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Abstract

As an increasing amount of offshore platforms are passing their initially intended design
life, fatigue failure is responsible for a substantial amount of repairs in the North Sea. Over
the past couple of years, monitoring instruments has become increasingly accurate and
inexpensive, where, in addition to wave elevation, displacements of large structures can
be determined by using a limited number of sensors. By combining monitored data with
machine learning, a trained neural network may estimate the real-time fatigue damage,
and contribute to reduce the usage of finite element analyses.

This thesis presents a method on how a neural network can be built, trained and tested to
predict the accumulated fatigue damage, within reasonable accuracy, in critical joints on
a jacket platform located in the North Sea. The neural network was created by use of the
programming language Python, and more specifically through the libraries TensorFlow
and Keras.

To properly train- and test the neural network, labeled data needs to be constructed
through state-of-the-art fatigue damage calculation methods. For this purpose, a finite ele-
ment model and on-site measurements of structural displacements and waves was provided
by Aker BP. In addition, measurements of wind speed and -direction was extracted from
Meteorologisk institutt. Subsequently, a sufficient amount of dynamic time domain fatigue
simulations was performed in USFOS, on a stripped version of the original finite element
model. To apply site-relevant environmental actions, statistical evaluations of the mon-
itored wave elevation time-series and extracted wind speed was made. The labeled dataset
was constructed by combining the environmental actions with the statistical evaluations
of the simulated displacement mimicking the monitored. To optimize the training of the
neural network, data cleaning and -scaling was performed.

A quite simple feedforward neural network was developed, and provided promising indic-
ations that a feedforward neural network indeed is capable of quite accurate predictions
of fatigue damage, based on a finite element model subjected to both irregular waves and
wind from different headings. The robustness was confirmed by evaluating predictions
made with different types of activation functions and optimizers, in addition to removal of
certain input features. For the applied neural network, data scaling and removal of outliers
was a prerequisite to obtain accurate results. Hence, the limitation in terms of industrial
application seems to lie within the accuracy of the performed finite element analyses and
fatigue calculations.
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Sammendrag

Som en konsekvens av at et økende antall offshore-plattformer passerer sin initielt tilten-
kte levetid, er utmattingssvikt ansvarlig for et betydelig antall reparasjoner i Nordsjøen. I
løpet av de siste årene har monitoreringsinstrumenter blitt stadig mer nøyaktige og rime-
lige, hvor man, i tillegg til bølgehøyde, kan m̊ale forskyvninger til store strukturer ved bruk
av et begrenset antall sensorer. Ved å kombinere monitorerte data med maskinlæring kan
behovet for elementmetodeanalyser reduseres, og et trent nevralt nettverk kan estimere
utmattingsskader i sanntid.

Denne oppgaven presenterer en metode for hvordan et nevralt nettverk kan bygges, trenes
og testes for å predikere akkumulert utmattingsskade, rimelig nøyaktig, i kritiske knute-
punkt p̊a en jacket-plattform lokalisert i Nordsjøen. Det nevrale nettverket ble laget ved
bruk av programmeringsspr̊aket Python, og mer spesifikt gjennom bibliotekene Tensor-
Flow og Keras.

For å trene og teste det nevrale nettverket, m̊a merket data konstrueres ved hjelp av mod-
erne metoder for beregning av utmattingsskader. For dette form̊alet ble en elementmodell
samt m̊alinger av strukturelle forskyvninger og bølgehøyde levert av Aker BP. I tillegg ble
m̊alinger av vindstyrke og -retning hentet ut fra Meteorologisk institutt. Et tilstrekke-
lig antall dynamiske utmattingssimuleringer i tidsdomenet ble utført i USFOS, p̊a en
strippet versjon av den originale elementmodellen. For å p̊aføre modellen stedsrelevante
miljølaster ble det utført statistiske evalueringer av monitorert bølgehøyde og uthentet
vindhastighet. Det merkede datasettet ble konstruert gjennom å kombinere miljølastene
og statistiske evalueringer av de simulerte forskyvningene som etterlignet de monitorerte.
For å optimalisere treningen av det nevrale nettverket ble det foretatt datarensing og
-skalering.

Et fremovermatende nevralt nettverk ble laget, og ga gode indikasjoner p̊a at et nevralt
nettverk er i stand til ganske nøyaktige prediksjoner av utmattingsskader, basert p̊a en
elementmodell p̊aført b̊ade irregulære bølger og vind fra forskjellige retninger. Robus-
theten ble bekreftet gjennom evaluering av prediksjoner gjort ved bruk av ulike typer
aktiveringsfunksjoner og optimeringsmetoder, i tillegg til fjerning av enkelte inputverdier.
For det anvendte nevrale nettverket var dataskalering og fjerning av avvik en forutsetning
for å oppn̊a nøyaktige resultater. Det later derfor til at begrensningen n̊ar det gjelder
eventuell bruk i industrien ligger i nøyaktigheten av de utførte elementmodellanalysene og
utmattingsberegningene.
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2.4 Geometrical definitions for a common tubular joint (DNV, 2014). . . . . . . 15

2.5 The hot-spots around the periphery of the weld connection where the stresses
are superimposed (DNV, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Closed hysteresis loop formed by rainflow counting of stress-strain cycles
(Musallam and Johnson, 2012). . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Visual representation of class hierarchy: AI, ML and DL (Holzinger et al.,
2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Fully connected FFNN (Vieira et al., 2017). . . . . . . . . . . . . . . . . . . 20

2.9 Connection of a single neuron in a NN (Vieira et al., 2017). . . . . . . . . . 20

2.10 Visual representation of ML-model fitting . . . . . . . . . . . . . . . . . . . 23

3.1 Flow chart summarizing the applied method. . . . . . . . . . . . . . . . . . 25

3.2 FEMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Sensor locations in model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 General example of damping ratio as a function of eigenfrequency (Langen,
1999). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Scatter diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Hourly wind direction and -speed for January 2021 . . . . . . . . . . . . . . 33

3.7 Displacement comparison in x-direction for sensor 1. . . . . . . . . . . . . . 38

3.8 Displacement comparison in y-direction for sensor 1. . . . . . . . . . . . . . 38

xiii



List of Figures

3.9 Displacement comparison in x-direction for sensor 2 . . . . . . . . . . . . . 39

3.10 Displacement comparison in y-direction for sensor 2 . . . . . . . . . . . . . 39

3.11 Weibull probability paper example, sensor node 1 . . . . . . . . . . . . . . . 43

3.12 Weibull probability paper example, sensor node 2 . . . . . . . . . . . . . . . 43

3.13 Weibull probability paper example, sensor 1 . . . . . . . . . . . . . . . . . . 44

3.14 Weibull probability paper example, sensor 2 . . . . . . . . . . . . . . . . . . 44

3.15 Unscaled fatigue damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.16 Correlation matrix of the jacket fatigue damage dataset. . . . . . . . . . . . 49

3.17 ML-model results for 750 epochs. . . . . . . . . . . . . . . . . . . . . . . . . 51

3.18 ML-model results for 950 epochs. . . . . . . . . . . . . . . . . . . . . . . . . 52

3.19 ML-model results for 950 epochs. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.20 The best obtained predictions with unscaled fatigue damage . . . . . . . . . 55

4.1 ML-model performance with all input features. . . . . . . . . . . . . . . . . 57

4.2 ML-Model performance without Weibull parameters from sensor node 2 . . 58

4.3 ML-Model performance without wave direction . . . . . . . . . . . . . . . . 58

4.4 ML-model performance without wave direction and Weibull parameters
from sensor node 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Predicted- and simulated yearly fatigue damage versus sample number on
the test set, with wave direction excluded from the input features . . . . . . 59

4.6 ML-model accuracy and -loss as a function of epochs, with wave direction
excluded from the input features . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Predicted fatigue damage for each joint during January 2021. . . . . . . . . 61

A.1 ML-model accuracy and -loss with all input features. . . . . . . . . . . . . . I

A.2 ML-model accuracy and -loss without Weibull parameters from sensor node
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

A.3 ML-model accuracy and -loss without Weibull parameters from sensor node
2 and wave direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

B.1 Predicted fatigue damage values versus sample number on the test set, with
all input features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

B.2 Predicted fatigue damage values versus sample number on the test set,
without Weibull parameters from sensor node 2 . . . . . . . . . . . . . . . . IV

B.3 Predicted fatigue damage values versus sample number on the test set,
without Weibull parameters from sensor node 2 or wave direction . . . . . . V

xiv



List of Figures

C.1 Scatter table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

D.1 Min/Max displacements January 2021 . . . . . . . . . . . . . . . . . . . . . IX

xv





List of Tables

3.1 Sensor coordinates in the model coordinate system . . . . . . . . . . . . . . 27

3.2 Pile stiffness matrix for fatigue condition . . . . . . . . . . . . . . . . . . . . 28

3.3 Topside mass for fatigue condition . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Drag- and inertia coefficients for the main jacket structure and conductors . 30

3.5 Wind speed scaling factors for wind with 0 degree heading and 90 degree
heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Environmental conditions used for the simulations . . . . . . . . . . . . . . 37

3.7 Environmental conditions used for the simulation comparing measured and
simulated displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Connection between joint indexation for data tabulation and nodes in US-
FOS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 T-curve for tubular joints in seawater with cathodic protection (DNV, 2014). 40

3.10 Description of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 Layer characteristics of model. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.12 Results from experimenting with the optimal number of epochs . . . . . . . 51

3.13 Experimenting with tanh as activation function . . . . . . . . . . . . . . . . 52

3.14 Experimenting with RMSProp as optimizer . . . . . . . . . . . . . . . . . . 53

3.15 Layer characteristics of ML-model applied on unscaled fatigue damage. . . . 55

4.1 Final ML-model loss with different input features from the validation data.
The loss is calculated with respect to the scaled fatigue damage. . . . . . . 60

4.2 Predicted accumulated fatigue damage for each connection during January
2021. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xvii





Nomenclature

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

CDF Cumulative Distribution Function

DL Deep Learning

DNV Det Norske Veritas

FEA Finite Element Analysis

FEM Finite Element Model

FFNN Feedforward Neural Network

FFT Fast Fourier transform

FLS Fatigue Limit State

GPS Global Positioning System

MAE Mean absolute error

MDOF Multiple Degree of Freedom

ML Machine Learning

MSE Mean squared error

NN Neural Network

NTNU Norwegian University of Science and Technology

SCF Stress Concentration Factor

SDOF Single Degree of Freedom

SHM Structural Health Monitoring

SN Stress-cycle relationship

ULS Ultimate Limit State

xix



Nomenclature

Fatigue symbols
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Chapter 1

Introduction

1.1 Background and motivation

From an economical perspective it is often considered beneficial to extend the lifetime
of already existing platforms. As a result, an increasing amount of offshore platforms
are passing their intended design life. Knowing that fatigue failure is responsible for a
substantial amount of repairs in the North Sea, it is a vital assessment to ensure structural
integrity (Stacey and Sharp, 1997).

Structural integrity management needs to be performed regularly by the operator to ensure
safety on offshore jacket platforms, which can be done by inspections of the exposed
platform joints and/or monitoring. Lack of accessibility inside parts of the underwater
jacket structure provides a need for inspections to be performed from the outside by
divers or remotely operated vehicles, causing high inspection cost per joint (Moan, 2005).
Continuous measurement of accelerations through one or several accelerometers may be
used to discover structural defects by considering severe changes in response spectra, which
implies that small defects as small cracks will not be captured.

Characteristic for offshore structures are the exposure to cyclic loads as a consequence of
incoming wind, current and waves. Therefore, fatigue performance of the welded joints in
a jacket structure is a design driving criterion (Dong et al., 2012). The current practice is
to calculate the damage contribution by use of appropriate SN-curves and stress concentra-
tion factors (SCFs) for specific structural details. In order to do so, the hot-spot stresses
needs to be found through finite element analysis (FEA). Currently, linear approaches are
often applied, because nonlinear approaches are complex and computationally demand-
ing (Shabakhty and Khansari, 2019). Nevertheless, traditional frequency domain analyses
cannot properly handle nonlinear effects from multiple sources (Jia et al., 2008).

1.2 Literature review

This section aims to cover the state-of-the-art methods considered especially relevant to
quantify the fatigue damage of a jacket structure subjected to dynamic loading, and sub-
sequently estimate the fatigue damage by use of machine learning (ML). Firstly, methods
on fatigue calculation will be presented. Secondly, some literature on how properties of
monitoring equipment influences the acceleration measurements will be covered. Lastly,
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1. Introduction

research providing information on how ML can be used for fatigue assessment will be
presented.

1.2.1 Finite element analyses for fatigue damage

State-of-the-art methods for fatigue calculation

Random loads are inherent in offshore structures due to wave loading. The resulting fatigue
damage takes the form of a multi-step process. Hot-spot stresses at critical locations are
derived though superimposing the contribution from axial-, in-plane- and out-of-plane
actions (Dong et al., 2012). The hot-spot stress can be defined through FEA of the
structure, and quantified in terms of a SCF before the time domain analyses takes place
(Potvin et al., 1977).

Subsequently, time domain analyses needs to be performed to quantify the stress ranges in
various representative environmental conditions in the long term period. The stress ranges
are sorted into bins, normally by use of Rainflow counting (Chaudhury and Dover, 1985),
and the fatigue damage is determined through application of appropriate SN-curves and
Miner summation (Moan, 2005).

Quantification of stress concentration factors

The ability to quantify the SCFs is a prerequisite to assess fatigue damage in a sufficient
manner. For some tubular joints, the maximum stress at the hot-spot can be 20 times
as high as the nominal stress (Potvin et al., 1977). Modern methods of determining
SCF’s utilizes FEA with very fine mesh consisting of shell elements. N’Diaye et al. (2007)
investigated how the SCF varied in the vicinity of the weld fillet in a tubular T-joint
subjected to both static and cyclic loading, and obtained results which compared well
with similar studies. They concluded that the SCF was higher on the brace- than the
chord member, with a maximum obtained SCF on the brace equal to 9.62.

Figure 1.1: Variations of SCF across the brace fillet weld with respect to angular position,
Φ, originated at the crown toe point, for axial-, in-plane- and out-of-plane loading (N’Diaye
et al., 2007).

2



1.2. Literature review

For multi-planar tubular DKT-joints, Ahmadi and Lotfollahi-Yaghin (2013) found that
the SCF generally was significantly higher in the middle brace than in the outer braces.

Dynamic time domain finite element analyses

Mendes et al. (2021) performed both static- and dynamic analyses on a jacket structure,
and concluded that the dynamic analysis provided slightly higher fatigue damage to the
structure in general, but not all parts. For the dynamic analyses, several investigations
of both linear and non-linear dynamic behavior of jacket-type platforms was performed.
Among them, several shown that the motions for jacket structures typically are small, and
that Morison’s formula sufficiently predicts the quasi-static loads subjected to the jacket
(Shabakhty and Khansari, 2019).

Jia et al. (2008) evaluated fatigue of a jacket through nonlinear time domain analyses for
cases where the pile-soil information were both present and unavailable. They found that
among the selected positions, the fatigue damage decreased with increasing water depth,
and that the most critical joints were located roughly around 11 m below the still water
level. Therefore, for a tall jacket platform with a natural flexural period of above 3.5 s,
fully fixed boundary conditions proved sufficiently accurate for fatigue damage assessment
on the upper part. The study also found that inertia effects of the structure, topside
installations and equipment, influenced the fatigue damage significantly. Their analysis
procedure is summarized below:

1. Establish the finite element model (FEM).

2. Divide scatter diagram into representative sea states.

22 blocks with relevant probability.

8 wave directions with relevant probability.

3. Set up damping model for the structure.

4. Include hydrodynamic coefficients, Cd and Cm, include buoyancy effects and define
the splash zone.

5. Dynamic analyses.

Start with the first sea state and wave direction, and proceed through the 176
analyses.

Document the force-time history for selected elements.

6. Calculate the SCFs.

7. Pick a suitable SN-curve.

8. Calculate the fatigue damage for each sea state from the force-time histories.

Calculate hot-spot stresses.

Calculate stress ranges and number of cycles using Rainflow counting.

9. Calculate the one year fatigue damage for each hot-spot of a joint.

10. The respective damages for the 176 sea states are multiplied with the probability
for each sea state and accumulated to the one year fatigue damage. The maximum
damage among those hot-spots are selected as the one year fatigue damage.

11. subtract the prior installation and service damage.
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1.2.2 Fatigue estimations through machine learning

As computational power has increased dramatically over the past couple of years, ML has
become more viable to use. Therefore, it is appropriate to explore the influence of ML for
the offshore industry. Yan et al. (2019) used ML to perform a probabilistic fatigue analysis
of a bridge subjected to truck loading. Initially, the deterministic responses of the bridge
during overloading was found by use of FEA in ANSYS. Subsequently, a feedforward neural
network (FFNN) was developed, trained and tested to be used in combination with Monte
Carlo simulations to predict the fatigue failure probability. Monte Carlo simulations was
used to create additional data, with a limited amount of FEA. The achieved ML results
corresponded very well with the computed FEA results, with a maximum absolute error
of about 0.35%.

Luna et al. (2020) trained and tested different artificial neural networks (ANNs) to reduce
the tower fatigue damage on an onshore wind turbine subjected to wind load. The input
for the ANNs was received data from the tower top oscillation velocity and the feedback
loop providing the expected instantaneous damage. The resulting fatigue damage was
the output. The hyperbolic tangent function was as activation function for the hidden
layers, and a 80%-20% split between test data and validation data was used. While
determination of the optimal architecture of the neural network (NN) was beyond the
scope of the paper, computational power was a limitation, and it was of importance to
minimize the complexity of the ANN while still maintaining good accuracy. They found
that nonlinear autoregressive networks with exogenous input was the best option to predict
the tower fatigue, and obtained accurate results for estimated fatigue damage.

To achieve accurate results, they found it important to filter for outliers as they may
originate from noise, and contribute to false trends. Although the ML-model showed
promising results with wind speed and damage correction through feedback as the only
input, they concluded that additional input features could help improving the results.

Figueiredo et al. (2011) used ML-algorithms to detect structural damage undergoing
operational- and environmental variability. As data from most structures only are avail-
able from the undamaged condition, they sought to utilize unsupervised learning allowing
acceleration time-series to be the only input. One of the algorithms was a combina-
tion of supervised learning and unsupervised learning, so called semi-supervised learning.
Supervised learning should obtain the environmental- and operational conditions, while
unsupervised learning should detect damage. The accuracy of the model when applied
new data was uncertain, and the behaviour of the model if any structural damage should
change the dynamic response was also unclear.

1.2.3 Structural health monitoring

Monitoring instruments has in recent years become increasingly accurate and inexpensive,
relatively speaking, and thus more viable to use for assessment of structural integrity.
Structural monitoring systems of offshore structures usually consists of a set of sensors,
such as GPS’s, wave radars and accelerometers. Displacements of large structures can be
determined by using a limited number of sensors, typically located on the topside to ease
the installation, measuring velocities or accelerations. According to Hansen et al. (2011),
well-designed sensors are capable of providing accurate information for frequencies above
0.1 Hz, which is quite accurate, but also prevents capture of the complete response. Even
though monitoring of offshore structures has proven to be increasingly accurate, a perfect
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method is yet to be established (Tang et al., 2015). In relation to offshore structures,
monitoring can be used to assess typical finite element input parameters influencing the
modal parameters as mass, center of gravity (CoG), damping and various stiffnesses:
element, joint and soil.

Noise

The quality of the signal will inevitably reduce as inherent noise and processing noise are
introduced. In general, any signal from an integrated sensor signal can be expressed as
the sum between the true acceleration signal, Ẍ0, and the polluted uncorrelated noise, N
(Hansen et al., 2011). In the frequency domain, where ω is the angular frequency, the
equation for an acceleration signal becomes:

Ẍ(ω) = Ẍ0(ω) +N(ω) (1.1)

In many situations it is desirable to integrate the acceleration to quantify the velocity
and displacements. The consequence of performing integration on Equation 1.1 is that
the noise gets amplified as a function of ω, where frequencies close to direct current are
particularly exposed. Hence, filtering algorithms are applied to minimize the influence of
the noise (Hansen et al., 2011).

Axioms of structural health monitoring

In relation to the development of structural health monitoring (SHM), some fundamental
axioms for SHM has been established. The axioms considered relevant for this thesis are
summarized below (Worden et al., 2007):

• Axiom II. Damage assessment requires a comparison between two system states.

• Axiom III: Identification of damage existence and -location can be done by an un-
supervised ML-model, while the severity can generally only be done by supervised
models.

• Axiom IVa: Sensors are incapable of measuring damage.

• Axiom V: The required properties of the SHM are dictated by the time-scales asso-
ciated with damage initiation and evolution.

• Axiom VI: There is a trade-off between an algorithms damage sensitivity and noise
rejection capability.

• Axiom VII: The magnitude of the detectable damage due to changes in the system
is inversely proportional to frequency range of excitation.
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1.3 Objectives

This Master’s thesis aims to investigate whether it is possible to build and train a su-
pervised ML-model to calculate the accumulated fatigue damage of a jacket structure
on real-time monitored data within acceptable accuracy. Today’s standard approach re-
quires time-consuming FEA in the time domain to properly assess the accumulated fatigue
damage. Although a supervised ML-model consisting of a NN needs tailored FEA to gen-
erate a dataset used for training and testing, only a limited amount has to be performed,
consequently decreasing the long-term time consumption.

In order to obtain accurate predictions, the NN needs to be trained on a sufficient data-
set. Hence, the thesis further aims to develop a possible tabulation method by use of a
calibrated FEM and on-site measurements of structural accelerations, waves and wind. A
prerequisite for the information contained in the dataset is that it should be accessible
directly from on-site measurements, and that no information available only through sim-
ulations should be included. The NN should take in statistical properties of the measured
waves, -displacements and wind, as well as joint- and connection indexations, and return
the one-year fatigue damage given the experienced sea state.

1.4 Thesis outline

• Chapter 2 introduces relevant theory within dynamic time domain simulations in
USFOS, fatigue of tubular joints and ML.

• Chapter 3 describes the applied method to create the dataset used for training and
testing, and the development of the ML-model. In addition, intermediate results
supported by directly applied theory and immediate observations will be presented
and discussed.

• Chapter 4 presents the results obtained from training and testing the NN, including
discussion of the obtained results and applied method.

• Chapter 5 provides a conclusion based on the results and discussion, and lastly
recommends further work.
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Chapter 2

Theory

In order to create and evaluate the results properly, it is important to be aware of the
calculation techniques utilized in this thesis. Initially, this section aims to provide the
necessary theoretical background on how time domain simulations are performed in US-
FOS. Subsequently, the theory describing how fatigue calculations are performed in the
USFOS-module Fatal is presented. Lastly, relevant theory explaining fundamental ML
concepts will be covered.

2.1 Basis for USFOS fatigue analysis

2.1.1 Dynamic equation of motion

The motion of a multiple degree of freedom (MDOF) system of sizeN subjected to external
loading can be described by the dynamic equation of motion in Equation 2.1.

Mẍ(t) +Cẋ(t) +Kx(t) = F (t) (2.1)

Here, M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F is the
load vector and x is the displacement vector. Equation 2.1 can be solved both in the time
domain and in the frequency domain. However, solutions in the frequency domain requires
linearity, and cannot properly handle nonlinear effects. In the time domain, the solution
procedure can be done either by numerical integration methods or difference formulations
of N uncoupled equations.

2.1.2 Finite element modelling

Jacket structures are usually modelled by beam elements (Amdahl, 2009). As illustrated
in Figure 2.1, the general three dimensional beam element in USFOS consists of one node
at each end, where each node contains three translational- and three rotational degrees of
freedom.
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Figure 2.1: General three dimensional beam element in USFOS (Søreide et al., 1994).

An advantage in USFOS which reduces the computational effort is that large, complex
structures can be modelled by relatively few elements, since the structural members often
are modelled by a single element. However, a consequence is that geometrical nonlinearities
on element level are needed in order to account for local collapse modes.

The USFOS analysis model is called the Idealized Structural Unit method, and is based
upon the updated Lagrangian formulation on a global level. This implies that the element
reference axes are updated, for each time step, throughout deformation. In other words,
the discrete equations are based on the current deformation. As a result of the sparse
number of beam elements, large deflections are incorporated by second-order strain terms
on element level, meaning that a total Lagrangian formulation is implemented locally
(Søreide et al., 1994).

The total Lagrangian formulation is characterized by utilizing Green strain, implying that
the corresponding stress component is the 2nd Piola-Kirchhoff stress (Moan, 2003). The
Green strain, Ex, is given in Equation 2.2, where ds and ds0 are infinitesimal line segments
in current and initial configuration, respectively.

Ex =
ds2 − ds20

2ds20
(2.2)

Utilizing the engineering strain given in Equation 2.3, the Green strain can be rewritten
according to Equation 2.4.

εx =
ds− ds0

ds0
(2.3)

Ex = εx +
1

2
ε2x (2.4)

2.1.3 Time domain method

Dynamic time domain analyses can be performed by defining a time period and a time
increment, ∆t. The time increment is usually set to be constant during the entire time
period, such that ∆t = c. Numerical stability is ensured as long as the time increment is
less than a prescribed fraction of the eigenperiod of the structure. The solution procedure
for each time step takes place through assuming a certain behaviour of the motion, where
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the solution accuracy is inversely proportional to the length of the time increment. The
consequence is that the time domain method is computationally demanding, but versatile
in the sense that it is able to capture nonlinear effects.

Numerical Integration

Consider the time dependent equation of motion for a single degree of freedom (SDOF)
system, given in Equation 2.5

mẍ(t) + cẋ(t) + kx(t) = F (t), (2.5)

where the force, F (t), is a continuous function with angular frequency ω and phase ϕ:

F (t) = F0sin(ωt+ ϕ) =

n∑
j=1

F0,jsin(ωjt+ ϕj) (2.6)

The principle is that dynamic equilibrium is found between discrete points between the
current time step, i, and the next time step, (i+ 1). Dynamic equilibrium states that the
acceleration, ẍi+1, needs to satisfy Equation 2.7.

ẍi+1 =
1

m
(Fi+1 − cẋi+1 − kxi+1), (2.7)

where xi, ẋi, ẍi, Fi and Fi+1 are known. Common for all methods based on numerical
integration is that velocity and displacement are found by integrating the acceleration
twice:

ẋi+1 = ẋi +

∫ c

0
ẍ(t)dt (2.8)

xi+1 = xi +

∫ c

0
ẋ(t)dt (2.9)

Subsequently, an assumption needs to be made regarding how the acceleration will vary
over the interval, and thereby allowing computation of Equation 2.8 and Equation 2.9.
The numerical time integration in USFOS is based on the HHT-α method, and the reader
is referred to Chapter 14.4 in the USFOS theory manual (Søreide et al., 1994). Solving
the MDOF system of size N in Equation 2.1 is equivalent to solving the N uncoupled
equations by the method described above (Langen, 1999).
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2.1.4 Irregular waves

For time domain fatigue simulations, irregular waves tends to give the best representation
of reality (USFOS, 2010). Irregular sea is generated by superimposing a finite set of
discrete regular waves. This is illustrated in Figure 2.2.

Figure 2.2: Illustration of irregular waves composed by superposition of regular waves
(USFOS, 2010).

The superimposing of regular waves is done through Fast Fourier Transform (FFT) of the
wave energy spectrum. Mathematically, this becomes as in Equation 2.10.

ζ(x, y, t) =
N∑
j=1

ζa,jcos (ωjt− kjcos(βx)− kjsin(βy)− ϕj) (2.10)

where:

• ζ is the surface elevation at coordinate (x, y) and time t.

• ζa,j is the amplitude of harmonic wave component j.

• kj is the wave number for wave component j.

• ϕj is the random phase angle, uniformly distributed between 0 and 2π, for wave
component j.

• β is the direction of the wave components.
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2.1.5 Spectral density

The total energy, E, in a sea state, accumulated by adding N harmonic wave components,
is given by Equation 2.11, where ρ is the water density and g is the gravity acceleration.

E

ρg
=

N∑
n=1

1

2
ζ2a,n(ωn) (2.11)

By introducing a wave spectrum, Sζζ(ω), the area inside a small frequency interval, ∆ω, is
equal to the energy of all the wave components within this frequency interval (Myrhaug,
2019):

1

2
ζ2a,n = Sζζ(ωn)∆ω (2.12)

By inserting Equation 2.12 in Equation 2.11, and let N →∞ such that ∆ω → 0, the total
energy can be rewritten according to Equation 2.13.

E

ρg
=

N∑
n=1

Sζζ(ωn)∆ω =

∫ ∞

0
Sζζ(ωn)∆ω (2.13)

2.1.6 Morison force calculation

Wave loads are calculated by use of Morison’s equation, which provides the wave force on
a slender fixed cylindrical element. The equation is composed of a linear inertia-term and
a second order nonlinear drag-term. For a small element with length ds, the corresponding
force, dF , becomes as in Equation 2.14:

dF =

{
ρ
π

4
d2Cman +

1

2
ρCddun|un|

}
ds (2.14)

where ρ is the water density, d is the diameter of the cylinder, Cm is the inertia coefficient
included added mass, an is the water particle acceleration normal to the pipe longitudinal
axis, Cd is the drag coefficient and un is the water particle velocity normal to the pipe
longitudinal axis.

It is important to emphasize that Equation 2.14 is only sufficiently accurate for slender
members, defined as λw

d > 5, where λw is the wavelength. This criterion is generally
fulfilled by jacket structures, including the one used in this thesis. According to linear
theory, deep water is defined as λw

h < 1
2 , where h is the water depth. With a maximum

wave period allowed for the simulations, Tmax = 18 s, deep water cannot reasonably be
assumed for all wave periods. Therefore, the definitions of the wave number, k, and the
dispersion relation becomes as shown in Equation 2.15 and Equation 2.16, respectively.

k =
2π

λw
(2.15)
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ω2 =

(
2π

T

)2

= kg · tanh(kh) (2.16)

Here, ω is the angular frequency and g is the gravity acceleration. The solution for λw in
Equation 2.16 needs to be found iteratively. By considering the wave period used as the
lower limit for the simulations, Tmin = 4 s, gives λw = 24.8 m. Knowing that the largest
diameter used in the jacket model is 3.2 m, the minimum wave length to diameter ratio
becomes as shown in Equation 2.17.

λw

d
=

24.8

3.2
= 7.8 > 5 (2.17)

For non-slender members however, diffraction forces becomes important (Pettersen, 2007).
The total force acting on a structural member is found by integrating Equation 2.14 over
the member length along the longitudinal axis. The total hydrodynamic loads acting
on the structure are integrated from the sea bottom to the instantaneous wetted surface
(USFOS, 2010).
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2.2 Fatigue of welded tubular joints

Fatigue damage is caused by cyclic loads over time, usually causing stresses smaller than
the yield strength of the material, and is therefore a cycle by cycle process of damage
accumulation. Fatigue damage becomes important for offshore structures, as the cyclic
behaviour of waves contributes to a large degree of dynamic loading. In fatigue assessments
of tubular joints, only the dynamic loading from the braces is considered, and the stresses
in the chord are neglected. This is because the chord in most cases is subjected to static
loading, whereas environmental dynamic forces governs the brace loading (Berge and Ås,
2017). Cyclic stress loading acting on a structural component, following a sinusoidal
pattern, can be described by the parameters shown in Figure 2.3.

Smax = Maximum stress in a cycle

Smin = Minimum stress in a cycle

Sm = Mean stress in a cycle

Figure 2.3: Cyclic load history with symbols (Berge and Ås, 2017).

From Figure 2.3 it can also be seen that the stress range is defined according to Equa-
tion 2.18, while the stress ratio, commonly called the R-ratio, is defined as in Equation 2.19.

∆S = Smax − Smin (2.18)

R =
Smin

Smax
(2.19)

Utilizing Equation 2.18 and Equation 2.19, the mean stress can be expressed as in Equa-
tion 2.20.

Sm =
∆S

2

(
R+ 1

R− 1

)
(2.20)

The stress range is often the primary contributor to fatigue damage, while the mean
stress is considered secondary. Increased tensile mean stress, composed of both residual
stresses and stresses induced by external load, lowers the fatigue strength of the structure.
According to Berge and Ås (2017), residual stresses in welded structures are found to
be large. For welds transverse to the loading axis, in which the whole cross-section is
heated simultaneously during the welding process, specimen used for SN-testing struggles
to accurately represent residual stresses of full scale structures. A relaxation of the residual
stresses will happen for large stress ranges, as the hot-spot stress cannot exceed the yield
stress of the material. Residual stresses will therefore be more important for high-cycle
fatigue (Zhang and Moan, 2006).
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For offshore structures, the fatigue stresses tends to be in the high-cycle range, from around
105 to 107 cycles, where the stresses are elastic. The low-cycle range is less important, and
generally not given in design standards. In the high-cycle range strain-cycle data tends
to follow a log-linear relationship, seen in Equation 2.21, commonly denoted the SN-curve
(Berge and Ås, 2017).

N(∆S)m = Constant (2.21)

Here, N denotes the number of cycles to failure and ∆S is the constant amplitude stress
range. Plotted on a log-log format, Equation 2.21 becomes a straight line where m is the
negative inverse slope. A fatigue limit may occasionally be defined, implying that stress
ranges below this threshold does not contribute to fatigue damage.

2.2.1 SN-curves for welded tubular joints

SN-curves are found from analysis on test data, and given as two standard deviations
below the mean regression line to ensure conservatism. The standard equation for an SN-
curve for tubular joints in seawater with cathodic protection, plotted on a log-log format,
is given according to Equation 2.22 where ā is the intercept between the design SN-curve
and log(N) axis.

logN = logā−m

[
∆S

(
t

tref

)k
]

(2.22)

The difference relative to Equation 2.21 is the thickness correction term, where t is the
thickness of the tube to be studied, tref is the reference thickness proposed by DNV as
16 mm for tubular joints, and k is the thickness exponent1 determined from the weld
classification (DNV, 2014). Note that the correction term in Equation 2.22 entails that a
solitary thickness increase of the fatigued specimen causes a decrease in fatigue strength.

The SN-curve depends heavily on the weld details. Smooth surfaces without sharp notches
and non-welded details will generally provide better structural integrity in terms of fatigue.
DNV RP-C203 proposes different classes for the welds based on considerations of the weld
itself, geometrical properties of the local structure and local direction of the load (DNV,
2014).

1Only applied as a reduction factor. Not used for t > tref (Berge and Ås, 2017).
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2.2.2 Stress concentration factor

In order to investigate how stress is distributed through critical areas of the jacket struc-
ture, it is crucial to understand what a SCF is. The SCF is defined as the scaling factor
between the nominal stress, σnom, and the maximum local stress, σmax, which implies
that the stress experienced at a given location differs from what it would have been if the
structure was uniform. This can be seen in Equation 2.23:

SCF =
σmax

σnom
(2.23)

The SCF can be divided into a global and a local SCF, whereas for a jacket structure, the
global SCF is of most interest. In other words, the peak stress from the weld geometry is
of minor significance (Berge and Ås, 2017).

The global SCF is due to sudden changes in geometry, and varies with load type and
-direction, the joint types and geometrical properties of the joints. The local SCF follows
directly from the weld classification, and is included in the tabulated SN-curve seen in
Table 3.9. Subsequently, the total SCF is given as the product between the global- and
local SCF:

SCFtotal = SCFglobal · SCFlocal (2.24)

Although state-of-the-art methods utilizes FEA to determine SCFs, it can be very time
consuming. DNV provides equations for determination of SCFs for tubular joints, based
on the parameters seen in Figure 2.4. The geometrical parameters used to quantify the
SCFs are defined in Equation 2.25.

Figure 2.4: Geometrical definitions for a common tubular joint (DNV, 2014).

β =
d

D
, α =

2L

D
, γ =

D

2T
, τ =

t

T
, ζ =

g

D
(2.25)

Here, L is the length of the chord section considered a part of the joint and θ is the angle
between the brace and chord. Although the equations in Equation 2.25 are a useful tool,
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2. Theory

they are only valid in the ranges given in Equation 2.26.

0.2 ≤ β ≤ 1.0

0.2 ≤ τ ≤ 1.0

8 ≤ γ ≤ 32

4 ≤ α ≤ 40

20° ≤ θ ≤ 90°
−0.6β
sinθ

≤ ζ ≤ 1.0

(2.26)

For each brace connected to the chord in a joint, the SCF should be evaluated at both
the crown and the saddle. The maximum obtained SCF should then be set as the SCF
around the whole brace-chord intersection and used for further stress calculations.

2.2.3 Hot-spot stress in tubular joints

It is the hot-spot stresses that are used in conjunction with the appropriate SN-curves
to calculate the fatigue damage. Similarly to the calculations of SCFs, hot-spot stresses
are usually determined through FEA. However, DNV-RP-C203 proposes an alternative
procedure, where the stresses are calculated at the crown and saddle points by parametric
equations. The corresponding hot-spot stress is found by direct summation of the single
stress components from axial-, in-plane- and out-of-plane action. Subsequently, the hot-
spot stress should be evaluated at eight points around the circumference of the intersection,
to take into account that the hot-spot stresses may be larger at intermediate points. The
hot-spot stresses at the individual locations seen in Figure 2.5 are then derived by linear
interpolation of the contributions from the axial stress at the saddle and chord and a
sinusoidal variation of the bending stresses, given by the formulas in Equation 2.27 (DNV,
2014).

Figure 2.5: The hot-spots around the periphery of the weld connection where the stresses
are superimposed (DNV, 2014).
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2.2. Fatigue of welded tubular joints

σ1 = SCFACσx + SCFMIPσmy

σ2 =
1

2
(SCFAC + SCFAS)σx +

1

2

√
2SCFMIPσmy −

1

2

√
2SCFMOPσmz
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2
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√
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√
2SCFMOPσmz

σ5 = SCFACσx − SCFMIPσmy
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1

2
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1
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√
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1
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√
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1

2
(SCFAC + SCFAS)σx +

1

2

√
2SCFMIPσmy +

1

2

√
2SCFMOPσmz

(2.27)

Here, σx, σmy and σmz are the maximum nominal stresses due to axial load, in-plane
bending and out-of-plane bending, respectively. The SCFs are given according to Sub-
section 2.2.2, where SCFAS and SCFAC are the SCFs at the saddle for axial load in the
saddle and crown, respectively. SCFMIP and SCFMOP are the SCFs due to in-plane and
out-of-plane moment. The hot-spot stress is calculated for all of the eight points, where
the highest computed stress is considered governing for fatigue failure, and should conser-
vatively be set as representative for the whole brace (Shabakhty and Khansari, 2019).

2.2.4 Miner-Palmgren summation

Since fatigue loads are based on constant amplitude, while the stresses varies randomly, a
method treating an irregular series as a sum of constant amplitude loads is needed (Mendes
et al., 2021). The Miner’s rule is often used to calculate the damage contribution from
a given stress range. It is very simple, but has proven to be no worse than other, more
complex methods. The damage contribution from an arbitrary single stress cycle, i, is
given from the Miner sum as:

Di =
1

Ni
=

1

ā
(∆σi)

m (2.28)

When utilizing the assumption of linear cumulative damage, the equations becomes:

Di =

j∑
i=1

ni

Ni
=

1

ā

j∑
i=1

ni(∆σi)
m (2.29)

∆σi is the constant stress range for cycle i where ni is the corresponding number of cycles.
Ni is the number of cycles to failure at ∆σi, j is the total number of cycles, m is the
negative inverse slope of the SN-curve and ā is the intercept between the design SN-curve
and logN axis.
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2.2.5 Rainflow counting method

The rainflow counting method is a cycle-counting method which transforms physical meas-
urements, which are governed by irregularities, to a suitable form for fatigue analysis
(Amzallag et al., 1994). Practically this means that it allows Miner’s rule to be applied.
Several other cycle-counting methods also exists, but rainflow counting generally seems to
be the best suited for wide-band loading. For cracked specimens the physical significance
is lost, as crack closure may happen when subjected to compressive loading (Berge and
Ås, 2017).

The rainflow algorithm is based on the principle of stress-strain response of the material.
It defines a cycle as a closed hysteresis loop by combining load reversals without affecting
the remaining history. Each closed hysteresis loop has an associated stress range and a
mean stress that can be compared with the constant amplitude. Half-cycles that lack
an equivalent counterpart cannot be used for damage assessment. As can be seen in
Figure 2.6, peaks and valleys which are not local minima or maxima are swiftly neglected
through elastic deformation to prior load history and the cycle continues along the prior
path (Musallam and Johnson, 2012).

Figure 2.6: Closed hysteresis loop formed by rainflow counting of stress-strain cycles
(Musallam and Johnson, 2012).
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2.3. Fundamental machine learning theory

2.3 Fundamental machine learning theory

ML is a subcategory of artificial intelligence (AI). Goodfellow et al. (2016) describes ML
as the machines ability to acquire knowledge by creating patterns from raw data. This
differs from conventional programming where a set of rules is defined manually prior to
execution. Deep learning (DL) is a subclass of ML which, inspired by the human brain,
utilizes a multi-layered ANN architecture (Guo et al., 2016).

Figure 2.7: Visual representation of class hierarchy: AI, ML and DL (Holzinger et al.,
2018).

2.3.1 Supervised- and unsupervised learning

Supervised learning is the most applicable in many situations, as it often is easy to determ-
ine the mathematical accuracy of the model because the true output is known in advance.
During training, the model is given input and produces an output, which is compared with
the true output. An objective function measures the deviation, and adjusts the weights
to reduce the error. Mathematically, the reduction takes place as the learning algorithm
computes a gradient vector that, for each weight, investigates if the error increases or
decreases when the weight is modified (LeCun et al., 2015).

In unsupervised learning the model trains by its own, on unlabeled data, to discover in-
formation and trends that may not easily be detected by humans. Unsupervised learning is
mostly applied on classification problems, where it connects the data attributes, as acceler-
ation measurements from sensors, to class attributes (Liu, 2011). For structural dynamic
behaviour, supervised learning can be used to determine which of the environmental load
component that is the dominant factor for the observed load.

2.3.2 Deep feedforward network

A FFNN is characterised by that information only flows in one direction - it propagates
forward. A deep FFNN is essentially just some extended version, where multiple layers are
connected. Figure 2.8 shows a fully connected FFNN consisting of four layers, implying
that all the neurons in one layer are connected to every neuron in the previous layer (Vieira
et al., 2017).
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Figure 2.8: Fully connected FFNN (Vieira et al., 2017).

The first layer is the input layer and the last layer is the output layer. The in-between
layers are so called hidden layers. As can be seen in Figure 2.8, the output depends on
the input.

2.3.3 Neurons

Neurons are the building blocks of the ANN, and can be seen in Figure 2.9.

Figure 2.9: Connection of a single neuron in a NN (Vieira et al., 2017).

The neurons gets inputs x1, x2, ..., xn with corresponding weights w1, w2, ..., wn, quantify-
ing the relative importance of the of each contribution to the neuron output. In addition,
the neuron has a bias, w0, connected to it, introducing a slight shift to the output. The
sum of all weighted inputs and bias then produces a scalar, z:

z =
n∑

i=1

xiwi + w0 = wTx+ w0 (2.30)

Subsequently, the scalar, z, is passed through an activation function chosen by the user, f ,
where the output, yj , acts as an input for the next layer. Mathematically, this becomes:

yj = f(z) (2.31)

2.3.4 Activation functions

As shown in Equation 2.31, activation functions are used to transform the signal from
one neuron to be input for the next layer. Activation functions are needed in order to
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2.3. Fundamental machine learning theory

assess nonlinear relationships among the data. If activation functions are omitted, the NN
acts as a linear regression model (Sharma et al., 2017). An important trait for activation
functions is that they need to be differentiable for back propagation methods to be applied
for optimization of weights used to minimize errors. Some of the most popular activation
functions are the rectifier function, where neurons utilizing it are named rectified linear
unit (ReLU), the softmax function, the hyperbolic tangent (tanh) function and the sigmoid
function (Vieira et al., 2017).

ReLU

ReLU is one of the simplest activation functions, and maps the input values to the range
[0,∞]. This means that any negative values maps to zero, while positive values remain
unchanged. Mathematically, the function can be seen in Equation 2.32.

f(z) =

{
z for z ≥ 0

0 for z < 0
(2.32)

Models that use ReLU are often fast and accurate. However, some of the ReLU neurons
may be put into states where they remain inactive, i.e. returns zero, for virtually all
inputs. This leads to zero-gradients, and the neuron cannot be activated again.

Tanh

The tanh activation function produces a zero-centered output and maps the input values
to the range [−1, 1]. This means that negative inputs will remain negative, and vice
versa, making the activation function suited for training (De Marchi and Mitchell, 2019).
Mathematically, the function can be seen in Equation 2.33.

f(z) =
ez − e−z

ez + e−z
(2.33)

2.3.5 Loss functions and optimizers

While training the model, the error needs to be quantified. This is performed by the loss
function, L. For regression problems where model predicts numerical values, as fatigue
estimation, the mean squared error (MSE) and mean absolute error (MAE) are common
choices:

MSE: L(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi)
2 (2.34)

MAE: L(y, ŷ) = 1

N

N∑
i=1

yi − ŷi (2.35)

where N is the number of samples, ŷi is the value predicted by the model and yi is the
true value.
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Optimization is the process of minimizing or maximizing a function, f(z), by altering z.
When the loss is quantified during the training process, the neurons’ attributes need to be
updated accordingly. The ML-model utilizes an optimizer for this purpose, which assists
in minimizing the loss function by adjusting the weights and biases.

Adam

Adaptive moment estimation (Adam) is an efficient stochastic optimization method that
only requires fist order gradients, and is well suited for problems that are large in terms of
data and/or parameters (Kingma and Ba, 2014). For an objective function, f(θ), that is
differentiable with respect to its parameters, θ, the goal is to minimize the expected value
of this function, E[f(θ)]. With a time/iteration step, t, the gradient, gt, is defined as in
Equation 2.36.

gt = ∇θft(θ) (2.36)

Adam updates exponential moving averages of the gradient, mt, and the squared gradient,
vt, where hyperparameters γ1 and γ2 controls the exponential decay rates. Mathematically,
this becomes as in Equation 2.37 and Equation 2.38, respectively.

mt = γ1mt−1 + (1− γ1) · gt (2.37)

vt = γ2vt−1 + (1− γ2) · g2t (2.38)

Subsequently, the bias for the first- and second moment is corrected for:

m̂t =
mt

1− γt1

v̂t =
vt

1− γt2

(2.39)

Lastly, the update parameters are calculated according to Equation 2.40:

θt = θt−1 −
ε m̂t√
v̂t + ϵ̂

(2.40)

where ε is the global learning rate and ϵ̂ is a small number to avoid any division by zero.

RMSProp

RMSProp is popular among DL practitioners, and has proven to be quite effective and
practical in relation to deep NNs. The algorithm keeps a moving average of the squared
gradient for each weight, and subsequently dividing the gradient by the square root of this
value. Mathematically, the algorithm can be expressed as the equation set seen below in
Equation 2.41.
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2.3. Fundamental machine learning theory

rt = (1− γ)f ′(θt)
2 + γrt−1

θt+1 = θt −
ε
√
rt
f ′(θt)

(2.41)

Where r is the adjustment parameter, γ is the decay rate, θ is the update parameter and
f ′(θ) is the derivative of the error with respect to the weight (Roy et al., 2017).

2.3.6 Backpropagation

Backpropagation refers to a training method in ML, where the gradients obtained from
the optimizer and loss from the loss function are used to update the weights and biases.
The gradient of the loss function, L, is found by differentiation with respect to the weights,
w. The updated weights are found by moving a small step, ε, in the direction of steepest
descent, as seen in Equation 2.42. As previously, ε is the global learning rate (Purkait,
2019). Note the similarity to the RMSProp optimizer in Equation 2.41.

w = w − ε
∂L
∂w

(2.42)

2.3.7 Epochs and model fitting

One epoch is simply one stream of the entire training dataset. In other words, the number
of epochs denotes how many times the model shall see the same training data. By changing
the order of the input data for each run, the ML-model may achieve higher accuracy given
no change in the dataset. An appropriate number of epochs is highly important in order
to accurately predict unseen data. Too few epochs will result in an underfitted model,
implying underachievement in terms of accuracy for both the training- and test data. Too
many epochs will overfit the model, implying that it will become overly confident on the
training data, while the accuracy will decrease as new, unseen data is used as input. A
visual representation can be seen in Figure 2.10.

Figure 2.10: Visual representation of model fitting. The leftmost model shows underfitting,
which is unable to capture the curvature of the data. The middle figure shows a good
generalization of the data, able to accurately predict unseen data. The rightmost figure
shows overfitting, where the known data are accurately predicted while the underlying
trend is unperceived (Goodfellow et al., 2016).
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2.3.8 Data preprocessing

Processing of data before it can be utilized by the ML-model is commonly regarded as
one of the most important aspects in ML, as incomplete or duplicate data will lead to a
biased model. The most important modifications can briefly be summarized as such:

• Normalize the input data.

• Convert attributes consisting of text-strings to numerical values, commonly denoted
categorical values.

• Remove non-satisfactory data.

As mentioned in Subsection 2.3.3, the activation function is determined as the sum of
the products between the individual weights and the neuron values. If there is a large
difference between the weights and the neuron values, the product will be governed by the
neuron value and the model may have a hard time acquiring proper weights. Because the
weights initially are given a value in the range [0,1], it is beneficial to normalize the neuron
values such that they are in the same range as the weights. Accounting for negative values,
the range for neuron values will be [-1,1].

Removal of non-satisfactory data is a wide concept, but the most important aspects will
be accounted for. Duplicate data can easily lead to overfitting, as the model gets to
comfortable with the known data. Another important point is that if identical samples
occurs in both the training- and test set, the model’s predictive abilities becomes artificially
high. Incomplete data are given as samples where one or more parameter is missing. It
is equally important because it introduces room for interpretative variations when feeding
the model an incomplete trend. In other words, the ML-model is unable to recognize
the mathematical pattern from the data because there is none. Further, as explained in
Subsection 2.3.5, the ML-model utilizes some sort of regression to minimize the error. It
is therefore recommended to filter for outliers, as their contribution to the mean error will
dominate. Practically this means that if any of the variables is disproportional compared
to the others, it may be clever to remove the sample.
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Chapter 3

Method

This chapter describes the method applied in this thesis, where the methodological struc-
ture can be seen in Figure 3.1.

Create an USFOS model
suited for dynamic time

domain analyses in various
environmental conditions.

You

Extract statistical prop-
erties of the wave-

and wind time-series.

Perform analyses and
extract displacement-time
histories from the two

nodes corresponding to the
sensors on the real structure.

Calculate the fatigue
damage in the chosen joints.

Tabulate connection between
weather data, displacement
properties and fatigue dam-
age in the joint connections.

Divide the table into test
data and training data.

Build a super-
vised ML-model.

Train the ML-model on the
created training set, and
test it on the testing set.

Is the
ML-
model

sufficient?

Refine.

Collect data from site:
measured displace-

ments and weather data.

Pick accelerations from a
time period: e.g. a month.

Tabulate connection
between weather data
and displacement prop-
erties in the connections.

Remove non-
satisfactory data.

Apply ML-model on chosen
measurements from site. Yes

No

Figure 3.1: Flow chart summarizing the applied method.

25



3. Method

As can be seen in Figure 3.1, the whole procedure can be divided into three main cat-
egories; data collection, application of ML and testing of a ML-model on monitored data,
whereas the last category partly is presented in the results chapter. Firstly, the proced-
ure used to develop a USFOS-model of the jacket structure suited for fatigue analyses in
the time domain is described, followed by the simulation- and data collection procedures.
Subsequently, a description regarding the process of developing the neural network archi-
tecture will be provided, including the training- and testing of the ML-model. Lastly, the
procedure of testing the final ML-model on the monitored data provided by Aker BP will
be explained.

3.1 USFOS-model description and dataset development

The model used in this thesis is based on the PH-platform located on the Valhall A field
in the North Sea. It was made by converting an existing GeniE-model, provided by Aker
BP, into a FEM suited for USFOS. Initially, what separated the model from the actual
structure is that the actual structure is connected to two nearby platforms by bridges.
The bridge connections introduces stiffness from the piping and friction force from the
sliding supports. The influence from the bridges was not within the scope of this thesis,
and was neglected throughout the simulations.

(a) Original GeniE model provided by Aker BP. (b) Modified USFOS model used
for dynamic time domain simu-
lations.

Figure 3.2: Visual representation of the original model and the modified model. The
origin of the coordinate system used in USFOS is located at the center of the platform in
the horizontal xy-plane, and at the far bottom of the jacket in vertical z-direction. The
reference axes looks skewed, but x-direction is normal to the broad side of the platform,
and y-direction is normal to the narrow side.
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The two sensors monitoring accelerations are located on the platform topside was represen-
ted by two nodes. The location of the sensors was determined by thorough measurements
on drawings provided by Aker BP, and can be visualized in Figure 3.3. The actual sensors
are capable of measuring accelerations in the platform north-south (NS)-direction and
platform east-west (EW)-direction, which then are integrated twice and filtered for noise
to get the corresponding displacements. In the USFOS coordinate system, the monitored
directions are equivalent to negative x-direction and negative y-direction, respectively.
The foundations of which the sensors stands on are tripods highly dominated by axial
stiffness. The E-modulus was set 10000 times higher than normal steel, while both the
bending stiffness and mass was kept to a minimum, by using thin beam elements and
defining a small density different from zero. The coordinates of the nodes can be seen in
Table 3.1

Figure 3.3: Nodal representation of the actual sensors located on the PH-platform. Both
sensor 1 and sensor 2 are highlighted. The slightly skewed crossings is the mass tent used
to distribute the topside load onto the platform legs.

Table 3.1: Table showing the sensor coordinates in the model coordinate system.

x [m] y [m] z [m]

Sensor 1 -5.28 4.55 125.925
Sensor 2 5.28 7.58 125.295

3.1.1 Model simplifications

To create a sufficient dataset to be used for training, validation and testing of the ML-
model, an appropriate amount of dynamic time domain simulations subjected to different
environmental conditions had to be performed. As computational efficiency was of the es-
sence, the model had to be stripped down to be as simple as possible without compromising
with the structural properties. The simplifications are summarized below:

• Small beams considered irrelevant for the dynamics of the jacket platform, as ladders
and hanging tubes, was removed. This was mainly done to reduce the computational
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effort needed for each simulation, but small beam elements can also cause numerical
instability during the simulations.

• The topside was removed and replaced by a single mass point located at the topside
CoG, found in the FLS-report conducted by Aker Solutions and provided by Aker
BP.

• Initially, quite a few beam elements along the platform legs, in proximity of joints,
had been reinforced with plates, implying that they were thicker than the adjacent
beams. Due to the geometrical differences, these beams became very short. A small
length-to-diameter ratio results in extremely high terms in the stiffness matrix due
to the 12EI

L3 -term, and can cause numerical instability. As it was important to ensure
that the bracing was fully connected to the platform legs through nodes, it was
not arbitrary which elements that could be merged. Geometrical adjustments of the
beams had to be made, and it was assumed that the reinforcement mainly was meant
to increase the platform ultimate limit state (ULS) capacity, and has minor influence
on the FLS capacity. Therefore, to ensure conservatism, the thinnest adjacent tubes
was extended to replace the ill-conditioned beam elements.

3.1.2 Pile stiffness and topside mass

The pile stiffness was applied according to the FLS-report provided by Aker BP, which
was based on a ”fatigue-wave” of 6m. As the pile stiffness is of linear nature, it was
divided equally onto four springs and applied to the bottom of each platform leg. The
total stiffness matrix can bee seen in Table 3.2.

Table 3.2: Table showing pile stiffness matrix for fatigue condition, with units [MN/rad],
and [MN/m]

Kx Ky Kz Kxx Kyy Kzz

280 0 0 0 -1950 0
0 280 0 1950 0 0
0 0 3300 0 0 0
0 1950 0 21500 0 0

-1950 0 0 0 21500 0
0 0 0 0 0 4200

To properly distribute the topside mass equally onto the legs, as well as deal with the
vertical CoG-coordinate, a mass tent was created. The mass tent is characterized by being
almost massless and very stiff, such that redistribution of forces due to plastic deformation
does not occur. The E-modulus was set 10000 times higher than normal steel, but unlike
for the tripods, the bending stiffness was substantial. The total applied topside mass can
be seen in Table 3.3.

Table 3.3: Table showing topside mass for fatigue condition, with units [tonne] and [m].
The reference coordinate system is the center of the jacket in the xy-plane and a mean
water level of 74.63m in z-direction.

MX MY MZ CoG-X CoG-Y CoG-Z

21535 21535 21535 -0.01 5.90 52.03
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3.1.3 Structural damping

The structural damping matrix may be defined through Rayleigh damping as a linear
combination of the system mass and system stiffness, where M is the mass matrix, K is
the stiffness matrix and α1 and α2 are the mass-proportional- and the stiffness-proportional
coefficient, respectively.

C = α1M + α2K (3.1)

Generally, the mass-proportional term damps out the high frequency modes, while the
stiffness-proportional term damps out the lower frequency modes (Langen, 1999). In
order to apply Equation 3.1, the mass- and stiffness matrices needs to be orthogonal to
the eigenvectors, Φ. The modal damping parameter, for mode i, can then be found from
Equation 3.2.

c̄i = ΦTCΦ = α1m̄i + α2k̄i (3.2)

Subsequently, the damping ratio is defined as seen in Equation 3.3, where c is the modal
damping, ccr is the critical damping, m̄i is the modal mass, k̄i is modal stiffness and ω is
the eigenfrequency for mode i.

λi =
c

ccr
=

c̄i
2m̄iωi

(3.3)

By substituting Equation 3.2 into Equation 3.3, the damping ratio can be rewritten ac-
cording to Equation 3.4.

λi =
1

2m̄iωi

(
α1m̄i + α2k̄i

)
=

1

2

(
α1

ωi
+ α2ωi

)
(3.4)

λ1 and λ2 are typically determined by performing two experiments at two different frequen-
cies, ω1 and ω2. When the two damping ratios are known, α1 and α2 can be determined
according to Equation 3.5 and Equation 3.6, respectively.

α1 =
2ω1ω2

ω2
2 − ω2

1

(λ1ω2 − λ2ω1) (3.5)

α2 =
2(ω2λ2 − ω1λ1)

ω2
2 − ω2

1

(3.6)

To ensure conservatism, it is important to use frequencies such that the damping is not
overestimated at the region of large response. A general example of the behaviour of the
damping ratio can be see in Figure 3.4.
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Figure 3.4: General example of damping ratio as a function of eigenfrequency (Langen,
1999).

The three first eigenmodes was available in the FLS-report, equal to 2.77 s, 2.73 s and
2.50 s for zero subsidence, where the damping ratio was given as 1.5 % for all modes. To
not overestimate the damping at important frequencies, the mass-proportional coefficient,
α1, was set to zero, such that the damping ratio follows the asymptote:

λ =
1

2
α2ω0,max =

1

2
α2

2π

2.50
(3.7)

With λ = 0.015, the resulting stiffness-proportional coefficient became: α2 = 0.012.

3.1.4 Wave load parameters

The mass- and drag coefficients in Morison’s equation explained in Subsection 2.1.6 was
determined through the NORSOK standard N-003 seen in Table 3.4 (NORSOK, 2017).

Table 3.4: Chosen values of drag- and inertia coefficients for the main jacket structure and
conductors (NORSOK, 2017).

Jacket structure Conductor condition

Cd 1.15 1.15
Cm 1.6 1.6 above elevation +2 m
Cm 1.2 1.2 below elevation +2 m
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3.1.5 Selecting appropriate environmental actions

In this thesis, the appropriate sea states was found by evaluating the hourly wave time-
series provided by Aker BP, and wind data extracted from Meteorologisk Institutt. A
manual evaluation of the environmental conditions was necessary since the date and time
of the critical sea states was essential. The provided wave data does not include direction,
and it was therefore assumed that the wave direction followed the wind direction. In order
for the USFOS model to replicate the dynamic behaviour of the original model in realistic
conditions, statistical evaluations regarding the wave elevation- and displacement data, as
well as wind data, had to be made.

Extracting spectral properties of the wave time-series

By assuming that the wave elevation, ζ, is a Gaussian process with zero mean, the auto-
correlation function of the wave elevation, Rζζ , is defined as in Equation 3.8 (Newland,
2005).

Rζζ(τ) = E[ζ(t)ζ(t+ τ)] (3.8)

The autocorrelation function is related to the wave spectrum through the Fourier transform
and inverse Fourier transform, respectively:

Sζζ(ω) =
1

2π

∫ ∞

−∞
Rζζ(τ)e

−iωτdτ

Rζζ(τ) =

∫ ∞

−∞
Sζζ(ω)e

iωτdω

(3.9)

By utilizing the relation in Equation 3.9, the following properties regarding the autocor-
relation function can be defined:

Rζζ(0) =

∫ ∞

−∞
Sζζ(ω)dω (3.10)

d2

dτ2
Rζζ(0) =

d2

dτ2

{∫ ∞

−∞
Sζζ(ω)e

iωτdω

} ∣∣∣∣∣
τ=0

= −
∫ ∞

−∞
ω2Sζζ(ω)dω

(3.11)

Numerically, d
d2τ

Rζζ(τ) was calculated by use of the second order central difference for-
mulation, seen in Equation 3.12

d2

dτ2
Rζζ(τ) =

Rζζ(τ +∆t)− 2Rζζ(τ) +Rζζ(τ −∆t)

(∆t)2
(3.12)

Recognizing the definition of the spectral moments, m(n):
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m(n)(ζ, t) =

∫ ∞

−∞
ωnSζζ(ω)dω, n = 1, 2, 3... (3.13)

Since neither Sζζ(ω) or ω is negative for a one-sided spectrum, the following relation
between the autocorrelation function and the spectral moments applies:

m(0) = Rζζ(0) (3.14)

m(2) =

∣∣∣∣∣ d2dτ2
Rζζ(0)

∣∣∣∣∣ (3.15)

By using the result obtained from Equation 3.14, an estimate of the significant wave height
can be calculated (Myrhaug, 2019):

Hs ≈ Hm0 = 4
√
m(0) (3.16)

Subsequently, the peak period, Tp, can be approximated by Equation 3.17.

Tz ≈ 1.41Tm02 = 1.41 · 2π

√
m(0)

m(2)
(3.17)

The resulting scatter diagram can be seen in Figure 3.5, and the corresponding scatter
table, showing the number of individual sea states, can be seen in Appendix C. The
Python code wave analysis site.py was used to perform the calculations, and can be found
in Appendix E.3.

Figure 3.5: Scatter diagram created statistically based on all obtained continuous, hourly
wave data between January 2020 and December 2021, provided by Aker BP. Note that
some of the points where Tp is disproportionately large relative to Hs might be due to
drift-off or discontinuities in the measurements. The largest errors has been filtered away.

32



3.1. USFOS-model description and dataset development

Extracting wind data

The wind was extracted from Meteorologisk institutt by use of scripting techniques. The
Python code used to extract the data can be found in Google Colab2. From the raw
data, it was possible to extract the mean wind speed and mean wind direction given in
10-minute intervals. Once extracted, the wind speed and -direction was averaged out to
fit the 1-hour intervals used for the waves. An example of the extracted data, averaged
to hourly intervals, can be seen in Figure 3.6, where it can be seen that the average wind
direction corresponds quite well with the Coriolis effect.

Figure 3.6: Hourly wind direction and -speed for January 2021

2https://colab.research.google.com/drive/1PhnctcUlGQchg8-pbFZUKdVV8G4ipPXI?usp=sharing
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3.1.6 Simulation procedure

The fatigue simulations were performed through time domain simulations by applying
combinations of site relevant environmental loads within a specified time interval. By
defining an irregular sea though a spectrum, the time interval needs to be long enough to
ensure stationary conditions. In other words, the simulation needs to proceed until the
standard deviation, σ, becomes stationary. Jia et al. (2008) used 60 minutes for their time
domain simulations of a jacket structure. Due to limited computational resources, a time
interval of 15 minutes was consistently used in this thesis, and was assumed to sufficiently
represent the statistics of the applied wave spectra. The time increment was set to 0.1 s.
The loading due to waves was considered to be governing. Therefore, the wind speed- and
direction occurring at the same date and time of the individual sea states was selected.
However, the wave direction was considered to be equal the direction of the wind. A total
of 132 simulations was performed to create the final dataset. Therefore, the Python script
RunUsfos.py found in Appendix E.1, was created to automate the process. The script
was optimized to run one simulation per core in the processor, which unfortunately was
limited to two on the applied computer. The procedure is summarized in algorithm 1.

Algorithm 1: Algorithm for automating USFOS simulations

N ← number of sea states
Create N folders
for i ← 1 to N do

Run Folder ← run[i]
move control file → Run Folder
move structure file → Run Folder
move load file → Run Folder
move fatal file → Run Folder
if Run Folder is folder then

sea state[i] → control file
wind load[i] → control file
if No error in Run Folder then

run USFOS
displacements from sensors ← run Dynres
fatigue damage in hot-spots ← run Fatal
Delete USFOS results file

end

end

end
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3.1. USFOS-model description and dataset development

Applying irregular waves through spectrum

The JONSWAP wave spectrum is commonly used in the North Sea, and is considered
to be a quite good model for wind generated sea (Myrhaug, 2019). The wave spectrum,
Sζζ(ω), is generally described by the significant wave height, Hs, and the spectral peak
period, Tp (USFOS, 2010):

Sζζ(ω) = δg2ω−5exp

[
−1.25

(
ω

ωp

)−4
]
γ
exp

(
− (ω/ωp−1)2

2σ2

)
(3.18)

where ωp is the peak period defined according to Equation 3.19.

ωp =
2π

Tp
(3.19)

γ is the peak enhancement factor given in Equation 3.20.

δ = 0.036− 0.0056Tp√
Hs

γ = exp

[
3.483

(
1−

0.1975δT 4
p

H2
s

)] (3.20)

The amplitude of each wave component is determined according to Equation 3.21;

ζa,j =

√
2

∫ ωu,j

ωl,j

Sζζ(ω)dω (3.21)

where ωl,j and ωu,j represents the lower- and upper angular frequency limit for wave
component j, respectively. In this thesis, the frequency range was divided into N = 120
intervals of equal length, such that ∆ω = ωu−ωl

N , where:

• ωu = 2π
Tmax

where Tmax was chosen to be (Tp + 4).

• ωl =
2π

Tmin
, where Tmin was chosen to be 4 for all sea states.

The JONSWAP spectrum is only valid for the combinations of Hs and Tp that satisfies
the requirement in Equation 3.22.

3.6
√
Hs < Tp < 5

√
Hs (3.22)

Due to the limited validity area of combinations of Hs and Tp, the JONSWAP spectrum
is not valid for all the sea states obtained in Figure 3.5. However, only some of the most
dramatic sea states was used throughout the simulations, where the JONSWAP spectrum
is valid.
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Applying wind field to model

To apply wind in the USFOS simulations, the wind direction was modified to comply with
the USFOS coordinate system. From the mean water level and above, the wind field was
applied as a z-varying curve given in Equation 3.23

U(z) = U10

( z

10

)p
(3.23)

where U10 is a constant denoting the mean wind 10 m above mean surface elevation from
the extracted data, and p is a factor to describe the wind profile. Since the topside was
removed, some care had to be shown when replicating the wind load as accurately as
possible. The static wind load is calculated as shown in Equation 3.24

Fwind =
1

2
ρwCdv

2
wA (3.24)

where ρw is the wind density, Cd is the drag coefficient, vw is the wind velocity and
A is the area. Since the platform is asymmetric in x-direction and y-direction, unique
scaling factors has to be multiplied with the wind velocity in both x- and y-direction. The
scaling factors was found by requiring that the wind load before and after topside removal
was approximately equal, resulting in an iterative procedure. With assistance from my
supervisors and Atle Nøsen from Aker BP, and evaluations of drawings and the original
model, an Excel spreadsheet calculating the base shear load and overturning moment due
to topside wind only was developed, and used as reference for the wind velocity scaling.
The spreadsheet follows the procedure found in NORSOK N-003 (NORSOK, 2017). Since
both the base shear load and the overturning moment had to be equal the prior values,
Equation 3.24 cannot just be rearranged with respect to the velocity. The appropriate
scaling factors was found through simulations in USFOS where a wind field was the only
applied environmental action. The obtained results can be seen in Table 3.5.

Table 3.5: Wind speed scaling factors for wind with 0 degree heading and 90 degree
heading. BSL denotes the base shear load, OM denotes the overturning moment, x̂ denotes
x-direction, ŷ denotes y-direction and p is the wind profile power in Equation 3.24.

Heading Goal BSL Sim. BSL Goal OM Sim. OM Scale, x̂ Scale, ŷ p

0 deg 0.52 MN 0.53 MN 65.8 MNm 63.5 MNm 3.5 3.556 1.5
90 deg 0.39 MN 0.40 MN 48.3 MNm 47.5 MNm 3.5 3.556 1.5

Combinations of environmental actions

The choice of environmental conditions used to train- and test the ML-model are based on
some of the most critical sea states during the two-year period when monitored data has
been available. This remedy was done to not compromise with the JONSWAP spectrum
applicability, and force the ML-model to provide somewhat conservative estimates. How-
ever, some values of the mean wind speed has been altered slightly for each simulation,
together with the wind- and wave directions. This was done in order to encapsulate all
possible directions and avoid highly correlated input features, which will be elaborated in
Subsection 3.2.2. The environmental conditions used for the simulations are summarized
in Table 3.6:
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3.1. USFOS-model description and dataset development

Table 3.6: All 132 environmental conditions used for the simulations. The wind/wave
heading annotation implies that a total of eleven simulations was performed for each
combination of Hs and Tp.

Hs [m] Tp [s] mean wind speed [m/s] wind/wave heading [deg]

6 12 ± 19.1 first:15, step:30, last:345
7 13 ± 19.6 first:15, step:30, last:345
8 14 ± 20.9 first:15, step:30, last:345
7 14 ± 20.8 first:15, step:30, last:345
6 13 ± 18.7 first:15, step:30, last:345
5 12 ± 18.4 first:15, step:30, last:345
5 11 ± 17.5 first:15, step:30, last:345
8 13 ± 22.1 first:15, step:30, last:345
4 10 ± 12.8 first:15, step:30, last:345
6 9 ± 12.8 first:15, step:30, last:345
5 8 ± 12.8 first:15, step:30, last:345

3.1.7 Comparison of displacement

In order to verify that the displacements obtained from USFOS reasonably matches the
measured displacements, it is advantageous to compare the two through time-series. Obvi-
ously, phase is impossible to compare given that the platform is subjected irregular wave
load through a spectrum and the inherent randomness in real-life wave elevation. But
the magnitude is comparable. To do so, it is important to choose identical environmental
conditions, preferably quite dramatic. The wind influence on platform displacement was
considered to be of secondary importance, and follows the time and date of the sea state.
Hence, the tabulated sea state in Table 3.7, selected from the scatter table in Appendix C,
was applied.

Table 3.7: Environmental conditions used for the simulation comparing measured and
simulated displacements. To comply with the measurement intervals, the duration is one
hour. The wind direction is given as (compass angle / USFOS angle).

Hs 8 m
Tp 13 s

Mean wind speed 22.1 m
s

Wind dir (214.5 deg / -27.5 deg)
Date 21.01.2021
Hour 13:00-14:00

The obtained results can be seen in the figures below, where the static displacement is
subtracted for all time-series. To get smoother functions and more distinct peaks for the
distribution fitting described in Section 3.1.9, the displacement time-series was slightly
filtered by applying a low pass filter. Since subsidence and the influence from the con-
necting bridges was neglected, the simulated displacement should be slightly higher. The
bridges especially restrains x-directional motion, which entails that the y-directional dis-
placement is more alike. The most dramatic environmental conditions during January
2021, shown in Appendix D, occurred on the 21st. However, the most extreme mon-
itored jacket response, equal to about 0.03 m, was missed by few hours and resembles the
y-directional displacement quite a lot. The following hours had almost identical environ-
mental parameters, but caused greater translational motions of the real structure.
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(a) Raw displacement from USFOS (b) Raw monitored displacement

(c) Filtered displacement from USFOS (d) Filtered monitored displacement

Figure 3.7: Displacement comparison in x-direction for sensor 1.

(a) Raw displacement from USFOS (b) Raw monitored displacement

(c) Filtered displacement from USFOS (d) Filtered monitored displacement

Figure 3.8: Displacement comparison in y-direction for sensor 1.
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(a) Raw displacement from USFOS (b) Raw monitored displacement

(c) Filtered displacement from USFOS (d) Filtered monitored displacement

Figure 3.9: Displacement comparison in x-direction for sensor 2

(a) Raw displacement from USFOS (b) Raw monitored displacement

(c) Filtered displacement from USFOS (d) Filtered monitored displacement

Figure 3.10: Displacement comparison in y-direction for sensor 2
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3.1.8 Fatigue damage calculations

The USFOS-module Fatal, which allows the user to directly perform fatigue damage cal-
culations on specified joints, was used to calculate the fatigue damage. The procedure
follows the theory covered in Section 2.2, with parametric equations and built-in or user-
defined SN-curves. Fatal was set to skip 60 time-steps, equal to six seconds, to prevent
that the initialization of gravity and loads introduced extreme half stress cycles once rain-
flow counting was applied. The importance can be visualized by looking at the large
displacements occurring at the start of the simulations in Subsection 3.1.7.

Critical joints

The joints assumed critical in this thesis, was based on the FLS-report conducted by
Aker Solutions. The joints with the lowest estimated fatigue life was selected, and will be
compared in the testing of final ML-model- in the result chapter. The connection between
joint indexation and the node number in the USFOS model can be seen in Table 3.8.

Table 3.8: Connection between joint indexation for data tabulation and nodes in the
USFOS model. The order of which the braces are written corresponds to the subindexation
in Subsection 3.1.10.

Joint index Node number Connecting braces

1 22 91, 108, 269, 281, 294
2 34 89, 95, 271, 275, 319, 322
3 44 63, 100, 279, 283, 285
4 56 97, 102, 273, 277, 314, 320
5 137 270, 274, 413, 425, 495, 507, 509
6 181 272, 284, 415, 440, 468, 482, 490
7 188 278, 282, 431, 442, 465, 471, 488
8 191 276, 280, 423, 433, 492, 505, 506

Total number of connections: 50

Selecting appropriate SN-curve

As covered in Subsection 2.2.2, the peak stress from the weld geometry is of minor signi-
ficance for the fatigue life of tubular joints. Therefore, a single curve, the T-curve, also
used by Aker Solutions in their FLS-report, is used. The T-curve was therefore applied
throughout the simulations in this thesis, and is tabulated in Table 3.9.

Table 3.9: T-curve for tubular joints in seawater with cathodic protection (DNV, 2014).

Weld class/ N ≤ 106 cycles N > 106 cycles Fatigue limit Thickness SCF in the
SN-curve m2 = 5.0 at 107 cycles3 exponent weld detail4

m1 logā1 logā2 k

T 3.0 11.764 15.606 52.63 0.255 1.00

3Largest local stress range corresponding to N = 107 cycles. The reader is referred to Section 2.11 in
DNV-RP-C203 (DNV, 2014).

4As derived by the hot-spot method.
5k = 0.30 for SCF > 10
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3.1.9 Data collection procedure

A key part of this thesis was the procedure of selecting- and collecting data considered
optimal for the ML-model, and simultaneously was easily accessible through monitored
data. For each simulation, key data had to be extracted and processed in some way to
be utilized by the ML-model. The applied method was performed with the Python script
post process Weibull.py in Appendix E.2, summarized in algorithm 2. The data table was
exported to an Excel-spreadsheet in order to be accessed at a later time by the ML-model.

Algorithm 2: Algorithm for data collection and -tabulation

Data: Displacement time-series, fatigue damage in critical joints, significant wave
height, peak period, wind direction, mean wind speed

Result: Excel-table for ML
Table ← empty
N ← number of simulations/environmental conditions
for i ← 1 to N do

Run Folder ← simulation[i]
Store Hs[i], Tp[i], wind speed[i] and wind direction[i] in Table
for All displacement time-series in Run Folder do

Apply low pass filter
peaks ← find peaks[displacement]
k, lambda ← fit Weibull distribution to peaks
Store k and lambda in Table

end
for All critical connections defined in Fatal do

Classify corresponding joint
val ← maximum fatigue damage in connection
pos ← hot-spot location of maximum damage
Store val and pos in Table

end

end
Table → Excel

Selecting appropriate fatigue damage in hot-spots

For each connection specified in the Fatal control file, the fatigue damage among eight
hot-spots along the circumference of the tubes, four along the brace side and four along
the chord side, is tabulated in a text-file. The positions along the circumference of the
tubes are 0 °, 90°, 180° and 270° for both the chord- and the brace side. The maximum
fatigue damage along the eight positions was, in compliance with the procedure of Jia et al.
(2008), set at the one-year fatigue damage, and was together with the position tabulated
in the dataset utilized by the ML-model.

Fitting distribution to displacements

Given the way fatigue calculations are performed in USFOS through Fatal, described in
Section 2.2, only the stress ranges and number of cycles are considered by application
of Rainflow counting. Recognizing the relationship between stress and displacement, de-
scribed in Subsection 2.1.2, it was considered important to capture the underlying statistics
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of the displacement time-series. As most of the simulated- and monitored displacement
time-series was somewhat symmetric about the x-axis, it was considered sufficient to only
fit a distribution to the positive peaks.

The largest maximum between two adjacent zero-up-crossings can generally be described
reasonably well by the 2-parameter Weibull distribution, within a stationary period (Haver,
2019). The cumulative distribution function (CDF) is defined according to Equation 3.25:

FX(x) = 1− exp

{
−
(

x

λd

)kd
}

(3.25)

where λd is the scale parameter and kd is the shape parameter. The process of fitting the
peaks was done by using the method of moments. For a sample of size N , the method of
moments is defined by requiring that the sample moments, in Equation 3.26, are equal to
the population moments in Equation 3.27.

Sample mean: E[X̂] = x̄ =
1

N

N∑
i=1

xi

Sample variance: V ar[X̂] = S2
X =

1

N − 1

N∑
i=1

(xi − x̄)2

(3.26)

Population mean: E[X] = λdΓ

(
1 +

1

kd

)
Population variance: V ar[X] = λ2

d

[
Γ

(
1 +

2

kd

)
− Γ2

(
1 +

1

kd

)] (3.27)

Here, Γ() is the Gamma function. The distribution parameters, λd and kd, are found by
inserting the values obtained from Equation 3.26 into Equation 3.27. By rearranging the
population mean with respect to λd, the equation for population variance can be solved
iteratively for kd.

To visualize whether or not the Weibull distribution fits the displacement peaks in a
sufficient manner, it is advantageous to plot them in a probability paper. A probability
paper is created by rearranging the CDF to get it on the form Y (x) = mx + b, where m
is the slope and b is the intercept. Applying this to the 2-parameter Weibull CFD yields:

Y = [−ln(1− ˆ̂
FX(x))]

(
1
kd

)
, m =

1

λd
, b = 0 (3.28)

where
ˆ̂
FX(x) is the sample distribution of the sorted sample, defined according to Equa-

tion 3.29.

ˆ̂
FX(xi) =

i

N + 1
, i = 1, 2, ..., N (3.29)

If the distribution fits the data in a proper manner, the data trend should resemble a
straight line in the probability paper. The resulting probability papers from the same
simulation as used for the displacement comparison in Subsection 3.1.7 are shown below:
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(a) x-directional displacement. (b) y-directional displacement.

Figure 3.11: Probability paper of 2-parameter Weibull distribution fitted to filtered dis-
placement in USFOS x- and y-direction for sensor node 1.

(a) x-directional displacement. (b) y-directional displacement.

Figure 3.12: Probability paper of 2-parameter Weibull distribution fitted to filtered dis-
placement in USFOS x- and y-direction for sensor node 2.

To verify that the 2-parameter Weibull distribution also is fit to describe the monitored
displacements, the probability papers from the same displacement comparison can be seen
below:
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(a) x-directional displacement. (b) y-directional displacement.

Figure 3.13: Probability paper of 2-parameter Weibull distribution fitted to filtered dis-
placement in USFOS x- and y-direction for sensor 1.

(a) x-directional displacement. (b) y-directional displacement.

Figure 3.14: Probability paper of 2-parameter Weibull distribution fitted to filtered dis-
placement in USFOS x- and y-direction for sensor 2.

3.1.10 Data tabulation

A total of 132 dynamic time domain simulations was performed to extract a sufficient
amount of data to train and test the ML-model. When established, the dataset was
organized in the following manner. The top row in the dataset are the headers of the
columns, which describes the attributes of the columns. The individual columns represents
features of the dataset. One single row denotes one complete observation, often called
sample, and can contain either numerical- or categorical quantities. Since the model should
predict the damage among 50 connections, each simulation contributed with 50 samples.
This implies that duplicate data was unavoidable, which, as covered in Subsection 2.3.8,
can be regarded as questionable. The data considered relevant for each sea state needs
to provide relevant, unique information and be easily accessible without performing any
dynamic time domain simulations. The parameters included for each simulation are listed
below:

• Index column denoting the critical joints, with unit [-].
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• Subindex column denoting all the braces connected in the respective joints, with
unit [-].

• Wave data: Hs and Tp describing the characteristics of the 1-hour sea state, with
units [m] and [s].

• Wind data: mean wind speed and -direction during 1 hour, with units [ms ] and [deg].

• Shape- and scale parameter of the 2-parameter Weibull distribution fitted to the
displacement peaks, with units [-].

• Yearly fatigue damage for all hot-spots, given stationary environmental conditions,
with unit [-].

• Position around the circumference of the tube where maximum fatigue damage oc-
curred, with unit [-]. This parameter was only included for visualization purposes,
as it is a simulation based property.

The tabulated data used for training, validation and testing can be found in Google Drive6.

6https://docs.google.com/spreadsheets/d/1hJBdczmNNAVhqVi3PRBdpXuD5ek32cME/edit?usp=
sharing&ouid=110407881319023833523&rtpof=true&sd=true
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3.2 Machine learning

As mentioned in the introduction, the ML-model is limited to quantification of fatigue
damage in connections in critical joints, and is therefore exempt from compound problems
which is present in for instance image classification. This allows for a single, quite simple
ML-model, where an ordinary FFNN is sufficient. The obvious advantages of a simple
NN is the time consumption during training and testing, as well as replicability in similar
studies.

An important thing to note when trying to predict such small numbers as fatigue damage,
with a vast difference in relative magnitude and very specific, is that accuracy is difficult to
assess directly. In other words, if one is to estimate the accuracy from a binary perspective,
the model will most certainly perform poorly. Therefore, the model performance was
evaluated through the following points:

• Through MSE and/or MAE.

• Accurate estimations of the highest fatigue damage values.

• Generally conservative estimates of fatigue damage.

• Through loss.

3.2.1 Environment setup

The programming language Python was used to establish the ML-model. Python is known
for its ease of use, and offers a vast amount of libraries. TensorFlow is an open-source
library within ML developed and maintained by Google, and made public in November
2015. In addition Keras was utilized. Keras is a library used as an extension of TensorFlow,
providing a more abstract interface for the user, easing the process of building the NN
(De Marchi and Mitchell, 2019).

Moreover, the ML code was written using Google Colaboratory, Colab for short. Colab
allows the user to execute Python program directly in the browser without having to
download the needed libraries. In addition, the code can be executed piecewise, simplifying
the post processing as the most computationally demanding parts does not have to be re-
executed. Using Colab for ML tasks is also beneficial since it allows utilization of graphics
processing units to increase computational power. Lastly, established work can be shared
across computers by saving it in Google Drive.
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3.2.2 Processing tabulated data

The data obtained from the simulations consist of 6600, with 15 attributes. Each sample
contains 14 numerical attributes and one categorical. To understand how the preprocessing
of the data is done, it is advantageous to see a description of the attributes at an early stage.
This is shown in Table 3.10, where the position around the circumference is neglected since
it only was used for data visualization.

Table 3.10: Description of dataset. As previously, x̂ denotes x-direction and ŷ denotes
y-direction.

Jacket fatigue damage dataset

No. Attributes Values

1 Connection 1 - 50
2 Joint 1 - 8
3 λd sensor 1, x̂ 0.002290 - 0.023552
4 λd sensor 1, ŷ 0.006905 - 0.055723
5 λd sensor 2, x̂ 0.002317 - 0.023562
6 λd sensor 2, ŷ 0.006936 - 0.055723
7 kd sensor 1, x̂ 0.378170 - 3.211260
8 kd sensor 1, ŷ 1.049538 - 5.486857
9 kd sensor 2, x̂ 1.341414 - 3.248437
10 kd sensor 2, ŷ 1.049772 - 5.520304
11 Hs 4 - 8
12 Tp 8 - 14
13 Wind/wave direction 15 - 345
14 Mean wind speed 8.3 - 23.1

Output values
1 Damage 2.7543e-10 - 7.185e-04

Data scaling

The MinMaxScaler is a common function to scale the input parameters to be in the range
[0,1] for ANNs, and was used for all the input features in this thesis. Mathematically, the
scaling is given by Equation 3.30.

Xi,new =
Xi −Xmin

Xmax −Xmin
(3.30)

where Xmin is the minimum value in the feature column, Xmax is the maximum value in
the feature column and Xi denotes feature number i for feature column X.

It is not common practice to scale the output feature. However, as can be seen in both
in Table 3.10 and Figure 3.15, the ML-model will have a hard time distinguishing the
individual samples. Additionally, the regression is likely to be heavily influenced by the
vast amount of extremely small damage values.
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(a) Histogram (b) Categorical plot

Figure 3.15: Unscaled fatigue damage illustrating the problematic distribution of the
tabulated fatigue damage.

Therefore, a few remedies was performed. These are summarized below:

1. Remove the 500 samples with the smallest fatigue damage. Updated sample size:
6100.

2. Remove samples where the fatigue damages above 0.0002, since they can be con-
sidered outliers and strictly restrict the range by being disproportionately large.
Updated sample size: 6083.

3. Scale the fatigue damage to get a greater dispersion within the range [0,1] by dividing
on the new maximum value equal to 0.00018884.

4. Remove all scaled samples where the fatigue damage is below 0.0002. Updated
sample size: 4721.

It is important to mention that by scaling the output feature, the model gets trained to
predict the output wrongly, and both the true damage and the predicted damage needs
to be multiplied with the scaling factor accordingly. The reason behind this measure is
explained in Subsection 3.2.7.

Attribute vectorization

In ML it is common practice to vectorize directional attributes. This is because it is
difficult for the NN to grasp that 0 deg represents the same as 360 deg. Hence, the
direction was vectorized and multiplied with Hs to create an x-component, Hs,x, and a
y-component, Hs,y.

Data correlation

A goal in regression analysis is to ensure that the independent variables provides unique
information, and only relates to the dependent variable, which in this case is the fatigue
damage. Multicollinearity occurs when independent variables associates with changes in
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another. Multicollinearity in increasing order introduces problems cumulatively during
model fitting, as a small change in an independent variable can cause drastic changes
in the model output. Uncorrelated input features can contribute to reduce the bias and
decrease the computational time of the learning algorithm. A heat map showing the
correlation matrix between the features of the dataset is shown in the Figure 3.16.

Figure 3.16: Correlation matrix of the jacket fatigue damage dataset.

From Figure 3.16 it can be seen that quite a few of the input features are extremely correl-
ated, especially the scale- and shape parameters of the fitted Weibull distributions. The
consequences of removing correlated attributes are investigated further in Subsection 3.2.6.

Training-, validation- and test set

The training- and validation set contains 4248 samples, analogous to 90 % of the total
dataset. 90 % of the samples was used to fit the model. The remaining 10 % of the set
was defined to be used for validation, to get continuous unbiased evaluations of the model
fitting while tuning the hyperparameters.

The test set contains 473 samples, analogous to 10 % of the total dataset. The test set
was used to evaluate the fitted model on unseen data.
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3.2.3 Training the model

The machine learning algorithm used to train the model is explained in algorithm 3,
whereas the whole script, including the validation and testing, can be found in Google
Colab7.

Algorithm 3: Algorithm for machine learning model training

Dataset ← Read Excel
Dataset ← Preprocess Dataset
Training set, test set ← Split Dataset 90%-10%
Initialize weights
for epoch ← 1 to end do

for sample ← 1 to sample size(training set) do
Predicted damage ← Predict(sample input)
Loss ← Calculate loss(True damage, Predicted damage)
if modulus(sample) == batch size then

Calculate loss gradients
Calculate optimizer gradients
Update model parameters

end

end

end

3.2.4 Experiments with model architecture and epoch sensitivity

The FFNN-architecture seen in Table 3.11 was used as a foundation for the experiments.
All layers are applied variance scaling as the kernel initializer, which determines the initial
weights. For regression problems, the initialized weights are usually normally distributed,
but it was found rather quickly that it led to overfitting already after a few epochs, and
thus no reason to investigate further. For all the experiments, a batch size of 32 was used,
denoting the amount of samples the model processes before updating the model weights.
A small batch size is memory efficient, but may increase the total computational time
used to fit the model. The optimizer was chosen to be Adam with default settings, and
the loss function was MAE.

Table 3.11: Layer characteristics of model.

Layer Layer type Shape Activation function Kernel initializer

1 Dense (,14) ReLU Variance scaling
2 Dense (,32) ReLU Variance scaling
3 Dense (,32) ReLU Variance scaling
4 Dense (,32) ReLU Variance scaling
5 Dense (,1) - -

Note that the output layer in the model lacks an activation function. This is an important
difference to NNs applied to linear regression problems. The initial part of the optimization
of the ML-model consisted of figuring out the optimal number of epochs. The obtained
results are shown in Table 3.12.

7https://colab.research.google.com/drive/1QWduwe9wJYdkeLpzqOWKTO9RPDfhePCA?usp=sharing
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Table 3.12: Results from experimenting with the optimal number of epochs needed by the
ML-model. MSE and MAE are calculated with respect to the predicted- and true yearly
fatigue damage values.

Epochs Training loss Validation loss MAE MSE Model fitting

50 0.0178 0.0155 0.0190 0.00400 Under fit
150 0.0149 0.0146 0.0190 0.00402 Under fit
250 0.0118 0.0112 0.0123 0.00160 Good fit
350 0.0082 0.0071 0.0079 0.00059 Good fit
450 0.0090 0.0095 0.0117 0.00119 Good fit
550 0.0061 0.0076 0.0072 0.00055 Good fit
650 0.0075 0.0079 0.0088 0.00048 Good fit
750 0.0047 0.0053 0.0052 0.00018 Good fit
850 0.0061 0.0061 0.0068 0.00025 Good fit
950 0.0051 0.0058 0.0055 0.00021 Good fit
1050 0.0062 0.0073 0.0097 0.00083 Good fit

To get an understanding of how accurate the predictions in Table 3.12 are, it is beneficial
to visualize the predicted results and corresponding error. The most accurate result during
the experiment was obtained with 750 epochs, and can be seen in Figure 3.17.

(a) Predictions vs true damage (b) Predicted values minus true values

Figure 3.17: ML-model results for 750 epochs.
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3.2.5 Experimenting with optimizer and activation function

In order to investigate the robustness of the ML-model, investigations regarding the choice
of optimizer and activation function was performed. For these experiments, the amount
of epochs was limited to 750, 850 and 950.

tanh as activation function

For these experiments, the same architecture as described in Table 3.11 was used with
Adam as optimizer. The batch size was set to 32.

Table 3.13: Experimenting with tanh as activation function. MSE and MAE are calculated
with respect to the predicted- and true yearly fatigue damage values.

Epochs Training loss Validation loss MAE MSE Model fitting

750 0.0124 0.0115 0.0143 0.00222 Good fit
850 0.0080 0.0078 0.0103 0.00083 Good fit
950 0.0082 0.0085 0.0100 0.00061 Good fit

The most accurate result during the experiment was obtained with 950 epochs, and can
be seen in Figure 3.18.

(a) Predictions vs true damage (b) Predicted values minus true values

Figure 3.18: ML-model results for 950 epochs.
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RMSProp as optimizer

For these experiments, the same architecture as described in Table 3.11 was used with
ReLU as activation function. The batch size was set to 32.

Table 3.14: Experimenting with RMSProp as optimizer. MSE and MAE are calculated
with respect to the predicted- and true yearly fatigue damage.

Epochs Training loss Validation loss MAE MSE Model fitting

750 0.0065 0.0071 0.0074 0.00039 Good fit
850 0.0081 0.011 0.0101 0.00117 Good fit
950 0.0068 0.0086 0.0095 0.00069 Good fit

The most accurate result during the experiment was obtained with 950 epochs, and can
be seen in Figure 3.19.

(a) Predictions vs true damage (b) Predicted values minus true values

Figure 3.19: ML-model results for 950 epochs.

3.2.6 Experiments with input features

It was of interest to investigate how the removal of certain attributes affected the ML-
model, considering both a redundant- and a minimalist perspective. The ML-model as
described in Subsection 3.2.4 was used, with 950 epochs, but the shape of the input layer
adapts according to the amount of removed input features. The obtained results are
presented in Chapter 4.

Removal of Weibull distribution parameters

Over the course of a year it is likely that at least one of the sensors will be disconnected for
some time. Therefore, it was advantageous to investigate whether or not the removal of
one sensor decreased the accuracy. By considering the correlation matrix in Figure 3.16,
it can be seen that the distribution parameters across the sensors are highly correlated,
which indicates minor consequences.
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Removal of wave direction

The on site wave direction has in this thesis been assumed to follow the wind direction
obtained from Meteorologisk institutt. This is not necessarily true, especially since the
exact measurement locations differs slightly. Hence, an investigation regarding the influ-
ence of the wave direction for the ML-model was made. Previously, the wind- and wave
direction was vectorized together with Hs. As this no longer is a viable option, the wind
direction was vectorized with the mean wind speed in order to provide the model some
directional information.

3.2.7 Verification of fatigue damage scaling importance

To prove the importance of damage scaling it is meaningful to illustrate the performance
of the ML-model when less preprocessing was done. The scaling of input features does not
need more than the mathematical support provided in Subsection 2.3.8, but the scaling
of the output feature does. Output scaling is uncommon and forces the model to predict
wrong results. The main issue encountered when not scaling the fatigue damage was that
the model, even with dropout layers, quickly got overfit before it was able to capture
the desired trends. From a standpoint where conservatism is wanted, an overfitted model
produced the worst outcome given an otherwise accurate model. Reason being that all the
predictions fell close to the ”CoG” of the simulated damages, similar to linear regression
models. In other words, the model underestimated all substantial damages, and overestim-
ated the non-critical values. As illustrated in Figure 3.15, the damage values calculated
through Fatal was heavily skewed towards small values, relatively speaking, confirming
that ”CoG”-predictions provides non-conservative cumulative estimations over a sufficient
time period.

By increasing the amount of hidden layers, the model gets more prone to overfitting.
Without scaling the fatigue damage, the initial model, described in Subsection 3.2.4, was
quite sensitive to the number of epochs; less than 50 epochs always provided poor results.
Hence, precautions had to be made. Primarily two remedies was possible, decreasing
the amount of hidden layers or introduce dropout layers in between the existing layers.
However, to be able to obtain low enough output, the amount of hidden layers had to be
increased. Thus, dropout layers was a necessity.

Misman et al. (2019) received good results in their attempt to classify the age of Abalones
(snails) based on features quantifying their size, among others. Their results improved by
incorporating dropout layers in between the hidden layers to prevent overfitting. Gener-
ally, implementation of one or more dropout layers contributes with three main things:
reduce overfitting, decrease computational time due to smaller architectures and improve
generalization in NNs. The dropout layer may sound counter-intuitive at first, but is actu-
ally well reasoned. By temporarily removing some neurons, randomly for each epoch, the
active neurons gets forced to balance their weaknesses and strengths to better encapsulate
the desired trends. However, one downside of dropout layers is that the cost function,
quantifying the average loss over the training set, no longer makes sense, since neurons
gets randomly deactivated.

A representative result when fatigue damage scaling was not performed is illustrated in
Figure 3.20. To counteract overfitting, dropout layers was implemented between all the
hidden layers. The ML-model architecture able to provide ”CoG”-predictions is seen in
Table 3.15, with Adam as optimizer. Due to epoch sensitivity, the batch size was one.
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Table 3.15: Layer characteristics of ML-model applied on unscaled fatigue damage.

Layer Layer type Shape Activation function Kernel initializer Dropout rate

1 Dense (,14) ReLU Variance scaling -
2 Dense (,32) ReLU Variance scaling -
3 Dropout (,32) - - 0.2
4 Dense (,32) ReLU Variance scaling -
5 Dropout (,32) - - 0.2
6 Dense (,32) ReLU Variance scaling -
7 Dropout (,32) - - 0.2
8 Dense (,32) ReLU Variance scaling -
9 Dense (,1) - - -

(a) Predictions vs true damage (b) Predicted values minus true values

Figure 3.20: The best obtained predictions with unscaled fatigue damage. The number of
epochs was set to 50 with MSE as loss function. The batch size was set to one.

3.2.8 Applying the model on real-time monitored data

As a final challenge, the ML-model was used to estimate the accumulated fatigue damage
during January 2021. To do so, the monitored data had to be tabulated on the same format
as the simulated data. The Python code January2021 disp.py in Appendix E.4 was used
to generate the dataset, where the tabulated data can be found in Google Drive8. A
total of 744 hourly combinations of environmental conditions equals to 37200 samples.
Subsequently, samples with missing input was removed. For January 2021, only three
sea states had to be removed, corresponding to 150 samples. Furthermore, to comply
with the scaling of the training data, the input features needed to be scaled to the range
[0,1] with the MinMaxScaler. The predicted output values needed to be corrected by
multiplying with the maximum fatigue damage from the dataset used for model fitting
and -testing. As the predicted output is yearly fatigue damage, each prediction had to be
scaled down to the experienced one-hour duration. Subsequently, the accumulated damage
during January 2021 for each individual connection was found by direct summation of the
contributions for each hour. The Python code used to predict the fatigue damage through
the ML-model is the same script in Google Colab as linked in Subsection 3.2.3.

8https://docs.google.com/spreadsheets/d/1hJBdczmNNAVhqVi3PRBdpXuD5ek32cME/edit?usp=
sharing&ouid=110407881319023833523&rtpof=true&sd=true
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Chapter 4

Results and discussion

Although intermediate results and experiments with the ML-model are described through-
out Chapter 3, a more thorough review of the final results will be presented in this chapter,
along with a discussion of the results. The ML-model architecture shown in Table 3.11,
trained over 950 epochs with Adam as optimizer and MAE as loss function was, among
other highly qualified candidates, able to accurately replicate the yearly fatigue damage on
the jacket structure calculated by use of USFOS. The results presented in this chapter are
based on this model, where its simplicity is beneficial in terms of computational demand.

4.1 Predicted values from test set

The results obtained from the test set are all presented with plots showing predicted yearly
fatigue damage against the true USFOS-generated damage and corresponding errors. The
line, y = x, illustrates identical predicted- and true values. The error was calculated as
the predicted values minus the true values, which means that a positive error corresponds
to overestimation, i.e. conservative estimations.

(a) Predictions vs true damage (b) Predicted values minus true values

Figure 4.1: ML-model performance with all input features.
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(a) Predictions vs true damage (b) Predicted values minus true values

Figure 4.2: ML-Model performance without Weibull parameters from sensor node 2.

(a) Predictions vs true damage (b) Predicted values minus true values

Figure 4.3: ML-Model performance without wave direction.

(a) Predictions vs true damage (b) Predicted values minus true values

Figure 4.4: ML-model performance without wave direction and Weibull parameters from
sensor node 2.
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The figures above shows that the predicted results from a FFNN corresponded very well
with the simulated results from USFOS. The results were only slightly negatively affected
by the removal of input features, which implies a redundancy. The redundancy of tabulated
input features complies well with the correlation matrix in Figure 3.16, which shows that
the Weibull parameters are highly correlated with each other. In addition, the vectorized
wave direction is quite uncorrelated with the fatigue damage, which explains the accurate
predictions when wave direction was excluded. The low correlation between the two latter
features is probably a result of the 50 different connections. As the connections was
spread across the entire jacket platform, a directional change increased the damage in
some connections, but decreased the damage in others.

4.1.1 Predicted values for each sample

To get a better understanding of how the prediction error was distributed across the
samples, Figure 4.5 illustrates the predicted values and true values for the case where
wave direction was excluded. The reason behind highlighting this particular composition of
input features is that it was used for the prediction of accumulated fatigue damage during
January 2021 presented in Section 4.3. The equivalent plots for the other compositions of
input features are presented in Appendix B.

Figure 4.5: Predicted- and simulated yearly fatigue damage versus sample number on
the test set, with wave direction excluded from the input features. y true is the fatigue
damage calculated through Fatal and y hat is the predicted results from the ML-model.

59



4. Results and discussion

It is important to keep in mind that some of the connections used in the model training
and -fitting are more or less irrelevant from a fatigue failure perspective. In that sense,
the model’s ability to accurately predict the fatigue damage peaks is more critical, while
still maintaining good accuracy on the moderate and low values. Figure 4.5 shows that
the model slightly overestimated the extreme values, and that the error mainly was due
to overprediction of small values. This result complies well with the initial desire of
conservatism.

4.2 Loss from the validation data

The ML-model performance on the validation set given different input features can be
quantified through the loss, which in was set to be MAE. The final losses are presented in
Table 4.1, where it is important to note that the MAE was calculated with respect to the
scaled fatigue damage, implying a higher loss than otherwise would have been.

Table 4.1: Final ML-model loss with different input features from the validation data.
The loss is calculated with respect to the scaled fatigue damage.

Description MAE

All input features 0.0050
Excluding Weibull parameters 0.0077
Excluding wave direction 0.0055
Excluding Weibull parameters and wave direction 0.0081

The similarities in MAE across the predictions with different input features supports the
statement about a redundant amount of input features discussed above.

4.2.1 Loss from training- and validation data

To illustrate the training stability, the model development related to accuracy and loss
as a function of epochs, for the case where wave direction was excluded, is presented in
Figure 4.6. The reason behind highlighting this particular composition of input features
is that it was used for the prediction of accumulated fatigue damage during January 2021
presented in Section 4.3. In Figure 4.6b, a lot of noise in the training loss corresponds
to an unstable learning rate, while a smooth graph indicates a stable learning rate. It is
important to note that the MAE was calculated with respect to the scaled fatigue damage,
implying a higher loss than otherwise would have been. As mentioned in Section 3.2, a
binary evaluation of the accuracy of the model is of little use, and the exact accuracy values
are therefore not so important. However, the accuracy should increase towards a stable
value as the number of epochs increases. The equivalent plots for the other compositions
of input features are shown in Appendix A.
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(a) Model accuracy (b) Model loss

Figure 4.6: ML-model accuracy and -loss as a function of epochs, with wave direction
excluded from the input features. The loss function is MAE, calculated with respect to
the scaled yearly fatigue damage.

In Figure 4.6b, both the training- and validation loss decreases continuously and stabilizes
somewhat around 900 epochs, indicating a good fit. The loss from the validation set is
slightly higher than the loss from the training data. However, the deviation between the
two is minimal, and parts of the difference may be due to a more complex validation-
than training set. Further, it can be seen that the training loss is quite smooth, while
the validation loss carries some more noise. This varied slightly for each performed fit,
but is likely a consequence of that the validation loss is measured after each epoch, while
the training loss is measured after each batch. By removing some input features, the loss
generally increased slightly, with more noise, but was able to stabilize after a sufficient
amount of epochs. This intuitively makes sense, since by removing input features, one also
reduces the amount of available relationships for the ML-model. However, it is important
to mention that the loss values are small, and the noise therefore seems more dramatic
than it is.

4.3 Accumulated fatigue damage during January 2021

As a final result, the accumulated fatigue damage during January 2021 was estimated.
The predicted damages for each sample can be seen in Figure 4.7 and the accumulated
damage for each connection can be seen in Table 4.2.

(a) Yearly fatigue damage (b) Hourly fatigue damage

Figure 4.7: Predicted fatigue damage for each joint during January 2021.
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Table 4.2: Predicted accumulated fatigue damage for each connection during January
2021.

Connection Fatigue damage

1 1.68e-6
2 7.40e-7
3 1.59e-7
4 6.96e-8
5 1.21e-7
6 6.00e-7
7 3.39e-7
8 3.01e-7
9 2.28e-7
10 2.38e-7
11 2.24e-7
12 2.05e-7
13 1.37e-7
14 1.99e-7
15 2.74e-7
16 2.84e-7
17 2.75e-7
18 2.36e-7
19 1.96e-7
20 1.35e-7
21 1.44e-7
22 1.27e-7
23 1.33e-7
24 1.26e-7
25 1.04e-7

Connection Fatigue damage

26 9.13e-8
27 4.55e-8
28 2.51e-8
29 1.38e-8
30 1.38e-7
31 1.33e-7
32 1.34e-7
33 1.16e-7
34 4.65e-8
35 2.00e-8
36 6.26e-9
37 1.54e-7
38 1.37e-7
39 1.25e-7
40 8.80e-8
41 3.79e-8
42 2.21e-8
43 1.59e-8
44 1.21e-7
45 7.72e-8
46 5.36e-8
47 3.08e-8
48 1.75e-8
49 4.41e-8
50 1.32e-7

For the predicted accumulated fatigue damage during January 2021, the accuracy of the
results are difficult to verify exactly, but some evaluations can be done. Several predictions
were made, whereas slight variations in the predicted values occurred each time, while
most trends remained intact. As can be seen in Figure 4.7, the predicted damage has a
descending curve from joint 1 to joint 8. Even though the directional influence from the
environmental actions is not directly comparable, it complies quite well with the tabulated,
unscaled fatigue damage shown in Figure 3.15b.

Although the accumulated fatigue damage during January normally is non-representative
for the yearly damage, comparisons can be made. The maximum predicted accumulated
damage occurred in connection 1, and corresponds to a lifespan of 49603 years, given
identical environmental conditions without any applied design safety factor. The corres-
ponding minimum total lifetime of connection 1, calculated by Aker Solutions in their
FLS-report for two different combinations of subsidence, was equal to 413 years with ap-
plied design safety factor. The predicted accumulated fatigue damage during January
2021 therefore seems unrealistically low. Since the predictions complies well with the res-
ults generated through USFOS, it indicates that the problems lie within the performed
fatigue simulations. By recognizing that the simulated displacements was substantially
larger than the monitored displacements, this result is quite surprising.
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4.4 Uncertainties in the USFOS fatigue simulations

Its important to emphasize that the accuracy of the ML model in terms of assessing a
real structure was inherently limited by the quality of the performed time domain fatigue
analyses. Simplifications of the provided FEM had to be made, where it was important not
to lose information which affected the dynamic behaviour of the structure. Nevertheless,
the reader should be aware of some factors limiting the accuracy of the method applied
to generate a dataset for ML in terms of real-life application:

• The bridge connections, and their influence in terms of stiffness, was never known.

• No information about current or marine growth affecting the dynamics of the struc-
ture was available.

• The topside was replaced by a point mass. The influence on the wave loads is
negligible, while the influence from the wind loses some of its purpose when the
topside is not physically present. In addition, wind gusts could not reasonably be
applied in USFOS.

• Subsidence was neglected throughout the simulations. It is likely that this increased
the deviation between the simulated and monitored displacements.

• Some of the smaller structural configurations in the jacket FEM was removed. They
did presumably not affect the structural properties, but the load contribution due
to waves could not be represented.

• 15 minute simulations may not have been sufficient to obtain a stable standard
deviation of the applied spectra.

• As stated in Subsection 3.1.8, Fatal was set to skip the initial six seconds of the
simulations to avoid extreme half-cycles. This was perhaps a bit short of what was
actually needed.

• The tripods supporting the nodes representing the sensors on the actual structure
was defined to have a substantial axial stiffness, ideally to limit the nodal transla-
tion to comply with the remainder of the topside. Some unwanted translational- and
bending motion may have occurred, but the influence is considered to be of minor
importance, as the magnitude is not included in addition to the tabulated Weibull
distribution parameters. The potential unwanted motions could have been investig-
ated by comparing the translations of the sensor nodes with the tripod clamps.

• Fatal is not a publicly available USFOS-module, and the accuracy of the fatigue
calculations used as ground truth should therefore be shown some scepticism. Inac-
curacy in the fatigue calculations is especially plausible in joints where the parametric
equations in Subsection 2.2.2, used to calculate the SCFs, not necessarily are correct.
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4.5 Dataset evaluation

Since a substantial part of this thesis consisted of creating a dataset suited for ML, it is
important to question whether or not it was structured in the best possible way. For cases
where the waves came from a pure x- or y-direction, the displacement pattern normal
to the wave direction was poorly described by the 2-parameter Weibull distribution. An
intricate dilemma appears, since the displacement pattern in the same direction as the
applied waves was so incredibly well described by the Weibull distribution. This discovery
was omitted throughout the simulations, but may influence the results when evaluating
on-site monitored data. Such samples may be important to remove.

The dataset was customized to facilitate that the machine learning model should predict
the governing fatigue damage in 50 connections distributed over eight joints. This implies
that each simulation corresponded to 50 samples, where each sample, except for the fatigue
damage and indexation features, had to be repeated 50 times. Even though the training-
and test set was split in such a way that the influence of quite similar data should be
minimal, it is possible that the results became somewhat biased by that the model became
disproportionately confident on ”known” data. This indicates that a model for each joint
or connection could have been advantageous.

Even though a lot of simulations was performed, only a limited amount of sea states was
selected. More diversity could perhaps have improved the results. Simultaneously as it
was important to limit the sea states to be within the validity range of the JONSWAP
spectrum, a wider range of sea states could have provided a better foundation for the data
scaling discussed in the subsection below.

4.5.1 Data scaling

The input features in the training- and validation set was scaled to the range [0,1], which
indeed limits the ML-model capabilities to this range. The same scaling procedure was
applied on the test set and the set used to predict the accumulated fatigue damage during
January 2021. Although the results on the test set were close to ground truth, an alternat-
ive scaling procedure could have been to scale the other sets by utilizing the minimum- and
maximum values from the training set. This way, the data gets scaled relative to already
known values, and the ML-model may become more adapted to what can be considered
as abnormal input values.
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Chapter 5

Conclusion and recommendations
for further work

5.1 Conclusion

The objectives of this thesis was to develop a dataset suited for ML, and subsequently
build- and train a NN to replicate fatigue damage in critical joints on a jacket structure,
calculated through time domain FEA. By combining monitored data with machine learn-
ing, a trained NN may predict the real-time fatigue damage, and contribute to reduce the
long-term usage of FEA.

The dataset used for training an testing was constructed though a multi-step process.
Initially, a GeniE FEM was converted to a USFOS FEM and simplified in order to be suited
for dynamic time domain fatigue simulations. Subsequently, appropriate combinations
of environmental loads was calculated through statistical evaluations of monitored data
and systematically applied the FEM. The resulting fatigue damage was tabulated with
properties of the environmental actions and 2-parameter Weibull distribution parameters
fitted to the displacement peaks for the two nodes representing the sensors on the real
platform.

A quite simple FFNN was developed, and provided promising indications that an ordinary
FFNN indeed is capable of quite accurate fatigue damage predictions of critical joints in
an offshore jacket structure, when trained and tested on a dataset constructed by use of a
FEM subjected to irregular waves and wind from different headings. The robustness was
confirmed by evaluating predictions made with different types of activation functions and
optimizers, in addition to removal of certain input features. Furthermore, slightly conser-
vative predictions of the highest damage peaks was possible to achieve, which complies
well with a desire of conservative estimations. For the applied FFNN, data scaling and
removal of outliers was a prerequisite for obtaining accurate results. This included scaling
of the output feature to increase the dispersion.

The limitations seem to lie within the relationship between the performed FEA and the
real structure which is to be assessed. An accurate ML-model does not necessarily im-
ply accurate predictions of the fatigue damage on the real structure, and is essential for
achieving reliable results in real-life application.
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5.2 Recommendations for further work

Considering the quite large field of study in this thesis, only one possible solution proced-
ure has been investigated. Therefore, several recommendations for further work among
all branches explained in the method is proposed. In relation to the modelling and simu-
lations, the following steps are recommended:

• Expand the system to two or three jackets connected by bridges.

• Establish a generally more exact representation of the platform(s).

• Perform quality checks on the calculated fatigue damage, to ensure that the ML-
model encapsulates the desired real-life trends.

For the tabulation of data to be applied on the ML-model, the following suggestions are
made:

• Establish other combinations of input features, possibly with varying degrees of
statistical evaluations.

• Tabulate unique data for each joint to avoid replicated input features across the
samples.

• Expand the generated dataset used for training, validation and testing to be more
diverse. This is essential if several joint-specific ML-models are created.

And lastly, the following steps are proposed for ML:

• Experiment with different types of scaling processes. It is generally not desirable to
scale the output feature.

• Experiment with different types of model architectures, which becomes especially
relevant in combination with different types of tabulation methods.

• A FFNN could possibly be used in combination with a recursive NN, where the
recursive NN uses input from the FFNN to predict fatigue damage based on previous
history. Recursive NNs are commonly applied in stock predictions.
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olas, Jesus, Ab́ılio De and Calçada, Rui (2021) Fatigue Assessments of a Jacket-Type

68

https://doi.org/10.1177/1475921710388971
https://doi.org/10.1177/1475921710388971
https://doi.org/10.1177/1475921710388971
https://doi.org/10.1177/1475921710388971
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/https://doi.org/10.1016/j.neucom.2015.09.116
https://www.sciencedirect.com/science/article/pii/S0925231215017634
https://www.sciencedirect.com/science/article/pii/S0925231215017634
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-642-19460-3_4
https://doi.org/10.1007/978-3-642-19460-3_4
https://doi.org/10.1007/978-3-642-19460-3_4
https://doi.org/https://doi.org/10.1016/j.renene.2019.09.092
https://doi.org/https://doi.org/10.1016/j.renene.2019.09.092
https://www.sciencedirect.com/science/article/pii/S0960148119314235
https://www.sciencedirect.com/science/article/pii/S0960148119314235


Bibliography

Offshore Structure Based on Static and Dynamic Analyses, Practice Periodical on
Structural Design and Construction, 26(1), p. 04020054. doi: 10.1061/(ASCE)SC.1943-
5576.0000533. eprint: https://ascelibrary.org/doi/pdf/10.1061/\%28ASCE\%29SC.
1943-5576.0000533. Available at: %7Bhttps://ascelibrary.org/doi/abs/10.1061/%5C%
28ASCE%5C%29SC.1943-5576.0000533%7D.

Meteorologisk institutt (2022). Available at: https://frost.met.no/index.html (Accessed:
5th Feb. 2022).

Misman, Muhammad, A Samah, Azurah, Aziz, Nur, Majid, Hairudin, Ali Shah, Zuraini,
Hashim, Haslina and Harun, Muhamad Farhin (Sept. 2019) Prediction of Abalone Age
Using Regression-Based Neural Network, pp. 23–28. doi: 10.1109/AiDAS47888.2019.
8970983.

Moan, Torgeir (2003) TMR 4190 - Finite Element Modelling and Analyses of Marine
Structures. NTNU - Department of Marine Technology.

— (2005) Reliability-based management of inspection, maintenance and repair of offshore
structures, Structure and Infrastructure Engineering, 1(1), pp. 33–62. doi: 10.1080/
15732470412331289314. eprint: https://doi.org/10.1080/15732470412331289314. Avail-
able at: https://doi.org/10.1080/15732470412331289314.

Musallam, Mahera and Johnson, C. Mark (2012) An Efficient Implementation of the Rain-
flow Counting Algorithm for Life Consumption Estimation, IEEE Transactions on
Reliability, 61(4), pp. 978–986. doi: 10.1109/TR.2012.2221040.

Myrhaug, Dag (2019) TMR 4182 Marine dynamics. Department of Marine Technology,
Faculty of Engineering Science and Technology, NTNU.

N’Diaye, A., Hariri, S., Pluvinage, G. and Azari, Z. (2007) Stress concentration factor
analysis for notched welded tubular T-joints, International Journal of Fatigue, 29(8),
pp. 1554–1570. issn: 0142-1123. doi: https://doi.org/10.1016/j.ijfatigue.2006.10.030.
Available at: https://www.sciencedirect.com/science/article/pii/S0142112306003161.

Newland, D.E (2005) An introduction to Random Vibrations, Spectral & Wavelet Analysis.
3rd ed. Dover Publications, Inc, Mineola, New York.

NORSOK, Standard N-003 (2017) Actions and action effects, Standards Norway.

Pettersen, B. (2007) Marin Teknikk 3 - Hydrodynamikk. Akademika Forlag.

Potvin, A.B., Kuang, J.G., Leick, R.D. and Kahlich, J.L. (Aug. 1977) Stress Concentration
in Tubular Joints, Society of Petroleum Engineers Journal, 17(04), pp. 287–299. issn:
0197-7520. doi: 10.2118/5472-PA. eprint: https ://onepetro .org/spejournal/article -
pdf/17/04/287/2158740/spe-5472-pa.pdf. Available at: https://doi.org/10.2118/5472-
PA.

Purkait, Niloy (2019) Hands-On Neural Networks with Keras: Design and create neural
networks using deep learning and artificial intelligence principles. Packt Publishing
Ltd.

69

https://doi.org/10.1061/(ASCE)SC.1943-5576.0000533
https://doi.org/10.1061/(ASCE)SC.1943-5576.0000533
https://ascelibrary.org/doi/pdf/10.1061/\%28ASCE\%29SC.1943-5576.0000533
https://ascelibrary.org/doi/pdf/10.1061/\%28ASCE\%29SC.1943-5576.0000533
%7Bhttps://ascelibrary.org/doi/abs/10.1061/%5C%28ASCE%5C%29SC.1943-5576.0000533%7D
%7Bhttps://ascelibrary.org/doi/abs/10.1061/%5C%28ASCE%5C%29SC.1943-5576.0000533%7D
https://frost.met.no/index.html
https://doi.org/10.1109/AiDAS47888.2019.8970983
https://doi.org/10.1109/AiDAS47888.2019.8970983
https://doi.org/10.1080/15732470412331289314
https://doi.org/10.1080/15732470412331289314
https://doi.org/10.1080/15732470412331289314
https://doi.org/10.1080/15732470412331289314
https://doi.org/10.1109/TR.2012.2221040
https://doi.org/https://doi.org/10.1016/j.ijfatigue.2006.10.030
https://www.sciencedirect.com/science/article/pii/S0142112306003161
https://doi.org/10.2118/5472-PA
https://onepetro.org/spejournal/article-pdf/17/04/287/2158740/spe-5472-pa.pdf
https://onepetro.org/spejournal/article-pdf/17/04/287/2158740/spe-5472-pa.pdf
https://doi.org/10.2118/5472-PA
https://doi.org/10.2118/5472-PA


Bibliography

Roy, Saikat, Das, Nibaran, Kundu, Mahantapas and Nasipuri, Mita (2017) Handwritten
isolated Bangla compound character recognition: A new benchmark using a novel deep
learning approach, eng. Pattern recognition letters, 90, pp. 15–21. issn: 0167-8655.

Shabakhty, Naser and Khansari, Arash (Mar. 2019) Fatigue Analysis of a Jacket Structure
to Linear and Weakly Nonlinear Random Waves, Journal of Offshore Mechanics and
Arctic Engineering, 141(6). 061602. issn: 0892-7219. doi: 10.1115/1.4042946. eprint:
https://asmedigitalcollection.asme.org/offshoremechanics/article-pdf/141/6/061602/
6403725/omae\ 141\ 6\ 061602.pdf. Available at: https://doi.org/10.1115/1.4042946.

Sharma, Sagar, Sharma, Simone and Athaiya, Anidhya (2017) Activation functions in
neural networks, towards data science, 6(12), pp. 310–316.

Søreide, Tore H., Amdahl, Jørgen, Eberg, Ernst, Holm̊as, Tore and Hellan, Øyvind (1994)
USFOS - A Computer Program for Progressive Collapse Analysis of Steel Offshore
Structures. Theory Manual. Available at: https://www.usfos.no/manuals/usfos/theory/
documents/Usfos Theory Manual.pdf (Accessed: 15th Nov. 2021).

Stacey, A and Sharp, J V (Dec. 1997) Fatigue damage in offshore structures - causes,
detection and repair.

Tang, Yougang, Qing, Zhaoxi, Zhu, Longhuan and Zhang, Ruoyu (2015) Study on the
structural monitoring and early warning conditions of aging jacket platforms, Ocean
Engineering, 101, pp. 152–160. issn: 0029-8018. doi: https : / / doi . org / 10 . 1016 / j .
oceaneng.2015.04.011. Available at: https://www.sciencedirect.com/science/article/pii/
S0029801815000864.

USFOS (2010) Hydrodynamics - Theory Description of use Verification. Available at: https:
//www.usfos.no/manuals/usfos/theory/documents/Usfos Hydrodynamics.pdf (Accessed:
15th Nov. 2021).

Vieira, Sandra, Pinaya, Walter H.L. and Mechelli, Andrea (2017) Using deep learning
to investigate the neuroimaging correlates of psychiatric and neurological disorders:
Methods and applications, Neuroscience & Biobehavioral Reviews, 74, pp. 58–75. issn:
0149-7634. doi: https : / / doi . org / 10 . 1016 / j . neubiorev . 2017 . 01 . 002. Available at:
https://www.sciencedirect.com/science/article/pii/S0149763416305176.

Worden, Keith, Farrar, Charles R, Manson, Graeme and Park, Gyuhae (2007) The funda-
mental axioms of structural health monitoring, eng. Proceedings of the Royal Society.
A, Mathematical, physical, and engineering sciences, 463(2082), pp. 1639–1664. issn:
1364-5021.

Yan, Wangchen, Deng, Lu, Zhang, Feng, Li, Tiange and Li, Shaofan (2019) Probabilistic
machine learning approach to bridge fatigue failure analysis due to vehicular overload-
ing, Engineering Structures, 193, pp. 91–99. issn: 0141-0296. doi: https://doi.org/10.
1016/j.engstruct.2019.05.028. Available at: https://www.sciencedirect.com/science/
article/pii/S0141029618334345.

Mean Stress Effect on Fatigue of Welded Joint in FPSOs (June 2006). Vol. Volume 3:
Safety and Reliability; Materials Technology; Douglas Faulkner Symposium on Reli-
ability and Ultimate Strength of Marine Structures. International Conference on Off-

70

https://doi.org/10.1115/1.4042946
https://asmedigitalcollection.asme.org/offshoremechanics/article-pdf/141/6/061602/6403725/omae\_141\_6\_061602.pdf
https://asmedigitalcollection.asme.org/offshoremechanics/article-pdf/141/6/061602/6403725/omae\_141\_6\_061602.pdf
https://doi.org/10.1115/1.4042946
https://www.usfos.no/manuals/usfos/theory/documents/Usfos_Theory_Manual.pdf
https://www.usfos.no/manuals/usfos/theory/documents/Usfos_Theory_Manual.pdf
https://doi.org/https://doi.org/10.1016/j.oceaneng.2015.04.011
https://doi.org/https://doi.org/10.1016/j.oceaneng.2015.04.011
https://www.sciencedirect.com/science/article/pii/S0029801815000864
https://www.sciencedirect.com/science/article/pii/S0029801815000864
https://www.usfos.no/manuals/usfos/theory/documents/Usfos_Hydrodynamics.pdf
https://www.usfos.no/manuals/usfos/theory/documents/Usfos_Hydrodynamics.pdf
https://doi.org/https://doi.org/10.1016/j.neubiorev.2017.01.002
https://www.sciencedirect.com/science/article/pii/S0149763416305176
https://doi.org/https://doi.org/10.1016/j.engstruct.2019.05.028
https://doi.org/https://doi.org/10.1016/j.engstruct.2019.05.028
https://www.sciencedirect.com/science/article/pii/S0141029618334345
https://www.sciencedirect.com/science/article/pii/S0141029618334345


Bibliography

shore Mechanics and Arctic Engineering, pp. 403–412. doi: 10.1115/OMAE2006-92056.
eprint: https ://asmedigitalcollection.asme.org/OMAE/proceedings- pdf/OMAE2006/
47489/403/4532365/403\ 1.pdf. Available at: https://doi.org/10.1115/OMAE2006-
92056.

71

https://doi.org/10.1115/OMAE2006-92056
https://asmedigitalcollection.asme.org/OMAE/proceedings-pdf/OMAE2006/47489/403/4532365/403\_1.pdf
https://asmedigitalcollection.asme.org/OMAE/proceedings-pdf/OMAE2006/47489/403/4532365/403\_1.pdf
https://doi.org/10.1115/OMAE2006-92056
https://doi.org/10.1115/OMAE2006-92056




Appendix A

ML-model accuracy and -loss

(a) Model accuracy (b) Model loss

Figure A.1: ML-model accuracy and -loss with all input features.

(a) Model accuracy (b) Model loss

Figure A.2: ML-model accuracy and -loss without Weibull parameters from sensor node
2.

I



A. ML-model accuracy and -loss

(a) Model accuracy (b) Model loss

Figure A.3: ML-model accuracy and -loss without Weibull parameters from sensor node
2 and wave direction.
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Appendix B

ML-model predictions for each
sample

Figure B.1: Predicted fatigue damage values versus sample number on the test set, with all
input features. y true is the fatigue damage calculated in Fatal and y hat is the predicted
results from the ML-model.
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B. ML-model predictions for each sample

Figure B.2: Predicted fatigue damage values versus sample number on the test set, without
Weibull parameters from sensor node 2. y true is the fatigue damage calculated in Fatal
and y hat is the predicted results from the ML-model.
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Figure B.3: Predicted fatigue damage values versus sample number on the test set, without
Weibull parameters from sensor node 2 or wave direction. y true is the fatigue damage
calculated in Fatal and y hat is the predicted results from the ML-model.
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Appendix C

Scatter table

Figure C.1: Scatter table showing the amount of individual hourly sea states, based on
the wave data provided by Aker BP.
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Appendix D

Displacements during January
2021

Sensor 1, N̂S = −x̂ Sensor 1, ˆEW = −ŷ

Sensor 2, N̂S = −x̂ Sensor 2, ˆEW = −ŷ

Figure D.1: Minimum- and maximum monitored displacements for each day during Janu-
ary 2021.
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Appendix E

Python codes

E.1 Code to automate USFOS simulations, RunUsfos.py

1 """
2 Goal: Automate USFOS−simulations
3 @Author: Gjermund Smedsland
4 """
5 import os
6 import pandas as pd
7 from shutil import copyfile
8 import numpy as np
9 import multiprocessing as mul

10 from functools import partial
11 import rainflow
12 from statistics import mean, stdev
13 import xlwings as xw
14 import time
15

16 def run usfos(run folder, head name, model name, load name, file loc):
17 cwd = os.getcwd()
18 os.chdir(run folder)
19

20 #creating input file defining input for the usfos run
21 inp usfos = 'parameters.txt'
22 f = open(inp usfos,'w')
23 f.write(head name + '\n')
24 f.write(model name + '\n')
25 f.write(load name + '\n')
26 f.write('res\n')
27 f.close()
28

29 #creating input files for dynres
30 inp dynres = ['parametersdynres acc1.txt', 'parametersdynres acc2.txt',
31 'parametersdynres acc3.txt', 'parametersdynres acc4.txt',
32 'parametersdynres disp1.txt', 'parametersdynres disp2.txt',
33 'parametersdynres disp3.txt', 'parametersdynres disp4.txt',
34 'parametersdynres waveelev.txt']
35 output files = ['ACC1.txt', 'ACC2.txt', 'ACC3.txt', 'ACC4.txt', ...

'DISP1.txt',
36 'DISP2.txt', 'DISP3.txt', 'DISP4.txt', 'WaveElev.txt']
37 for idx, name in enumerate(inp dynres):
38 f = open(name,'w')
39 f.write('res\n')
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E. Python codes

40 f.write('2\n')
41 f.write('1\n')
42 f.write('0\n')
43 f.write(str(idx + 175) + '\n')
44 f.write(output files[idx] + '\n')
45 f.write('0\n')
46 f.write('0\n')
47 f.close()
48

49 # Creating input files for FATAL
50 inp fatal = 'fatal parameters.txt'
51 f fatal = open(inp fatal, 'w')
52 f fatal.write('res\n')
53 f fatal.write('fatal.ctr\n')
54 f fatal.write('\n')
55 f fatal.write('fatigue')
56 f fatal.close()
57

58 #running usfos
59 program = r'c:\"program files"\"USFOS (64 bit) 8.9"\bin\usfos.exe'
60 run inp = program + ' < ' + inp usfos
61 os.system(run inp)
62

63 #running dynres
64 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres acc1.txt')
65 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres acc2.txt')
66 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres acc3.txt')
67 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres acc4.txt')
68 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres disp1.txt')
69 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres disp2.txt')
70 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres disp3.txt')
71 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres disp4.txt')
72 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\dynres.exe" < ...

parametersdynres waveelev.txt')
73

74 #running fatal
75 os.system('"C:\\Program Files\\USFOS (64 bit) 8.9\\bin\\fatal.exe" < ...

fatal parameters.txt')
76

77 #Delete RAF−file to save space
78 os.remove('res.raf')
79

80 #change bac to working directory
81 os.chdir(cwd)
82

83

84 def ...
create folders(run names,run loc master,head name,model name,df,fatal name, ...
load name):

85 a = 0
86 run loc = []
87 for run in run names:
88 run loc.append(run loc master + run)
89 os.mkdir(run loc[a])
90 #copying input files to runfolder
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E.1. Code to automate USFOS simulations, RunUsfos.py

91 copyfile(run loc master+'\\'+head name+'.fem',run loc[a]+'\\'+head name+'.fem')
92 copyfile(run loc master+'\\'+model name+'.fem',run loc[a]+'\\'+model name+'.fem')
93 copyfile(run loc master+'\\'+fatal name+'.ctr',run loc[a]+'\\'+fatal name+'.ctr')
94 copyfile(run loc master+'\\'+load name+'.fem',run loc[a]+'\\'+load name+'.fem')
95 # Change "run case" parameters
96 change run case param(run loc[a]+'\\'+head name+'.fem', df, a)
97 change run case param(run loc[a]+'\\'+model name+'.fem', df, a)
98

99 a+=1
100 return run loc
101

102

103 def change run case param(filename, df, a):
104

105 if "control" in filename:
106 with open(filename, 'r') as file:
107 filedata = file.read()
108

109 # Replace the target string
110 for name in df.columns:
111 filedata = filedata.replace(name, str(df.at[a,name]))
112

113 # Write the file out again
114 with open(filename, 'w') as file:
115 file.write(filedata)
116

117 return
118

119

120 def usfos mp(head name, model name, load name, run loc master):
121 pool = mul.Pool(2)
122 partial usfos = partial(run usfos, head name=head name, ...

model name=model name,
123 load name=load name, file loc=run loc master)
124

125 pool.map(partial usfos, run loc)
126

127 pool.close()
128 pool.join()
129

130

131 if name == " main ":
132 run loc master = "RunFolder\\Stripped topside T2\\Sim disp comparison2\\"
133 head name = 'PH control'
134 model name = 'PH stru'
135 fatal name = 'fatal'
136 load name = 'PH ufo load'
137 results name = 'res'
138

139 # Define run case parameters to be used in head.fem and stru.fem
140 df = pd.read csv(run loc master + 'runCase param.txt', sep = "\s+", ...

header=None, skiprows=1)
141 df.columns = ['endT', 'Hs', 'Tp', 'dir', 'dimxy', 'W mean', 'Wdr']
142

143 # Create folder names
144 run names = []
145 for i in range(df.shape[0]):
146 run names.append('run %i'%i)
147

148 # Create folders and run simulations
149 run loc = create folders(run names, run loc master, head name, ...

model name, df, fatal name, load name)
150 usfos mp(head name, model name, load name, run loc master)
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E.2 Code to tabulate dataset for ML, post process Weibull.py

1 """
2 Goal: Use 2−parameter Weibull parameters as input for the ML−model
3 @Author: Gjermund Smedsland
4 """
5 import numpy as np
6 import pandas as pd
7 import math as m
8 from statistics import mean, stdev, variance
9 import xlwings as xw

10 from scipy.stats import weibull min
11 from scipy.signal import find peaks, lfilter, butter, freqz
12

13 def collect displacements(run loc master, name, counter):
14

15 FILElist = ['DISP1.txt', 'DISP2.txt', 'DISP3.txt', 'DISP4.txt']
16

17 DF = pd.concat([pd.read csv(run loc master + name + '\\' + path, names ...
= ['time' + str(idx), path[:−4] + str(counter)], sep='\s+') for ...
idx, path in enumerate(FILElist)], axis=1)

18 DF.rename(columns={'time0':'time'}, inplace=True)
19 for i in range(1,2):
20 DF.drop(columns=['time' + str(i)], inplace=True)
21

22 return DF
23

24 def butter lowpass(cutoff, fs, order=5):
25 return butter(order, cutoff, fs=fs, btype='low', analog=False)
26

27 def butter lowpass filter(data, cutoff, fs, order=5):
28 b, a = butter lowpass(cutoff, fs, order=order)
29 y = lfilter(b, a, data)
30 return y
31

32 def EX and STD(DF):
33

34 # Use the packages from "statistics". Numpy provides different STD(X)
35 list1 = [] # Lambda for nodal disp in x−dir for node 1
36 list2 = [] # Lambda for nodal disp in y−dir for node 1
37 list3 = [] # Lambda for nodal disp in x−dir for node 2
38 list4 = [] # Lambda for nodal disp in y−dir for node 2
39 list5 = [] # k for nodal disp in x−dir for node 1
40 list6 = [] # k for nodal disp in y−dir for node 1
41 list7 = [] # k for nodal disp in x−dir for node 2
42 list8 = [] # k for nodal disp in y−dir for node 2
43

44 for name in DF.columns:
45 if name != 'time':
46

47 # Filter the dislpacements to create cleaner datasets
48 sample interval = 0.1 # [seconds]
49 sample freq = 1 / sample interval # [Hz]
50 order = 6
51 cutoff = 0.2 # [Hz] − cutoff frequency
52 b, a = butter lowpass(cutoff, sample freq, order) # Filter ...

coefficients
53 DF[name] = butter lowpass filter(DF[name], cutoff, sample freq, ...

order)
54

55 DF[name] −= mean(DF[name])
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56

57 # Find the local maxima of each displacement sinusoidal
58 peaks, = find peaks(DF[name], height=mean(DF[name]))
59

60 df new = pd.DataFrame()
61 df new[name] = DF[name][peaks]
62 df new['disp sorted'] = np.sort(df new[name])
63 df new.reset index(inplace=True)
64 df new.drop(columns=['index'], inplace=True)
65

66 # Fit the 2−parameter Weibull distribution to the peaks
67 k, dummy123, lama = weibull min.fit(df new[name], floc=0)
68

69 for in range(50):
70 if name[4] == '1':
71 list1.append(lama)
72 list5.append(k)
73 elif name[4] == '2':
74 list2.append(lama)
75 list6.append(k)
76 elif name[4] == '3':
77 list3.append(lama)
78 list7.append(k)
79 elif name[4] == '4':
80 list4.append(lama)
81 list8.append(k)
82

83 return list1, list2, list3, list4, list5, list6, list7, list8
84

85

86 def collect damage(run loc master, run names):
87 df = pd.read csv(run loc master + run names + '\\fatigue.dam', ...

sep='\s+', skiprows=15)
88

89 df.drop('BPos4', axis=1, inplace=True)
90 df.drop('#', axis=1, inplace=True)
91 df.dropna(inplace=True)
92

93 return df
94

95

96 def find max2(df dmg):
97 df upd = pd.DataFrame()
98 for name in df dmg.columns:
99 df upd[name] = pd.to numeric(df dmg[name])

100 df upd.columns = ["CPos1", "CPos2", "CPos3", "CPos4", "BPos1", "BPos2", ...
"BPos3", "BPos4"]

101 df upd['maxVal'] = df upd.max(axis=1)
102 df upd['maxPos'] = df upd.idxmax(axis="columns")
103 val list = df upd['maxVal'].to numpy()
104 pos list = df upd['maxPos'].to numpy()
105

106 return val list, pos list
107

108

109 def which joint(row):
110 start = [1, 6, 12, 17, 23, 30, 37, 44]
111 stop = [5, 11, 16, 22, 29, 36, 43, 50]
112 for idx, val in enumerate(start):
113 if (row['HotSpot'] ≥ val) and (row['HotSpot'] ≤ stop[idx]):
114 return (idx+1)
115 else:
116 return 0
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117

118

119 if name == " main ":
120 run loc master = "RunFolder\\Stripped topside T2\\Sim6\\"
121

122 # Extract run case parameters
123 df = pd.read csv(run loc master + 'runCase param.txt', sep = "\s+", ...

header=None, skiprows=1)
124 df.columns = ['endT', 'Hs', 'Tp', 'dir', 'dimxy', 'W mean', 'Wdr']
125

126 # Extract folder names
127 run names = []
128 for i in range(df.shape[0]):
129 run names.append('run %i'%i)
130

131 ### Post processing
132 # Collect displacement data
133 dummy data = []
134 for idx in range(0,len(run names)):
135 dummy data.append(collect displacements(run loc master, ...

run names[idx], idx))
136 DF = pd.concat(dummy data, axis = 1)
137

138 # Remove duplicate columns from displacement data
139 DF = DF.loc[:, ¬DF.columns.duplicated()]
140 for name in DF.columns:
141 if 'time' in name and name != 'time':
142 DF.drop(name, axis=1, inplace=True)
143

144 ### Create a new dataframe containing the most relevant diapacement− ...
and fatigue data

145 DF excel = pd.DataFrame()
146

147 HotSpot list = []
148 for in range(0,len(run names)):
149 for j in range(1,51):
150 HotSpot list.append(j)
151

152 # Extract maximum fatigue damage
153 Max DMG = []
154 DMG pos = []
155 for name in run names:
156 DF dmg = collect damage(run loc master, name)
157 dummy val, dummy pos = find max2(DF dmg)
158 Max DMG.append(dummy val)
159 DMG pos.append(dummy pos)
160

161 DF excel['HotSpot'] = HotSpot list
162 DF excel['Joint'] = DF excel.apply(lambda row : which joint(row), axis=1)
163 DF excel['Disp1lambda'], DF excel['Disp2lambda'], ...

DF excel['Disp3lambda'], DF excel['Disp4lambda'], ...
DF excel['Disp1k'], DF excel['Disp2k'], DF excel['Disp3k'], ...
DF excel['Disp4k'] = EX and STD(DF)

164 DF append = pd.DataFrame(np.repeat(df.values, 50, axis=0))
165 DF append.columns = df.columns
166

167 for name in DF append.columns:
168 DF excel[name] = DF append[name]
169 DF excel['Damage'] = np.reshape(Max DMG, (DF excel.shape[0], 1))
170 DF excel['ClockPos'] = np.reshape(DMG pos, (DF excel.shape[0], 1))
171

172 # Export DataFrame to Excel
173 wb = xw.Book('RunFolder\HotSpots.xlsx')
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174 wb.sheets.add("Sim6 Weibull2")
175 ws = wb.sheets["Sim6 Weibull2"]
176 ws['A1'].options(pd.DataFrame, index=False, expand='table').value = ...

DF excel
177 wb.save()
178 wb.close()

E.3 code to identify relevant sea states, wave analysis site.py

1 """
2 Goal: Extract and evaluate wave elevation from Valhall site.
3 @Author: Gjermund Smedsland
4 """
5 import numpy as np
6 import pandas as pd
7 import matplotlib.pyplot as plt
8 import seaborn as sns
9 import statsmodels.api as sm

10 from scipy.signal import butter, lfilter
11 import os
12 from statistics import mean, variance
13 import math as m
14 import xlwings as xw
15

16 def butter lowpass(cutoff, fs, order=5):
17 return butter(order, cutoff, fs=fs, btype='low', analog=False)
18

19 def butter lowpass filter(signal, cutoff, fs, order=5):
20 b, a = butter lowpass(cutoff, fs, order=order)
21 return lfilter(b, a, signal)
22

23 def Filter Signal(signal, sample freq):
24 order = 6 # [−]
25 cutoff = 0.25 # [Hz] − cutoff frequency
26 return butter lowpass filter(signal, cutoff, sample freq, order)
27

28 def Calculate Autocorr(signal):
29 signal corrected = signal − mean(signal) # Correct such that the mean ...

is subtracted; EX=0 (unbiased)
30 return sm.tsa.acf(signal corrected)
31

32 def Create Scatter Matrix(Hs list, Tp list, Hs bins, Tp bins):
33 Scatter matrix = np.zeros((50,40), dtype=int)
34

35 for idx in range(len(Hs list)):
36 for i in range(len(Hs bins)):
37 for j in range(len(Tp bins)):
38 if (Hs bins[i−1] ≤ Hs list[idx]) and (Hs list[idx] < ...

Hs bins[i]) and (Tp bins[j−1] ≤ Tp list[idx]) and ...
(Tp list[idx] < Tp bins[j]):

39 Scatter matrix[i][j] += 1
40

41 return Scatter matrix
42

43 def plot problems(DF, df):
44 sns.lineplot(x="time", y="wave filtered", data=DF)
45 plt.show()
46

47 sns.lineplot(x=df.index, y="Rxx", data=df, label="Rxx")
48 sns.lineplot(x=df.index, y="Rxx acc", data=df, label="Rxx ddot")
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49 plt.grid()
50 plt.legend()
51 plt.show()
52 return
53

54 if name == " main ":
55 sample interval = 0.5 # [s]
56 sample frequency = 2 # [Hz]
57 Hs list = []
58 Tp list = []
59 time list = []
60

61 ## Time series handling
62 main path = "RunFolder\\wave\\"
63 path list = os.listdir(main path)
64

65 for path in path list:
66 DF = pd.read csv(main path + path, sep=",", delimiter=",", ...

index col=None, skiprows=3, names=["wave"])
67

68 DF['wave'] = DF['wave'] − mean(DF['wave'])
69 DF['wave filtered'] = Filter Signal(DF['wave'], sample frequency)
70 DF['time'] = DF.index * sample interval
71

72 sns.lineplot(x='time', y='wave', data=DF)
73 plt.show()
74

75 ## Characteristic properties
76 EndT = DF['time'].iloc[−1] # Should be 3h=10800s
77 df = pd.DataFrame()
78 df['Rxx'] = variance(DF['wave filtered']) * ...

Calculate Autocorr(DF['wave filtered'].values)
79 df['Rxx acc'] = (df['Rxx'].shift(1) − 2*df['Rxx'] + ...

df['Rxx'].shift(−1)) / sample interval**2
80

81 m0 = df.at[0, 'Rxx']
82 m2 = abs(df.at[1, 'Rxx acc'])
83 Hs = 4*m.sqrt(m0)
84 Tp = 1.41 * 2 * np.pi * m.sqrt(m0 / m2)
85 print("m0 = {0} | m2 = {1} | Hs = {2} | Tp = {3}".format(m0, m2, ...

Hs, Tp))
86

87 if m.isnan(m0) or m.isnan(m2):
88 plot problems(DF, df)
89 continue
90 elif Hs > 10:
91 plot problems(DF, df)
92 continue
93 elif Tp > 19:
94 plot problems(DF, df)
95 continue
96 else:
97 Hs list.append(Hs)
98 Tp list.append(Tp)
99 time list.append(path[10:−10])

100

101 ## Plot scatter diagram
102 plt.figure()
103 plt.plot(Tp list, Hs list, '.')
104 plt.xlabel('Tp [s]')
105 plt.ylabel('Hs [m]')
106 plt.grid()
107 plt.show()
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108

109 Hs bins = np.linspace(0.5,25,50)
110 Tp bins = np.linspace(1,40,40)
111 scatter matrix = Create Scatter Matrix(Hs list, Tp list, Hs bins, Tp bins)
112 DF excel = pd.DataFrame(scatter matrix, index=Hs bins)
113 DF excel.columns = Tp bins
114

115 # Export to Excel
116 wb = xw.Book('RunFolder\HotSpots.xlsx')
117 wb.sheets.add('Scatter Diagram hour')
118 ws = wb.sheets['Scatter Diagram hour']
119 ws['A1'].options(pd.DataFrame, index=True, expand='table').value = DF excel
120 wb.save()
121 wb.close()
122

123 # Just to verify the time of the sea states
124 DF excel2 = pd.DataFrame()
125 DF excel2['Hs'] = Hs list
126 DF excel2['Tp'] = Tp list
127 DF excel2['DateTime'] = time list
128

129 wb2 = xw.Book('RunFolder\HotSpots.xlsx')
130 wb2.sheets.add('Sea state time hour')
131 ws2 = wb2.sheets['Sea state time hour']
132 ws2['A1'].options(pd.DataFrame, index=True, expand='table').value = ...

DF excel2
133 wb2.save()
134 wb2.close()

E.4 Code to tabulate monitored data, January2021 disp.py

1 """
2 Goal: Use 2−parameter Weibull parameters as input for the ML−model
3 @Author: Gjermund Smedsland
4 """
5 import os
6 import pandas as pd
7 import numpy as np
8 import math as m
9 from statistics import mean, stdev, variance

10 import xlwings as xw
11 import matplotlib.pyplot as plt
12 import seaborn as sns
13 from scipy.signal import find peaks, lfilter, butter, freqz
14 from scipy.stats import weibull min
15

16 def butter lowpass(cutoff, fs, order=5):
17 return butter(order, cutoff, fs=fs, btype='low', analog=False)
18

19 def butter lowpass filter(data, cutoff, fs, order=5):
20 b, a = butter lowpass(cutoff, fs, order=order)
21 y = lfilter(b, a, data)
22 return y
23

24 def EX and STD():
25

26 list1 = [] # Lambda for nodal disp in x−dir for node 1
27 list2 = [] # Lambda for nodal disp in y−dir for node 1
28 list3 = [] # Lambda for nodal disp in x−dir for node 2
29 list4 = [] # Lambda for nodal disp in y−dir for node 2
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30 list5 = [] # k for nodal disp in x−dir for node 1
31 list6 = [] # k for nodal disp in y−dir for node 1
32 list7 = [] # k for nodal disp in x−dir for node 2
33 list8 = [] # k for nodal disp in y−dir for node 2
34

35 main path = "RunFolder\\valph motion\\"
36 path list = os.listdir(main path)
37

38 for path in path list:
39 if "2101" in path: # If January 2021
40 print("path is: {0}".format(path))
41 DF = pd.read csv(main path + path, sep=",", delimiter=",", ...

index col=None, skiprows=1)
42 DF.drop([0], inplace=True)
43 DF.drop(columns=["Loc1 EW AC", "Loc1 NS AC", "Loc1 Res Disp", ...

"Loc2 EW AC", "Loc2 NS AC", "Loc2 Res Disp"], inplace=True)
44 DF.columns=["DISP1", "DISP2", "DISP3", "DISP4"]
45

46 DF.columns = DF.columns.str.strip()
47 for name in DF.columns:
48 DF[name] = (DF[name].apply(lambda x : float(x)))
49 DF[name] = −DF[name]/1000 # unit is [mm], transfer to USFOS ...

coordinate system
50

51 for name in DF.columns:
52 if name != 'time':
53

54 # Filter the dislpacements to create cleaner datasets
55 sample interval = 0.292969 # [seconds]
56 sample freq = 1 / sample interval # [Hz]
57 order = 6
58 cutoff = 0.2 # [Hz] − cutoff frequency
59 b, a = butter lowpass(cutoff, sample freq, order) # ...

Filter coefficients
60 DF[name] = butter lowpass filter(DF[name], cutoff, ...

sample freq, order)
61

62 DF[name] −= mean(DF[name]) # Subtract the mean drift off
63

64 # Find the local maxima of each displacement sinusoidal
65 peaks, = find peaks(DF[name], height=mean(DF[name]))
66

67 df new = pd.DataFrame()
68 df new[name] = DF[name][peaks]
69 df new['disp sorted'] = np.sort(df new[name])
70 df new.reset index(inplace=True)
71 df new.drop(columns=['index'], inplace=True)
72

73 # Fit the 2−parameter Weibull distribution to the peaks
74 k, dummy123, lama = weibull min.fit(df new[name], floc=0)
75

76 for in range(50):
77 if name[4] == '1':
78 list1.append(lama)
79 list5.append(k)
80 elif name[4] == '2':
81 list2.append(lama)
82 list6.append(k)
83 elif name[4] == '3':
84 list3.append(lama)
85 list7.append(k)
86 elif name[4] == '4':
87 list4.append(lama)

XX



E.4. Code to tabulate monitored data, January2021 disp.py

88 list8.append(k)
89

90 return list1, list2, list3, list4, list5, list6, list7, list8
91

92 def which joint(row):
93 start = [1, 6, 12, 17, 23, 30, 37, 44]
94 stop = [5, 11, 16, 22, 29, 36, 43, 50]
95 for idx, val in enumerate(start):
96 if (row['Conn'] ≥ val) and (row['Conn'] ≤ stop[idx]):
97 return (idx+1)
98 else:
99 return 0

100

101 if name == " main ":
102

103 # Import environmental conditions
104 DF env cond = pd.read excel("RunFolder\\HotSpots.xlsx", ...

sheet name="Env cond jan 2021", index col=None, na values=0)
105 DF env cond = DF env cond.dropna()
106 DF env cond2 = pd.DataFrame(np.repeat(DF env cond.values, 50, axis=0))
107 DF env cond2.columns = DF env cond.columns
108

109 ### Create a new dataframe containing the most relevant dispacement− ...
and environmental data

110 DF excel = pd.DataFrame()
111

112 # Append joint and connection indexation
113 HotSpot list = []
114 for in range(DF env cond.shape[0]):
115 for j in range(1,51):
116 HotSpot list.append(j)
117

118 DF excel['Conn'] = HotSpot list
119 DF excel['Joint'] = DF excel.apply(lambda row : which joint(row), axis=1)
120

121 # Append Weibull distribution parameters fitted to displacement peaks
122 DF excel['Disp1lambda'], DF excel['Disp2lambda'], ...

DF excel['Disp3lambda'], DF excel['Disp4lambda'], ...
DF excel['Disp1k'], DF excel['Disp2k'], DF excel['Disp3k'], ...
DF excel['Disp4k'] = EX and STD()

123

124 # Append environmental conditions
125 for name in DF env cond2.columns:
126 DF excel[name] = DF env cond2[name]
127

128

129 wb = xw.Book('RunFolder\HotSpots.xlsx')
130 wb.sheets.add("January2021 disp")
131 ws = wb.sheets["January2021 disp"]
132 ws['A1'].options(pd.DataFrame, index=False, expand='table').value = ...

DF excel
133 wb.save()
134 wb.close()
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