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Abstract

Maritime transportation is indispensable to the world economy as it dominates over
95 % of the trade volume, so stakeholders have been striving to promote maritime
transportation efficiency and sailing security. Benefitted from the technical progress
of advanced guidance, navigation, and control techniques, industrial digitalization, and
artificial intelligence, the concept of maritime autonomous surface ships (MASS) has
emerged. However, according to the regulatory scoping exercise by the International
Maritime Organization, several critical phases with different degrees of autonomy are
prerequisites to achieving full ship autonomy. In these phases, human practitioners
participate the navigation operations loop at various levels in terms of intervention and
operating venues, which means human navigators will stay in the loop until the final
phase - fully autonomous ships - comes. Though, as professionals, human navigators have
recorded numerous safe sailings and accumulated rich experience on the ship bridge, the
major cause of most marine accidents is still attributed to human factors. In this regard,
the research on human-in-the-loop (HITL) navigational operations will have impact on
not only the enhancement of marine traffic safety, especially in the period when human
navigators still play the dominant roles on the ship bridge; but also on the development
of MASS, as humans contribute both expert knowledge and faulty cases onboard and in
complex marine traffic systems as the input of the ship intelligence.

The study of synthesis of HITL navigational operations is thus motivated and pro-
posed to address the human-related issues towards the development of MASS by integra-
tion of maximizing expertise knowledge, monitoring on-bridge operations, summarizing
human navigational logics and modeling the mechanism, and providing practical de-
cision support tools. In establishing such a synthesis study framework, experimental
facilities are based on different maritime ship-bridge simulators, while techniques in-
volved in the route map can be categorized into three groups in terms of the aim of
utilization: on-bridge monitoring & data collection (e.g., sensor fusion, computer vision,
and motion/gesture/eye-movement tracking), analysis and learning of operational be-
haviors (e.g., statistics, pattern recognition, and expert system), and online surveillance
& decision support (e.g., situation awareness, risk management, and collision avoidance
algorithms). The experimental platforms incorporate the techniques in the route map
and then become the rudiment of intelligent ship bridges on MASS.

This dissertation explores the synthesis of HITL navigational operations towards
MASS, especially in the experimental design & implementation and HITL applications.
The techniques in the route map are adapted and applied in different scenarios based
on various platforms. Three case studies are conducted to demonstrate how the synthe-
sis study framework can be carried out to comprehend HITL navigational operations.
The first relates to expertise-knowledge-aided path routing to increase sailing safety; the
second conceptualizes navigating patterns analysis and illustrates a built-on decision
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support system for collision avoidance; the third discusses the navigational visual atten-
tion and improves the measurement solution. The case studies validate the applicability
of the synthesis study framework.

Keywords: maritime autonomass surface ships (MASS), human-in-the-loop (HITL),
behavioral analysis, decision support, navigating patterns, and visual attention.
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1
Introduction

The maritime industry has been experiencing technological revolutions from the time
of birth. Recently, conforming to the progress of informatics and communication tech-
nologies, the maritime industrial conventions are being reshaped from human-centered
navigation to a unmanned transportation network. As staying in the transition period,
there are many challenges to be solved to achieve the full ship autonomy, while before
the fully autonomous ships are deployed, human navigators will continue to perform
dominantly in the maritime traffic and contribute to the development of the maritime
autonomous surface ships (MASS). This dissertation mainly focuses on how to estab-
lish a synthesis study framework for human-in-the-loop (HITL) navigational operations
towards MASS to address the questions about the interaction between human and semi-
intelligent ships.

1.1 Background and motivation

Maritime traffic has been playing one of the most essential roles in many aspects of the
human society over the past hundreds of years, while the demand on seaborne-transport
trades has been increasing drastically over the decades. According to United Nations’
figures, the total seaborne trade volume booms 1 283% from 800 million metric tons in
1955 to 11 071 million metric tons in 2019, and contributes 86% to 2020’s year-round
world trade [1][2]. By contrast to the thriving market of the maritime transport, a 3%
shortage gap of seafarers exists and continues expanding which is predicted to reach an
extremum until 2026 [3]. In another survey by the Norwegian Shipowners’ Association,
nearly 80% interviewees agree ICT (information & communication technologies) and
dataprocessing to be the most important competency in next ten years, while 40%
think this competency is difficult to obtain; seafaring experience is the second important
competency with 66% supporters, while 64% regard it as the most difficult competency to
obtain [4]. The above figures indicate that a solution is imperative to accommodate the
heavy expenditure and shortage of human labour in the increasing maritime transport
market. As the development of technologies in the scope of the marine cybernetics
and artificial intelligence, the promotion of the ship-autonomy level is deemed to be a
promising option. At the same time, when the development of MASS undergoes, human
navigators keep their dominant roles in the navigation loop on the ship bridge. In this
regard, it is essential to conduct research on HITL navigational operations to relentlessly
improve sailing performance in terms of safety and efficiency.

Switching the perspective to the onboard sailing practice, human-factor-induced
errors are dominant in marine accidents and perils. According to different statistics,
about 60% to 96% marine accidents are attributed to human-factor-induced errors [5][6].
However, this attribution trends to decline in recent years [7]. This trend is evident in the
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European Union that human errorneous actions result in 67% of the accidents between
2011 to 2014; while this figure decreases to 54% in statistics between 2014 to 2019. While
as the proportion of human errorneous attributed accidents decreases, it is interesting to
notice that the human errorneous type of shore management (by contrast to shipboard
operations) gradually increases from 17.6% to 24.2%. It implies that the duties and
roles of coastal management group (shore-based control center) and onboard crew are in
transition [8][9]. These data provide further support that research on HITL navigational
operations is in urgent need of implementation to confront the predicaments caused by
human factors.

On the other hand, as climate change and environment degradation become global
issues, prompt solutions are demanded on how to effectively increase the traffic efficiency
and reduce the emission [10]. The implementation of maritime autonomous ships is an
option by means of planning the fuel-optimal sailing route [11], actuating with the fuel-
efficient control commands [12][13], reducing the demand on human labors [14], and so
on.

In this context, the concept of the maritime autonomous surface ships (MASS)
gradually raises. The terminology (MASS) is registered with the International Standard
Organization (ISO) by the International Maritime Organization (IMO) in 2019. Before
the registration, there are several names for the type of ships which can function full
or partial autonomy, such as autonomous surface vehicles (ASV) and unmanned surface
vehicles (USV), and related research works have been conducted extensively for decades
in scopes of ship modelling, path planning, motion control, and etc [15][16][17][18][19].
Though the terminology of MASS appears late, it does not mean that the MASS will be
launched soon, as remotely controlled ships are expected to enter the water in 2020s, and
in different forecastings, the full MASS will come into being between 2035-2060 [20][21].

According to IMO, MASS are classified at four levels (I-IV) in terms of human
crew presence and ship intelligence degrees [22]. While except for the level MASS-IV
where ships are fully automated, the human crew are considered to be in the loop either
onboard or remotely, either as the decision-maker or monitor [23]. Autonomous ships
and intelligent maritime transportation are promising and desired, but not until issues
in technology, ethics, and sociology, are addressed [24][25].

Table 1.1: Specification of MASS I-IV

Level Crew Human Control Autonomy
I Onboard Onboard Decision support
II Onboard Remote Crew ready to takeover
III Off board Remote No onboard intervention
IV Off board No intervention Full

Table 1.1 illustrates the details of human presence, intervention, and ship autonomy
of MASS I-IV. It plans how MASS gradually gains independence from human crews level
by level, from onboard operation to remote control, from human-centered maneuvering
to human as monitor, etc. It can be summarized that, only MASS at final degree (IV)
of autonomy are without HITL; in other three precedent degrees, human navigators are
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always in the loop, more or less. There are essential factors to consider in each step of
progress to secure safety and add redundancy. When approaching to the development of
MASS, the traffic system is also a concern. Learning human navigators’ operational and
navigational logic and mechanisms and feeding the ship intelligence with the expertise
and knowledge may improve the coexistence of traffic when there are different types of
ship governance.

1.2 Research questions

The focus of this dissertation is concerned with HITL navigational operations for MASS.
This prompts the first question of this dissertation:

• RQ1: How is HITL issue accommodated in the development of MASS)?

In order to answer this question, it is necessary to clarify the definitions of HITL and
MASS by investigating the existed classification standard, practice recommendations,
and industrial practice from different stakeholders (including international/local orga-
nizations [22], classification societies [26][27], research institutes [28], and related com-
panies). Reviewing and summarizing the related documents and works will lead to the
next research question:

• RQ2: What are the challenges to the development of MASS?

Though there are different classification standards by different entities, generally issues
in discussion are human attendance (in terms of venues) and intervention levels. Cur-
rent research works and applications usually focus more on the development of ship
intelligence and autonomy instead of paying attention to human interactions. But if
directly stepping in the last phase, it is not rare to see a lot of designed algorithm and
methods overriding current navigational regulations and conventions. However, as there
are necessary phases before achieving the full autonomy, it is imperative to gradually in-
crease system autonomy and redanduncy to cooperate with human navigators and other
manned target ships in traffic. This requirement leads to the next research question:

• RQ3: Why is the research on HITL navigation important to the devel-
opment of MASS?

As three out of four MASS levels keep the human crew in the loop to different extents,
this suggests that HITL maritime research should still be a core issue for the development
of MASS [29][30]. In another respect, though human-factor-related failures are dominant
in statistics, human navigators are still the most eligible players. They are well-educated
and trained professionals, and they have recorded countless safe-sailing hours. Therefore,
taking advantage of their occupational and expertise knowledge is also beneficial to the
development of MASS [31]. From the whole maritime transportation environment, a
transition period is to be expected where manned, semi-autonomous, fully-automated
ships may encounter each other in the traffic, and the unpredictability and difficulty of
intercommunication between human and ship intelligence, and in this time being, human
navigators shall continue perform their competence and provide their expertise onboard.
This leads to the following research question:
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• RQ4: How can human navigators’ operational data be collected and
represented?

The development of the artificial intelligence and sensor technology enable us to access
to human data through multiple channels such as brain waves (electroencephalogram)
[32], eye movement [33], gestures [34], body movement [35], and so on [36]. With the
help of the sensors, we have the chance to know how human navigators respond to the
situations, especially in critical scenes such as collision risks and avoidance which is
one of the most concerning tasks in maritime operations [37]. Furthermore, benefitted
from the progress in machine learning techniques, novel intelligent sensing approaches
can be developed such as camera-based visual attention tracking and head orientation
estimation.

In addition to the human physical and psychological data, sailing data (e.g. onboard
log data) are also capable to reflect navigational performance as log data often contain
the key information (such as human commands, the ship motion and response, and the
environmental conditions) that can be utilized to build a model that can demonstrate
the whole sailing procedure explicitly [38]. As the modern ships and simulators are made
digitalized nowadays, access to ship data is made easier.

For representing data, expertise interpretation with is a way as professionals may
category and label data according to conventions and their practical experience in the
domain. This leads to the following research question:

• RQ5: How can above expertise knowledge and experience benefit the
development of MASS?

There have been researchers utilizing the automatic identification system (AIS) data
for autonomous navigation [39][40], using the on-board data to monitor the status of
the ship health [41][42], and trying to find the human expertise’s navigation mechanism
from their behavior [43]. Interpreted and modeled data can reflect the mechanism of
how humans operate their vessels systematically. In return, the established mechanism
can help develop ship intelligence in terms of path planning and routing, intelligent on-
board surveillance, on-board decisions support, and etc. This leads to the final research
question:

• RQ6: How does existed experimental platforms support above issues?

There are substantial experimental resources and platforms at NTNU such as re-
search vessel R/V Gunnerus and different types of maritime simulators, they are illus-
trated in the following chapter. Both real ships and simulators can be used to collect
massive experimental data, while taking the research resource efficiency into consider-
ation, real ship data are usually used for qualitative study and question identification
at the beginning of a project and verification and demonstration at the end. Simula-
tors, benefitted from its low cost and feasibility, are preferred to be used to gather data
for quantitative study. In practice, using realistic simulator cabins to collect human-
centered maneuvering data for training and research purposes has been popular [44][43].
Simulator-based data have been used to analyze risk level and human performance in
various scenarios [45].
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1.3 Scope of work

1.3.1 Research objectives

In seeking to answer the above research questions, this dissertation seeks to obtain the
following research objectives (ROs):

√
RO1: Constructing the experimental design and implementation scheme
based on different ship-bridge facilities for a synthesis study framework
of HITL navigational operations for MASS.

Human operators will continue to perform dominant roles onboard for the next decades.
A cyber-physical human framework should be conceived for the experiment design and
implementation in the maritime domain: based on multiple experimental platforms with
data exchange ports, apply monitoring on and learning from navigators’ behaviors, and
adapt the ship-bridge system to provide decision support in terms of guidance, navi-
gation, and control. These platforms are utilized for data collection, scenario design,
testbeds to demonstrate and verify new techniques and algorithm. Paper VII explores
this issue in details, while all papers collected in this dissertation are within the interest
of RO1. RO1 is then decomposed into the following research objectives:

√
RO2: Exploring the method for monitoring and collecting human navi-
gators operational behaviors’ data onboard.

As mentioned in RQ4, as the development of sensor technology and algorithm progress,
there are multiple ways collecting onboard navigators’ data. Nevertheless, some of them
have reached the state-of-the-art, while in some domains, the methods are yet to be
optimized, such as visual attention monitoring. As the conventional method is using
eye-tracker glasses which may bring infeasibility to the navigators and be sensitive to the
environment conditions, other non-intrusive and economic solutions are to be expected.
This issue is discussed in paper V.

√
RO3: Establishing a set of approaches to interpret and analyze the
navigational behaviors, strategies, and logic.

Collected ship motion and navigational operation data are plain, necessary pre-processing
and interpretation are needed to make them practical to the guidance and navigation.
Data from different domains, including ship motion and machinery data which reflect
navigators’ orders and human visual attention during navigation on the ship bridge, are
interpreted to make them comprehensible. This issue is discussed in papers I, III, IV,
VI,

√
RO4: Proposing on-board decision support tools to promote HITL nav-
igational performance and sailing safety.

The efforts made in collecting and interpreting onboard navigational data are towards
the aim of development of MASS at HITL levels. There are different ways of providing
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onboard decision support and derived systems. In terms of the mechanisms, the decision
support may be either rule-based and algorithm-based. Besides the development of novel
decision support systems, it is of more importance to accommodate the developed system
effectively cooperated with the navigators, which means in addition to the algorithm
development, there are more concerning problems such as human-machine interactions
ethics. This issue is discussed in papers II and III.

1.3.2 Interconnection between the research objectives

RO1: HITL experimental design and implementation

RO2: monitor & data 
collection

RO4: HITL on-board 
decision support

RO3: data interpretation 
and analysis

Paper II

Paper III

Paper IV

Paper I

Paper V

Paper VI

Paper VII

Case study I: expertise-
knowledge aided path 

routing

Case study II: NPA

Case study III: Visual-
attention analysis and 

measurement

Experiment Framework

Figure 1.1: Interconnection of published paper in the dissertation.

The interconnection between the research objectives and the papers published are
shown in Fig. 1.1. All three case studies are presented in the scope of RO1, as each of
them provides an approach to adapt data collected from different experimental platforms
and are processed to facilitate different utilizations. Paper VII, which systemmatically
introduces the experimental design and implementation on different platforms and forms
the basic methodoloy of this dissertation, is associated with RO1. Paper I collected R/V
Gunnerus ship motion and onboard machinery data from a commuter route in Trondheim
and interpret them with human expertise so it locates in RO3; paper II is a continuation
of paper I in terms of path routing optimization to enhance sailing safety and it is sorted
into solving RO3 as it provides onboard support.

Case study II contains paper III, which collects data from maritime simulators and
analyze them with conceptualized definitions of navigating patterns (NP). The con-
cluded NPs are used to build a collision avoidance (CA) system. This complete work is
concerned with both RO3 and RO4.

Papers IV and VI use eye-tracker glasses to record navigators eye movement data
and provide approaches to evaluate navigators attention in navigational critical oper-
ations and verify the effectiveness of additional supporting functions on a screen, and
are deemed to be concerning with RO3. Paper V comes up with a camera-based deep
learning method to estimate navigators’ visual attention on the ship bridge, and lies in
the scope of RO2.
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1.4 Contributions of the dissertation

The major contributions of this dissertation are as follows, which is related the research
objective above:

• Present the fundamental framework to use different maritime experimental facilities
to conduct HITL navigational operation study. It is related to all four ROs.

• Propose a method to interpret log data by expertise knowledge and use the derived
conclusion to optimize path routing in terms of sailing safety. It is related to RO3
and RO4.

• Conceptualize the framework of navigating patterns analysis and use the summa-
rized NPs to provide onboard support for navigators. It is related to RO3 and
RO4.

• Implement visual attention analysis to assess navigators visual activity in critical
operations and verify the usability of displayed decision support functions. A non-
intrusive and economic visual attention tracking and estimation solution is also
developed to promote the experimental feasibility. It is related RO2 and RO3.

1.5 Structure of the dissertation

This introductory chapter presented the background for the dissertation research, estab-
lishing its main goals and defining the scope of work. The rest of this dissertation unfolds
as follows. Chapter 2 introduces the experimental and methodological foundation of the
synthesis study framework of HITL navigational operations towards MASS. Chapter 3
presents the first case study, which focuses on the expertise-knowledge aided path rout-
ing. This chapter is based on paper I and II. Chapter 4 relates to papers III, and discuss
navigating patterns analysis and its application for onboard decision support. Chapter 5
presents visual-attention analysis and how the measurement is improved instrumentally.
This chapter is based on papers IV, V, and VI. Chapter 6 concludes the dissertation,
summarizes the contributions, and indicates the directions for future works.
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2
Methodology

Learning and accumulating knowledge from the practice is a tradition in this industry;
the precedent practitioners have recorded and concreted their experience as routines,
regulations, practice recommendations, etc. Their efforts have significantly improved
marine traffic safety and efficiency [46]. While keeping this conventional way, the emerg-
ing technologies, including machine learning, data mining, and sensor fusion, enable us
to objectively model human navigators’ behavior with data-based methods. Moreover,
simulators designed in accordance with the onboard ship-bridge environment and fa-
cilitated with actual navigational operations’ functionalities expand the flexibility and
accessibility of experiment design and implementation process [47] [48].

With the substantial experiment facilities, research in the scope of HITL onboard
operations is designed and implemented. The wearable electroencephalography (EEG)
equipment is used to record the navigators’ brain active level to detect the signals of
fatigue and assess the fatigue levels [49] [50] [51]. The navigators wear the wearable
eye tracker to trace their eye movement to reflect their visual interests and transition
between different areas of interest (AOIs), and it has been used in operational analy-
sis, including crane lifting [43][33], high-speed cruising [52], and ship maneuvering for
collision avoidance [53]. Both massive simulator-generated and real-ship data help to
conclude and summarize the navigators’ generality and similarity in navigational oper-
ations wu [54] [55]. In addition to the traditional analytical method and expert inter-
pretation, algorithms, for example, support vector machine (SVM), are also utilized to
realize classification and recognition tasks in HITL maritime domain [56].

In this chapter, the following contents are covered:

• the details of the laboratory environment of maritime simulators and research ves-
sels owned by NTNU (as shown in Fig. 2.2);

• how they facilitate experimental design and implementation for HITL navigational
operations modeling;

• how they are used to support the onboard decision and contribute to the develop-
ment of MASS.

Fig. 2.1 illustrates the framework of synthesis research of HITL navigational opera-
tions. Based on a variety of experimental platforms, the research can be categorized in
two ways: human-centered intelligent ship bridge system, which focuses on the naviga-
tors’ physical and psychological activities while on assignment; and onboard expertise
data study, which leverages maneuvering and operational data to learn and summarize
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occupational expertise and experience. Both ways lead to similar goals: promoting on-
board navigational performance and providing decision support tools. All components
in the loop illustrated in Fig. 2.1 contextualize the idea of synthesis study of HITL in
maritime navigation. The framework of methodology introduced in this chapter presents
the work in paper VII.

Research platform

Scale maritime simulators

Research vessels

Human-centered intelligent ship bridge system

Muti-sensor 
monitoring & 
fusion

Behavioral 
analysis & 
modeling

Online 
surveillance & 
support

Onboard expertise data-port interface

Onboard expertise data 
generation 

(ship motion, inertia sensor, 
machinery, traffic info, etc)

Data processing 
(regression, 
classification, 
clustering, etc)

Synthesis research of HITL 
navigational operations for MASS

Performance 
optimization

Figure 2.1: Illustration of synthesis research of HITL navigational operations towards MASS.

2.1 Platforms

The simulators in Fig. 2.2a and 2.2b are from Kongsbergr, and the former is for research
aim while the latter is for navigator training; The ship-bridge system with fixed seat
shown in Fig. 2.2c is often seen on compact vessels and catamarans, and this simulator
projects the outside scene on a dome screen which provides an immersive navigational
experience; Fig. 2.2d is the research vessel R/V Gunnerus (equipped with a bow thruster
for the positioning operation at 200 kW and two main azimuth thrusters, each with the
propulsion at 500 kW [57]) which can perform most maneuvering operations and tasks
(for example, dynamic positioning, zig-zag path following).

2.1.1 Preliminary Study

The preliminary study applies to the problems which are never being focused on and
concerned by existing research and to questions that have been well studied to some
extent. However, some hypotheses are made to dig deeper. Such a study exists whenever
a new research project is launched. To verify that the problem is concerned does exist
and is worth a look into, a preliminary study should be carried out on a small scale in
both experimental design and the number of participants. This procedure may increase
the experimental efficiency and avoid unnecessary failures. The platforms in Fig. 2.2a
and 2.2c are often used for preliminary study.
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K-sim Instructor

ECDIS

ARPA Conning Panel Outside scene

(a) Compact simulator from Kongsbergr for pre-
liminary research design.

BinocularsARPA 1 Conning Panel

Outside scene

ECDIS ARPA 2

(b) Kongsbergr maritime training simulator.

Conning Panel

Outside scene

ECS

(c) Immersive ship-bridge simulator powered by
Offshore Simulator Centre AS (OSC).

ARPA Conning Panel

Outside scene

ECDIS 1 ECDIS 2

(d) NTNU’s research vessel R/V Gunnerus and
its ship bridge.

Figure 2.2: Experimental platforms. (Terminology: Electronic Chart Display and Information
System (ECDIS); Electronic Chart Systems (ECS)); Automatic Radar Plotting Aids(ARPA).)
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Main differences between simulators in Fig. 2.2a and 2.2b are:

• K-sim Instructor which coordinates the experiment implementation, is in the con-
trol (briefing) room for the standard maritime training simulator in Fig. 2.2b. At
the same time, the K-sim Instructor computer is put just aside from the ship-bridge
system in Fig. 2.2a. This configuration makes the tune-test process much easier
and more efficient for researchers to design and modify the scenario;

• as the name suggests, the simulator in Fig. 2.2a is compact. It is only facilitated
with basic functions (no binoculars screen, back view, and only one ARPA system).

Thus the compact simulator is not capable of being used as a training platform but
is eligible for research aim.

The simulator in Fig. 2.2c is flexible for research because, different from Kongsbergr
products, it is not yet commercialized. NTNU, as the stakeholder sharing its intelligence
property to the hardware, has the opportunity to shape the simulator and its capability
in accordance with exact demands in NTNU’s scope.

Sometimes the research vessel is also used for preliminary study. Though the sim-
ulator platforms are made verisimilar to reality, two issues made preliminary studies on
real vessels non-substitutable:

• the experimental scenarios on the simulators are set up by known physical laws
and based on accepted deduced principles/inference. However, there are unknown
natural mechanisms that result in the difference between the simulator setup and
what it simulates; this applies especially to new problems;

• as simulator setup can be made arbitrarily sometimes the experimental designer
might deviate too far from the actual situations, and it makes the efforts meaning-
less and costs in time and money in vain.

In this regard, a research vessel is the best platform to discover any uncharted prob-
lems and phenomena. It also applies to humans in a laboratory simulator environment,
and actual open-sea conditions are still different after all.

2.1.2 Quantitative Study

A quantitative study takes place when the problem is preliminarily verified as worth a
comprehensive study. Simulators in Fig. 2.2b are used for quantitative study the most.
There are five standard maritime training simulators at NTNU i Ålesund, four of them
are the same as in Fig. 2.2b and another one is equipped with a dome screen wall and
made on an even larger scale (equal to a regular ferry). The experimental setup and
scenario are designed and defined in the central control room by K-sim Instructor, and
all participants are operating in the same environments. These facilities are initially
for maritime navigators’ training, but this process can be deemed as a typical way of
massive data collection. In this group of simulators, two types of experiments are carried
out:

• individual scenario: all participants are operating individually, and their own ships
are invisible to each other, which means they are carrying the same task out in
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Table 2.1: Usage of different platforms in Fig. 2.2

Platform Preliminary Quantitative Testbed
Fig. 2.2a X - -
Fig. 2.2b - X X
Fig. 2.2c X X X
Fig. 2.2d X X X

different copies. Using this group of simulators to implement such an experiment
drastically saves time and expense as five sets of data can be collected simultane-
ously from five simulators, and simulator-based experiments do not burn even a
drop of diesel.

• cooperative scenario: since there are five simulators, their own ships can be con-
figured as visible to each other to become target ships to other navigators. Taking
advantage of this, experimental scenarios which need cooperation and intercom-
munication (in a traffic system) can also be implemented.

Simulator in Fig. 2.2c is also used for the quantitative study. Since the standard
maritime training simulators’ schedules are tightly occupied almost every day for teach-
ing, training, and research tasks, and this non-standard self-developed platform cannot
be used for teaching and training aims, it has plenty of time intervals for research tasks.

2.1.3 Testbed for Verification and Demonstration

As new decision support systems and other automatic functions are developed, they need
to be tested, verified, and demonstrated. Platforms in Fig. 2.2b, 2.2c have been used as
testbeds for these aims. These two platforms have different data exchange interfaces:

• data output: both platforms are capable of exporting real-time data, including ship
maneuvering figures, geographical information, and environmental loads. These
data export enables us to develop a decision support system for navigational per-
formance enhancement;

• data input: only platform in Fig. 2.2c has the potential to integrate algorithms in
the loop. This feature outperforms K-sim platforms, making the test of automated
ship guidance, navigation, and control possible.

The research vessel is definitely also a good testbed, and there have been relevant
research items carried out based on data onboard Gunnerus [58] [59]. Moreover, it may
have a similar problem as the K-sim platform in Fig. 2.2b, where besides the technical
problem of data input, onboard safety and ethical issues might be concerned.

The usage of each platform is summarized as in Table 2.1.

2.2 Design & Implementation

As shown in Fig. 2.3, there are mainly three groups of experimenters:
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Preliminary design

Scene validation & modification

Massive data collection

Analysis

Demonstration

Researchers
(faculty/PhD candidates/
supervised students)

Consultants
(captain/
senior lecturers)

Participants
(skilled navigators/
Navigation students)

Figure 2.3: Participation in experiment design process.

• researchers: who are in charge of and responsible for the whole experiment through-
out all procedures, including design, execution, analysis, and demonstration;

• consultants: who provide expertise and occupational suggestions to improve the
experiment process;

• participants: who carry out the specific experiment tasks on experimental plat-
forms.

Besides, there are five steps in general when designing and implementing an exper-
iment:

• preliminary design: the researchers come up with novel research ideas and prob-
lems to explore. They should do a preliminary literature review to concrete the
problem based on the current state-of-the-art and propose a preliminary route map
to improve the method or explore the problem;

• validation & modification: as the problem to be explored might deviate from the
researchers’ exact interests and professions, consultants are invited to provide ex-
pertise. In HITL maritime domain, captains and university lecturers often play
these roles by discussion and workshop to improve the experimental design to trim
the irrational parts and make it more practical;

• massive implementation: researchers are responsible for organizing massive data
collection and supervising the experiment implementation (to secure the process
according to the plan), but the participants who carry out the tasks are usually
skilled navigators and navigation students (in the bachelor’s program);

• analysis: researchers are in charge of the data interpretation and analysis and de-
veloping new decision support/automatic functions and algorithms; the supervisor
in this step can also perform supervision over students;

• verification & demonstration: as researchers develop the new functions and al-
gorithms, they are obligated to organize new experimental sessions to verify the
results and performance of refined products; as the main difference between consul-
tants and participants is their experience, in the demonstration phase, practitioners
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Human Navigator Multi-sensor monitoring

EEG

Eye movement & attention 
tracking

Hand gesture recognition

Motion tracking

Behaviors modeling

Navigational 
logic/habit/status …

Surveillance

Decision support

Figure 2.4: Intelligent ship-bridge system for research on HITL navigational operations.

with different levels of experience are invited to provide their opinions for any fur-
ther improvement.

2.3 Utilization

Fig. 2.4 depicts the workflow of an intelligent ship-bridge system in general. The
following parts are included in this framework:

• executives: the human navigators are also the bearers to be monitored and recorded
by the multi-sensor system;

• multi-sensor monitoring: more channels of sensors are expected in the monitoring
systems to provide cross-explain to the navigators’ behaviors; However, the more
sensors equipped, the more influence might be caused on the navigators’ perfor-
mance. In this context, non-intrusive solutions are preferable. If not available, the
number of sensor channels should be controlled; the applied examples are shown
in Fig. 2.5;

• behavior modeling: data interpretation and data mining by machine learning al-
gorithms to explore the potential navigational mechanisms;

• derived functions: some passive functions without intervention to the control loop
are developed based on the modeled navigational behaviors.

The workflow of behavior modeling and derived functions parts are shown in Fig.
2.6.

2.3.1 Monitoring & Data Collection

Tools for monitoring can be sorted as intrusive and non-intrusive. The solutions to visual
attention tracking are various: wearable eye trackers are still popular and versatile in
conducting various research items (as in Fig. 2.5c, wearable eye tracker is capable of
presenting precise visually transitting path with glance durations), and has been widely
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a. Head orientation (based 
on a single front camera)

b. Motion tracking (based on a single 
back camera)

c. Gaze path by a wearable eye tracker 

Figure 2.5: Applied multi-sensor monitoring scenes.

used in research in maritime domain: to monitor the fatigue status and mental workload
[60][61], test the usability of virtual reality equipment and simulators [62], improve the
nautical training [63]. As for specific maritime operations, studies have been conducted
on high-speed cruising [64] and heavy crane lifting [43].

Non-intrusive camera-based (RGB/RGBD) algorithms are developed based on col-
lected videos, as shown in Fig. 2.5 and in this dissertation. In this application, by
feeding a deep learning neural network with images with facial and head orientational
information, the trained algorithm can tell the navigator’s visual attention zones (the
navigator is looking at the green zone in Fig. 2.5a). Related works in the computer
vision field are beneficial to the development of such solution in the maritime domain as
many attempts and efforts have been put on using cameras to realize visual attention
recognition. The approaches to achieve it can be sorted into mainly two classes: eye-gaze
tracking [65] and head orientation detection [66], and the two ways are often combined
in recent mainstream. Lee et al. carried out an interesting study by using eye gaze as
a remote controller to a TV, and 2D geometric transform was used to achieve eye gaze
mapping in the process [67]; Cheung et al. developed a low-cost solution by applying a
simulated 3D head model based on a web camera to achieve eye gaze tracking [68]; Chi
et al. designed a global calibration method on a multi-camera structure, which solved
the problem when calibration reference was not within camera’s range [69]; Gudi et al.
applied the convolutional neural network (CNN) algorithm to evaluate different types of
inputs, including the whole face, two eyes, and single eye based on a webcam as well [70];
Dai et al. integrated binocular features and spatial attention mechanism into the CNN
algorithm [71]. The fore-mentioned algorithms and applications indicate that current
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Figure 2.6: Analysis procedures.

computer vision techniques can perform precise and robust visual attention recognition
with low-cost solutions.

In the implementation in this dissertation, the configuration of cameras for tracking
and tracing varies. Both single- and dual-camera systems are configured in the experi-
ment environments. The head orientation detection is dealt with a single camera system,
and visual attention and motion of unseating navigators are studied with a dual-camera
system. The more data in this stage, the easier the analysis process can be in the
following step.

2.3.2 Operations Analysis and Learning

To deal with collected data, there are two different ways. One is data interpretation based
on expertise, and another is the algorithm-based data-driven method (as illustrated in
Fig. 2.6). The two methods have their virtues:

• Expertise interpretation: first, expertise may bring a qualitative assessment of
the data and rationalize the logic of navigational operations; it is not handful for
them to discover existed problems; a step further, by using analytical methods to
calculate correlations between different variables, and conducting interviews with
experimenters, expertise interpretation may give an intuitionistic and comprehen-
sible result. This may prove a boon to navigational training and teaching.

• Data-driven algorithms: mature machine learning algorithms such as SVM and
neural network/deep learning have a satisfying performance in classification and
pattern recognition tasks. They are qualified to track navigators’ visual attention,
body motion, and gestures. It is a good choice for developing automatic functions
and automated products, but as the calculation is done within a black box, the
processing is difficult to clarify and explain. However, this also triggers the research
interest in explainable artificial intelligence.

2.3.3 Online Surveillance & Decision Support

Fig. 2.5a shows how the deep learning algorithm classifies visual attention zones, and Fig.
2.5b illustrates how the trained convolutional-neural-network algorithm traces the nav-
igator’s motion (body movement). These algorithms are developed for passive surveil-
lance, but it has the potential to detect anomalies that may occur and give warnings
and signals to avoid failures.
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CHAPTER 2. METHODOLOGY

Based on the established surveillance network, analysis of navigational operations
and behaviors, different types of decision support tools and systems can be developed
for specific navigational tasks.

2.4 Chapter summary

This chapter introduces the fundamentals of HITL experiments. Different experimental
platforms and their capability in different experimental scenarios in this dissertation are
also briefly introduced. Two ways of data analysis, including expertise interpretation
and algorithm-based analysis, are briefly discussed.

Platform in Fig. 2.1a 
(Compact simulator)

Platform in Fig. 2.1b
(Standard simulator)

Platform in Fig. 2.1d
(R/V Gunnerus)

Platform in Fig. 2.1c
(Immersive simulator)

Ch.4 (Case study II): 
collision risk index, 
rule-based collision 
avoidance support.

Ch. 5 (Case study III): usability validation; 
eye-tracking metrics statistical analysis; 

image-processing; deep learning.

Ch. 3 (Case study I): 
expertise input, SVM, 

MPC.

Expertise 
interpretation

Algorithm-
based 

analysis and 
application

Figure 2.7: Interconnection of experimental platforms and analysis methods in this dissertation.

Fig. 2.7 shows how experimental platforms and corresponding data analysis meth-
ods are contained in different chapters. Chapter 3 presents expertise-knowledge-aided
path routing, which uses R/V Gunnerus as the platform for the data source. Chap-
ter 4 illustrates navigating patterns analysis, which uses standard maritime simulators;
Chapter 5 demonstrates the visual attention analysis, which mainly uses the immersive
simulator dome as the platform but also uses the compact simulator for preliminary
scenario design (which is not discussed in detail). The three case studies form the main
part of this dissertation, with the main goal to implement the synthesis study of HITL
navigational operations.
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3
Case study: Expertise-knowledge aided path routing

One of the major concerns that may hamper the development of autonomous ships is
its uncertainty when facing unexpected situations. The capacity to handle cases of com-
plicated conditions of current autonomous ships, especially in the case of danger and
emergency, is highly contentious. In this respect, human expertise is believed to outper-
form ship intelligence as humans are able to address unexpected situations synthetically
based on their knowledge and experience [72] [73] [74]. On the other hand, it is suggested
that ship intelligence should be applied in some simple cases first [75]. A commuter ferry
that executes a regular route between two unaltered ports can be seen as a pragmatic
example as it simplifies the autonomous navigation process to a large extent.

Figure 3.1: Collection of 21 commuter sailings.

This chapter presents research results from papers I and II. The data used in this
paper are collected from a commuting route located in Trondheim, Norway. The com-
muting route connects the Trondhjem Biological Station and the berthing point at the
estuary of the Nidelva river. The commuting route is executed by NTNU’s research
vessel R/V Gunnerus (as the source of onboard log data input). The log data record the
information of 21 sailings from September 2016 to August 2017 as shown in Fig. 3.1.
The presented works are expected to answer following questions:

• how onboard log data can be interpreted in guidance of expertise?

• how the expertise knowledge may support the navigation in loop?
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CHAPTER 3. CASE STUDY: EXPERTISE-KNOWLEDGE AIDED PATH ROUTING

3.1 Methodology

The general framework is shown as Fig. 3.2 and the commuting route is conceptually
marked as the white curve in the map. The workflow includes several key steps: data
collection and preprocessing, the design of SVM and its implementation on log data,
interpretation of the classification result and its visualization, and at last, a quantitative
evaluation function is proposed to assess the level of sailing safety of the ferry based on
the classification result of the accumulated historical log data.

Figure 3.2: Framework of the proposed decision support system for sailing status recognition
and safety evaluation (map resource: the Norwegian Mapping Authority).

3.1.1 Data collection and pre-processing

According to the navigation and maneuvering habits of captains, featured items are
selected from collected data. They are listed and sorted as in Table 3.1. All eight fea-
tured items in Table 3.1 are designated as variables for training the scenario recognition
algorithm.

3.1.2 Definition for scenarios by human expertise

According to human expertise, a commuting sailing route can be divided into different
scenarios in terms of maneuvering commands and the vessel response which can be
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Table 3.1: Classification of log data

Ship behaviors Machinery actuators
heading (◦) bow thruster feedback (%)
speed (knots) portboard-rpm feedback (%)

pitch (◦) starboard-rpm feedback (%)
portboard-Azi feedback (◦)
starboard-Azi feedback (◦)

reflected by collected log data. In this customized commuting route, five scenarios are
separated from the whole sailing, which are described in detail as following:

• Departing (DPT): the ferry sets off from the port and keeps accelerating;

• Cruising (CRS): the ferry usually reaches the rated RPM and travels on the route
smoothly;

• Turning (TRN): the ferry adjusts its course towards another direction. Deceleration
and angular speed increase in this phase;

• Converging (CVG): the ferry moves in the narrow channel at a speed lower than
the rated, and it finally gets parallel to the coastline with a short distance;

• Docking (DCK): the ferry is with no surge speed but only sway, by using the bow
thruster to push itself into the berthing point.

The rough illustration of the separation is shown in the map in Fig. 3.2, as five
scenarios are marked with ovals in different colors.

3.1.3 Empirical criteria based on human expertise

Based on the collected data and according to human expertise, empirical criteria are
given as listed in Table 3.2. Basically, since there are several items describing one
scenario simultaneously, by which the accuracy has been guaranteed to determine the
ferry’s status at the moment, the value range of the data is constrained softly to avoid
misjudging caused by the common fluctuation of the ship status during a sailing (even
in a steady state).

Hereupon, the original database is constructed as Eq. 3.1, where X represents for
a database consisted by n items described by 8 variables mentioned in Table 3.1.

log data = {X;L}, X ∈ Rn×8, L ∈ Rn×1

L = {l1, l2, ..., ln}
∀li ∈ L, li ∈ {departing, cruising, turning, converging, docking}

(3.1)

3.1.4 Separability precheck

Before designing the algorithm for the classifier, it is proper to have a preview of the
data to check whether the database is separable. The database can be examined by
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Table 3.2: empirical criteria for the commuting route decomposition

DPT CRS TRN CVG DCK
Ship behaviors
heading (ψ, ◦) ∆ψ

∆t < −0.3 |∆ψ∆t | < 0.1 ∆ψ
∆t > 0.5 |∆ψ∆t | < 0.1 –

grounding speed
(v, knot)

6 6 > 10 ∆v
∆t < −0.02 [4, 6] 6 2

pitch (◦) – abs∗ > 0.5 – abs > 0 –
Machinery actuators
bow thruster (%) abs > 0.1 – – – abs > 10
port-rpm (%) abs < 60 abs > 75 abs ∈

[40, 60]
abs ∈
[40, 60]

abs ∈ [0, 30]

stbd-rpm (%) abs < 60 abs > 75 abs ∈
[40, 60]

abs ∈
[40, 60]

abs ∈ [0, 30]

port-azi (◦) abs > 0.5 abs < 1 abs > 0.5 abs < 2 > 50
stbd-azi (◦) abs > 0.5 abs < 1 abs > 0.5 abs < 2 abs < 1

* abs is the abbreviation of absolute value.

t-distributed stochastic neighbor embedding (t-SNE) algorithm [76]. By the algorithm,
the high-dimensional database is converted into a visualizable low-dimensional database:

X = {x1, x2, ..., xn} ∈ Rn×8 t-SNE−−−→ Y = {y1, y2, ..., yn} ∈ Rn×2 (3.2)

The t-SNE result is shown as in Fig. 3.3. From the visualized result, it can be
clearly found that there is a trend for each scenario to get clustered, hence it can be
inferred that the sailing route can be separated into different scenarios based on the
selected data.

Figure 3.3: Visualization of dimension reduction result by t-SNE.

Since the database is with a dimensionality at 8, which can be considered as a high
dimensional database. From the precheck of t-SNE dimension reduction and the pair
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plots, It is putatively assumed scenarios in the sailing route described by log data are
approximate linear separable.

3.1.5 Support vector machine

SVM algorithm is chosen to build a classifier to solve the classification problem. The
SVM algorithm is trained with collected log data according to eight features in Table
3.1. In practice, the multiclass classification problem is converted into several binary
classification problems [77]. Then, there will be a specific classifier CLFk for scenario k,
and 5 in total for all scenarios. Taking scenario k as an example, for the data points whose
original labels are the same as scenario k, they will be given new labels 1; otherwise,
they will be given new labels -1. Then a new vector L′ will be created by updated labels,
and the vector will substitute the original label L. This process can be expressed as:

CLFk :

{
l
′
i = 1, if li = j;

l
′
i = −1, otherwise.

(3.3)

For each binary classifier, there is a specific optimal hyperplane:

OHk : WkX + bk = 0, (3.4)

where Wk is the normal vector to the hyperplane. The optimal hyperplane lies
between two parallel hyperplanes:

OH+
k : WkX + bk = 1;

OH−k : WkX + bk = −1;
(3.5)

Points on and above hyperplane OH+
k will be assigned label 1, and finally turns into

label k. And points on and below hyperplane OH−k will be assigned label -1, and finally
will not be classified into the dataset of scenario k.

3.1.6 Likelihood map and safety level calculation

As log data accumulated along the sailings run times by times, the database for training
the SVM classifier is getting larger. Besides the 8 featured data items, the geographical
information is also recorded. Therefore, another database can be constructed based on
the geographical information of those data points which are correctly classified by the
classifier. And data points can be drawn on a geographical map reflecting the site of
each scenario in the sailing route. Then the map can be converted into a heat map in
terms of the density of the geographical distribution of data points. At this step, kernel
density estimation method helps to calculate the estimated density at each datum point
xj:

p̂(xj) =
1

mh

m∑

i=1

K(
xj − xi
h

), (3.6)

in the expression, h(h > 0) is a smoothing parameter; K is the kernel for scaling,
and Gaussian kernel is chosen in this paper to estimate the density. Then a 2D heat
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map illustrating the density distribution can be drawn accordingly. Since the database
is updated after new sailing data is appended, the numerical value of the density will
become larger and larger, which implies that raw density value itself does not contain
standard useful information to help the human to make decision. Therefore, to avoid it
from being nothing but fancy, the density scale is normalized into [0, 1]:

p̂N(xj) =
p̂(xj)−min(p̂)

max(p̂)−min(p̂)
, (3.7)

The normalized density 1 refers to the densest site on the sailing route, while 0 refers
to the sparsest site. The ferry is believed to be safer when travelling on a site where the
normalized density is higher, while the captain should be vigilant when the ferry goes
into the low normalized density site. Meanwhile, heatmaps can be converted to contours
by an interpolation operation based on the normalized density distribution. Cubic spline
interpolation method can be applied to realize this conversion. Then the map is gridded,
and the density is calculated by the interpolation. By connecting grid points with
the same density value, the contour map is obtained to demonstrate a continuously
approximation of the density distribution at the vicinity area of the scenario. The
distribution function SL(y) can be obtained by ploy-fitting the statistics of the safety
level, where y represents the position.

3.1.7 Verification how the safety level benefits in MPC

The concept of safety level is integrated into the cost function to implement the MPC
(model predictive control). The vessel kinematics can be represented as Eq. 3.8. The
right-hand side of the kinetics equation τ is the input force which equals [fufvtr]

′, where
H equals [1 0 0; 0 1 0], and y equals [NE]′.

η̇ = R(ψ)ν,

MRB ν̇ +MAν̇r + CRB(ν)ν + CA(νr)νr +D(νr)νr = τ,

y = Hη.

(3.8)

The original cost function is defined as:

J(t) = (y(t+ 1)− yref )>Q(y(t+ 1)− yref ) + ∆u(t+ 1)>R∆u(t+ 1). (3.9)

The optimization goal is to minimize the cost function J , the positive term (1 −
SL(y)) is used to conform the implication of safety level and the optimization target.
The cost function is thus augmented as:

J∗(t) = (y(t+1)−yref )>Q(y(t+1)−yref )+∆u(t+1)>R∆u(t+1)+W (1−SL(y(t+1))).
(3.10)

Eq. 3.9 and 3.10 give the cost function at one time step prediction, while MPC is
predicting over a length of time horizon Np to determine the best control candidate, so
the overall cost prediction at a certain time step can be represented as Eq. 3.11.
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J∗(t) =

t+Np∑

k=t+1

J∗(k). (3.11)

3.1.8 Assessing the safety level by the contour map

At the last step in the proposed method, a concept of safety levels is built upon the
normalized density distribution described by contour maps. Safety levels (SL) are di-
rectly represented by the normalized density of the geographical location. Hereupon,
two dimensionless items can be further calculated to reflect different aims of evaluation:
receding safety level (RSL) expressed as Eq. 3.12 and mean safety level (MSL) as Eq.
3.13.

RSL(t) =

∑N(t)
N(t−∆T ) pi

∆T
, (3.12)

MSL(t) =

∑N(t)
i=0 pi
N(t)

(3.13)

N is the number of accumulated log data points until the moment t. ∆T is the
number of sampled data points in the receding horizon, while the receding horizon is
chosen manually.

RSL calculates the mean safety level in a fixed time scale. The receding horizon for
calculation is updated after each sampling. MSL calculates the mean safety level from
the start to current moment t. MSL may reflect the overall safety level, hence it can be
used to evaluate the performance of the human maneuvering in a sailing.

3.2 Results

The proposed method is implemented to the database built upon collected 16 sailings’
log data. In this section, results are presented in three parts: classification results from
the SVM classifier; the derived likelihood heat maps and normalized numerical contour
maps, and online testing.

3.2.1 Classification result

The classifier is built once the first sailing’s log data is added to the SVM training
database. As the database evolves when new log data come into, the classifier will be
updated therewith. The demonstration of the evolution result irrespective of scenarios
is shown as Table 3.3.

From Table 3.3, it clearly shows that the precision of the classification result is
trending to increase as the classifier evolves. As the database being larger, the precision
of the classifier keeps growing. At last, the mean value of the classification precision has
been developed over 96 % based on whole collected sailings’ data.

After illustrating the result in a macroscope, Fig. 3.4 shows the classification pre-
cision with respect to different scenarios, and it comprehensively reveals how different
scenarios correlate pairwise. In general, the performance of the classifier is improved
after several evolutions.
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Table 3.3: Illustration of the classifier evolution process.

Testset Classifier
4 9 14

5 0.9031 - -
10 0.9723 0.9815 -
15 0.9675 0.9578 0.9610
Mean 0.9370 0.9593 0.9684

DPT CRS TRN CVG DCK
Predicted…label

0.9 0 0.049 0.029 0.017

0 1 0.0031 0 0

0 0 0.87 0.13 0

0 0 0 1 0

0.0029 0 0 0.02 0.98
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0.84 0.0013 0.073 0.0049 0.08

0.0005 0.99 0.0062 0 0

0.011 0.0037 0.92 0.066 0

0.05 0 0.015 0.91 0.022

0.014 0 0 0.021 0.97

DPT CRS TRN CVG DCK
Predicted…label

0.84 0 0.081 0.0095 0.073

0.0011 0.99 0.0089 0 0

0.0012 0.0082 0.89 0.1 0

0 0 0.0056 0.99 0.0022

0 0 0 0.02 0.98

Figure 3.4: Confusion matrix reflecting precision by scenarios (left: CLF No.4; middle: CLF
No. 9; right: CLF No. 14).

3.2.2 Likelihood heat maps and derived contours

Heat maps based on the accumulated database can be drawn, as shown in Fig. 3.5.
The first five subplots show the heatmap of each scenario, while the last subplot at the
right-bottom shows an overview of the complete route.

The heat maps can help the reader, e.g. captains, have a direct sense of the most
travelled sites. And this feature is prominent especially in scenarios cruising, turning,
and converging. However, since both the departing and docking are undergoing in a very
concentrated site, the density distribution appears to be somewhat diffusion. However,
it is thought to be in a tolerant extent, and can be ameliorated as the database being
larger.

Based on heat maps shown in Fig. 3.5, a set of contours with respect to each
scenario can be drawn as Fig. 3.6. Different from the heat maps which provide an intu-
itive illustration and sense of the most travelled area, the set of contours quantitatively
demonstrates how the density distributes on a geographical map. Since contours are
obtained by an interpolation operation, its fidelity and creditability are dependent to
the quantity of data. In general, the overall trend in each scenario has been shown. For
example, in the contour of cruising scenario, the closer to the center of the heat area,
the larger the normalized density is.
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Figure 3.5: Heat maps of different scenarios.

Figure 3.6: Heat maps of different scenarios.
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3.2.3 Verification in MPC loop

In this part, the path following simulation results will be shown and assessed. Fig. 3.7
shows the path of reference (Sailing No. 6), the original MPC and the improved MPC
with safety level (MPC-SL). The safety level assessment is given as Table 3.4. The
prediction horizon Np is set as 10.

Figure 3.7: Path following simulation by MPC

Table 3.4: Verification of safety level in loop.

Scenario Safety level
Ref. MPC MPC-SL

DPT 0.4203 0.4574 0.5449
CRS 0.4259 0.5135 0.6743
TRN 0.6851 0.6304 0.6999
CVG 0.5065 0.5938 0.5059
DCK 0.6161 0.4157 0.4158
Overall 0.5199 0.4574 0.5681

From the safety level statistics in Table 3.4, it can be implicitly summarized that
the safety level has a strong impact on the control. After the safety level term is added
into the cost function, the overall safety level increases significantly, and so as in scenario
DPT, CRS and TRN.

When the vessel travels in a narrow water tunnel in CVG, where the gradient of the
safety level can be very sharp, the safety level suffers a decline but in moderate level.
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When the vessel is in the final bow thrusting stage, where the safety level heatmap almost
concentrates to a point, it is difficult for the vessel to be strictly in the circle of high
safety so that the safety level in DCK is low. In general, the safety level term improves
the control in terms of safety noticeably, which suggests that the proposed methodology
attains a good performance and further study can be conducted in practice.

3.2.4 Safety level assessment

Sailing status recognition:

Fig. 3.8 shows the result of the online sailing status recognition testing. The dashed
lines divide the timeline into segments remarking real periods of each scenario, while the
mark ‘+’ represents the recognized status at each sampling step.
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Figure 3.8: Online testing of the sailing status recognition.

Figure 3.9: Calculated MSL and RSL (Diluted lines are the real time safe level).
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Safety level evaluation:

According to the defined terms, RSL and MSL, and the obtained contour maps, safety
level evaluation is implemented accordingly.

The two items, MSL and RSL, reflecting the safety level from different aspects, are
calculated and shown as in Fig. 3.9. Since RSL calculates the average safety level at a
fixed length of the past period, there is a delay to reflect the change of the safety level.
This delay provides RSL the ability to reduce the effect at the start and the end during
the transition time between different scenarios, which makes RSL to describe the sailing
safety in a moderate way. Afterall, MSL can provide an overall evaluation of the sailing
safety.

3.3 Chapter summary

This chapter introduces a method to utilize log data from a ferry to establish an onboard
safety awareness system in order to help human to make decisions. Collected data are
classified by an SVM algorithm and its results are presented as figures of heat maps
and contours by statistical method. Both sets of figures together may assist to evaluate
the sailing safety level. By defining new items reflecting safety levels with respect to
geographical locations, the result can be used to optimize the control. MPC is designed
with the safety level term integrated to verify its significance. The main idea of this
chapter is to synthetically use both human expertise and objective log data to make
rudiment work for autonomous navigation.
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4
Case study: Navigating patterns analysis and application

In this chapter, the navigating patterns (NP) of navigators when sailing in a narrow strait
with intense marine traffic coming from the starboard side of the own ship (OS). This
scenario is drawn from traffic environment commonly-seen in some busy straits, such
as the Dover strait. In these congested waters, there are specific separation schemes to
secure the safety and efficiency of the traffic. When a ship is crossing such strait, usually
the target ships (TSs) are coming from either the starboard or the portboard side at a
time. Navigators’ NPs reflected by the recorded maneuvering data and route evaluation
in such traffic environment are summarized . Then, the concluded patterns’ features are
used to provide on-board guidance in order to support navigators.

The following issues are addressed in this chapter:

• a data-based navigating pattern analysis method is conceived for the crossing sce-
nario in the CA task, and three NPs, specifically conservative, moderate and ag-
gressive modes, are concluded and interpreted;

• a guidance support system is developed based on the navigating patterns analysis
(NPA) to assist navigators in making decisions on sailing routes and CA strategies
selection.

This chapter presents research results from paper III.

4.1 Methodology

4.1.1 Experimental environment

Data used in this section are collected from a Kongsberg K-Simr maritime simulator,
as shown in Fig. 4.1 - architecture of K-sim cockpit. The simulator system can provide
encoded GPS (only OS) and AIS (both OS and TS) data in standard forms starting
with $GP and $AIVD, and the decoded data selected for the research goal in this section
include:

• From GPS: course, speed over ground, latitude and longitude (in WGS84), north
and east (in UTM32N);

• From AIS: MMSI (Maritime Mobile Service Identity, a series of nine digits which
is used to uniquely identify the ship), latitude and longitude (in WGS84), course.

4.1.2 Related metrics

DCPA (distance at the closest point of approach) is one of the most important collision
risk index and used as the main criterion to assess NPs. The DCPA is a synthesis index
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Figure 4.1: Workflow of this case study.

which is capable to reflect the motion properties of both OS and TS [78]. It is illustrated
in Fig. 4.2, and calculated as:

DCPA = D · sin(θR − αTS), (4.1)

where D is the distance between OS and TS, θR is the course of the relative velocity
between OS and TS, and αTS is azimuth angle of TS to the center of OS (irrespective
of the course of OS).

Considering the collected data, Eq. 4.1 can be re-wrote as:

D

DCPA
OS
TS

N

TS R

OSV

TSV

RV

),( OS OSOS x y

),( TS TSTS x y

Figure 4.2: Illustration of DCPA.
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DCPA = D · sin(θR − αTS)

= D · (sinθR · cosαTS − cosθR · sinαTS)

= D · ( VR,x||VR||
· Dy

D
− VR,y
||VR||

· Dx

D
)

=
VR,x
||VR||

·Dy −
VR,y
||VR||

·Dx,

(4.2)

where VR is the relative velocity between OS and TS. The subscript x, y represent the
projected component on the east and north directions.

Since the speed over ground (VOS, VTS for OS and TS respectively) and course angle
(θOS, θTS for OS and TS respectively) are collected, VR(VR,x, VR,y) can be calculated as:

VR,x = VTS,x − VOS,x
= VTSsinθTS − VOSsinθOS,

(4.3)

VR,y = VTS,y − VOS,y
= VTScosθTS − VOScosθOS.

(4.4)

Based on the positions of OS and TS, D(Dx, Dy) can be calculated as:

Dx = xTS − xOS,
Dy = yTS − yOS.

(4.5)

Taking Eq. 4.3 - 4.5 into Eq. 4.2, the DCPA can then be obtained.
In addition to DCPA, the passing distance is calculated for the further interpreta-

tion. The passing distance is briefly illustrated as in Fig. 4.3. Different from DCPA
which serves as a capable index for collision prediction by exploiting the kinetics infor-
mation of the OS and TS, the conceptual of the passing distance can be leveraged as
an index candidate for the result-oriented assessment. The passing distance, specifically
for the crossing collision avoidance situation, is defined as:

Passing Distance: when two vessels are in a crossing collision avoidance
close-encounter situation, the distance when one vessel first pass the velocity
vector line of the other from the bow is defined as the passing distance.

According to the definition, passing distance is illustrated as in Fig. 4.3. It is
imperative to figure out the moment tpassing when one vessel first pass the other. The
offset from OS to the velocity vector of TS, eTSOS, can be calculated as:

ŷOS = xOS · cotθTS + (yTS − xTS · cotθTS),

eTSOS = |(ŷOS − yOS) · cosθTS|;
(4.6)
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Figure 4.3: Illustration the calculation of the passing distance at tpassing.

while the offset from TS to the velocity vector of OS, eOSTS , can be calculated as:

ŷTS = xTS · cotθOS + (yOS − xOS · cotθOS),

eOSTS = |(ŷTS − yTS) · cosθOS|.
(4.7)

Since xOS and xTS can be regarded as functions of time t, the passing moment tpassing
can be calculated as:

min tpassing, s.t. eTSOS < εOS or eOSTS < εTS, (4.8)

where εOS and εTS are small values and shall be determine according to the vessels’
velocities and the sampling frequencies in practice. And the distance between the OS
and TS at tpassing is denoted as passing distance dpassing.

4.2 Experiment I: Navigating patterns analysis

In this experiment, problems of how NPs can be conceptualized by collectable data are
dealt. In general, attempts are made to seek the navigators’ maneuvering logic and laws
that are concealed in the data, and conclude different NPs. The significance of this
experiment lies in two aspects: improving on-board decision support for the HITL-level
MASS from an expertise perspective, and developing ship intelligence by rationalizing
the use of data, for instance how they should be labelled.

4.2.1 Experiment setup and implementation

The water channel between two ports Solavågen and Festøya in Ålesund area of Norway
is selected as the basis for the simulation scene. The TSs in the simulation are named
as TS1, TS2 and TS3, and all of them come from the starboard side of the OS. The
scenario construction is sketched in Fig. 4.4. Therefore, the simulator-based sailing task
for the OS can be regarded as a complete sailing task comprised by three sub-CA tasks
with different encounter details as shown in Table 4.1. The experiment implementation
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Figure 4.4: Scenario layout of the experimental CA sailing.

is carried out on K-simr simulators at NTNU (as in Fig. 2.2b) in Ålesund. 36 trial
sailings are collected in total, and the trials are labelled in the form ’F_R_B_’ (’_’ is a
digit), where F means the experiments take place in February, while the digit following F
represents the date; R is abbreviated for round, and the digit following R represents the
round number; and B is abbreviated for bridge, and the digit following B represents the
bridge serial number. For example, F4R2B2 means the trial takes places on February
4th, in round 2, and on the bridge No. 2.

Table 4.1: Ship information and experimental conditions setup

Property OS TS1 TS2 TS3
Basic information about ships
length (m) 88 133 165 170
beam (m) 13.8 19.4 27.1 27.5
Initial states
heading (◦) 312 245 245 240
latitude (◦) 62.3802 62.3882 62.3986 62.4031
longitude (◦) 6.3328 6.3357 6.3569 6.3443
speed (knots) 0 14 15 10

4.2.2 Pattern analysis

CA navigating schemes

In the 36 trials, navigators take 5 different CA navigating schemes when they managed
to complete the trial with multiple TSs. Passing from the bow of the TS is denoted as
B, while passing from the stern of the TS is denoted as S. Then the 5 schemes are S-B-B,
S-S-S, S-S-B, B-S-S, and B-B-B, and they appears in 19, 11, 3, 1, and 2 trials (out of 36
trials) respectively. Theoretically, there can be another three schemes, including B-B-S,
B-S-B, and S-B-S, but navigators do not select to complete the task in these schemes.
It is inferred that these schemes lead to odd paths that are neither efficient nor safe.
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Figure 4.5: Distribution of DCPA in terms of different navigating patterns.

Expert evaluation

The 36 trials, which includes 108 sub-CA tasks in total, are evaluated by experienced
navigators rather than the navigators themselves. Three different evaluation levels are
established to rate the CA performance. During evaluation, the three levels labelled
with green, yellow, and red colors, were used to mark the CA performance, as no specific
terminology was yet created. According to navigators, the different evaluation levels can
be intuitively described as:

• green means the OS is operated to pass the TS at an ample distance; if passing
from the bow, this distance enables the stand-on vessel to actively take action to
avoid CA in some emergencies (such as OS engine failure). Meanwhile, passing in
this level usually requires sparse operations on the OS control;

• yellow means the OS is operated to pass the TS at a sufficient distance with a
certain degree of critical operations.

• red means the OS is operated to pass the TS at a tight distance, and the navigator
needs to maneuver the vessel meticulously to safely pass the TS. If passing from
the bow, sometimes such pattern may provoke the operators of the TS.

The evaluation results are listed in Table 4.2. It shows that a navigator may change
his navigating strategies (the evaluation colors) in different sub-tasks.

In accordance with the expertise evaluation results, and their assessment principles,
the color schemes are renamed with the terminology of the navigating patterns: the
green, yellow, and red colors stand for conservative, moderate, and aggressive modes
respectively.

DCPA features

As the terminology of navigating patterns, including conservative, moderate, and aggres-
sive, are proposed, the mapping between the patterns and the metrics are consequently
investigate (DCPA and passing distance).

Fig. 4.5 depicts the DCPA distribution in terms of different navigating patterns
when passing from the stern and the bow separately.
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Table 4.2: Expert evaluation on each CA and its info

Trial No. TS1 TS2 TS3
darrival
OS (NM)Evl. DCPA (NM) dpassing (NM) Evl. DCPA (NM) dpassing (NM) Evl. DCPA (NM) dpassing (NM)

S-B-B∗

1 F4R3B1 0.211 0.266 0.221 0.318 0.270 0.409 0.642
2 F4R3B2 0.181 0.235 0.251 0.396 0.403 0.612 0.583
3 F4R4B2 0.161 0.222 0.321 0.413 0.533 0.626 0.403
4 F5R1B4 0.175 0.252 0.265 0.367 0.529 0.619 0.352
5 F5R2B2 0.159 0.266 0.251 0.358 0.456 0.585 0.251
6 F5R3B2 0.149 0.256 0.341 0.441 0.536 0.638 0.346
7 F5R3B4 0.164 0.241 0.256 0.346 0.553 0.632 0.374
8 F5R4B2 0.151 0.250 0.331 0.411 0.513 0.634 0.298
9 F5R4B4 0.195 0.290 0.246 0.331 0.547 0.614 0.390
10 F4R4B1 0.174 0.224 0.245 0.356 0.379 0.520 0.528
11 F5R1B3 0.155 0.231 0.265 0.371 0.351 0.526 0.327
12 F5R2B1 0.183 0.231 0.206 0.281 0.249 0.352 0.568
13 F5R3B1 0.176 0.219 0.221 0.327 0.219 0.322 0.621
14 F5R4B3 0.131 0.201 0.222 0.343 0.349 0.459 0.231
15 F4R4B3 0.237 0.280 0.179 0.226 0.308 0.400 0.673
16 F4R2B1 0.202 0.252 0.161 0.258 0.221 0.316 0.624
17 F4R5B3 0.162 0.274 0.151 0.220 0.351 0.440 0.193
18 F4R5B4 0.112 0.181 0.201 0.340 0.321 0.428 0.173
19 F5R2B3 0.119 0.195 0.191 0.322 0.386 0.487 0.324

S-S-S
20 F4R2B2 0.290 0.329 0.290 0.795 0.290 1.165 0.618
21 F5R2B4 0.322 0.351 0.292 0.712 0.308 0.951 0.684
22 F5R3B3 0.282 0.340 0.342 0.823 0.208 1.110 0.473
23 F5R1B2 0.222 0.334 0.142 0.343 0.308 0.323 1.158
24 F4R5B2 0.192 0.290 0.172 0.346 0.278 0.556 0.839
25 F5R1B1 0.287 0.326 0.176 0.256 0.141 0.220 0.857
26 F4R3B4 0.292 0.355 0.150 0.263 0.171 0.296 0.743
27 F4R2B3 0.190 0.262 0.190 0.501 0.200 0.704 0.598
28 F5R4B1 0.237 0.300 0.099 0.168 0.118 0.231 0.737
29 F4R5B1 0.222 0.281 0.088 0.145 0.090 0.140 0.734
30 F4R3B3 0.202 0.277 0.080 0.158 0.091 0.181 0.730

S-S-B
31 F4R1B1 0.175 0.217 0.146 0.234 0.300 0.411 0.747
32 F4R1B4 0.070 0.125 0.111 0.172 0.428 0.519 0.623
33 F4R4B4 0.152 0.250 0.110 0.382 0.171 0.194 0.401

B-S-S
34 F4R2B4 0.180 0.220 0.040 0.044 0.152 0.313 1.038

B-B-B
35 F4R1B2 0.180 0.241 0.291 0.588 0.700 1.002 0.398
36 F4R1B3 0.120 0.185 0.301 0.502 0.650 0.920 0.310

∗ Note: S denotes for passing from the Stern of the TS;
B denotes for passing from the Bow of the TS.
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Table 4.3: Mean DCPA for CA with different TSs

Passing from TS1 TS2 TS3
Stern 0.191 0.161 0.197
Bow 0.160 0.242 0.405

∗The unit of values is nautical miles.
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Figure 4.6: Plot of dpassing/DCPA values. 5 invernals on x -axe are S-B-B, S-S-S, S-S-B, B-S-S,
and B-B-B. They are painted with distinguishable background colors.

From the distribution and the featured indexes, two facts can be found:

• The DCPA values selected by navigators to maneuver the OS at are distinctly
different between passing from the stern and from the bow, regardless of the navi-
gating patterns. From the collected data, the median of DCPA values for passing
from the bow are 1.84, 1.68, and 1.99 times as for passing from the stern in the
conservative, moderate, and aggressive pattern separately; the minimum are 1.92,
1.87, and 3.00 times; the maximum are 1.62, 1.91, and 2.03 times.

• The DCPA values between different patterns are clearly scattered on different
scales, i.e. the DCPA can reveal the navigating patterns to a certain extent.

Table 4.3 gives the mean DCPA values of passing from the stern/bow in each sub-
tasks. It shows that DCPA is less influenced by the CA-scenario difference in encounters
with different TSs when passing from the stern, while the mean DCPA inclines to be
larger when passing from the bow than from the stern. When passing from the stern,
navigators prefer keeping the vessel to the original sailing route (without TSs on the
route) as close as possible to achieve the least deviation and detour from the original
route. To realize it, navigators usually keep a moderate speed to the course direction
pointing to the stern of the TS.

Passing distance dpassing

Based on data in Table 4.2, dpassing/DCPA values are calculated accordingly, and results
are plotted as in Fig. 4.6. The x -axe is divided into 5 intervals in terms of navigating
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Figure 4.7: Distance to the destination at T=550 s. The dash lines in red and blue are trendlines
of datasets S-S-S and S-B-B.

schemes (see in Table 4.2). The most important fact concluded from Fig. 4.6 is that
all values are greater than 1, i.e. dpassing is always greater than the DCPA. From the
definition of dpassing, it is strict the distance when one ship passes the center line (ex-
tended) of another. dpassing/DCPA greater than 1 means the strict passing distance is
always larger than the principal metric DCPA. This guarantees the DCPA to be eligible
as the collision risk assessment candidate for designing a guidance support system in
the further step, which means as long as DCPA is selected in a proper way, dpassing is
secured.

Distance to the destination darrivalOS

In order to investigate the efficiency of different CA schemes and navigating patterns,
the distance to the destination at T = 550 s is calculated and given in Table 4.2, and
is depicted in Fig. 4.7. Considering the OS has finished the CA sub-tasks with all the
three TSs before T = 550 s in all trials, it is a proper time for efficiency assessment.

In terms of different CA scheme, most trial select S-B-B or S-S-S as the CA scheme,
and other types are so rarely selected that they are not discussed statistically in this
part. From the figure, it shows that the distance to the destination is farther in general
when the S-S-S scheme is taken. The S-S-S scheme means that the OS operated strictly
under the CA operational requirements according to the COLREGs, while the S-B-B
scheme means that the OS only follows the COLREGs in the first CA sub-task, and
violates the COLREGs in the rest two sub-tasks. It can be inferred that the violation
of the COLREGs is at the aim of increasing the sailing efficiency. This is a balanced
decision made by the navigator between the efficiency and the safety.

4.2.3 Summary

Based on the calculation of key metrics DCPA and the expertise evaluation upon scenario
reconstruction, three different navigating patterns in terms of the DCPA for passing the
TS from the stern and the bow separately. In addition to the DCPA, two additional
calculated figures, the passing distance and the distance to the destination (at T =
550 s), are used to comprehensively interpret navigators’ rationality in CA operations.
Finally the DCPA scales for the different patterns are concluded:
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Table 4.4: DCPA scales of different navigating patterns

Passing from Aggressive Moderate Conservative
Stern < 0.100 [0.100, 0.200) ≥ 0.200
Bow < 0.200 [0.200, 0.400) ≥ 0.400
∗The unit of values is nautical miles.
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Figure 4.8: Illustration of the GUI of the developed system.

4.3 Experiment II: guidance support system testing

In this section, a real-time on-board decision support system for human-centered navi-
gation based on the NPA results from Section 4.2 is developed.

4.3.1 Description of the guidance support system

The guidance support system is developed in order to support navigators in making
decisions in the CA scenario. Similar as the existing ECDIS, the system to be devel-
oped should be concise, informative, and functional. To be concise, it requires that no
irrelevant information are shown on the graphic user interface (GUI), which helps navi-
gators focus on key elements. To be informative, it requires the GUI to provide as much
information as possible in a wise manner. To be functional, it requires the system can
be easily understood for decision making and operation reacting at navigators’ favors.

Taking the calculated items as the basis, a GUI of the navigating support system is
developed and illustrated in Fig. 4.8.

Validation on simulator and statistical analysis

The developed system is validated in 4 trials in the same scenario as in Section 4.1 on
the simulator. Among these trials, S-B-B CA scheme is taken in 2 trials, S-S-S and
B-B-B CA scheme is taken in 1 trial for each.

The key features of the testing trials are listed in Table 4.5. Regarding the navigating
pattern selection, it can be found that with the developed system, in all four trials, the
OS is navigated to pass the TS in the moderate pattern in 15 sub-tasks, and 1 in the
conservative pattern (according to its DCPA, and the definition given in Section 4.2).
It is concluded the system has a positive performance in assisting the navigator to take
a moderate pattern to navigate the OS.
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Table 4.5: Test results with the developed system

Trial No. TS1 TS2 TS3
darrival
OSNP DCPA NP DCPA NP DCPA

S-B-B
MR1 0.142 0.285 0.297 0.517
MR2 0.133 0.237 0.281 0.345
S-S-S
MR3 0.239 0.146 0.117 0.574
B-B-B
MR4 0.203 0.328 0.394 0.494
∗The unit of values is nautical miles.

4.3.2 Summary

From the statistical analysis and the realization of an example, the developed system
has a positive influence on navigators’ navigating manners. It reduces the navigators’
brainwork on calculation and plan of the sailing route to some extent by providing some
indicating information.

4.4 Chapter summary

In this chapter, it is aimed to solve pragmatic industrial issues of maritime traffic that
are often found in narrow water channels. Navigating patterns of navigators are pro-
posed and conceptualized, and a scenario is designed that imitates the traffic situation
as an attempt to find the best navigation solution. Three navigating patterns, namely
aggressive, moderate, and conservative modes, were classified with the help of expertise
knowledge from experienced navigators. They are further quantified for collision avoid-
ance tasks in terms of the DCPA, an imperative collision risk index. Based on detected
navigating patterns, a guidance support system with GUI was developed for the one-
direction multi-ship collision avoidance scenario. The developed system was also tested
on the simulator.
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5
Case Study: Visual-attention analysis and measurement

Human visual system reflects navigators’ concentration [62], fatigue status [79], maneu-
vering interests [80], among other factors that are closely related to sailing safety and
efficiency. Conducting research on navigators’ visual attention and eye movement, there-
fore, enables us to understand the logic and mechanism of how navigational decisions
and commands are made. It also helps to learn sailing patterns and detect anomalies,
which in return provides practical information for both on-board navigators and remote
surveillance personnel.

In this chapter, the follwing issues are discussed:

• how can navigators’ response and action in critical operations reflected by visual-
attention analysis?

• how can advanced functions displayed on the ECS be validated by visual-attention
analysis?

• how can the method of visual-attention measurement be improved by and benefit-
ted from machine learning techniques?

The works presented in this chapter are from papers IV, V, and VI.

5.1 Eye-tracker-based visual attention analysis

5.1.1 Metrics

• area of interest (AOI) is a manually selected region within the tracked map, and re-
searchers can extract metrics to their need and interest specifically for this selected
region. The AOIs in this section are (as illustrated in Fig. 5.1):

– AOI-I: scene-projection wall;
– AOI-II: the ECS screen;
– AOI-III: the dashboard screen.

• Transition frequency f : the visual transition times between different AOIs in a
specific time spell. The transition frequency reveals the activity level of the eye
movement, i.e., a higher transition frequency implies that the navigator is fastly
transitting his/her visual attention between different AOIs to closely monitor in-
formation from multiple channels so that the navigator gets aware of the situation
in a big picture.

43



CHAPTER 5. CASE STUDY: VISUAL-ATTENTION ANALYSIS AND MEASUREMENT

AOI-I AOI-II AOI-III

Figure 5.1: Area of interest (AOI) on the simulator.

• Duration of fixation t: the gaze duration on a specific AOI. The length of the
duration of fixation reflects how much the navigator is interested in an AOI at a
specific gaze. The longer duration time means it takes longer time for the navigator
to obtain information from the AOI and calculate the situation upon it.

• Total duration time T : which is the total time the navigator keeps attention on
a specific AOI during a complete experimental session. It can be calculated as

TAOI−j =
n∑
i=1

ti, where n represents the total times that AOI-j is visually visited in

a complete experimental session.

5.1.2 Experimental Design

Experimental Site & Equipment Setup

The experiment is conducted on the immersive ship-bridge simulator (Fig. 2.2c). The
interface to the ship bridge simulator mainly contains three screens: the control panel,
the customized ECS which provides the map-based navigational information, and the
scene screen where the designed navigational scenario is displayed. These three screens
are shown as Fig. 5.1 and their AOIs are framed accordingly: AOI-I, II, and III locate
on respectively the scene screen, the ECDIS screen, and the control panel screen.

The eye tracker used in this experiment is Tobii Pro Glasses 2 which is a one-point
calibrated and 3D-eye-modelling eye tracker. More specifications can be found in the
official user’s manual [81].

Scenario Design

The designed scenario to be implemented on the simulator is illustrated as in Fig. 5.2.
According to the COLREGs [82], the OS shall give way to the TSs coming from its
starboard. Therefore, in the designed scenario, the OS shall give ways to TS1 - TS4,
however the regulation is not necessary to apply if the distance is far enough to guarantee
traffic security. Though TS5 which is from the OS’s portboard side yields to give way,
it still might attract the navigator’s (on the OS) attention to synthetically analyze the
traffic situation. It means the existence of TS5 increase the complexity of the situation
and requires more consideration and calculation from the navigator.
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Figure 5.2: Designed scenario on the map.

5.1.3 Visual attention in critical operations

Workflow

The workflow for analyzing navigators’ visual attention in critical operations is shown
in Fig. 5.3 and contains 4 steps.

Data collection and
synchronization

eyetracker

ship bridge simulator

Critical operations (COs)
determination

CO1 CO2

Time windows (TWs)
selection

TW1 TW2

timeline

Statistical analysis

Step 1:

Step 2:

Step 3:

Step 4:
Consistency verification
between COs and visual

attention data  

Figure 5.3: Illustration of the workflow to this research.

Step 1 - data collection and synchronization Experimental data are collected in
two ways: eye-tracker-based visual attention data collected from the participated nav-
igators to the experiment; ship motion data including position, speed, and course are
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exported and collected through the simulator system. Since the eye-tracker system is
independent of the ship-bridge simulator, data from the two portals need to be synchro-
nized according to their timestamps.

Step 2 - critical operations (CO) determination Critical operations (CO) are
mainly determined by the change rate of speed and course to the ship, while also referred
to the expertise (the participated navigators) recommendation.

Step 3 - time window (TW) selection Time windows (TW) are spells where the
visual attention and transition are deemed to be closely relevant to assess how they
relate to the COs. TVs can be prior, during, and post the COs.

Step 4 - statistical analysis After COs and TWs are settled, some features are
counted for further analysis and comparison between different TWs. Before explaining
the features, a commonly used concept - the area of interest (AOI) - should be clarified
in advance:

Result

Transition Times Fig. 5.4 shows the counted transition times of each AOI. There is
a clear trend that the visual transition is less active as all AOI are less frequently visited
after the COs take place. AOI-I is visited more often by the navigator than the other
two AOIs.

Figure 5.4: Transition times of each AOI and the total count.

Duration of Fixation The two data features, average and median values, are used to
evaluate the duration of fixation shown in Fig. 5.5. Both features significantly increase
in all AOIs. According to Section 5.1.3, the visual transition frequency declines, which
results in a great increment in the duration of fixation in every individual fixation.

Total Fixation Time Fig. 5.6 reveals that after the CO takes place, the fixation
time on AOI-I increases while incline to go down on AOI-II and III. Since the CO is
defined as critical operations, it can be inferred that after CO happens, the navigator
regards the ship in a safe state and is more relaxed than in the spell of prior-CO when
the navigator is demanded to be aware of the situation from the ECDIS (AOI-II) and
tightly from the control command (AOI-III), the navigator prefers to put more attention
on the vivid scene screen (AOI-I) to visually explore new situations to be handled.

In summary, the statistical results show clear discrimination between the prior-
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Figure 5.5: Features to the duration of fixation for each AOI.

Figure 5.6: Total fixation time for each AOI.

and post- CO spells. In the spell prior to CO, the navigator visual attention transit fast
between different AOIs to obtain information as completed as possible from every channel
to make a synthetically optimal solution to handle the collision avoidance. After the CO,
navigators prefer to keep visual outlook (AOI-I) than scrutinizing the information on
the smaller screens (AOI-II and III).

5.1.4 Usability evaluation of electronic chart system

The workflow of this work is illustrated as shown in Fig. 5.7.

Risk metric

In this study, a CRI is used as the risk metric, and it is calculated as:

CRI = WDIF ·DIF + Wdv · dv + Wrr · rr, (5.1)

where DIF, dv, and rr are denoted for the domain intersection factor, closest predicted
distance, and risk radius factor, while WDIF, Wdv, and Wrr represents the corresponding
empirical weight. The details of the CRI explanation can be found in [83].

Statistics on visual attention

In total, six sets of two-trial sailings are collected and the global statistical results are
given as follows.

In Table 5.1, three featured values’ scales, including median, maximum, and total
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Figure 5.7: Workflow of this work (Picture of Tobiipro glasses 2 is creditied to the official
website to Tobii Pro®).

Table 5.1: Statistics scales on duration of fixation features for complete sailings

Median (s) Maximum (s) Total (s)
AOI-I

wo. [4.3, 5.2] [18.0, 24.0] [278.0, 310.5]
w. [4.4, 4.9] [16.0, 23.5] [240.7, 280.4]

AOI-II
wo. [0.5, 1.1] [2.5, 5.5] [5.0, 20.0]
w. [2.8, 3.9] [7.5, 9.0] [98.5, 125.6]

AOI-III
wo. [3.7, 4.4] [8.5, 10.2] [225.8, 245.0]
w. [3.8, 4.2] [8.2, 12.0] [196.8, 254.5]
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duration, are listed. The statistics show a compliant result in line with the findings in the
individual case: when ECS is partly disabled, the navigator prefers to use visual sight
to percept the environment directly, instead of getting the imperfect information from
the partial ECS. The maximum in AOI-I can last very long, as the maximum usually
happens at the tail of the sailing where the evasion of TSs has been addressed, and a
distance remains to the destination; in this time spell, the navigator usually keeps the
target their attention on AOI-I to percept the situation visually. An essential reason
that may account for it is that not all types of ships are equipped with communication
and positioning devices, which means the eye vision is the only reliable detector in this
situation (for example, small fishing boats are usually not equipped with AIS, then it
requires the navigator to detect, locate, and calculate it only rely on their own eye
vision).

Table 5.2: Statistics on transition frequencies in complete sailings

No. I-II I-III II-III
wo. 3.5 10.4 -
w. 5.5 12.0 0.5

* times per minute

The values in Table 5.2 are the overall average from all collected sailings in their
classes. The overall trend corresponds to the individual case that the eye movement
activity level is higher when the ECS is fully enabled. The transition between AOI-I
and III is the most frequent, and direct transition between AOI-II and III rarely happens.

5.2 Camera-based deep learning model for visual attention measurement

The solution of eye-tracker glasses has brought the research forward, but the low feasi-
bility and high cost of equipment for recording visual attention have hindered collecting
data from navigators on either real ships or simulators. With the rapid development
of image technology and artificial intelligence (especially computer vision and pattern
recognition algorithms), the authors are committed to providing a low-cost and non-
intrusive visual attention recognition solution by developing an integrated system that
consists of a consumer sports camera and a CNN deep-learning algorithm. This frame-
work enables to trace navigators’ visual attention at a high frequency (up to 120 Hz) to
specific visual attention zones (VAZs).

5.2.1 Methodology & Setup

The workflow is divided into two parts: training flow which includes the database for-
mation and the details of the designed CNN-based deep-learning algorithm; and the
testing flow which includes how the trained model is applied in trial sailings and how
the performance is evaluated.

Training flow

Training flow forms the base of the developed solution (the upper in Fig. 5.8). The
first step is to invite navigators to perform random trials in the ship-bridge simulator,
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Simulator-based 
visual attention database

CNN deep-learning model

…

Multi-class classification task

VAZ-I VAZ-II VAZ-III

Online captured facial video Online VAZs recognition in multiple navigational
scenarios

Visually attending VAZ (highlighted)

Training flow:

Testing flow:

Wall-mounted 
camera

Data generation & collection: 

Outside Scene ECDIS Dashboard

Figure 5.8: Workflow of the CaBDeeL solution (images containing facial identity have been
blurred for demonstration in the figure according to the General Data Protection Regulation
(GDPR)).

from which the data build up the primary database. A wall-mounted sports camera is
used to capture navigators’ head and eye movements from their front view (as shown in
Fig. 5.8). In this step, the eye-tracker glasses are used only to sort the collected images
into different classes in the database. According to the configuration of the ship-bridge
simulator, as shown in the top-right embedded chart in Fig. 5.8, there are three VAZs
included which are corresponds to the AOIs in the former section.
The database continues to expand as trials accumulate. The second step is then to train
the deep-learning model with such a database. After the model is well-trained, it is able
to classify navigators’ visual attention into corresponding VAZs correctly.

Database formation We collected around 40 minutes of video to establish the pri-
mary database, and the video was recorded with a resolution of 1080P and at a rate
of 60 frames per second. Applying the eye-tracker glasses’ data as reference and after
necessary data pruning, the distribution of the collected data in each class is 50.0 %,
16.7 %, and 33.3 % for VAZ-I, II, and III, respectively.

Algorithm In this study, we developed a CNN deep-learning model whose structure is
shown in Fig. 5.9. In general, it contains three convolutional layers, three max-pooling
layers, one flatten layer, and two fully-connected layers.

Each convolutional layer in this network includes two operations:

50



CHAPTER 5. CASE STUDY: VISUAL-ATTENTION ANALYSIS AND MEASUREMENT

Raw RGB image
3@100x100

Feat. maps
3@100x100

Conv.
Kernel@5x5

Max pooling
Kernel@2x2

Feat. maps
64@96x96

Feat. maps
64@48x48

Conv.
Kernel@3x3

Max pooling
Kernel@2x2

Feat. maps
128@48x48

Feat. maps
128@24x24

Conv.
Kernel@3x3

Max pooling
Kernel@2x2

Feat. maps
64@24x24

Feat. maps
64@12x12

Flatten

1D vector
length@9216

1D vector
length@128

Dense
Fully-connected

1D vector
length@3

Dropout, Dense
Fully-connected

Activate:
Softmax

Figure 5.9: Structure of CNN-based deep-learning algorithm.

s = Conv(x)

s = ReLU(s)
(5.2)

where x is the input; Conv denotes the convolutional operation and its weight is to
be learned by training; ReLU is selected as the activation function to solve this image
classification problem [84]. In the three convolutional layers, their corresponding kernels
are selected with sizes of 5× 5, 3× 3, and 3× 3.

Max pooling layers (sub-sampling layers) are performed after each convolutional
layer to compress the image data, reduce the number of the weights and avoid over-
fitting. In this network, all max-pooling layers have the same kernel size at 2× 2. After
the convolutional and max-pooling layers, the multi-channel maps are flattened to a 1D
vector. Then two fully-connected layers follow up to weigh and rectify features. The
dropout operation in the last fully-connected layer also prevents over-fitting. Finally,
the features map is dense to a 1D vector with a length of 3; and as we are about to
solve a multi-class single-label problem, softmax is chosen as the activation function to
produce the probability of each class.

Testing flow

Testing flow is downstream when the model is trained and ready to use. Navigators
are invited to maneuver on the ship-bridge system again to generate videos for testing.
The videos are exported and decomposed into frames, and then the trained deep-learning
model is applied to the frames to recognize the VAZ of the navigator in the image. When
collecting data in this flow, navigators are also asked to wear the eye-tracker glasses, and
it is only to verify the results and performance of the deep-learning model.

5.2.2 Results & Discusion

The verification of the trained model in some trial sailings is illustrated and compared
with the eye-tracker glasses to demonstrate the significance of maritime application.

Training result

Table 5.3 compares the sampling rate of the eye-tracker glasses and the accuracy of
CaBDeeL. The glasses can precisely locate the gaze zone when eye movement is sampled
effectively. However, the sampling process can be unstable, especially when navigators
squint over the edge of the glasses frame. The glasses cannot properly predict the gaze
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Table 5.3: Comparison on sampling rate/accuracy

No. Duration (mm:ss) Sampling rate/accuracy
Eye-tracker glasses

Trial 1 16:44 93 %
Trial 2 5:47 90 %
Trial 3 12:02 84 %
Trial 4 5:16 83 %

CaBDeeL
Overall - 95 %

estimation if the eye movement fails to be sampled. Compared to the glasses, CaBDeeL
shows more robustness as long as the camera functions normally. Accuracy over 95 %
has already outperformed the eye-tracker glasses in this VAZs recognition task on the
ship-bridge simulator.

Test in two trials

Scenario setup Two different scenarios are designed (as shown in Fig. 5.10) to test the
performance of the trained model, including in heavy traffic conditions where collision
avoidance operations are needed as well as in light traffic conditions where the navigator
freely maneuvers the ship to cruise on the sea.

Classification accuracy The classification accuracy is plotted in Fig. 5.11. In Fig.
5.11(a), the prediction accuracy has overall satisfactory performance. It is the most
accurate when predicting the VAZ-III while the least accurate when predicting the VAZ-
I. The fact that VAZ-I is the scene screen with broad coverage within eyesight may
explain this. In Fig. 5.11(b), it is interesting to find that VAZ-II is never visually visited
by the navigator, which implies that the navigator prefers to use pure visual sight to
observe the environment on VAZ-I when the traffic situation is less demanding. In this
scenario, the prediction accuracy is even higher when training the model (95 %). A
reason to explain it is that since one of the VAZs is never paid attention to by the
navigator, it reduces the probability of incorrectly sorting the frame into that class.

In general, CaBDeeL (500 epochs) scores overall accuracy at 93.5 % and 95.9 %

OS

TS1

TS2

TS3

TS4

TS5

OS

(a) (b)

Figure 5.10: Two scenarios: (a) heavy traffic with collision avoidance demand; (b) cruise in
light traffic.
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Figure 5.11: Confusion matrices in the two scenarios of CaBDeeL (500 epochs).

Table 5.4: Sampling rate/accuracy comparison in the two scenarios

Scenario CaBDeeL-500 Eye-tracker
(a) 93.5 % 69.0 %
(b) 95.9 % 95.0 %

as in Table 5.4 for the Scenario (a) and b respectively. While the sampling rate of the
eye-tracker glasses meets some critical issues which result in a low rate in Scenario (a),
it can be caused by an improper way of wearing the glasses, failure in eyes location
calibration, swift eye sweeping, and extreme glare.

Visualization & Comparison Fig. 5.12 shows three subfigures when the navigator
looks at different VAZs. The bottom-left of each subfigure in Fig. 5.12 shows that
eye-tracker glasses can locate the gaze to an exact point, although they fail to track eye
movement in some cases. While CaBDeeL can recognize different VAZs, which means
an approximate area of visual attention. Fig. 5.12 proves the accuracy of the CaBDeeL
in the trial sailings in the designed scenarios.

(a) (b) (c)

Figure 5.12: Matts plot of (1) top-left: back-view (only used for demonstration, not relevant
to CaBDeeL); (2) top-right: front-view (input image to CaBDeeL; the facial image shown here
is blurred according to GDPR); (3) bottom-left: eye-tracker glasses marked video; (4) bottom-
right: CaBDeeL recognized VAZ is highlighted.
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Applicable function

Like the eye-tracker glasses, CaBDeeL is capable of realizing pragmatic visual attention
analysis by providing commonly used metrics, such as transition frequency, duration of
fixation, and the total duration time of fixation.

Transition frequency Fig. 5.13 depicts the transition frequency between every two
VAZs. In Scenario (a), the navigator transits their visual attention between VAZ-I and
III at the highest frequency, although it is hard to distinguish direct transits between
VAZ-II and III. To handle collision risks, the navigator needs to gather information from
the ECDIS, for example, the distance/time to the closet point of approach, speeds of TSs,
route prediction, and other traffic information, and they have to assess the situation from
the ECDIS and with direct observation of the situation and traffic. While In Scenario (b),
VAZ-II never captures any attention of the navigator, which implies that the navigator
tends to fully rely on his own observation when sailing in light traffic. Moreover, the total
transition frequencies in Scenario (a) and (b) are 15.9 and 13.6 transitions per minute.
This difference also demonstrates that attention activeness is lower when sailing under
ordinary circumstances than in complicated ones.

VAZ-II: ECDIS VAZ-III: dashboard

VAZ-I: scene (projected wall)

0

0

0

0

6.9

6.7

5.7

5.5

2.3

2.4
0.1

0.1

Figure 5.13: Transition frequency between every two VAZs in the two scenarios (transitions
per minute). The blue lines depicts for Scenario (a) and the yellow lines depicts for Scenario
(b).

Table 5.5: Duration of fixation features

No. Scale (s) Median (s) Mean (s)
Scenario (a): heavy traffic

VAZ-I [0.3, 13.8] 1.5 2.0
VAZ-II [0.2, 10.3] 1.8 2.6
VAZ-III [0.1, 8.5] 3.0 4.0

Scenario (b): light traffic
VAZ-I [0.4, 24.0] 4.0 5.6
VAZ-II - - -
VAZ-III [0.6, 8.4] 2.2 2.8

Duration of fixation Table 5.5 lists the features in the duration of fixation. In
Scenario (a), VAZ-III has the highest mean and median, i.e., more information on the
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dashboard to be read at each time. When the navigator receives such information, their
attention shifts away only shortly as it is dangerous to leave the situation unattended.
Both scenarios yield interesting results when comparing their features. In Scenario (b),
the maximum on VAZ-I reaches 24.0 seconds which is much higher than any maximums
in Scenarios (a). Light traffic requires fewer operations and consequently demands less
attention on the dashboard that provides maneuvering and machinery information. In
addition, the lower threshold of the scale in Scenario (b) is much higher, which also
proves that the navigator is less visually active.

Total duration proportion Fig. 5.14 plots the total duration time spent on each
VAZ in the two scenarios. In Scenario (a), according to Fig. 5.14(a), VAZ-III dominates
the navigator’s attention. From the proportion distribution, it can be inferred that
navigators are more sensitive to the machinery commands (such as propulsion rate,
speed, and rudder angle) to achieve fine maneuvering when sailing in a congested water
channel. Meanwhile, the navigator also needs to obtain information and receive decision
support from the ECDIS system to select a collision avoidance scheme. Different from
the heavy traffic situation, Fig. 5.14(b) reveals that the navigator places their visual
sight over the window to observe the environment and become aware of the situation.
This is in accordance with to the discovery in Section 5.2.2.

VAZ-II; 14.8 %

VAZ-III; 48.5 %

VAZ-I; 36.7 % VAZ-II; 0.0 %

VAZ-III; 41.4 %VAZ-I; 58.6 %

(a) (b)

Figure 5.14: Total duration proportion of each VAZ in the two scenarios.

Chapter summary

In this chapter, both traditional eye-tracker-glasses based visual attention analysis and
novel camera-based deep learning method for visual attention tracking are contained.
Visual attention directly reflects the traces of human willings and contains much infor-
mation in navigators’ physical and psychological status. Navigators’ visual attention in
critical operations (e.g., collision avoidance) is studied while the integrated decision sup-
port functions on specific screen is also verified of usability. To cope with the limitation
of the traditional eye-tracker glasses, a non-intrusive and lost cost camera-based visual
attention tracking method using machine learning algorithm is developed and tested as
well.
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6
Conclusion and Further Work

This dissertation has proposed the synthesis study of HITL navigational operations to-
wards MASS. Research findings in three case studies concerning expertise knowledge
and navigational behaviors are presented. All contributions in this dissertation target to
understand the human logic, attempt to concrete the knowledge, and apply the expertise
into the operational loop to promote HITL navigational safety. Most of the platforms,
equipment, and algorithms used in this dissertation are not new, but it lacks a system-
atic framework to integrate them together for the HITL navigational operations study.
The work illustrated in this dissertation is expected to provide a perspective and imple-
mentation on how a systematic research routine on human navigators can be established
as the basis for MASS.

6.1 Summary of contributions

Constructing the experimental design and implementation scheme based on different
ship-bridge facilities to provide decision support in terms of guidance, navigation, and
control, as stated in RO1, is the primary goal of this dissertation. To achieve it, devel-
oping a novel monitoring method for the navigators’ operational behaviors with higher
feasibility, versatility, and economic efficiency is the first to be concerned, as clarified in
RO2. After the monitoring and data collection, the following work is to handle the data
with different analysis methods, which is stated as a goal in RO3, and this is covered in
all three case studies. Case studies in chapters 3 and 4 interpret collected data by human
expertise and use the concluded results to provide onboard support; the case study in
chapter 5 analyzes the visual attention data statistically by eye-tracking metrics. As
data are addressed, and knowledge is obtained, the next is to propose onboard decision
support tools to promote HITL navigational performance as stated in RO4. Case stud-
ies in chapters 3 and 4 contain this topic. In chapter 3, novel terms of safety levels are
defined and verified with the MPC method in the path routing loop; in chapter 4, the
concluded NPs are used to develop a decision support system dealing with the collision
avoidance task.

The main contributions of this dissertation are summarized as follows:

• Present the fundamentals to use different experimental platforms, facilities, and
equipment to support HITL navigational operations research towards MASS. The
experimental implementation is demonstrated in three different case studies.

• Propose a new ship-bridge monitoring solution with higher usability to improve
the feasibility of navigational data collection.

• Propose a framework on how human expertise can be used to supervise the data
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interpretation and their usage in onboard decision support in terms of path opti-
mization and collision avoidance.

• Present a set of navigators’ visual attention interpretation methods to assess their
response in critical operations and usage of specific displays.

6.2 Summary of publications

The summary of publications is as follows:
Paper I presents a method to interpret the log data from a commuter ferry. The

proposed method aims to construct the mechanism of how human expertise steers a
ferry and then model the mechanism as the criterion to judge the status of the ship
during sailing. The model criteria can thus be used to support onboard decisions. As
the commuting route is considered a promising application for ship intelligence, the
method is implemented on a customized commuting route in Trondheim. In order to
establish the empirical criteria model, human experts’ advice is taken into account to
define different sailing scenarios in the commuting route. At last, the decomposition
result is demonstrated by statistical method to help better understand the mechanism
of operating a commuting ferry.

Paper II is a continuation of the work in paper I and introduces a framework for
how log data can be comprehensively used to provide onboard support and enhance
sailing route safety. The main idea of this paper is to synthetically use both human
expertise and objective log data to make rudiment work for autonomous navigation.

Paper III proposes and conceptualizes navigating patterns of navigators and designs
a scenario that imitates the traffic situation as an attempt to find the best navigation
solution. Through simulator-based experiments, we collected 36 trials’ data for analyz-
ing navigating patterns. Three navigating patterns, namely aggressive, moderate, and
conservative modes, were classified with the help of expertise knowledge from experi-
enced navigators. They are further quantified for collision avoidance tasks in terms of
the DCPA, an imperative collision risk index. Based on detected navigating patterns,
a guidance support system with GUI was developed for the one-direction multi-ship
collision avoidance scenario. The developed system was also tested on the simulator.

Paper IV suggests an approach by applying an eye-tracker-based visual attention
assessment to evaluate the performance of how navigators handle the collision avoidance
tasks in maritime traffic. The statistical results reveal that the visual activities change
between different patterns during the whole process of handling collision avoidance.

Paper V develops a camera-based deep-learning (CaBDeeL) solution that solves the
VAZs recognition problem in this letter. The developed framework attains excellent
results in achieving the goal. When CaBDeeL is applied to trial sailings, it scores
overall accuracy beyond 95 %. This solution outperforms the traditional visual attention
tracking method given its high robustness, low cost, and non-intrusive feasibility.

Paper VII introduces the experimental platforms to carry out HITL research in
the maritime navigation domain. The difference and applicable scenes to each plat-
form are discussed, and simulator and research vessel-based HITL experimental design
and implementation routines are consolidated by clarifying the roles of each involved
party of interests. This framework has brought systematic routines in conducting HITL
navigational operations research in various experimental environments.
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Paper VI implements an evaluation of the effectiveness of Electronic chart system
(ECS) maritime navigators by utilizing collision risk analysis and visual attention as-
sessment. Some interesting results from the eye-tracker glasses are presented, and some
particular behaviors are demonstrated with respect to professional domain knowledge
in nautical science. The content of the result and discussion is expected to enhance
comprehending navigators’ maritime operations and behavior, which can be used as the
fundamental knowledge for developing specific intelligent decision support for MASS at
HITL levels.

6.3 Future work

This dissertation has mainly focused on the synthesis study of HITL navigational op-
erations towards MASS. As this is a big topic that is related to every section of the
maritime navigation and transportation system, the works in this dissertation are made
to cover as comprehensive and systematic the range as possible. The below bullet points
provide suggestions for how the presented research may be extended.

• For the monitoring, the camera-based solution developed in this dissertation can
only handle the navigators operating at a fixed position. The solution shall be
improved to cope with different ship-bridge environments. An additional camera
sensor shall be added to the loop for image collection and position calibration.
Furthermore, visual attention is not the only object to be monitored for under-
standing navigators’ operations, but also body movement and gesture motion are
also of research interest and shall make the monitoring system more comprehensive.

• For the data collection, it is expected to collect more data in different scenarios,
including other CA situations, as well as other scenarios in ship maneuvering and
sailing, such as departing and docking. More data input is to better understand
the navigating logic of human navigators in the hope of shedding light on both the
development of MASS and human-machine interaction performance as the MASS
is still at the HITL level

• For the visual attention analysis, as a result, describe the visual attention with
respect to transition frequency and fixation duration in general; the details in each
AOI in terms of fixation points and distribution can be studied further to under-
stand the navigators’ logic more precisely. It is expected to develop a quantitative
empirical mathematical model as the evaluation leverage instead of human inter-
pretation.

• The decision support system developed with human expertise supervision in the
first two case studies is specifically for two scenarios: commuter route in Trondheim
and ferry route near Ålesund. It is expected to propose a more intelligent way,
such as by intaking and testing different algorithms and optimization methods in
path planning, situation awareness, and human status assessment, to promote the
universality of usage of the developed systems.
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Sailing status recognition to enhance safety awareness and path routing for a
commuter ferry
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ABSTRACT
This paper suggests a framework about how log data are used to develop a classifier to recognise the
sailing status of a commuter ferry, which, in turn, serves as a tool of safety awareness. Several sailing
scenarios are defined under the expertise’s interpretation based on log data. A classifier is developed
by support vector machine algorithm to recognise different scenarios. The classifying precision is
getting improved as the database getting larger. Heat maps are drawn statistically to obtain the
likelihood site of each sailing status. Contour maps are drawn by interpolation according to heat
maps. Based on contour maps, two evaluation items are proposed to reflect the safety level. The
safety level term is used for optimising the control. The established classifier has a recognition
precision over 96 percent. A path following simulation is executed to verify the effectiveness of the
safety level for enhancing sailing safety.
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1. Introduction

In the last decade, the artificial intelligence has been exten-
sively studied by researchers from different academic fields
of interests, and at the same time, it has also attracted prac-
titioners occupied in various industrial fields to put efforts
in, e.g. graphical/semantic recognition, autopilot system for
automobiles. There have been scholars introducing the artifi-
cial intelligence to marine research and applications, but
compared with the prosperity in the mentioned fields, this
bundle of techniques still draws less attention in the maritime
industry. Multiple reasons may account for the current situ-
ation. One of them is the artificial intelligence is not yet well
studied, which means its performance cannot be guaranteed
in real on-board operations, especially in some critical scen-
arios at high risk. In other words, we cannot substitute the
human expertise on-board by an immature technology.
Nevertheless, this reason should not prevent the maritime
industry from exploring advanced technologies since the
pragmatic value will emerge only after substantial and
enough research and tests are proceeded. From another
respect, it has been statistically stated that human errors
have been the dominant factor for causing shipwrecks
(Islam et al. 2017; Wiegmann and Shappell 2017). Even
though the current progress in artificial intelligence is
thought to be ineligible to replace the role of captains, it
can at least assist them to avoid making mistakes so that
the risk of human errors can be reduced at a large extent.
With the rapid development in some minor subjects, includ-
ing sensor fusion, data mining, and machine learning, con-
structing an on-board safety awareness system seems to be
worth a shot (Elkins et al. 2010). In this paper, we develop

a framework how on-board log data can be utilised to
enhance path routing and sailing safety, and to reflect
human expertise as well. We also find a realisable application
for this framework: commuter ferries with fixed route and
certain number of critical operations in a sailing.

Data are necessary to implement artificial intelligence in
any fields, including the maritime industry. As the hardware
facility cost decreased remarkably in recent years, basic sen-
sors are commonly equipped on most vessels (even the civil
ships), which makes log data more accessible to be collected
for research aims (Borkowski 2012; Ren et al. 2021).
Besides the accessibility of the data, another concern for
the data to be credited for further use is the data quality.
Since the wrong data can contaminate the database, and
thereby affect the performance of the artificial intelligence
in a negative way, the data should be collected and selected
meticulously. In this respect, human expertise can give
sufficient supply. Therefore, it is believed that log data
from any successful and safe sailings are with good quality
for further utilisation.

Although it is said that on-board log data are getting more
accessible, it is still at a small quantity compared with its
counterpart in the automotive field. To ensure that enough
data can be obtained to establish an intelligent system, we
notice the application of commuter ferry which usually travels
between two or more designated ports with a fixed sailing
route. Repeated sailings guarantee the quantity of log data.
Moreover, such type of routes usually contains countable criti-
cal operations at certain areas, which makes it possible to
develop an algorithm to recognise different sailing status.
With the accumulation of data and a proper utilisation of
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them, we can learn the safety laws from the successful experi-
ence of human operations.

In this paper, a safety awareness system is designed for the
commuter ferry. The system is developed mainly in two stages:
designing a classifier to automatically sort the log data; con-
structing maps which reflect the sailing safety level based on
the sorted data. The classifier predicts the sailing status online
and the safety awareness can be given in a quantitative way; it
is involved in the control loop to optimise the control input for
verification.

Although relevant study is not prevalent in the research in
maritime fields, such research has been extensively studied in
the automobile field and has been applied in reality. Li et al.
(2017, 2019a, 2019b, 2020) studied the classification and rec-
ognition of driving style and behaviours in different con-
ditions with popular learning algorithm and different
experimental methods. Compared with the pattern recog-
nition, the concept of on-board decision support system is
more acquainted with the maritime industry, and the safety
awareness system developed in this paper can be seen as a
component of such an on-board decision support system.
There are different ways to develop on-board decision sup-
port systems. For example, some scholars build knowledge-
based expert systems to support on-board decision (Perera
et al. 2012; Calabrese et al. 2012); some use classical and/or
novel control theories and tools to improve the manoeuvr-
ability under particular conditions (Pietrzykowski et al.
2010; Nielsen and Jensen 2011); some introduce advanced
algorithms to optimise the path planning and navigation
(Lazarowska 2012; Simsir et al. 2014; Vettor and Soares
2015; Pietrzykowski et al. 2017); and some use data from
automatic identification system (AIS) to support trajectory
reconstruction and path following navigation (Zhang et al.
2018; Xu et al. 2019). From another view, such a safety aware-
ness system is within the issue of situation awareness which
has attracted researchers to focus on for aiding on-board
operation (Chauvin et al. 2008; Nilsson et al. 2008; Fossdal
2018; Li et al. 2019; Nisizaki 2019). However, most research
items stay in a conceptual stage without mathematical calcu-
lation and applicable data utilisation framework.

The novelty of the work in this paper locates mainly on
two points: (1) Using real log data collected from a commu-
ter ferry, instead of the data from simulators or other types
of publishable data (AIS data), to analyse the ship man-
oeuvring status. Log data outperform other sources by
directly reflecting captains’ navigating behaviours and
logics; (2) interpreting the log data by splitting the sailing
route into different scenarios with featured particularity,
instead of arbitrarily analysing the entire sailing route as a
whole. The proposed safety awareness system is verified in
a model predictive control loop which has been a popular
control algorithm in the research for the auto-piloting car
and autonomous vessel (TøNdel et al. 2003; Hagen et al.
2018; Tengesdal et al. 2020).

The paper is organised as follows: Section 2 introduces the
proposed method in detail, including data collection and pre-
processing, definition of split scenarios, pre-check before
applying machine learning algorithm, the design of SVM
and how the result can be interpreted by heat maps and

used to assess the safety level; Section 3 illustrates the result
in three parts, including the classification result by SVM,
the two types of figures demonstrating the classification
result, the online testing and the verification in the control
loop. At last, a conclusion of the paper is given as a sum
and prospect.

Nomenclature

CLF classifier
CRS cruising (scenario)
CVG converging (scenario)
DCK docking (scenario)
DPT departing (scenario)
KDE kernel density estimation
L; L′ label set; label set in each binary classifier
MPC model predictive control
MSL mean safety level
OH optimal hyperplane or maximum margin hyperplane
p̂; p̂N estimated density; normalised estimated density
RPM revolutions per minute
RSL receding safety level
SL safety level
SVM support vector machine
TRN turning (scenario)
t-SNE t-distributed stochastic neighbour embedding

2. Methodology

The framework for sailing status recognition is shown as
Figure 1. It includes several key steps: data collection and
pre-processing, the design of SVM and its implementation
on log data, interpretation of the classification result and its
visualisation, and at last, a quantitative evaluation function is
proposed to assess the level of sailing safety of the ferry
based on the classification result of the accumulated historical
log data. The contents included in Figure 1 will be extendedly
explained in the following subsections.

2.1. Data collection and pre-processing

Log data used in this paper are from a customised commut-
ing route between Trondhjem Biological Station and the
berthing port at the estuary of the Nidelva river located in
Trondheim, Norway (the white curve in the map in Figure
1 conceptually illustrates the route). The sailings on the com-
muting route are executed by R/V Gunnerus, a Research and
survey Vessel owned by NTNU. The mileage of this com-
muting route is around 5 kilometres. The vessel is equipped
with a 200 kW bow thruster at front for the positioning oper-
ation, two 500 kW main azimuth thrusters for the propul-
sion and course.

The database is constructed by log data from 16 sailings
from September 2016 to June 2017 in a traffic-free environ-
ment. The sampling frequency of log data is 1 Hz. The infor-
mation contained by the database can be sorted into three
groups: geographical information, ship motions in different
degrees of freedom and on-board machinery status. Since
the geographical information is distinctly related to different
scenarios (which will be defined in a later part), while we
want to seek the laws from the ship status itself, items in the
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database reflecting the geographical information are excluded.
According to the navigation and manoeuvring habits of cap-
tains, featured items are selected from collected data (Wu
et al. 2020). They are listed and sorted as in Table 1. All
eight featured items in Table 1 are designated as variables
for training the scenario recognition algorithm (support vector
machine in Section 2.4).

2.2. Definition for scenarios by human expertise

According to human expertise, a commuting sailing route can
be divided into different scenarios in terms of manoeuvring
commands and the vessel response which can be reflected by
collected log data. In this customised commuting route, five
scenarios are separated from the whole sailing, which are
described in detail as follows:

. Departing: the ferry sets off from the port and keeps
accelerating.

. Cruising: the ferry usually reaches the rated RPM and tra-
vels on the route smoothly.

. Turning: the ferry adjusts its course towards another direc-
tion. Deceleration and angular speed increase in this phase.

. Converging: the ferry moves in the narrow channel at a
speed lower than the rated, and it finally gets parallel to
the coastline with a short distance.

. Docking: the ferry is with no surge speed but only sway,
by using the bow thruster to push itself into the berthing
point.

The rough illustration of the separation is shown in the map
in Figure 1, as five scenarios are marked with ovals in different
colours.

Hereupon, the original database is constructed as Equation
(1), where X represents for a database consisted of n items
described by eight variables mentioned in Table 1.

log data = {X; L}, X [ Rn×8, L [ Rn×1

L = {l1, l2, . . . , ln}

∀li [ L, li [ {departing, cruising, turning, converging, docking}

Figure 1. Framework of the proposed decision support system for sailing status recognition and safety evaluation (map resource: the Norwegian Mapping Authority).
(This figure is available in colour online.)

Table 1. Groups of featured log data items.

Groups Ship motion Machineries

Data items Heading (°) Bow thruster-RPM feedback (%)
Speed (knots) Port board-RPM feedback (%)
Pitch (°) Starboard-RPM feedback (%)

Port board-azimuth feedback (°)
Starboard-azimuth feedback (°)
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2.3. Separability pre-check

Before designing the algorithm for the classifier, it is proper to
have a preview of the data to check whether the database is
separable. If it is, we may check at a further step to have a
sense whether it is linearly separable, approximate linearly
separable or not, so that we may determine some properties
of the classifier to be designed later.

Firstly, the database is examined by the t-distributed sto-
chastic neighbour embedding (t-SNE) algorithm (Maaten
and Hinton 2008). By the algorithm, the high-dimensional
database is converted into a visualisable low-dimensional data-
base:

X = {x1, x2, . . . , xn} [ Rn×8 −−−�t-SNE

Y = {y1, y2, . . . , yn} [ Rn×2
(2)

The t-SNE result is shown as in Figure 2. From the visual-
ised result, it can be clearly found that there is a trend for each
scenario to get clustered, hence it can be inferred that the sail-
ing route can be separated into different scenarios based on the
selected data.

Besides t-SNE, pair plots can be used to reflect the indepen-
dency of each class. Here, two pair plots are selected and
shown in Figure 3. From the self-correlation of port thruster
RPM, heading and speed, it shows that there is independency
between different scenarios. And bow thruster RPM also gives
useful information to tell scenarios apart, e.g. docking data
points are explicitly away from other scenarios when the
bow thruster is in correlation with port thruster RPM. It
should be noted that the power density function (PDF) value
of the bow thruster self-correlation at 0 is dominant over the
scale. This results from that the bow thruster is strictly kept
turned off in almost whole period over scenarios including
cruising, turning and converging. While in departing and
docking scenarios, the bow thruster is not kept at a fixed run-
ning rate, the scattering makes the PDF at each value to be tri-
vial against the counterpart at 0.

Since the database is with a dimensionality at 8, which can
be considered as a high dimensional database. From the pre-

check of t-SNE dimension reduction and the pair plots, we
may putatively assume scenarios in the sailing route described
by log data are approximate linearly separable.

2.4. Support vector machine

SVM algorithm is chosen to build a classifier to solve the
classification problem. The SVM algorithm is trained with col-
lected log data according to eight features in Table 1. In prac-
tice, we convert the multiclass classification problem into
several binary classification problems (Aly 2005). Then, there
will be a specific classifier CLFk for scenario k, and 5 in total
for all scenarios. Taking scenario k as an example, for the
data points whose original labels are the same as scenario k,
they will be given new labels 1; otherwise, they will be given
new labels −1. Then a new vector L′ will be created by updated
labels, and the vector will substitute the original label L. This
process can be expressed as follows:

CLFk:
l′i = 1, if li = k
l′i = −1, otherwise

{
(3)

For each binary classifier, there is a specific optimal hyper-
plane:

OHk:WkX + bk = 0 (4)

whereWk is the normal vector to the hyperplane. The optimal
hyperplane lies between two parallel hyperplanes:

OH+
k :WkX + bk = 1

OH−
k :WkX + bk = −1

(5)

Points on and above hyperplane OH+
k will be assigned label

1, and finally turns into label k. And points on and below
hyperplane OH−

k will be assigned label −1, and finally will
not be classified into the dataset of scenario k.

While the SVM algorithm is designed, the database is
updated after every sailing so that the classifier built by SVM
evolves simultaneously. And the updated classifier can be
used to recognise the scenario status in subsequent sailings.
The idea of this training process is mainly borrowed from

Figure 2. Visualisation of dimension reduction result by t-SNE. (This figure is available in colour online.)
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Hold-out validation (Berrar 2019). Since we collected 16 sail-
ings’ log data, this process can be illustrated as in Table 2. In
Table 2, Classifiers 1–15 represent 15 different classifiers
train with 1–15 training sets (for example, a possible train-
ing-set combination for Classifier 3 could be Sailing dataset
No. 1, 2 and 3 or any other combinations of three sailing data-
sets), while test sets 1–16 mean No. 1–16 sailing datasets
(single sailing dataset).

2.5. Likelihood map and safety level calculation

As log data accumulated along the sailings run times by times,
the database for training the SVM classifier is getting larger.
Besides the eight featured data items, the geographical infor-
mation is also recorded. Therefore, another database can be
constructed based on the geographical information of those
data points which are correctly classified by the classifier.
And data points can be drawn on a geographical map reflect-
ing the site of each scenario in the sailing route. Then the map
can be converted into a heat map in terms of the density of the
geographical distribution of data points. At this step, kernel
density estimation method helps to calculate the estimated
density at each datum point xj:

p̂(xj) = 1
mh

∑m
i=1

K(
xj − xi

h
) (6)

where h (h > 0) is a smoothing parameter; K is the kernel for
scaling, and Gaussian kernel is chosen in this paper to estimate
the density. Then a 2D heat map illustrating the density distri-
bution can be drawn accordingly. Since the database is updated
after new sailing data are appended, the numerical value of the
density will become larger and larger, which implies that raw
density value itself does not contain standard useful infor-
mation to help the human to make decision. Therefore, to
avoid it from being nothing but fancy, we normalise the den-
sity scale into [0, 1]:

p̂N(xj) =
p̂(xj)−min ( p̂)

max ( p̂)−min ( p̂)
(7)

After the normalisation, the density will always be in a certain
scale and in a manner that we explicitly understand: the nor-
malised density 1 refers to the densest site on the sailing
route, while 0 refers to the sparsest site. The ferry is believed
to be safer when travelling on a site where the normalised den-
sity is higher, while the captain should be vigilant when the
ferry goes into the low normalised density site. Meanwhile,
heat maps can be converted to contours by an interpolation
operation based on the normalised density distribution. In
this paper, we choose the cubic spline interpolation method
to realise this conversion. Then the map is gridded, and the
density is calculated by the interpolation. By connecting grid
points with the same density value, the contour map is
obtained to demonstrate continuous approximation of the
density distribution at the vicinity area of the scenario. The
distribution function SL(y) can be obtained by ploy-fitting
the statistics of the safety level, where y represents the position.

2.6. Verification of how the safety level benefits in MPC

In this part, the concept of safety level is integrated into the
cost function to implement the MPC. The control scheme is
illustrated as in Figure 4. The vessel kinematics can be

Figure 3. Selected pair plots. (This figure is available in colour online.)

Table 2. Illustration of the classifier evolution process.

Testset

Classifier

1 2 … 15

1 – – – –
2 * – – –
… * * … –
15 * * * –
16 * * * *
Mean value * * * *

*represents a numeric value; – represents no calculation.
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represented as Equation (8). Since we do not consider environ-
ment loads at this stage, the right-hand side of the kinetic
equation τ is the input force which equals [ fu fv tr]′. η is the
pose vector as [N E ψ]′. R(ψ) is the horizontal plane rotation
matrix in terms of the yaw angle ψ. M is the system inertia
matrix. C(v) is the Coriolis-centripetal matrix. D(v) is the
damping matrix. H equals [1 0 0; 0 1 0], and y equals [N E]′.

ḣ = R(c)n
Mṅ+ C(n)n+ D(v)v = t

y = Hh
(8)

The original cost function is defined as follows:

J(t) = (y(t + 1)− yref )
TQ(y(t + 1)− yref )

+ Du(t + 1)TRDu(t + 1)
(9)

The optimisation goal is to minimise the cost function J; we
use the positive term (1− SL(y)) to conform to the implication
of safety level and the optimisation target. The cost function is
thus augmented as follows:

J∗(t) = (y(t + 1)− yref )
TQ(y(t + 1)− yref )

+ Du(t + 1)TRDu(t + 1)+W(1− SL(y(t + 1)))

(10)

Equations (9) and (10) give the cost function at one time-
step prediction, while MPC is predicting over a length of
time horizon Np to determine the best control candidate, so
the overall cost prediction at a certain time step can be rep-
resented as Equation (11).

J∗(t) =
∑t+Np

k=t+1

J∗(k) (11)

The sailing with the least MSL, among 16 historical sail-
ings, is selected as the reference to carry out the path follow-
ing task. Comparison will be made between the simulations
with different cost functions to verify the effect of the safety
level term.

2.7. Assessing the safety level by the contour map

At the last step in the proposed method, we establish a concept
of safety levels with respect to the normalised density distri-
bution described by contour maps. Safety levels (SL) are

directly represented by the normalised density of the geo-
graphical location. Hereupon, two dimensionless items can
be further calculated to reflect different aims of evaluation:
receding safety level (RSL) expressed as Equation (12) and
mean safety level (MSL) as Equation (13).

RSL(t) =

∑N(t)

N(t−DT)
pi

DT
(12)

MSL(t) =
∑N(t)

i=0
pi

N(t)
(13)

N is the number of accumulated log data points until the
moment t. ΔT is the number of sampled data points in the
receding horizon, while the receding horizon is chosen
manually.

RSL calculates the mean safety level in a fixed time scale.
The receding horizon for calculation is updated after each
sampling. MSL calculates the mean safety level from the start
to current moment t. MSL may reflect the overall safety
level; hence, it can be used to evaluate the performance of
the human manoeuvring in a sailing.

3. Results

The proposed method is implemented to the database built
upon collected 16 sailings’ log data. In this section, results
are presented in three parts: classification results from the
SVM classifier; the derived likelihood heat maps and nor-
malised numerical contour maps, and online testing. To
make the demonstration of the results and the correspond-
ing visualisation more comprehensible, result figures will
be partially demonstrated. While the selection of figures is
unbiased, it is believed that they are able to reflect the global
performance.

3.1. Classification result

According to Section 2.4 and Table 2, the classifier is built once
the first sailing’s log data is added to the SVM training data-
base. As the database evolves when new log data come into,
the classifier will be updated therewith. The demonstration
of the evolution result irrespective of scenarios is shown as
Table 3 and Figure 5.

Figure 4. Flowchart of the MPC control scheme. (This figure is available in colour online.)

S6 B. WU ET AL.



Table 3 shows that the precision of the classification result is
increasing as the classifier evolves. While in Figure 5, the pre-
cision plunges at the early stage and then rises back rapidly.
The diversity between datasets collected from different sailings
may account for it, since it is difficult to make an entirely cor-
rect description of another sailing by a classifier only trained
by very few sailing datasets (one or two). However, after
four sailings’ log data are added into the database, the classifier
can almost guarantee a precision over 90%. As the database is
larger, the precision of the classifier keeps growing. At last, the
mean value of the classification precision has been developed
over 96% based on whole collected sailings’ data.

After illustrating the result in a macro-scope, Figure 6
shows the classification precision with respect to different
scenarios, and it comprehensively reveals how different scen-
arios correlate pairwise. In Figure 6, the labels are abbreviated:
DPT for departing; CRS for cruising; TRN for turning; CVG

for converging and DCK for docking. From CLF No. 4 to
No. 9, the evolution improves its predicting capacity on
CVG scenario significantly, but the classifier incorrectly pre-
dicts many TRN data points as CVG, which results in the
declination of the prediction precision on TRN. Meanwhile,
the prediction precision on DCK also grows slightly. Then
by comparing the latter two, it shows that the predicting pre-
cision is improved remarkably on DPT from 84% to 90%.
However, the same problem occurs again that the prediction
precision on CVG continues to grow on sacrifice of the decli-
nation on TRN, in a moderate manner. In general, the per-
formance of the classifier is improved after several evolutions.

3.2. Likelihood heat maps and derived contours

According to the method introduced in Section 2.4, heat maps,
based on the accumulated database, can be drawn, as shown in
Figure 7. The first five subplots show the heat map of each
scenario, while the last subplot at the right bottom shows an
overview of the complete route.

The heat maps can help the reader, for example, captains
have a direct sense of the most travelled sites. And this feature
is prominent especially in scenarios cruising, turning, and con-
verging. However, since both the departing and docking are

Table 3. Illustration of the classifier evolution process.

Testset

Classifier

4 9 14

5 0.9031 – –
10 0.9723 0.9815 –
15 0.9675 0.9578 0.9610
Mean value 0.9370 0.9593 0.9684

Figure 5. Evolution of the classifier according to Table 2. (This figure is available in colour online.)

Figure 6. Confusion matrix reflecting precision by scenarios (left: CLF No.4; middle: CLF No. 9; right: CLF No. 14). (This figure is available in colour online.)
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undergoing in a very concentrated site, the density distribution
appears to be somewhat diffusion. However, it is thought to be
in a tolerant extent, and can be ameliorated as the database is
larger.

Based on heat maps shown in Figure 7, a set of contours
with respect to each scenario can be drawn as Figure 8. Differ-
ent from the heat maps that provide an intuitive illustration
and sense of the most travelled area, the set of contours quan-
titatively demonstrates how the density distributes on a geo-
graphical map. Since contours are obtained by an
interpolation operation, its fidelity and creditability are depen-
dent on the quantity of data. In general, the overall trend in
each scenario has been shown. For example, in the contour
of cruising scenario – the closer to the centre of the heat
area, the larger the normalised density.

3.3. Accumulative manoeuvring knowledge for on-
board decision support

As the sailing data are classified by SVM (in Section 2.4) and
the results are obtained (in Section 3.1), informative statistics
on how captains manoeuvre the ferry during different scen-
arios are made as in Table 4.

Bow thruster is only turned on during departing and dock-
ing when a side force is needed to push the ferry into/out the
quay. The behaviours of port- and star-thruster are almost in
the same scale, except for the azimuth angle during docking
scenario. It depends on which side the ferry docks since solely
adjusting the azimuth angle of the outer thruster is able to
balance the torque generated at the bow thrust. Since in

this commuting route, the ferry docks at its star-board side
(e.g. the coastal to its right), the port-thruster becomes the
outer thruster so that its azimuth angle is adjusted as
required.

Since the calculated safety levels MSL and RSL are returned
to the captain in real time, when the calculated safety levels are
falling down to a certain extent, the captain can inspect his
manoeuvring commands according to the accumulative man-
oeuvring knowledge to help him regulate the ferry running in a
correct status.

3.4. Verification in the MPC loop

In this part, the path following simulation results will be shown
and assessed. Figure 9 shows the path of reference (Sailing No.
6), the original MPC and the improved MPC with safety level
(MPC-SL). The safety level assessment is given as Table 5. The
prediction horizon Np in MPC and MPC-SL is set as 10.

It should be emphasised that the way how we evaluate the
control performance shown in Figure 9 is slightly different
from the traditional approach. Traditionally, we balance the
input cost and the error reduction to have an optimal solution.
In addition to those two items, we augment the cost function
with a safety level SL(y) factor, as in Equation (10). Then it
becomes a balance among these three dimensions. Besides
having an acceptable reference path following, it requires to
have a better safety level evaluation, which is shown in Table
5 in detail.

From the safety level statistics in Table 5, we can implicitly
summarise that the safety level has a strong impact on the

Figure 7. Heat maps of different scenarios. (This figure is available in colour online.)
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control. After the safety level term is added into the cost func-
tion, the overall safety level increases significantly, and so as in
scenarios DPT, CRS and TRN.

When the vessel travels in a narrow water tunnel in CVG,
where the gradient of the safety level can be very sharp, the
safety level suffers a decline but in a moderate level. When
the vessel is in the final bow thrusting stage, where the safety

Figure 8. Contour of different scenarios. (This figure is available in colour online.)

Table 4. On-board machinery status in different scenarios.

Actuator DPT CRS TRN CVG DCK

Bow-thruster (%) >0.1 – – – >10
Port-RPM (%) <60 >75 [40, 60] [40, 60] [0, 30]
Star-RPM (%) <60 >75 [40, 60] [40, 60] [0, 30]
Port-azimuth (°) >0.5 <1 >0.5 <2 >50
Star-azimuth (°) >0.5 <1 >0.5 <2 <1

Figure 9. Path following simulation by MPC (the path corresponds to Figure 1). (This figure is available in colour online.)
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level heat map almost concentrates on a point, it is difficult for
the vessel to be strictly in the circle of high safety so that the
safety level in DCK is low. In general, the safety level term
improves the control in terms of safety noticeably, which
suggests that the proposed methodology attains a good per-
formance and further study can be conducted in practice.

3.5. Safety level assessment

In this part, safety level assessments are conducted from two
aspects. One is sailing status recognition for a whole sailing
dataset, and another is safety level evaluation.

Figure 10 shows the result of the online sailing status recog-
nition testing. The dashed lines divide the timeline into seg-
ments remarking real periods of each scenario, while the
mark ‘+’ represents the recognised status at each sampling
step. There are two wild points in the DPT stage, where the
sampled data are incorrectly recognised as DCK and TRN.
The problem occurs mainly at the TRN stage, where the clas-
sifier improperly recognises the ferry to enter the next stage
ahead of the real situation, which may be resulted from the
similarity between the manoeuvring operations during the
late phase in TRN and the early phase in CVG. The classifier
has a good performance in judging CRS and DCK during
the online testing.

According to the defined terms in Section 2.7 and the
obtained contour maps, safety level evaluation is implemented
accordingly. The real-time safety level at each sampling step is
represented by diluted lines in Figure 11. Firstly, it should be
mentioned that since contour maps are derived for each scen-
ario separately and are not merged into one ensemble, the
safety level evaluation experiences a gap when the ferry transits
between two scenarios. Secondly, it is notable that, excluding

Table 5. Illustration of the classifier evolution process.

Scenario

Safety level

Ref. MPC MPC-SL

DPT 0.4203 0.4574 0.5449
CRS 0.4259 0.5135 0.6743
TRN 0.6851 0.6304 0.6999
CVG 0.5065 0.5938 0.5059
DCK 0.6161 0.4157 0.4158
Overall 0.5199 0.4574 0.5681

Figure 11. Calculated MSL and RSL (diluted lines are the real-time safe level). (This figure is available in colour online.)

Figure 10. Online testing of the sailing status recognition. (This figure is available in colour online.)
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the start and the end stage of the whole sailing, the safety level
is usually low at the start and end of each single scenario. It
may be explained according to the distribution shown in
Figure 7. In those heat maps, there is a conspicuous high-den-
sity area in each scenario, while at the start and the end, the
distribution inclines to disperse, which consequently results
in the decline of the safety level at the marginal area.

According to Section 2.7, the two items MSL and RSL,
reflecting the safety level from different aspects, are calculated,
and shown as in Figure 11. Since RSL calculates the average
safety level at a fixed length of the past period, there is a
delay to reflect the change of the safety level. This delay pro-
vides RSL the ability to reduce the effect at the start and the
end during the transition time between different scenarios,
which makes RSL to describe the sailing safety in a moderate
way. Since critical operations are expected to be taken at the
transition period between two scenarios, RSL drastically
decreases to a low level to reflect the high possibility of com-
mitting a mistake during the transition. MSL demonstrate
the safety level with a global insight. It is noticed that because
of the long-term steady sailing of the ferry, there is a swell of
the safety level during both CRS and CVG scenarios. At last,
MSL can provide an overall evaluation of the sailing safety.

RSL and MSL reflect the safety level from two aspects based
on the constructed safety level contour maps by a numerical
judgement explicitly. It provides an intuitive and quantitative
approach for the captain to take the advantage of the knowl-
edge accumulated on this commuting route.

4. Conclusion

This paper introduces a method to utilise log data from a ferry
to establish an on-board safety awareness system in order to
help humans to make decisions. Successful sailings are still
thought to be a good paradigm for both designing autonomous
ferries and evaluating the manoeuvre quality of every sailing.
Hence, we split a customised sailing route and define different
scenarios in favour of the human expertise. Collected data are
classified by an SVM algorithm and its results are presented as
figures of heat maps and contours by the statistical method.
Both sets of figures together may assist to evaluate the sailing
safety level. Since the ferry may deviate from the designated
path no matter under human operations or under autonomous
manoeuvring, the figures give a set of metrics to qualitatively
and quantitatively know whether the current situation is safe
or not, based on the past experience which is reflected by his-
torical log data. By defining new items reflecting safety levels
with respect to geographical locations, the result can be used
to optimise the control. MPC is designed with the safety
level term integrated to verify its significance. From the simu-
lation results, the safety level has a great impact on and ame-
liorates the control loop. From this research work, we
suggest a framework how log data can be comprehensively
used to provide on-board support and enhance the sailing
route safety. The main idea in this paper is to synthetically
use both human expertise and objective log data to make rudi-
ment work for autonomous navigation. It is also under a grand
framework that we aim to achieve reliable on-board decision
support and ship autonomy by finding, interpreting, learning,

and imitating the captains’ operating behaviours. For the
future work, first, since the log data collected in this paper
are from only one commuting route in moderate environment
conditions, log data from other commuting routes and types of
weather windows should be collected and analysed to examine
the universality of the proposed method; second, further study
can be focused on the sensitivity of the safety level to the gra-
dient in terms of geographic distance to optimise the control
performance.
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