts
sizes in the format of <number><order>B - like "128kB" or "8MB".
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Property Type In ... Optional?
main_memory Object Root ✓

caches Array<Object> Root ✗

cache Object caches ✓

name string main_memory / cache ✓

delay int main_memory / cache ✓

size string main_memory / cache ✓

id int cache ✓

block_size string cache ✓

associativity int/string cache ✓

replacement_policy string cache ✓

child_id int cache ✓

Table 5.7: The types and members of the configuration file.

• id - Every cache has an id. This can either be explicitly assigned by the id
property, or automatically assigned if the id field is absent. Ids are used to
connect caches to each other, and may be ignored if simulating a flat cache
hierarchy of only a single level. For any cache hierachy with multiple levels,
it is recommended to explicitly declare all ids. Unsurprisingly, the ids also
need to be unique for each cache.
• block_size - The block size determines how large a single cache line is. This

can either be declared in the same format as the size property, or left absent
to use the default value of 64 bytes.
• associativity - The associativity of a cache. This can either be set to any num-

ber (above zero), or the string "full". Any associativity above the maximum
possible will abort the program. The simulator will use a full associativity if
the property is absent.
• replacement_policy - The replacement policy to use. Any replacement pol-

icy can be used as long as COCOASIM knows of it. The simulator translates
the provided string to a replacement policy in the object in a similar way to
how it fetches systems in "System" mode – i.e., through a catalog mapping
the name and the actual object. This is handled by the CacheReplacement-
PolicyCatalog class which contains all available replacement policies in
COCOASIM. New replacement policies can easily be added to this catalog
in C++, but requires recompiling the source code. If no replacement pol-
icy is present in the configuration, the simulator will default to using Least
Recently Used (LRU).
• child_id - The child id tells the simulator to place the cache with that id

below this one in the cache hierarchy. In other words, a L1 cache will set its
child id to the id of the L2 cache. On a cache miss, the cache will forward its
request to the cache specified by the child id. A cache without a child id is
assumed to be Last Level Cache (LLC), and will instead forward any misses
to the main memory.
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{
"caches": [

{
"name": "L1-Cache#1",
"id": 0,
"size": "8kb",
"block_size": "64b",
"associativity": "full",
"replacement_policy": "lru",
"child_id": 2

},
{

"name": "L1-Cache#2",
"id": 1,
"size": "8kb",
"block_size": "64b",
"associativity": "full",
"replacement_policy": "lru",
"child_id": 2

},

{
"name": "L2-Cache",
"id": 2,
"delay": 10,
"size": "32kb",
"block_size": "64b",
"associativity": "full",
"replacement_policy": "lru"

}
]

}

Listing 15: Example of a JSON configuration with two L1 caches and one L2
cache.

An example of a valid configuration consisting of two L1 caches and a single
shared L2 cache is shown in Listing 15. Note that the main memory is not defined
– causing the simulator to use the default option. Also note how the L1 caches
uses the id of the L2 cache as their child id – implying that the L2 is lower in the
cache hierarchy.

As all of the fields of Table 5.7 needs to be supported for a system to be loaded,
load_system() is a large method with complex logic. However, the function es-
sentially performs three operations:
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1. Reads the content of the provided JSON file, and parses each keyword to a
separate object.

2. Uses the id and child_id to connect the caches to each other and ultimately
the main memory.

3. Analyzes the user-defined configuration to identify the L1 caches and main
memory, and exposes these so that the system can be simulated as any other
CacheSystem.

In summary, the "Config" mode allows a user to define systems in JSON that
can be changed quickly and with relative ease. Having a dynamic configuration
file and a static interpreter eliminates the need of continuously rebuilding source
code at the cost of limiting vocabulary of the configuration file to the keywords
of Table 5.7. While this approach only allows for altering properties that can be
parsed by the loading function, it is still the recommended mode for most use
cases.

5.3.5 Output

After the simulation has finished, COCOASIM outputs two thing: logs and statis-
tics. Depending on the binary version and run-time flags the logging may also be
written to the terminal output, or not at all. More information on how the sim-
ulator handles logging are discussed in Section 5.3.2. However, COCOASIM will
always produce statistics as long as the simulation is successful.

Every simulation, COCOASIM writes logs and statistics to a custom directory
that is created at run-time. As mentioned earlier, the name of the directory is either
specified by the -o flag or the process id of the program if the flag is absent.

The structure of a typical generated output is shown in Figure 5.8. As ex-
plained in the figure, the blue and green colors indicate that the name is either
dynamic or static, and the yellow boxes indicate that multiple sub-directories/files
exist. The logs directory will only be used if the simulator actually logs something
– meaning this will only be used when running the base cocoasim binary.

The directories that COCOASIM creates can be described as the following:

• "output" - The base directory which name is specified by the -o flag. Con-
tains all other directories and files.
• "environment" - Used to separate what "environment" produces what logs

and statistics. An environment may be seen as a "phase" of the simulation
that performs distinct logic not present in other phases. Environments allow
for advanced behavior when simulating, and is discussed more in detail in
Section 6.1.4. However, the output-generating component of COCOASIM
simply uses the name of the environments to separate logs and statistics
from different phases into distinct directories. In most cases, this typically
results in the environment directories of setup and default. The setup
directory contains logs of the initialization process, while the default di-
rectory contains logs and statistics from the rest of the simulation.
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Color codes: BLUE: Dynamic/configurable file names, GREEN: Static names, YEL-
LOW: Variable number of files depending on system/configuration.

Figure 5.8: The hierarchy of the output directory.

• logs - Contains all logs split into different "channels". All messages are logged
to default.log, and may also written to another specific log file depending
on the nature of the log message. More on channels and logging behavior
is discussed in Section 5.3.2.
• statistics - Contains all available statistics for every cache in the simulated

system. Statistics are added when an event manipulates a cache in any
ways that COCOASIM recognizes – like accessing it, hitting, or missing. Ad-
ditionally, more custom statistics can by extending existing logic, but this
must be done in "System" mode rather than "Configuration" mode. More on
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the input modes of COCOASIM is discussed in Section 5.3.4. At the end of
the simulation, COCOASIM will write the statistics to the output folder in
the format of <counter>-<name>-performance.txt – like 0-L1-Cache#A-
performance.txt or 3-L2-performance.txt. As implied, every cache writes
statistics to a unique file.

By default, the simulator outputs the following statistics per cache:

• Accesses
• Successful Accesses (should be the same as Accesses in a successful simula-

tion)
• Request Accesses ("Normal" requests)
• Info Accesses (Eviction messages, etc)
• Other Accesses (Should be 0 by default, but will recognize accesses that are

neither Requests or Info if implemented)
• Loads
• Load Hits
• Load Misses
• Stores
• Store Hits
• Store Misses

5.3.6 Full Data Simulation

Compared to the other features of the simulator, the full data simulation is rela-
tively simple. If the -F flag is set, COCOASIM will keep track of the actual data
traveling through the cache hierarchy. In addition to storing metadata like tags,
dirty/clean flags, and LRU counters, full data simulation will make COCOASIM
also store data in the cache. The data itself has no effect on the simulator statis-
tics, but makes it possible that the correct data is indeed being read and written.
However, this comes at the cost of managing the data content of: 1) Every request
in the system, 2) Every cache line in every cache, and 3) Data stored in the main
memory.

When running a simulation without full data simulation, COCOASIM will sim-
ply pretend that data is read and written from the caches and main memory. How-
ever, to ensure that the data behaves as expected, an object is actually used to
represent the data. The object – named AbstractDataBlock has no purpose and
is completely empty, but is carried by memory requests as to pretend they have
data. This is done to ensure that two following properties always hold:

1. Memory requests reading must not have data when requesting data from
either a cache or the main memory, and likewise must have data upon re-
turning.

2. Memory requests writing must have data when writing to any memory.



68 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

While the data itself doesn’t exist, the abstract objects represent if the data
should be present or not. This is primarily done to catch bugs as the simulator will
exit with an error if the assertions above don’t hold. Memory reads that either hit
in a cache or make their way to the main memory will be given an empty class
regardless of what address they requested. Other caches in the cache hierarchy
will recognize that the returning read has data, and install their own "fake" copy
as to mimic an inclusive cache hierarchy. This behavior can be seen in Figure 5.9.

Figure 5.9: Typical read behavior with data simulation off.

Much of this logic persists when performing a full data simulation, but the
simulator will also remember what data is read and written. Instead of an ab-
stract data object, full data simulation will instead use an object encapsulating
real data. This is possible as the object used in this mode – named DataBlock –
inherits from the AbstractDataBlock used in a "normal" simulation. Additionally,
the main memory will return distinct data blocks based on what address is re-
quested. The main memory also keeps track of all data that is written to it through
a mapping between the addresses and the data – making the data persist in the
memory. This expanded behavior can be seen in Figure 5.9. Note that the request
still contains a data object, but that it is expanded to also contain raw data.

Full data simulation is exclusively meant to verify that data behaves correctly,
and not to perform an actual simulation with data. As such, the main memory
does not contain any actual data when the simulation starts, and the only way
to populate the memory with data is to perform write operations that propagate
all the way to the main memory. This happens rarely and is only for the largest
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Figure 5.10: Typical read behavior with data simulation on.

traces as the cache hierarchy uses a write-back policy rather than a write-through
policy. Additionally, while the input traces often include write operations, they
do not specify what data it should write. The simulator instead creates dummy
data for every write operation. Thus, full data simulation is primarily meant as a
test feature. However, several things can be added to expand upon the full data
simulation feature:

1. Support writing specific data in the trace format, and make the simulator
use this instead of dummy data.

2. Expand the data object wrapper to use data of variable bit size. The current
version of COCOASIM will use a 32-bit unsigned integer to represent the
data, but this could be configured to be larger and more realistic.

3. Separate "normal" simulation and full data simulation at compile-time rather
than run-time. As the -F flag can be specified as an argument, the simulator
doesn’t know if a simulation uses full data simulation before at run-time.
If this is decided at compile-time instead, the compiler may optimize the
binary by removing conditional branches that check if the simulation uses
full data simulation or not.





Chapter 6

Simulator Design

While many of COCOASIM’s features can be derived from the available configu-
ration shown in Table 5.3, a lot of the underlying logic is completely invisible to
the end user. For typical users, this is often adequate as the simulator provides an
interface for making changes by either minimally changing the code – e.g., "Sys-
tem" mode of Section 5.3.4 – or by not touching the code at all – e.g., through
use of arguments, inputs, and the "Configuration" mode of Section 5.3.4. Thus,
understanding the underlying logic is not strictly necessary for users that simply
wants to run a simulation. However, to fully understand COCOASIM, there are a
couple more concepts that requires explaining. The purpose of this chapter is to
describe the key components and programming paradigms that make simulation
possible.

6.1 Key Concepts

The five most essential key concepts of COCOASIM are described below. These
can be summarized as the following:

1. The Event Engine, Section 6.1.1 - The "engine" of COCOASIM responsible
for running a simulation.

2. Events, Section 6.1.2 - The cornerstone of the "discrete-event simulation"
concept that COCOASIM is built upon.

3. SimulatorObjects, Section 6.1.3 - How almost every object in COCOASIM
derives from a common super-class, and why this was done.

4. Systems / Environments, Section 6.1.4 - An extension of Section 5.3.4
explaining the underlying logic of systems, and how these fit in an "envi-
ronment".

5. MemorySignals, Section 6.1.5 - The signals / packages / requests that
represent information that move between two components in a system.

71
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6.1.1 The Event Engine

While there a lot of critical components that together make simulation possible,
the one that perhaps is the most important is the Event Engine. The engine is
responsible for two key aspects:

1. Firing every "event" that occurs in a simulation at the correct times.
2. Keeping track of time in the simulation, and moving time forward when

appropriate.

Every single thing that happens during a simulation is a consequence of the
engine firing an event that causes some behavior. Events happen at determined
times, and the event engine is responsible for triggering all events that happen
when the simulation reaches one of these moments in time. For example, every
cache and main memory in a simulation has a configurable variable named latency
which indicates how many cycles it takes to access that memory. This latency can
be exploited by the event engine to determine at which time the actual memory
access happens. In this case, the memory access itself is an event that should
happen after a certain delay has passed. The engine recognizes this, and sets the
memory access to trigger in n= latenc y cycles in the future.

As an example, assume that the simulator has just experienced a miss in a L1
cache. The simulator then goes through the following logic:

1. A miss just happened in the L1. Since the requested data is not present, the
request should propagate to the L2 cache.

2. The simulator creates a new event representing an access to the L2. How-
ever, the code cannot execute this event just yet as the access is to happen
in the future.

3. The simulator check how long it takes to access the L2 cache from the L1
using the L2’s latency variable. Recall that this is fully configurable by the
user, but for the purposes of this example assume that it is set to 10 cycles.

4. After knowing the delay, the simulator tells the event engine to fire the
memory access 10 cycles in the future.

5. The event engine receives this information, and calculates what cycle the
event should be fired. Recall that the event engine also is responsible for
keeping track of what time it currently is inside the simulation. For simplic-
ity, assume that the simulation is currently in cycle 5. The event engine sets
the memory access to trigger when the simulation enters cycle 15.

6. After the event has been created and scheduled, the simulator continues as
normal. While this happened as a result of a miss in a L1 cache, there may
be other events happening in the same cycle – i.e., cycle 5.

7. After all events of cycle 5 has finished, the event engine continues to the
next cycle where any event triggers. This method is called discrete-event
simulation, and is explained in Section 3.4. How this works in practice is
explained later.
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8. At cycle 15, trigger the memory access event logic. This causes an access
to the L2, and may result in either a hit or miss. Either way, this will the
scheduling of another new event – either a hit causing a "return to L1 with
data"-event, or a miss causing a "memory request to main memory"-event.

Note that most events cause the creation of another event. As mentioned in the
last item of the list above, a memory access event will issue a new event regardless
of a hit or miss as it either needs to propagate or return. As events are removed
after fired, many events – like most memory accesses – replace themselves with
a new event happening later. Thus, there are only two scenarios that cause the
event engine to "run out of" events:

1. A deadlock where events are not fired as they are dependent on other events
that never trigger. Needless to say, this should not happen in stable versions
of COCOASIM.

2. The simulation runs out of events as every memory request has finished
executing – implying a successful simulation.

Note that events are continuously added by the input until all of the specified
pbtrace files have been read. While memory accesses usually replace themselves,
they do not issue any new event when returning to the aforementioned DataOut-
put interface as this indicates that the read or write has finished. The logic flow
of memory request events are described in further detail in Section 6.1.5.

As mentioned, the event engine will only simulate cycles where it knows that
something will happen. This is possible as the engine knows what the next event
is at all times. While this may change during a single cycle, it will remain static
after all events of a single cycle has been simulated. The simulator exploits this by
finding the next event at the end of each cycle, and simply fast-forwards to that
event and cycle while skipping all cycles in between.

The behavior of the aforementioned example is visualized in Figure 6.1. The
example is split into three segments:

1. The miss in the L1 cache at cycle 5 causes the event engine to schedule the
memory access event to the L2 10 cycles in the future – i.e., cycle 15.

2. The simulator exits cycle 5, and finds the next cycle where something hap-
pens. For this example, this is cycle 15 as the engine just added the L2 mem-
ory access event here. The simulator simply skips all the cycles in between
cycle 5 and 15 as nothing happens in these cycles. In practice, this is done
by simply updating the cycle counter to 15 and readying the L2 access.

3. The event engine fires the event accessing the L2 cache.

Note that in the simple example of Figure 6.1, there are no other events than
the L1 and L2 access in the relevant time frame. However, if there was another
event between cycle 5 and 15 – say another event accessing another L1 in cycle 8
– this would need to be handled before. In this altered example, the event engine
would instead fast-forward to cycle 8, fire the new event, and then possibly fast-
forward to cycle 15.
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PURPLE: Current event/cycle, BLUE: Empty cycles / no events, RED: Past cycles

Figure 6.1: The event engine uses discrete-event simulation – allowing fast-
forwarding past "empty" cycles.

The source code of the run() method responsible for simulating events and
the passing of time is shown in Listing 16. Despite being only a few lines long,
this method is responsible for running all logic of COCOASIM after initializing
the simulator. In its simplest form, the main logic of the run() method can be
reduced to: 1) Get events, 2) Simulate all fetched events, 3) Move to the next
cycle, and 4) Repeat.

Lastly, one might perhaps wonder what happens if: A) There are multiple
events firing in the same cycle, and if B) This happens frequently. The answer
to question B is: yes, especially for memory access events. Recall that one of the
main motivations behind COCOASIM is to simulate cache behavior concurrently.
As discussed in Section 5.3.3, each individual "core" sends memory requests to its
respective L1 cache for every cycle until the cache cannot handle more requests.
As each of these events happen simultaneously – as seen in Table 5.5 – the first
cycles of every simulation typically has a number of events each cycle equal to the
number of L1 caches. This continues for a while, but becomes more asynchronous
as some requests hits and other misses. All in all, it is somewhat rare for a cycle to
only contains a single event, and more common to either have none or multiple
events. Returning to the first question, the answer to A is: depending on the or-
der they were issued. As seen in Listing 16, the next_events variable is a vector –
meaning that new items added to the container are put in the back. When iterating
over a vector, elements will be listed in the order they were added. In other words,
events in the same cycle are handled by the in a First-In-First-Out (FIFO) principle
– meaning events scheduled first will have priority despite all events happening
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// Slightly modified run() method of EventEngine
void EventEngine::run()
{

CycleStruct<std::vector<SimulatorEvent*>> next_events_struct;
std::vector<SimulatorEvent*> next_events;

do
{

// Get next cycle and events
next_events_struct = pass_to_next_events();

// Ready next cycle and events
cycle = next_events_struct.cycle;
next_events = next_events_struct.data;

// Fire all events in that cycle
for (auto e : next_events)
{

e->fire();
delete e;

}

// Mark cycle as finished, delete data
events.erase(cycle);

} while (!next_events.empty());
}

Listing 16: The run() method of the event engine

at the same time. At one point during the development this ordering was actually
configurable, but would often create deadlocks or often unpredictable behavior
as there often was a complex indirect dependency between events. To simplify the
simulator, this feature was removed.

6.1.2 Events

Whereas the previous section focused on how events are scheduled, this section
will focus on the events themselves. In its simplest form, an event in COCOASIM
is simply an object-encapsulated function call that can be fired at any time. As
hinted in Listing 16, all events used in by the simulator inherit from a super-
class named SimulatorEvent which also inherits from another super-class named
ITriggerable. In short, the classes can be described as the following:
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• ITriggerable – A minimal interface telling its sub-classes to implement a
single pure virtual function called fire(). The compiler forces developers
to override this function before it can be used, or throw an error.
• SimulatorEvent – An abstract class deriving from the ITriggerable inter-

face. This class also contains other simulator-specific methods – like a "what
happens when this is scheduled by the event engine"-function. This is an ab-
stract class as it has does not override the fire() method and thus cannot
be instantiated.

// The ITriggerable header
class ITriggerable : public Nameable {
public:

// Simply waterfalls to the protected
// do_fire() method that can be safely overridden
inline void fire() { do_fire(); }

protected:
// Note that this is a pure virtual function
virtual void do_fire() = 0;

};

Listing 17: The ITriggerable interface header

The header of the ITriggerable interface can be seen in Listing 17. Note
that the interface defines the do_fire() method, but does not implement it. As
SimulatorEvent does not override the method, it is not possible to create nor call
fire() on either of the classes. However, it is possible to call fire() on a sub-
type of SimulatorEvent that has implemented the do_fire() method as seen in
Listing 16.

By default, COCOASIM has seven types of event classes that derive from the
SimulatorEventsuper-class. However, about half of these are special variations of
other events – leaving the following four as the most essential:

1. MemoryAccessEvent – For requests accessing memory like caches and the
main memory.

2. StreamReadEvent – For reading memory operations from a pbtrace file.
3. SignalTransferEvent – For returning memory requests along with their po-

tential data back up in the cache hierarchy.
4. EntryInvalidationEvent – For communicating the invalidation of an ad-

dress between caches so that an inclusive cache policy can be simulated.
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The following segment will attempt to explain how these events are used in
practice by the simulator. While the MemoryAccessEvent might sound like a good
example, the logic of memory accesses are actually somewhat complex as it needs
to account for multiple scenarios like what to do if the cache is blocked and needs
to stall. Thus, the next segment will review the cause, behavior, and effect of a
SignalTransferEvent as this type is quite simple.

In summary, a SignalTransferEvent is scheduled when a memory request is
ready to return after it either hits in a cache or reads from the main memory. It is
then set to trigger in a number of cycles equal to the latency of the current memory
the request returns from. For simplicity, this example will assume that a request
returns from the L2 to the L1. For Assuming that the L2 cache has a latency of 10
cycles, it will also take 10 cycles to return to the L1 cache.

First, the event is constructed using three parameters: the signal/request, the
source (i.e., the L2), and the destination (i.e., the L1). These values are saved in
the event object so that they can be used later. The header of the SignalTrans-
ferEvent class can be seen in Listing 18.

// SignalTransferEvent.hh
class SignalTransferEvent : public SimulatorEvent {
public:

SignalTransferEvent(MemorySignal* signal,
SignalInteractive* source,
SignalInteractive* destination);

protected:
void do_fire() override;

MemorySignal* event_signal;
SignalInteractive* event_source;
SignalInteractive* event_destination;

};

Listing 18: The SignalTransferEvent class header

This causes the event to act as a container. However, note that the logic of the
actual return is not simulated before the event is fired. This could be achieved by
simply calling the fire() method, but would lead to incorrect behavior as this
cannot happen before in 10 cycles. Instead, the simulator passes the object to the
event engine and tells it to trigger it in 10 cycles. Assuming that the simulator cur-
rently is in cycle 10, the event engine schedules the event to happen in cycle 20. At
cycle 20, the engine finally calls the fire() method on the SignalTransferEvent
object – indicating that the memory request has arrived at the L1.
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// The SignalTransferEvent implementation of do_fire()
void SignalTransferEvent::do_fire()
{

event_destination->receive_signal(event_signal, event_source);
}

Listing 19: The SignalTransferEvent class locally overrides the do_fire() func-
tion.

Firing the event will "waterfall" into the object calling receive_signal() on
the L1 object. Using the saved memory request, source, and destination, the event
is able to provide the function with the correct target and parameters. The re-
ceive_signal() method itself will update the content if the L1 cache to match
whatever data was fetched before creating a new event to return it from the L1
cache to the "core"/DataOutput. A summary of the scheduling and firing the event
can be seen in Figure 6.2 and Figure 6.3 respectively.

While this example described the behavior of SignalTransferEvent in par-
ticular, the same concepts applies to all event types. In total, the scheduling and
firing of events make up most of the logic of COCOASIM.

6.1.3 SimulatorObjects

While COCOASIM often use a myriad of different objects with vastly unique be-
havior – like caches, a main memory, replacement policies, and Miss Status Hold-
ing Registers (MSHRs) – most derive from one common super-class: the Simula-
torObject. In fact, there are only a few selected classes that do not derive from
this – being mainly events, loggers, or systems. Broadly speaking, any object that
can be represented as something physical is a SimulatorObject.

The decision to making the vast majority of objects deriving from a common
class is inspired from the "SimObjects" of gem5. SimObjects – while different from
the SimulatorObjects of COCOASIM – allow any object deriving from it to have
access to a basic interface. This allows gem5 to recognize and interface with the
object. For example, gem5 will call the method init() on all SimObject when the
system is fully initialized and ready to simulate. Users may have a custom object
derive from the SimObject class and then override the init() function to trigger
custom behavior.

The SimulatorObject follow the same base principle as SimObjects, but has
only a small number of inherited methods and variables. While SimObjects have
several virtual methods that can be overwritten for custom behavior, Simula-
torObject instead have a collection of regular methods and one pure virtual
function – named do_get_system(). Note that as this function is pure virtual,
any class that derive from SimulatorObject must implement this method. The
do_get_system() method is a simple "getter"-function that return what system
the object is a part of. While systems and environments are discussed more in
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R = Request

Figure 6.2: After hitting in the L2 cache, COCOASIM creates a SignalTransfer-
Event to the L1.

detail in Section 6.1.4, the main motivation behind this decision is to make all ob-
jects able to access the same pseudo-global object. Through this common system,
objects can access data and functions global to the simulation – like the logging
interface, event engine, or even other objects in the same system.

The header of the SimulatorObject is shown in Listing 20. Note that in addi-
tion to enforcing every simulator object to contain a pointer to its owning system,
each object also inherits the other "get"-functions and the set_name() method.
Furthermore, every simulator object also inherits from the Nameable class that
provides each object with a name used for identification. The set_name() func-
tion of SimulatorObject overrides this name – allowing users to name the object
anything. In short, this makes it possible to, e.g., call set_name("L1") on a cache
or set_name("LRU") on a replacement policy.
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R = Request

Figure 6.3: At cycle 20, the event engine fires the scheduled SignalTransferEvent.

The concept of designing classes and objects in this way is highly advantageous
for complex object-oriented programming as objects can be built incrementally on
top of other existing code. For example, the logic of SimulatorObject needs only
to be defined once but are used by almost all other objects. Likewise, even even
broader logic can be used to define a class for all objects that can be named – as
the Nameable class does. Note that there exists several objects in COCOASIM that
aren’t SimulatorObjects, but still benefit from having a name – like for example
events. While it is possible to add a name logic to every class individually, this
method is redundant as it requires adding the same code to multiple classes. In-
stead, a class deriving from an existing class with this logic already implemented
may simply add new functionality instead of worrying about basic functionality.
This is naturally also true for objects deriving from SimulatorObject as well – as
for example with the Memory class. This class inhabits all of the logic defined in
the SimulatorObject, but also provides an interface for memory accesses. Conse-
quently, the logic defined in the Memory class is used by the Cache and MainMemory
classes as both these have access interfaces. As shown, this creates a hierarchy of
classes where each class adds a little functionality on top of the existing. As sub-
classes branch out from each other, they gain increasingly specific behavior, but
still share the same parent class.
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class SimulatorObject : public Nameable {
public:

SimulatorObject();

inline BaseSystem* get_system() const { return do_get_system(); }
DefaultLogger* get_logger() const;
EventEngine* get_engine() const;

void set_name(std::string new_name);
...

protected:
// Pure virtual
virtual BaseSystem* do_get_system() const = 0;
...

};

Listing 20: The SimulatorObject class – slightly simplified.

A class hierarchy featuring the EventEngine, MainMemory, and Cache classes
can be seen in Figure 6.4. Note that while the EventEngine is not a SimulatorOb-
ject, it still has a common super-class with MainMemory and Cache. Also note that
the Memory class also inherits from the IConfigurable interface – telling the simu-
lator that memories can be configured in "Configuration" mode. While MainMemory
and Cache both are memories, the classes themselves are vastly different.

6.1.4 Systems & Environments

As mentioned in the previous section, every simulator object exist in a system. As
shown in Listing 20, all simulator objects have a method for returning the system
it is a part of. In the vast majority of cases, this means that the objects have access
to a shared class – i.e., BaseSystem – with data and methods that all simulator
objects can access. This approach can be compared to the use of a global variable,
but has two major advantages:

1. The simulator circumvents the need of an omnipresent global variable.
2. There can be multiple systems active at the same time.

The first advantage is grounded in the fact that the use of global variables is
generally discouraged. The main reason for this is that global variables break the
conventional rules of access and decoupling of variables and methods in object-
oriented programming. In standard object-oriented programming, classes and ob-
jects have exclusive ownership over a variable or method, and may determine if
that value should be exposed to external code or not. The latter property is called
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The text on the right indicate the new features added by each derived class.

Figure 6.4: The hierarchical inheritance of some of COCOASIM’s classes.

access specification, and is implemented in C++ through the keywords of public,
protected, and private. Though a public value may be manipulated by external
code, the value is still exclusive for the class/object. For a global value however,
the value can be changed by any code at any time. In other words, every single
file has the ability to access a variable even though the variable only should be
accessed by a few classes. This can quickly lead to messy code and hard-to-find
bugs – especially for larger projects.

The other advantage to this approach is that it is possible to have multiple
"global" objects. This allows the simulator to instantiate and manipulate distinct
variables and still maintain the illusion that these are globally accessible. Simu-
lator objects in one system will point to their global version of a system, while
other objects belonging to another system will instead reference that one. This
also clearly separates the systems – i.e., objects of system A has access to other
objects in system A, but not those of system B. Though the system, a simulator
may also access other "global" non-system objects affiliated with that system. The
collection of system-specific shared data is handled by an environment that can be
accessed through the system. As shown in Figure 6.5, contains three objects: the
system, the logger, and the event engine.

While the three components are described earlier, they can be summarized as
the following:
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Figure 6.5: The design and content of an environment.

• System – A class/object representing the system to be simulated. May be
defined either in C++ or through the use of a JSON configuration file as
discussed in Section 5.3.4.
• Logger – The logger used by the system and all objects. The logger itself is

not modifiable, but relies on the event engine that changes state during the
simulation.
• Event Engine – The event engine responsible for handling events in the

system.

Every environment knows of its members – i.e., logger, system, and event en-
gine – and every member knows of its environment. This makes it possible for a
simulator object to indirectly access the logger or event engine. In this way, the
simulator may access all three of the shared objects to cause different behavior:

• System – All simulator objects may directly access the system containing
them, but do rarely manipulate the system itself. However, it is possible
for any object to access the L1 caches this way by casting the system to a
CacheSystem.
• Logger – Simulator objects wanting to log anything must access the shared
DefaultLogger object.
• EventEngine – Objects may create and schedule new events by accessing

the event engine.
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6.1.5 MemorySignals

So far, this document has called the objects read from the protobuf traces for re-
quests, and explained how these are forwarded to the cache hierarchy. In practice,
this is achieved by translating the read data into a special class/object called a
memory signal. In simple terms, a memory signal represent any signal or packet
that is sent between two components – including requests to a cache. In very gen-
eral terms, the logic flow of any given simulation goes like this:

1. A request is read from the protobuf trace and translated into a memory
signal.

2. The simulator creates an event that tells the memory signal to access a mem-
ory – either a cache or the main memory.

3. The event is fired, and the memory signal checks if it hits in the target mem-
ory. If it misses, step 2 is repeated.

4. When the memory signal hits, the simulator creates an event to return to
the previous cache and move towards the DataOutput.

5. Step 4 is repeated until the memory signal reaches the DataOutput and is
terminated – implying a completed operation.

When reading from the protobuf traces, every memory signal created is either
a read or write request that is scheduled through a special MemoryAccessEvent
for one of the L1s. However, memory signals are also used to represent special
messages sent from one cache to another, and write-backs to the lower levels of
memory. While most memory signals are used in events that move a signal from
one place to another, entries in the Miss Status Holding Register (MSHR) or stalled
requests are also represented by memory signals.

An overview listing what is read and what is used in a memory signal is pre-
sented in Table 6.1. As seen, not all of the available fields in the protobuf trace is
used, and the memory signal adds the data- and two flag fields. The reasons for
not including some of fields available in the protobuf trace are listed below:

• cycle – All traces used for testing COCOASIM begins their memory operation
in cycle 0. Thus, the simulator reads as many requests as feasible at cycle 0,
and schedules these to access the L1 caches in the next few cycles.
• mem_type – The memory type determines the type of coherency the mapped

memory type has, and if the request is cacheable. This is not used as the
simulator assumes that all requests are cacheable and uses the coherency
pattern as it is.
• asid – Address space identifier is not used for any trace. Since mem_type

was dropped, this is not used either.
• vaddr – All provided traces use the same physicall address and virtual ad-

dress. To simplify the cache behavior, the physical address is used as the de
facto address.
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Data pbtrace Memory Signal
cycle ✓ ✗

op_id ✓ ✓

group_id ✓ ✓

op_type ✓ ✓

mem_type ✓ ✗

paddr ✓ ✓

asid ✓ ✗

vaddr ✓ ✗

msg_type ✓ ✗

byte_en ✓ ✗

reason ✓ ✗

alloc ✓ ✗

dep_id ✓ ✓

flag ✓ ✗

data ✗ ✓

subtask_flag ✗ ✓

return_flag ✗ ✓

Table 6.1: Comparison between the data read versus the data used when reading
from protobuf.

• msg_type – As mentioned, msg_type determines what type the memory
operation is. As op_type already defines what operation is being executed
– i.e., read/write/etc – this is only used when separating operations from
the same type from each other. None of the provided traces do this. Though
future traces may use this feature, it is outside of the project’s scope and
thus not implemented.
• byte_en – By default, this is set to 18446744073709551615 – i.e., all 64

1-bits enabled. Additionally, writing data to a cache line where only some
of the bytes are enabled would lead to the dirty flag only applying for some
bits – requiring a more advanced design. The simulator assumes that every
byte is enabled at all times.
• reason – The simulator does not use the reason for an operation for any-

thing, and thus ignores it.
• alloc – COCOASIM ignores any hint, and instead assumes that every request

should be cached regardless of the cache level.
• flag – There are no special flags at the present time, so the simulator does not

use this field. Instead, COCOASIM uses some internal flags – like request,
info, and subtask – but these are created by the cache states rather than the
pbtrace file.
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In addition to the selected fields from the trace, a memory signal contains some
metadata, a signal type classifier, data, and a few flags. The purpose of the data
field is explained in Section 5.3.6, and the type classifier can be briefly summarized
as classifying if the signal is a request, acknowledge, or info signal. The signal
type and flags are slightly more complex however. In short, there are three types
of signal types – request, acknowledge, and info – and two flags of interest – i.e.,
the sub-task flag and the handle-on-return flag.

As the name suggests, all operations read from the protobuf trace are requests.
Note that requests can be both reads and writes, and all attempt to access an
address in a cache – leading either to either a hit or miss. When a rad request
misses in a cache, it will put itself in the Miss Status Holding Register (MSHR),
and create a clone of itself in form of a request that is forwarded to the next
level of memory. Meanwhile, the original request waits until the cache receives
an acknowledge signal. Note that a read request allocates a spot in a cache (or
hits), while a acknowledge fetches the relevant data. On the other hand, a write
request first evicts a block, but needs to load updated data as well before writing
its content. The reason for this is explained in further detail later in this section.
Nevertheless, the write request waits until it receives a read acknowledge before
it can write its content.

Whenever a request hits in either a cache or the main memory, it transforms
into the acknowledge type. Note that whenever a request transforms this way, it
loads a data payload if it is a read, but stores the data if it is a write. Regard-
less of if it being a read or write, the acknowledge then returns to the previous
cache/"core" and tells any waiting request that the operation has been completed.
This causes the waiting access to re-perform their operation before returning as
an acknowledge themselves. The DataOutput representing the "cores" above the
L1 caches makes sure that the number of created requests is equal to the number
of acknowledges at the end of the simulation to verify that every request has been
completed.

In some special cases, the caches/memories communicate internally using info
signals. These are primarily used to communicate eviction logic in inclusive cache
hierarchies, but can also be extended to perform various logic by attaching a Sim-
ulatorEvent to it. Contrary to requests, info signals do not attempt to "hit" in a
cache, but rather tells a cache to perform an internal operation by firing the at-
tached event. This can be seen by comparing the specific functions for each signal
type in Listing 21 and Listing 22 respectively.

As seen in Listing 22, the simulator executes the event payload attached to the
signal itself. In this way, custom behavior can be added by a developer by adding
events rather than doing changes to the cache itself. While this logic realistically
should be performed by the cache, delegating this behavior to an event makes
it easy to configure what logic should be executed. A developer simply needs to
create an event defining what should happen when a signal accesses the cache,
and attach this event to an info signal.
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// Simplified version of Cache::handle_cache_access_request()
// If found_entry is null, no matching address has been found
// implying that the access was a miss
void Cache::handle_cache_access_request(MemorySignal *signal,

CacheRowEntry *found_entry)
{

// If found, handle on hit logic - else, handle on miss logic
CacheRowEntry* context_entry =

found_entry != nullptr
? replacement_policy->on_cache_hit(signal, found_entry)
: replacement_policy->on_cache_miss(signal);

...
}

Listing 21: A simplified version of the request handling function of Cache.cc.

Moving on to the flags, the sub-task field that determines if a signal is created
for the sole purpose of solving a sub-task of another operation. When a signal is
spawned by a cache this way, its sub-task flag is set to true. This makes the signal
not attempt to return to DataOutput, and the signal is also filtered when a cache
produces statistics on hits and misses. Sub-task signals are only spawned in a few
specific cases:

1. When evicting a dirty block, the cache will begin a write-back to the next
level of memory. Thus, the write-back itself will be a regular memory write
request marked as a sub-task as to not return to the DataOutput.

2. If a write causes an eviction in a cache, the address of that operation must
be fetched from lower memory before overwriting the block with the new
data. This is required as the write operation may read only specific bytes,
and the cache hierarchy must ensure that the data is synced correctly. For
example, if address A causes address B to be evicted, several sub-tasks may
be created:

a. If address B is dirty, a sub-task will be created to perform a write-back.
If B is clean, this step is skipped.

b. To ensure that the data in the cache is up-to-date with the lower caches,
a sub-task read is created for address A before the signal writes to the
cache.

c. Lastly, after receiving the read sub-task the original signal can finally
perform the write.
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// Simplified version of Cache::handle_cache_access_info()
void Cache::handle_cache_access_info(MemorySignal *signal)
{

assert(signal->signal_class == SignalClass::INFO);

SimulatorEvent* event = signal->signal_behavior_info;
assert(event != nullptr);

// Fire custom behavior
event->fire();
delete event;
signal->signal_behavior_info = nullptr;
...

}

Listing 22: A simplified version of the info handling function of Cache.cc.

3. Info signals are as a general rule always sub-tasks as these are communica-
tion messages between two caches. Thus, these are exchanged within the
cache hierarchy, and does not attempt to return to the DataOutput. A typical
example of an info signal is an eviction caused by the inclusive cache policy.
When accessing another cache, the sub-task flag tells the cache that this is
not a normal request.

The first scenario of the list above is shown in Figure 6.6. Assume that the read
signal requests the purple block, and that the orange block is dirty and the target
of the next eviction. As seen, this will cause the following two things to happen:

1. The request misses in the L1, and the cache needs to evict one of its mem-
bers.

2. The orange block is evicted – causing a write back sub-task to be created.
The write-back is forwarded to the next cache followed by the propagating
read request the next cycle.

The "handle-on-return" flag behaves somewhat similarly to the sub-task flag
as it also tells the simulator that a signal has special behavior. This flag is set by
default, and only switched off on signals that also are sub-task. In other words,
all signals created by protobuf stream readers have the return flag enabled. The
reason that this flag is needed in some sub-tasks is to prevent incorrect behavior in
components that react on signals that return to a cache. For the most part, this can
be simplified to making sure that the MSHR does not react on certain messages.
As an example, consider the following scenarios:
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Figure 6.6: The initial read request results in two propagating requests: one
write-back sub-task and one forwarded read.

1. A write causing an eviction of a clean block. This will require stalling the
write until the new data is fetched from the lower memory levels by a sub-
task read. The sub-task has the "handle-on-return" flag set to true so the
write is informed when the read arrives with the updated data.

2. A read causing an eviction of a dirty block. This will cause a write-back
as well as a propagating read to fetch the requested data. While the data
request should trigger other signals upon its return, the write-back should
not. For consistency’s sake, the cache should receive an acknowledge that
the write back is successful, but this message should not trigger, e.g., the
MSHR or any other component. For all practical purposes, the write back
is a "fire-and-forget" sub-task where the cache does not need to wait for its
response. Thus, the "handle-on-return" flag is set to false.

An interesting aspect of the simulator design is that all signals of the info type
is never returned after accessing a memory, and thus is a true "fire-and-forget"
signal. However, as a write-back is a write for all practical purposes, it is classified
as a write request rather than an info signal.

In summary, the "sub-task" flag is added to separate between primary and
secondary requests, while the "handle-on-return" is introduced to make exceptions
for requests that should be ignored for special reasons. While there may be many
other ways to design the simulator and still retain this effect, this is done to prevent
enforcing a "type" to a predetermined behavior. As mentioned, info signals are
automatically deleted after their logic has been executed, and making a write-



90 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

back an info signal could have circumvented the need of a "handle-on-return"
flag. However, the design decision in this case was to rather add another flag as a
write-back in form of a write signal fits much better in the architectural design of
COCOASIM.

6.2 Logic Flow

While the previous section focuses on understanding the key concepts of CO-
COASIM, this section will focus on how the simulator translates the protobuf input
into results. This section explains how memory signals move through a cache hier-
archy by following it from a trace and a StreamManager until it eventually reaches
the DataOutput. Additionally, this section discusses what happens when a requests
accesses a cache and how the replacement policy reacts on hits and misses.

6.2.1 StreamManagers

When initializing a system, the simulator goes through two phases. First, the sys-
tem is configured – either by the aforementioned "System" mode or "Configura-
tion" mode – through the use of the setup() and load_system() functions. This
readies all of the components that are going to be used during the simulation like
caches, the main memory, replacement policies, and the data output. This section
also connects the components and verifies that everything is set up correctly. Af-
terwards, the system is "ignited" by calling the ignite() method. While this may
sound like a strange choice of words for a phase, it is meant to virtually represent
the "ignition" of an engine. While the previous may represent the construction of
a machine or engine, this phase is meant to represent actually starting the sys-
tem. This is done by initializing a MultiStreamReader, and must be done after
initializing the system to ensure that every cache is ready.

The MultiStreamReader is simply a container class for a dynamic number of
StreamManagers. The multi-stream reader is created when the system is ignited
and creates as many stream managers as there are traces. If the number of traces
and caches are not equal, the simulator will log a warning and instead limit the
number to whatever number is the lowest. For example, if there are eight traces
but only four caches, the multi stream reader will only open four of the traces.
This is emphasized as to limit COCOASIM to only use as much resources as nec-
essary, as well as ensuring that every component works correctly. While the multi
stream reader encapsulates multiple stream readers, each individual stream man-
ager encapsulates a raw stream. Recall that the pbtrace is serialized meaning the
requests can be fetched one by one instead of reading the entire file. This is a
major advantage as the stream manager can read the items in order instead of
reading all of them at once. As mentioned in Section 5.3.3, each trace can instead
be paused and continued as needed.
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Figure 6.7: The initial stream read event reading requests from the pbtrace until
the cache cannot handle more requests.

After the system has been "ignited", the simulator creates multiple Stream-
ReadEvents (one for every trace/file/cache) that executes immediately – i.e., at
cycle 0. Every stream read event performs on a unique pbtrace file, stream man-
ager, and cache. The behavior of a single StreamReadEvent is shown in Figure 6.7
performing the following behavior:

1. First, the stream read event checks if the entire stream has been read. If all
requests has been read, the stream read is completed and nothing else needs
to be done. While it is theoretically possible to exhaust an entire pbtrace the
first time a StreamReadEvent is fired, this example will assume that there is
a high number of requests in the trace.

2. If there are unread requests, the stream read event reads the first one of
these and saves it temporally.

3. The stream read then checks if the target cache is able to handle more re-
quests at the time. There are two reasons that makes a cache not ready to
handle new request: either 1) because the cache is stalling, or 2) because
it cannot handle more requests of a certain group. The simulator can easily
check if the cache is stalling on a given cycle, but the group limit make it
possible to handle some requests but not others. Thus, the target cache can-
not handle the read request if it cannot handle the group id of that request.
This is also the reason that the request is read and temporally saved before
determining if the cache can handle more requests or not.
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4. If the cache cannot handle more requests, the read item is buffered and the
stream read paused. Note that the simulator at this knows that there are no
reason to read more requests as they cannot be handled. Thus, COCOASIM
conserves resources by instead pausing the read.

5. If the cache is able to handle the request, the simulator creates a memory
signal and creates a special MemoryAccessEvent – telling the signal to access
the cache in n = (delay to L1) + (number of signals created by the stream
read event excluding this) cycles. The special access event is a slight vari-
ation of a normal memory access event that also tells the cache to reserve
the group of the incoming request. Thus, other signals read by the stream
read event also need to consider the newly added group when checking if
they can access the cache.

6. After the signal has been created and scheduled, the stream read repeats
this process by jumping to item 1.

Figure 6.8: Each cache has a configurable number of "groups" that it can handle
while still being non-blocking.

After a StreamReadEvent has finished – either because no more items exist
in the pbtrace file, or as a consequence of the cache not being able to handle
more requests – the event will be deleted and disappear. However, the state of the
stream – e.g., if any items remain – are kept in each individual stream manager.
Note that this also allows the traces to be as unbalanced as desired, and a stream
can finish much earlier or later than the others without any problems. While the
initial stream read events fire in cycle 0, the simulator continues reading from the
traces when it suspects that the L1 cache may accept new memory accesses. There
are two scenarios where this happens:

1. The cache goes from a "stalling" or "buffered" state to a "ready" state.
2. The cache frees one of its groups – making it possible for a request of another

group to access the cache non-blocking.
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Figure 6.9: An "acknowledge"-signal may free a group – leading to a new Stream-
ReadEvent.

The latter scenario is shown in Figure 6.9. When a group is freed, the next
request of the protobuf trace may suddenly be able to access the L1 cache. For
example, if the next request has a group id of 7, this group can now be allocated.
Note that it is not guaranteed for a freed group to cause a successful stream read
as the cache might be in the "buffered" state as it handles stalled requests that
have been buffered. In this scenario however, the cache will retry firing another
StreamReadEvent when it finishes up handling all buffered signals and entering
the "ready" state.

As mentioned, the main motivation for implementing stream readers and stream
managers is to reduce the memory resource usage to the minimum. As explained,
the simulator will only read requests that it knows can be handled at the time
into working memory. In the meantime, the stream is paused – which is possible
thanks to the serialized nature of the input traces.

6.2.2 Caches

The main component of every simulation in COCOASIM is the cache. Caches are
simulator objects, but also inherit from the Memory class – allowing them to be
accessed my memory requests. The Cache class is the largest file of the COCOASIM
source, and is even split into three smaller abstractions to simplify the use and
development of cache objects. The three sub-components are:

1. CacheInternals – A class managing the content of a cache. The simulator
separates the content from the interface and other logic of a cache in an
attempt to reduce complexity.

2. CacheSets – The cache internals contain a number of sets that divide the
cache into segments. More on cache sets and associativity is discussed in
Section 3.1.2.



94 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

3. CacheRowEntries – A cache set contains a number of "slots" often called
cache lines. Cache lines are represented by the CacheRowEntry class.

Figure 6.10: The content of a cache and its members.

The complete structure of a cache can be seen in Figure 6.10. Note that this
overview includes all objects in a cache, but not values like associativity or memory
latency – with one exception: the tag of a cache line. Additionally, only the objects
owned by the cache (and its members) are shown. In other words, the data output
is not shown as the cache does not own this object despite having a reference
pointer to it. Each component is described in Table 6.2.

Component # per cache Function
Cache Internals 1 Manage cache content

Counter 1 Track statistics
Replacement Policy 1 Perform replacement logic

MSHR 1 Manage missed requests
Cache Set n Represents a cache set

Cache Row Entry n×m Represents a cache line
tag n×m Represents the cache tag

Data n×m Manage data of this cache line

Table 6.2: The content of a cache and what they are used for.
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Memory requests are often read in large bulks by a StreamReadEvent before
the requests are sent in sequence to a cache. As mentioned in the previous section,
the stream reader will only send a memory request to a L1 if it thinks that the cache
can handle more requests. However, due to a delay between issuing the memory
requests and the request actually accessing the cache, the stream reader may issue
requests that cannot be handle. This should never happen because of the group
limit (as this is handled before the request arrives), but may happen for other
reasons. While there are no formal cache states in the COCOASIM source, caches
can fit into one of three categories:

• Ready – The cache can handle new requests.
• Buffered – The cache cannot handle new requests at this time, but might

be ready after finishing a number of buffered memory request.
• Stalling – The cache cannot handle new requests, and needs to wait for a

signal outside of the current cache to continue.

Buffering of requests may happen in any cache, but are especially common in
L2s. When multiple L1s tries to access the L2 in the same cycle, the L2 must handle
one of them and place the rest of the requests in a buffer. Given eight requests,
the L2 cache spends a total of eight cycles executing all of them. Thus, one of the
request are handled instantly, while the rest are scheduled (FIFO) for the few next
cycles. However, if everything goes without problems, the cache is ready to handle
new requests after the eight cycles have passed. This behavior is summarized in
Figure 6.11.

Figure 6.11: The cache buffers additional requests if it is already handling one.

A stalling cache is the result of a buffered request not being allowed to perform
a desired operation, and thus must stall the pipeline. Note that it is possible to
send more requests to the cache in this state, but the requests will not have any
effect and are put at the end of the FIFO queue. The stream readers will recognize
this, and will stop reading and creating memory signals until the operation can
execute. There are two scenarios that might cause a stalling cache:
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1. A request misses in a cache, but is unable to evict any entries. This happens
when a cache line block is allocated by another read request, but not yet
fetched from lower memory. As the cache cannot ignore the eviction and
allocation using the new tag, the request is instead stalled until it is possible
to evict a cache line – i.e., when a returning read acknowledge carrying data
changes the state of the cache line from "allocated" to "ready". This behavior
is more common for systems with small caches, low associativity, and long
memory latencies.

2. A request misses in a cache, but the Miss Status Holding Register (MSHR) is
already full. As with the previous scenario, the operation must wait until a
returning acknowledge frees up space in the MSHR. This is more common
for caches with small MSHRs.

Note that the only component that reacts to the "state" of a cache is the stream
reader. If a L1 attempts to send a request to a non-ready L2 cache, the request
will instead be stopped as it tries to access the cache. On the other hand, the
stream reader will not send request to its respective L1 cache if it isn’t ready. This
approach has the advantages of: 1) limiting the amount of resources used, and 2)
being relatively simple as requests are automatically stalled if needed. However,
one disadvantage with this is that the simulator assumes that every cache is able to
buffer an infinite number of requests. This either assumes that each cache comes
with a large hardware buffer – which is improbable – or that the interconnects
connecting the caches are pipelined – which is more plausible. However, the latter
alternative should only allow for a number of requests equal to the latency of each
cache. To preserve the simplicity of the buffering design, this is ignored by the
simulator.

Figure 6.12: The logic flow performed when a signal accesses a cache.
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Signals that successfully access the cache will follow the behavior shown in
Figure 6.12. Note that "acknowledge" signals should never access the cache this
way, but rather through another interface. As shown, requests may hit or miss,
while info signals are handled and then simply discarded. To check if a request
hits or misses, the cache uses the address of the signal and translates it to a tag,
index, and block offset using the associativity/sets and cache line size of the cache.
The cache then fetches the correct set using the index, and compares the content
of every cache line of that set with the new tag. If one of the cache lines contain
the tag, the request is a hit and the respective data can be returned. If not, the
request is a miss. This behavior is visualized in Figure 6.13.

Cache is used to describe both the actual "cache" object as well as the "cache
internals" object.

Figure 6.13: How a cache checks if an address exist in the cache.

6.2.3 Replacement Policies

When a cache checks if a request hits or misses, it goes through the following
three steps:

1. First, the cache checks if the address already exists in the cache by perform-
ing the logic shown in Figure 6.13.
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2. If the request misses, the cache needs to fetch the data from lower memory.
Thus, the cache first checks if it can replace any of the invalid entries with the
new address. Invalid cache lines often exist in the beginning of a simulation
when the cache set is either partly or entirely "empty", but may also appear
later as a consequence of a line being invalidated by another cache through
the inclusive cache policy.

3. If no invalid entries exist, the cache needs to replace one of the existing
entries with the new address. This is done by listing all the replaceable cache
lines in the current set and telling the replacement policy to choose one of
them to evict.

While the two first steps are performed automatically by the cache, the deci-
sion of what entry to replace is delegated to the cache replacement policy. Note
that the cache will only nominate entries that are possible to evict, as invalid en-
tries of entries that are allocated but not fetched cannot be evicted from the cache.
Thus, it is possible to encounter scenarios where none of the cache lines can be
evicted – causing the cache to stall as described in Section 6.2.2.

As seen in Figure 6.10, the cache objects are designed in a way to separate
the replacement policy from the cache itself. Thus, a cache can use any type of
replacement policy as long as it contains an interface that the cache understands.
In practice, this means that any sub-class of the ReplacementPolicy class can be
used.

The base ReplacementPolicy class can be seen in Listing 23. Note that the
class contains multiple methods with the virtual keyword – hinting that these
can and should be overridden in a sub-class. Also note the on_cache_hit() and
on_cache_miss() functions, and recall that these are called in Listing 21 when a
cache access either hits or misses respectively. The main idea here is that every
cache replacement policy may perform their own logic on cache misses (and hits).
The methods of CacheReplacementPolicy functions in the following way:

• do_get_system() – Returns the system that this replacement policy exist in,
and should not be overridden. Note that CacheReplacementPolicy derives
from SimulatorObject which enforces it to have a method for referenc-
ing its appropriate system, and is discussed further in Section 6.1.3. While
this is not something that sub-classes of CacheReplacementPolicy need to
consider, it is still worth noting as to understand how a replacement policy
knows what system it inhabits.
• do_create_new_instance() – Used for creating another replacement pol-

icy of the same type as this. A sub-class needs to override this to return
another instance of itself as the method is made pure virtual. This method
is primarily used when a simulation in "Configuration" mode needs to spawn
instances of a replacement policy present in a replacement policy catalog.
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// Condensed version of CacheReplacementPolicy.hh
class CacheReplacementPolicy : public SimulatorObject {
public:

CacheReplacementPolicy();
virtual ~CacheReplacementPolicy();
...

protected:
BaseSystem * do_get_system() const override;

virtual CacheReplacementPolicy* do_create_new_instance() const = 0;
virtual CacheRowEntry* handle_replacement(MemorySignal* signal) = 0;
virtual CacheRowEntry* handle_on_cache_hit(MemorySignal* signal,

CacheRowEntry* hit);
virtual CacheRowEntry* handle_on_cache_miss(MemorySignal* signal);
virtual CacheRowEntry* handle_find_and_fill_unused_cache_slot(

MemorySignal* signal);
virtual void do_connect_to_internals(CacheInternals* internals_to_manage);
virtual CacheRowEntryFlags* do_create_required_flags();

};

Listing 23: The CacheReplacementPolicy header – featuring the many virtual
functions.

• handle_replacement() – Called when the cache needs the replacement pol-
icy to make an eviction, and differs for every cache replacement policy. A
random replacement policy should simply choose one of the replaceable en-
tries at random, while a LRU policy should find the entry within a set with
the lowest counter value. The function returns the appropriate candidate
for replacement, or alternatively a null value of no entries can be replaced.
This is arguably the most important method for replacement policies, and
the rest of the functions should only be overridden if needed.
• handle_on_cache_hit() – As seen in Listing 21, this is called when a request

hits. By default, this method will execute logic like writing or reading to the
cache line. However, it is also possible to perform additional logic when this
method overridden. The best example of this is the LRU policy which also
increments the access counter on the cache line that experienced a hit. Note
that this method can be expanded upon, but must not be replaced by other
code.
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• handle_on_cache_miss() – As with handle_on_cache_hit(), this is also
called by Listing 21 but instead for cache misses. By default, this performs
the logic associated with cache misses like allocation of cache lines, adding
entries to the MSHR, and forwarding requests to the next level of memory.
It is also possible to expand on this with additional logic, but no existing
replacement policy does this.
• handle_find_and_fill_unused_cache_slot() – This is called by the han-
dle_on_cache_miss() function before an eviction to check if the cache has
unused/invalid cache lines. If it does, the cache does not need to evict any
cache line, and can use the empty slot instead. However, in the vast majority
of cases this method will return a null value as no entries can be replaced.
Nevertheless, this can also be expanded on by a sub-class if desired. The
LRU actually does this by updating the access counter on cache lines that
are successfully filled by the base function.
• do_connect_to_internals() – Connects the replacement policy to the con-

tents of the cache. Called once when initializing the replacement policy, and
may be overridden to contain additional logic.
• do_create_required_flags() – Whenever a cache is initialized, it will ask

the replacement policy if it needs any special flags for the cache lines. By
default, this will return two flags: the valid flag, and the dirty flag. However,
more values – not only 1-bit flags – can be added if needed. For example, the
LRU policy will tell the cache that it also needs a field for an access counter
for it to perform its replacement logic. An example of how this works is
shown in Figure 6.14.

Figure 6.14: The cache queries the replacement policy what flags it should use.
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In summary, cache replacement policies are designed to be highly configurable
and easy to expand upon. By using the base class of CacheReplacementPolicy,
the simulator knows what behavior to do on hits and misses. While there are sev-
eral methods that can be overridden and expanded, all a new replacement policy
really needs is an algorithm in place of the handle_replacement() method. Here,
the algorithm for deciding what to evict can be as simple or complex as needed. As
the cache and the replacement policy are clearly separated, any replacement pol-
icy should be compatible with any cache – making experimenting with different
policies simple.

6.2.4 DataOutput

After hitting in a cache or the main memory, a memory signal will eventually re-
turn to the DataOutput In the same way as every cache has a reference to the mem-
ory below it, every memory also know of every "signal interactive" object above it.
Note the distinguishing between a memory and a "signal interactive" object: ev-
ery memory is a signal interactive object, but the reverse is not true. As explained
in Section 6.1.3 and Figure 6.4, both of these inherit from the SimulatorObject
class, but the SignalInteractive class is closer to the SimulatorObject root than
the Memory class. This means that while caches and other memories have an access
method and set size, the data output does not. However, all acknowledge signals
can return to "signal interactive" objects – including the data output. As the data
output represents the output/CPU/core in a simulated system, memory signals
returning here are marked as completed and deleted. Additionally, the data out-
put counts the returning signals as they arrive to make sure that all signals have
been received at the end of a simulation.

Figure 6.15: A request’s journey through the cache hierarchy
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The typical behavior of an early request traveling through the cache hierarchy
is shown in Figure 6.15. Note that while the example signal travel to and from
every memory, it does only travel from the stream manager, and only to the data
output. Whenever a request misses in a cache, the simulator creates a new re-
quest that is told to access the next level of memory, and return to the current
cache when acknowledging. However, when a stream manager creates a request,
the simulator tells it to access one of the L1 caches, but return to the data out-
put instead when acknowledging. This is possible as each signal knows what it
is supposed to access – i.e., the destination – and where it should return to when
finished – i.e., the source.

Figure 6.16: The source and destination of two memory requests.

The concept of a signal’s "source" and "destination" is shown in Figure 6.16.
Note that the source of request 1 is set to the data output despite being spawned
by the stream reader, and that the L1 creates a new request with itself as the
source. This design method make it easy to keep track of the state of each request.
If the initial request had hit in the L1 cache, it would instead returned directly to
the data output. However, since the signal missed it does not get to return to the
output before the new request has completed. If request 2 misses in the L2, this
behavior is repeated – with the L2 creating a new signal bound for the L3 / Main
Memory and request 2 waiting for an acknowledge. Note that this also leads to a
signal only existing between two components, e.g., the L1 and L2 or the L1 and
the data output. This allows a source to safely delete any signal that return to
it while returning the original waiting signal. This makes it easy and to orderly
manage signals and states as the simulation continues, but comes at the slight
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cost of increased memory usage as some redundant metadata would have to be
reused across all signals. A previous iteration of COCOASIM attempted to attach
all metadata to a single signal as it traveled through the cache hierarchy, but this
proved to be complex to implement and quite messy to work with.

In short, the data output is responsible for the following:

1. Registering signals returning from the L1 and marking them as finished.
2. Managing dependencies between requests, and firing new memory access

events when a returning signal makes another waiting request ready.
3. Continuing stream reads if caches changes state to "ready" from "buffered"

or "stalling".

Note that contrary to the stream readers, there is always only a single data
output. This means that every signal returning from a L1 cache will arrive at the
same data output. However, the data output is able to distinguish between what
cache each signal comes from – making it possible to choose the correct stream
reader when continuing stream reads.





Chapter 7

Validation & Results

While the previous chapters describes the theory and basis of COCOASIM, this
chapter will focus on the practical functionality of the simulator. First, Section 7.1
will discuss how testing is used to validate that the simulator works as intended.
The next section – Section 7.2 – will show how COCOASIM can be used in practice
by presenting an example on how a relatively simple custom variation of the LRU
replacement policy can be created. Lastly, the results of the simulator as well as
the replacement policy variant will be presented in Section 7.3.

7.1 Testing

7.1.1 Tests

COCOASIM contains multiple tests to validate that the simulator behaves as ex-
pected in different scenarios. Contrary to the simulator itself, all tests are written
in Python. It should be noted that COCOASIM does not perform unit testing, but
rather something closer to integration testing. In summary, this means that the
individual parts – like caches and replacement policies – of COCOASIM is not
tested by the testing interface. Instead, the tests run specific simulations featuring
different systems and traces and validate that the simulations are successful. As
mentioned in the earlier chapters, the source code of COCOASIM contains mul-
tiple assertions that continuously check that the simulation is in a valid state. If
any of these assertions fails, the testing interface is notified and returns a failure.
A test is only a success if every single assertion across all possible configurations
is a success.

Tests in COCOASIM can be put in one of two categories:

1. System Tests – Used for testing that configured systems behave correctly.
Normally tests each system on every available trace. Great for testing that
new systems work as intended, and that new changes to COCOASIM don’t
break any of the existing successful assertions.

105
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2. Configuration Tests – Primarily used to validate that configurations / run-
time arguments work as expected. Usually only uses a single trace with dif-
ferent configurations

In summary, system tests perform the heavy integration testing while the con-
figuration tests validate that certain configurations work as intended. The simula-
tor currently uses four system tests – each testing a system on all available traces
– and a single configuration test. All tests can be seen in Table 7.1.

Tests Description Typical duration*
Advanced System Test Test the "bulldozer-inspired sys-

tem" configuration
47m 1s

LRU+ Test Tests a system using the "LRU+"
policy

43m 26s

Scaled System Test Tests a simple system with 8 L1
caches connected to a main mem-
ory

43m 52s

Single L1 System Test Tests a very simple system with a
single L1

6m 58s

Configration Test Tests that "System Mode" and
"Configuration Mode" works as
intended

57s

*: The duration varies for every simulation. The duration for every test used here
is from the automatic testing configuration of GitHub’s "Build and Test #35". This
is discussed futher in Section 7.1.4

Table 7.1: The tests run when running the integration test suite.

The complete structure of the "testing" directory the simulator uses for testing
is shown in Figure 7.1. Note the following:

• Before any testing can be performed, the test_setup.py file must first be
executed. The setup file will essentially only prepare the traces by copying
from the "traces" directory and decompressing them in a temporary direc-
tory that is deleted after the tests have finished. The simulator does not
want to upload the files to a version control due to their large sizes, but
still needs the traces to perform integration testing. The simulator solves
this by retaining a permanent compressed version that is uncompressed by
the setup file when needed. To quickly prepare the simulator for testing,
it is recommended to use the make test-setup command provided by the
Makefile.
• The testing itself is managed by the various test runners. Executing the test

runner at the root will simply run both of the other test runners located
in configuration_tests and integrity_tests respectively. Both of these
will run every test that is present in their respective "tests" directories. Due
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Figure 7.1: The content of COCOASIM’s testing directory.

to the long execution time of its tests, the system test runner also has the
option of specifying a single test to perform. To quickly test every single test,
simply running the make test command is adequate. This should also run
the setup file automatically and prepare the required traces.
• To add a new test, simply adding it to either "testing" directory should be

enough. The test runners should automatically recognize new tests as long
as they end with the ".py" post-fix.
• Likewise, new (compressed) traces can be added to the "traces" directory

and automatically be recognized. System tests will automatically test each
system on every trace collection in the "traces" directory.
• While not explicitly shown, the "utility" directory contains helper function-

ality for the tests. This is useful for reusing functions or classes across tests.
This currently contains some simple logic for traversing file paths, and is
used by the tests to choose the correct trace directories.
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7.1.2 Traces

While COCOASIM is able to use any input traces in the correct format, the simu-
lator contains a total of 21 bundled trace collections in the "traces" directory. As
mentioned, these are compressed but can be used like any other trace directory
once decompressed. All of these traces were generously provided by Ole Henrik
Jahren from Arm, Trondheim, and is used extensively for the system tests as well
as regular experimenting. The trace collections are summarized in Table 7.2.

Collection Operations per trace Total operations
8c-64eg-256KiB-memcpy 1 024 8 192
8c-64eg-2MiB-memcpy 8 192 65 536

8c-64eg-64MiB-memcpy 262 144 2 097 152
memcpy-16KiB-x32-8c-64eg 16 384 131 072
memcpy-16KiB-x512-8c-64eg 262 144 2 097 152
memcpy-512KiB-x8-8c-64eg 16 384 131 072

memcpy-512KiB-x128-8c-64eg 262 144 2 097 152
memcpy-4MiB-x32-8c-64eg 16 384 131 072
memcpy-64MiB-x1-8c-64eg 262 144 2 097 152

load-32KiB-x32-8c-64eg 16 384 131 072
load-32KiB-x512-8c-64eg 262 144 2 097 152

load-1MiB-x8-8c-64eg 16 384 131 072
load-1MiB-x128-8c-64eg 262 144 2 097 152
load-8MiB-x1-8c-64eg 16 384 131 072

load-128MiB-x1-8c-64eg 262 144 2 097 152
store-32KiB-x32-8c-64eg 16 384 131 072
store-32KiB-x512-8c-64eg 262 144 2 097 152

store-1MiB-x8-8c-64eg 16 384 131 072
store-1MiB-x128-8c-64eg 262 144 2 097 152
store-8MiB-x1-8c-64eg 16 384 131 072

store-128MiB-x1-8c-64eg 262 144 2 097 152

Table 7.2: The traces used by COCOASIM

The traces of Table 7.2 – with the exception of the first three – are formatted
in the same way – i.e.,<operation>-<memory-size>-<repeats>-<number-of-
traces>c-<executing-groups>eg. These fields can be explained as the following:

• operation – What kind of operation is performed – i.e., load, store, or mem-
ory copy.
• memory size – How large memory area is manipulated.
• repeats – How may times the operation is repeated in total. A x1 means the

operation only happens once, while x512 means the operation happens a
total of 512 times.
• number-of-traces – How many L1s are needed to execute the entire trace

collection. Set to 8 for all traces.
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• execution-groups – How many groups are needed to run the trace collec-
tion non-blocking. Set to 64 for all traces.

The format of the first three traces is reversed. Though not included in the
name, these do only perform the operation a single time. Lastly, an observant
reader might notice that the memcpy operations use half the memory area as some
of the loads and stores, but still contain the same number of total operations. The
reason for this is that memcpy performs both a read and a write for every address
whereas loads and stores only perform one of them.

7.1.3 Test Design

There are no strict rules on how to create new tests in COCOASIM, but the test
must: 1) be written in Python and have a .py file post-fix, and 2) exit with an error
code if the tested simulation fails. It is also recommended to write the behavior
or the test to standard output, and keep track of how long time the simulation
uses. Virtually all tests should use the cocoasim-fast binary when performing a
simulation. As mentioned, the cocoasim-opt ignores every assertion and is con-
sequently an ill-suited choice for testing. It is possible to use the base cocoasim
binary, but this will in practice only be a slower version of cocoasim-fast.

A simplified version of the test responsible for testing the advanced "bulldozer"
system can be seen in Listing 24. In short, the test performs the following logic:

1. Get the next collection of traces available.
2. Start a timer.
3. Begin a simulation with the "bulldozer" configuration using the fetched col-

lection of traces. Use the cocoasim-fast binary for increased performance.
Note that setting the "-l 0"-option – i.e., setting logging to 0 – here has
no practical effect as cocoasim-fast is sued, but is done for the sake of
consistency.

4. After the simulation has ended, stop the clock and check if the simulation
was successful.

5. If the simulation succeeded, print "OK" and the time used. If not, exit with
an error code.

6. If there are more traces left, repeat this process by returning to step 1.

7.1.4 Continuous Integration

As briefly mentioned in the caption of Table 7.1, the "Github Actions" [23] inter-
face have been used during the development of COCOASIM to continuously test
that the simulator is behaving as expected. In summary, the testing interface auto-
matically builds and tests COCOASIM every time a new major feature is added. In
practice, the GitHub Action job simply runs the the test_runner.py scripts in the
"system test" and "configuration test" directories with different arguments. This
could in theory be done manually as well without the need of continuous testing
interface, but the automation has especially two major advantages: 1) Testing is
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def main():
main_dir = util.get_cache_sim_directory()
temp_test_trace_dir = util.get_tmp_test_traces_directory()

...
sub_dirs = temp_test_trace_dir.glob("**/*/")

for sub_dir in sub_dirs:
if sub_dir.is_dir():

test_name = "verify_advanced_" +
str(sub_dir).replace(str(temp_test_trace_dir), "")[1:]
test_dir_name = main_dir / test_name
print("Testing " + test_name, end=".....", flush=True)

os.chdir(main_dir)
start = timeit.default_timer()
run = subprocess.run(

["./cocoasim-fast", "-l", "0", "-i", str(sub_dir),
"-c", "configs/bulldozer_inspired.json"],
encoding="utf-8",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE

)
end = timeit.default_timer()

try:
run.check_returncode()

except subprocess.CalledProcessError as e:
print(e)
exit(e.returncode)

print("OK: " + str(end-start) + "s")

Listing 24: A simplified version of verify-advanced-system.py

done without any user intervention – making it easy to "fire-and-forget" changes
and thus eliminating the need for waiting for the test to complete to complete,
and 2) Testing is done automatically – thus making it impossible to forget to test
features.

The continuous integration of the simulator is handled by the build_and_test_job.yml
file located in the COCOASIM source files. While this can be configured in many
different ways, the current version of COCOASIM tells GitHub’s servers to perform
a build and test suite whenever one of two things happens:
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1. Code is pushed to the remote main branch – indicating that the simulator has
received an update. The main branch should never contain faulty code, so
any errors detected by testing here should be handled immediately – either
by fixing whatever caused the bug or through reverting the simulator back
to a non-faulty version. Automated testing for changes to the main branch is
highly desirable as the continuous integration can test if any new changes
break the simulator.

2. Code is requested to be pushed to the main branch through a "pull request".
This is a safe way of adding new features to the simulator as the code is
tested before being part of the main branch. Fixing errors detected by auto-
mated testing on a pull request is not urgent as the code is not yet a part of
the main branch, but a pull request can only be approved if the automated
testing show no errors.

During an automated test, the server starts by building the binaries of CO-
COASIM. If this completes without errors, the GitHub server continues by using
the binaries to run multiple tests in parallel. This is another major advantage by
using automated continuous integration as each tests can be executed simultane-
ously in separate environment. As shown in Table 7.1, the tests vary greatly in
length – with the longest tests currently completing in about 45 minutes.

7.2 Example: Creating LRU+

Though earlier chapters and sections like Chapter 5 have discussed the design of
COCOASIM as well as how to use it in general, these have primarily explained
how the simulator works on a theoretical level. The focus of this section however
will be how a user can create and test a custom cache replacement policy on differ-
ent systems and with different programs. The following paragraphs will present
the entire process from an initial idea to the implementation and eventually the
collection of results. The aim of this example is to experiment with an idea for a
replacement policy and see if it has any effect – positive or negative – on a cache’s
hit rate.

7.2.1 Idea

Consider the cache hierarchy of Figure 7.2. Note that this the caches in this hier-
archy is inclusive – meaning that every block in a L1 also exist in the L2. As seen,
the A block is used in both of the L1s while the D block is used in none. Assume
that the reason for the presence of block A in both L1s is because that address
is used abnormally often by the program, and that the caches "recognizes" this
because it uses an intelligent replacement policy like LRU. For simplicity, assume
that each L1 cache receive their own improbable series of requests: Table 7.3 for
the left cache, and Table 7.4 for the right cache.



112 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

Figure 7.2: A typical cache hierarchy where address A is used by two L1s.

# Address Hit?
1 A ✓

2 B ✓

3 A ✓

4 C ✗

5 A ✓

6 D ✗

7 A ✓

8 E ✗

9 A ✓

+ + +

Table 7.3: Future requests for L1-LEFT.

As seen in the two tables, there is a clear pattern for every cache. The left
cache will alternate between a hit and a miss every two cycles as it either requests
A or something that is not in the cache. On the other hand, the right cache on the
other hand will hit on every single access.

Moving on to the actual simulation, assume that every cache uses LRU, and
that the cache uses the following access counters for all the blocks: A:3, B:2, C:1,
D:0. Recall that when a block hits its value becomes the highest in the set, and
when a cache miss happens the replacement policy evicts the block with the lowest
counter. While the right cache will hit on every access, the left cache will trigger
some unusual behavior.

Consider the simulation flow of Table 7.5. Note that something unexpected
happens in cycle 10: address A is evicted from the L2 cache. Recall that this cache
hierarchy also is inclusive – meaning that both L1s are told to evict their own copy
of A as well. Note that the aftermath of cycle 10 – marked !10 – results in address
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# Address Hit?
1 A ✓

2 C ✓

3 A ✓

4 C ✓

5 A ✓

6 C ✓

7 A ✓

8 C ✓

9 A ✓

+ + ✓

Table 7.4: Future requests for L1-RIGHT.

After # R L1 Hit? L1 (Eviction Order) L2 Hit? L2 (Eviction Order)
1 A ✓ AB (BA) - ABCD (DCBA)
2 B ✓ AB (AB) - ABCD (DCBA)
3 A ✓ AB (BA) - ABCD (DCBA)
4 C ✗ AC (AC) ✓ ABCD (DBAC)
5 A ✓ AC (CA) - ABCD (DBAC)
6 D ✗ AD (AD) ✓ ABCD (BACD)
7 A ✓ AD (DA) - ABCD (BACD)
8 E ✗ AE (AE) ✗ ABCE (ACDE)
9 A ✓ AE (EA) - ABCE (ACDE)

10 F ✗ AF (AF) ✗ CDEF (CDEF)
!10 - - -F (F-) - CDEF (CDEF)

R: Requested address

Table 7.5: A functional simulation of the L1-LEFT and L2 when reading the re-
quests of Table 7.3

A being invalidated in all caches. This is highly unfeasible as block A is accessed
every two cycles and is by far the most referenced address in the program. An
optimal replacement policy should recognize this and attempt to retain A in all
caches permanently. However, in cycle 10 the L2 cache needs to evict an entry,
and at that point address A has the lowest access counter. In other words, the
algorithm works as intended despite resulting in the eventual eviction of A.

One key observation on the way of identifying the problem is that this would
not happen if the L2 did not exist. Signal requesting A exclusively hit in both L1
caches, and the LRU makes sure that A is pushed back in the eviction order when
a request hits. In other words, this problem is caused by a curious paradox: A never
hits in the L2 because it always hits in the L1 and thus never need to access lower
memory. Since no requests for address A reach the L2 cache, its access counter is
never updated.



114 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

The idea on how to solve this problem is quite simple: inform the L2 cache of
hits that happen in the L1s. In Table 7.5, this would cause every hit in the L1 also
cause a "hit" in the L2. Consequently, A would have been put in the back of the
eviction order every two cycles – preventing it from ever being evicted. Another
advantage of this approach is that the info can be sent to L2 while the original
request returns to the data output. This base idea of this behavior is shown in
Figure 7.3.

Figure 7.3: Upon hitting in the L1, info on the hit is sent to the L2.

Note that this solution only makes sense for replacement policies that perform
some logic upon a cache hit like the LRU policy. While it is technically possible to
mimic this behavior for, e.g., a Random replacement policy, it would have no ef-
fect on what is being evicted. As LRU is the most obvious candidate, this section
will focus on an expansion of the LRU policy that also sends metadata signals on
hits in caches to the lower levels of memory. As the info signals "reinforce" existing
blocks in the inclusive cache hierarchy on hits, this variant is named "LRUWith-
HitReinforcement" – or "LRU+ for short. Note that this policy is an extension of
LRU, the same base concept should apply for all replacement policies that perform
some sort of logic on a cache hit.
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7.2.2 Implementation

To implement LRU+ in COCOASIM, only two new components need to be created:

1. The actual LRU+ replacement policy. This should behave in the exact same
way as LRU on cache misses and eviction, but needs additional logic on
cache hits.

2. A way of telling a cache to "reinforce" a block as to make it less prone to being
evicted. In LRU, this can be done by simply increasing the access counter of
the cache line containing the appropriate address.

Recall that COCOASIM already supports logic for sending communication mes-
sages between caches in the form of info signals – as explained in Section 6.1.5.
In summary, a info signal simply performs some sort of behavior determined by
an event upon accessing a memory. Thus, the info signal can be used as it already
is, but it needs to carry an event that makes the cache reinforce the desired ad-
dress. The resulting event – named the HitEmulatingInfoAccessEvent – able to
do this is shown in Listing 25, while the logic of the do_fire() method is shown
in Listing 26.

class HitEmulatingInfoAccessEvent : public SimulatorEvent {
public:

HitEmulatingInfoAccessEvent(MemorySignal* info_signal,
Memory* target_memory);

...

protected:
void do_fire() override;

MemorySignal* event_info_signal;
Memory* event_memory;

};

Listing 25: The header of the new HitEmulatingInfoAccessEvent class.

Note that the event derives from the SimulatorEvent class – meaning that
the simulator recognizes it and knows how it is fired. As seen, the event needs
parameters for what signal should be used and what memory the info signal is
going to access. The reason for this is the event is entirely separated from the
signal carrying it, as any possible event can be fired. Note that the do_fire()
method goes through two checks before it actually executes any logic. First, as
the info signal may access any type of memory, the event checks if it is accessing a
cache. Then, the event checks if the address is in the cache at all. While an inclusive
cache policy should enforce that every address in a L1 also is in the L2, the signal
only triggers after a delay. It is possible for the relevant address to be evicted in
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void HitEmulatingInfoAccessEvent::do_fire()
{

auto* event_cache = dynamic_cast<Cache*>(event_memory);
if (event_cache == nullptr) return;

CacheRowEntry* entry = event_cache->in_cache(event_info_signal->
trace_metadata->
address);

if (entry != nullptr)
{

CacheReplacementPolicy* replacement_policy =
event_cache->get_cache_replacement_policy();

replacement_policy->on_cache_hit(event_info_signal, entry);
}

}

Listing 26: The logic that is fired by the info signal once it arrives at a cache.

the time period between an info signal is sent, and it is received. If it is a block
with the appropriate address, the event will manually call the on_cache_hit()
method with the correct signal, address, and cache line. There are two advantages
to calling the on_cache_hit() instead of simply increasing the access counter:

1. This allows a L1 cache using LRU+ to communicate with any L2 cache – re-
gardless of the replacement policy used. Any policy that use the on_cache_hit()
method will reinforce the address in their own way, while replacement poli-
cies that do nothing on hits – e.g., Random – simply ignores the message.
On the other hand, accessing the access counter would enforce the target
replacement policy to be LRU (or derived from LRU).

2. This behavior may propagate further to the next level of memory. For ex-
ample, when a regular LRU is "reinforced" it will simply register a "fake" hit
and then retire the info signal. However, if an LRU+ is "reinforced" in the
same way, it will also tell the next level of memory that it experienced a hit.

The header of the LRU+ class can be seen in Listing 27, while the custom im-
plementation of the on_cache_hit() method is shown in Listing 28. While some
parts of the code in both excerpts are removed for readability, most of the entire
LRU+ definition fits in these two listings. Most of the logic that LRU+ uses already
exists in the LRU super-class, and all LRU+ needs to do is to send the aforemen-
tioned HitEmulatingInfoAccessEvent signal to lower levels of memory once it
hits. This can be seen in Listing 28 where the on_cache_hit() method first calls
the base implementation before creating and sending an info signal with the hit
emulating event as its payload.
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class LRUWithHitReinforcement : public LRU {
public:

LRUWithHitReinforcement();
~LRUWithHitReinforcement() override;

protected:
// Interface start
CacheReplacementPolicy * do_create_new_instance() const override {

return new LRUWithHitReinforcement();
}

CacheRowEntry * handle_on_cache_hit(MemorySignal *signal,
CacheRowEntry *hit) override;

};

Listing 27: The header of the LRU+ replacement policy.

This is all that is needed in order to add the LRU+ replacement policy to
COCOASIM. After this, LRU+ can be used by any cache in the same way as any
other replacement policy. Note that if the LRU+ is to be recognized by the simu-
lator when running in "Configuration Mode", the policy must also be added to the
CacheReplacementPolicyCatalog. However, this can be done in a single line by
adding "register_policy(new LRUWithHitReinforcement(), "lru+");" to the
catalog’s constructor.

7.3 Results

7.3.1 Methodology

There are two kinds of results that are relevant to this project: the results of the
simulator itself, and the results of simulations done using COCOASIM. While sev-
eral policies may be of interest, it might be especially valuable to compare the
LRU+ policy from Section 7.2 to LRU for different configurations. All configura-
tions use an inclusive cache policy, but different types of systems are tested. All
simulation will run on a standard laptop connected to power with the specifi-
cations shown in Table 7.6. Unless otherwise specified, the performance tests of
COCOASIM will use a configuration file with the values listed in Table 7.7.
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CacheRowEntry *LRUWithHitReinforcement::handle_on_cache_hit(MemorySignal *signal,
CacheRowEntry *hit)

{
CacheRowEntry* super_result = LRU::handle_on_cache_hit(signal, hit);

Cache* cache = internals->get_owner();
Memory* target_memory = cache->get_next_level_in_memory_hierarchy();

MemorySignal* hit_info_signal = signal->create_info_offspring();

auto * hit_info_event = new HitEmulatingInfoAccessEvent(hit_info_signal,
target_memory);

hit_info_signal->signal_behavior_info = hit_info_event;

// Begin propagating access with new signal
cache->begin_propagating_access(hit_info_signal);

return super_result;
}

Listing 28: The only change to LRU+ vs LRU: overriding the on_cache_hit()
method.

7.3.2 Simulator Performance

This section will list the results of empirical experimenting with different configu-
rations for COCOASIM and show how the performance of the simulator is affected.
This section includes the figures between Figure 7.4 and Figure 7.14 as well as
Table 7.9. The following box plots feature 10 distinct experiments with that con-
figuration, and the orange line represent their average. The plot of Figure 7.12
shows the average, maximum, and minimum operations per second among 10
experiments as well. Lastly, experiments testing the performance of LRU+ is pre-
sented in Figure 7.13 and Figure 7.14, but the times used here are only the result
of a single simulation per variation. A summary of all experiments can be seen in
Figure 7.9.

7.3.3 Cache Performance

While the previous section focused on performance of the simulator, this section
will explore the results of cache performance for different combinations of cache
replacement policies and programs. More specifically, the following figures shows
how the hit rate of L1s and L2s changes over time. Unless otherwise specified,
each experiment will use the methodology of Table 7.10.
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Table 7.6: Platform specifications.

Type
OS Ubuntu 18.04.6 LTS
OS Type 64 bit
L1 Cache 32 kB
L2 Cache 256 kB
L3 Cache 8192 kB
Memory 15.3 GB
Processor Intel Core i7-10510U
Clock 1.80 GHz
Cores 8

Property Value
# of L1s 8
# of L2s 1

Replacement policy (all) Random
Associativity (all) 4

Block size (all) 64 B
L1 size 32 KiB
L2 size 1 MiB

L1 delay 1 cycle
L2 delay 10 cycles

Main memory delay 100 cycles

Table 7.7: The default system used for performance testing

The data of Table 7.11 and the figures of Figure 7.15 through Figure 7.22
visualize several interesting behavioral patterns:

• In general the replacement policies have little effect on the final hit rate of
a cache. Additionally, the Random replacement policy actually outperforms
the more advanced policies in some cases. This may sound counter-intuitive,
but recall that the traces being tested are pure memory copy operations and
primarily consists of reading and writing an address space. Thus, "every"
address is reused in cycles, and the hit rates depend primarily on how much
data the caches can hold.
• Figure 7.15 shows that one of the threads spends the first ~5000 cycles on

fetching distinct memory addresses. However, as shown in Table 7.7, each
cache has a size of 32 KiB. Thus, all referenced data is present in the cache
after a certain point in time – causing every following request to hit. This
causes a 100% hit rate after cycle 5000, and an overall hit rate of over 98%
100%.
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Figure(s) Trace Configuration
Figure 7.4, Figure 7.5 8c-64eg-256KiB-

memcpy
Table 7.7

Figure 7.6 memcpy-16KiB-x32-8c-
64eg

Table 7.7

Figure 7.7, Figure 7.8 memcpy-16KiB-x512-
8c-64eg

Table 7.7

Figure 7.9 [memcpy-load-store]-
[64MiB-128Mib-
128Mib]-x1-8c-64eg

Table 7.7

Figure 7.10 memcpy-[16KiB-512kB-
64MB]-[x512-x128-x1]-
8c-64eg

Table 7.7

Figure 7.11 memcpy-16KiB-x512-
8c-64eg

Table 7.7, with Random,
LRU, and FIFO

Figure 7.12 8c-64eg-256KiB-
memcpy, 8c-64eg-2MiB-
memcpy, memcpy-
64MiB-x1-8c-64eg

Table 7.7

Figure 7.13, Figure 7.14 memcpy-16KiB-x512-
8c-64eg

Table 7.7 with LRU+

Table 7.8: A summary of various performance tests.

• Figure 7.17 show the memory copy behavior for one of the L1s. Note that
the "pattern-searching" replacement policies of FIFO, LRU, and LRU+ re-
sult in a 0% hit rate, while simply choosing a random target to evict does
much better. As mentioned above, the reason for this is probably that the
newly added blocks are kept in the cache as long as possible. However, since
the data is copied in cycles, the newly added are never accesses before it
is marked for eviction. This way, all entries are kept moderately long in
the cache, but none stay there long enough to result in any hits. The Ran-
dom replacement policy however does not consider how when a entry was
added, and simply evicts one at random. This probably causes some blocks
to remain in the cache for a long time while others are replaced almost im-
mediately. This is actually a benefit for this kind of program as some of the
entries stay long enough in the cache to result in a hit.
• Figure 7.18 shows the shared L2 cache connected to the L1 mentioned

above. Note that just in the same way as Figure 7.15, the L2 eventually
contains all of the referenced data. As shown in Table 7.7, the L2 cache has
a size of 1 MiB which is larger than the memcopy of 512 KiB.
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Figure 7.4: Testing the simulator on a small collection of 8192 operations.

• Figure 7.19 and Figure 7.20 shows the same behavior as the figures above,
but this time repeated 128 times - ultimately extending the length of the
program. As seen in the two figures, repeating the operations simply extend
the existing trend - e.g., making the hit rate of the L2 converge to 100%.
• Figure 7.21 has a hit rate of 0% in all L1s, but manages to achieve a ~30%

hit rate in the L2 – indicating that the cache manages to keep some relevant
data in the cache. However, note that Random and the other policies behave
experience the same hits in the same intervals - indicating that the cause of
the hits is rapid reuse of an address within a trace rather than intelligent
replacement. There are slight variations however – implying that FIFO and
LRU recognizes this behavior shortly before the rapid reuse occurs.
• Figure 7.22 is the last experiment of the collection, and acts as an extension

of the behavior in Figure 7.21. This is actually slightly surprising, but are
probably due to the same reuse as in the previous figure. The system only
manages to keep a small fraction of the overall memcpy in the L2 cache, but
at least reuses data frequently enough to achieve a notable hit rate.
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Figure 7.5: Same as Figure 7.4, but only with fast and opt.

Figure 7.6: Testing the simulator on a medium collection of 131 072 operations.
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Figure 7.7: Testing the simulator on a large collection of 2 097 152 operations.

Figure 7.8: Same as Figure 7.7, but only with fast and opt.



124 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

Figure 7.9: Comparing performance for memcpy, load only, and store only.

Figure 7.10: Comparing memory copies for different combinations.
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Figure 7.11: Replacement policies have low impact on performance.

Figure 7.12: Memory copy operations per second versus trace sizes.



126 Anders Gaustad: Modelling Inclusive Cache Hierarchies in Multi-core Systems

Reinforcements skipped Time used
Basic LRU -∞ 1m 41s

50 1m 42s
40 1m 45s
30 1m 47s
20 1m 54s
10 2m 31s
7 3m 17s
5 4m 46s
3 9m 03s
2 15m 55s
1 37m 41s

Full LRU+ - 0 171m 59s

Note: Times represent the result of a single experiment for each variation.

Example: Three skipped reinforcement signals represent 1 out of 4 hits being
"reinforced" by forwarding an info signal.

Table 7.9: Execution times for LRU+ versus the times of reinforcement signals
ignored on hit.

Figure 7.13: The execution times of Table 7.9 from 1-50 skipped cycles.
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Figure 7.14: Each simulation in Table 7.9 normalized against basic LRU.

Property Value
Checkpoints Every 100 cycles
Cycle limit 500 000

Replacement policy Random, FIFO, LRU, LRU+
LRU+ timeout 10

Table 7.10: Methodology for testing various cache configurations.

Group Figure(s) Size Repeats L1 Hit L2 Hit
1 Figure 7.15, Figure 7.16 16 KiB 512 ~99% ~0%
2 Figure 7.17, Figure 7.18 512 KiB 8 0-~20% ~90%
3 Figure 7.19, Figure 7.20 512 KiB 8 0-~20% ~95%
4 Figure 7.21 4 MiB 1 0% ~30%
5 Figure 7.22 64 MiB 1 0% ~30%

Table 7.11: A summary of various cache performance tests.
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Figure 7.15: A L1’s behavior over for a 16 kB memcpy repeating 512 times.

Figure 7.16: A close-up of Figure 7.15 featuring the first 10 000 cycles.
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Figure 7.17: A L1’s behavior over time for a 512 kB memcpy repeating 8 times.

Figure 7.18: The behavior of the L2 connected to the L1 in Figure 7.17.
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Figure 7.19: Same as Figure 7.17, but repeated 128 times instead of 8 (capped
at cycle 500000).

Figure 7.20: The behavior of the L2 connected to the L1 in Figure 7.19 (also
capped at cycle 500000).
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Figure 7.21: The behavior of a L2 over time for a single 4 MiB memcpy.

Figure 7.22: The behavior of a L2 over time for a single 64 MiB memcpy.





Chapter 8

Future Work

While the simulator is able to simulate advanced configurations of concurrent
cache accesses per core, it does naturally have fewer features than, e.g., gem5.
The obvious reason for this is that COCOASIM was created to meet the minimal
requirements of a specific goal in a limited span of time. The result is a simulator
that achieves the goal of the project and provides a high degree of customization,
but also has room for additional features in the future. This chapter will list a
couple of features that could have been added to COCOASIM, but were dropped
due to time constraints.

8.1 The Oracle Replacement Policy

One feature that actually was under development but eventually got scrapped was
the "oracle replacement policy" – an "optimal" replacement policy that would re-
sult in the highest possible hit rate for any given cache. It is naturally impossible
to create a perfect replacement policy in the real world, but this should in theory
be possible in simulation. While a cache only reacts on individual memory request
misses as they happen, the simulator knows of all requests in the system – includ-
ing future requests. When a replacement policy knows of requests that happen in
the future, it should be able to figure out what eviction leads to the fewest misses
in the future and thus the highest hit rate.

Consider the example in Figure 8.1. Assume that request 1 has just missed
in the L2 cache, and the replacement policy needs to choose a block to evict. A
normal, realistic replacement policy may make this decision in multiple ways –
i.e., either choosing at random, using LRU, etc. – but can ultimately only consider
the content of the cache and the request causing the miss. However, the simulator
can "cheat" as it knows that request 2 is going to access the red block in the future.
In this way, a replacement policy could in theory communicate with the simulator
and be told not to evict the red block. Furthermore, the replacement policy could
ask for the next requests until it knows which of the four possible evictions leads
to the highest possible hit rate. While only two requests are shown in Figure 8.1,
the replacement policy should be able to know of every single request that is ever

133
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Figure 8.1: Evicting the red block will result in request 2 missing.

to access the target cache. The oracle could also read from the traces themselves
to fetch requests that have not yet been loaded into the system. However, the
oracle would only need to read enough request until it knows what block it should
evict. Three examples of how the oracle replacement policy works can be seen in
Figure 8.2, Figure 8.3, and Figure 8.4.

Figure 8.2: The oracle sees that red, orange, and green is going to access the
cache in the near future, and decides to evict the purple block.

Note that while this works great for L1s, it quickly becomes very complex for
lower level caches. Since L1s only have one possible source – i.e., a stream reader
– it knows that the order of every incoming request:
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Figure 8.3: The oracle sees that next four accesses are going to miss regardless
of what is evicted and may evict one of the blocks at random.

Figure 8.4: The oracle quickly sees that red and green should not be evicted.
However, it does not what remaining block to evict before finally seeing the purple
block – resulting in an eviction of the orange block.

1. First, every signal "in-flight" targeting the relevant cache are fetched in or-
der. In practice, this can be done by iterating over every future MemoryAc-
cessEvent in the event engine.

2. If there are too few "in-flight" signals to perform an eviction, the stream
reader can be used to read the as many signals as needed. Note that the
signals are only read in this process and not actually created or forwarded
to the L1.

Note that the order of every request is already defined when the oracle is
used for a L1 cache. While the cache may stall in the meantime – either due to all
"groups" being used, replacement being impossible, or the MSHR being full – every
fetched request will arrive in the given order. If the cache stalls, requests accessing
the cache will reserve spots in order – thus preserving the order. However, this is
not the case when the order of the requests depend on the order of multiple higher
level caches. In this case, multiple problems appear:

1. Multiple sources send requests to the same cache. At first, this might not
look like a problem in itself as the same process as before – i.e., iterating
over MemoryAccessEvents in the engine and fetching their order – is still
possible. However, in this case some requests can be stalled by the cache
while other not as this can depend on their assigned group. It is possible to
check each request signal, but this approach would require the simulator
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to keep track of every group and the number of groups in the future until
figuring out what to evict. Additionally, groups can be freed by returning
acknowledge signals from lower memory – making the number of groups
virtually impossible to manage.

2. The requests sent depend on what request miss in the higher level caches –
making it necessary to figure out what hits, misses, and is evicted in these
caches as well.

3. This approach also assumes that no other external factors manipulate the
content of the caches. For example, the "LRU+ reinforcement" signals are
not requests, but still affect what blocks are kept in the cache.

This insight led to the feature being dropped for this project as it proved to be
a quite complex implementation that had to developed in a limited scope of time.
However, a couple of alternatives were considered during the development:

1. Attempt to create a virtual representation of every request that access
a cache – As discussed, this could be possible for L1s, but becomes too com-
plex and scales terribly for caches nearer the main memory. As mentioned,
every single operation that may have some effect on the content of a cache
needs to be considered.

2. Brute force check instances of the results of every eviction – The number
of unique combinations of blocks a cache can have explodes after only a
few brute force eviction – making simulating systems using this approach
to virtually use infinite time before completing.

3. Performing sub-simulations representing the behavior of the next re-
quests leading to an eviction – This is by far the most promising alter-
native. Instead of trying to keep track of every request manually, a new
special system is instead initialized to simulate the specific behavior of this
cache for the next few requests. For example, a special cache with blocks
in a kind of "superstate" could be used – where incoming requests that hit
would confirm that blocks should remain in the cache. The "environments"
of COCOASIM described in Section 6.1.4 might be able to do this with some
more work as they are designed to handle independent instances of systems
and event engines.

8.2 Parallel Programming

It should be possible to make the simulator run segments of the program in parallel
to increase performance. Note that many of the events in a simulation operate on
entirely separate components and do not alter any shared variables. For example,
consider the L1 caches of the default configuration used for performance testing
shown in Table 7.7. The first cycles, each L1 cache receive a requests that only
changes the state of that specific cache. Thus, it should be possible for each of the
MemoryAccessEvents to execute at the same time. The only two thing to watch
out for in this case is that 1) the logging may happen out of sync, and 2) there
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needs to be some extra logic that ensures that new events created by the parallel
accesses are inserted into the event engine in a consistent order. An example of
this behavior can be seen in Figure 8.5. Events that do modify the same component
however would need to execute in sequence.

Figure 8.5: Four access events are executed in parallel as they access separate
caches.

As this simulator is built on the principle of discrete-event simulation, it should
always be safe to execute independent events simultaneously as long as they hap-
pen in the same cycle.The simulator guarantees that no change happens between
events, so no new events should be added in the same cycle as events fire. How-
ever, events are scheduled to execute in an unknown later cycle. Since which cycles
events are added to is not known before the events complete, the simulator needs
to wait for all events to finish before moving on to the next cycle. This would mean
a lot of "forking" and "joining" threads on every cycle, but would still allow for the
simulator to execute events in parallel within a cycle. This behavior is shown in

8.3 Interconnects

Recall that the event engine works by simply managing what events happen and
what times - including when memory requests access a target memory. Note that
in the time period between a MemoryAccessEvent is scheduled and the event is
executed, the signal only exists in a state of limbo. When the event engine fires
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Figure 8.6: The simulator must "fork" and "join" threads for every cycle.

the event causing the signal to access the memory, the signal reappears. Once
the signal accesses the memory, the simulator will make sure that it is buffered
correctly if it the memory is busy. A simple representation of how this works is
shown in Figure 8.7.

Note that while this design approach is simple and effective, it is not fully
realistic as it "cheats" by hiding the signals. Thus, the simulator makes a couple of
assumptions that may or may not be true:

1. Every request is pipelined when sent over the virtual interconnect - mean-
ing multiple requests can exist on the same bus simultaneously. Each com-
ponent makes sure that it doesn’t schedule more than one signal on a single
bus in a cycle, but this may still happen if multiple components share an
interconnect. For example, a L1 will not schedule multiple requests to a L2
in a single cycle, but multiple L1s may schedule requests to the L2 at the
same time. In these cases, the component on the other end of handles the
incoming requests one by one. For example, if a L2 receives two signals in
the cycle, it will handle the one that was scheduled first and put the other in
a buffer and prioritize it for the next cycle instead. This way, the simulator
creates an illusion of the signals being on the interconnects.
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Figure 8.7: Memory access events cause signals to disappear and reappear when
the events are fired. The signal may then be put in a buffer local to the cache if
the cache is busy.

2. The local buffer on each component has no max size - meaning an infinite
number if requests can be buffered if the cache is busy. While the requests
still access the cache in the correct order once the cache is ready, there may
be more queued signals than physically possible. For example, a delay of 10
cycles between two caches implies that there may be at most 10 pipelined
signals on the interconnect simultaneously. The simulator ignores this - mak-
ing it possible for components to queue a request or signal regardless of the
number of waiting signals.

3. The simulator uses different interfaces for signals traveling "up" and "down"
in the cache hierarchy. This means that e.g. signals accessing the L2 ignores
signals returning to a L1. The simulator is designed this way to prevent
deadlocks, but this design assumes that there are separate interconnects for
signals depending on which direction they are traveling.

8.4 Breakpoints

By default, COCOASIM simulates a system until it either completes or fails an
assertion. In most cases, this is sufficient as the simulator aims to either perform
an entire simulation or detect bugs. However, it might be feasible to simulate a
system until a certain condition is satisfied. For example, it might be interesting
to simulate a large program but stop after a certain number of cycles have passed.
Furthermore, if the state of the simulator could be saved on a breakpoint, it should
be possible to start the simulation on a certain cycle as well. This could be valuable
as it would make it possible to, e.g., test the behavior of a cache replacement policy
on certain parts of a program.
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8.5 Full Data Simulation

The current version of COCOASIM rarely uses full data simulation, and only to
verify that everything works as expected. While this is discussed in Section 5.3.6,
possible future alteration of full data simulation can be summarized as the follow-
ing:

1. Support writing user-specified data instead of dummy data.
2. Use larger sizes for data read and written. Also support the size to be con-

figurable by a user.
3. Optimize performance by specifying full data simulation at compile-time

rather than run-time.

8.6 Additional Configurable Values

While COCOASIM offers a fairly wide array of configurable values, there are still
many values that are not yet implemented that could be interesting to tweak.
Perhaps the most interesting missing feature is to toggle the inclusive cache policy.
As the goal of this project was to explore cache behavior when using an inclusive
cache policy, the source code of COCOASIM assumes that every cache is inclusive.

Additionally, some features are only configurable when using systems in "Sys-
tem mode" rather than "Configuration mode". For example, the number of maxi-
mum concurrent executive groups of a cache can only be altered in "System mode"
as the simulator has no support for "executing group"- or MSHR-keywords in the
JSON configuration file. More advanced options – like configuring how many hits
a LRU+ replacement policy should "reinforce", or when the simulator should dump
cache statistics – can also be added to the configuration file in the future.
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Conclusion

In conclusion, this thesis has presented and described a custom-made cache sim-
ulator created to simulate advanced memory behavior. The simulator stands out
from other existing open-source simulator by being able to handle individual and
concurrent threads per core/L1. This makes it possible to observe how threads
performing memory operations on individual cores and L1 caches affect the cache
hierarchy as a whole. As with many other simulators, COCOASIM is highly config-
urable and includes a wide array of tweak-able options - including cache content,
memory hierarchy structure, replacement policy logic, and more. Furthermore,
the simulator is created with scalability in mind so that it is easy to add or modify
components in COCOASIM’s source code. While this project is limited in regards of
time and thus is not as large as e.g. gem5, the simulator still allows the simulation
of advanced systems with a large amount of configurable values and options.

# Requirement gem5 COCOASIM
A1 Multi-core GPU environment N/A ✓

A2 Multiple caches and hierarchies ✓ ✓

A3 Memory trace per core ✗ ✓

A4 Accept memory traces in a custom format ✗ ✓

B1 Scalable + configurable simulator ✓ ✓

B2 Configurable caches ✓ ✓

B3 Inclusive cache policy ✓ ✓

B4 Non-blocking caches ✓ ✓

B5 Request dependencies ✗ ✓

B6 Cache coherency, cache placement policy, cache re-
placement policy

✓ ✓

C1 Acceptable resource usage ✓ ✓

C2 Scalable for larger programs ✓ ✓

Table 9.1: Final comparison between gem5 and COCOASIM using the require-
ments of Table 4.1.
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A final comparison of gem5 and COCOASIM based on the requirements of
Table 4.1 is shown in Table 9.1. As shown, the simulator fulfills all of the require-
ments needed to simulate the custom inclusive cache structure that was used as a
motivation for this project. Summarized, the simulator can accept multiple traces,
decode memory signals encoded in the custom Google Protocol Buffer, and en-
force dependencies between memory requests if present in the trace. Additionally,
COCOASIM also inhibits features found in other simulators - like highly config-
urable replacement policies, coherency protocol, and non-blocking caches. While
Section 7.3 already shows multiple experiments of loading, storing, and copying
data, the simulator is also able to simulate advanced programs as long as they are
in the correct pbtrace format. In this sense, COCOASIM meets the goal of being
a specialized simulator able to model advanced multi-core systems with inclusive
cache hierarchies.
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