
lable at ScienceDirect

Forensic Science International: Digital Investigation 38 (2021) 301266
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
Timestamp prefix carving for filesystem metadata extraction

Kyle Porter a, *, Rune Nordvik a, b, Fergus Toolan b, Stefan Axelsson a, c

a Norwegian University of Science and Technology, Norway
b Norwegian Police University College, Norway
c DSV, Stockholm University, Sweden
a r t i c l e i n f o

Article history:
Received 3 October 2020
Received in revised form
19 July 2021
Accepted 22 July 2021
Available online 7 August 2021

Keywords:
Digital forensics
Carving
Metadata
Filesystems
* Corresponding author.
E-mail address: kyle.porter@ntnu.no (K. Porter).

1 While Scalpel uses a modified version of the sin
algorithm Boyer-Moore (Boyer and Moore, 1977) (as
and causes header-footer matching to run in O(sn) ti
header-footer signatures and n is the length of the d
Sahni (2010) created FastScalpel which uses the mult
gorithm Aho-Corasick (Aho and Corasick, 1975) t
matching in linear time.

2 In the case of general data carving methods (for
(Garfinkel, 2013)), omitted regular expressions may
credit card numbers, social security numbers, etc.

https://doi.org/10.1016/j.fsidi.2021.301266
2666-2817/© 2021 The Authors. Published by Elsevie
a b s t r a c t

While file carving is a popular and effective method for extracting file content from unallocated space in
a forensic image, it can be time consuming to carve for the wide variety of possible file signatures.
Furthermore, file carving does not connect the discovered file to its filesystem metadata. These limita-
tions of file carving are the advantages of Generic Metadata Time Carving, in which filesystem metadata is
searched for by first finding repeated co-located timestamps using a potential timestamp carving al-
gorithm. The potential metadata is verified by a filesystem specific parser, and the pointer within the
metadata to the file data may allow for full file recovery. Currently, a limitation of the Generic Metadata
Time Carving method is that it will only find metadata records that have multiple equivalent timestamps,
thus missing metadata records and files with differing, but very similar, timestamps. Therefore, in order
to improve the recall of the Generic Metadata Time Carving methodology, we have designed and
implemented a prefix matching potential timestamp carving algorithm. We apply our experiments to
realistic NTFS and Ext4 forensic images, in which we compare the precision and recall results for differing
prefix lengths. Our results indicate that using prefix-based potential timestamp carving can yield
significantly greater recall for extracting filesystem metadata records, with little to no reduction in
precision as compared to the original exact potential timestamp carving method.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

File carving is an established digital forensics method for
extracting files that cannot be found using the filesystem, andwhile
extremely useful it is not without its faults. When applying popular
file carving tools such as Scalpel (Richard and Roussev, 2005), one
must attempt to search for all possible file signatures that are
relevant to the case, which not only makes the search process more
time consuming,1 but more importantly, the file signature database
gle-pattern string matching
of 2018 (Bayne et al., 2018))
me where s is the number of
ata being processed, Zha and
i-pattern string matching al-
hat performs header-footer

example, the Bulk Extractor
mean missed data such as

r Ltd. This is an open access article
may be incomplete. Omitted file signatures means missing files
when carving.2 File carving also does not have an automated
method for connecting filesystem metadata to the discovered file
(assuming the metadata still exists on disk) (Dewald and Seufert,
2017; Nordvik et al., 2019), and has difficulty dealing with frag-
mentation (Garfinkel, 2007).

These limitations of file carving are the advantages of Generic
Metadata Time Carving (GMTC) by Nordvik et al. (2020). GMTC is a
metadata carving method that uses a simple string matching al-
gorithm, a potential timestamp carver, to search for equivalent and
closely co-located byte sequences in order to find potential fil-
esystem metadata record timestamps. After the locations of the
potential timestamps are found, a filesystem specific parser either
accepts or rejects the surrounding content as filesystem metadata.
The filesystem metadata record may then be used to retrieve the
associated file whether or not the file is fragmented, where the
ability to do so is dependent on the filesystem and its policy for
deleted files. This technique thus connects filesystem metadata to
the file data, enabling at leastmetadata and content recovery (Casey
et al., 2019). Furthermore, the method does not depend on file
signatures, since timestamps are essentially a dynamic signature
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
mailto:kyle.porter@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2021.301266&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301266
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.fsidi.2021.301266

Fig. 1. An abstraction of a simple disk image, partitions, and filesystems. The large
encompassing rectangle is the entire disk image, the furthest left rectangle with in-
ternal lines is the partition table that points to the partitions, and the other rectangles
with rounded corners are partitions. Each partition has a filesystem, where the green

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
for all filetypes.
Use-cases of GMTC and othermetadata carvingmethods include

scenarios where the filesystem has been severely damaged or
overwritten. Moreover, GMTC can also be used to find metadata
records hidden in perfectly functioning filesystems.

Generic Metadata Time Carving has several limitations as well.
The largest of which is that the method can only find metadata
records that contain precisely equivalent timestamps, thus limiting
the recall of discovered files in an image to the same number of
metadata records that contain at least 2 or more equal timestamps.
In order to improve this limitation, we have created and imple-
mented a new potential timestamp carving algorithm that per-
forms timestamp prefix matching. Allowing for some minor
tolerance of difference between potential timestamps, we aim to
improve filesystem metadata record recovery recall for GMTC
without significantly reducing its precision. We formalize our
research questions below:

1. How does the value of the prefix parameter affect the precision
and recall of the Generic Metadata Time Carving method?
(a) How does the original Generic Metadata Time Carving

method comparewith the prefixmatching implementation?
2. Do the experimental results indicate that Generic Metadata

Time Carving, prefix matching or otherwise, may be used in
realistic digital forensic scenarios?

We hypothesize that timestampmatching using shorter prefixes
will result in more potential timestamp matches, thus increasing
recall, while reducing precision, as is often seen in precision-recall
trade-offs.3 Furthermore, due to the time complexity of potential
timestamp carving, previous work on this subject, and the size of
our data we hypothesize that even relatively large images can be
processed in a reasonable amount of time. To test our hypotheses,
our prefix matching method of Generic Metadata Time Carving is
applied to two NTFS images and one Ext4 image, where the sizes of
the images range from 1 GB to 476 GB. For each image, we apply all
possible prefix length parameters and record the runtime for the
timestamp carver and filesystem specific parser, and also record the
number of potential timestamp hits.

We perform a location-based data recovery evaluation to test
the performance of our tools' abilities to carve for filesystem met-
adata records, wherein we measure their precision and recall for
extracting records from specific files or regions of the disk (such as
from the $MFT, $LogFile, and the inode table). Note that we are
running our tools on the entire disk images, as the tools are
intended to be used, but we only calculate precision and recall for
identifying filesystem metadata record hits for specific regions of
disk, on a particular partition. We would have liked to obtain the
precision and recall of our tools’ ability to carve for filesystem
metadata records across an entire disk image or partition, but since
we did not create the test images we have no way of knowing the
ground truth information regarding the locations of all filesystem
metadata records on any partition. We additionally determine the
files containing any hits for file system metadata records found
outside these test spaces.

The prefix-based potential timestamp carver, the filesystem
specific parsers, and instructions on how to use the tools are pro-
vided on a GitHub repository.4
3 In short, precision is the percentage of returned hits that are relevant to the
user's search, and recall is the percentage of the total amount of relevant items that
were returned.

4 Timestamp Prefix Carving for Filesystem Metadata Extraction code https://
github.com/TimestampPrefixCarving/Peer-Review.

2

The paper is organized as follows. The Introduction section has
described the objectives and experiments of this paper and the
Related Work section covers past work, such as prominent meta-
data carving methods and timestamp carving methods. The
Methodology section describes our prefix matching potential
timestamp carving algorithm, how it fits into the greater Generic
Metadata Time Carving methodology, a description of the experi-
ments, and a description of the location-based data recovery
evaluation. The Results section covers the outcomes of our exper-
iments. The Discussion section analyzes and synthesizes our re-
sults, as well as looks at the limitations of this study. Lastly, we
conclude in the Conclusion and Further Work section.
2. Related work

Metadata carving is a niche field in digital forensics, as opposed
to file carving which is better studied, so we have attempted to
cover the subject in full. In summary, these methods do not depend
on critical filesystem data such as the $MFT record, superblocks, or
group descriptor tables. Carving for metadata is done in a byte-wise
manner, and if the pointers in the metadata records to their files
have not been deleted, then there is a possibility of full file recovery.

In Fig. 1, we show an abstraction of a disk image with two par-
titions, which also shows a simplified abstraction of filesystems.
The image is a representation of how critical filesystem data such as
the MFT table or superblocks keeps track of the filesystem meta-
data records. For details on traditional file carving, see the Forensics
Wiki (forensicswiki.xyz, 2012).
2.1. Metadata carving

One of the first works that scientifically studied metadata
carving was done by Dewald and Seufert (2017). They exclusively
carve for inodes in Ext4, where they intentionally made their im-
ages’ superblocks and group descriptor tables unusable. Their
method of byte-wise search uses search patterns that are expected
to be found in inodes such as file flags, extent header magic
numbers, and tests the relationships between the timestamps
rectangles represent filesystem critical data structures such as the $MFT record (and its
mirror), superblock, or group descriptor table. These help keep track of the filesystem
records (for example, inodes or MFT records), which are represented by the red rect-
angles. Generic Metadata Time Carving (Nordvik et al., 2020), and our work, attempts to
find the red blocks without help from the green blocks. For a more complete picture of
the general filesystem structure, see the work by Carrier (Carrier, 2005). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

https://github.com/TimestampPrefixCarving/Peer-Review
https://github.com/TimestampPrefixCarving/Peer-Review

Fig. 2. For 8 byte timestamps, the candidate timestamp is highlighted with green, and
the test sequences are highlighted in blue. The search window is indicated by the
brackets. The timestamp equivalency test simply checks how many times the candidate
timestamp matches the test sequences. If the number of matches is greater than or
equal to the threshold h � 1, where h is the number of required matching timestamps
within a metadata record set by the user, the candidate timestamp is deemed a po-
tential timestamp. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

5 Filesystem metadata records often record their timestamps consecutively, and
oftentimes actions on a file (creation, access, modification, etc.) update several of its
timestamps simultaneously.

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
ensuring their validity. In their experiments, they tested a variety of
combinations of the inode attributes to search for, where the
effectiveness of the combination of patterns is dependent on the
case. Similar work was performed by Plum and Dewald (2018),
where they carved for nodes using different combinations of object
type and subtype.

Our work extends the work by Nordvik et al. (2020), wherein
they created the Generic Metadata Time Carving method. The
method considers every non-overlapping m length sequence of
bytes as a search keyword, where this keyword is checked for
equivalency against every non-overlapping m length sequence of
bytes in a k length searchwindowdirectly following the keyword. If
the keyword matches one or more of the sequences of bytes in the
search window, then the location of the potential timestamp is
recorded. One notable aspect of their byte-wise search approach to
timestamps is that it does not require the user to set a minimum or
maximum date they are searching for, only a guess as to what the
length of the timestamp is and the filesystem that is suspected. For
instance, it is required that the length m of the timestamp must be
defined as either 4 or 8. After a list of potential timestamp locations
are compiled, another scan over the disk image is performed that is
filesystem specific. Using the list of potential timestamp locations,
they directly access each location on the image and check if specific
byte offsets relative to the timestamp location fit the profile of the
metadata record being searched for. Examples of such expected
features are Standard Information Attribute (SIA) or Filename
Attribute (FNA) flags for NTFS, or the extent header magic number
for Ext4. Once themetadata record is identified as a positive hit, the
metadata information can easily be read out, including resident
files for NTFS records, dataruns from NTFS Data Attributes, and
extents and block pointers from Ext4.

The potential timestamp carver by Nordvik et al. (2020) works
generally, but to date, their filesystem specific parsers only support
NTFS and Ext4. For their experiments, they created disk images
with a known set of files for each filesystem, where each filesystem
was then damaged by reformatting the image with a different fil-
esystem. Their results for the NTFS experiment achieved greater
than 99% precision in identifying MFT records and full recall in
retrieving files known to the original filesystem. For Ext4 they ob-
tained 100% precision in identifying inodes, but only retrieved
about 23% of the inodes known to the original filesystem. Their
experiments however only included metadata records that had
multiple timestamps that were exactly the same, thus our work
intends to apply a prefix matching version of their approach to
more realistic datasets.

The first notable reference to byte-wise timestamp carving ap-
pears to be fromMcCash (McCash and 5, 2010), wherein he used an
EnScript fromMueller (2008) to discover MFT records, indexes, and
registry keys. The timestamp carving methodology essentially al-
lows the user to input a date or range of possible dates, the EnScript
converts the dates into their NTFS byte format, and the possible
byte sequences are then searched for. To improve the precision of
the tool, there is an option to search for contiguous potential
timestamps.

2.2. Related methods of data retrieval

We briefly touch upon some tools that do not strictly use fil-
esystem metadata extraction, but whose functionality is similar.

One tool that focuses on Ext4 file recovery via non-traditional
means is Ext4Magic (Maar, 2014). The basics of the tool is that it
uses journal blocks with an old but functional deleted inode. The
inode will hopefully point to datablocks which have not been
reused for a different file.

Bulk Extractor by Garfinkel (2013) gathers relevant forensic
3

features such as email addresses, phone numbers, credit card
numbers, andmore by parsing through a disk image in a single scan
block by block. A benefit of the tool is that it truly is filesystem
agnostic, and can analyze different parts of the disk in parallel.

3. Methodology

In this section we first describe our prefix-based potential
timestamp carving algorithm and how it fits into Nordvik et al.‘s
(Nordvik et al., 2020) Generic Metadata Time Carving workflow,
and then describe our experimental and evaluative methodologies.

3.1. Prefix-based potential timestamp carving algorithm

The prefix-based potential timestamp carving algorithm, like the
exact matching version by Nordvik et al. (2020), is used to identify
the byte offset locations of potential filesystem metadata record
timestamps from across an entire disk image. The algorithm outputs
the offsets from the beginning of the image to a text file. Our prefix-
based potential timestamp carving algorithm adds unique elements
to the timestamp carving algorithm and source code from Nordvik
et al. (2020). We briefly review the original algorithm, as under-
standing their work is imperative for understanding our own con-
tributions. Their basic assumption is that timestamps within
filesystem metadata records are typically co-located close to each
other, and often two or more timestamps are identical.5

The search procedure for these algorithms is based on the sliding
window approach, wherewe have some byte-stream T representing
the forensic image being searched, and we let m be the length of a
timestamp. Potentially, almost every non-overlapping m bytes of
the forensic image is tested as a candidate timestamp, and used as a
keyword. This test requires a user defined value k, which is the
length of bytes for a search window following each candidate
timestamp. If the candidate timestamp passes the test, then it is
considered to be a potential timestamp. The search begins at T[0],
with the first candidate timestamp being T[0 : m � 1]. This candi-
date timestamp is then compared to each non-overlapping m byte
sequence within the k length window for equivalency. We refer to
this process as the timestamp equivalency test, and these byte se-
quences as test sequences. If the number of matches is greater than
or equal to the threshold h � 1, h being the number of required
matching timestamps within a metadata record set by the user,
then the position of the candidate timestamp (now potential
timestamp) is recorded, the search skips ahead by k, and repeats
the search procedure. The definitions given in this paragraph and

Fig. 3. Hex dump with highlights to illustrate the timestamp prefix matching search
procedure. The byte sequence underlined in green represents the current candidate
timestamp, and those underlined with blue are test sequences. The brackets represent
the candidate timestamp's search window. The red boxes represent the little-endian
prefixes that are being compared for equivalency. The first two examples show
matches, despite the fact the candidate timestamp does not equal the subsequent ones.
If three matching timestamps are required (h ¼ 3), the third example shows the
advancement of the search by k bytes, and begins to repeat the entire procedure. (For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
the timestamp equivalency test are illustrated in Fig. 2. If the
candidate timestamp is not found to be a potential timestamp, then
the search only skips ahead bym, and the search procedure repeats.
The search continues until the last k bytes of T. Full details of the
algorithm can be found in Nordvik et al. (2020).

Our major contribution in this work is the modification of the
timestamp equivalency test. In most cases, timestamps that are
stringologically similar should also be temporally similar. Our
implementation of the timestamp equivalency test simply tests if the
pmost significant bytes,whichwe refer to as theprefix, of a candidate
timestamp is equivalent to the prefixes of the test sequences.

An example of such a search is shown in Fig. 3. The prefix of the
timestamp (the most significant bytes) is least likely to change
when a timestamp is updated, and typically holds information
regarding the timestamp's month and year. We argue this form of
prefix matching is more suitable as an approximation metric than
other popular metrics such as the Hamming (1950) or edit distance
(Levenshtein, 1966), since they do not consider the order in which
the matching errors occurred. Furthermore, the method for prefix
matching is algorithmically simple.

For testing if a candidate timestamp is a potential timestamp,
the original algorithm by Nordvik et al. (2020) converted the
candidate timestamp byte sequence and the test sequences to their
big-endian forms for using them as unsigned long longs, andwe
do this as well. For most operating systems and filesystems, time-
stamps are recorded in little-endian, but utilizing them in a pro-
gram in big-endian is generally more useful. In order to test
whether the candidate timestamp and the test sequences have an
equivalent prefixof length p (that the pmost significant bytes of the
timestamps are the same) we need only XOR the timestamps in
their big-endian form, and shift the resulting value to the right by
8*(m � p) bits. The shift to the right removes the m � p least sig-
nificant bytes from the result of the XOR, and if the remaining value
is 0, then the prefixes must match. If the prefixes match, the count
of matching timestamps for the candidate timestamp is increased
by 1. Algorithm 1 explicitly describes this process. The prefix
matching algorithm is only a component within the prefix-based
potential timestamp carving algorithm (see Algorithm 2), which
is shown in Appendix A.

Algorithm 1. Prefix matching algorithm.
4

We add one extra condition that must be met when applying
prefix-based timestamp carving. The original method requires that
candidate timestamps cannot be sequences of repeated bytes, as this
filters out very common byte sequences such as 0x0000 and 0xFFFF.
These common byte sequences would otherwise generate many
false positive timestamp matches. We keep this condition, but add
that a candidate timestamp's most significant bytes cannot be 0. This
is due to the fact that there are many byte sequences which in big-
endian start with non-zero values, but end with zeros, which will
cause our algorithm to identify many potential timestamps where
the candidate timestamp is a non-zero byte sequence, but the pre-
fixes being tested are not.We consider this to be a fair assumption to
make, as most timestamps' most significant bytes are non-zero. Both
conditions can be found in Algorithm 2 within A.

Since the modification of the potential timestamp carving al-
gorithm by Nordvik et al. (2020) primarily only changes the time-
stamp equivalency test by a constant number of steps, it implies
that the time complexity of the prefix-based potential timestamp
carving algorithm must remain the same. While Nordvik et al.
showed that a general potential timestamp carver would run in
nonlinear time (their worst case scenario omits the repeated byte
timestamp check and conversion from a string of characters to a 64-
bit data type), the implementation of the potential timestamp al-
gorithm effectively runs in linear time, dependent on the length |T|
of the disk image. This is because lengthm is limited to a choice of 4
and 8 (timestamps are stored in an unsigned long type), and
because the search window length k in most practical situations
would never exceed the size of a block or cluster.

Note, the potential timestamp carving algorithm assumes that
timestamps fall on 4 or 8 byte boundaries, so metadata that is
unaligned will be missed. We also note that if timestamps are
recorded in big-endian, prefix-matching will not work.

3.2. Generic Metadata Time Carving and the filesystem specific
parsers

The potential timestamp carving algorithm described in the
previous section is only the first step of the Generic Metadata
Timestamp Carving (GMTC) methodology. The produced list of po-
tential timestamp locations in general will be extremely large, and
thus referring to many “false positive timestamps” identified across
the full disk image. In the GMTC method, the list of potential time-
stamp locations is then fed into a filesystem specific parser, and the
parser checks the offsets on the disk image given by the potential
timestamp list in an attempt to verify if the potential timestamp is
contained within a filesystem metadata record. The output of the
parser is a .csv and .txt file containing data from the suspected re-
cords. More or less, a filesystem specific parser acts as a filter.

We briefly describe the strict verification tests performed by the
NTFS and Ext4 parsers. The majority of stated parser tests were in

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
the original work by Nordvik et al. (2020)
The NTFS parser first checks if the date of a potential timestamp

falls within the year range of 1970 and 2100. If so, it then checks all
possible offsets behind the potential timestamp location for Standard
Information Attribute (SIA) or Filename Attribute (FNA) attribute
header flags. If one of these flags are found, we make an assumption
of where the attribute begins. We can use the identified attribute
lengths to navigate from one attribute to the next, where we require
to start from the SIA, then hop to an FNA, and then if possible the
Data attribute. Furthermore, theMFTattributes encounteredmust be
in numerical order (as given by their header flags). Any attributes
encountered for an assumed record must occur within a 1024 byte
space. The parser also only reports an MFT record if the identified
filetype extracted from an FNA is one of four possible types. The
accepted filetypes are: “File”, “Directory”, “Index View”, or “Directory
and Index View”. More information regarding MFT data structures
can be found in the work by Carrier (2005).

The Ext4 parser is more complicated due to the fact that inodes
are small, have far less features to strictly identify than MFT records,
and that the parser attempts to connect the inodes to a filename and
inode number. Both the inode number and filename are in a different
data structure than the inode. The first step for validating potential
timestamps is to check the possible offsets from the potential
timestamp to the filetype nibble at the start of the inode. We only
allow for three different types: “Regular Files”, “Directories”, and
“Symbolic Links”. The offset to one of these values dictates our guess
to where the inode begins. If the extent flag is set, and the offset to
the extent header magic number is 0xF30A, or if there is no extent
flag and the offsets from the beginning of the inode 0x24 to 0x27 are
0, we continue our validation tests. The total size of the file is
checked to see if it corresponds to the total amount of blocks it is
occupying, if the total size of the file is less than the size of the image,
and if the relationships between the timestamps are valid. For
instance, we check if the deleted value is not 0, then it must be
greater or equal to both the modified and created time. The steps so
far are the validation checks done in the preprocessing phase, as we
need to gather information to try to connect inodes to their filename
and inode numbers. If the inode passes the initial preprocessing and
validity checks, it is fully processed. The timestamps are checked to
ensure they fall within the years 2000 and 2020 (the deletion
timestamp being the exception). For more information about Ext4
data structures and inodes, see (Ext4 (and Ext2/Ext3) Wiki, 2019).

3.3. Experimental methodology

We use our prefix-based Generic Metadata Time Carving
(GMTC) method on three realistic forensic images. We first apply
our novel prefix-based potential timestamp carving algorithm on
the images, where the output of the algorithm creates a text file list
of the locations of the potential timestamps in byte offsets from the
beginning of the image. This list is then input into one of the two
pre-existing but modified filesystem specific parsers (NTFS or
Ext4), where the output of the parser is a .csv and .txt file with data
from the discovered metadata records. We identified a few bugs in
the original filesystem specific parser scripts by Nordvik et al.
(2020), so we updated them so that we may achieve more com-
plete and accurate results.

The three images being tested are a 1 GB NTFS image, one
59.5 GB Ext4 image from a real device, and one 476 GB synthetic
NTFS image. The small NTFS image is from NIST's Deleted File Re-
covery page (DFR-13) (NIST, 2017), the Ext4 image was extracted by
the authors from a real Samsung S8 mobile phone, and the large
NTFS image is the “LoneWolf” forensic image, available fromDigital
Corpora (Moore et al., 2018). Notably, these images are not guar-
anteed to have at least two equivalent timestamps per metadata
5

record, unlike the work by Nordvik et al. (2020).
For each image we try all possible sizes, p, of the prefixes of the

candidate timestamps that are required to be equivalent to the
prefixes of the test sequences.

Since it is possible that the prefix of the candidate timestamp
can be the length of the timestamp itself, we are also comparing the
precision-recall performance of the original GMTC method to our
method.

We clarify some items regarding our testing and evaluation
methods. The prefix-based GMTC methodology (the potential
timestamp carving followed by the filesystem specific parser) is
applied to the entire disk image for our tests. Thus we obtain po-
tential timestamp locations and filesystem metadata records from
across entire disk images. However, since we have no ground truth
information regarding the number and location of all file system
metadata records across the disks, we cannot evaluate the precision
and recall of our tools across an entire disk. Thus, we limit our
precision and recall evaluations to specific areas or files on the disk,
where we can easily retrieve the number and location of records.
Examples of such files or regions of disk include the MFT table or
inode table for a particular partition. This is explained more in
depth in the next subsection.

Other data we record are the number of potential timestamps
logged by the prefix-based potential timestamp carving algorithm,
the time required by this algorithm and the filesystem specific
parsers, and the number of metadata records extracted that were
outside the $MFT, $LogFile, or inode table and which file they were
found in.

3.4. Precision-recall location-based data recovery evaluation

Ideally, ourexperimentswouldmeasure theprecisionand recall of
our tools' ability to carve all filesystem metadata records from an
image or partition, but this is infeasible since we have no reliable
method of obtaining ground truth knowledge of every single offset of
every single file systemmetadata record. Thus, while we still run our
tool on entire disk images, we focus on our tools’ precision and recall
for carving filesystemmetadata records from specific files or regions
of disk where record offsets are more easily obtainable. We also
determine the files on the same partition that contain the hits for file
system metadata outside the precision-recall evaluated files or data
structures.

For NTFS, we measure the precision and recall for carving MFT
records from the $MFT of the partition of interest, and we perform
another precision and recall evaluation for carving MFT records
from the $LogFile. To obtain ground truth knowledge of the offsets
to MFT records in each file, we used The Sleuthkit to export these
files from the NTFS image with icat, search the file for FILE signa-
tures, and check if the 0x38 byte offset from the FILE signature
equals the Standard Information Attribute flag (0x10000000). For
the $LogFile, we also check the 0x78 byte offset from the FILE
signature for the cases that an MFT record is divided between
$LogFile pages, where the beginning of each page has header that
begins with the signature “RCRD”. Using The Sleuthkit's istat
command we also obtained the clusters that the $MFT and $LogFile
occupy, so that we can translate the files' logical offsets to MFT
records into physical offsets on the disk. All the discovered offsets
for MFT records in the $MFT matched possible locations of records
given by the clusters output from the istat command on the $MFT.

We refer to these ground truth offsets to MFT records as Con-
dition Positives. Formally, a Condition Positive is the knowledge that
at address A, there exists a filesystem metadata record. It is condi-
tioned on the fact that we are limiting our precision-recall evalua-
tions to the regions of the disk occupied by a specific file or ranges
of disk space. By running our prefix-based GMTC method on the

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
entire disk image, we obtain a large set of byte offset locations that
our tools detect as the locations of filesystem metadata records.6

We refer to the offsets identified by our tools as Test Positives.
One can think of our filesystem specific parsers similar to that of a
classifier when they filter potential timestamp locations, which
declares at address A we detect a filesystem metadata record of
minimum length L. The value L for inodes and MFT records is 256
bytes (the minimum length of an MFT record includes the record
header of length 0x38, Standard Information Attribute of length
0x60, and a minimum length Filename Attribute of 0x68). A Test
Negative is simply that our tools do not detect a filesystem meta-
data record at address A.

For Ext4, we measure the precision and recall for carving inodes
from the inode table of the partition of interest. To determine the
Condition Positives in the inode table, we use the Sleuthkit's fls er
command to dump all files to a list (wherein we add the root
directory and Journal with inode numbers 2 and 8 respectively).
Using The Sleuthkit's fsstat command, we determine which blocks
the inode table occupies, and which inodes are in which fragment
of the inode table. Using this information (inode numbers provide a
256 byte multiple offset into their respective inode table fragment),
we can calculate the physical positions of each inode offset from the
beginning of the disk. We would have liked to perform similar tests
on the Ext4 Journal, but we would need a more certain method of
identifying Condition Positives other than performing a string
search for the extent signature 0xF30A.

We reiterate that we limit the Condition Positives to the regions
of disk where the precision and recall is being measured. If a Test
Positive is also a Condition Positive, then the result produced by the
GMTC tools is a true positive. That is, our tools detected a filesystem
metadata record at address A with minimum length L, and the
beginning of a record truly begins at address A. A false positive
occurs if we obtain a Test Positive at some address B within the
region of disk under examination, where according to our list of
Condition Positives no record exists. If there are Condition Positive
addresses that do not have a matching Test Positive address, then
our tools have produced a false negative, a miss.

We use the typical precision and recall measures for our anal-
ysis, as seen in the equations below.

Precision ¼ True Positives
True Positivesþ False Positives

Recall ¼ True Positives
True Positivesþ False Negatives

When calculating precision and recall, it is possible that after
accounting for all the Test Positives located in the disk image re-
gions such as the $MFT, $LogFile, or inode table that there may still
be a large number of Test Positive hits that are still unaccounted for
elsewhere on a partition. To find where these extra records come
from, we use The Sleuthkit's istat command to list the blocks/
clusters (we refer to these as “blocks” from here on out) allocated to
files known to the inode or MFT table, where the files' records are
filtered with respect to our calculated Condition Positives. For each
list of blocks extracted from the istat output, we create a list of block
ranges that a file occupies, which also accounts for fragmentation.
We then build a Python dictionary of such values where the key is
the record number, and the values associated with a key are the
6 The Ext4 parser reports the byte offsets to the beginning of the inode, whereas
the NTFS tool reports the byte offsets to the potential timestamp identified by the
potential timestamp carver. Thus for MFT records, we have to consider the set of all
possible locations of the beginning of the record with respect to the identified
Standard Information Attribute timestamp.

6

block ranges of the file, and the file's name. It is then possible to
create a derived version of this dictionary, where the key is a
starting block of a particular file fragment, and the values associ-
ated with the key are the ending block of the file fragment, as well
as the file's name and number. When this dictionary is ordered
numerically, and our Test Positives are ordered by their offsets
numerically, we can quickly search through all the file fragments to
identify where our remaining hits lie.
3.5. Specifics of NTFS experiments

The 1 GB NTFS image is the 13th test case (dfr-13-ntfs.dd) from
NIST's Deleted File Recovery page (NIST, 2017). This test case has
performed random filesystem activity, so the timestamps of the
MFT entries are rarely all equal. When running our prefix-based
timestamp carving algorithm we set the length of the timestamps
m ¼ 8, the search window k ¼ 24, and the required number of
matching timestamps to h ¼ 3 (the same parameters used by
Nordvik et al. (2020)). We carved for timestamps for all possible
prefixes p, from 1 to 8.

For this image, we only performed the location-based data re-
covery evaluation on the $MFT of the partition starting at sector 128,
aswedidnot identify anyMFTrecords in the $LogFile.Weverified the
lackof fullMFTrecords in the$LogFile by running theLogFileParser by
Schicht7 on the file. Transactions in the LogFile where the Redo
Operation or Undo Operation has the status of “InitializeFileR-
ecordSegment”, and the other Redo or Undo Operation has the status
of “Noop” indicates that the transaction contains anentireMFTrecord
(Cowen and Seyer, 2013). We found no such transactions.

The experiment using the 476 GB Lone Wolf forensic image
(available from Digital Corpora (Moore et al., 2018)) focuses on the
“Basic Data Partition” for the precision and recall evaluations, the
largest partition on disk. Our timestamp carving experiments for
the LoneWolf image use the same parameters as the DFR-13 image.

We performed the location-based data recovery evaluation on
the $MFT and the $LogFile on the LoneWolf image's partition.
3.6. Specifics of Ext4 experiments

The Ext4 experiment uses a dump of a Samsung S8 mobile
phone running Android, where we specifically focus on the “SYS-
TEM” partition's inode table for the precision and recall calcula-
tions. The User partition was encrypted, and SYSTEM partition was
the second largest partition on the image. The imagewas created by
first flashing the recovery partition using the TWRP Recovery image
(TWRP, 2019), and then using an ADB bridge executing a combi-
nation of netcat and dd commands in order to acquire the raw
image. The recovery image method is described in detail by Son
et al. (2013) and Vidas et al. (2011). We ran our prefix-based
timestamp carving algorithm on the image with the same param-
eters as those used by Nordvik et al. (2020), where the length of the
timestamps m was set to 4, the search window k ¼ 12, and the
required number of matching timestamps to h ¼ 2. We carved for
timestamps for all possible prefixes p, from 1 to 4.

The Ext4 parser also requires a few additional parameters,
which are assumptions that assist in attempting to connect inodes
to their filename and inode number. Using the Sleuthkit, we ob-
tained the blocksize of 4096 bytes (which is the default blocksize
(Ext4 (and Ext2/Ext3) Wiki, 2019)), and the byte offset of
225968128 to the partition. Thus, the parser only examines the disk
from this offset onward.
7 https://github.com/jschicht/LogFileParser.

https://github.com/jschicht/LogFileParser

Table 1
Precision and recall for carving MFT records from the $MFT from the 1 GB NTFS
image's partition beginning at sector 128 with p ¼ 1, 2, …, 8. The $MFT had 239
Condition Positives.

p True Positives False Positives False Negatives Precision Recall

8 21 0 218 1 0.088
7 21 0 218 1 0.088
6 126 0 113 1 0.527
5 164 0 75 1 0.686
4 219 0 20 1 0.916
3 234 0 5 1 0.979
2 234 0 5 1 0.979
1 234 0 5 1 0.979

Table 2
Test Positive count over entire partition from the 1 GB NTFS image, where p¼ 1, 2,…,
8.

P 8 7 6 5 4 3 2 1

Test Pos. Count 24 24 129 167 222 237 237 237

Table 3
Generic Metadata Time Carving performance for the entire 1 GB NTFS image with
p ¼ 1, 2, …, 8. PTS stands for “Potential Timestamp”.

p # PTS Locations TS Carve Time (s) Parser Time (s) Total Time (s)

8 892 8.177 0.049 8.226
7 3143 8.132 0.082 8.214
6 4311 8.128 0.104 8.232
5 3638 8.131 0.106 8.237
4 2056322 8.451 6.59 15.042
3 2056629 8.413 6.689 15.102
2 2056636 8.459 6.659 15.117
1 2061768 8.4 6.622 15.019

Table 4
Precision and recall for carving inodes from the inode table from the SYSTEM
partition in the 59.5 GB Ext4 Samsung S8 image with p ¼ 1, 2, 3, 4. The inode table
had 7436 Condition Positives.

p True Positives False Positives False Negatives Precision Recall

4 6766 0 670 1 0.910

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
3.7. Computer specifications

A Mac with the following specifications was used to run the
timing experiments.

C OS: MacOS Catalina v 10.15.4
C Processor: 4.2 GHz Quad-Core Intel Core i7
C Memory: 64 GB 2400 MHz DDR4
C Storage: APPLE SSD SM0128L 3.12 TB, PCI-express, a hybrid,

where 128 GB is pure SSD, and 3 TB is SATA. Sequential Read:
952 MB/s, sequential write 57 MB/s. Random read 0.9 MB/s,
and random write 50 MB/s.

While running the tools we did not activate any other resource
demanding processes. However, it is always possible that the OS
performed additional scheduled tasks. We used the tool DiskMark8

v2.2 to measure the read/write speed.

4. Results

Overall, our results show that by reducing the size of the prefix p
of a timestamp in the timestamp equivalency test, a much higher
recall for filesystem metadata record extraction can be achieved
using the Generic Metadata Time Carving (GMTC) method as
compared to the exact timestamp matching approach. To our sur-
prise, the precision of the metadata extraction was not reduced by
decreasing the size of the matching prefix p, and remained at 100%
for all experiments. We go through each disk image we tested,
showing the results of the individual precision-recall tests over
specific areas of the disk, and the timing results for the potential
timestamp carver and parser for that particular image. All timing
experiments were run twice, and the listed runtimes are their av-
erages. We also describe the files on the evaluated partition that
contained filesystemmetadata records that were outside the $MFT,
$LogFile, and inode table.

4.1. Small NTFS image

The results for carvingMFT records from the $MFT from the 1 GB
NTFS image's partition beginning at sector 128, as seen in Table 1,
show that applying prefix matching of timestamps greatly in-
creases the recall, and appears to maintain the exact matching
Generic Metadata Time Carvingmethod's 100% precision. The exact
matching GMTC (p ¼ 8) only obtained 8.8% recall for finding MFT
records, whereas decreasing p to 3 and less achieved a 97.9% recall.
The number of Test Positives identified over the entire partition for
different values of p is shown in Table 2. The true positives account
for most of the Test Positives found over the entire partition, but
three had gone unaccounted for. It transpired they were the
$MFTMirr, $LogFile, and $Volume records found in the $MFTMirr
file.

This increase in recall was not without its trade-offs, as seen in
Table 3. Upon decreasing p from 8 to 4, the number of identified
potential timestamp locations increased by three magnitudes.
While this did not appear to unduly influence the timestamp
carving algorithm, the time required for the filesystem parser
increased more than 100 fold.

4.2. Ext4 Samsung S8 image

The results for carving inodes from the Ext4 image's SYSTEM
partition's inode table are shown in Table 4. Like the small NTFS
8 https://inchwest.com/diskmark/.

7

image, we achieved 100% precision in identifying inodes, where the
recall increased for carving inodes from the inode table as the prefix
length value of p decreased. However, the increase in recall was
quite minor, only increasing by about 3%.We discuss our theories of
why the precision and recall were so high for the Ext4 experiment
in the Discussion section.

Table 5 shows the Test Positive counts of detected inodes found
over the entire partition, with respect to the prefix length p being
used. All test positive hits that were not discovered in the inode
table were discovered in the Journal where, when the timestamp
prefix length p ¼ 1, we detected 1924 inodes.

In terms of computational performance, Table 6 exposed trends
regarding the timestamp carving program when working with
large files. Larger prefixes p caused the timestamp carver to take
longer to complete, but not by too much. Unlike the small NTFS
image experiment, the number of potential timestamp locations
only increased by about one magnitude going from p ¼ 4 to p ¼ 1.
The time required to run the filesystem parser appears to have an
approximately linear relationship between the number of potential
timestamp carving locations, as the time required to run at p ¼ 1 is
about 10 times as slow as using a prefix size of p ¼ 4.
3 6766 0 670 1 0.910
2 7004 0 432 1 0.942
1 7004 0 432 1 0.942

https://inchwest.com/diskmark/

Table 5
Test Positive count over entire SYSTEM partition from the Ext4 Samsung S8 image,
where p ¼ 1, 2, 3, 4.

p 4 3 2 1

Test Pos. Count 8470 8470 8928 8928

Table 7
Precision and recall for carving MFT records from the $MFT of the Basic Data
Partition from the 476 GB LoneWolf NTFS image with p ¼ 1, 2, …, 8. The $MFT had
142960 Condition Positives.

p True Positives False Positives False Negatives Precision Recall

8 59422 0 83538 1 0.416
7 59422 0 83538 1 0.416
6 72284 0 70676 1 0.506
5 95193 0 47767 1 0.666
4 120482 0 22478 1 0.843
3 129220 0 13740 1 0.904
2 139022 0 3938 1 0.972
1 139082 0 3878 1 0.973

Table 8
Precision and recall for carving MFT records from the $LogFile of the Basic Data
Partition from the 476 GB LoneWolf NTFS imagewith p¼ 1, 2,…, 8. The $LogFile had
2604 Condition Positives.

p True Positives False Positives False Negatives Precision Recall

8 2251 0 353 1 0.864
7 2251 0 353 1 0.864
6 2251 0 353 1 0.864
5 2251 0 353 1 0.864
4 2263 0 341 1 0.869
3 2263 0 341 1 0.869
2 2267 0 337 1 0.871
1 2267 0 337 1 0.871

Table 6
Generic Metadata Time Carving performance for the entire 59.5 GB Samsung S8
image with p ¼ 1, 2, 3, 4. PTS stands for “Potential Timestamp”,m for minutes, and s
for seconds. Note, the Ext4 parser skips the first approximately 210 MB.

p # PTS Locations TS Carve Time (s) Parser Time (s) Total Time (m:s)

4 10630945 1401.78 45.73 24:07.51
3 26228387 1397.36 115.25 25:12.60
2 41610448 1369.78 186.43 25:56.21
1 97555603 1266.81 452.42 28:39.22

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
4.3. Large NTFS image

The results for carving MFT records from the $MFT and $LogFile
from the LoneWolf image's Basic Data Partition are seen in Tables 7
and 8 respectively. Again, we achieved 100% precision in identifying
MFT records, both for the $MFT and $LogFile (we encountered no
false positives with respect to our Condition Positive lists). The
recall results reflect previous trends. Using exact matching time-
stamp carving we only achieved 41.6% recall for carving MFT re-
cords from the $MFT, and allowing for smaller timestamp prefix
matching caused increasingly higher recall. The point of dimin-
ishing returns appeared to have occurred at p ¼ 2, where about
97.2% recall was achieved. The recall results are quite different for
carvingMFT records from the $LogFile, as the recall hovered around
87% despite the value of p.

Table 9 shows the total number of test positives found over the
entire partition, and after filtering out the Test Positive hits found in
the $MFT and $LogFile, there were still a large number of hits left
unaccounted for. When discussing where these hits were found on
the partition, we focus on the results for p ¼ 1, since each value of p
larger than this should be a subset of the p¼ 1 results. In total, there
were 91157 test positive hits that were yet to be accounted for.
Using the dictionary we created that contained the allocated cluster
ranges of all known files on the partition, we were able to discover
where these potential MFT records were coming from, as seen in
Table 10. The $MFTMirr contained the usual records of $MFT,
$MFTMirr, $LogFile, $Volume. Four different boot.sdi files (with the
filenames “boot.sdi, boot.sdi”) each contained 42 filesystem meta-
data record hits, where a boot.sdi file is essentially a small partition
of its own with completely irrelevant MFT records. It is used as a
Ramdisk which can be shownwith the bcdedit command (KillDisk,
2021). Lastly, we have the two Volume Shadow Copies9 that con-
tained 90985 detected MFT records.

In terms of timing performance, the large NTFS experiment
9 Using The Sleuthkit's (versions 4.4.1 and 4.10.1 tested) istat command for
Volume Shadow Copies (VSC) will show that the file only occupies a single cluster,
having a large non-zero size, and an init_size of 0. This error has been seen before:
https://github.com/sleuthkit/sleuthkit/issues/466. Why we bring this up is that
relying on the Python dictionary we created for cluster ranges of files will be
incorrect for the VSCs. To address this, we used the given cluster as the start of a
VSC's range, and added the size of the file to obtain the end of its range. To ensure
this unfragmented region of disk was truly a VSC file, we performed the following.
icat -s will output a VSC entirely, and we took the MD5 hash of the VSC files. We
then took MD5 hashes of the unfragmented disk regions defined by the byte ranges
we were using for the VSCs. The hashes of the files and the regions of disk were
identical.

8

mostly behaved as expected (see Table 11). Like in the Ext4 time-
stamp carving experiment, the run-times for all values of p were
similar, but experiments with lower values of p took less time. What
was rather surprising was the relatively small increase in potential
timestamp locations that were found by p¼ 1 versus p¼ 8, given the
size of the image. The increase was only by a factor of about 4.77,
quite a deal less than the increase of magnitudes we saw before. A
possible reason for this is that the Lone Wolf image is a synthetic
image that was only being used for somemonths. Stranger still, were
the parser times over all possible values of p. Given the previous
results, we should have seen parser times drastically increase as p
decreased. This did not happen, as seen by the fact that the parsing
time for p ¼ 1 was on average less than most other values of p, and
this is despite the fact that the experiment for p ¼ 1 had about 46
million more potential timestamps to check than the p ¼ 8 experi-
ment. Since both runs of the parser produced such similar results, at
the moment we can only guess that some aspect of the parser script
handles things inefficiently. A major difference between the NTFS
parser and the Ext4 parser is that the Ext4 parser uses a Python
memory mapping library10 to handle the parsing of large files, while
the NTFS parser has handcrafted code to handle large files.

We note that our tools found no Test Positives (detected hits of
filesystem metadata records) in unallocated space for any of the
disk images.

5. Discussion

Here we analyze our results, consider why we may have missed
extracting some metadata records, the limitations of our research,
and finally answer our research questions.

5.1. Analysis: small NTFS image

The small image from NIST (NIST, 2017) purposefully created
10 https://docs.python.org/3/library/mmap.html.

https://github.com/sleuthkit/sleuthkit/issues/466
https://docs.python.org/3/library/mmap.html

Table 9
Test Positive count over entire Basic Data Partition from the large LoneWolf NTFS image, where p ¼ 1, 2, …, 8.

p 8 7 6 5 4 3 2 1

Test Pos. Count 108852 108852 134227 169588 204467 218559 232425 232506

Table 10
Files containing the remaining Test Positives not found in the $MFT or $LogFile of the Basic Data Partition, where p¼ 1. The number associated to each file indicates howmany
MFT records were found in that particular file.

File Record Number Test Positive Count

$MFTMirr 1 4
Boot.sdi 21992 42
Boot.sdi 21993 42
Boot.sdi 21994 42
Boot.sdi 21995 42
Volume Shadow Copy 1 96066 51795
Volume Shadow Copy 2 123530 39190

Table 11
Generic Metadata Time Carving performance for the entire 476 GB NTFS image with p ¼ 1, 2,…, 8. PTS stands for “Potential Timestamp”, hr for hours, m for minutes, and s for
seconds.

p # PTS Locations TS Carve Time (s) Parser Time (s) Total Time (hr:m:s)

8 12235330 7324.28 1761.83 2:31:26.11
7 17426880 7322.61 2177.43 2:38:20.04
6 23192352 7291.95 2793.94 2:48:05.89
5 30135982 7279.97 2266.49 2:39:06.45
4 32353209 7286.00 2218.84 2:38:24.83
3 33625310 7296.31 2596.24 2:44:52.55
2 46791325 7298.88 1617.81 2:28:36.68
1 57934625 7137.19 1707.40 2:27:24.59

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
chaotic actions on the system, thus creating MFT records with erratic
timestamps. ThemissedMFT records from theMFT tablewhen p¼ 1
were the $MFT, as the Standard Information Attribute timestamps
were 0, and 4 other records that did not contain File Name Attributes.
The NTFS parser requires a File Name Attribute to be present.

The only other interesting item to note is explaining why the
number of potential timestamp locations jumped drastically from
p¼ 5 to p¼ 4. The dfr-13-ntfs.dd image fills sectors not occupied by
an MFT entry with repeated byte sequences of either 0x2A or 0x5A,
and the beginning of each sector has a message describing how the
sector is or is not used. The combination of this message and the
repeated byte sequences creates a large occurrence of valid po-
tential timestamps. Such a situation would be unusual for more
realistic images.
5.2. Analysis: Ext4 Samsung S8 image

The location-based data recovery evaluation for carving inodes
from the inode table of the Ext4 Samsung S8 image performed
suspiciously well, having 100% precision and 91% or greater recall.
The high recall for extracting inodes from the inode table may
indicate that the SYSTEM partition had fairly static files. Again, we
would have liked to run the tests on the User partition, which
would have included real user behavior, but it was encrypted.

The 432 false negative inodes from the inode table were entirely
comprised of Symbolic Links. While the GMTC method by Nordvik
et al. (2020) and our work is said to consider symbolic links (and
will catch some), the Ext4 parser always assumes that at offset 0x28
from the start of the inode will be direct blocks or the start of the
11 https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Symbolic_Links.

9

extents. However, this is an incorrect assumption, as a symbolic link
will be stored at this offset if the string is less than 60 bytes long
(Ext4 (and Ext2/Ext3) Wiki, 2019).11
5.3. Analysis: large NTFS image

Other than the strange runtimes of the NTFS parser, the results
from the experiments on the large NTFS image were in line with
what we had seen in the previous images. Three items of interest
are worth discussing: The high recall of MFT records carved from
the $LogFile, false negative MFT records, and Test Positives found
outside the $MFT and $LogFile.

The high recall of at least 86.4% of MFT records found in the
$LogFile can be attributed to the fact that full MFT records only
occur in $LogFile transactions with “InitializeFileRecordSegment”
operations, which means a new file is being created (Schicht, 2018).
When a new file is created, all the timestamps for the Standard
Information Attribute (SIA) are updated (Knutson and Carbone,
2016). This implies all the timestamps for the MFT records should
be the same or nearly the same. Decreasing the timestamp prefix
length p from 8 to 1 increased recall by less than 1%, which shows
that some of the timestamps were indeed slightly different. The
implications of these results is that the exact matching GMTC
method will work well for carving MFT records from the $LogFile.
However, as Nordvik et al. (2020) previously observed, the majority
of records recovered from the $LogFile contained no datarun in-
formation, where we only identified 11 records that did.

It would appear that most of the 3878 false negative MFT re-
cords in the $MFT were those that needed to have non-resident
attributes. This was expected, as the NTFS parser does not handle
MFT records that are larger than 1024 bytes. Most of the 337 false
negative MFT records in the $LogFile were records that crossed log

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Symbolic_Links

Fig. 5. Histogram comparing the number of Condition Positives we account for on the
SYSTEM partition of the 59.5 GB Samsung S8 image and the number of potential
timestamp (PTS) locations identified after carving for all possible prefix lengths.

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
pages, where a log page header (containing the magic number
‘RCRD’) split the MFT record somewhere after the Standard Infor-
mation Attribute. We do however still find MFT records where they
are split by a log page header after the MFT record header, and
before the Standard Information Attribute.

Of the 91157 Test Positive hits for MFT records that were found in
neither the $MFT or the $LogFile (see Table 10), the 90985 hits in
Volume Shadow Copies are the most interesting. This is because the
Volume Shadow Copies are snapshots of previous states of the
partition, and thusmayeither containprevious statesoffiles and their
MFT records, or they may contain MFT records that are now deleted.
Furthermore, a large number of Test Positive hits outside the MFT
table or LogFile, but within specific regions of disk, may indicate that
Volume Shadow Copies even exist on a partition in the first place.

5.4. Limitations

The purpose of this work was to show that the GMTC method
can be used on realistic images and timestamps, and that the use of
a timestamp prefix matching method could greatly improve the
method's ability to extract filesystem metadata records. Here, we
address the issues we believe to be the primary limitations of our
work.

The first issue is that we are applying the GMTC method to data
that does not fit its more typical use-case. The GMTC method
should be applied if the filesystem is damaged or otherwise inac-
cessible. We are applying the method to perfectly working images,
and undamaged filesystems. The reason for this is to understand
what the prefix-based GMTC method can potentially recover.

Another limitation of this work is that we were not using a user
partition for the Ext4 experiments, so the filesystem we were
analyzing was likely more static and not as realistic as we would
have liked it to be.

The last large limitation of our work is our experiments’
unsatisfying explanation of the unflagging 100% precision. How-
ever, by looking at our results, we can see that low timestamp prefix
lengths do indeed produce many more false positive potential
timestamps. For example, reducing the prefix length p from 4 to 1
in the Ext4 experiment increased the number of potential time-
stamps from approximately 11 million to 98 million. For the Large
NTFS experiment, reducing p from 8 to 1 increased the number of
potential timestamps from about 12 million to 58 million. The ef-
fect of prefix length p on the number of potential timestamps
identified for the large NTFS and Ext4 images is shown in Figs. 4 and
5 respectively, where we also show the number of Condition
Fig. 4. Histogram comparing the number of Condition Positives we account for on the
Basic Data Partition of the 476 GB Lone Wolf image and the number of potential
timestamp (PTS) locations identified after carving for all possible prefix lengths.

10
Positives to illustrate that the count of Condition Positives is only a
fraction of the number of false positive timestamps we may be
encountering. According to our filesystem specific parsing experi-
ments, it would seem that the filesystem specific parsers are
extremely strict since we encountered no false positive records
despite checking for millions of more offsets on the disk image.
Likewise, it appears that the roll of the potential timestamp carver
is to control the total number of byte offsets that a filesystem
specific parser must verify when looking through a disk image for
filesystem metadata records (affecting recall), and that the fil-
esystem specific parser ultimately controls the precision of the
GMTC method.

We wanted to observe these suspected rolls of the prefix-based
potential timestamp carver and filesystem specific parsers empir-
ically, so we conducted a short experiment. This experiment ob-
tains the results of performing the prefix-based GMTC method on
an encrypted image, as the data is essentially a large string of
random bytes, and also obtain the results of applying the filesystem
specific parsers directly on the encrypted image without first per-
forming timestamp carving. Results wewere interested in included
the number of false positive filesystem metadata records the ex-
periments would encounter, and how long the runtimes for the
different experiments were. Our hypothesis was that we would not
encounter any false positive records for any experiment, and that
Generic Metadata Time Carving should be faster than applying the
parsers directly on the image.

We encrypted the 59.5 GB Ext4 image with Kleopatra12 and
carved for potential timestamps on the encrypted image using the
same parameters as our previous experiments, but only searched for
timestamps based on a prefix size of 1 byte. Then both filesystem
specific parsers were ran on the encrypted image using their
respective potential timestamp locations from the potential time-
stamp carving. Next, we ran the NTFS and Ext4 parsers over every
byte of the encrypted image without using potential timestamp in-
formation, with the exception of the first and last 1024 bytes.

For searching for NTFS MFT records, we obtained no false pos-
itives for the GMTC experiment or the pure parser experiment.
Carving for potential timestamps took approximately 17 min, and
where 360990 potential timestamps were discovered. Applying the
NTFS specific parser on the image with the potential timestamp
results took about 7 min to run. Applying the NTFS parser directly
on the encrypted image took 5.75 h.
12 https://www.openpgp.org/software/kleopatra/.

https://www.openpgp.org/software/kleopatra/

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
When searching for inodes, we encountered no false positives
for the GMTC experiment or the pure parser experiment. The po-
tential timestamp carving took about 17.5 min, and we identified
182405692 potential timestamps. When applying the Ext4 specific
parser on the image with the potential timestamp results, the
parser ran for about 17.5 min. Applying the Ext4 parser directly on
the encrypted image took about 17.5 h.

These results further reveal why it is the GMTC method pro-
duces little to no false positives. The tests where the parsers are
directly executed on the encrypted image show that it is the file
system specific parsers that ultimately control the precision of the
GMTC method since no false positives were encountered. This
implies that the filesystem specific parsers are extremely strict
when verifying filesystem metadata records, and that the records
themselves are highly structured. However, running the parsers
directly on the encrypted image took much longer to run.

With these results we get a clearer picture on how potential
timestamp carving effectively acts as a data reduction technique,
where its parameters influence the number of potential time-
stamps returned, going on to influence recall and parser runtime,
and that the filesystem specific parsers ultimately control the
precision of the GMTC method. We can also see that the other
parameters for the potential timestamp carver such as the user
defined threshold h of the required number of matching time-
stamps per record also controls the number of returned potential
timestamps. For example, despite both applying a prefix length
p ¼ 1, using the NTFS timestamp carving settings (requiring h ¼ 3
matching timestamp prefixes) only encountered 360990 potential
timestamps, whereas carving with the Ext4 settings (requiring
h ¼ 2 matching timestamp prefixes) encountered 182405692 po-
tential timestamps. However, more research needs to be done to
understand all the implications of applying different potential
timestamp carving parameters.
5.5. Revisiting research questions

Below, we answer our research questions based on our results
and analysis of the experiments.

How does the value of the prefix parameter effect the precision and
recall of the Generic Metadata Time Carving method?

We hypothesized that as the length of the prefix of the most
significant bytes, p, of a potential timestamp decreased, that this in
turn would increase the recall but reduce the precision of the
Generic Metadata Time Carving method. According to our results,
the recall for finding metadata records may significantly increase
when applying prefix-based timestamp carving, but the precision
in our experiments did not decrease when applying prefix-based
timestamp carving. In fact, the precision remained at 100% for all
possible prefix values. These items require a short discussion.

It seems that the recall reaches a point of diminishing returns
once the timestamp prefix length p � 2, no matter what the fil-
esystem is. We cannot suggest to make the value of p as low as
possible either, as reducing p ¼ 2 to p ¼ 1 increased the number of
potential time timestamps locations in the Ext4 experiment by 55.9
million (increasing parser time by over 100%) and in the Large NTFS
experiment by 11.1 million. As noted in the Limitations subsection,
decreasing p yields more potential timestamp locations, most of
which will not be timestamps at all, but also allows for greater
filesystem metadata record recall.

Despite producing much greater recall and many more potential
timestamps, lowering the prefix-length p did not reduce the pre-
cision for carving MFT records or inodes. Our brief further in-
vestigations in the Limitations subsection demonstrated that by
11
using the filesystem specific parsers on an encrypted version of the
59.5 Ext4 image produced no false positive record hits. Wemention
the trade-offs between the potential timestamp carver and parsers
when addressing the last research question.

But overall, we can state with confidence, according to our ex-
periments, that decreasing the value of the prefix parameter p can
drastically increase the recall of finding metadata records, without
much (if any) loss in precision of identifying metadata records.

How does the original Generic Metadata Time Carving method
compare with our prefix matching implementation?

For comparing our GMTC method to the original, we simply set
the value of the prefix length, p, of a potential timestamp to its
maximum (8 for NTFS or 4 for Ext4). In the small NTFS experiment,
the exact matching timestamp method only achieved a recall of
8.8% for carving MFT records from the MFT table, while using the
prefix-based method achieved 97.6% recall. Then in the Ext4
experiment, the exact matching timestampmethod achieved a 91%
recall for carving inodes from the inode table, while using the
prefix-based method achieved 94.2% recall. In the Large NTFS
experiment, the exactmatching timestampmethod only achieved a
recall of 41.6% for carving MFT records from the MFT table, while,
using the prefix-basedmethod achieved 97.3% recall. The precision-
recall experiments on the $LogFile also showed improvement of
recall as p decreased, though not nearly as drastic as the MFT
Table experiments. In fact, our results indicate that the exact
matching GMTC method performs nearly identically on the $Log-
File fromNTFS as our prefix-based version, due to the nature of MFT
records found within the file. In all experiments, the precision
remained a constant 100%.

Our results indicate that the degree of improvement of the recall
is dependent upon the temporal variety of the filesystem metadata
records. Both the $LogFile and inode table results showed only a
minor improvement in recall since both the data sources appeared
to have static records. As the records in the $MFT from both NTFS
images were more often updated, then the improvement in recall
was much more significant.

Overall, we have shown that the prefix-based GMTCmethod can
potentially carve a significantly greater number of filesystem
metadata records than the original, while maintaining perfect or
near-perfect precision for realistic test datasets.

In terms of time and space complexity, the time complexity of
the prefix matching algorithm is the same as the exact matching
algorithm. Our results show that the timestamp carving times are
close to constant for all values of p, but carving with lower values of
pwill take slightly less time. A limitation of our work is that we did
not perform extensive tests on the original GMTC algorithm, thus
making statements on the speed of our algorithm versus the orig-
inal mostly theoretical. Where the prefix-based GMTC method
performs worse than the original method, is the space required for
the potential timestamp locations produced by the potential
timestamp carver, and consequentially the time required by the
filesystem specific parsers. For example, the exact timestamp
carving on the Ext4 image identified nearly 11 million potential
timestamps and the parser took about 46 s to run, but carving for
timestamps with a prefix length of 1 byte on the same image
identified nearly 98 million potential timestamps and the parser
took about 7.5 min to run. As there were only 7436 inodes in the
Ext4 partition's inode table, the grand majority of the potential
timestamps are false positive timestamps.

The rather unexpected results of the timing of the NTFS parser
for the Lone Wolf image, where the time to parse the image
decreased when applying p ¼ 1, is likely the result of the imple-
mentation of the NTFS parser.

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
Do the experimental results indicate that Generic Metadata Time
Carving, prefix matching or otherwise, may be used in realistic digital
forensic scenarios?

In terms of functionality, the prefix-based GMTCmethod appears
practical for carving filesystemmetadata records as our experiments
acheived recall of approximately 90% or greater. The exact matching
GMTC can be practical if time is of primary concern, or one wishes to
carve for records in specific files such as $LogFile (where the exis-
tence of dataruns is rare), but for many files or regions of disk this
will risk missing many filesystem metadata records.

As filesystem metadata records are highly structured (and often
sparse) data, and our filesystem specific parsers run many verifi-
cation tests, we can understand why our parsers filtered out all of
the tested false positive potential timestamps. Further in-
vestigations in our Limitations subsection showed that even when
running our tools on the encrypted Ext4 image, that we encoun-
tered no false positives. The implication is that while potential
timestamp carving will allow for greater recall, what ultimately
controls the precision are the filesystem specific parsers, and that
the precision measured in all cases was 100%.

However, we also showed in the Limitations subsection that by
running the parser without potential timestamp information on
the disk images took a significantly longer time than the GMTC
method. For example, the prefix-based GMTC method took about
35min to fully run on the encrypted Ext4 imagewhen searching for
inodes, whereas running the Ext4 parser alone took about 17.5 h.
Applying the prefix-based GMTC method to the encrypted image
took 24 min to search for MFT records, while running the NTFS
parser directly on the image took 5.75 h.

In terms of time and space both the exact matching and prefix
matching GMTC methods are practical. The time taken to carve out
potential timestamps on the 476 GB NTFS image was on average
just over 2 h. Furthermore, the carving time is not much affected by
the change in the prefix length p, as was predicted by the fact that
the time complexity of the prefix-based timestamp carving method
is the same as the exact timestamp carving method. In general, it
appears that as we allow for smaller prefixes in timestamp carving,
the time it takes for the filesystem specific parsers to complete
increases. The exception to this rule is the NTFS parser for large
files, but we believe this to be more of an implementation issue
than indicative of a general trend. Even so, the longest time it took
for the NTFS parser to scan the Lone Wolf image was about 46 min.
Thus, the longest time for total analysis of the 476 GB NTFS image
was about 2 h and 48 min (as seen in Table 11).

In summary, there is a performance trade-off that exists for
prefix-based Generic Metadata Time Carving, where lowering the
prefix parameter p may significantly increase recall, slightly re-
duces timestamp carving time, but can also significantly increase
the filesystem specific parser time due to having the need to vali-
date more potential timestamps.

6. Conclusion and Further Work

In this work, we created and applied a timestamp prefix
matching version of the Generic Metadata Time Carving (GMTC)
method (Nordvik et al., 2020). The GMTC method can be used to
carve for filesystem metadata records from a forensic image
without the use of the filesystem, and can potentially allow for full
file recovery on a damaged or partially overwritten disk. The crux of
our contribution was the prefix-based potential timestamp carving
algorithm, that only compares the prefixes of length p as opposed to
the entire timestamp. This is because stringologically similar
timestamps in most cases should be temporally similar as well. We
tested the prefix-based method on three realistic forensic images.
12
Two of the images used NTFS, one of the images used Ext4, and they
varied in size from 1 GB to 476 GB.

Our location-baseddata recoveryexperimentsmostly support our
hypotheses. First, we have shown that applying timestamp prefix
matching totheGMTCmethodcanproducesignificantlygreater recall
in carving filesystem metadata records than the exact timestamp
matching version. Surprisingly, performing prefix-based timestamp
matching did not appear to affect the precision for carving MFT re-
cords or inodes from our test data, as we obtained 100% precision for
all of our experiments. Further examinations in the Limitations sub-
section shows that prefix-based potential timestamp carving will
increase the number of potentially valid offsets to metadata time-
stamps, but it is ultimately thefilteringdoneby thefilesystemspecific
parsers that controls the precision. However, running the parsers on
an image without prior potential timestamp information will take
significantly longer than using a GMTC method. Using the prefix-
based Generic Metadata Time Carving method, the potential time-
stamp carver essentially performs data reduction of possible MFT
record or inode locations for the filesystem specific parsers to check.
The method appears to be practical, as our longest experiment on a
476 GB image in total clocked in at about 2 h and 48 min.

Interestingly, changing the size of the matching prefix for the
timestamps does not affect the time taken to perform timestamp
carving by much. This makes sense as the prefix-based potential
timestamp carving algorithm only added a constant number of
steps to the original algorithm, therefore producing an algorithm
with the same time complexity. Our experiments showed that
timestamp carving with lower values of p took slightly less time
than experiments with larger p values. On the other hand, reducing
the size of the timestamp prefix often greatly increased the time
taken by the filesystem specific parsers to extract the metadata
records. This is due to the fact that matching for timestamps that
are approximately similar results in some magnitudes more of
potential timestamps to consider, and thus causing some magni-
tudes more time to run the filesystem specific parsers. We noted an
exception to this rule for the large NTFS image, but this may be due
to its implementation and the fact it does not use Python memory
mapping libraries as the Ext4 parser does.

Future work for the prefix-based timestamp carving algorithm
would be to try to improve its efficiency. Since the algorithm ingests
the disk image in a linear fashion, perhaps the efficiency could be
improvedbyusingparallel processing to analyzedifferentparts of the
disk simultaneously, much like Garfinkel's Bulk Extractor (Garfinkel,
2013). The filesystem specific parsers can also be further optimized.

Ourwork has shown there needs to be improvementsmade to the
filesystem specific parsers as well, so that they can handle more
possible variations to filesystem metadata records. For instance, the
NTFSparserneeds tobeable tohandleMFTrecordswithnon-resident
attributes. For Ext4, there needs to be hard link support, and better
support for symbolic links. Then in general, there is also a need for
development of parsers of filesystems other than NTFS and Ext4.

Acknowledgement

The research leading to these results has received funding from
the Research Council of Norway programme IKTPLUSS, under the
R&D project “Ars Forensica - Computational Forensics for Large-
scale Fraud Detection, Crime Investigation & Prevention”, grant
agreement 248094/O70.

Appendix A. Prefix-Based potential timestamp carving
algorithm

Note, we do not include the memory mapping aspects to handle
large files. For the full potential timestamp carving program, see:

K. Porter, R. Nordvik, F. Toolan et al. Forensic Science International: Digital Investigation 38 (2021) 301266
https://github.com/TimestampPrefixCarving/Peer-Review/blob/
main/main.cpp.

Algorithm 2. Prefix-based potential timestamp carving
13
algorithm, using timestamp prefix matching for the timestamp
equivalency test.

References

Aho, A.V., Corasick, M.J., 1975. Efficient string matching: an aid to bibliographic
search. Commun. ACM 18 (6), 333e340.

Bayne, E., Ferguson, R.I., Sampson, A., 2018. Openforensics: a digital forensics gpu
pattern matching approach for the 21st century. Digit. Invest. vol. 24, S29eS37.
The Proceedings of the Fifth Annual DFRWS Europe. https://www.sciencedirect.
com/science/article/pii/S1742287618300379.

Boyer, R.S., Moore, J.S., 1977. A fast string searching algorithm. Commun. ACM 20
(10), 762e772.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Casey, E., Nelson, A., Hyde, J., 2019. Standardization of file recovery classification

and authentication. Digit. Invest. 31, 100873. URL. http://www.sciencedirect.
com/science/article/pii/S1742287618304602.

Cowen, D., Seyer, M., 2013. File System Journal Analysis. SANS DFIR. https://digital-
forensics.sans.org/community/summits.

Dewald, A., Seufert, S., 2017. Afeic: advanced forensic Ext4 inode carving. Digital
investigation 20. In: The Proceedings of the Fourth Annual DFRWS Europe,
pp. S83eS91. URL. http://www.sciencedirect.com/science/article/pii/
S1742287617300270.

Ext4 (and Ext2/Ext3) Wiki, aug 2019. Ext4 disk layout. URL. https://ext4.wiki.kernel.
org/index.php/Ext4_Disk_Layout.

forensicswiki.xyz, sep 2012. File Carving. https://forensicswiki.xyz/wiki/index.php?
title¼File_Carving.

Garfinkel, S.L., 2007. Carving contiguous and fragmented files with fast object
validation. Digit. Invest. 4, 2e12. URL. http://www.sciencedirect.com/science/
article/pii/S1742287607000369.

Garfinkel, S.L., 2013. Digital media triage with bulk data analysis and bulk_extractor.
Comput. Secur. 32, 56e72. URL. http://www.sciencedirect.com/science/article/
pii/S0167404812001472.

Hamming, R.W., 1950. Error detecting and error correcting codes. The Bell Syst.
Tech. Journal. 29 (2), 147e160.

Jan KillDisk, Active, 2021. How To…for Killdisk Software. URL. https://www.killdisk.
com/load-bootdisk-win10.htm.

Knutson, T., Carbone, R., 2016. Filesystem Timestamps: what makes them Tick?, 11.
GIAC GCFA Gold Certification.

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet Physics Doklady, vol. 10, pp. 707e710.

Maar, R., 2014. Ext4magic. URL. https://github.com/gktrk/ext4magic.
McCash, J., 5, 2010. Timestamped Registry & NTFS Artifacts from Unallocated Space.

URL. https://digital-forensics.sans.org/blog/2010/05/04/timestamped-registry-
ntfs-artifacts-unallocated-space.

Moore, Garfinkel, Farrell, Roussev, Dinolt, 2018. Lone Wolf Scenario. Last visited:
2020-04-16. URL. https://digitalcorpora.org/corpora/scenarios/2018-lone-wolf-
scenario.

Mueller, L., 1 2008. Search for Windows 64 Bit Timestamps. URL. http://www.
forensickb.com/2008/01/search-for-windows-64-bit-timestamps.html.

NIST, mar 2017. Computer Forensic Reference Data Sets: Deleted File Recovery. URL.
https://www.cfreds.nist.gov/dfr-test-images.html.

Nordvik, R., Georges, H., Toolan, F., Axelsson, S., 2019. Reverse engineering of ReFS.
Digit. Invest. 30, 127e147. URL. http://www.sciencedirect.com/science/article/
pii/S1742287619301252.

Nordvik, R., Porter, K., Toolan, F., Axelsson, S., Franke, K., 2020. Generic metadata
time carving. Digital Investigation. In: The Proceedings of the Twentieth Annual
DFRWS USA, vol. 33, p. 301005. URL. https://www.sciencedirect.com/science/
article/pii/S2666281720302547.

Plum, J., Dewald, A., 2018. Forensic APFS file recovery. In: Proceedings of the 13th
International Conference on Availability, Reliability and Security. ARES 2018.
ACM, New York, NY, USA. https://doi.org/10.1145/3230833.3232808, 47:1e47:
10. URL.

Richard III, G.G., Roussev, V., 2005. Scalpel: a frugal, high performance file carver. In:
Proceedings of the Digital Forensic Research Conference, 2005.

Schicht, J., 2018. Logfileparser Readme. Github. URL. https://github.com/jschicht/
LogFileParser.

Son, N., Lee, Y., Kim, D., James, J.I., Lee, S., Lee, K., 2013. A study of user data integrity
during acquisition of android devices. Digital Investigation 10. S3 e S11. In: The
Proceedings of the Thirteenth Annual DFRWS Conference. URL. http://www.
sciencedirect.com/science/article/pii/S1742287613000479.

TWRP, May 2019. Download twrp-3.3.1-2-dreamlte img.tar. Https://eu.dl.twrp.me/
dreamlte/twrp-3.3.1-2-dreamlte.img.tar.html.

Vidas, T., Zhang, C., Christin, N., 2011. Toward a general collection methodology for
android devices. Digit. Invest. vol. 8, S14eS24. The Proceedings of the Eleventh
Annual DFRWS Conference. http://www.sciencedirect.com/science/article/pii/
S1742287611000272.

Zha, X., Sahni, S., 2010. Fast in-place file carving for digital forensics. In: Interna-
tional Conference on Forensics in Telecommunications, Information, and
Multimedia. Springer, pp. 141e158.

https://github.com/TimestampPrefixCarving/Peer-Review/blob/main/main.cpp
https://github.com/TimestampPrefixCarving/Peer-Review/blob/main/main.cpp
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref1
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref1
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref1
https://www.sciencedirect.com/science/article/pii/S1742287618300379
https://www.sciencedirect.com/science/article/pii/S1742287618300379
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref3
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref3
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref3
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref4
http://www.sciencedirect.com/science/article/pii/S1742287618304602
http://www.sciencedirect.com/science/article/pii/S1742287618304602
https://digital-forensics.sans.org/community/summits
https://digital-forensics.sans.org/community/summits
http://www.sciencedirect.com/science/article/pii/S1742287617300270
http://www.sciencedirect.com/science/article/pii/S1742287617300270
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://forensicswiki.xyz/wiki/index.php?title=File_Carving
https://forensicswiki.xyz/wiki/index.php?title=File_Carving
https://forensicswiki.xyz/wiki/index.php?title=File_Carving
http://www.sciencedirect.com/science/article/pii/S1742287607000369
http://www.sciencedirect.com/science/article/pii/S1742287607000369
http://www.sciencedirect.com/science/article/pii/S0167404812001472
http://www.sciencedirect.com/science/article/pii/S0167404812001472
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref11
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref11
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref11
https://www.killdisk.com/load-bootdisk-win10.htm
https://www.killdisk.com/load-bootdisk-win10.htm
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref13
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref13
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref14
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref14
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref14
https://github.com/gktrk/ext4magic
https://digital-forensics.sans.org/blog/2010/05/04/timestamped-registry-ntfs-artifacts-unallocated-space
https://digital-forensics.sans.org/blog/2010/05/04/timestamped-registry-ntfs-artifacts-unallocated-space
https://digitalcorpora.org/corpora/scenarios/2018-lone-wolf-scenario
https://digitalcorpora.org/corpora/scenarios/2018-lone-wolf-scenario
http://www.forensickb.com/2008/01/search-for-windows-64-bit-timestamps.html
http://www.forensickb.com/2008/01/search-for-windows-64-bit-timestamps.html
https://www.cfreds.nist.gov/dfr-test-images.html
http://www.sciencedirect.com/science/article/pii/S1742287619301252
http://www.sciencedirect.com/science/article/pii/S1742287619301252
https://www.sciencedirect.com/science/article/pii/S2666281720302547
https://www.sciencedirect.com/science/article/pii/S2666281720302547
https://doi.org/10.1145/3230833.3232808
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref23
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref23
https://github.com/jschicht/LogFileParser
https://github.com/jschicht/LogFileParser
http://www.sciencedirect.com/science/article/pii/S1742287613000479
http://www.sciencedirect.com/science/article/pii/S1742287613000479
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref26
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref26
http://www.sciencedirect.com/science/article/pii/S1742287611000272
http://www.sciencedirect.com/science/article/pii/S1742287611000272
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref29
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref29
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref29
http://refhub.elsevier.com/S2666-2817(21)00183-9/sref29

	Timestamp prefix carving for filesystem metadata extraction
	1. Introduction
	2. Related work
	2.1. Metadata carving
	2.2. Related methods of data retrieval

	3. Methodology
	3.1. Prefix-based potential timestamp carving algorithm
	3.2. Generic Metadata Time Carving and the filesystem specific parsers
	3.3. Experimental methodology
	3.4. Precision-recall location-based data recovery evaluation
	3.5. Specifics of NTFS experiments
	3.6. Specifics of Ext4 experiments
	3.7. Computer specifications

	4. Results
	4.1. Small NTFS image
	4.2. Ext4 Samsung S8 image
	4.3. Large NTFS image

	5. Discussion
	5.1. Analysis: small NTFS image
	5.2. Analysis: Ext4 Samsung S8 image
	5.3. Analysis: large NTFS image
	5.4. Limitations
	5.5. Revisiting research questions

	6. Conclusion and Further Work
	Acknowledgement
	Appendix A. Prefix-Based potential timestamp carving algorithm
	References

