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Chapter 1

Introduction to automatic modal analysis

1.1 Motivation

Society has a never ending demand for new and better structures that are safe,
environmentally friendly, and visually appealing. These structures include high
rising slender skyscrapers of more environmental materials. Mjøstårnet, the
currently highest timber skyscraper towering 85.4 m above ground, is a good
example of the new structures of our time, (Moelven, 2022). Another good example
is the planned new highway, E39, along the western coast of Norway needing record
breaking structures to cross deep and exposed waters and harsh fjords. The current
plans include new constructions like submerged pipe-bridges never been built
before. It has, however, been suggested multiple times since it was patented by Sir
Edward James Reed in 1886, (Rønnquist, 2022).

With new structures, instrumentation and validation of the analysis made
beforehand is crucial. The Norwegian Public Roads Administration has a
requirement in their handbook for bridge design, N400, that all pipe-bridges must
be instrumented for systematic recording of the structure’s movements and load
response, as well as surveillance of the protection systems and re-bar corrosion,
(SVV, 2015).

To meet the demand to surveillance structures and validate analyses, structural
engineers are continuously expanding their toolboxes. One of the latest additions
are digital twins, aiming at representing all information available together with the
physical properties of the structure. Digital twins can consequently represent the
current health state of the structure, and also contribute to expose weaknesses in
the chosen design, just as the road authorities demand. Getting information from
the physical structure automatically is then key to make applications economically
feasible and applicable in large scale.
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Introduction to automatic modal analysis

Figure 1.1: Analytical shear frame in undeformed configuration, and with a mode
shape’s deflection.

2



Structural dynamics

1.2 Structural dynamics

Nearly all structures are exposed to some sort of time varying loads. The time
varying loads may have cyclic components near the eigenfrequencies of the structure
that will induce resonance. Resonance yields responses multiple times greater than
the static response of the loading would imply. Throughout history resonance have
occurred, like with Tacoma Narrows where fluctuating winds at a frequency close to
the eigenfrequency of one torsional mode resulted in the bridge collapsing, (WSDOT,
2022). Information about the eigenfrequencies and also the loading frequencies is
therefore essential to ensure safety.

A common assumption within structural dynamics is that every structure has
modes as inherent properties. Each mode is mathematically characterized by its
eigenvalue and mode shape. From the eigenvalue one can derive the eigenfrequency,
f , and damping ratio, ξ, as derived in Section 2.5.3. Eigenfrequency, damping ratio
and mode shape are modal properties that can physically be observed during certain
excitation or in controlled tests. An example of a mode’s mode-shape is illustrated
in Figure 1.1. The modal parameters are directly influenced by every choice made
during the design phase of the structure. Examples are geometry influencing the
wind flow around the structure, material choices with respect to mass and stiffness,
and wanted boundary conditions chosen by the responsible engineer. Total dynamic
response is the superposition of the individual responses of all modes. The excitation
of each mode is highly dependent on the current loading situation.

The modes of a structure are usually not visible by the naked eye. They are,
however, measurable by accelerometers, which over the last decades have been
developed to measure very small vibrations. Estimation of modes from only a single
data series will be referred to as Modal Parameter Estimation (MPE). Tracking of
modes over multiple recordings is referred to as modal tracking. Modal tracking can
be employed to determine the current health state of the structure, as well as early
stage damage detection. Information about the location of the damage is also
possible to extract. This allows for the possibility to inspect the structure at any
time without requiring physical appearance, as well as notification of when and
where to perform physical inspections. The mentioned techniques can be gathered
into the collective term Structural Health Monitoring (SHM). Another application
of modal tracking is to get enhanced knowledge about external effects, e.g.
temperature, to further optimize the structural design.

As of today, the substantial amount of user interaction is limiting the the
widespread of modal tracking. Many attempts on automation have been made, but
none are completely autonomous. The aim of this masters thesis is to implement
and test some of the current techniques available. The two investigated algorithms
are further described in Reynders et al. (2012) and Yang et al. (2019).
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Chapter 2

Theory

This theory chapter takes the reader through the relevant theory needed to
understand the underlying assumptions and limitations of modal analysis at a level
needed to perform analyses. The identification of modes and algorithms for
automatic clearing of the stabilization diagram is explained in detail together with
all validation criteria used in this thesis. The left hand pages are used to summarize
the main findings of each right hand page where figures are not present.

2.1 Modal analysis techniques

Identification of modal parameters is crucial in the design of many structures, and
the techniques have therefore evolved together with the structural design. The first
identification procedures where experimental and can be dated back to the middle
of the 19th century. Experimental methods are in its most basic form the most
intuitive; apply loading, see what happens, and then find the relation between the
applied loading and the observed response. In Experimental Modal Analysis (EMA)
both applied forces and response are recorded, and their relation is solved in either
the time or frequency domain. Force and response is related through the impulse-
response function in the time domain, and the frequency-response function in the
frequency domain. Modes are then corresponding to peaks of the frequency response
function.

Operational Modal Analysis (OMA) is sometimes called the stochastic counterpart
to EMA, due to the nature of the loading. The fundamental assumption in OMA is
that the load spectra is gaussian white noice which implies that all modes are excited.
With all modes excited, they are all possible to detect from the recorded measurement.
OMA is especially advantageous on huge structures like bridges as forced excitation of
such structures may be hard or even practically impossible. Combined methods where
both measured and unmeasured forces are accounted for is often called Operational
Modal Analysis with exogenous inputs (OMAX).
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Figure 2.1: General system and OMA system.
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2.2 OMA

Operational Modal Analysis (OMA) is the collective term for modal analysis
methods only based on the output, Y , of the structure under the currently present
loads. OMA is based on three important assumptions:

• Linearity - principle of superposition is valid
• Stationarity - dynamic properties are independent of time
• Observability - sensor layout is able to observe modes of interest

The input, X, that is loads acting on the structure, consists of both
environmental and operational loads, which are all immeasurable. This leads to
some assumptions about the loading. The first is that applying a load with the
white noise characteristics, N(ω), yields a flat power spectra that excites all modes
equally. The response spectrum, Y (ω), will then contain full information about the
structure’s dynamic properties.

No real life loads have a flat power spectra, making the modes unequally excited.
The observed modes is then weighted by the spectral distribution of the loading and
also the noise present. To generalize this, it is natural to assume that the structure
is excited by the excitation system loaded by white noise. The excitation system is
then the output of all the unknown loads on the structure combined. Graphically
this is represented in Figure 2.1. The upper chart is a general system with input, X
(loading), system responding, H(ω) (frequency response), and output, Y (ω)
(acceleration). The lower chart is depicting the OMA-assumption with the loading
X consisting of the output system Hf loaded by white noise N . Hs is then the
system’s frequency response characteristics.

As a result of the OMA-assumption modes are unequally excited depending on
the current excitation system, which consist of windloading, trafic, etc. The response
measurement Y contains information about the excitation. All modal parameters are
however preserved and identifiable, without loss of accuracy. This possible due to the
fact that the structure has a narrow banded response characteristic and time invariant
properties, and the excitation system is characterized by a broad banded response
and possibly time variant properties. The narrow banded response characteristics
is depicted by the frequency response function that for most structures have high
and narrow peaks. The statement of time invariant properties is true under normal
conditions, that is no damage to the structure, and over the normal time span of a
measurement which usually is less than hours.

7
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Figure 2.2: Example of an automatically cleared stabilization diagram.
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2.3 Parametric system identification

Parametric identification methods have proven to be much more accurate than
non-parametric methods, and is currently the preferred way of approach. With
parametric methods one are fitting the recorded data to a model, rather than
looking for the model that fits the data. The model has a order n that must be
given. In theory there is two eigenvalues for each physical system mode, that is two
complex conjugated eigenvalues. Much effort has been made to find the optimal n
in an automated way to maximize the prediction capacity of the parametric
identification methods.

Empirical tests, on the other hand, shows that the identified modal parameters
appears to be nearly the same for different model orders, also when the model order is
overestimated. This justifies an approach with repeated overestimation of the model
order. For each model order one obtain n modes. All identified modes can then be
represented in a stabilization diagram which is a plot of eigenfrequency vs. model
order, see Figure 2.2 showing an example of an automatically cleared stabilization
diagram. Modes aligning as vertical lines will typically represent the same mode, as
most modes of a structure is at different frequencies. This is, however not always the
case as later explained. With multiple approximations (modes) of the same physical
system mode it is natural to group these, i.e. clustering. Clusters of modes estimating
the same gives the possibility to perform statistical measures for assessment of the
quality. The different dot colors, ++ , in Figure 2.2 represent the different
clusters, and their picked representative is marked by a ×.

Modes that do not represent any physical mode of the system are said to be
spurious. Spurious modes can be divided into two subgroups:

• noise modes: physical harmonics that are present, but do not represent a mode.
For example: wind induced vibrations of suspension cables

• mathematical modes: are the result of the mathematical description.
Measurement noise, computational noise and modelling inaccuracies may all
create mathematical modes.

The spurious modes are marked with smaller red or grey dots, , as shown in
Figure 2.2.

The subsequent sections will derive the models that the measurement data is fitted
to, or more precisely the derivation of the COV-SSI approach leading up to the mode
objects.
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{ṡ(t)} = [Ac]{s(t)}+ [Bc]{u(t)}

State equation
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State-Space Models

2.4 State-Space Models

2.4.1 State-Space Model in continous time
A general Multi Degree of Freedom (MDOF) system can be represented by the

following second order differential equation, on matrix form:

[M ]{ÿ(t)}+ [C]{ẏ(t)}+ [K]{y(t)} = {f(t)} (2.1)

{ÿ} {ẏ} and {y} are vectors of acceleration, velocity, and displacement respectively.
[M ] [C] and [K] are mass-, damping- and stiffness-matrices of the system.

The force vector {f(t)} can be factorized into: {f(t)} = [B̄]{u(t)}, where [B̄] is
a matrix defining the locations of each input and {u(t)} describes the timevariation
of the loading.

This makes the following simplification natural:

{ÿ(t)}+ [M ]−1[C]{ẏ(t)}+ [M ]−1[K]{y(t)} = [M ]−1[B̄]{u(t)} (2.2)

The second order differential equation (2.2) can be rewritten as a set of first order
differential equations by the introduction of the state vector :

{s(t)} =

{
{ẏ(t)}
{y(t)}

}
(2.3)

and a "dummy"-equation:

[M ]{ẏ} = [M ]{ẏ} (2.4)

This gives the following set of first order differential equations:

{ṡ(t)} =

[
−[M ]−1[C] −[M ]−1[K]

[I] [0]

]

︸ ︷︷ ︸
Ac

{s(t)}+
[
−[M ]−1[B̄]

[0]

]

︸ ︷︷ ︸
Bc

{u(t)} (2.5)

Equation (2.5) defines the change in state {ṡ} as a matrix function of the current
state and current loading. The underlying assumption that mass [M ], damping [C]
and stiffness [K] is constant opens for further simplifications. The statematrix [Ac]
and the input influence matrix [Bc] makes the state equation compact:

{ṡ(t)} = [Ac]{s(t)}+ [Bc]{u(t)} (2.6)

Note the subscript, □c, denoting continuous time matrices.
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{yl(t)} = [Cc]{s(t)}+ [Dc]{u(t)}

Observation equation
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State-Space Models

Assuming that there are l sensor locations one can define the observation equation:

{yl(t)} = [Ca]{ÿ}+ [Cv]{ẏ}+ [Cd]{y} (2.7)

where subscripts a, v, d is acceleration, velocity and displacement.
Inserting Equation (2.2):

{yl(t)} =
(
[Cv]− [Ca][M ]−1[C]

)
{ẏ(t)}

+
(
[Cd]− [Ca][M ]−1[K]

)
{y(t)} (2.8)

+
(
[Ca][M ]−1[B̄]

)
{u(t)}

This may also be simplified by introducing new matrices. The output influence
matrix [Cc] and direct transmission matrix [Dc] is defined as follows:

[Cc] =
[
[Cv]− [Ca][M ]−1[C] [Cd]− [Ca][M ]−1[K]

]
(2.9)

[Dc] =
[
[Ca][M ]−1[B̄]

]
(2.10)

The observation equation simplifies to:

{yl(t)} = [Cc]{s(t)}+ [Dc]{u(t)} (2.11)

The state equation (2.6) and observation equation (2.11) constitutes the
coninuous-time state space model.

2.4.2 State-space model in disctrete time
Real life measurements are not continuous and a connection between discrete

time and continous time is needed. To convert the continuous time model one needs
assumptions about the input. The simplest is Zero Order Hold (ZOH) which state
that the input is piece wise constant within every time sample. This leads to the
following relations between continuous-time matrices and corresponding discrete-time
matrices:

[A] = e[Ac]∆t (2.12)

[B] = ([A]− [I])[Ac]
−1[Bc] (2.13)

[C] = [Cc] (2.14)
[D] = [Dc] (2.15)

The discrete time state-space model is then:

{sk+1} = [A]{sk}+ [B]{uk} (2.16)
{yk} = [C]{sk}+ [D]{uk} (2.17)

Note that the lack of subscript, □c, is referring to discrete time matrices

13
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{sk+1} = [A]{sk}+ {wk}
{yk} = [C]{sk}+ {vk}

Discrete-time stochastic
state-space model
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State-Space Models

2.4.3 Discrete-time stochastic state-space model
The discrete time state-space model is deterministic because the driving forces,

i.e. the input, is deterministic. To accommodate stochastic loading one can introduce
the two stochastic components; process noise {wk} and measurment noise {vk} at
the discrete time instants tk = k∆t:

{sk+1} = [A]{sk}+ [B]{uk}+ {wk} (2.18)
{yk} = [C]{sk}+ [D]{uk}+ {vk} (2.19)

The process noise will then contain the external disturbances and model inaccuracies
and the measurement noise contain the inaccuracy of the sensors.

Performing OMA the excitation of the system is immeasurable. This makes the
loading input {uk} unknown, and it may be removed. When the process noise,
{wk} and the measurement noise, {vk}, is the only driving forces, the discrete-time
stochastic state-space model is obtained:

{sk+1} = [A]{sk}+ {wk} (2.20)
{yk} = [C]{sk}+ {vk} (2.21)

The discrete-time stochastic state-space model consists of two equations. The first
one relates the current state, {sk} with the next state, {sk+1} through the state
matrix, [A], plus the process noise, {wk}. The second equation states that the
observed system response, {yk}, is the product of the output influence matrix, [C],
and the current state, {sk}, plus the measurement noise, {vk}.

Having related the previous state with the next state, and the observed output
with the current state, the next step is determining the state matrix and the
observation matrix. Discrete measurements will in this context work as estimates of
the relations, but the amount of noise in each step is unknown. Therefore the
relation cannot explicitly be solved, but rather estimated through covariance
calculations.

15
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[Σ] = [A][Σ][A]T + [Q]

[R0] = [C][Σ][C]T + [R]

[G] = [A][Σ][C]T + [S]

[Ri] = [C][A]i−1[G]

Fundamental relations
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2.4.4 Fundamental relations
The covariance between the two driving loads at discrete time instant q and p can

be then be expressed as:

E

[{
wp

vp

}{
{wq}T {vy}T

}]
=

[
[Q] [S]

[S]T [R]

]
δpq (2.22)

Where δpq is the Kronecker delta function which is one for q = p and zero for q ̸= p,
i.e. no correlation between the loading at different discrete time instants.

The observed output yk inherits the properties of the loading {wk} and {vk}, that
is, a zero mean Gaussian process:

[Ri] = E[{yk+1}{yk}T ] (2.23)

[Ri] is containing all the available information from the recorded measurements.
The state sk is also a zero mean Gaussian process:

[Σ] = E[{sk}{sk}T ] (2.24)

The state {sk} is uncorrelated with both the process noise:

[{sk}{wk}T ] = 0 (2.25)

and the measurement noise:

E[{sk}{vk}T ] = 0 (2.26)

These properties leads to the following relations:

[Σ] = [A][Σ][A]T + [Q] (2.27)

[R0] = [C][Σ][C]T + [R] (2.28)

[G] = [A][Σ][C]T + [S] (2.29)

[Ri] = [C][A]i−1[G] (2.30)

where: [G] = E[{sk+1}{yk}T ] (2.31)

[G], the next state-output covariance matrix, is then measuring the covariance between
the currently observed output, {yk}, and the the next state {sk+1}.

Having defined the stochastic subspace formulation it is possible to derive modes
with multiple methods. This thesis is using the Covariance Driven Stochastic
Subspace Identification (SSI-COV) approach that will be discussed in the next
section.
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2.5 Identifying modes

2.5.1 Covariance-Driven Stochastic Subspace Identification
Assuming that measured data is organized in a matrix as follows:

[Y ]
l×N

=





{y0}T
{y1}T

...
{yl}T





(2.32)

where {yl} is the response vector of sensor l with N discrete measurements.
The estimated output correlation at time lag i is then:

[R̂i]
l×l

=
1

N − 1
[Y1:N−i]

l×N

[Yi:N ]
N×l

T (2.33)

The estimate at different time lags i can be gathered into a block-Hankel matrix,
with i block rows:

[Hi]
il×il

=




[R1] [R2] . . . [Ri

[R2] [R3] . . . [Ri+1]
...

...
. . .

...
[Ri] [Ri+1] . . . [R2i+1]




(2.34)

Utilizing the property in Equation (2.30) one can create a general decomposition
of the block-Hanckel into the observability Oi and controlablity matrix Ci:

[Hi]
il×il

= [Oi]
il×l

[Ci]
l×il

(2.35)

where:

[Oi]
il×l

=




[C]

[C][A]

[C][A]2

...
[C][A]i−1




(2.36)

[Ci]
l×il

=
[
[G] [A][G] [A]2[G] . . . [A]i−1[G]

]
(2.37)

With i output correlation matrices, Ri, whose size is l× l, the maximum number
of block rows, n, is limited to:

i× l >= n (2.38)
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Through Singular Value Decomposition (SVD) of the block hankel matrix with
truncation at order, o, one obtains:

SVD(Hi) =
[
[Uo] [Ud]

] [
[Σo] [0]

[0] [Σd]

][
[Vo]

T

[Vd]
T

]
(2.39)

≈ [Uo][Σo][Vo]
T (2.40)

Combining Equations (2.35) and (2.40) one can get an expression for the
observability matrix, Oi:

Oi = [Uo][Σo]
1

2 (2.41)

From Equation (2.36) one can observe that the output influence matrix, [C], can be
approximated from the first block row. And by removing the first block row of [Oi],
taking the pseudo inverse, and multiplying with all but the last block row of [Oi] one
can approximate [A] as:

[A]
l×l

= [O↓
i ]

+[O↑
i ] (2.42)

2.5.2 Decomposing A and C matrices
After having found the A and C matrix at one model order, n, one can find the

eigenvalues through eigenvalue decomposition of A:

A = ΨΛΨ−1 (2.43)

where Ψ is a matrix with eigenvectors and Λ a diagonal matrix with eigenvalues.
By combining the relation between continuous time and discrete time matrices

given in Equation (2.12) and Equation (2.43) the relation between continuous time
and discrete time eigenvectors are:

A = e[Ac]∆t = eΨcΛcΨ−1
c ∆t = Ψce

Λc∆tΨ−1
c (2.44)

...

λ = eλc∆t (2.45)

where Ψc and Λc is the continuous time counterpart of Ψ and Λ.
The modeshapes Φ are obtained as:

Φ = CΨ (2.46)

Having determined Λ and Φ at a given model order n one can create the n mode-
objects stored inside the matrices Λ and Φ. Each mode can be represented as an
object with eigenvalue λ and mode shape ϕ as main attributes. The eigenvalue λ
can be used to derive eigenfrequency ω, damping ξ and damped eigenfrequency ωd

as shown in the subsequent Section 2.5.3.
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2.5.3 Deriving dynamic properties
A general underdamped system may be represented by the general solution:

y = Aeλt (2.47)

where λ is a complex number. Inserting this into the general equation for a Single
Degree of Freedom (SDOF) yields:

Aeλt
(
λ2m+ λc+ k

)
= 0 (2.48)

Applying the quadratic formula gives:

λ =
−c±

√
c2 − 4mk

2m
(2.49)

This equation may have multiple solutions as the square root may be positive,
negative or zero, depending on the values of m, c, k. Critical damping is defined as
the damping value c giving the square root of zero:

c2cr − 4mk = 0 −→ ccr =
√
4mk = 2mω (2.50)

The damping ratio is defined as:

ξ =
c

ccr
=

c

2mω
(2.51)

Substitution of c in the quadratic formula gives:

λ =
−2mωξ ±

√
(2mωξ)2 − 4mk

2m

= −ωξ ±
√
ω2ξ2 − k

m

= −ωξ ± ω
√
ξ2 − 1

(2.52)

Most civil engineering structures are underdamped, i.e. ξ2 − 1 < 0, leading to:

λ = −ωξ ± iω
√

1− ξ2 (2.53)

Expressions for eigenfrequency, ω, damping, ξ and damped eigenfrequency, ωd, is
then obtained:

ω = |λ| =
√
λλ∗ (2.54)

ξ = −Re(λ)
ω

= −Re(λ)|λ| (2.55)

ωd = ω
√

1− ξ2 = Im(λ) (2.56)

And their relation can be depicted as shown in Figure 2.3.

23



Theory

Table 2.1: Hard and soft criteria used in this work

Hard criteria

nr. Criterion

VH 1 ξ > 0

VH 2 ξ < 20%

VH 3 Complex conjugate exists:
that is one λj for every λj

Note:
Soft criteria are normalized to
values from 0 to 1 where:
0 is ideal physical
1 is ideal spurious

Soft criteria

nr. Criterion

VS 1 d(λj , λl)

VS 2 d(fj , fl)

VS 3 d(ξj , ξl)

VS 4 nMAC(ϕj , ϕl)

VS 5 nMTNS
∞j

VS 6 d(MTNS
∞j ,MTNS

∞l)

VS 7 nMPC(ϕj)

VS 8 MPD(ϕj)/90
◦

VS 9 nMTNd
∞j

VS10 d(MTNd
∞j ,MTNd

∞l)

VS11 d(qj , ql)

VS12 nMOC(õj , õl)
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2.6 Filter criteria

The stabilization diagram may at first be full of spurious modes, depending on
the degree of overestimation and the amount of noise in the signal that the modes
originate from. To ensure precise filtering of the spurious modes many filter criteria
have been derived. The criteria used in this thesis is summarized in Table 2.1. The
observant reader may notice great similarity with criteria used in Reynders et al.
(2012). That is true, with the addition of MOC and adjustment to make all soft
criteria, VS □, ideally spurious at the value of 1 and ideally physical at 0. For the
criteria comparing modes the value of 0 can be interpreted identical modes, i.e. no
difference, and 1 as totally different.

Which modes to compare is a natural question to ask. Modes approximating
the same physical system mode should appear as vertical lines in the stabilization
diagram. The most common approach is therefore to compare each mode with the
closest mode in the closest model order below. Attempts using the closest mode in
the the whole stabilization diagram have been made, but is not common practice.
Quantification of which mode is closest in a model order can be done with all the
mentioned filter criteria. Some are better than other and drawing lines between a
mode and the mode that it finds the closest can then be used as a control.

In a manual analysis all these criteria can be used as filters by setting threshold
values. The thresholds are subjects of trial and error, combined with the experience of
skilled analysists. An understanding of the distribution of modes within each criteria
is therefore needed. The following section is summarizing the different criteria, and
their characteristics.

2.6.1 Hard criteria
The hard criteria is different from the soft criteria in the sense that they yield

binary numbers determining if a mode is possibly physical or not. Damping ratios,
ξ, less than zero does not damp the system but rather drive the system. Real life
structures are always damped and this is hard criteria VH 1. Damping ratios above
20% could arguably occur, but most applications in civil engineering structures are
way below 20%. Hard criteria, VH 2, may be adjusted to the structure considered.
The presence of a complex conjugate pair was shown in section 2.5.3 and is the basis
of hard criteria VH 3.

2.6.2 Soft criteria
The eigenvalue λ contains information about the eigenfrequency ω, damping ξ

and then naturally the damped eigenfrequency wd which is dependent on both ω and
ξ. This was shown in Section 2.5.3. Possible criteria are then many, starting with
the eigenvalue:

d(λj , λl) =
|λj − λl|

max(|λj |, |λl|)
(VS 1)
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Figure 2.4: Change in frequency, df, vs change in damping, dξ of all modes before,□,
and after,□̃ box-cox transformation and normalization.
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Eigenfrequency and damping may also be separate criteria. Frequencies in Hz
are more commonly used because frequency, and the period T = 1/f , is physically
intuitive. With frequency f in Hz:

d(fj , fl) =
|fj − fl|

max(fj , fl)
(VS 2)

d(ξj , ξl) =
|(ξj − ξl)|
max(ξj , ξl)

(VS 3)

The change in frequency, df , is usually very small, and especially for the modes that
are good estimates. Change damping ratio, ξ, is usually higher and more scattered.
Rainieri et al. (2014) suggested that modes with df < 0.01 and dξ < 0.05 should be
considered stable. The spread of modes is visually depicted in the leftmost plot in
Figure 2.4, plotting change in frequency df vs. change in damping dξ. The modes
shown is from analysing the shear frame in the numerical study, Section 3.1. It is very
clear that the spurios modes are more widespread, and that frequency deviations are
smaller. The rightmost plot shows the spread of modes after box-cox transformation
and normalization. This a step of the algorithm suggested by Yang to ensure that
the clustering is a precise as possible, but this is further discussed in Section 2.8.

Most modes are seperated in terms of f, as earlier mentioned, but this not always
the case. Extra criteria is therefore needed to seperate closely spaced modes. Modal
Assurance Criteria (MAC) compares the unscaled mode shapes ϕj , ϕl of mode j and
l. A high similiarity results in MAC values near 1, and the adjustment to nMAC may
be defined:

MAC(ϕj , ϕl) =
|ϕ∗jϕl|2

||ϕj ||22||ϕl||22
(2.57)

nMAC(ϕj , ϕl) = 1− MAC(ϕj , ϕl) (VS 4)

Modal Transfer Norm (MTN) was introduced by Reynders et al. (2008). MTN
measures the contribution from a single mode to the total response. The
superscripts □d and □s is to differentiate between deterministic MTN and
stochastic MTN. Subscript □∞j is to declare that MTN equals the peak gain of a
transfer function containing only mode j.

MTNs
∞j = max σ

(
ϕjg

T
dj

eiωjT − λdj
+
ϕjg

T
dj

2λdj

)
(2.58)

nMTNs
∞j = 1− MTNs

∞j (VS 5)

where σ(□) is the set of singular values, gdj is the discrete stochastic participation
vector of mode j, λdj the discrete time eigenvalues which can be obtained by
Equation (2.45).
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(b) Shearframe with non-diagonal damping matrix.

Figure 2.5: Fourth mode shape of two four story shear frames plotted on geometry
and in the complexity plot. Modes are identified with Covariance Driven Stochastic
Subspace Identification (SSI-COV) and Reynders algorithm. Numbers shown indicate
sensor layout/degree of freedom.
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Stabilization diagrams showing only the modes with the highest MTN, i.e. most
contributing modes, are typically very clear. The change in MTN may also be defined
in order to compare two modes:

d(MTNs
∞j ,MTNs

∞l) =
|MTNs

∞j − MTNs
∞l|

max(|MTNs
∞j |, |MTNs

∞l|)
(VS 6)

The deterministic counterparts to the given equations are:

MTNd
∞j = max σ

(
ϕjg

T
dj

eiωjT − λdj
2λdj

)
(2.59)

nMTNd
∞j = 1− MTNs

∞j (VS 9)

d(MTNd
∞j ,MTNd

∞l) =
|MTNd

∞j − MTNd
∞l|

max(|MTNd
∞j |, |MTNd

∞l|)
(VS10)

Mode shape complexity measures
Mode shapes can visually be plotted on the geometry, or in the complex plot, as

shown in Figure 2.5. Each vector in the complex plot is corresponding to one DOF,
and the real part of the vector is the same as the deflection of the frame. If animated
in time, the vectors in the complex plane would be rotating anticlockwise and the
real part of the vectors represent the oscillating deflection of the DOFs.

Structures without damping, or proportional damping, have modes that are
normal. Normal modes are modes without complexity, which practically means that
all DOFs are synchronized to be at their max at the same time. In the complex plot
this means that all DOF point along the same line, but not necessarily the same
direction. An example of a normal mode is shown in on the Rayleigh damped shear
frame in Figure 2.5b. The vectors are not perfectly straight lined, but that is due to
the fact that the modes are found through OMA with applied measurement noise.

Introduction of non-proportional damping leads to modes that are complex, i.e.
out of phase, and every DOF reach its max at different time instants. Large damping
variation along the diagonal of the damping matrix gives the largest complexity which
is observed as vectors pointing in all directions. A complex mode is shown on the
shear frame in Figure 2.5a. The only difference between the two shear frames in
Figure 2.5 is the damping matrix C.

To quantify the complexity between the l DOFs multiple measures are possible.
Modal Phase Colinearity (MPC) measures how straight aligned all the DOFs are in
one number, where 0 is no co-linearity and 1 is perfect co-linearity. One should,
however, use MPC with caution as not all structural modes yield straight-line
characteristics in the complex plot. Examples of such structures are double
symmetric structures and axisymmetric structures. Real life mode shapes with
vectors pointing in all directions, that is making up circle in the complex plot, have
also been identified for nearly axisymmetric structures (Dooms et al., 2006).
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MPC and the normalized version used in this thesis is defined as:

MPC(ϕj) =
∥Re(ϕ̃)∥2 + 2(ϵ2MPC + 1) sin2(θMPC)

ϵMPC
∥Re(ϕ̃T )∥2∥Im(ϕ̃)∥2

∥Re(ϕ̃)∥2 + ∥Im(ϕ̃)∥2
(2.60)

nMPC = 1− MPC(ϕj) (VS 7)

where:

ϕ̃j = ϕj − ϕ̄j = ϕj −
l∑

r=1

ϕj.r
l

(2.61)

ϵMPC =
∥Im(ϕ̃j)∥2 − ∥Re(ϕ̃j)∥2

2∥Re(ϕ̃j
T
)∥2∥Im(ϕ̃j)∥2

(2.62)

θMPC = arctan

(
|ϵMPC |+ sgn(ϵMPC)

√
1 + ϵ2MPC

)
(2.63)

∥□∥ denotes the l2 norm and sgn is the signum function, extracting the sign of a real
number, in the given functions.

As an alternative Modal Phase Deviation (MPD) can be used. Then the Mean
Phase (MP) must be defined. Visually MP is identified as the angle from the positive
real part to the best fit line pointing the same direction as the DOFs, see Figure 2.6:

MPj = ψ̄j =

l∑

r=1

ψj.r

l
(2.64)

(2.65)

where r is the considered DOF and l the total number of sensor positions/DOFs:

ψj.r =





arctan

(
Re(ϕj.r)
Im(ϕj.r)

)
if

(
Re(ϕj.r)
Im(ϕj.r)

)
>= 0

arctan

(
Re(ϕj.r)
Im(ϕj.r)

)
+ π otherwise

(2.66)

The Modal Phase Deviation (MPD) is then simply:

MPD(ϕj) =

l∑

r=1

√
(ψj.r − MPj)

2

l
(VS 8)

The last criteria used in this thesis to asses modal complexity is the newest one. It
was first introduced by Yaghoubi et al. (2018). Its derivation starts by transformation
of the dynamic system to modal form by the use of the following transformation:
x̃(t) = ψ−1x(t), where [Ψ] is the matrix with eigenvectors {ψ} of [A].

31



Theory

d(ϕ)

MAC

d







ϕ
ϕλ
ϕλ2

...
ϕλ10







MOC

32



Filter criteria

The observability matrix can then be written on modal form:

[Õi]
il×l

=




[C̃]

[C̃][Ã]

[C̃][Ã]2

...
[C̃][Ã]i−1



=




[C][Ψ]

[C][Ψ][Λ]

[C][Ψ][Λ]2

...
[C][Ψ][Λ]i−1



=




[Φ]

[Φ][Λ]

[Φ][Λ]2

...
[Φ][Λ]i−1




=




{ϕ1} . . . {ϕi}
{ϕ1}λ1 {ϕi}λi
{ϕ1}λ21

. . . {ϕi}λ2i
...

...
{ϕ1}λi−1

1 . . . {ϕi}λi−1
i



=
{
{õ1} {õ2} . . . {õi}

}

(2.67)

The defined observability vector, õi, is a vertical stack of block rows where each
block contains the mode shape, ϕi, multiplied with the corresponding eigenvalue, λ,
to the power of the block row minus 1. The number of block rows are in this thesis
chosen to be 10. The definition of MOC is similar to the definition of MAC:

MOC(õj , õl) =
|õ∗j õl|2

||õj ||22||õl||22
(2.68)

nMOC(õj , õl) = 1− MOC(õj , õl) (VS12)

By setting the number of block rows to 1, MOC yields the exact same results as MAC.
The great advantage of MOC is that modes with similar mode shapes, but different
frequencies are separated. That can be the case if the number of sensors used in the
measurement scheme is insufficient. This phenomenon is called spatial aliasing, and
will always be a consideration when working with a limited number of sensors.

When measured forces are available, that is in an EMA or OMAX context, it is
natural to use Modal Scale Factor (MSF). MSF is defined as:

MSF(ϕ̂j , ϕ̂l) =
ϕ̂∗l ϕ̂j
∥ϕ̂l∥2

(2.69)

where ϕ̂ is the unit modal mass normalized mode shape ϕ. When MSF yields values
close to ±1 the two mode shapes, ϕj and ϕl have close amplitude and phase.
Stabilization criteria VS11 can then be defined:

d(qj , ql) =

∣∣∣∣∣ln
(

MSF(ϕ̂j , ϕ̂l)
sgn(max(Re(MSF(ϕ̂j , ϕ̂l)), Im(MSF(ϕ̂j , ϕ̂l))

)∣∣∣∣∣ (VS11)
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Figure 2.7: Flowchart of Reynders’ algorithm.
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2.7 Reynders’ algorithm

Reynders et al. (2012) suggested an algorithm that automates the interpretation of
the stabilization diagram. The algorithm is hereby referred to as Reynders’ algotithm.
The approach is based on the following five target criteria, (Reynders et al., 2012):

1. not rely on more than one data record or on prior estimates for any of the modal
parameters

2. be as physically intuitive as possible and follow the course of a manual analysis
3. produce similar results as in a manual analysis
4. work in an EMA, OMA and OMAX framework and with any parametric system

identification algorithm
5. not contain parameters that need to be specified or tuned by the user
The algorithm follows three main steps, as shown in Figure 2.7, and all steps will

in the following subsections be explained. Worth noting is that the original paper
defining the algorithm may not contain the exact sub steps in its own description,
but the process is similar except when modifications are stated.

Step 1. Automated clearing of a stabilization
Step 1 intents to remove the majority of the spurious modes. In a manual analysis

this is done by setting threshold values on properties like damping ξ, or change in
properties like frequency, df , between a mode and the closest mode in the order above
or below. Reynders’ algorithm is not using threshold values but rather clustering
based on as many criteria as possible in order to separate the modes into the two
categories; certainly spurious modes, and possibly physical modes. Reynders is using
the closest mode in the closest model order below for all criteria needing another mode
for comparison as seen in Table 2.1. The closest mode in the model order above or
below is hereby referred to as nearest neighbours to simplify reading. Reynders does
not state how, or on which criteria, the neighbours are determined. In this thesis
different criteria combinations was tried and the euclidean norm of VS 2 and VS 3
proved good performance:

d = ||d(fj , fl), d(ξj , ξl)|| (2.70)

Sophisticated algorithms like Nearest Neighbours in scipy (Python-library) could
possibly be used for determination, but as of today they do not have the possibility
to use custom distance metrics, (Pedregosa et al., 2011). Brute force was therefore
chosen to find the nearest neighbours. If the implementation in this thesis were to
be optimized a feasible way of approach is to only calculate the distance metric to
the modes within a given change in frequency, df .

To avoid loss of modes, by comparison with modes that are certainly spurious, it
is in this thesis chosen to use the closest neighbour above or below. This is neither
described in Reynders nor in Yang, but it is an easy way to overcome gaps where there
is a missing approximation. Another benefit is that all modes will have a neighbour,
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Figure 2.8: Filtered and clustered stabilization diagram created by shear frame data.
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also at the highest and lowest model order depending on direction of comparison,
which makes the implementation simpler.

Having found a neighbour for every mode the next step is to construct the
validation vector of each mode with length equal the number of soft validation
criteria, nvs. The clustering is then performed in the nvs dimensional space Rnvs .
Algorithm employed to perform the clustering is in this thesis k-means from scipy
with two clusters, k = 2. K-means create k cluster centers and iteratively works
through all objects to minimize the euclidean distance between every object and its
cluster center. The objective function of K-means is:

Om =

2∑

k=1

nm∑

j=1

Bk.j∥µk − vsm.j∥2 (2.71)

where mj is mode object number j with its soft validation vector vsm.j , and Bk.j is
a Boolean determining if mode mj is belonging to cluster center µk or not. With k-
means from scipy it is both possible to specify the initial clusters or let the algorithm
choose it by it self. This thesis lets the k-means algorithm determine the centers its
self.

With two clusters the possibly physical one is the one with cluster center closest
to the origin, i.e. soft validation criteria, VS □, closest to zero. This cluster is
then filtered by the hard criteria shown in Table 2.1. After step 1 is performed the
stabilization diagram should appear as if threshold values was applied, just like in an
manual analysis. However, all modes not aligning as vertical lines will not necessarily
be removed as these are discarded in later steps. This is shown in Figure 2.8. The
connection between every possibly physical mode and it’s nearest neighbour is plotted,
but only a few lines are visible. Note that no lines are passing the vertical gaps, which
means that there is less modes lost using the closest neighbour above or below.

Step 2. Grouping similar modes
The grouping of similar modes is performed by the use of Agglomerative Clustering

which is a bottom up Hierarchical Clustering technique. At first, all modes are placed
into separate clusters. Iteratively the two clusters that are closest are merged based
on the distance between them. Usually this distance is between the cluster centers,
but it may also be between the outermost elements.

In the first step of Reynders’ algorithm the distance between any mode, Mj , and
mode, Ml, is computed as:

d(Mj ,Ml) = VS 1 + VS 4
= d(λj , λl) + nMAC(ϕj , ϕl)

(2.72)

The process of clustering modes is performed until the distance between any two
clusters reach the stop distance threshold. The distance stop threshold used is the
mean plus two standard deviations d = µ + 2σ, of the distance between all the
possibly physical modes and their respective closest neighbour. This threshold can
be extracted from the soft validation vectors used in Step 1.
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Figure 2.9: Automatically interpreted stabilization diagram with Reynders’ method.
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Step 3. Filter clusters
The output of the hierarchical clustering yields clusters of very different lengths,

as shown in Figure 2.8. The best possible cluster contains one estimate, mode, of the
physical system at every model order in the analysis. In reality this is nearly never
the case, but one can in general state that clusters with many modes are typically
representing the physical system modes, and clusters with only a few modes are
spurious. Therefore Reynders’ algorithm employs K-means with two clusters, k = 2,
based on the length of the clusters. This results in the removal of the smallest clusters.

Having only a limited set of clusters a physical representative is chosen from
each cluster. The physical representative is chosen by the median damping to avoid
the affect of outliers.

Wort noting is if the model order is to low one might get biased modes, that is
modes containing a combination of different system modes. Typically this occurs
when to two system modes have close frequencies. The problem can be solved by
setting the highest model order high enough to observe the split point and only use
points above the split. In Reynders’ algorithm there is no implemented fix to the
biasing problem, and the user should therefore plot all, also spurious, modes in the
stabilization diagram to visually check if biasing and splitting occurs.

The stabilization diagram in Figure 2.9 shows the outcome of Reynders’ algorithm;
a cleared stabilization diagram with picked representatives, ×. There was in this case
perfect match between the number of identified clusters and the number of system
modes. There are gaps where modes are "missing", which is a result of the fitting
process. Note also that the green cluster has two parallel columns of dots. This
is not due to biasing, or aliasing, but the fitted model; modes have to be placed
somewhere. This results in two approximations of the same system mode, where one
or both is spurious in the sense that they are bad measurements. In this case there is
not external affects, making it a good example of mathematical modes. The picked
representative is as seen in the longest column, which most likely is best.

39



Theory

Initiate
stabilization diagram

1. Find nearest neighbour(s)
2. Compute the distance vector of each mode,

and gather into a distance matrix
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certainly spurious and possibly physical,
using the calculated distance matrix

Clean diagram

1. Continue only with modes that have positive imaginary part
2. Put all modes in the lowest model order into seperate clusters
3. Iteratively insert the modes in the model order above into the

already created clusters, and create new clusters when distance
threshold exceded.

Hierarchical clustering

1. Remove clusters whose length is below the threshold length NT

2. Remove one quartile of modes by local outlier detection
3. Pick the mode with median frequency as the physical representa-

tive of each cluster
4. Join clusters with MOC > 0.8

Filter clusters

Recompute physi-
cal representative

Figure 2.10: Flowchart of Yang’s algorithm.
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2.8 Yang’s algorithm

Yang’s algorithm have great similarity with Reynders’ algorithm. Step ways they
are not divided into the same steps in their respective papers, but should have been
in the opinion of the writer of this thesis. The flowchart in Figure 2.10 is therefore
divided into the same three main steps as Reynders’ algorithm was.

One main difference between Yang’s and Reynders’ is the shift in focus from
using as many validation criteria as possible to using fewer and more strict criteria.
Modal Observability Correlation (MOC) is widely used throughout the algorithm and
replaces the use of MAC completely.

Step 1. Clean diagram
The first step when cleaning the stabilization diagram is calculating the nearest

neighbour in the order below. In contrast to Reynders the distance measure between
any mode, Mj , and mode, Ml, is specified when determining neighbours:

d(Mj ,Ml) = VS 2 + VS 12
= d(fj , fl) + nMOC(õj , õl)

(2.73)

In order to avoid loosing modes and problems with endpoints the implementation
in this thesis is using the closest neighbour in the order above or below, just as
described in Section 2.7. Having determined a neighbour for each mode the next step
is constructing the feature vector of each mode, and gather all vectors into a distance
matrix, D. The distance vector between mode, Mj , and it’s neighbour mode, Ml, is
given as:

d(Mj ,Mj) =
[
VS 2 VS 3 VS 12 VS 7

]

=
[
d(fj , fl) d(ξj , ξl) nMOC(õj , õl) nMPC(ϕj , ϕl)

] (2.74)

Fuzzy C-means clustering is performing better on normal distributed data. The
Box-Cox transformation by Box et al. (1964) is therefore used on each feature, y, of
the the distance matrix, D. yi is then a column of D and yi,T denotes the Box-Cox
transformed feature yi.

yT =





(yλ − 1)

λ
for λ! = 0

ln(y) for λ = 0

(2.75)

where λ is a solution of the profile likelihood function.

After the transform each feature of the distance matrix is normalized, that is
subtracting the mean and dividing by the standard deviation:

yT.N =
y − µy
σy

(2.76)

41



Theory

Start with modes that
have positive frequency

Compute distance threshold, efMOC

Assign a cluster for every mode in the lowest model order

For all modes

Compute distance to created clusters

d(M,C) < efMOCAssign to closest cluster Assign new cluster

Finished clustering
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Figure 2.11: Flowchart of clustering method suggested by Yang.
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The input and output of this process of transformation and normalization was
depicted in Figure 2.4.

C-means clustering is then performed with the distance matrix, D, given. Yang
suggests specifying initial cluster centers. The implementation in this thesis has
skipped this step as the final result is the same in all normal cases and computational
gain may be small and possibly negative.

The output of step 1. is similar to step 1 of Reynders’; a filtered stabiliztion
diagram

Step 2. Hierarchical clustering
Yang suggest a new way to cluster modes, that possibly is more computationally

efficient depending on implementation. The clustering process is depicted in
Figure 2.11.

In order to end up with modes that have positive frequency, and reduce
computational effort, only modes with positive imaginary part of the eigenvalue is
kept.

The distance threshold, efMOC , is given by the mean plus two standard deviations
of all possibly physical modes and their respective neighbours:

d = [d(M1,M1.N ), d(M2,M2.N ), . . . , d(MnModes,MnModes.N )] (2.77)
efMOC = µ(d) + 2× σ(d) (2.78)

At first all modes at the lowest model order is put in separate clusters. Then all other
modes are appended to the existing clusters, or put in new clusters if the distance
between a mode and the clusters is greater than the calculated threshold, efMOC .
The distance between a mode and a cluster is calculated as:

d(M,C) =
1

NC

NC∑

i=1

d(M,Mi) (2.79)

where NC is the number of modes in cluster C, Mi is mode number i in the cluster,
and d(M,Mi) is given by Equation (2.73).
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Figure 2.12: Automaticly interpreted stabilization diagram with Reynders method.

44



Yang’s algorithm

Step 3. Filter clusters
As with Reynders there are clusters with spurious modes, that are characterized

by short length. These short clusters are removed by setting a cluster length
threshold, NT = α × (Nmax −Nmin)/β. Nmax, Nmin, and β is then the max model
order, min model order, and step between model orders respectively. α is a factor
that may be chosen in range 0.3− 0.5 without much difference in the final outcome.
The implementation in this thesis uses 0.3 as this yields the highest number of
detections.

With many modes in each cluster some are outliers. Yang suggest removing one
quartile of the modes by Local Outlier Factor (LOF) of frequency and damping. LOF
is a relatively modern method that was first described in Breunig et al. (2000). It
is not stated in Yang et al. (2019) whether to remove one quartile of one property
first and then one more quartile of the remaining mordes, or one quartile of both
combined or a separate calculations and merging afterward. In this implementation
LOF is performed for damping and frequency separately. Modes that are outliers in
either are removed, making the number of removed modes span between one and two
quartiles. The number of modes is most likely closest to one quartile as the spurious
modes typically are outliers in both frequency and damping.

Next, modes with median frequency is chosen as the physical representative.
Median is a earlier mentioned better than average as outliers have a big affect on
the average. The last operation is joining all clusters with MOC higher than 0.8
between their physical representatives, and recalculation of the physical
representative in the merged clusters.

The outcome of Yang’s algorithm is shown in Figure 2.12. The input data is
exactly the same as the data used when describing the steps of Reynders’ in
Figures 2.8 and 2.9. Notice the major difference between Reynders’ and Yang’s in
number of modes detected from this numerical measurement.
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Chapter 3

Numerical studies

This chapter contains two fully digital studies. The scope of the studies were to
compare the performance of the two automatic algorithms introduced in 2.7 and
Section 2.8. To ensure that the performance is validated without flaws the testing is
performed on numerical data created by loading an analytical shear frame.

3.1 Numerical study of shear frame

Determining the sources of error and their respective contributions to the total
error is a big and important part of all research work. A analytical shear frame have
therefore been implemented at the Department of Structural Engineering at NTNU.
The shear frame is implemented as an object in Python and can be accessed through
the freely available package strid on GitHub (Frøseth et al., 2022). With this shear
frame one can vary the number of floors, the mass of each floor, the stiffness of
each column-pair, the damping of the system, and the applied loading. The output
acceleration response of the chosen shear frame can then be simulated and recorded
exactly. This gives the possibility to check the performance of system identification
algorithms compared to exact solutions. All errors apart from the computation error
is introduced though the user, eliminating common problems in real life analyses like
sudden loads, present harmonics, effect of temperature change, and so on.

To ensure that the algorithms have a challenge, that the model is not to complex,
and that reproduction can be done, a simple shear frame with 9 floors have been
chosen in this work, as seen in Figure 3.1. The mass of each floor is m = 103 and
the stiffness of each story, that is pair of columns, k = 107. Damping is chosen to
be classical Rayleigh damping, with damping ratio ξ = 0.05 of the first and last
mode. Mass and stiffness proportional damping matrices ensures that the system is
invertible and has unique solutions. The number of unique physical system modes L
are always the same as the number of floor for the planar shear frame.

47



Numerical studies

sensors
loading

1 m

k

2 m

k

3 m

k

4 m

k

5 m

k

6 m

k

7 m

k

8 m

k

9 m

k

Figure 3.1: Visualization of shear frame.
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3.1.1 OMA parameters
When performing OMA there are many considerations before making the

measurements and parameters to determine when analysing the recorded
measurements. The first consideration is choosing the right setup for the structure
under consideration. Sensor layout must be tight enough to detect the system
modes under investigation, and avoid zero points. With the analytical shear frame,
sensor layout is given. The fundamental assumption with the planar shear frame is
that each floor is moving only horizontally. This results in totally 9 modes that are
unique and one must therefore have 9 sensors to capture all modes, just as shown in
Figure 3.1. Sampling period, T , must be long enough to capture all information of
the modes under investigation. What sampling period that is sufficient is not easy
to quantify. Common practice is measurements in the range 10 to 30 minutes.
T = 600s has been chosen in the analyses of the shear frame. Sampling frequency,
fs must be sufficient to detect all modes of interest, but low enough to avoid impact
of high frequency noise. The sampling frequency, fs, is a parameter in the first
study and will be further discussed in Section 3.2.1.

When analysing the data the first step is retrieving the modes. In this work it has
been chosen to use covariance driven subspace identification, COV-SSI, as described
in the Section 2.5. The number of block rows, nbr and the wanted model orders,
N , are the user specified parameters of COV-SSI. The number of block rows nbr is
determining the number of time shifts in the covariance matrix. A big number of
nbr is needed to capture the modes with highest periods, i.e. lowest frequency. The
number of block rows, nbr, is chosen according to the estimate given in Yang et al.
(2019):

nbr >=
fs

fmin.sf
(3.1)

The number of block rows are for simplicity kept constant at the highest number
suggested by Yang for all analyses. Given that the highest sampling frequency in this
work is five times the highest eigenfrequency of the shear frame, fs = 5× fmax.sf :

nbr =
5× fmax.sf

fmin.sf
=

5× 31.40

2.63
≈ 60 (3.2)

The number of modes at a given model order is by definition the same as the
model order, N . At first sight a model order of twice the number of modes is
sufficient, as half of the modes are complex conjugates. Empirically this has proven
to be insufficient and the most common approach is heavily overestimation and then
application of filtering afterwards. Depending on whether the filtering is manual,
through threshold values, or automatic through algorithms, the desired max model
order will be different. Anyhow, trial and error of the maximum model order is the
most common way of approach. Neu et al. (2017) suggests an approximate
relationship between the number of possibly physical modes Npp, certainly spurious
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VS 2 = d(fj, fl) < 0.01

VS 3 = d(ξj, ξl) < 0.05

VS 4 = nMAX(ϕj, ϕl) < 0.02

Stable mode criteria

Figure 3.2: Criteria determining if a mode is stable.
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modes Ncs and unique physical system modes L. Given:

Npp
∝∼ Lnmax (3.3)

Ncs =
1

2
nmax(nmax − 1)−Npp (3.4)

The number of unique physical system modes L is then 9. Given that most

clustering algorithms prefer near equal size of the clusters, a ratio of
Ncs

Npp
= 1 is a

good start. Applying this assumption gives the maximum model order Nmax as:

nmax ≈ 4L− 1 (3.5)
= 4× 9− 1 = 35 (3.6)

In this work the minimum model order is set to be Nmin = 20 for all analyses of
the shear frame. The maximum model order is further discussed in Section 3.2.1.
The incremental step from the minimum model order, Nmin, to the maximum model
order, Nmax, is kept constant at β = 1.

3.1.2 Stability of modes
Before going into the details some vocabulary must be clarified. A mode can be

used as a reference to every mode, i.e. dot, in the stabilization diagram. It is also
used as a reference to the clusters that yet have not been categorized as stable or not.
By this it is implicitly assumed that the algorithms only have good quality clusters.
A system mode, a true mode, or combined to a true system mode, is all referring to
the real life modes of the structure under investigation.

When determining if a system mode is identified or not, the accuracy limit is a
question to debate. Another source of debate is to which extent one picked
representative from the cluster can represent the cluster as one. For simplicity the
picked representative of each cluster is used in this thesis. Noteworthy is that
Reynders’ and Yang’ uses the mode with median damping and frequency
respectively as the physical representative of the cluster. One should however use all
modes when looking for the true properties, as the mean of many approximations
will be better than one single observation. The accuracy limits determining if a
cluster is stable or not is in this plot chosen to be the limits defined by Rainieri
et al. (2014):

VS 2 = d(fj , fl) < 0.01 (3.7)
VS 3 = d(ξj , ξl) < 0.05 (3.8)
VS 4 = nMAX(ϕj , ϕl) < 0.02 (3.9)

These criteria could arguably be to strict, but trends of the algorithm’s
performance should still be possible to detect. Another argument to use strict
criteria is that to loose limits increases the risk of mixing closely spaced modes.
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Figure 3.3: Power spectral density and true eigenfrequencies
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3.2 Study 1 | Sensitivity to sampling frequency

and model order
A comparison of Reynders and Yang will in this study be performed by variation

of the user specified parameters; sampling frequency, fs, and the highest model order,
Nmax. Setting these parameters is a usually a process of trial and error combined with
experience. It is therefore valuable to have an algorithm that is less dependent on
these parameters. The aim is to identify trends in the performance of the algorithms.

3.2.1 Setup
The Nyquist frequency is by definition half of the sampling frequency, and it is

the theoretical upper limit of what frequency content that can be captured without
distortion. Frequency content above half the Nyqiust frequency may be
indistinguishable from each other and will appear to be folded around the Nyquist
frequency which also is known as the folding frequency. The sampling rate should
therefore be twice the highest frequency content looked for in the signal. This is
also known as the Nyquist rate.

The shear frame is analysed for step wise changes in in sampling frequency starting
at the Nyquist rate, fs = fNy.rate = 2 × fmax.sf , and step wise increments of factor
0.25 up to five times the maximum eigenfrequency of the shear frame fs = 5×fmax.sf .
In Figure 3.3 one can see the Power Spectral Density (PSD) of all the 13 different
OMA signals. The loading signal was created with a sampling frequency 10 times
the highest eigenfrequency of the shear frame. This way, all runs are down sampled
copies of the same loading. The original signal is the response of white noise loading,
with the addition of white noise characteristic measurement noise of intensity equal
one standard deviation of the exact response. Also shown is the 9 eigenfrequencies
of the shear frame. From the peaks one can see that the modes are, as expected,
unequally excited and that the last three modes are quite close and hard to identify,
thus creating a challenge for the algorithms.

The minimum model order, Nmin = 5, and the step, β = 1, was described in
Section 3.1.1. The highest model order is then the only property of variation. The
time consumption of the algorithms is increasing exponentially with the highest model
order, Nmax. It therefore very beneficial to limit the number of modes. This study
uses max model order from 10, and increasing by 10 up to 140. In total this gives
13× 13 = 169 analyses.
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Figure 3.4: Comparison of Yang’s and Reynders’.
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3.2.2 Results
The results from the numerical study on the shear frame is visualized as surfaces in

the three dimensional plots in Figure 3.4. The two horizontal axes are the maximum
model order, Nmax and the sampling frequency, fs as a factor of the Nyquist rate.
The vertical span of the surfaces is shown in their respective colorbar. Ex. The
number of modes found is ranging from 3 to 11.

The first row of surfaces shows that Reynders’ consistently finds more modes than
Yang, which at first sight is good. By a closer look at the colorbar it is clear that
Reynders’ finds more modes than the system has in a great portion of the runs. The
main reasons why extra modes are found can be summarized into four cases:

Table 3.1: Causes of clusters not getting approved

Case 1 modes are multiply defined
Case 2 spurious modes by mistake clustered
Case 3 cluster found is of to low quality to be stable

(Case 4) cluster representative is not representative for the cluster

Case 4 is in parenthesis, as it was assumed that the mode with median damping
and frequency is good enough to represent the cluster.

The second row of surfaces shows the number of correct identifications, that is
how many true system modes that can be matched with the identified modes within
the stability criteria defined in Equations (3.7) to (3.9). Two trends are visible;
Reynders’ performs best on moderate to low model orders, and with high sampling
frequency. Yang’s performs best on high model orders, and sampling frequency is of
less importance as long as it is high enough.

The third row of surfaces is really just the first subtracted the second row. Is
it, however included to increase readability. Looking at the surfaces it is clear that
Reynders consistently has more wrong identifications, except when the maximum
model order is very low and the sampling frequency is high.

The Fourth and last row of surfaces shows how the total number of stable modes
at the different runs. Total number of stable modes is the sum of the modes that are
stable. Worth noticing from these surfaces are that the number of stable modes in
the clusters of Yang’s is approximately half of Reynders’. It is given in the setup of
the test that the input of the two algorithms are the exact same modes. Therefore
one can conclude that Yang is more restrictive. Worth noting in Reynders’ is that the
number of stable modes keep increasing even though the number of identified modes
is decreasing at high maximum model order and sampling frequency.

In this analysis there were none multiply defined system modes, making all the
modes appearing in the plot of wrong identifications either spurious modes or low
quality clusters. To determine if the modes clustered are spurious or low quality
approximations is hard to quantify. The content of the clusters is therefore analysed.
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Figure 3.5: Stabilization diagrams with the modes of all stable clusters.

Table 3.3: Number of modes in stable clusters

Mode 1 2 3 4 5 6 7 8 9

reynders 7944 14026 11796 12598 2030 7076 9168 8432 3849
yang 4492 7407 2076 6870 2303 3218 608 1147 29
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Table 3.2: Percentage modes approved

Mode ok f ok ξ ok ϕ ok all
Reyn. Yang Reyn. Yang Reyn. Yang Reyn. Yang

1 100% 100% 100% 100% 100% 100% 100% 100%
2 90% 98% 88% 97% 90% 98% 87% 97%
3 61% 94% 27% 51% 66% 97% 24% 50%
4 87% 97% 77% 89% 83% 97% 76% 89%
5 91% 100% 60% 65% 85% 100% 59% 65%
6 82% 96% 64% 80% 80% 97% 63% 80%
7 90% 100% 65% 83% 76% 100% 60% 83%
8 96% 100% 75% 89% 86% 100% 71% 89%
9 93% 100% 55% 55% 68% 100% 45% 55%

Mean 88% 98% 68% 79% 82% 99% 65% 79%

Missed 73% 99% 26% 21% 65% 98% 25% 21%

Table 3.2 shows the percentage of the modes inside the clusters that fulfill the
criteria in Equations (3.7) to (3.9) determining if a mode is stable or not. Each mode
is compared with the true properties of the shear frame. Row 1 to 9 is referring to
all the approved clusters representing system mode 1 to 9. Row 10 is the Mean of
all system modes. Last row is checking how many of the modes in the non stable
clusters that would have been approved they could be merged with a true mode.

There are two main observations to pull out of Table 3.2. The first is that Yang
consistently has a higher percentage of modes that are stable, visually observed as
whiter columns. Comparing the three properties, frequency, damping and mode
shape, it is clear that the damping criteria is the most strict criteria. Alternatively
one can argue that damping is not a very well suited criteria to determine if a mode
is stable because damping is not very well estimated. The damping scatter is large as
earlier visualized, ex. Figure 2.4, and observing that 100% of the modes clustered by
Yang fulfils the frequency and mode shape criteria, damping criteria in Equation (3.8)
should be revised or replaced.

The stabilization diagrams in Figure 3.5 shows that the spread in the clusters
is greater for Reynders than for Yang. Especially mode 3, green, is having a lot of
mathematical modes in it’s clusters, and Reynders has the greatest spread.
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Figure 3.6: Run time of algorithms.
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The run time of the different algorithms in this study is depicted in Figure 3.6.
The surfaces in Figure 3.6a shows the run time of Reynders and Yang at every run
in this study. The plot in Figure 3.6b is obtained by cutting the surfaces at fs =
1.5× fNyquist, as well as adding the time used for the system identification with SSI-
COV. The total time is for both algorithms and the system identification combined.

The surfaces clearly shows that increasing the number of modes is the main factor
increasing the run time of the algorithms. The different sub steps of the algorithms
have different time complexities, but they are all exponential with the number of
modes. The cut frequency, fs, to create the plot should therefore yield the same
plots. An exception is, however, noticeable at high model orders or Reynders’. The
reason why run time is varying with the sampling frequency is unidentified. One
possible reasons is a major change in number of modes removed at the first step of
the algorithm, leading to less modes in the hierarchical clustering of step two.

Worth noticing about the run times is the fact that none of the algorithms are
optimized and the run times is only from one computer with other processes
running at the time of the analysis. Reynders’ algorithm is also more optimized as
all clustering steps is performed using external packages from libraries like scipy,
that are optimized. Another difference is that Reynders is using K-means, where
Yang is using C-means, in the the first step of the algorithms. The hierarchical
clustering step of Yang could most likely be optimized, considering that no effort
has been made in the implementation in this thesis. Small computations like the
distance calculation to all clusters, instead of only the near ones, add up when the
number of modes and clusters is high. This should therefore be considered if
implementation is revised.

The identification of the modes through SSI-COV is insignificant compared to the
run time of the two algorithms in this case. In other cases with higher number of
block rows, and longer time series SSI-COV will be much longer. From the graphs
one can conclude that Reynders is approximately half the run time of Yang. The
difference in absolute time is therefore not very significant before high number of
modes is chosen, here by setting a high max model.

The importance of the run time is naturally a question of application as further
discussed after the next study, Section 3.3. From this section one can conclude that
the difference between Reynders’ and Yang’s algorithm is significant, especially with
high number of modes.
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Figure 3.7: Power spectral density of all 200 runs.
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3.3 Study 2 | Repeated runs on different input

In this study a comparison of Reynders’ and Yang’s will be performed by repeated
runs on different input signals, but with the same user specified parameters. The aim
is comparing the performance in terms of the most important properties; accuracy
and detection rate.

3.3.1 Setup
Specifying the best parameters for both Reynders’ and Yang’s is not

straightforward. This study bases it’s chosen parameters on the results from the
first study, Section 3.2, and the currently achieved user experience.

The user specified parameters are chosen to be similar to the first study, where
applicable. This permits comparison and validation of the findings in the first study.
Sampling period is still T = 600s, i.e. 10 minutes. The number of block rows is
nbr = 60. From the results of the first study, shown as surfaces in Figure 3.4, a
sampling frequency of fs = 1.5 × fNyquist, and a max model order Nmax = 60, is
appropriate for both algorithms.

The loading is in this study the new element of every run. It does however
yield the same properties as the loading used in the first study. That is, response
measurements of white noise loading loaded with white noise, at the magnitude of
one standard deviation of the response measurements. All 200 runs has a different
random loading, and the trace of the PSD-matrix of every load is plotted in Figure 3.7
together with the true eigenfrequencies. The last three modes are less excited than
the other modes, and closely spaced in frequency, thus making a challenge for the
algorithms to detect.

A general loading has two main properties determining if a mode is excited or not.
That is, frequency content and it’s spatial distribution. To excite a mode, frequency
content in the loading near the eigenfrequency of the mode must be present in multiple
DOFs. If there are DOFs without this frequency content, or at worst in counter
phase, these DOFs are reducing the excitation. Physically this can be imagined as
all loading positions pushing the frame at a synchronized frequency, but pushing at
different time instances depending on the modeshape.

Given that a single loading may excite only some modes the performance of the
algorithms can’t be determined on just one run. This is the reason why this study
runs 200 analyses.
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Figure 3.8: Stabilization diagram with all modes in the stable clusters.

Table 3.4: Number of modes in stable clusters

Mode 1 2 3 4 5 6 7 8 9

Reynders 4500 5897 5986 6371 6269 6518 5055 3493 4044
Yang 2555 3363 3015 2562 2105 1467 477 164 347
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3.3.2 Results
The results of this study is presented using some of the same Figures and Tables

as seen in the first study, Section 3.2, to compare and validate the first study.
Explanation of the details in these Figures and Tables are therefore left out.

Looking at Figure 3.8, and the associated Table 3.5, the same trends can be
identified. In both studies one can see that Reynders consistently has more modes in
the stable clusters than Yang has. Without looking at the numbers, this is observed
as a darker second row of Tables 3.2 and 3.5. Alternatively visually observing the
number of points, which is the same as the tables, in the scatter in Figures 3.5 and 3.8.

Table 3.5: Percentage modes approved

Mode ok f ok ξ ok ϕ ok all
Reyn. Yang Reyn. Yang Reyn. Yang Reyn. Yang

1 100% 100% 99% 98% 100% 100% 99% 98%
2 99% 100% 95% 99% 99% 100% 95% 99%
3 91% 98% 71% 83% 91% 98% 70% 83%
4 93% 98% 70% 84% 91% 98% 70% 84%
5 97% 100% 70% 87% 94% 100% 70% 87%
6 99% 100% 74% 91% 98% 100% 74% 91%
7 100% 100% 73% 91% 98% 100% 72% 91%
8 100% 100% 77% 89% 91% 99% 71% 89%
9 100% 100% 80% 94% 92% 100% 76% 94%

Mean 98% 100% 79% 91% 95% 99% 77% 91%

Misssed 91% 100% 10% 10% 91% 100% 10% 10%

By inspection of the modes inside the clusters one obtain Tables 3.2 and 3.5. The
same trends are observed in this study; damping is the most strict criteria and Yang
has better content in it’s clusters. Worth noticing in this study is that the trends
are more clear; the missed modes, i.e. unstable clusters, have lower percentage of
approved damping. Also the difference between Reynders is greater.
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Table 3.6: Frequency and Damping statistics

(a) Frequency statistics

Mode True f d̄f [Hz] σ(f) [Hz]
[#] [Hz] Reynders Yang Reynders Yang

1 2.63 0.000 0.000 0.011 0.010
2 7.81 0.004 0.001 0.039 0.013
3 12.79 0.009 0.010 0.090 0.074
4 17.41 0.015 0.002 0.104 0.054
5 21.56 0.004 0.001 0.103 0.038
6 25.12 0.006 0.009 0.081 0.043
7 27.99 0.002 0.011 0.071 0.051
8 30.11 0.006 0.013 0.075 0.050
9 31.40 0.011 0.006 0.090 0.049

Mean all modes 0.006 0.006 0.074 0.043

(b) Damping statistics

Mode True xi d̄ξ [%] σ(ξ) [%]
[#] [%] Reynders Yang Reynders Yang

1 5.000 0.006 0.002 0.146 0.147
2 2.700 0.017 0.005 0.323 0.089
3 2.827 0.141 0.042 0.600 0.241
4 3.255 0.183 0.056 0.648 0.320
5 3.731 0.154 0.015 0.578 0.141
6 4.174 0.103 0.037 0.397 0.131
7 4.547 0.081 0.061 0.238 0.127
8 4.827 0.106 0.119 0.213 0.145
9 5.000 0.080 0.079 0.280 0.115

Mean all modes 0.097 0.046 0.380 0.162
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The average frequency deviation, d̄f , and the frequency standard deviation, σ(f),
is shown for all system modes in Table 3.6a. The modes making the statistical
properties of every system mode is the modes inside the stable clusters, and total
number of stable modes can be read in Table 3.4. The average frequency deviation,
d̄f , between Reynders and Yang is by meaning all modes equal at the magnitude of
0.006 Hz. Looking at the numbers for every mode Yang has more of the best and
worst estimations. This may be due to the lower number of stable modes, making the
influence of every element greater. The frequency standard deviation is consistently
better for yang, and on average 58% of Reynders.

Looking at Table 3.6b the damping estimates is consistently better for Yang than
Reynders. The damping ratio, ξ, is represented as a percentage, and the deviations
are in percentage points. On average of all modes the mean damping deviation, d̄ξ,
of Yang’s’ is 47% of Reynders’, and the damping standard deviation, σ(ξ) is 43% of
Reynders’.

Table 3.7: Detections

Mode Right Multi Missed
Reynders Yang Reynders Yang Reynders Yang

1 50% 50% 0% 0% 50% 50%
2 58% 59% 0% 0% 42% 41%
3 52% 56% 0% 0% 48% 44%
4 57% 57% 0% 0% 42% 43%
5 60% 58% 0% 0% 40% 42%
6 66% 50% 0% 0% 34% 50%
7 58% 20% 0% 0% 42% 80%
8 44% 8% 0% 0% 56% 92%
9 46% 16% 0% 0% 54% 84%

Mean 55% 41% 0% 0% 45% 59%

Table 3.7 shows that Reynders consistently detects more modes than Yang. The
detection percentage is especially bad of the last three modes for Yang.

All the results in this study is in accordance with the trends found in the first
study. Yang is more selective, yield higher quality clusters, at the cost of less
detections.
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Figure 3.9: Identified frequencies at every run.
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3.4 Discussion of numerical study

All the results in the second study is in accordance with the trends found in
the first study. Yang is more selective, yield higher quality clusters, at the cost of
lower detection rate. Reynders on the other hand is more optimistic, yielding wider
clusters, at the cost of more unstable modes in the clusters. Which algorithm is then
the preferred one? This is as, we will discuss, a question of application chosen and
wanted result.

Automatic algorithms are specially beneficial in an Structural Health
Monitoring (SHM) context, as briefly mentioned in the introduction. Given that
acceleration measurements are performed automatically at a given interval, or by
triggered events, there is a great cost benefit in having an automated algorithm
analysing every measurement. Most likely automated algorithms is necessary to
make SHM applicable in large scale. With an automated approach the expert user
is only involved when there are changes; like the finding of a new mode, or modes
are missing.

Typical events used to trigger an acquisition can be an abnormal acceleration,
which is possible to detect with passive sensors, high winds, or a nearby earthquake.
In the case of such an event one can argue that it is more important that the mode is
found every time analysing than finding it very precisely. Given that a mode is found
every time, it is also possible to quantify how bad a measurement is compared to the
normal situation. On the other hand, if a mode is only found when measurements
are of high enough quality, there will be time periods without inspections. The
consequence of periods without measurements can be fatal if critical damage is not
exposed.

By imagining that each of the 200 runs in the second study, Section 3.3, represent
one measurement of a SHM measurement scheme one can represent the tracking
as shown in Figure 3.9. The x-axis is then representing the time instant of the
measurement, e.x. every day at 16:00 o clock, unless special trigger events occur.
The y-axis shows the identified frequencies. As shown will Reynders algorithm give
more detections, especially for the three highest frequency modes. Assuming that
the measurements are daily, the maximum number of days without measurements is
7 and 41 for Reynders and Yang respectively, i.e a significant difference.

Another use of automated algorithms is simplifying the work done in a manual
analysis. Say that an engineer wants to identify the modes of a new bridge to validate
an analysis. In this case the benefit of using an automated algorithm is that one can
get an estimate within minutes or seconds, depending on the length of the time series.
By using Reynders’ algorithm one will most likely identify more modes without to
many trial end error runs determining a sufficient model order etc. Using Yang’s
algorithm one will most likely be fiddling with more trial and error, if modes are
detected at all.
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Figure 3.10: Stabiliation diagram equivalent to Figure 3.5 after filtering with LOF.

Table 3.8: Number of modes in stable clusters

Mode 1 2 3 4 5 6 7 8 9

Yang 4492 7407 2076 6870 2303 3218 608 1147 29
Reynders 7944 14026 11796 12598 2030 7076 9168 8432 3849
Reyn. w.LOF 4502 8206 3736 8273 2404 4885 4838 4463 1996

Diff. 3442 5820 8060 4325 −377 2190 4330 3969 1853
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3.4.1 Affect of filtering with LOF
Comparing the two algorithms it was clear that Yang had less, and higher quality

modes in its clusters. An additional mini-study has therefore been performed to
check if this is due to more precise clustering or just the removal of modes with LOF.
Because all runs were saved, and the implementation used in this thesis is object
oriented, LOF-filtering was possible to add afterwards on the results from the first
study, Section 3.2. This way, everything is the same and comparison valid.

The resulting stabilization diagram shows both improvement and deterioration in
terms of visual spread, Figure 3.10. The first three modes appear to be improved,
where the next three modes are deteriorated. The total number of modes in stable
clusters is greatly reduced for all but mode 5 that has a slight increase. This increase
is due to more clusters getting stable according to Equations (3.7) to (3.9). Especially
mode three, green, is greatly reduces. Looking at the stabilization diagram it is clear
that many wrong detections of mode three is removed.

Table 3.9: Percentage modes approved after filtering with LOF.

Mode ok f ok ξ ok ϕ ok all
Reyn. Yang Reyn. Yang Reyn. Yang Reyn. Yang

1 100% 100% 100% 100% 100% 100% 100% 100%
2 97% 98% 95% 97% 97% 98% 95% 97%
3 74% 94% 43% 51% 75% 97% 40% 50%
4 89% 97% 83% 89% 86% 97% 82% 89%
5 89% 100% 64% 65% 79% 100% 63% 65%
6 80% 96% 67% 80% 77% 97% 67% 80%
7 90% 100% 65% 83% 76% 100% 60% 83%
8 97% 100% 78% 89% 86% 100% 74% 89%
9 95% 100% 61% 55% 73% 100% 52% 55%

Mean 90% 98% 73% 79% 83% 99% 70% 79%

Missed 65% 99% 21% 21% 59% 98% 20% 21%

Inspecting the content inside the clusters it is clear that a higher percentage of the
modes are approved. The mean of all modes getting approved by all criteria raises
from 65% in Table 3.2 to 70% in Table 3.9. The increase is smaller than expected
given the drastic reduction in the number of modes in the stable cluster. It can be
concluded that the outlier detection is not enough to improve the quality of Reynders’
clusters up to the level of Yang’s alone. The clustering process of Yang is therefore
the step that makes a notable difference.
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Chapter 4

Measurements on Elgeseter bridge

This study is testing the same algorithms, but now on real life data. The data is
self-sampled by portable sensors on Elgeseter bridge near the Norwegian University
of Science and Technology. The aim with this study is to continue the discussion
on advantages and disadvantages discovered in the numerical study by utilizing the
algorithm on self recorded data.

4.1 About Elgeseter bridge

Elgeseter bridge is a monolithic concrete beam bridge resting on groups of slender
columns dividing it into nine spans. The bridge did originally have six driving lanes,
but only four as of today to make space for pedestrians and bikers, making the total
width 23.4 m. The span length is equal at 22.5 m, except for the first and last span
that are 21.5 m, giving a total length just above 200 m. Columns are arranged in
groups of four, where each column is about 80 cm in diameter with length up to
about 16 meter mid river. The south end is fixed to the abutment, and the north
end on a bearing support giving freedom to expand with temperature. All columns
are resting on foundations connected to friction piles. The friction piles on land and
in the river is made of concrete and wood respectively.

The bridge has shown to be growing at a more or less stable rate of 3.5 mm per
year due to alkali reactions in the concrete. All columns were top cut, displaced, and
reattached summer 2003, (Thorenfeldt, 2015). This to ensure that increasing crack
widths, leading to reduced shear capacity and risk of corrosion, did not reduce safety.
The bridge-column interaction may have changed as a result of the reattachment.
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(a) Sensor next to cone. (b) Sensors and main unit on upstream
measurement.
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(c) Measurement setup of span 2 and 3 on Elgeseter bridge.

Figure 4.1: Sensors and measurement setup.
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4.2 Setup

Elgeseter is not a monitored bridge, and modal analysis based on response
measurement data has not earlier been performed as of the writers knowledge. The
measurements presented in this work have been performed by wireless sensors from
Sercel, pictured in Figure 4.1a. The sensors measures triaxial response, that is x-,
y-, and z-direction. Communication with the sensors is done through a gateway by
either radio or WiFi-signals. The range on WiFi is limited, making measurements
using WiFi limited to only a few spans. This is, however, not a huge problem as the
number of available sensors is only 9.

The width is massive compared to the height of the bridge, creating a very large
sideways stiffness. Therefore one can assume that the horizontal modes are very little
excited in an OMA-setup. Sensor layout must be chosen to capture the expected
modes, which is vertical, torsional, and possibly pile modes. To differentiate the
vertical modes a sufficient number of sensors must be placed in each span. Torsional
modes are captured with sensors on both upstream and downstream side. Pile modes
are best detected by placing sensors on the piles. Sensors were only temporarily
placed without drilling. The best placement was therefore on deck, close to column
tops.

With only 9 sensors, and the limited WiFi range, multiple measurements must be
performed and merged to get a sensor layout tight enough. Given that the expected
modes should be detectable in only two spans it was chosen to measure on span 2 and
3 as shown in Figure 4.1c. There is as shown two setups consisting of the upstream
sensors, marked in blue, and the downstream, marked in orange. The numbers; [127,
128, 161, 226, 227, 230, 231, 249, 252], denotes sensor numbers, and their respective
location is the connected dot. Worth noting is the reference sensor, number 227, that
is kept at the upstream side during both recordings. This leads to only eight sensors
on the downstream side. Note also that the x-axis is perpendicular to the length axis,
due to the conventions of the sensors as seen in Figure 4.1a.

In this OMA setup, merging of measurements is achieved by merging each non-
simultaneous recording with the common reference sensor, i.e. 227. The reference
sensor is necessary because the mode shapes can not be normalized without in an
OMA context. The process of merging the data may follow the classic Post Separate
Estimation Re-scaling (PoSER) approach, the more refined Post Global Estimation
Re-scaling (PoGER) approach or the advanced Pre Global Estimation Re-scaling
(PreGER) approach. The details of these processes are more thoroughly discussed in
Reynders et al. (2010).

All in all, the difference between the three mentioned methods is when to
normalize and what to normalize. The PoSER is the most intuitive approach in the
sense that the MPE is performed on each measurement setup separately and
normalization and merging of the partial mode shapes is done as the final step.
With PoGER the block hankel matrices from each setup are stacked and MPE is
performed on the stacked matrix. Normalization is then performed just as with
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Figure 4.2: Power spectral density of down sampled signal.
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PoSER on the identified modes. PreGER normalizes the hankel matrices and stacks
them to one matrix. MPE is then performed on a combined system with no further
need of normalization.

Chosen in this work is PoSER, as it can be used with the SSI-COV-algorithm
of strid. This is beneficial as a manual analysis is easy to perform using the user
interface of . The difference between the algorithms may also be clearer when the
output of the different setups are to be merged. It is, however, a lot of bookkeeping
and special care must be taken when the data is normalized and merged.

The normalization process of PoSER, and PoGER, is really just scaling and
aligning the reference sensors so that the remaining DOFs in the mode shape of
each setup are in phase. A mode shape can be represented in a complex plot, as
shown with the shear frame in Figure 2.5. The scaling part is to normalize the
length of the reference sensors. Physically this means that the excitation is scaled to
be equal, as response is just a consequence of the applied loading. The alignment
part is rotating the reference sensors to point in the same direction. Physically this
means that the two setups are aligning in phase, i.e. reach max displacement at the
same time.

One of the major problems with the PoSER-approach is how to merge modes.
Most of the previously discussed criteria is not applicable anymore. The criteria
comparing mode shapes can not be used as it makes no sense comparing the mode
shape of the upstream and downstream side, unless the mode shape is symmetric, but
that information is not known beforehand. The damping estimation is as discussed in
the first study not very well estimated. The only good criteria left is then frequency,
and a limit of df < 1% is chosen in accordance with previously used criteria. It should
be noted that the limit is loose when not combined with other measures and closely
spaced modes may accidental be mixed.

The sampling frequencies of the sensors is 250 Hz by default. This is way higher
than the modes under investigation. From experience it has proven beneficial to down
sample the signal to remove high frequency content that are of little interest. To much
down sample is however not beneficial, as the excess modes when overestimating the
model order must be place somewhere. A down sampling factor q = 5 was therefore
chosen to give the sampling frequency of fs = 50Hz. The power spectral density is
plotted in Figure 4.2. The shape of the upstream and downstream measurement is in
general having the same shape, meaning that the excitation is near equal. To have
the same excitation is not necessary, but may improve the results as the scaling will
be smaller and finding the same modes will be easier. With different excitation one
may not find the same mode, making merging impossible.

To reduce the workload for the algorithms, all modes above 12Hz are removed.
This will remove some system modes, but most likely none that the algorithms are
able to detect well due to the noise at high frequencies. This is substantiated by the
power spectral density plot shown in Figure 4.2.
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Figure 4.3: Stabilization diagram of upstream and downstream side for both
Reynders’ and Yang’s.
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4.3 Results

The resulting stabilization diagrams after automatic clearing is shown in
Figure 4.3. The the rows and columns are denoting the measurement side and used
algorithm respectively. One can clearly see that Reynders’ identify more modes,
visually by more clusters of different colors. It is also clear that the upstream and
downstream side recording leads to different modes in the subspace identification
process, SSI-COV. There is consequently difference in which modes that is identified
modes. E.g. the mode at f 4.5 Hz is detected by both algorithms on the
downstream side, and appearing as one vertical line in stabilization diagram. On
the upstream side it is not detected, and appears only at some model orders.
Determining the source of the difference in detected modes can not be done by one
measurement. One can, however, state that minor changes to the excitation, noise
or any of the user specified parameters makes a notable difference in SSI-COV.

Both algorithms identifies a mode with frequency of 0.044 Hz at the upstream
side. This mode is not apparent on the downstream side, but there is one close at
f 0.062 Hz. These modes are discarded due to the low frequency. Finding a mode
with period of 1/0.05 = 20 s is not expected for this kind of bride.

By looking at the scatter of the modes in the frequency range between 7 and 12
hertz one can conclude that the noise levels compared to the excitation is to low to get
good results. This substantiate the simplification done by removing all modes above
12 Hz. Note also that the majority of modes not clustered is at higher frequencies, just
as assumed when determining the sampling frequency. A rule of thumb can therefore
be to have a sampling frequency of approximately 4 times the highest frequency of
interest.

The characteristics observed in the numerical studies, Section 3.2, is still present
and easily observable. The number of clusters is less for Yang than Reynders, and
the clusters are with less and more precise modes. This is observed by less clusters,
and missing modes in the vertically aligning clusters. E.g. The mode at 1.1 Hz.

Looking at the identified frequencies it is clear that some match, and others not.
A manual analysis is also performed after looking at the stabilization diagrams

shown in Figure 4.3. This gives a perception of which modes to look for. Combined
with user experience, and the possibility to compare the upstream and downstream
on split screen, this gives less modes detected on only one side. With manual picking
all but 2 modes are merged as shown in Table 4.1.
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River

(a) Mode 1 found with Reynders’.

River

(b) Mode 1 found with Yang’s.

River

(c) Mode 2 found with Reynders’.

River

(d) Mode 2 found with Yang’s.

River

(e) Mode 3 found manually.

Figure 4.4: Mode shape plot of first and second mode found with the algorithms and
mode three found with manual analysis.
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Table 4.1: Identified frequencies

Reynders Yang Manual
US DS Merg. US DS Merg. US DS Merg.

1 0.043 - - 0.044 - - 1.094 1.088 1.091
2 - 0.062 - 1.094 1.087 1.090 2.942 2.955 2.949
3 1.094 1.088 1.091 2.941 2.952 2.947 4.516 4.550 4.533
4 2.939 2.953 2.946 - 4.548 - 5.293 5.304 5.299
5 3.532 - - - 5.272 - 5.478 5.468 5.472
6 - 4.553 - 5.349 5.391 5.369 5.562 5.566 5.563
7 - 5.266 - 6.807 - - 5.979 6.002 5.990
8 5.356 5.391 5.373 - - - 6.839 6.829 6.834
9 - 5.510 - - - - 8.042 7.994 8.015
10 5.652 - - - - - 8.996 8.998 8.992
11 - 5.892 - - - - 9.555 - -
12 6.016 - - - - - - 9.657 -
13 - 6.208 - - - - - - -
14 6.811 6.805 6.808 - - - - - -
15 8.230 8.161 8.195 - - - - - -
16 - 8.732 - - - - - - -
17 - 8.818 - - - - - - -
18 9.019 - - - - - - - -
19 9.112 9.199 9.155 - - - - - -
20 10.462 10.411 10.436 - - - - - -
21 10.484 10.411 10.447 - - - - - -
22 11.619 - - - - - - - -

Table 4.1 confirms the differences from the stabilization diagrams. Reynders is in
total finding 14, and 15, modes for the upstream and downstream side respectively.
Yang identifies five for both sides. After merging, highlighted by grey rows, Reynders
identifies 8 different modes, Yang identifies 3 modes, and the manual analysis identifies
10 modes. The blue cells denote cells with equal frequencies in each row. This is the
case in row 20 and 21 where the same downstream mode has been merged twice. The
frequency of row 20 is closest, and may therefore by used. It must however be pointed
out that this mixing of closely spaced modes is the drawback of PoSER.

The manual analysis was performed by manually picking modes in the stabilization
diagram on split screen. This gives the possibility to look for the best match of each
diagram, and is the reason why all but two modes on the upstream and downstream
side in Table 4.1 has a match.

Figure 4.4 shows the first and second mode of Elgeseter bridge. These mode shapes
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River

(a) Mode 4 found by manual analysis.

River

(b) Mode 5 found by manual analysis.

Figure 4.5: Mode shape plot of third and fifth mode found manually.
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are clearly appearing as rigid body motions of the bridge deck, making this pile modes.
The piles are neither completely fixed nor totally free to rotate at the endpoints. By
analysing the expansion of the bridge it was calculated that the moments in the
foundation end is approximately 90% of the moments in the top end, according to
Thorenfeldt (2015). Comparing with the ratio between the theoretical mode shape
frequencies of the shear frame in the numerical study one obtains:

f2
f1

=
2.946

1.091
= 2.700

fT.2
fT.1

=
7.81

2.63
= 2.97 (4.1)

The ratio between the first and second mode has a deviation that may be due to the
difference in stiffness between the top and bottom.

The first vertical mode of multi span bridges is expected to look like the mode
shape in Figure 4.4e, and one can conclude that this mode is most likely the first
vertical mode of Elgeseter bridge. This mode was not detected by the automatic
algorithms, as previously discussed.

The fourth and fifth manual mode found is shown in Figures 4.5a and 4.5b. It is
clear that these modes are torsional movement involving vertical motion of the
bridge over the piles, which in most bridge analyses is assumed to be rigid. This
may be due to flex in the slender columns or in the foundation of the piles. The
piles are most likely in loose sediments or clay-material. Note also from Table 4.1
that there are possibly multiple modes in this frequency range, possibly different
torsional modes dependant on that are slightly different depending on the stiffness
of each column? Determining the actual mode shapes could therefore be an
interesting analysis.

To summarize this study one can conclude that automatic algorithms are not best
suited for merging of measurements with PoSER. This is due to the high precision
needed to get any modes merged. PreGER is likely better suited since merging is
done before the MPE, making the algorithms unaffected.

One can, however, state from this study that the differences observed in the
numerical study maintains for real life data, making the numerical study great for
testing future algorithms or methods without the need to do measurements outside.
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Chapter 5

Concluding remarks and further work

The automatic interpretation of the stabilization diagram is for most purposes well
performed by the algorithms suggested in Reynders et al. (2012) and Yang et al.
(2019). This is substantiated by analyses on real life data and artificial data.
Choosing which algorithm to use is a consideration depending on the desired results.

The steps of both algorithms are in general the same. With the implementation
done in this thesis, it is possible to combine every sub step of the algorithms. In
this way one can choose which filtering step, clustering step, and cluster filtering to
use. Observed in this study is that local outlier detection is increasing the quality
of the clusters, but not as much as the clustering method suggested by Yang, see
flowchart in Figure 2.11. The problem with the clustering method of Yang is that it
is to strict for some applications. The quality of the measurements must be higher
because new clusters are created if the deviation to previously created clusters are to
big. Combined with a fixed length threshold for the clusters this makes it unsuited for
applications with few good modes and where finding all modes is crucial, like SHM.
One possible quick fix it to apply the cluster filtering step of Reynders where the
clusters are partitioned into two by their length. This because some measurements
have less clear modes due to noise and little excitation making the fixed threshold
unsuited.

The general trend is that Reynders’ identifies more modes than Yang at the cost of
lower quality clusters. In an context where identifying modes is the most important,
Reynders’ is best suited. If only precise estimates is wanted, Yang’s is best suited.

Having performed numerous analyses on both real life and artificial data it is
clear that there are some main challenges before modal parameter estimation is fully
automatic. The interpretation of the stabilization diagram is fully automatic. The
outcome is, however, highly dependant on the quality of the input. This was the
case with the data from Elgeseter bridge where the manual analysis was able to find
more modes than the algorithms. The main challenge is therefore not the clustering
of modes, but rather getting high quality precise modes to cluster.

83



Concluding remarks and further work

+ High detection rate
+ Fast
+ Less dependent on high quality data
+ Good at low model orders

- Can be too optimistic
- Makes wrong detections
- Wide clusters
- Less good at closely spaced modes

Reynders’ algorithm

+ Accuracy
+ Consistency
+ Few wrong detections
+ Good with closely spaced modes

- Need high quality data to detect modes
- Need high model orders
- Clusters typically have short length
- Slow in current implementation

Yang’s algorithm

Figure 5.1: Most important findings.
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These challenges can be summarized as:

• Quantify the noise present, or better add anti-noise filters

• Determine the sampling frequency

• Determine the number of block rows

• Determine the model orders, especially the maximum model order

If the noise present were quantified, Yang could have adapted the length
threshold, i.e. much noise → few good modes → lower cluster length threshold, and
opposite. Measures about the assumed quality could also be possible with noise
levels determined. Even better would of course have been efficient noise filters.

Determination of sampling frequency is another tricky parameter. Throughout
the work of this thesis a rule of thumb with 4 times the highest expected
eigenfrequency seemed well suited. This should however be studied further.
Automation is one step further if the best sampling frequency could be determined
by a relation with the highest expected eigenfrequency. even if the expected highest
frequency must be given as an input. It may also be possible to determine the
highest frequency from the power spectral density of the input signal.

The problem with determining the number of block rows can be automated by
using the approximation given by Yang. Quantification of the performance with this
rule of thumb must then be performed. The same goes for determining the model
orders with the approximations given by Neu, Section 3.1.1. With increased
computational power this problem may vanish as massive over estimation is no
problem. However, heavily overestimating the model order leads to more spurious
modes to remove, and greater challenge for the algorithms. With the current
implementation, and under the tested applications, Yang is best suited when the
model order is heavily over estimated. This is substantiated by the surface plots in
Figure 3.4, and also the clustering technique; if modes are not fitting the current
clusters, new clusters are created. Reynders’ on the other hand, is grouping based
on distance between the elements, and with many elements there will certainly be
spurious modes near the cluster that accidentally are merged.

The most important findings about the two algorithms are summarized in
Figure 5.1.
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Appendices

The appendix to this thesis is delivered as a separate file in the submission.

The appendix contains:

• autostrid.py - implementation of the algorithms

• process - fs and order.py - Study 1 setup

• process - force.py - Study 2 setup

• Raw-data from sampling at Elgeseter bridge

For others interested in code or sampled data, make contact.
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