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Abstract
We construct a generalization of the Day convolution tensor product of presheaves that works
for certain double∞-categories. Using this construction, we obtain an∞-categorical version
of the well-known description of (one-object) operads as associative algebras in symmetric
sequences;more generally,we show that (enriched)∞-operadswith varying spaces of objects
can be described as associative algebras in a double ∞-category of symmetric collections.
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116 R. Haugseng

1 Introduction

The theory of operads is a general framework for encoding and working with algebraic
structures, first introduced in the early 70s in order to describe homotopy-coherent algebraic
operations on topological spaces [5,46]. Since then, the theory has foundmany applications in
diverse areas of mathematics—aside from algebraic topology, where operads in topological
spaces, simplicial sets, and spectra have numerous uses (see for example [5,7,17,46,50],
among many others), operads in vector spaces and chain complexes (also known as linear
operads and dg-operads, respectively) are by now a well-studied topic in algebra (see for
instance [28,42]), with applications inmathematical physics (cf. [45]) and algebraic geometry
(e.g. [41]), while operads in sets have become a standard tool in combinatorics (cf. [29,47]).

Classically, an operad O in a symmetric monoidal category C consists of a sequence
O(n) of objects of C, where the symmetric group �n acts on O(n) (this data is called a
symmetric sequence) together with a unital and associative composition operation. If C has
colimits indexed by groupoids and the tensor product preserves these, then this data can
be conveniently encoded using the composition product of symmetric sequences. This is a
monoidal structure on symmetric sequences, given by the formula1

(X ◦ Y )(n) ∼=
∞∐

k=0

⎛

⎝
∐

i1+···+ik=n

(X(i1) ⊗ · · · ⊗ X(ik)) ×�i1×···×�ik
�n

⎞

⎠⊗�k Y (k);

the unit is the symmetric sequence

1(n) =
{

∅, n �= 1

1, n = 1
,

where 1 is the unit in C. As first observed by Kelly [40], an operad is then precisely an
associative algebra with respect to ◦: the multiplication mapO◦O → O is given by a family
of equivariant maps

O(k) ⊗ O(i1) ⊗ · · · ⊗ O(ik) → O(i1 + · · · + ik),

supplying the operadic composition maps, and similarly the unit map 1 → O corresponds
to a unit 1 → O(1).

In homotopical settings, this classical notion of operads has a number of shortcomings,
analogous to those afflicting topological or simplicial categories when we want to work with
them only up to homotopy (i.e. consider them as models for ∞-categories). This motivates
the introduction of a fully homotopy–coherent version of operads, known as∞-operads. Just
as in the case of∞-categories, there are several useful models for∞-operads, including those
of Lurie [44] (which is currently by far the best-developed), Moerdijk–Weiss [48], Cisinki–
Moerdijk [14], and Barwick [3]. These authors only consider ∞-operads in spaces, but the
formalism has recently been extended to cover ∞-operads in other symmetric monoidal
∞-categories in [10].

The goal of the present paper is to provide another point of view on (enriched)∞-operads,
by extending to the higher-categorical setting the description of operads as associative alge-
bras in symmetric sequences:

1 Note that this is the reverseordering of the product compared tomany references; this convention corresponds
to the one that naturally appears in our ∞-categorical construction.
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∞-Operads via symmetric sequences 117

Theorem Let F
	 be the groupoid of finite sets and bijections. If V is a symmetric monoidal

∞-category compatible with colimits indexed by∞-groupoids2, then there exists a monoidal
structure on the ∞-category Fun(F	,V) of symmetric sequences such that associative alge-
bras are V-enriched ∞-operads. Moreover, the tensor product is described by the same
formula as above.

More precisely, this gives a description of ∞-operads with a single object. It is often
convenient to consider the more general notion of operads with many objects (also known as
coloured operads or symmetric multicategories), and the term ∞-operad typically refers to
the higher-categorical version of these generalized objects, which also have a description as
associative algebras: For a set S, let

F
	
S :=

∞∐

n=0

S×n
h�n

denote the groupoid with objects lists (s1, . . . , sn) (si ∈ S) and with a morphism
(s1, . . . , sn) → (s′

1, . . . , s
′
m) given by a bijection σ : {1, . . . , n} ∼−→ {1, . . . ,m} in F

	 such
that si = s′

σ(i). Then a (symmetric) S-collection (or S-coloured symmetric sequence) in V
is a functor F

	
S × S → V. The category Fun(F	

S × S,V) again has a composition product
◦, given by a more complicated version of the formula we gave above, such that an operad
with S as its set of objects is precisely an associative algebra for this monoidal structure. Our
work also gives an ∞-categorical version of this many-object composition product.

More generally, we can describe operads with varying spaces of objects as associative
algebras in a double category. We will call a functor F

	
S × T → V an (S, T )-collection in

V. Then we can define a double category COLL(V) as follows:

• Objects are sets, and vertical morphisms are maps of sets.
• Horizontal morphisms from S to T are (S, T )-collections.
• Composition of horizontal morphisms is given by a version of the composition product.

An associative algebra in COLL(V) consists of a set S together with an associative algebra in
the category of horizontal endomorphisms of S with composition as monoidal structure, i.e.
an associative algebra in S-collections with the composition product. Thus associative alge-
bras are precisely operads, and moreover morphisms of algebras in COLL(V) are precisely
functors of operads. We will produce an ∞-categorical version of this structure:

Theorem For any symmetric monoidal ∞-category V compatible with colimits indexed by
∞-groupoids there is a double ∞-category COLL(V) such that Alg(COLL(V)) is the ∞-
category of V-enriched ∞-operads.3

The double∞-categoryCOLL(V) admits the same description as its analogue for ordinary
categories, except with ∞-groupoids as objects.

In a sequel to this paper [35] we apply this description of ∞-operads to study algebras
over enriched∞-operads. In addition, we hope that it can serve as a starting point for a better
understanding of bar-cobar (or Koszul) duality for ∞-operads. Over a field of characteristic
zero, Koszul duality for dg-operads was introduced by Ginzburg and Kapranov [28], and

2 By this we mean that the underlying ∞-category V has colimits indexed by ∞-groupoids, and the tensor
product preserves such colimits in each variable.
3 In this paperwe are considering∞-operads as algebraic objects, i.e. we are not inverting the fully faithful and
essentially surjective morphisms or imposing a completeness condition. In the terminology of Ayala–Francis
[1], Alg(COLL(V)) is the ∞-category of “flagged V-∞-operads”.
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118 R. Haugseng

is by now well understood using model-categorical methods (see e.g. [21,22,27,42,52]). As
a first step towards an ∞-categorical approach to Koszul duality, here we construct a bar-
cobar adjunction between ∞-operads and ∞-cooperads. Following the approach proposed
by Francis and Gaitsgory [20], we obtain this as the bar-cobar adjunction between associative
algebras and coassociative coalgebras (constructed in great generality in [44, Sect. 5.2.2])
applied to our monoidal∞-category of symmetric sequences. This seems likely to agree with
existing constructions not only in chain complexes over a field of characteristic 0, but also
in other settings such as spectra [8,9], where it is closely related to Goodwillie calculus [7],
as well as in K (n)-local spectra, where bar-cobar duality has been constructed and applied
in work of Heuts [37].

1.1 Overview of results

Let us now give a more detailed overview of the results of this paper. The starting point for
our construction is the “coordinate-free” definition of the composition product due to Dwyer
and Hess [18, Sect. A.1]. They observe that, if F

[1],	 denotes the groupoid of morphisms of
finite sets and F

[2],	 denotes the groupoid of composable pairs of morphisms of finite sets,
then:

• Symmetric sequences in Set are the same thing as symmetricmonoidal functorsF
[1],	 →

Set, with respect to the disjoint union in F
[1],	 and the cartesian product of sets.

• Under this identification the composition product of X and Y corresponds (by [18,
Lemma A.4]) to the left Kan extension, along the functor F

[2],	 → F
[1],	 given by

composition, of the restriction of X × Y from F
[1],	 × F

[1],	 to F
[2],	. In other words,

(X ◦ Y )(A → C) ∼= colim
(A→B→C)∈F

[2],	
(A→C)

X(A → B) × Y (B → C).

If C ∼= ∗, then the groupoid F
[2],	
(A→∗) of factorizations of A → ∗ is the groupoid of maps

A → B and isomorphisms B
∼−→ B ′ under A. An isomorphism class of such objects

corresponds to a decomposition |A| = i1 + · · · + ik where k = |B|, with a division of
A into subsets of size i j . This can be rewritten to recover the previous formula (with the
division of A corresponding to the product with �n for a given partition of n = |A|).

After a slight reformulation this description is closely related to Barwick’s indexing category
´F for∞-operads, introduced in [3]. This is the category with objects sequences S0 → S1 →
· · · → Sn of morphisms of finite sets, with a map (S0 → · · · → Sn) → (T0 → · · · → Tm)

given by a map φ : [n] → [m] in ´ and injective morphisms Si → Tφ(i) such that the squares

Si S j

Tφ(i) Tφ( j)

are cartesian. If (´F)[n] denotes the fibre at [n] of the obvious projection ´F → ´, then:

• Symmetric sequences in Set are the same thing as functors X : (´F)
op
[1] → Set such that

for every object S → T the map

X(S → T ) →
∏

i∈T
X(Si → ∗),
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∞-Operads via symmetric sequences 119

induced by the morphisms

Si {i}

S T ,

�

is an isomorphism.
• Under this identification the composition product of X and Y corresponds to the left Kan

extension, along the functor (´F)
op
[2] → (´F)

op
[1] corresponding to d1 : [1] → [2], of the

restriction of X × Y along the functor (´F)
op
[2] → (´F)

op
[1] × (´F)

op
[1] corresponding to

(d2, d0). In other words,

(X ◦ Y )(A → C) ∼= colim
(A′→B→C ′)∈((´F)

op
[2])/(A→C)

X(A′ → B) × Y (B → C ′).

This is equivalent to the previous description since the inclusion F
[2],	
(A→C) →

(´F)
op
[2],/(A→C) is cofinal: given an object ξ in the target, which is a diagram

A C

A′ B C ′,

where the square is cartesian, the category (F
[2],	
(A→C))ξ/ is a contractible groupoid with

the single object given by the factorization A → B ×C ′ C → C .

The projection´F → ´ is aGrothendieck fibration, and the corresponding functor� : ´op →
Cat is a double category, in the sense that it satisfies the Segal condition

�n
∼−→ �1 ×�0 · · · ×�0 �1.

Wewill obtain the compositionproduct by applying to this double category ageneral construc-
tion of monoidal structures on functor categories arising from certain double ∞-categories.
In fact, our construction will produce a canonical double∞-category of which this monoidal
∞-category is a piece, with the full double ∞-category describing ∞-operads with varying
spaces of objects.

The construction of this double∞-category can be seen a variation of theDay convolution
[16] structure on functor categories: If C is a small monoidal category and V is a monoidal
category compatible with colimits, then the functor category Fun(C,V) has a tensor product,
given for functors F and G as the left Kan extension along⊗: C×C → C of the composite

C × C
F×G−−−→ V × V

⊗−→ V.

This monoidal structure has the property that an associative algebra in Fun(C,V) is the same
thing as a lax monoidal functorC → V; more generally, the Day convolution has a universal
property for algebras over non-symmetric operads.

Day convolution (in the symmetric monoidal setting) was implemented in the ∞-
categorical context by Glasman [30].4 In this paper we extend this to a construction of
Day convolution for a class of double ∞-categories:

4 More recently, Lurie has also given a more general account [44, Sect. 2.2.6].
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120 R. Haugseng

Theorem 1.1.1 Suppose M → ´op is a suitable double ∞-category. Then there is a double
∞-category M̂S such that for any generalized non-symmetric∞-operadOwe have a natural
equivalence5

AlgO(M̂S) 	 SegO×´opM
(S).

The objects of M̂S are functors M0 → S and the vertical morphisms are natural transfor-
mations of such functors. A horizontal morphism from F to G is a functor M1,F,G → S,
whereM1,F,G → M1 is the left fibration for the composite functor

M1
(d1,!,d0,!)−−−−−→ M0 × M0

F×G−−−→ S.

This theorem summarizes the results of Sect. 3: We construct these double ∞-categories
in Sect. 3.2 using an unfolding construction introduced in Sect. 3.1, and prove the universal
property in Sect. 3.3. Note that the precise meaning of “suitable” we need is quite restrictive.
We also show in Sect. 3.4 that we can extract from M̂S a family of monoidal ∞-categories
and lax monoidal functors which suffices to describe associative algebras in M̂S. Moreover,
we consider enriched versions of the theorem, with more general targets than S, in Sect. 3.5.

To obtain our double∞-categorieswe use results on∞-categories of spans due toBarwick
[4], and Sect. 2 is devoted to a review of this work, with some slight variations, together with
a brief review of non-symmetric ∞-operads and related structures.

In Sect. 4 we apply our results on Day convolution to∞-operads. In Sect. 4.1 we describe
non-enriched ∞-operads as associative algebras in a double ∞-categories of collections in
S, and in Sect. 4.2 we extend this to a description of enriched∞-operads. More precisely, we
obtain an equivalence between associative algebras in a double ∞-category of collections
and ∞-operads in the sense of Barwick [3], as generalized to enriched ∞-operads in [10].
In Sect. 4.3 we then apply this description of ∞-operads to obtain the bar-cobar adjunction
between ∞-operads and ∞-cooperads.

As a warm-up to this description of∞-operads, in Sect. 3.6 we also consider an additional
application of our Day convolution construction, by showing that enriched∞-categories can
be described as associative algebras.

1.2 Related work

There are at least two other approaches to constructing the composition product on symmetric
sequences ∞-categorically:

Composition product from free presentably symmetric monoidal categories

An alternative approach to defining the composition product of S-coloured symmetric
sequences in Set starts with the observation that Fun(

∐∞
n=0 S

n
h�n

,Set) is the free presentably
symmetric monoidal category generated by S. If C is a presentably symmetric monoidal
category we therefore have a natural equivalence

Fun(S,C) 	 FunL,⊗(Fun(
∞∐

n=0

Snh�n
,Set),C),

5 The right-hand side is the ∞-category of “Segal O ×´op M-spaces”, which are functors O ×´op M → S
satisfying certain Segal-type limit conditions; see Definition 2.1.18 for the precise definition.
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∞-Operads via symmetric sequences 121

where the right-hand side denotes the category of colimit-preserving symmetric monoidal
functors. Taking C to be

Fun(F	
S ,Set) ∼= Fun

( ∞∐

n=0

Snh�n
,Set

)
,

we get a natural equivalence

Fun(F	
S × S,Set) 	 Fun

(
S,Fun(F	

S ,Set)
) 	 FunL,⊗ (Fun(F	

S ,Set),Fun(F	
S ,Set)
)
.

Here the right-hand side has an obvious monoidal structure given by composition of func-
tors, and this corresponds under the equivalence to the composition product of S-coloured
symmetric sequences. This construction is described in [2, Sect. 2.3]. The one-object variant
is much better known; it is attributed to Carboni in the “Author’s Note” for [40], and it is
also found in Trimble’s preprint [51]. There is also an enriched version of this construction,
for (coloured) symmetric sequences in a presentably symmetric monoidal category. More
recently, this approach has been further developed in [19,23] where it is shown to arise from
a 2-categorical construction that produces a 2-category of operadswith varying sets of objects
(but with bimodules of operads as morphisms rather than functors).

In the ∞-categorical setting, it is not hard to see that Fun(
∐∞

n=0 X
n
h�n

, S) is again the
free presentably symmetric monoidal∞-category generated by a space X . One can thus take
the same route to obtain a composition product on X -coloured symmetric sequences in the
∞-category of spaces. In the one-object case this approach (including its enriched variant)
is worked out in Brantner’s thesis [6, Sect. 4.1.2]. However, this approach has not yet been
compared to any of the established models for ∞-operads.

Polynomial monads

In [26] we show that ∞-operads with a fixed space of objects X are equivalent to analytic
monads on the slice ∞-category S/X . These analytic monads can be viewed as associative
algebras under composition in an ∞-category of analytic endofunctors of S/X . The latter
can be identified with X -coloured symmetric sequences in S, so this gives an alternative
description of ∞-operads as associative algebras for the composition product. Compared to
our approach here, this has a number of advantages:

• it makes it clear that an ∞-operad can be recovered from its free algebra monad,
• it clarifies the relation between ∞-operads and trees (because free analytic monads can

be described in terms of trees).

It also seems likely that versions of polynomialmonads in other∞-topoi can be used to define
operad-like structures that occur in equivariant and motivic homotopy theory. On the other
hand, polynomial monads do not seem to extend usefully to give a description of enriched
∞-operads.

2 Background on spans and Non-symmetric∞-operads

In this section we first review non-symmetric ∞-operads and related structures in Sect. 2.1,
and then recall some definitions and results regarding spans from [4], with some minor
variations to get the generality we need in the next section.
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122 R. Haugseng

2.1 Review of non-symmetric∞-operads

For the reader’s convenience, we will briefly review some definitions and results related to
non-symmetric∞-operads that we will make frequent use of below. For more details, as well
as motivation, we refer the reader to [24,32,44].

Notation 2.1.1 ´ denotes the standard simplicial indexing category, i.e. the category of
ordered sets [n] = {0, 1, . . . , n} and order-preserving maps. We say a map φ : [n] → [m]
is inert if it is the inclusion of a subinterval, i.e. φ(i) = φ(0) + i for all i , and active if
it preserves the end-points, i.e. φ(0) = 0, φ(n) = m. The active and inert maps form a
factorization system on ´—every morphism factors uniquely as an active map followed by
an inert map. We write ´int for the subcategory of ´ containing only the inert maps, and
´el for the full subcategory of ´int containing only the objects [0] and [1]; we also use the
notation

´el
/[n] := ´el ×´int ´

int
/[n]

for the category of inert maps to [n] from [0] and [1]
Definition 2.1.2 For 0 ≤ i ≤ j ≤ n we write ρi j for the inclusion [ j − i] ∼= {i, i +
1, . . . , j} ↪→ [n]. If C is an ∞-category with products, then an associative monoid in C is
a functor A : ´op → C such that for every n the map An → ∏n

i=1 A1, induced by the maps
ρ(i−1)i : [1] → [n], is an equivalence.

Definition 2.1.3 If C is an ∞-category with finite limits, then a category object in C is a
functor X : ´op → C such that for every n the map

Xn → X1 ×X0 · · · ×X0 X1

induced by the maps ρ(i−1)i and ρi i , is an equivalence.

Remark 2.1.4 A category object in the ∞-category S of spaces is a Segal space in the sense
of Rezk [49]. The structure of a Segal space describes precisely the “algebraic” structure
of an ∞-category, i.e. a homotopy-coherent composition with identities, but to capture the
correct equivalences between ∞-categories one must invert the fully faithful and essentially
surjective maps between Segal spaces, or equivalently restrict to the full subcategory of
complete Segal spaces.

Definition 2.1.5 A monoidal ∞-category is a cocartesian fibration C⊗ → ´op such that the
corresponding functor´op → Cat∞ is an associativemonoid. Similarly, adouble∞-category
is a cocartesian fibration M → ´op such that the corresponding functor ´op → Cat∞ is a
category object.

Notation 2.1.6 Wewill use the following terminology to describe double∞-categoriesM →
´op:

• an object ofM0 is an object of the double ∞-category,
• a morphism ofM0 is a vertical morphism of the double ∞-category
• an object ofM1 is a horizontal morphism,
• a morphism in M1 is a square,
• composition of vertical morphisms is composition in the ∞-category M0,
• vertical composition of squares is composition inM1
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∞-Operads via symmetric sequences 123

• composition of horizontal morphisms, as well as horizontal composition of squares, is
given by the functor

M1 ×M0 M1
∼←− M2

d1,!−−→ M1.

Notation 2.1.7 Given objects X , Y ∈ M0, we write M(X , Y ) for the fibre of M1
(d1,!,d0,!)−−−−−→

M0 × M0 at (X , Y ), and call this the ∞-category of horizontal morphisms from X to Y .
Given its simplicial origin, it is usually less confusing to write composition of horizontal
morphisms in the non-standard order, and we denote it

– �Y – : M(X , Y ) × M(Y , Z) → M(X , Z).

We will also write 1X ∈ M(X , X) for the horizontal identity.

Definition 2.1.8 A generalized non-symmetric ∞-operad is a functor p : O → ´op such that

(i) O has p-cocartesian morphisms over all inert maps in ´op,
(ii) for every n the functor O[n] → O[1] ×O[0] · · · ×O[0] O[1], induced by the cocartesian

morphisms over the maps ρ(i−1)i and ρi i , is an equivalence,
(iii) for every X ∈ O[n], Y ∈ O[m] and φ : [n] → [m] in ´, the map

Mapφ

O(Y , X) → Mapρ01φ

O (ρ01,!Y , X) ×Mapρ11φ(ρ11,!Y ,X) · · ·
×Mapρ(n−1)(n−1)φ(ρ(n−1)(n−1),!Y ,X)

Map
ρ(n−1)nφ

O (ρ(n−1)n,!Y , X)

is an equivalence, where X → ρi j,!X is the p-cocartesian morphism over the

inert map ρi j and Mapφ

O(Y , X) denotes the fibre at φ of the map MapO(Y , X) →
Map´op([m], [n]).

We refer to the cocartesianmorphisms over inertmorphisms in´op as inertmorphisms inO. A
morphism of generalized non-symmetric∞-operads is a functor over ´op that preserves inert
morphisms; we also refer to amorphism of generalized non-symmetric∞-operadsO → P as
anO-algebra inP and write AlgO(P) for the∞-category of these.More generally, ifO andP
are generalized non-symmetric∞-operads overQwewrite AlgO/Q(P) for the analogous∞-
category of commutative triangles of morphisms of generalized non-symmetric ∞-operads

O P

Q.

Definition 2.1.9 A non-symmetric ∞-operad is a generalized non-symmetric ∞-operad O

such that O[0] 	 ∗.
Notation 2.1.10 If O is a generalized non-symmetric ∞-operad and x is an object of On , we
will often write x → xi j for the cocartesian morphism over ρi j for 0 ≤ i ≤ j ≤ n.

Lemma 2.1.11 Suppose O is a generalized non-symmetric ∞-operad. Let O′
0 be a full sub-

category of O0 and O′
1 be a full subcategory of O1 such that for x ∈ O′

1 the objects x00 and
x11 are inO′

0. IfO
′ denotes the full subcategory ofO spanned by objects x such that xii ∈ O′

0
and x(i−1)i is in O′

1 for all i , then

(i) O′ is also a generalized non-symmetric ∞-operad,
(ii) the inclusion j : O′ ↪→ O preserves inert morphisms,
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(iii) for any generalized non-symmetric ∞-operad P the functor

j∗ : AlgP(O′) → AlgP(O)

given by composition with j is fully faithful, with image the algebras P → O such that
the restrictions Pi → Oi factor through O′

i for i = 0, 1.

Proof By definition, we have pullback squares

O′
n On

O′
1 ×O′

0
· · · ×O′

0
O′
1 O1 ×O0 · · · ×O0 O1,

∼

so that the left vertical map is an equivalence. Condition (iii) in Definition 2.1.8 is also
immediate from O′ being a full subcategory. If x is in O′ and x → y is an inert morphism in
O, then by the definition ofO′ the object y is also inO′, soO′ inherits cocartesian morphisms
over inertmorphisms fromO. This proves (i) and (ii), and (iii) is immediate from the definition
of AlgP(O′) as a full subcategory of Fun/´op(P,O′). ��
Definition 2.1.12 If C is an ∞-category with finite products and O is a generalized non-
symmetric ∞-operad, then an O-monoid in C is a functor M : O → C such that for every
x ∈ O[n], the map M(x) → ∏m

i=1 M(x(i−1)i ) induced by the cocartesian morphisms x →
x(i−1)i over ρ(i−1)i , is an equivalence. We write MonO(C) for the ∞-category of O-monoids
in C, a full subcategory of Fun(O,C).

Definition 2.1.13 Let O be a generalized non-symmetric ∞-operad. An O-monoidal ∞-
category is a cocartesian fibration U⊗ → O such that the corresponding functor O → Cat∞
is an O-monoid; for X ∈ O[1] we often write UX for the fibre of U⊗ at X . Note that the
composite U⊗ → O → ´op is again a generalized non-symmetric ∞-operad (and a double
∞-category if O is one). We call a morphism of generalized non-symmetric ∞-operads over
O betweenO-monoidal∞-categories a laxO-monoidal functor, and say that it isO-monoidal
if it preserves all cocartesian morphisms over O.

Definition 2.1.14 If V⊗ → O is an O-monoidal ∞-category, we write V⊗ → Oop for the
corresponding cartesian fibration. Then Vop,⊗ := (V⊗)op → O is again an O-monoidal
∞-category; this describes the O-monoidal structure on V

op
X (X ∈ O[1]) given by the same

operations as those on VX .

Proposition 2.1.15 IfM is a generalized non-symmetric ∞-operad and C is an ∞-category
with products, then there is a natural equivalence

AlgM(C) 	 MonM(C).

Proof This is a special case of [11, Proposition 5.1] (which generalizes the version for
symmetric ∞-operads, [44, Proposition 2.4.1.7]). ��

The ∞-categorical analogue of Day convolution was first constructed by Glasman [30]
for symmetric monoidal ∞-categories. It was generalized by Lurie [44, Sect. 2.2.6] to O-
monoidal ∞-categories where O is a (symmetric) ∞-operad and further extended by Hinich
to flat ∞-operads [39]. The following is a special case of another generalization, proved in
[11]:
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Proposition 2.1.16 Let O be a generalized non-symmetric ∞-operad and U⊗ → O an O-
monoidal ∞-category. There exists an O-monoidal ∞-category U⊗

S → O, natural with
respect to O-monoidal functors, such that for X ∈ O[1] we have (U⊗

S )X 	 Fun(U⊗
X , S) and

with the universal property that for every generalized non-symmetric ∞-operad P over O
we have a natural equivalence

AlgP/O(U⊗
S ) 	 AlgP×OU⊗(S) 	 MonP×OU⊗(S).

Moreover, if P(U)⊗ := U
op,⊗
S then there is a fully faithful O-monoidal functor

U⊗ ↪→ P(U)⊗,

given over X ∈ O[1] by the Yoneda embedding U⊗
X ↪→ P(U⊗

X ).

Proof This is a special case of [11, Proposition 6.16 and Corollary 6.21]. ��
Remark 2.1.17 The functor U⊗

1 → O1 is a cocartesian fibration. Let U : O1 → Cat∞
denote the corresponding functor. Then U⊗

S,1 → O1 is the cartesian fibration for the functor

Fun(U , S) : Oop
1 → Cat∞ defined by composition, or equivalently the cocartesian fibration

for the induced functor given by the left adjoints, i.e. left Kan extensions along the functors
U ( f ) for f in U⊗

1 .

Definition 2.1.18 LetC be an∞-categorywith pullbacks andO a generalized non-symmetric
∞-operad. A Segal O-object in C is a functor F : O → C such that for every object X ∈ O

over [n] ∈ ´, the morphism

F(X) → F(X01) ×F(X11) · · · ×F(X(n−1)(n−1)) F(X(n−1)n)

is an equivalence. We write SegO(C) for the full subcategory of Fun(O,C) spanned by the
Segal O-objects.

Proposition 2.1.19 LetO be a generalized non-symmetric∞-operad. The restriction functor

SegO(S) → Fun(O0, S)

is a cartesian fibration, and the fibre at 	 : O0 → S is equivalent to MonO	
(S) where

O	 → O is the left fibration for the functor O → S obtained as the right Kan extension of
	 along the inclusion O0 ↪→ O.

Proof As [31, Theorem 7.5]. ��
Definition 2.1.20 Let O be a generalized non-symmetric ∞-operad and let U⊗ be an O-
monoidal ∞-category. We write

AlgdO(U) → Fun(O0, S)

for the cartesian fibration corresponding to the functor X �→ AlgOX /O(U) and refer to its
objects as O-algebroids in U.

Example 2.1.21 ´op-algebroids in a monoidal ∞-category V are algebras in V for the fam-
ily ´op

X (X ∈ S) of generalized non-symmetric ∞-operads. These were called categorical
algebras in [24], where they were used to model ∞-categories enriched in V.

123



126 R. Haugseng

Remark 2.1.22 Propositions 2.1.19 and 2.1.15 identify AlgdO(S) with SegO(S). If U⊗ is a
small O-monoidal ∞-category then the natural equivalence of Proposition 2.1.16 gives an
equivalence

AlgO	/O(U⊗
S ) 	 AlgU⊗

	
(S),

natural in 	, and so an equivalence

AlgdO(U⊗
S ) 	 AlgdU⊗(S) 	 SegU⊗(S).

Combined with the O-monoidal Yoneda embedding, we get:

Corollary 2.1.23 Let O be a generalized non-symmetric ∞-operad and U⊗ a small O-
monoidal ∞-category. Then there is a fully faithful functor

AlgdO(U) ↪→ SegUop,⊗(S)

with image those Segal Uop,⊗-spaces � such that for every x ∈ O[1], p ∈ �(x00), and
q ∈ �(x11) the presheaf

�x,p,q : (U⊗
x )op 	 U

op,⊗
x

�−→ S/�(x00)×�(x11)
(–)(p,q)−−−−→ S,

obtained by taking fibres at (p, q), is representable.

Definition 2.1.24 Let K be a collection of∞-categories. Following [44, Definition 3.1.1.18]
we say that an O-monoidal ∞-category V⊗ is compatible with K -colimits if

• the ∞-category VX has K -colimits for every object X ∈ O1,
• for every active morphism f : X → Y in O with X ∈ On and Y ∈ O1, the functor

n∏

i=1

VX(i−1)i 	 V⊗
X

f!−→ VY ,

induced by the cocartesian morphisms over f , preserves K -colimits in each variable.

Lemma 2.1.25 Let π : O → ´op be a generalized non-symmetric ∞-operad.

(i) If for every active morphism φ : [1] → [n] in ´ and every X ∈ On, there is a locally
π-cocartesian morphism X → φ!X in O, then π is a locally cocartesian fibration.

(ii) If in addition for every active map φ : [2] → [n] and X ∈ On, the canonical map

(φd1)!X → d1,!φ!X

is an equivalence, then π is a cocartesian fibration.

Proof Wefirst prove thatO has locally cocartesian morphisms over any active map α : [n] →
[m] in ´. Given x ∈ Om and y ∈ On , we have

Mapα
O(x, y) 	 lim

ρi j∈´el,op/[n]
Map

αi j
O (xα(i)α( j), yi j )

where αi j is the active part of α ◦ρi j . By assumption we have locally cocartesian morphisms
xα(i)α( j) → αi j,!xα(i)α( j) (if i = j this is just the identity), so we can rewrite this as

lim
ρi j∈´el,op/[n]

MapO j−i
(αi j,!xα(i)α( j), yi j ) 	 MapOn

(α!x, y),
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where α!x is the object of On 	 lim
ρi j∈´el,op/[n]

O j−i corresponding to the family of objects

αi j,!xα(i)α( j). Thus we have a locally cocartesian morphism x → α!x .
Next, suppose φ : [n] → [m] is an arbitrary map in ´, and let [n] α−→ [k] ι−→ [m] be its

active-inert factorization. Then for x ∈ Om the composite x → ι!x → α!ι!x is locally cocarte-
sian over φ, where the first map is cocartesian over ι and the second is locally cocartesian
over α: for y ∈ On we have an equivalence

Mapφ

O(x, y) 	 Mapα
O(ι!x, y) 	 MapOn

(α!ι!x, y),

since x → ι!x is cocartesian. This shows that O → ´op is a locally cocartesian fibration.
Before we prove part (ii), we make a further observation in the general case: Suppose

α : [n] → [m] is active, ι : [l] → [n] is inert, x is an object of Om , x → α!x is locally
cocartesian, and α!x → ι!α!x is cocartesian. Then it follows from the decomposition above
of α! in terms of locally cocartesian morphisms over the unique active maps [1] → [n] that
x → ι!α!x is locally cocartesian over φ := αι.

It remains to prove (ii), for which we have to check that the assumption implies that locally
cocartesian morphisms over active maps compose, i.e. for active morphisms

[m] α−→ [n] β−→ [k]
the natural map (βα)!X → α!β!X is an equivalence for X ∈ Ok . Using the decomposition of
locally cocartesian morphisms above we can immediately reduce to the case where m = 1.
Now if α is surjective, we must have n = 0 or 1; if n = 0 then β = id[0], while if n = 1 then
α = id[1] — in either case the claim is trivially true. We can therefore assume that α is not
surjective, in which case we can find a factorization of α as

[1] d1−→ [2] α′−→ [n]
whereα′(1) �= α′(0), α′(2); using this factorizationwe get for X ∈ Ok a commutative square

(βα′d1)!X d1,!(βα′)!X

(α′d1)!β!X d1,!α′
!β!X .

Here our assumption guarantees the horizontal maps are equivalences, and we want to show
the left vertical map is an equivalence. It thus suffices to show the right vertical map is an
equivalence, for which it’s enough to prove (βα′)!X → α′

!β!X is an equivalence since d1,!
is a functor. Our assumption on α′(1) means this decomposes as a pair of maps

[1] = {0, 1} → {α′(0), . . . , α′(1)} → {βα′(0), . . . , βα′(1)}
and similarly with {1, 2}, where

{α′(0), . . . , α′(1)}, {α′(1), . . . , α′(2)} < n.

This means we can reduce to our assumption by inducting on n. Combined with our previous
observations we have then shown that locally cocartesian morphisms compose in general,
since it holds for all combinations of active and inert maps. Thus π is a cocartesian fibration,
as required. ��
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2.2 ∞-Categories of spans

For compatibility with [4] we will work with∞-categories as quasicategories, i.e. simplicial
sets satisfying the horn-filling condition for inner horns, in this and the next subsections.

Definition 2.2.1 Let ε : ´ → ´ be the functor [n] �→ [n]�[n]op. This induces a functor
ε∗ : Set� → Set� given by composition with ε; this functor is the edgewise subdivision of
simplicial sets. If C is an ∞-category, we will write Twr C := ε∗C and refer to this as the
twisted arrow ∞-category of C.

Remark 2.2.2 By [44, Proposition 5.2.1.3] the simplicial set Twr C is an ∞-category if C is
one, and the projection Twr C → C×Cop (induced by the inclusions [n], [n]op → [n]�[n]op)
is a right fibration.

Remark 2.2.3 If C is an ordinary category, then it is easy to see that Twr C can be identified
with the twisted arrow category of C. This has morphisms c → d in C as objects, and
diagrams

c d

c′ d ′

as morphisms from c → d to c′ → d ′, with composition induced from composition in C.
Unwinding the definition of Twr C forC an∞-category,we see that its objects andmorphisms
admit the same description in terms of C.

Example 2.2.4 The twisted arrow category Twr (�n) is the poset of pairs (i, j) with 0 ≤ i ≤
j ≤ n where (i, j) ≤ (i ′, j ′) if i ≤ i ′, j ′ ≤ j .

Warning 2.2.5 There are two possible conventions for the definition of Twr C: Instead of the
definition we have given we could instead consider [n] �→ [n]op�[n]; let us call the resulting
simplicial set Tw� C — this is the definition of the twisted arrow ∞-category used in [4]
(there called Õ(C)). We clearly have Twr C ∼= (Tw� C)op, which explains why op’s appear in
different places here compared to [4].

Definition 2.2.6 The functor ε∗ has a right adjoint ε∗ : Set� → Set�, given by right Kan
extension. Explicitly, ε∗X is determined by Hom(�n, ε∗X) ∼= Hom(Twr (�n), X). If C is an
∞-category, we write Span(C) for the simplicial set ε∗C.

Definition 2.2.7 Let Twr (�n)0 denote the full subcategory of Twr (�n) spanned by the
objects (i, j) where j − i ≤ 1. We say a simplex �n → Span(C) is cartesian if the
corresponding functor F : Twr (�n) → C is the right Kan extension of its restriction to
Twr (�n)0, or equivalently if for all integers 0 ≤ i ≤ k ≤ l ≤ j ≤ n, the square

F(i, j) F(k, j)

F(i, l) F(k, l)

is cartesian. We write Span(C) for the simplicial subset of Span(C) containing only the
cartesian simplices.
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Remark 2.2.8 Amorphism I → Span(C) corresponds to a functor F : Twr (I) → C. Unwind-

ing the definitions, we see that the map to Span(C) takes i ∈ I to F(i
id−→ i) and a morphism

f : i → j to the value of F at the span

i i j

i j j .

f

f
f

A functor I → Span(C) then corresponds to a functor Twr (I) → C such that for all com-
posable morphisms f : i → j , g : j → k, the value of F at the commutative square

i

i j

k j

j k

j

in Twr (I) is a cartesian square in C.

Proposition 2.2.9 (Barwick, [4, Proposition 3.4]) If C is an ∞-category with pullbacks, then
Span(C) is an ∞-category. ��
Definition 2.2.10 Following Barwick [4], we say a triple is a list (C,CF ,CB) where C is
an ∞-category and CB and CF are both subcategories of C containing all the equivalences.
We will call the morphisms in CB the backwards morphisms and the morphisms in CF the
forwardsmorphisms in the triple.We say a triple is adequate if for everymorphism f : x → y
in CF and g : z → y in CB , there is a pullback square

w z

x y

f ′

g′ g

f

where f ′ is in CF and g′ is in CB .

Example 2.2.11 If C is any∞-category, we have the triple (C,C,C)where all morphisms are
both forwards and backwards morphisms. We call this themaximal triple on C; it is adequate
if and only if C has pullbacks.

Remark 2.2.12 In [4], the forwards morphisms are called ingressive and the backwards mor-
phisms are called egressive.

Definition 2.2.13 Given a triple (C,CF ,CB)wedefine SpanB,F (C) to be the simplicial subset
of Span(C) containing only those simplices that correspond to maps σ : Twr (�n) → C such
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that for all i, j the map σ(i, j) → σ(i + 1, j) lies in CF and the map σ(i, j) → σ(i, j − 1)
lies in CB . We write SpanB,F (C) for the simplicial subset of SpanB,F (C) containing the
cartesian simplices with this property.

Proposition 2.2.14 (Barwick, [4, Proposition 5.6]) If (C,CF ,CB) is an adequate triple, then
SpanB,F (C) is an ∞-category. ��

2.3 Spans and fibrations

Definition 2.3.1 Given an adequate triple (B,BF ,BB) and an inner fibration p : E → B such
that E has p-cartesian morphisms over morphisms in BB , we define a triple (E,EF ,EB) by
taking EB to consist of cartesian morphisms over morphisms in BB and EF to consist of all
morphisms lying over morphisms in BF .

Proposition 2.3.2 In the situation of Definition 2.3.1, the triple (E,EF ,EB) is adequate.
Moreover, we have a pullback square of simplicial sets

SpanB,F (E) SpanB,F (E)

SpanB,F (B) SpanB,F (B).

This is a consequence of the following simple observation:

Lemma 2.3.3 Let p : E → B be an inner fibration, and suppose we have a pullback square

a′ b′

a b

f ′

α β

f

in B. If b̄′ → b̄ is a morphism in E over β and there exist p-cartesian morphisms ā → b̄
over f and ā′ → b̄′ over f ′, then the commutative square

ā′ b̄′

ā b̄

(where the left vertical morphism is induced by the universal property of ā → b̄) is cartesian.

Proof For any x̄ in E over x ∈ B we have a commutative cube

MapE(x̄, ā′) MapE(x̄, b̄′)

MapE(x̄, ā) MapE(x̄, b̄)

MapB(x, a′) MapB(x, b′)

MapB(x, a) MapB(x, b)
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in the ∞-category of spaces. Here the bottom face is cartesian since a′ is a pullback, and the
front and back faces are cartesian since the morphisms ā → b̄ and ā′ → b̄′ are p-cartesian.
Therefore the top face is also cartesian. Since this holds for all x̄ ∈ E this means ā′ is the
pullback ā ×b̄ b̄

′, as required. ��
Proof of Proposition 2.3.2 Adequacy follows immediately from Lemma 2.3.3. Moreover, this
lemma also shows that an n-simplex of SpanB,F (E) lies in SpanB,F (E) if and only if it maps
to an n-simplex of SpanB,F (B), giving the pullback square. ��
Definition 2.3.4 For K a simplicial set, let Twr

B(K ) denote the marked simplicial set
(Twr (K ), B) where B is the set of “backwards” maps, i.e. those lying in the image of
K op → Twr (K ).

In the remaining part of this subsection we give a reformulation of the results of [4,
Sect. 12] that will be convenient for us.

Proposition 2.3.5 For 0 < k < n, the map Twr
B(�n

k )
op → Twr

B(�n)op is marked anodyne
in the sense of [43, Definition 3.1.1.1].

Proof This follows from the filtration defined in [4, Sect. 12], using [4, Proposition 12.14].
��
Corollary 2.3.6 If E → B is as in Definition 2.3.1, then

(i) SpanB,F (E) → SpanB,F (B) is an inner fibration.
(ii) SpanB,F (E) → SpanB,F (B) is an inner fibration.

Proof To prove (i) we must show that there exists a lift in every commutative square

�n
k SpanB,F (E)

�n SpanB,F (B)

with 0 < k < n. This is equivalent to giving a lift in the corresponding commutative square

Twr �n
k E

Twr �n B.

Here the lift exists by Proposition 2.3.5, since by definition the backwards maps go to
cartesian morphisms in E. Now (ii) follows from the pullback square in Proposition 2.3.2. ��
Proposition 2.3.7 Let p : E → B be as in Definition 2.3.1, and assume that in addition E

has locally p-cocartesian edges over morphisms in BF . Then:

(i) SpanB,F (E) → SpanB,F (B) is a locally cocartesian fibration,
(ii) SpanB,F (E) → SpanB,F (B) is a locally cocartesian fibration,

A span X
f←− Y

g−→ Z in E is locally p-cocartesian if and only if g is a locally p-cocartesian
morphism in E.
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Proof We first prove (i). Consider a 1-simplex φ of SpanB,F (B), which corresponds to a

span b
f←− b′ g−→ b′′ in B. We wish to show that the pullback φ∗SpanB,F (E) → �1 is a

cocartesian fibration. Pick an object e of E lying over b. Then a 1-simplex of SpanB,F (E)

with source e lying over φ is a span e
f̄←− e′ ḡ−→ e′′ where f̄ is a cartesian morphism over

f and ḡ is any morphism over g. The space of maps from e to e′′ in φ∗SpanB,F (E) can
therefore be identified with the space MapE(e′, e′′)g of maps in E lying over g. From this
it follows immediately that if ḡ : e′ → e′′ is a locally cocartesian morphism from e′ over g

then the span e
f̄←− e′ ḡ−→ e′′ is locally cocartesian, as required. This proves (i), from which

(ii) follows by the pullback square of Proposition 2.3.2. ��
Corollary 2.3.8 Let p : E → B be as in Definition 2.3.1, and assume in addition:

(1) E has p-cocartesian edges over morphisms in BF .
(2) Consider a pullback square

a′ b′

a b

f ′

α β

f

in B with α, β in BF and f ′, f in BB. Let b̄′ be an object of E over b′, and suppose

b̄′ β̄−→ b̄ is a p-cocartesian morphism over β and ā
f̄−→ b̄ and ā′ f̄ ′−→ b̄′ are p-cartesian

morphisms over f and f ′. Then in the commutative square

ā′ b̄′

ā b̄

f̄ ′

ᾱ β̄

f̄

induced by the universal property of f̄ , the morphism ᾱ is again p-cocartesian.

Then SpanB,F (E) → SpanB,F (B) is a cocartesian fibration.

Proof We know from Proposition 2.3.7 that SpanB,F (E) → SpanB,F (B) is a locally cocarte-
sian fibration. By [43, Proposition 2.4.2.8] it therefore suffices to show that the locally
cocartesian morphisms are closed under composition. Lemma 2.3.3 shows that this is indeed
the case under the given assumptions. ��

3 Day convolution for double∞-categories

In this section we carry out the main technical construction of this paper: We show that for a
certain class of double ∞-categories M, there exists a Day convolution double ∞-category
M̂S such that for any non-symmetric ∞-operad O we have a natural equivalence

AlgO(M̂S) 	 SegO×´opM
(S).

In Sect. 3.1 we introduce an “unfolding” construction that we use to define M̂S in Sect. 3.2;
we then establish the universal property in Sect. 3.3. Next we prove in Sect. 3.4 that we may
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view associative algebras in M̂ as algebras in a family of monoidal ∞-categories. We also
consider enriched variants of the Day convolution construction in Sect. 3.5, and in Sect. 3.6
we illustrate the theory by discussing the example of enriched ∞-categories.

3.1 An unfolding construction

Suppose we have a cocartesian fibration p : E → U and a cartesian fibration q : U → B.
Our goal in this subsection is to construct for every cocomplete ∞-category X a cocartesian
fibration ẼX → B with the universal property that for any functor C → B there is a natural
equivalence

Map/B(C, ẼX)
∼−→ Map(C ×B E,X).

Remark 3.1.1 Recall that a functor of ∞-categories f is called an exponentiable, flat, or
Conduché fibration if the functor f ∗ given by pullback along f has a right adjoint f∗.
Both cartesian and cocartesian fibrations are examples of exponentiable fibrations, hence the
composite qp : E → B is an exponentiable fibration. The universal property of ẼX is that of
(qp)∗(X× E), but it is not clear from the latter that ẼX will be a cocartesian fibration if X is
cocomplete.

To define ẼX we first introduce an “unfolding construction” that uses p and q to construct
a functor B → Span(Cat∞) that takes b ∈ B to the fibre Eb of the composite E → B, and
takes a morphism f : b → b′ to the top row in the diagram

Eb f ∗Eb Eb′

Ub Ub′ Ub′ ,

pb

f!

� pb′

f ∗

where f ∗ : Ub′ → Ub is the functor given by the cartesian morphisms over f and the left
square is a pullback; an object of f ∗Eb then corresponds to a pair (x ∈ Eb, u ∈ Ub′) such that
p(x) 	 f ∗u in Ub, and the top right morphism takes (x, u) to the cocartesian pushforward
f̄!x where f̄ : f ∗u → u is the q-cartesian morphism over f .

Construction 3.1.2 Let q∨ : U∨ → Bop be the cocartesian fibration dual to q : U → B (i.e.
the cocartesian fibration corresponding to the same functor as q). By [25, Theorem 4.5], the
free cocartesian fibration on q∨ is U∨ ×Bop (Bop)�

1 → Bop, where the fibre product uses
q∨ and evaluation at 0 and the functor to Bop uses evaluation at 1. Since q∨ is a cocartesian
fibration, the identity induces a functor

U∨ ×Bop (Bop)�
1 → U∨

over Bop that preserves cocartesian morphisms. Dualizing again, we obtain a morphism of
cartesian fibrations

(U∨ ×Bop (Bop)�
1
)∨ → U

that preserves cartesian morphisms. The following lemma identifies the source of this functor
with U∨ ×Bop Twr (Bop):

Lemma 3.1.3 For any functor f : C → B, the cartesian fibration (C×BB�1
)∨ → Bop dual

to the free cocartesian fibration on f is equivalent to

C ×B Twr (B) → Bop.
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Proof We can write the cocartesian fibration C ×B B�1 → B as the fibre product

(C × B) ×(B×B) B
�1

of cocartesian fibrations over B. Since dualization of fibrations is an equivalence of ∞-
categories, it preserves fibre products, hence we obtain an equivalence

(C ×B B�1
)∨ 	 (C × Bop) ×(B×Bop) (B�1

)∨ 	 C ×B (B�1
)∨.

By [36, Proposition A.2.4] the dual of B�1 → B is Twr (B) → Bop, which completes the
proof. ��
Definition 3.1.4 Given a cartesian fibrationU → B, we have constructed a canonical functor

cU : U∨ ×Bop Twr (B) → U.

For E → U a cocartesian fibration, we define the unfolding Unf(E) as the fibre product
(U∨ ×Bop Twr (B)) ×U E, using cU, and write cU for the induced map Unf(E) → E over
cU. The projection Unf(E) → Twr (B) is then a cocartesian fibration, since it decomposes
as a composite

(U∨ ×Bop Twr (B)) ×U E → U∨ ×Bop Twr (B) → Twr (B),

where the first map is a pullback of the cocartesian fibration E → U and the second is a
pullback of the cocartesian fibration U∨ → Bop.

Remark 3.1.5 Given a functor C → B, we have a commutative diagram

Unf(C ×B E) C ×B E

Unf(E) E

(C ×B U)∨ ×Cop Twr (C) C ×B U

U∨ ×Bop Twr (B) U

Twr (C) C

Twr (B) B.

In the top cube, the back and front faces are cartesian by definition of unfolding, and the right
face is cartesian since the bottom right and right composite squares are cartesian. This implies
that the left square in the top cube is cartesian. Moreover, since dualization of fibrations is
compatible with pullbacks we have (C ×B U)∨ 	 U∨ ×Bop Cop, and hence

(C ×B U)∨ ×Cop Twr (C) 	 U∨ ×Bop Twr (C) 	 (U∨ ×Bop Twr (B)
)×Twr (B) Tw

r (C).

The bottom left face in the diagram is therefore cartesian, and so the left composite square
is a pullback. Thus unfolding is compatible with base change, in the sense that we have a
natural equivalence

Unf(C ×B E)
∼−→ Twr (C) ×Twr (B) Unf(E).
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Lemma 3.1.6 The cocartesian fibration Unf(E) → Twr (B) corresponds to a functor
UE : B → Span(Cat∞).

Proof Given morphisms a
f−→ b

g−→ c in B, we have the commutative diagram of ∞-
categories

g∗ f ∗Ea

f ∗Ea g∗Eb

Ea Uc Eb Ec

Ub Uc

Ua Ub Uc

and by Remark 2.2.8 we must show that the commutative square in the top level is cartesian.
But in the commutative cube the bottom, back left, and front right faces are cartesian, hence
so is the top face. ��

We can now define ẼX using the following construction:

Definition 3.1.7 For any ∞-category X, let pX : FX → Cat∞ denote the cartesian fibration
correspoding to the functor Fun(–,X) : Catop∞ → Ĉat∞. If X is cocomplete, then this is
also a cocartesian fibration (with cocartesian morphisms given by left Kan extensions). We
then have a locally cocartesian fibration SpanB,F (FX) → Span(Cat∞) by Proposition 2.3.7,
where FX is equipped with the triple structure from Definition 2.3.1.

Definition 3.1.8 Given a cocartesian fibration E → U and a cartesian fibration U → B, we
let ẼX for a cocomplete ∞-category X be defined by the pullback

ẼX SpanB,F (FX)

B Span(Cat∞).

pX
UE

Then ẼX → B is a locally cocartesian fibration.

Lemma 3.1.9 LetX be a cocomplete∞-category. The locally cocartesian fibration ẼX → B

is a cocartesian fibration.

Proof We must show that the locally cocartesian morphisms are closed under composition.

For morphisms a
f−→ b

g−→ c in B, we have the cartesian square

g∗ f ∗Ea g∗Eb

f ∗Ea Eb

F ′

G ′ G

F
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as above, and we must show that the mate transformation

F ′
! G

′∗ → G∗F!
of functors Fun( f ∗Ea,X) → Fun(g∗Eb,X) is an equivalence. At φ ∈ Fun( f ∗Ea,X) and
x ∈ g∗Eb, the mate transformation evaluates to the natural map of colimits

colim
y∈(g∗ f ∗Ea)/x

φ(G ′y) → colim
z∈( f ∗Ea)/Gx

φ(z)

arising from the functor (g∗ f ∗Ea)/x → ( f ∗Ea)/Gx induced by G. It thus suffices to show
that this functor is cofinal.

By definition, (g∗ f ∗Ea)/x is the pullback g∗ f ∗Ea ×g∗Eb (g∗Eb)/x . Since g∗Eb and
g∗ f ∗Ea are pulled back along Uc → Ub, we can rewrite this to see that there is a natu-
ral pullback square

(g∗ f ∗Ea)/x ( f ∗Ea)/Gx

(Uc)/πcx (Ub)/πbGx ,

where πt denotes the projection Et → Ut . In this square the right vertical functor is a
cocartesian fibration, and the bottom horizontal functor is cofinal since both (Uc)/πcx and
(Ub)/πbGx have a terminal object, which is preserved by this functor. It follows by [43,
Proposition 4.1.2.15] that the top horizontal functor is also cofinal, as required. ��
Remark 3.1.10 The cocartesian fibration ẼX → B corresponds to a functor B → Cat∞.
This takes b ∈ B to Fun(Eb,X) and a morphism f : b → b′ to the composite functor

Fun(Eb,X) → Fun( f ∗Eb,X) → Fun(Eb′ ,X)

where the first functor is given by composition with f ∗Eb → Eb and the second by left
Kan extension along f ∗Eb → Eb′ . Both f ∗Eb and Eb′ are cocartesian fibrations over Ub′ ,
and the functor f! : f ∗Eb → Eb′ preserves cocartesian morphisms. The following lemma
therefore implies that the left Kan extension along f! can be computed fibrewise, i.e. for
� : f ∗Eb → X and x ∈ Eb′ over u ∈ Ub′ we have

( f!)!�(x) 	 colim
(Eb, f ∗u)/x

�,

where we have used the equivalence ( f ∗Eb)u 	 Eb, f ∗u , and the slice

(Eb, f ∗u)/x := Eb, f ∗u ×Eb′,u (Eb′,u)/x

is defined using the functor Eb, f ∗u → Eb′,u given by cocartesian pushforward along the
cartesian morphism f̄ : f ∗u → u. We obtain the following description of the functor
Fun(Eb,X) → Fun(Eb′ ,X) arising from the cocartesianfibration ẼX → B: For� : Eb → X,
its image is the functor Eb′ → X that to x ∈ Eb′,u assigns

colim
(y, f̄!y→x)∈(Eb, f ∗u)/x

�(y).

Lemma 3.1.11 Consider a commutative triangle of ∞-categories

E F

B,

f

p q
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where p and q are cocartesian fibrations and f preserves cocartesian morphisms. Then for
x ∈ Fb the inclusion

Eb/x := Eb ×Fb Fb/x → E ×F F/x =: E/x

is cofinal. In particular, if C is a cocomplete ∞-category then the left Kan extension f!F
along f of any functor F : E → C can be computed fibrewise over B, i.e. for x ∈ Fb we
have

f!F(x) 	 colim
y∈Eb/x

F(y).

Proof By [43, Theorem 4.1.3.1] it suffices to check that for every object η = (y, f (y)
φ−→ x)

in E/x , the∞-category (Eb/x )η/ is weakly contractible. This∞-category has as objects maps
y → y′ over q(φ) together with commutative triangles

f (y)

x

f (y′)

φ

φ′

where φ′ lies over idb. It therefore has an initial object, given by the cocartesian morphism

ψ : y → y′ over q(φ) together with the canonical factorization f (y)
f (ψ)−−−→ f (y′) → x that

exists since f (ψ) is again a cocartesian morphism. ��
Remark 3.1.12 We can identify sections of the cocartesian fibration ẼX as follows: For any
functor φ : C → B, we have

Map/B(C, ẼX) 	

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C SpanB,F (FX)

B Span(Cat∞)

φ Span(pX)

UE

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
⊆

⎧
⎪⎪⎨

⎪⎪⎩

Twr (C) FX

Twr (B) Cat∞
Twr (φ) pX

⎫
⎪⎪⎬

⎪⎪⎭
.

By the pullback square in Proposition 2.3.2, the only condition for a point of the right-hand

∞-groupoid to lie in the image of Map/B(C, ẼX) is that the functor Twr (C)
�−→ FX takes

morphisms in Twr (C) of the form

c c

d c

f

f

to cartesian morphisms in FX. This amounts to the natural transformation

φ( f )∗Eφ(c)

X

Eφ(c)

�( f )

�(idc)
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being an equivalence. Since FX is by definition the cartesian fibration for the functor
Fun(–,X) we can use [25, Proposition 7.3] and Remark 3.1.5 to obtain an equivalence
⎧
⎪⎪⎨

⎪⎪⎩

Twr (C) FX

Twr (B) Cat∞
Twr (φ) pX

⎫
⎪⎪⎬

⎪⎪⎭
	 Map(Twr (C) ×Twr (B) Unf(E),X) 	 Map(Unf(C ×B E),X),

natural in C, under which Map/B(C, ẼX) is identified with the functors Twr (C) ×Twr (B)

Unf(E) → X that take morphisms

( f : c → d, e ∈ Eφ(c), u ∈ Uφ(d), πφ(c)e 	 φ( f )∗u) → (idc, e, φ( f )∗u, πφ(c)e 	 φ( f )∗u),

over the morphism in Twr (C) above, to equivalences in X.

Notation 3.1.13 Let WU/B denote the class of morphisms in U∨ ×Bop Twr (B) (or Unf(U))
of the form

(u ∈ Ub, f : a → b) → ( f ∗u, ida),

corresponding to the cocartesian morphism u → f ∗u in U∨ and the morphism

a a

b a

f

f

in Twr (B); this is the union over b ∈ B of the classes WU/B,b of such morphisms that lie
over b. Then let WE/B denote the class of morphisms in Unf(E) consisting of cocartesian
morphisms lying over the morphisms in WU.

Remark 3.1.14 Using this notation, Remark 3.1.12 identifies the space Map/B(C, ẼX) of

sections with the space of functors Unf(C×BE) → X that take the morphisms inWC×BE/C

to equivalences in X, or equivalently the space

Map(Unf(C ×B E)[W−1
C×BE/C],X)

of functors from the localization at WC×BE/C. Our next goal is to identify this localization
with C ×B E.

Proposition 3.1.15 The functor cU : U∨ ×Bop Twr (B) → U exhibits U as the localization at
the class WU/B.

Proof The functor cU is by construction a map of cartesian fibrations over B that preserves
cartesian morphisms. On fibres over b ∈ B, the functor

cU,b : U∨ ×Bop (Bb/)
op → Ub

takes (u ∈ Ua, f : b → a) to f ∗u ∈ Ub. This has a canonical section sb, taking u ∈ Ub

to (u, idb). Moreover, the cocartesian morphisms in U∨ determine a natural transformation
id → sbcU,b, given for (u, f : b → a) by the cocartesian morphism u → f ∗u and the
triangle

b

a b.
f

f
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It follows that cU,b exhibits Ub as the localization of U∨ ×Bop (Bb/)
op at the class WU/B,b.

The same argument also shows that Ub is the localization at the larger class W ′
U/B,b of

morphisms

(u, f : b → a) → (u′, f ′ : b → a′)

over

b

a a′.
f

f ′

α

and α∗u → u′, such that the inducedmorphism f ∗u 	 f ′∗α∗u → f ′∗u′ is an equivalence in
Ub. This class is compatible with cartesian pullback, in the sense that β∗W ′

U/B,b ⊆ W ′
U/B,b′

for β : b′ → b, and so [38, Proposition 2.1.4] implies that cU exhibits U as the localization
of U∨ ×op

B Twr (B) at W ′
U/B := ⋃b W

′
U/B,b. It thus only remains to see that localizing at

W ′
U/B is the same as localizing at WU/B, which follows from applying the 2-for-3 property

of localizations using the diagram

b b b

a a′ b

f f ′

α f ′

in Twr (B). ��
Corollary 3.1.16 The functor cU : Unf(E) → E exhibits E as the localization of Unf(E) at
the class WE/B.

Proof It follows from [38, Proposition 2.1.4] and its proof that if X → Y is a cocartesian
fibration and η : Y′ → Y exhibits Y as the localization of Y′ at the morphisms in W , then the
canonical functor X′ → X from the pullback X′ of X along η exhibits X as the localization
of X′ at the cocartesian morphisms over W . ��

From this the universal property of ẼX now follows using Remark 3.1.14:

Corollary 3.1.17 For any ∞-category X, there is a natural equivalence

Map/B(C, ẼX) 	 Map(C ×B E,X),

natural in C ∈ Cat∞/B. ��
Remark 3.1.18 We remark briefly on the naturality of the construction in the cocartesian
fibration. Suppose then that we have a commutative triangle

E0 E1

U,

φ

p0 p1

and a cartesian fibration q : U → B. We can replace the triangle by a cocartesian fibration
p : E → U × �1 and then apply the construction to p and q × �1 : U × �1 → B × �1 to
obtain for any cocomplete∞-categoryX a cocartesian fibration ẼX → B×�1. By naturality
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of the construction the fibres at i = 0, 1 identify with Ẽi,X → B and so this cocartesian
fibration corresponds to a commutative triangle

Ẽ0,X Ẽ1,X

B,

where the horizontal functor preserves cocartesian morphisms. On the fibre over b ∈ B, this
is the functor Fun(E0,b,X) → Fun(E1,b,X) given by left Kan extension along φb : E0,b →
E1,b. Making the same construction with �1 replaced by �n for all n it is easy to see that we
get a functor (̃–)X from (small) cocartesian fibrations overB to (large) cocartesian fibrations
over B.

3.2 The day convolution double∞-category

We now apply the construction of the previous subsection to obtain the Day convolution for
a double ∞-category. First we need some notation:

Definition 3.2.1 Let ˚n denote the partially ordered set of pairs of integers (i, j), 0 ≤ i ≤
j ≤ n, with (i, j) ≤ (i ′, j ′) if i ≤ i ′ ≤ j ′ ≤ j . This determines a functor ˚• : ´ → Cat
by taking φ : [n] → [m] to the functor ˚n → ˚m that sends (i, j) to (φ(i), φ( j)); we write
̂̊→ ´op for the cartesian fibration corresponding to this functor.We can also define a functor
� : ̂̊→ ´op by sending ([n], (i, j)) to [ j − i], with a map ([n], (i, j)) → ([m], (i ′, j ′)),
which corresponds to a map φ : [m] → [n] in ´ such that (i, j) ≤ (φ(i ′), φ( j ′)) in ˚m ,
to the map [ j ′ − i ′] → [ j − i] obtained by restricting φ to a map {i ′, i ′ + 1, . . . , j ′} →
{i, i + 1, . . . , j}.

Remark 3.2.2 We can identify ˚n with Twr (�n) and with ´int,op
/[n] .

Definition 3.2.3 LetM → ´op be a double ∞-category. Then the base change

˚M := M ×´op ̂̊→ ̂̊
along the functor � is a cocartesian fibration. Applying the unfolding construction of the
previous subsection to this together with the cartesian fibration ̂̊ → ´op, we get a new
cocartesian fibration Unf(˚M) → Twr (´op), corresponding to a functor U˚M : ´op →
Span(Cat∞), from which we obtain another cocartesian fibration

M̂+
X :=˜̊MX → ´op,

where X is any cocomplete ∞-category.

Remark 3.2.4 The cocartesian fibration M̂+
X → ´op corresponds to a functor ´op → Cat∞

that takes [n] to Fun(M ×´op ˚
n,X) and a morphism φ : [m] → [n] in ´ to

Fun(M ×´op ˚
n,X) → Fun(φ∗(M ×´op ˚

n),X) → Fun(M ×´op ˚
m,X)

where φ∗(M ×´op ˚
n) is equivalently the pullback M ×´op ˚

m along the composite ˚m φ−→
˚n → ´op, the first functor is given by composition with the induced functorM×´op ˚

n →
φ∗(M×´op ˚

n), and the second by left Kan extension along φ∗(M×´op ˚
n) → M×´op ˚

m .
Since both φ∗(M×´op˚

n) andM×´op˚
m are cocartesian fibrations over˚m , and the functor
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preserves cocartesian morphisms, Lemma 3.1.11 implies that this left Kan extension is given
at (x ∈ M j−i , (i, j) ∈ ˚m) by the colimit over

Mφ( j)−φ(i)/x := Mφ( j)−φ(i) ×M j−i M j−i/x ,

where the functor Mφ( j)−φ(i) → M j−i arises from the cocartesian morphisms over the
restriction of φ to an (active) morphism [ j − i] ∼= {i, i + 1, . . . , j} → {φ(i), φ(i) +
1, . . . , φ( j)} ∼= [φ( j) − φ(i)]. Note in particular that this is the identity if φ is an inert
morphism.

Remark 3.2.5 Continuing from Remark 3.2.4, let us spell out the description a little further
in the case of d1 : [1] → [2]: A functor F : M×´op ˚

1 → X assigns to every x ∈ M1 a span

F(d1,!x) ← F(x) → F(d0,!x)

inX, while a functor G : M×´op ˚
2 → X assigns to (x, y) ∈ M2 	 M1×M0 M1 a diagram

G(x, y)

G(x) G(y)

G(d0,!x) G(d1,!x) 	 G(d0,!y) G(d1,!y).

In the first step, this is taken to the functor d∗
1 (M ×´op ˚

2) → X that to (x, y) assigns the
span

G(d0,!x) ← G(x, y) → G(d1,!y),

which then in the second step is taken to the functorM×´op ˚
1 → X that to x ∈ M1 assigns

G(d0,!x) ← colim
(x ′,y′)∈M2/x

G(x ′, y′) → G(d1,!x),

where the colimit is over the fibre productM2/x := M2×M1M1/x defined using d1,! : M2 →
M1.

Remark 3.2.6 Note that if φ : [m] → [n] is an inert morphism in ´, then φ∗(M×´op ˚
n) →

M ×´op ˚
m is an equivalence, and so the functor

Fun(M ×´op ˚
n,X) → Fun(M ×´op ˚

m,X)

is simply given by restriction.

We now define a subobject of M̂+
X that, in good cases, will be a double ∞-category:

Definition 3.2.7 Let ˜n be the full subcategory of˚n on the objects (i, j) such that j− i ≤ 1.
We define ˜Mn to be the pullback

˜Mn ˚Mn

˜n ˚n,

and write M̂X for the full subcategory of M̂+
X spanned by the functors ˚Mn → X that are

right Kan extensions of their restrictions to ˜Mn , for all n.
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Lemma 3.2.8 A functor F : ˚Mn → X is a right Kan extension of its restriction to ˜Mn if
and only if for every object ((i, j) ∈ ˚n, xi j ∈ M j−i ) and every integer k, i ≤ k ≤ j , the
commutative square

F(xi j ) F(xik)

F(xk j ) F(xkk)

is cartesian, where xi j → xi ′ j ′ denotes the cocartesian morphism over (i, j) → (i ′, j ′).

Proof For ξ = ((i, j) ∈ ˚n, xi j ∈ M j−i ), let ˜M′
n,ξ/ denote the full subcategory of

˜Mn,ξ/ := ˜Mn ×˚Mn ˚Mn/ξ spanned by the cocartesian morphisms. Then ˜M′
n,ξ/ 	

˜n
(i, j)/ 	 ˜ j−i and the inclusion ˜M′

n,ξ/ ↪→ ˜Mn,ξ/ is coinitial. It follows that F is a right
Kan extension of its restriction to ˜Mn if and only if F(xi j ) is the limit over F(xi ′ j ′) with
(i ′, j ′) ∈ ˜n

(i, j)/. Depicting the category ˜n
(i, j)/ as

(i, i + 1) · · · ( j − 1, j)

(i, i) (i + 1, i + 1) ( j − 1, j − 1) ( j, j),

we see that the condition is that the map

F(xi j ) → F(xi,i+1) ×F(x(i+1)(i+1)) · · · ×F(x( j−1)( j−1)) F(x( j−1) j )

must be an equivalence. Inducting on j − i and using that limits commute, we see that this
condition holds for all (i, j) if and only if the given commutative squares are all cartesian. ��
Definition 3.2.9 LetM be a double ∞-category and X a cocomplete ∞-category with pull-
backs. Fix an active morphism φ : [m] → [n] in ´, an object x0m ∈ Mm , and an integer
0 ≤ k ≤ m. Suppose given functors

F0k : Mφ(k)/x0k → X,

Fkk : M0/xkk → X,

Fkm : Mn−φ(k)/xkm → X,

where x0m → xi j is the cocartesian morphism over {i, . . . , j} ↪→ [m] andMφ( j)−φ(i)/xi j is
defined using the restriction of φ to an active morphism

[ j − i] ∼= {i, i + 1, . . . , j} → {φ(i), φ(i) + 1, . . . , φ( j)} ∼= [φ(i) − φ(i)],
together with natural transformations F0k → Fkk |Mφ(k)/x0k

, Fkm → Fkk |Mn−φ(k)/xkm
. Then

define F0m : Mn/x0m → X as the fibre product F0k ×Fkk Fkm using these natural transfor-
mations and the equivalence Mn/x0m 	 Mφ(k)/x0k ×M0/xkk

Mn−φ(k)/xkm . We then have an
equivalence

colim
Mn/x0m

F0m 	 colim
Mφ(k)/x0k ×M0/xkk

Mn−φ(k)/xkm

F0k ×Fkk Fkm .

This induces a canonical distributivity morphism

colim
Mn/x0m

F |0m →
(

colim
Mφ(k)/x0k

F0k

)
×(

colimM0/xkk
Fkk
)

(
colim

Mn−φ(k)/xkm

Fkm

)
.

We say M is X-admissible if this morphism is always an equivalence, i.e. if colimits over
these slices ofM distribute over pullbacks.
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Remark 3.2.10 Given a functor F : ˚Mn → X that is right Kan extended from ˜Mn , the
condition of X-admissibility implies an equivalence

colim
Mn/x0m

F |Mn/x0m
→
(

colim
Mφ(k)/x0k

F |Mφ(k)/x0k

)
×(

colimM0/xkk
F |M0/xkk

)
(

colim
Mn−φ(k)/xkm

F |Mn−φ(k)/xkm

)
.

Example 3.2.11 If M0 is an ∞-groupoid (in which case we may view M as an (∞, 2)-
category, in the sense of a (not necessarily complete) 2-fold Segal space), then (M0)/xkk 	
∗, so M is X-admissible provided pullbacks in X preserve colimits, i.e. colimits in X are
universal. In particular,M is X-admissible for any ∞-topos X.

Proposition 3.2.12 SupposeM is anX-admissible double∞-category. Then M̂X is a double
∞-category.

Proof Using the description of M̂X in Lemma 3.2.8 we see that the condition of X-
admissibility is precisely set up so that for F ∈ M̂X,n and φ : [m] → [n] in ´, the cocartesian
morphism F → φ!F in M̂+

X lies in M̂X,m . Hence M̂X → ´op is a cocartesian fibration. It
remains to check that M̂X is a double ∞-category, i.e. that the functor

M̂X,n → M̂X,1 ×M̂X,0
· · · ×M̂X,0

M̂X,1

is an equivalence. From the definition of M̂X it is immediate that we may identify M̂X,n with
Fun(˜Mn,X), where ˜Mn is equivalent to the pullbackM×´op ˜

n . Under this equivalence
our functor is given by composition with

˜M1 �˜M0 · · · �˜M0 ˜M1 → ˜Mn .

Since M → ´op is a cocartesian fibration, pullback along it preserves colimits, hence this
functor is equivalent to

M ×´op (˜1 �˜0 · · · �˜0 ˜
1) → M ×´op ˜

n,

which is an equivalence by [33, Proposition 5.13]. ��

In the case where X is S, we can give a more explicit description of the ∞-category
M̂S(F,G) of horizontal morphisms from F to G, i.e. the fibre of M̂S,1 → M̂×2

S,0 at (F,G):

Notation 3.2.13 Given F,G : M0 → S with corresponding left fibrations F,G → M0, let
M1,F,G → M1 be the left fibration defined by the pullback

M1,F,G F × G

M1 M0 × M0.

This left fibration corresponds to the functor

M1 → M×2
0

F×G−−−→ S.

Lemma 3.2.14 The∞-category˚M1 is equivalent to the pushout (M1×˚1)�M1�M1 (M0�
M0).
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Proof By definition ˚M1 is the pullback ˚1 ×´op M. The category ˚1 can be written as a
pushout �1 �{0} �1, and since pullbacks along cocartesian fibrations preserve colimits we
get a decomposition ˚M1 	 (�1 ×´op M) �M1 (�1 ×´op M). By [25, Lemma 3.8] (which
summarizes results of [43, Sect. 3.2.2]) for any cocartesian fibration E → �1 there is a
pushout E 	 E0 × �1 �E0×{1} E1. Applying this we get an equivalence

˚M1 	 (M1 × �1 �M1×{1} M0) �M1×{0} (M1 × �1 �M1×{1} M0),

which we can rewrite as the desired expression. ��
Proposition 3.2.15 Given F,G : M0 → S, the ∞-category M̂S(F,G) is equivalent to the
functor ∞-category Fun(M1,F,G , S).

Proof By Lemma 3.2.14 we have a pullback square

Fun(˚M1, S) Fun(M1 × ˚1, S)

Fun(M0, S)×2 Fun(M1, S)×2.

Now since ˚1 	 {0, 1}�, for any ∞-category C we can identify the fibre of

Fun(˚1,C) → C×2

at x, y with C/x,y := C/p for the diagram p : {0, 1} → C picking out x and y, and if
C has products then C/x,y 	 C/x×y by the universal property of the limit. We therefore
have an equivalence between the fibre of Fun(M1 × ˚1, S) → Fun(M1, S)×2 at (α, β) and
Fun(M1, S)/α×β . Now [25, Proposition 9.7] describes this as Fun(E, S) where E → M1 is
the left fibration for the functor α×β. Together with the pullback square above, this identifies
the fibre of Fun(˚M1, S) → Fun(M0, S)×2 at F,G with Fun(M1,F,G , S), as required. ��
Remark 3.2.16 Let us reformulate the description of the horizontal composition from
Remark 3.2.5 in terms of our description of horizontal morphisms: Suppose � is a hori-
zontal morphism from F to G and � is a horizontal morphism from G to H , so that we may
view � as a functor M1,F,G → S and � as a functor M1,G,H → S, then their composite is
the functorM1,F,H → S given by

(x, p ∈ F(x00), q ∈ H(x11)) �→ colim
y∈M2/x

colim
p′∈F(y00)p

colim
q ′∈H(y22)q

colim
r∈H(y11)

�(y01, p
′, r)

×�(y12, r , q
′),

where yi j and xi j denote the cocartesian pushforwards of y and x along the inert inclusion
of [ j − i] as {i, i + 1, . . . , j}.

Note that if the ∞-categoryM0 is an ∞-groupoid, the formula above simplifies to

(x, p ∈ F(x00), q ∈ H(x11)) �→ colim
y∈M2/x

colim
r∈H(y11)

�(y01, p, r) × �(y12, r , q).

Remark 3.2.17 More generally, we can write the composition of n horizontal morphisms

�i : M1,Fi−1,Fi → S, i = 1, . . . , n,

as the functorM1,F0,Fn → S given by

(x, p ∈ F0(x00), q ∈ Fn(x11)) �→ colim
y∈Mn/x

colim
(t0,...,tn)∈F(y)p,q

�1(y01, t0, t1) × · · ·
×�n(y(n−1)n, tn−1, tn),
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where F(y)p,q := F(y00)p × F(y11) × · · · × F(y(n−1)(n−1)) × F(ynn)q .

Remark 3.2.18 LetM̂⊗
X,∗ denote the full subcategory ofM̂X spannedby functors F : ˚Mn →

X such that for all maps [0] → [n] in ´ the composite ˚M0 → ˚Mn → X is constant at the
terminal object of X. For such F we have an equivalence

colim
Mn/x0m

F |Mn/x0m
	 colim

Mφ(k)/x0k ×M0/xkk
Mn−φ(k)/xkm

F |Mφ(k)/x0k
× F |Mn−φ(k)/xkm

,

giving a canonical morphism

colim
Mn/x0m

F |Mn/x0m
→
(

colim
Mφ(k)/x0k

F |Mφ(k)/x0k

)
×
(

colim
Mn−φ(k)/xkm

F |Mn−φ(k)/xkm

)
.

M̂⊗
X,∗ is a monoidal ∞-category under the weaker hypothesis that this morphism is an

equivalence. This holds, in particular, if X has finite products that commute with colimits in
each variable, and the functors

Mn/x0m → Mφ(k)/x0k × Mn−φ(k)/xkm

are cofinal.

Remark 3.2.19 From Remark 3.1.18 we see that any morphism of double ∞-categories
μ : N → M (i.e. a functor over ´op that preserves cocartesian morphisms) induces a functor
μ̂ : N̂+

X → M̂+
X (given by taking left Kan extensions). However, even if bothN andM areX-

admissible this does not necessarily restrict to a functor N̂X → M̂X. Using Lemma 3.1.11
we see that this happens precisely when for every x ∈ M2 	 M1 ×M0 M1 the natural
distributivity morphism

colim
N1/x01×N0/x11

N1/x12

F01 ×F11 F12 → colim
N1/x01

F01 ×colimN0/x11
F11 colim

N1/x12

F12

is an equivalence for all functors F : N2 → S in N̂X. This happens, for instance, ifN0/x11 is a
contractible ∞-groupoid and colimits in X are universal, or if X is S and all ∞-categories of
the formN0/x11 andN1/x01 admit cofinal functors from∞-groupoids (since colimits indexed
by spaces distribute over limits by [12, Corollary 7.17]).

3.3 The universal property

Suppose M is an X-admissible double ∞-category and O is a generalized non-symmetric
∞-operad. Our goal in this subsection is to show that there is a natural equivalence

AlgO(M̂X) 	 SegO×´opM
(X).

Remark 3.3.1 We already know from Corollary 3.1.17 that M̂+
X → ´op has the universal

property that there is a natural equivalence

Map/´op(I, M̂
+
X) 	 Map(I ×´op ˚M,X).

Our first goal is to reduce the right-hand side to functors from I ×´op M by a further local-
ization.

Remark 3.3.2 For M := ´op, the universal property we want was proved as [34, Corol-
lary 3.11], and our proof will build on the constructions made there.

123



146 R. Haugseng

Notation 3.3.3 We recall some notation from [34]:

• The functor � : ̂̊ → ´op has a section � : ´op → ̂̊, taking [n] to ([n], (0, n));
there is also a natural transformation η : id̂̊ → �� given at ([n], (i, j)) by the map
([n], (i, j)) → ([ j − i], (0, j − i)) lying over the inert map ρi j : [ j − i] → [n]. Note
that �η 	 id�.

• We also have p� ∼= id´op , where p is the Cartesian fibration ̂̊ → ´op, and a natural
transformation ε : � p → id̂̊ given at ([n], (i, j)) by the natural maps ([n], (0, n)) →
([n], (i, j)).

• We let I denote the set of cartesian morphisms in ̂̊ that lie over inert morphisms in ´op.

The functor � exhibits ´op as the localization of ̂̊ at I by [34, Proposition 3.8]. We can
extend this as follows:

Proposition 3.3.4 The projection �M : ˚M → M exhibits M as the localization of ˚M at
the set IM of cocartesian morphisms that lie over I .

Proof LetW be the class of morphisms in ̂̊ that are mapped to isomorphisms (i.e. identities)
by � and letWM be the class of morphisms in ˚M that are mapped to equivalences by �M;
then WM is precisely the class of cocartesian morphisms over W .

The section � pulls back to a section �M : M → ˚M, and since �η 	 id� the trans-
formation η pulls back to a natural transformation ηM : id˚M → �M�M. Then ηM is
componentwise given by cocartesian morphisms in ˚M that lie over morphisms in W , and
so this data becomes an equivalence of∞-categories after localizing atW . In particular,�M

exhibitsM as the localization of ˚M atWM. It thus only remains to see that the localization
at IM is the same as the localization at WM. Since the morphisms involved are cocartesian,
this follows from the same 2-of-3 argument as in the proof of [34, Proposition 3.8]. ��

Proposition 3.3.5 Suppose f : I → ´op is any functor such that I has f -cocartesian mor-
phisms over inert maps in ´op. Then there is a functor� : I×´op ˚M → I×´op M lying over
�, which exhibits I×´op M as the localization at the set II,M of morphisms whose image in
´op is inert, whose image in I is cocartesian, and whose image in ̂̊ is cartesian (and whose
image in M is therefore an equivalence).

Proof As the proof of [34, Proposition 3.9], using the lifts defined in the proof of the previous
proposition. ��

Corollary 3.3.6 Suppose f : I → ´op is any functor such that I has f -cocartesianmorphisms
over inert maps in ´op. Then there is an equivalence

Mapint/´op(I, M̂
+
X) 	 Map(I ×´op M,X),

natural in I, whereMapint
/´op(I, M̂

+
X) denotes the subspace ofMap/´op(I, M̂

+
X) consisting of

functors that preserve the cocartesian morphisms over inert maps in ´op.

Proof Using Proposition 3.3.5 we may identify Map(I ×´op M,X) with the subspace of
Map(I×´op ˚M,X) 	 Map/´op(I, M̂

+
X) consisting of functors that take morphisms in II,M

to equivalences. Unwinding the definitions, we see that (as a cocartesian morphism in M̂+
X

over an inert morphism does not involve a left Kan extension) these precisely correspond to
the functors that preserve cocartesian morphisms over inert morphisms in ´op. ��
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Replacing I by I × �• this induces an equivalence

Funint/´op(I, M̂
+
X) 	 Fun(I ×´op M,X).

Restricting further to functors with value in M̂X, we get:

Corollary 3.3.7 SupposeO is a generalized non-symmetric∞-operad. Then there is an equiv-
alence

Funint/´op(O, M̂X) 	 SegO×´opM
(X),

natural in O. ��

3.4 Day convolutionmonoidal structures

Our goal in this subsection is to show that M̂X induces a family of monoidal ∞-categories,
and in some cases (including for associative algebras) algebras in M̂X are algebras in these
monoidal∞-categories. This will follow from a general observation about framed double∞-
categories, which we will consider after some simple observations about algebras in double
∞-categories:

Definition 3.4.1 For any ∞-category C, let ´op
C → ´op be the terminal double ∞-category

withC as its fibre at [0]. This is defined as the cocartesianfibration for the functor´op → Cat∞
obtained as the right Kan extension along {[0]} ↪→ ´op of the functor {[0]} → Cat∞ with
value C. Thus (´op

C )n 	 C×(n+1) with cocartesian morphisms over face maps given by
projections and those over degeneracies given by diagonals. Note that there is in particular a
canonical functor C × ´op → ´op

C , given fibrewise by the diagonal C → C×(n+1).

Definition 3.4.2 Given a double ∞-categoryM, defineM⊗ as the pullback

M⊗ M

M0 × ´op ´op
M0

.

This is a pullback of cocartesian fibrations over ´op along functors that preserve cocartesian
morphisms, hence M⊗ → ´op is again a cocartesian fibration.

Proposition 3.4.3 Suppose O is a generalized non-symmetric ∞-operad such that the inclu-
sion O0 → O induces an equivalence O0

∼−→ O[I−1] where I is the class of inert morphisms
in O. LetM be a double ∞-category. Then

AlgO(M⊗) → AlgO(M)

is an equivalence.

Proof The double ∞-category M⊗ is defined by a pullback square of generalized non-
symmetric ∞-operads, so we have a pullback square

AlgO(M⊗) AlgO(M)

AlgO(M0 × ´op) AlgO(´op
M0

).
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It therefore suffices to show that AlgO(M0 × ´op) → AlgO(´op
M0

) is an equivalence if O
satisfies the assumptions.

By definition AlgO(´op
M0

) is equivalent to Fun(O0,M0), while we may identify
AlgO(M0 × ´op) with the ∞-category of functors O → M0 that take inert morphisms
to equivalences. We therefore have an equivalence if O0 → O[I−1] is an equivalence. ��

Corollary 3.4.4 LetM be a double ∞-category and O a non-symmetric ∞-operad such that
the ∞-category O is weakly contractible. Then

AlgO(M⊗) → AlgO(M)

is an equivalence.

Proof Wemust show thatO[I−1] is contractible,where I is the class of inertmorphisms. Since
O is weakly contractible, it suffices to check that inverting the inert morphisms inO amounts
to inverting all morphisms. To see this we first observe that for any map φ : [n] → [m] in ´,
we have a commutative triangle

[0]

[n] [m]φ

where the maps from [0] are inert. Given a morphism X → Y in O we therefore have a
commutative triangle

X Y

(),

where () denotes the unique object of O0 and the diagonal morphisms are cocartesian mor-
phisms over the (inert) morphisms from [0] in the first triangle. ��

Since ´op is weakly contractible, as a special case we have:

Corollary 3.4.5 LetM be a double ∞-category. Then

Alg´op(M
⊗) → Alg´op(M)

is an equivalence. ��

Definition 3.4.6 A double ∞-category M is framed if the functor (d1,!, d0,!) : M1 → M×2
0

is a cartesian fibration.

Remark 3.4.7 By [26, Proposition A.4.4], (d1,!, d0,!) is a cartesian fibration if and only if it
is a cocartesian fibration, and this is also equivalent to the existence of “companions and
conjoints” in (the homotopy double category of)M.

Proposition 3.4.8 Suppose M is a framed double ∞-category. Then M⊗ → M0 is a carte-
sian fibration, and corresponds to a functor from M0 to monoidal ∞-categories and lax
monoidal functors.
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Proof We apply the dual of [36, Lemma A.1.10] to M⊗ → M0 × ´op to conclude that
M⊗ → M0 is a cartesian fibration. We know that M⊗ → ´op is a cocartesian fibration, so
it remain to check that for [n] ∈ ´op the functor M⊗

n → M0 is a cartesian fibration. This
functor lives in a pullback square

M⊗
n Mn

M0 M
×(n+1)
0 .

Here the right vertical map is equivalent to the iterated fibre product

M1 ×M0 · · · ×M0 M1 → (M×2
0 ) ×M0 · · · ×M0 (M×2

0 ),

and so is a cartesian fibration since M is framed. It follows that M⊗
n → M0 is a cartesian

fibration, and hencewe can conclude thatM⊗ → M0 is a cartesian fibration and that cartesian
morphisms lie over equivalences in ´op.

The fibre M⊗
X → ´op at X ∈ M0 is a monoidal ∞-category, so it remains to check that

the functor f ∗ : M⊗
Y → M⊗

X corresponding to the cartesian morphisms over f : X → Y in
M0 is lax monoidal, i.e. preserves those cocartesian morphisms that lie over inert morphisms
in ´op.

Since the cartesian morphisms lie over identities in ´op, it is equivalent to check that
for every inert morphism φ : [m] → [n], the functor M⊗

n → M⊗
m , given by cocartesian

pushforward along φ, preserves cartesian morphisms over M0. To see this it suffices to
consider the outer face maps [n − 1] → [n] (as any inert morphism is a composite of these).
In this case we have a commutative diagram

M⊗
n Mn M1

M⊗
n−1 Mn−1 M0

M0 Mn+1
0 M2

0

M0 Mn
0 M0.

Here all the vertical morphisms are cartesian fibrations, and in the left-hand cube the front
and back faces are cartesian. It therefore suffices to show that Mn → Mn−1 takes cartesian
morphisms over Mn+1

0 to cartesian morphisms over Mn
0.

In the right-hand cube the top and bottom faces are cartesian, i.e.Mn → Mn+1
0 is a fibre

product of cartesian fibrations, and both morphisms to M0 preserve cartesian morphisms
(since all morphisms are cartesian for the identity functor). A morphism in Mn is hence
cartesian if and only if its images in both Mn−1 and M1 are cartesian, and in particular the
functor to Mn−1 preserves cartesian morphisms, as required. ��
Remark 3.4.9 The underlying ∞-category of the monoidal ∞-category M⊗

X is the ∞-
category M(X , X) of horizontal endomorphisms of X , and the monoidal structure is given
by horizontal composition. Since M is framed, a vertical morphism f : X → Y gives rise
to two horizontal morphisms, say f � := ( f , idY )∗1Y from X to Y and f � := (idY , f )∗1Y
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from Y to X , and f � is left adjoint to f �. The underlying functor of the lax monoidal functor
M⊗

Y → M⊗
X is the functorM(Y , Y ) → M(X , X) given by� �→ f � �Y ��Y f �, where we

use �Y for horizontal composition over Y as in Notation 2.1.7. The lax monoidal structure
comes from the unit transformation (note the non-standard order of composition)

f � �Y � �Y f � �X f � �Y � �Y f � → f � �Y � �Y � �Y f �.

Corollary 3.4.10 Suppose M is a framed double ∞-category and O is a non-symmetric ∞-
operad such that the ∞-category O is weakly contractible. Then the restriction functor

AlgO(M) → Fun(O0,M0) 	 M0

is a cartesian fibration, corresponding to the functor M
op
0 → Cat∞ taking X ∈ M0 to

AlgO(M⊗
X ).

Proof Observe that we have a commutative diagram

Fun/´op(O,M⊗) Fun(O,M⊗)

Fun(O,M0) Fun(O,M0 × ´op)

∗ Fun(O,´op),

where the bottom and outer squares are clearly cartesian. Hence the top square is also carte-
sian, and here [43, Proposition 3.1.2.1] implies that all but the top left vertex are cartesian
fibrations over Fun(O,M0) and the morphisms to Fun(O,M0 × ´op) preserve cartesian
morphisms. Hence Fun/´op(O,M⊗) → Fun(O,M0) is a cartesian fibration.

SinceO is weakly contractible, the inclusionM0 → Fun(O,M0) of the constant functors
is a full subcategory. Let Fun′

/´op(O,M⊗) → M0 denote the pullback of Fun/´op(O,M⊗)

along this inclusion; then Fun′
/´op(O,M⊗) is a full subcategory of Fun/´op(O,M⊗) that

contains AlgO(M⊗). The projection Fun′
/´op(O,M⊗) → M0 is a cartesian fibration, so

to show that AlgO(M⊗) → M0 is a cartesian fibration it suffices to check that for every
cartesian morphism in Fun′

/´op(O,M⊗) whose target is an O-algebra, its source is also an O-
algebra; this follows from Proposition 3.4.8, which shows that cartesian morphisms preserve
cocartesian morphisms over inert maps in ´op. Since AlgO(–) preserves pullbacks, the fibre
at X ∈ M0 can be identified with AlgO(M⊗

X ), and from the description of the cartesian
morphisms in [43, Proposition 3.1.2.1] it follows that for f : Y → X in M0 the functor
AlgO(M⊗

X ) → AlgO(M⊗
Y ) is given by composition with the lax monoidal functor M⊗

X →
M⊗

Y arising from the cartesian morphisms over f in M⊗. ��

Lemma 3.4.11 IfM is anX-admissible double∞-category whereX is cocomplete, then M̂X

is framed.

Proof It suffices to show that the source-and-target projection M̂X,1 → M̂×2
X,0 is a cocartesian

fibration. This is the functor

i∗ : Fun(˚M1,X) → Fun(M0,X)×2

given by composition with the inclusion i : M0 � M0 → M ×´op ˚
1. To see that this is a

cocartesian fibration we use the criterion of [32, Corollary 4.52].
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First observe that i∗ has a left adjoint i!, given by left Kan extension along i . Note that for
X ∈ M1 ⊆ ˚M1 the ∞-category (M0 � M0)/X is empty, and so for F : M0 � M0 → X

we have i!F(X) 	 ∅. Given G : ˚M1 → X and φ : i∗G → F consider the pushout square

i!i∗G i!F

G G ′.

Since pushouts in Fun(˚M1,X) are computed pointwise, we see that F
∼−→ i∗i!F

∼−→ i∗G ′ is
an equivalence, which is what we need in order to apply [32, Corollary 4.52] to conclude that
i∗ is a cocartesian fibration (with G → G ′ being the cocartesian morphism over i∗G → F).

��
Remark 3.4.12 SupposeM is an S-admissible double∞-category. Given natural transforma-
tions φ : F → F ′, γ : G → G ′ of functors M0 → S and � : M1,F,G → S, the description
of the cocartesian pushforward of � along (φ, γ ) above amounts to this being given by the
left Kan extension along the induced functorM1,F,G → M1,F ′,G ′ , i.e.

(φ, γ )!�(x, p′, q ′) 	 colim
p∈F(x00)p′ ,q∈G(x11)q′

�(x, p, q).

It follows that the cartesian pullback of � : M1,F ′,G ′ → S is given by composition with this
functor.

Applying Corollary 3.4.10 to M̂X, we now get:

Corollary 3.4.13 Let O be a non-symmetric ∞-operad such that the ∞-category O is weakly
contractible andM an X-admissible double ∞-category where X is cocomplete. Then

AlgO(M̂X) → Fun(M0, S)

is a cartesian fibration, corresponding to the functor

X ∈ Fun(M0, S) �→ AlgO(M̂X(X , X))

arising from the family of monoidal ∞-categories M̂⊗
X,X . ��

Remark 3.4.14 Suppose M is S-admissible and O is as above. Then we can use the equiva-
lence

AlgO(M̂X) 	 SegO×´opM
(S)

and the description of the cartesian fibration from Proposition 2.1.19 to conclude that there
is fibrewise a natural equivalence

AlgO(M̂S(X , X)) 	 MonO×´opMX (S) 	 AlgO×´opMX
(S).

3.5 Enriched day convolution

In this subsection we generalize our construction slightly by showing that if M is a double
∞-category and V⊗ is anM-monoidal ∞-category then in good cases there exists a double
∞-category M̂V such that we have a natural equivalence

AlgO(M̂V) 	 AlgdO×´opM
(V).
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More generally, an object M̂V with this property will exist as a generalized non-symmetric
∞-operad that is not a double∞-category. If V⊗ is given by Day convolution, we can obtain
M̂V from the following observation:

Proposition 3.5.1 Suppose M is an X-admissible double ∞-category where pullbacks in X

preserve colimits, and U⊗ → M is a small M-monoidal ∞-category. Then U⊗ is also an
X-admissible double ∞-category.

Proof Given an activemorphismφ : [m] → [n] in´ and an objectu0m ∈ U⊗
m over x0m ∈ Mm ,

the functorU⊗
n/u0m

→ Mn/x0m is a cocartesian fibration, whose fibre at y0n and φ̄ : y0n → x0m
over φ we can identify with the slice (U⊗

n,y0n )/u0m , defined using the cocartesian morphisms
over φ̄. For 0 ≤ k ≤ m we can decompose this as a product

(U⊗
n,y0n )/u0m 	 (U⊗

φ(k),y0φ(k)
)/u0k × (U⊗

n−φ(k),yφ(k)n
)/ukm .

Given functors

F0k : U⊗
φ(k)/u0k

→ X,

Fkk : U⊗
0/ukk

	 M0/xkk → X,

Fkm : U⊗
n−φ(k)/ukm

→ X,

together with natural transformations F0k → Fkk |U⊗
φ(k)/u0k

, Fkm → Fkk |U⊗
n−φ(k)/ukm

, we have

equivalences

colim
U⊗

n/u0m

F0k ×Fkk Fkm 	 colim
y0n∈Mn/x0m

colim
(U⊗

n,y0n )/u0m

F0k ×Fkk Fkm

	 colim
y0n∈Mn/x0m

⎛

⎝ colim
(U⊗

φ(k),y0φ(k)
)/u0k

F0k

⎞

⎠×Fkk

⎛

⎝ colim
(U⊗

n−φ(k),yφ(k)n
)/ukm

Fkm

⎞

⎠

	
⎛

⎝ colim
y0φ(k)Mφ(k)/x0k

colim
(U⊗

φ(k),y0φ(k)
)/u0k

F0k

⎞

⎠

×(
colimM0/xkk

Fkk
)

⎛

⎝ colim
yφ(k)n∈Mn−φ(k)/xkm

colim
(U⊗

n−φ(k),yφ(k)n
)/ukm

Fkm

⎞

⎠

	
⎛

⎝ colim
U⊗

φ(k)/u0k

F0k

⎞

⎠×(
colim

U⊗
0/ukk

Fkk

)

⎛

⎝ colim
U⊗

n−φ(k)/ukm

Fkm

⎞

⎠ ,

where the second equivalence uses that fibre products inX preserve colimits in each variable
and the third equivalence uses the X-admissibility ofM. ��
Corollary 3.5.2 Let M be an S-admissible double ∞-category and let U⊗ be a small

M-monoidal ∞-category. Then there exists a double ∞-category Û⊗
S such that for any

generalized non-symmetric ∞-operad O we have a natural equivalence

AlgO(Û⊗
S ) 	 SegO×´opU

⊗(S) 	 AlgdO×´opM
(O ×´op U

⊗
S ).

Moreover, anyM-monoidal functor U⊗ → V⊗ induces a morphism of double ∞-categories

Û⊗
S → V̂⊗

S .

123



∞-Operads via symmetric sequences 153

Proof The only part that is not an immediate consequence of Proposition 3.5.1 and our results
in the previous subsections is the claim aboutM-monoidal functors, which follows using the
criterion of Remark 3.2.19, where we can compute the colimits by decomposing them as in
the proof of Proposition 3.5.1. ��

Remark 3.5.3 Let us describe the double ∞-category Û⊗
S a bit more explicitly. The objects

of Û⊗
S are functors U⊗

0 	 M0 → S, and the vertical morphisms are transformations of such
functors. If F,G : M0 → S are two objects, then by Proposition 3.2.15 the ∞-category
Û⊗
S (F,G) of horizontal morphisms can be identified with Fun(U⊗

1,F,G , S); here U⊗
1,F,G 	

U⊗
1 ×M1 M1,F,G where U⊗

1 → M1 is a cocartesian fibration. Using Remark 2.1.17 and [25,
Proposition 7.3] we can identify this ∞-category with Fun/M1(M1,F,G ,U⊗

S,1). Translating
the formula for composition of horizontal morphisms from Remark 3.2.16 in these terms,
the composite of � : M1,F,G → U⊗

S,1 and � : M1,G,H → U⊗
S,1 is the functor fromM1,F,H

given by

(x, p ∈ F(x00), q ∈ H(x11))

�→ colim
(α : y→x)∈M2/x

colim
p′∈F(y00)p

colim
q ′∈H(y22)q

colim
r∈H(y11)

α!(�(y01, p
′, r),�(y12, r , q

′)),

where α! : U⊗
S,1,y01

× U⊗
S,1,y12

	 U⊗
S,2,y → U⊗

S,1,x is the cocartesian pushforward along α

(given by a left Kan extension along the corresponding operation for U⊗).

Remark 3.5.4 For an M-monoidal ∞-category of the form M ×´op C
⊗, where C⊗ → ´op

is a monoidal ∞-category, the description above simplifies considerably: We can identify
(M×´op C

⊗)S with the pullbackM×´op C
⊗
S , so that horizontal morphisms reduce to functors

M1,F,G → Fun(C, S). The composition of � : M1,F,G → Fun(C, S) and � : M1,G,H →
Fun(C, S) is then given by the formula

(x, p ∈ F(x00), q ∈ H(x11)) �→ colim
y∈M2/x

colim
p′∈F(y00)p

colim
q ′∈H(y22)q

colim
r∈H(y11)

�(y01, p
′, r)

⊗�(y12, r , q
′),

where ⊗ denotes the Day convolution.

More generally, we can obtain M̂V by passing to a larger universe:

Definition 3.5.5 Let Ŝ denote the (very large) ∞-category of large spaces. If V⊗ is a locally
small (but potentially large) M-monoidal ∞-category, let M̂V denote the full subcategory

of ̂
V
op,⊗
Ŝ

spanned by the objects whose

• inert restrictions to the fibre at 0 are functors M0 → Ŝ that factor through the full
subcategory S,

• inert restrictions to the fibre at 1 correspond to functors of the form

M1,F,G → V
op,⊗
Ŝ,1

that factor through the full subcategory V⊗
1 (via the Yoneda embedding V⊗ ↪→ V

op,⊗
Ŝ

).

Proposition 3.5.6 Let M be an S-admissible double ∞-category and V⊗ a locally small
M-monoidal ∞-category.

(i) M̂V is a generalized non-symmetric ∞-operad.
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(ii) For any generalized non-symmetric ∞-operad O we have a natural equivalence

AlgO(M̂V) 	 AlgdO×´opM
(O ×´op V

⊗).

(iii) An M-monoidal functor U⊗ → V⊗ induces a natural morphism of generalized non-
symmetric ∞-operads M̂U → M̂V.

(iv) M̂V,1 → M̂×2
V,0 	 Fun(M0, S)×2 is a cartesian fibration, and the inclusion M̂V,1 →

̂
V
op,⊗
Ŝ

preserves cartesian morphisms.

Proof Part (i) follows from Lemma 2.1.11, which also identifies AlgO(M̂V) with the full

subcategory of O-algebras in ̂
V
op,⊗
Ŝ

whose restrictions to O0 and O1 factor through S ⊆ Ŝ

and V⊗
1 ⊆ (

̂
V
op,⊗
Ŝ

)1. Under the equivalence between AlgO(
̂
V
op,⊗
Ŝ

) and ÂlgdO×´opM
(O×´op

V
op,⊗
Ŝ

) fromCorollary 3.5.2 (where the latter denotes the∞-category ofO-algebroids defined

using Ŝ), this full subcategory corresponds to that of O×´op M-algebroids (O×´op M)X →
V
op,⊗
Ŝ

such that X is a functor O0 × M0 → S and the functor (O ×´op M)X ,1 → V
op,⊗
Ŝ,1

factors through V⊗
1 ; since the Yoneda embedding is a fully faithful O ×´op M-monoidal

functor, this full subcategory is precisely AlgdO×´opM
(O ×´op V

⊗), which gives (ii). From
Corollary 3.5.2 we also know that an M-monoidal functor induces a morphism of double

∞-categories ̂
U
op,⊗
Ŝ

→ ̂
V
op,⊗
Ŝ

; this evidently takes the full subcategory M̂U into M̂V, which

proves (iii). We know that ̂Vop,⊗
Ŝ

is a framed double∞-category, so that ̂Vop,⊗
Ŝ,1

→ (
̂
V
op,⊗
Ŝ,0

)×2

is a cartesian and cocartesian fibration. From the description of the cartesian morphisms in
Remark 3.4.12 it follows that these restrict to M̂V, which proves (iv). ��

Proposition 3.5.7 LetM be an S-admissible double ∞-category.

(i) Suppose that V⊗ is a locally smallM-monoidal ∞-category such that:

(1) For every x ∈ M1 the ∞-category Vx has colimits indexed by ∞-groupoids and by
the ∞-categoriesMn/y for y ∈ M1,

(2) These colimits are preservedby the functors f! : Vx → Vx ′ inducedby the cocartesian
morphisms over f : x → x ′ in M1.

Then M̂V → ´op is a locally cocartesian fibration.
(ii) Suppose V⊗ and U⊗ are locally small M-monoidal ∞-categories satisfying conditions

(1) and (2) in (i), and U⊗ → V⊗ is an M-monoidal functor such that:

(3) For all x the functor Ux → Vx preserves colimits indexed by ∞-groupoids and by
the ∞-categoriesMn/y .

Then the induced morphism M̂U → M̂V of generalized non-symmetric∞-operads from
Proposition 3.5.6(iii) preserves locally cocartesian morphisms.

Proof We already know from Proposition 3.5.6 that M̂V is a generalized non-symmetric
∞-operad, so to prove (i) it suffices by Lemma 2.1.25 to show there are locally cocartesian
morphisms over the active morphisms to [1]. Let αn : [1] → [n] denote the unique active
morphism to [n] in ´. Given an object of M̂V, which we can identify with (X1, . . . , Xn)with
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Xi in M̂V(Fi−1, Fi ) for Fi : M0 → S, as well as Y in M̂V(G, H), we have

Mapαn

M̂V
((X1, . . . , Xn), Y ) 	 Mapαn

̂
V

op,⊗
Ŝ

((X1, . . . , Xn), Y )

	 Map̂
V

op,⊗
Ŝ,1

(X1 �F1 · · · �Fn−1 Xn, Y )

Since ̂
V
op,⊗
Ŝ

is a framed double ∞-category, if we take the fibre of the right-hand side over
maps g : F0 → G, h : Fn → G, we get

Map̂
V

op,⊗
Ŝ,1

(X1 �F1 · · · �Fn−1 Xn, Y )(g,h)

	 MapFun(M1,F0,Fn ,V
op,⊗
Ŝ,1

)
(X1 �F1 · · · �Fn−1 Xn, (g, h)∗Y ).

Using [25, Proposition 5.1] and the notation of Remark 3.2.17, we can expand this out as the
limit over (x, p, q) → (x ′, p′, q ′) ∈ Twr (M1,F0,Fn ) of

Map
V

op,⊗
Ŝ,1

(
colim

α : y→x∈Mn/x

colim
(t0,...,tn)∈F(y)p,q

α!(X1(y01, t0, t1),

. . . , Xn(y(n−1)n, tn−1, tn)), (g, h)∗Y (x ′, p′, q ′)
)

	 lim
α : y→x∈Mop

n/x

lim
(t0,...,tn)∈F(y)p,q

MapV⊗
1

(α!(X1(y01, t0, t1),

. . . , Xn(y(n−1)n, tn−1, tn)), (g, h)∗Y (x ′, p′, q ′)
)

	 MapV⊗
1

(
colim

α : y→x∈Mn/x

colim
(t0,...,tn)∈F(y)p,q

α!(X1(y01, t0, t1),

. . . , Xn(y(n−1)n, tn−1, tn)), (g, h)∗Y (x ′, p′, q ′)
)
,

under our assumptions. Let αn,!(X1, . . . , Xn) denote the functorM1,F0,Fn → V⊗
1 given by

(x, p, q) �→ colim
α : y→x∈Mn/x

colim
(t0,...,tn)∈F(y)p,q

α!(X1(y01, t0, t1), . . . , Xn(y(n−1)n, tn−1, tn)),

then we see using Proposition 3.5.6(iv) that the mapping space we started with is equivalent
to MapM̂V,1

(αn,!(X1, . . . , Xn), Y ), so that (X1, . . . , Xn) → αn,!(X1, . . . , Xn) is indeed a
locally cocartesian morphism over αn , as required. Moreover, part (ii) also follows immedi-
ately from this description of the locally cocartesian morphisms. ��

For an arbitrary S-admissible double ∞-category M it seems extremely awkward to for-
mulate a condition onV such that M̂V is a double∞-category.We therefore content ourselves
with the following observation:

Proposition 3.5.8 LetM be a double ∞-category such thatM0 is an ∞-groupoid.

(i) If V⊗ is an M-monoidal ∞-category that is compatible with colimits indexed by ∞-
groupoids and by the ∞-categories Mn/x for x ∈ M1, then M̂V is a framed double
∞-category.

(ii) IfU⊗ → V⊗ is anM-monoidal functor betweenM-monoidal∞-categories with colimits
as in (i) such that each functor Ux → Vx preserves these colimits, then the natural
morphism of generalized non-symmetric ∞-operads M̂U → M̂V preserves cocartesian
morphisms.
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Proof We know from Proposition 3.5.7(i) that M̂V → ´op in (i) is a locally cocartesian
fibration. If we can show this is actually a cocartesian fibration, then (ii) also follows since
Proposition 3.5.7(ii) implies the functor preserves locally cocartesian morphisms.

By Lemma 2.1.25 to show we have a cocartesian fibration it suffices to check that for
every active map φ : [2] → [n] and for � ∈ M̂V,n the canonical map

αn,!� = (φd1)!� → d1,!φ!�

is an equivalence.
For � over F0, . . . , Fn : M0 → S, the object αn,!� is given at (x, p, q) by

colim
y

γ−→x∈Mn/x

colim
(t0,...,tn))∈F(y)p,q

γ!(�1(y01, t0, t1), . . . , �n(y(n−1)n, tn−1, tn)),

while if φi j denotes the active part of φ ◦ ρi j , we have

d1,!φ!�(x, p, q) 	 colim
z

ζ−→x∈M2/x

colim
t∈Fφ(1)(z11)

ζ!(φ01,!�0φ(1)(z01, p, t), φ12,!�φ(1)n(z12, t, q)),

where (setting � := φ(1))

φ01,!�0�(z01, p, t)

	 colim
u

δ−→z01∈M�/z01

colim
(t0,...,t�)∈F0�(u)

δ!(�1(u01, t0, t1), . . . , ��(u(�−1)�, t�−1, t�)),

φ12,!��n(z12, t, q)

	 colim
v

ε−→z12∈Mn−�/z12

colim
(t�,...,tn)∈F�n(u)

ε!(��+1(v�(�+1), t�, t�+1), . . . , �n(v(n−1)n, tn−1, tn)).

SinceV⊗ is compatiblewith these colimits,we can pass these colimits past ζ! in the expression
for d1,!φ!�(x, p, q), obtaining an expression for this object as an iterated colimit of terms
of the form

ζ!(δ!(�1(u01, t0, t1), . . . , ��(u(�−1)�, t�−1, t�)), ε!(��+1(v�(�+1), t�, t�+1),

. . . , �n(v(n−1)n, tn−1, tn))).

Note that we can rewrite this as

(ζ ◦ (δ, ε))!(�1(u01, t0, t1), . . . , �n(v(n−1)n, tn−1, tn))

since V⊗ is cocartesian. Thus we can rewrite the expression for d1,!φ!�(x, p, q) as

colim
ζ∈M2/x

colim
(δ,ε)∈M�/z01×Mn−�/z12

colim
(t0,...,tn)∈F0�(u)×F�(z)F�n(v)

(ζ ◦ (δ, ε))!(�1(u01, t0, t1),

. . . , �n(v(n−1)n, tn−1, tn))

On the other hand, we can evaluate the colimit overMn/x in the expression for αn,!� by first
taking a left Kan extension along the functor φ! : Mn/x → M2/x given by the cocartesian
morphisms over φ. For a functor f out ofMn/x this gives

colim
y→x∈Mn/x

f 	 colim
z→x∈M2/x

colim
(Mn/x )/z

f ,

where (Mn/x )/z 	 Mn/z 	 Mφ(1)/z01 ×M0/z11
Mn−φ(1)/z12 , which is equivalent to

Mφ(1)/z01 × Mn−φ(1)/z12 since M0 is an ∞-groupoid. Rewriting our expression for αn,!�
using this, we get exactly our last formula for d1,!φ!�, as required. ��
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Remark 3.5.9 We can describe the double ∞-category M̂V as follows:

• its objects are functorsM0 → S, and its vertical morphisms are natural transformations
of these,

• its horizontal morphisms from F to G are functorsM1,F,G → V⊗
1 overM1,

• the composite of horizontal morphisms � : M1,F,G → V⊗
1 and � : M1,G,H → V⊗

1 is
the functorM1,F,H → V⊗

1 given by

(x ∈M1, p∈F(x00), q∈F(x11)) �→ colim
α : y→x∈M2/x

colim
t∈H(y11)

α!(�(y01, p, t),�(y12, t, q)).

3.6 Example: enriched∞-categories as associative algebras

In this subsection we illustrate our results on Day convolution by considering a simple exam-
ple of our construction: we will give a description of enriched ∞-categories as associative
algebras in a family ofmonoidal∞-categories. An alternative construction of thesemonoidal
∞-categories is given in [39], where this perspective on enriched ∞-categories is developed
extensively.

Remark 3.6.1 Our construction will extend the following description of ordinary enriched
categories: If S is a set and V is a monoidal category where the tensor product preserves
coproducts in each variable, then there is a monoidal structure on Fun(S × S,V) given by

(F ⊗ G)(i, k) ∼=
∐

j∈S
F(i, j) ⊗ G( j, k),

with unit 1 the functor

1(i, j) =
{
1, i = j

∅, i �= j .

This is sometimes known as the “matrix multiplication” tensor product, since the formula is
a “categorified” version of that for multiplication of matrices. An associative algebra A in
the category Fun(S × S,V) with this tensor product is the same thing as a V-category with
set of objects S:

• The multiplication map A ⊗ A → A supplies composition maps A(i, j) ⊗ A( j, k) →
A(i, k).

• The unit map 1 → A supplies identity maps 1 → A(i, i).

Let us consider first the result of applying Day convolution to the simplest double ∞-
category, namely ´op. This is trivially X-admissible for any ∞-category X with pullbacks,
and so by Proposition 3.2.12 there is a double ∞-category ̂́opX which by Corollary 3.3.7 has
the universal property that for any generalized non-symmetric ∞-operad O there is a natural
equivalence

AlgO(̂´
op
X ) 	 SegO(X).

By construction, the fibre ̂́opX,n is the ∞-category of functors ˚n → X that are right Kan
extended from ˜n . We thus see that:

• objects of ̂́opX are objects of X,
• vertical morphisms (morphisms in ̂́opX,0) are morphisms in X,
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• horizontal morphisms (objects in ̂́opX,1) are spans in X, i.e. diagrams of shape

• ← • → •,

• squares (morphisms in ̂́opX,1) are diagrams of shape

• • •

• • •,

• composition of horizontal morphisms is given by taking pullbacks.

Indeed, the double∞-category ̂́opX,n is precisely the double∞-category SPAN+(X) of spans
constructed in [33], and its universal property is that established in [34]. In particular, we
have an equivalence

Alg´op (̂´
op
X ) 	 Seg´op(X),

identifying associative algebras in the double ∞-category ̂́opX with category objects in X.
Specializing to the ∞-category S of spaces, this says that associative algebras in ̂́opS are
equivalent to Segal spaces, which describe the algebraic structure of ∞-categories.

By Corollary 3.4.13, the restriction Alg´op (̂´
op
S ) → S is a cartesian fibration, with fibre at

a space X given by Alg´op (̂´
op
S (X , X)). Here ̂́opS (X , X) is equivalent to S/X×X 	 Fun(X ×

X , S). The monoidal structure is given by pullback of spans, which in terms of functors to S
admits the following description:

Proposition 3.6.2 For any space X there is a monoidal structure on the∞-category Fun(X×
X , S) such that

(i) the tensor product of F and G is given by

(F ⊗ G)(x, x ′) 	 colim
y∈X F(x, y) × G(y, x ′).

(ii) the unit 1 is given by

1(x, y) 	 MapX (x, y) 	
{

∅, x �	 y

�x X , x 	 y,

where MapX (x, y) is the mapping space in the ∞-groupoid X, i.e. the space of paths
from x to y in X.

(iii) we have Alg´op(Fun(X × X , S)) 	 Seg(S)X .

In other words, ∞-categories with space of objects X are associative algebras in Fun(X ×
X , S) with this monoidal structure.

Now we want to consider the analogue of this result for enriched ∞-categories. Proposi-
tions 3.5.6 and 3.5.8 specialize to give the following:

Proposition 3.6.3 Let C⊗ → ´op be a monoidal ∞-category compatible with colimits

indexed by ∞-groupoids. Then there is a framed double ∞-category ̂́opC such that for any
generalized non-symmetric ∞-operad O there is an equivalence

AlgO(̂́opC ) 	 AlgdO(O ×´op C
⊗).

A monoidal functor C⊗ → D⊗ induces a natural morphism of generalized non-symmetric

∞-operads ̂́opC → ̂́opD, and this preserves cocartesian morphisms if the monoidal functor
preserves colimits indexed by ∞-groupoids.
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In particular, we get an equivalence

Alg´op(
̂́op
C ) 	 Algd´op(C

⊗),

where as in Example 2.1.21 the right-hand side is the model of enriched ∞-categories con-
sidered in [24]. Specializing Remark 3.5.9 gives the following description of the double

∞-category ̂́opC :

• its objects are spaces, and its vertical morphisms are morphisms of spaces,
• a horizontal morphism from X to Y is a functor X × Y → C,
• the composite of the horizontal morphisms � : X × Y → C and � : Y × Z → C is the

functor X × Z → C given by

(x, z) �→ colim
y∈Y �(x, y) ⊗ �(y, z).

From Corollary 3.4.10 we know that the restriction Alg´op(
̂́op
C ) → S is a cartesian

fibration, with fibre at a space X given by Alg´op((
̂́op
C )(X , X)) 	 Alg´opX

(C). Here the

∞-category (̂́opC )(X , X) is equivalent to Fun(X × X ,C), giving:

Corollary 3.6.4 Let C be a monoidal ∞-category compatible with colimits indexed by ∞-
groupoids. Then there is a monoidal structure on the ∞-category Fun(X × X ,C) such that

(i) the tensor product of F and G is given by

(F ⊗ G)(p, q) 	 colim
x∈X F(p, x) ⊗ G(x, q),

(ii) the unit 1 is given by

1(p, q) 	 MapX (p, q) ⊗ 1 	
{

∅, p �	 q

�p X ⊗ 1, p 	 q,

where 1 is the unit of C,
(iii) we have Alg´op(Fun(X × X ,C)) 	 Alg´opX

(C).

4 The composition product and∞-operads

In this section we apply our results on Day convolutions to describe ∞-operads as associa-
tive algebras in double ∞-categories. We first consider ordinary ∞-operads (in spaces) in
Sect. 4.1, and then enriched∞-operads in Sect. 4.2. We also briefly observe, in Sect. 4.3, that
a version of the bar-cobar adjunction between ∞-operads and ∞-cooperads follows from
this description of ∞-operads.

4.1 ∞-operads as associative algebras

In this subsection we will see that ∞-operads are given by associative algebras in a double
∞-category of symmetric collections (or coloured symmetric sequences) in S. For this we
use Barwick’s model of ∞-operads from [3]; this is known to be equivalent to other models
of ∞-operads thanks to the results of [3,13–15]. Before we recall Barwick’s definition we
first introduce some notation:
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Definition 4.1.1 Write F for a skeleton of the category of finite sets, with objects k :=
{1, . . . , k}, k = 0, 1, . . .. Let ´F be the category with objects pairs ([n], f : [n] → F) with
a morphism ([n], f ) → ([m], g) given by a morphism φ : [n] → [m] in ´ and a natural
transformation η : f → g ◦ φ such that

(i) the map ηi : f (i) → g(φ(i)) is injective for all i = 0, . . . ,m,
(ii) the commutative square

f (i) g(φ(i))

f ( j) g(φ( j))

ηi

η j

is a pullback square for all 0 ≤ i ≤ j ≤ m.

Notation 4.1.2 For I = ([n], f ) in ´F, we write I |i j := ([ j − i], f |{i,i+1,..., j}) for 0 ≤ i <

j ≤ n, and I |i := ([0], f (i)). Moreover, for x ∈ f (n) we write Ix := ([n], fx ) where fx is
obtained by taking fibres at x .

Definition 4.1.3 A presheaf F : ´op
F

→ S is a Segal operad if it satisfies the following three
“Segal conditions”:

(1) for every object I = ([n], f ) of ´F, the natural map

F(I ) → F(I |01) ×F(I |1) · · · ×F(I |n−1) F(I |(n−1)n)

is an equivalence,
(2) for every object I = ([1],k → l), the natural map

F(I ) →
∏

x∈l
F(Ix )

is an equivalence,
(3) for every object I = ([0],k), the natural map

F(I ) →
∏

x∈k
F(Ix )

is an equivalence.

We write Segopd
´op
F

(S) for the full subcategory of P(´F) spanned by the Segal operads.

Remark 4.1.4 In the presence of condition (1), conditions (2) and (3) can be replaced by the
following more general version:

For every object I = ([n], f ) of ´F, the natural map

F(I ) →
∏

x∈ f (n)

F(Ix )

is an equivalence.

Segal presheaves on ´F describe the algebraic structure of ∞-operads: If we write e :=
([0], 1) and cn := ([1],n → 1), then the Segal conditions describe how F(I ) decomposes
as a limit of F(e) and F(cn). We can think of an object of ´F as a forest with levels; then
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e correponds to a plain edge and cn to a corolla with n leaves, while the Segal condition
corresponds to the decomposition of a forest into its edges and corollas. If F is viewed as
an ∞-operad, the value F(e) is the space of objects of F , while F(cn) is the space of n-ary
morphisms.

The following is the starting point for our construction of the composition product on
symmetric sequences:

Proposition 4.1.5 The projection ´op
F

→ ´op is an X-admissible double ∞-category for any
cocomplete ∞-category X with pullbacks where colimits are universal.

For the proof we need some notation and a lemma:

Definition 4.1.6 Suppose φ : [n] → [m] is an active map in ´ and A = (a0 → · · · → an)
is an object of (´F)[n]. An object of the slice (´F)[m],A/, defined using φ, is an object
(b0 → · · · → bm) of (´F)[m] together with injective maps ai → bφ(i) such that the squares

ai ai+1

bφ(i) bφ(i+1)

are cartesian. Let (´F)iso[m],A/ denote the full subcategory of (´F)[m],A/ containing those
objects where the map an → bφ(m) is an isomorphism.

Lemma 4.1.7 Let φ : [n] → [m] be an active morphism in ´, and let A = (a0 → · · · → an)
be an object of (´F)[n]. For 0 ≤ i ≤ j ≤ n let Ai j := (ai → ai+1 → · · · → a j ).

(i) The inclusion (´F)iso[m],A/ ↪→ (´F)[m],A/ is coinitial.

(ii) For every k, 0 ≤ k ≤ n, the functor (´F)iso[m],A/ → (´F)iso[φ(k)],A0k/
× (´F)iso[m−φ(k)],Akn/

is
an equivalence.

Proof By [43, Theorem 4.1.3.1] for part (i) it suffices to check that for all B ∈ (´F)[m],A/ the
category ((´F)iso[m],A/)/B is weakly contractible. Observe that the projection (´F)[m] → Finj

given by evaluation at [m] is a cartesian fibration, where Finj denotes the subcategory of
F containing only the injective maps. The category ((´F)iso[m],A/)/B therefore has a terminal
object, given by the cartesian morphism B ′ → B over the map An → Bφ(m), which implies
that it is weakly contractible. (Indeed this is the unique object of ((´F)iso[m],A/)/B , which is
actually a contractible ∞-groupoid.) Part (ii) is immediate from the definition. ��
Proof of Proposition 4.1.5 The functor ´F → ´ is a cartesian fibration, and the corresponding
functor ´op → Cat∞ takes [n] to the category (´F)[n] where

• an object is a sequence a0 → · · · → an of morphisms in F,
• a morphism is a commutative diagram

a0 a1 · · · an−1 an

b0 b1 · · · bn−1 bn

� � �

where the squares are cartesian and the maps ai → bi are injective.
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This clearly satisfies the Segal condition, i.e. (´F)[n] 	 (´F)[1] ×(´F)[0] · · ·×(´F)[0] (´F)[1]. It
follows that ´op

F
→ ´op is a cocartesian fibration corresponding to the functor ´op → Cat∞

taking [n] to (´F)
op
[n] and so is also a double ∞-category.

Suppose φ : [n] → [m] is an active map in ´. If A = (a0 → · · · → an) and A′ = (a0 →
· · · → ak) and A′′ = (ak → · · · → an) then we must show that the natural map

colim
((´F)[m],A/)

op
F → colim

((´F)[φ(k)],A′/)op
F ×colim((´F)[0],ak /)op F colim

((´F)[n−φ(k)],A′′/)op
F

is an equivalence for any appropriate functor F .
We have a commutative square

colim((´F)iso[m],A/)
op F colim((´F)iso[φ(k)],A′/)

op F ×colim
((´F)iso[0],ak /

)op
F colim((´F)iso[n−φ(k)],A′′/)

op F

colim((´F)[m],A/)
op F colim((´F)[φ(k)],A′/)op F ×colim((´F)[0],ak /)op F colim((´F)[n−φ(k)],A′′/)op F,

∼ ∼

where the verticalmaps are equivalences byLemma 4.1.7(i). To see that the bottomhorizontal
map is an equivalence it hence suffices to show the top horizontal map is an equivalence.

Here (´F)iso[0],ak/ is contractible, since it only contains the identity map of ak , while the

functor (´F)iso[m],A/ → (´F)iso[φ(k)],A′/×(´F)iso[n−φ(k)],A′′/ is an equivalence by Lemma 4.1.7(ii).
Thus the top horizontal functor is

colim
(X ,Y )∈((´F)iso[φ(k)],A′/)

op×((´F)iso[n−φ(k)],A′′/)
op
F(X) ×F([0],ak ) F(Y )

→ colim
X∈((´F)iso[φ(k)],A′/)

op
F(X) ×F([0],ak ) colim

Y∈((´F)iso[n−φ(k)],A′′/)
op
F(Y ),

which is an equivalence since colimits in X are universal. ��
Notation 4.1.8 Given amorphism f : a → b of finite sets, we write Fact( f ) for the groupoid
((´F)iso[2],a→b/)

op of factorizations of f .

Applying Proposition 3.2.12 and Corollary 3.3.7 we get:

Corollary 4.1.9 There is a double ∞-category ̂́op
F,S with the universal property that for any

generalized non-symmetric ∞-operad O there is a natural equivalence

AlgO(̂´
op
F,S) 	 SegO×´op´

op
F

(S).

In particular, Alg´op (̂´
op
F,S) 	 Seg´op

F

(S).

Here Seg´op
F

(S) is the ∞-category of presheaves on ´F that satisfy condition (1) in Defi-

nition 4.1.3. The double ∞-category ̂́op
F,S can be described as follows:

• Objects are functors F
op
inj 	 ´op

F,[0] → S,
• Vertical morphisms are natural transformations of such functors.
• A horizontal morphism � from F to G : F

op
inj → S assigns to ([1], a → b) a span

F(a) ← �(a → b) → G(b).

• Squares are natural transformations of such diagrams.
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• If � is a horizontal morphism from F to G and � is a horizontal morphism from G to

H then their composite assigns to ([1], a f−→ b) the space over F(a) and H(b) given by

colim
a→x→b∈Fact( f ) �(a → x) ×G(x) �(x → b).

Definition 4.1.10 Let COLL(S) denote the full subcategory of ̂́op
F,S spanned by the functors

(˚´op
F

)n → S such that their inert restrictions to (˚´op
F

)0 	 F
op
inj take coproducts of finite

sets to products, and their inert restrictions to (˚´op
F

)1 moreover satisfy condition (2) in
Definition 4.1.3 when restricted to (´op

F
)[1].

Lemma 4.1.11 COLL(S) is a sub-double ∞-category of ̂́op
F,S.

Proof It follows from Lemma 2.1.11 that COLL(S) is a generalized non-symmetric ∞-
operad, so it only remains to check that the cocartesian morphisms restrict to COLL(S).
To see this it suffices to check that the horizontal morphisms in COLL(S) are closed under
composition. If � is a horizontal morphism from F to G and � is one from G to H , and
both lie in COLL(S), then we have

(� �G �)(a → b) 	 colim
a→x→b

�(a → x) ×G(x) �(x → b)

	 colim
(ai→xi→1)∈∏i∈b Fact(ai→1)

(
∏

i∈b
�(ai → xi )

)

×(
∏

i∈b G(xi ))

(
∏

i∈b
�(xi → 1)

)

	 colim
(ai→xi→1)∈∏i∈b Fact(ai→1)

∏

i∈b
�(ai → xi ) ×G(xi ) �(xi → 1)

	
∏

i∈b
colim

ai→xi→1∈Fact(ai→1)
�(ai → xi ) ×G(xi ) �(xi → 1)

	
∏

i∈b
(� �G �)(ai → 1),

i.e. � �G � also lies in COLL(S), as required. ��
The double ∞-category COLL(S) can be described as follows:

• Its objects can be identified with spaces (since functors F
op
inj → S in COLL(S)0 are

determined by their value at 1).
• Its vertical morphisms are maps of spaces.
• A horizontal morphism � from X to Y is determined by assigning to ([1],n → 1) a

span

X×n ← �(n) → Y ,

where �(n) has a �n-action compatible with permuting the factors of X×n .
• A square is a natural transformation of such diagrams.
• If� is a horizontal morphism from X to Y and� is one from Y to Z , then their composite

assigns to ([1],n → 1) the space over X×n × Z given by

colim
n→m→1

�(n → m) ×Y×m �(m),

where �(n → m) 	∏m
i=1 �(ni ).
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Restricting Corollary 4.1.9 to COLL(S), we get:

Corollary 4.1.12 There is an equivalence Alg´op(COLL(S)) 	 Segopd
´op
F

(S). ��

In other words, ∞-operads can be described as associative algebras in the double
∞-category COLL(S). Moreover, applying Corollary 3.4.13 we see that the restriction
Alg´op(COLL(S)) → S is a cartesian fibration. If we write

CollX (S) := COLL(S)(X , X)

for the ∞-category of X -collections in S, the fibre at X ∈ S is given by Alg´op(CollX (S)).
To describe the monoidal structure on CollX (S) we first need to introduce some notation:

Notation 4.1.13 Let F
	 denote the maximal subgroupoid of F, and write j : F

	 → (´op
F

)[1]
for the fully faithful functor taking n to n → 1. Given X ∈ S, we write (´op

F
)[0],X → (´op

F
)[0]

for the left fibration corresponding to the unique product-preserving functor (´op
F

)[0] 	
F
op
inj → S that takes 1 to X . Moreover, for X , Y ∈ S let (´op

F
)[1],X ,Y denote the pullback

(´op
F

)[1] ×
(´op

F
)×2
[0]

(
(´op

F
)[0],X × (´op

F
)[0],Y
)
. If we define F

	
X := ∐×

n=0 X
×n
h�n

to be the free

commutative monoid on the ∞-groupoid X , then we have a pullback

F
	
X × Y (´op

F
)[1],X ,Y

F
	 (´op

F
)[1].

jX ,Y

j

Lemma 4.1.14 For any X ∈ S, the ∞-category COLL(S)(X , Y ) of horizontal morphisms
from X to Y is equivalent to the full subcategory of Fun((´op

F
)[1],X ,Y , S) spanned by functors

that are right Kan extensions along jX ,Y , so that

COLL(S)(X , Y ) 	 Fun(F	
X × Y , S).

Proof By Proposition 3.2.15 we may identify ̂́op
F,S(F,G) with Fun((´op

F
)[1],F,G , S) for

any functors F,G : (´op
F

)[0] → S. For the objects that lie in COLL(S) these are functors
(´op

F
)[1],X ,Y → S, and under this identification it is easy to see that the functors that lie in

COLL(S)(X , Y ) are precisely those that are right Kan extended from F
	
X × Y . ��

Remark 4.1.15 In particular, we may identify the ∞-category Coll∗(S) of horizontal endo-
morphisms of the point with the ∞-category Fun(F	, S) of symmetric sequences in S. More
generally, the ∞-category CollX (S) is equivalent to Fun(F	

X × X , S), the ∞-category of
X -collections, or X -coloured symmetric sequences, in S.

Notation 4.1.16 For a functor F : F
	
X×Y → C,wewill denote its value at ((x1, . . . , xn), y) ∈

X×n
h�n

× Y by F
(x1,...,xn

y

)
.

Corollary 4.1.17 The ∞-category Fun(F	
X × X , S) has a monoidal structure such that

(i) the tensor product of F and G is given by

(F ◦ G)

(
x1, . . . , xn

z

)
	 colim

n→m→1
(yi )∈Xm

∏

i∈m
F

(
xk : k ∈ ni

yi

)
× G

(
y1, . . . , ym

z

)
,

where the colimit is over ((´F,X )iso[2],(n→1,(xi ),z)/
)op,
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(ii) the unit 1X is given by

1X

(
x1, . . . , xn

y

)
	
{

∅, n � 1,

MapX (x1, y), n ∼= 1,

(iii) we have Alg´op(Fun(F
	
X × X , S)) ∼= Segopd

´op
F

(S)X .

Remark 4.1.18 In particular, the ∞-category Fun(F	, S) of symmetric sequences has a
monoidal structure with tensor product given by

(F ◦ G)(n) 	 colim
(n→m→1)∈Fact(n→1)

∏

i∈m
F(ni ) × G(m).

This formula is easily seen to agree with the usual formula for the composition product of
symmetric sequences by expanding out Fact(n → 1) as a coproduct of its components, cf.
[18, Lemma A.4].

Remark 4.1.19 In [3], Barwick defines �-∞-operads for operator categories � as Segal
presheaves on categories ´�, of which ´F is a special case. The proof of Corollary 4.1.17
works for any operator category, giving a monoidal structure on the ∞-category Fun(�	

X , S)

of “X -coloured �-symmetric sequences” where associative algebras are �-∞-operads with
X as their space of objects. In particular, replacing F with the category O of ordered finite
sets we obtain the analogous results for non-symmetric ∞-operads.

4.2 Enriched∞-operads as associative algebras

In this subsection we extend the results of the previous subsection to ∞-operads enriched in
a symmetric monoidal ∞-category. The starting point is the following analogue of Proposi-
tion 3.5.8 for ´op

F
-monoidal ∞-categories:

Proposition 4.2.1 Let U⊗ be a ´op
F
-monoidal ∞-category that is compatible with colimits

indexed by ∞-groupoids. Then ̂́op
F,U is a framed double ∞-category. If U⊗ → V⊗ is

a ´op
F
-monoidal functor between such ´op

F
-monoidal ∞-categories such that each functor

UX → VX for X ∈ (´F)[1] preserves colimits indexed by ∞-groupoids, then the natural
morphism of generalized non-symmetric ∞-operads ̂́op

F,U → ̂́op
F,V preserves cocartesian

morphisms.

Proof Follows as in the proof of Proposition 3.5.8, using Lemma 4.1.7 to restrict to colimits
indexed by ∞-groupoids. ��

We now recall some definitions from [10]; we refer the reader there for motivation for
these definitions.

Definition 4.2.2 Let V : ´op
F

→ F∗ be the functor of [10, Definition 2.2.11], taking
([n], a0 → · · · → an) to (

∐n
i=1 ai )+, and amorphism ([n], a0 → · · · → an) → ([m],b0 →

· · · → bm) over φ : [n] → [m] in ´op to the map (
∐m

i=1 ai )+ → (
∐n

j=1 b j )+ given on
the component ai by the map ai → (

∐n
j=1 b j )+ taking x ∈ ai to an object y ∈ b j if

φ( j − 1) < i ≤ φ( j) and the map ai → aφ( j) takes x to the image of y under the map
b j → aφ( j), and to the base point ∗ otherwise. The functor V assigns to a forest its set of
vertices with an added basepoint. Note that V assigns every morphism in ´op

F
that lies over

an identity morphism in ´op to an inert morphism in F∗.
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Definition 4.2.3 If V⊗ → F∗ is a symmetric monoidal ∞-category, and V⊗ → F
op∗ is the

corresponding cartesian fibration, then we define the ∞-category ´V
F
by the pullback square

´V
F

V⊗

´F F
op∗ .

V op

Note that V : ´op
F

→ F∗ satisfies

V ([n], a0 → · · · → an) ∼= V ([1], a0 → a1) + · · · + V ([1], an−1 → an),

which implies that ´V,op
F

is a ´F-monoidal ∞-category.

Remark 4.2.4 Let V be a symmetric monoidal ∞-category compatible with colimits indexed
by ∞-groupoids. The double ∞-category ̂́op

F,´V,op
F

can be described as follows:

• The objects are functors (´F)
op
[0] → S, and the vertical morphisms are natural transfor-

mations of such functors.
• A horizontal morphism from F to G is a functor

� : (´F)
op
[1],F,G → (´F)

op
[1] ×F∗ V

⊗

over (´F)
op
[1]. This thus assigns to an object (n

f−→ m, p ∈ F(n), q ∈ G(m)) an object

(�( f , p, q)i )i∈m of V×|m|.
• If� is a horizontalmorphism from F toG and� is one fromG to H , then their composite

is the functor from (´F)
op
[1],F,H given by

(n
f−→ m, p ∈ F(n), q ∈ H(m))

�→
⎛

⎝ colim
(n

g−→x
h−→m)∈Fact( f )

colim
t∈G(x)

⊗

j∈h−1(i)

�(g, p, t) j ⊗ �(h, t, q)i

⎞

⎠

i∈m
Definition 4.2.5 Let V be a symmetric monoidal ∞-category compatible with colimits
indexed by ∞-groupoids. We denote by COLL(V) the full subcategory of ̂́op

F,´V,op
F

spanned

by the objects

(1) whose inert restrictions to [0] are given by functors (´F)
op
[0] 	 F

op
inj → S that take

coproducts of finite sets to products,
(2) whose inert restrictions to [1] correspond to functors

(´F)
op
[1],F,G → (´F)

op
[1] ×F∗ V

⊗

that send all morphisms to cocartesian morphisms in the target.

This is a sub-double ∞-category of ̂́op
F,´V,op

F

by a variant of the proof of Lemma 4.1.11.

Remark 4.2.6 A functor F : F
op
inj → S that satisfies condition (1) is the right Kan extension

of its restriction to the object 1. Thus the objects of COLL(V) can equivalently be described
as spaces. Since the restriction of the functor V to (´F)

op
[1] sends all morphisms to inert

morphisms in F∗, the functor (´F)
op
[1] → Cat∞ corresponding to the cocartesian fibration
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(´F)
op
[1] ×F∗ V

⊗ is also a right Kan extension of its restriction to the full subcategory F
	, and

this restriction is the constant functor with value V. Thus a horizontal morphism from X to
Y in COLL(V) is uniquely determined by its restriction to a functor F

	
X × Y → V.

Notation 4.2.7 We say amorphism in´op
F
is operadic inert if it lies over an inert morphism in

´op. Let Algopd
´op
F,X

(V) denote the full subcategory of Alg´op
F,X /´op

F

(V ∗V) spanned by morphisms

that take operadic inert morphisms to cocartesian morphisms; we call such objects operadic
´op

F,X -algebras. We then write Algdopd
´op
F

(V) for the full subcategory of Algd´op
F

(V) correspond-

ing to operadic algebras for all ´op
F,X , X ∈ S. Similarly, we can define operadic algebras and

algebroids for O ×´op ´
op
F

where O is any generalized non-symmetric ∞-operad, by taking
the operadic inert morphisms in O ×´op ´

op
F

to be those that lie over inert morphisms in O

and operadic inert morphisms in ´op
F
.

Restricting the equivalence from Proposition 3.5.6 to COLL(V), we get:

Corollary 4.2.8 LetV be a symmetric monoidal∞-category compatible with colimits indexed
by ∞-groupoids. There is a framed double ∞-category COLL(V) where:

• objects are spaces and vertical morphisms are morphisms of spaces,
• horizontal morphisms from X to Y are functors F

	
X × Y → V,

• if� : F
	
X ×Y → V and� : F

	
Y × Z → V are two horizontal morphisms, their composite

is the functor F
	
X × Z → V given by

(
x1, . . . , xn

z

)
�→ colim

n
f−→m→1

colim
(y j )∈Ym

⊗

j

�

(
xi : i ∈ f −1( j)

y j

)
⊗ �

(
y1, . . . , ym

z

)
.

We have AlgO(COLL(V)) 	 Algdopd
O×´op´

op
F

(V). Moreover, if φ : V → W is a symmetric

monoidal functor that preserves colimits indexed by ∞-groupoids, then φ induces a mor-
phism of double ∞-categories COLL(V) → COLL(W) given on horizontal morphisms by
composition with φ.

Let CollX (V) := COLL(V)(X , X); then CollX (V) is equivalent to the ∞-category
Fun(F	

X × X ,V) of symmetric X -collections in V. The monoidal structure on CollX (V)

has the following description:

Corollary 4.2.9 LetV be a symmetric monoidal∞-category compatible with colimits indexed
by ∞-groupoids. The ∞-category Fun(F	

X × X ,V) has a monoidal structure such that

(i) the tensor product of F and G is given by

(F ◦ G)

(
x1, . . . , xn

z

)
	 colim

n→m→1
yi∈X ,i∈m

⊗

i∈m
F

(
xk : k ∈ ni

yi

)
⊗ G

(
y1, . . . , yk

z

)
,

where the colimit is over ((´F,X )iso[2],(n→1,(xi ),z)/
)op

(ii) the unit 1X is given by

1X

(
x1, . . . , xn

y

)
	
{

∅, n � 1,

MapX (x1, y) ⊗ 1, n ∼= 1,

(iii) we have Alg´op(Fun(F
	
X × X ,V)) 	 Alg´op

F,X
(V).

123



168 R. Haugseng

Moreover, if φ : V → W is a symmetric monoidal functor that preserves colimits indexed
by ∞-groupoids, then composition with φ gives a monoidal functor Fun(F	

X × X ,V) →
Fun(F	

X × X ,W).

4.3 ∞-cooperads and a bar-cobar adjunction

In this subsection we will apply Lurie’s bar-cobar adjunction for associative algebras [44,
Sect. 5.2.2] to obtain a version of the bar-cobar adjunction between ∞-operads and ∞-
cooperads with a fixed space of objects. We first spell out the variant of ∞-cooperads that
this applies to:

Definition 4.3.1 For X ∈ S and V a symmetric monoidal ∞-category compatible with col-
imits indexed by ∞-groupoids, a V-enriched ∞-cooperad with space of objects X is a
coassociative coalgebra in Fun(F	

X × X ,V), equipped with the monoidal structure of Corol-
lary 4.2.9. We write

CoopdX (V) := Alg´op(Fun(F
	
X × X ,V)op)op

for the ∞-category of V-∞-cooperads with space of objects X , and

CoopdcoaugX (V) := CoopdX (V)1X /

for the ∞-category of coaugmented V-∞-cooperads. Similarly, we write

OpdX (V) := Alg´op(Fun(F
	
X × X ,V))

and

OpdaugX (V) := OpdX (V)/1X .

Corollary 4.3.2 Let V be a symmetric monoidal ∞-category compatible with small colimits.
There is an adjunction

Bar : OpdaugX (V) � CoopdcoaugX (V) : Cobar,
where on underlying symmetric sequences Bar(O) is given by

1X ◦O 1X 	 colim
´op

(
1 O O ◦ O · · ·

)
(1)

and Cobar(Q) is given by

lim
´

(
1 Q Q ◦ Q · · ·

)
. (2)

Proof Apply [44, Theorem 5.2.2.17] to the monoidal ∞-category Fun(F	
X × X ,V)1X //1X . ��

Remark 4.3.3 Here we have defined ∞-cooperads as coalgebras in symmetric sequences,
following the definition proposed in, for instance, [20]. However, the notion of cooperad in
V that is relevant in bar-cobar duality for operads often seems to be that of operads enriched in
Vop (as for example used by Ching to define the bar–cobar adjunction for operads in spectra
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[7]). In general these two versions of cooperads are quite different: an ∞-cooperad O with
one object in our sense has a comultiplication O → O ◦ O, which is given by morphisms

O(n) →
∞∐

k=0

⎛

⎝

⎛

⎝
∐

i1+···+ik=n

Ind�n
�i1×···×�ik

(O(i1) ⊗ · · · ⊗ O(ik))

⎞

⎠⊗ O(k)

⎞

⎠

h�k

,

while an ∞-operad enriched in Vop would be given by morphisms

O(n) →
∞∏

k=0

⎛

⎝

⎛

⎝
∏

i1+···+ik=n

CoInd�n
�i1×···×�ik

(O(i1) ⊗ · · · ⊗ O(ik))

⎞

⎠⊗ O(k)

⎞

⎠
h�k

;

here Ind�n
�i1×···×�ik

and CoInd�n
�i1×···×�ik

denote induction and coinduction, respectively, or

in other words left and right Kan extension along the functor B(�i1 × · · · × �ik ) → B�n .
However, if we make some assumptions on both the ∞-operads we consider and on the

∞-categorieswe enrich in, then the twonotions do agree: First supposeV is a semiadditive∞-
category,meaning it has a zero object and finite biproducts (i.e. finite products and coproducts
coincide). (For example, this holds in any stable∞-category, such as those of spectra or chain
complexes.) If we then restrict ourselves to consider only reduced ∞-operadsO ∈ Opd∗(V),
meaning ∞-operads such that O(0) 	 0, then the coproducts in O ◦ O are finite and hence
are equivalent to products. Moreover, for such reduced symmetric sequences we can rewrite
the formula for the composition product without taking any homotopy orbits:6

(O ◦ O)(n) 	
⊕

n�k�∗
O(i1) ⊗ · · · ⊗ O(ik) ⊗ O(k),

where i j = |n j |. This is easy to see in the coordinate-free description as discussed in Sect. 1.1:
passing to reduced symmetric sequencesmeans only surjectivemaps of sets appear, and these
have no automorphisms in F

[2],	.
Therefore for reduced O a comultiplication O → O ◦ O is equivalently described by

�n-equivariant maps

O(n) → O(i1) ⊗ · · · ⊗ O(ik) ⊗ O(k)

where n = i1 + · · · + ik . This is precisely the structure of an ∞-operad enriched in Vop with
the same n-ary operations as O.

For reduced ∞-operads enriched in semiadditive ∞-categories, we therefore expect that
the bar–cobar adjunction arising from the composition product is the correct one for under-
standing bar–cobar duality for enriched ∞-operads. One might wonder if there exists some
more general version of a bar-cobar adjunction without these restrictions, but this setting
does in fact seem to cover all the cases of bar–cobar duality for operads in the literature that
we are aware of.
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