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Abstract

Credibility theory lays the foundations and provides the original model of how the
insurance industry predicts expected loss and determines price levels (Bühlmann
& Gisler, 2005). In the context of modern statistics, credibility theory is used to
estimate random effects in a generalized linear mixed model. This thesis proposes
two alternative models, serving as extensions to the original model. The proposed
models extend the usual framework of a generalized linear mixed model, giving
Bayesian hierarchical models. The first proposed model extends the distributional
assumptions on the random effects by assuming that they are normally distrib-
uted. This extends the original model, which is restricted to assumptions only
about the first and second moment of the random effect. The second proposed
model keeps the distributional assumptions made in the previous model and ex-
tends this by adding assumptions on the fixed effects of the general linear mixed
model. As with the random effects, we assume that the fixed effects are normally
distributed. The last model also assumes a prior distribution on the variance para-
meters of the fixed and random effects.

Credibility theory is insufficient to estimate the parameters of the proposed mod-
els. For the first model, we implement a variation of the Monte Carlo expectation-
maximization algorithm, as proposed in Levine and Casella (2001). For the last
model, we employ Markov Chain Monte Carlo. Ranking the results from the three
models, i.e. the original model and the two proposed extensions, we find that a
Bayesian hierarchical model with prior distributions on both the fixed and ran-
dom effects arguably outperforms the original model. Given the complexity of the
Markov Chain Monte Carlo algorithm, we get a computer-intensive method, and
compared to the original model and its estimation method, convergence is slow.
Finally, we discuss alternatives for estimation and implementation that can yield
a method outperforming the original model.
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Sammendrag

Kredibilitetsteori gir både fundamentet og den originale modellen for hvordan
forsikringsbransjen predikerer forventet tap og prisnivåer (Bühlmann & Gisler,
2005). I moderne statistikk ser vi at kredibilitetsteori gir en metode for estimering
av tilfeldige effekter i generaliserte miksede lineære modeller. I denne oppgaven
foreslår vi to alternative modeller som begge utvider den originale modellen. De
foreslåtte modellene utvider også strukturen til en generalisert mikset lineær mod-
ell og betraktes som Bayesianske hierarkiske modeller. Den første modellen vi
foreslår antar en normalfordeling på de tilfeldige effektene. Dette går lenger enn
den originale modellen som kun gjør antakelser på det første og andre momentet
til de tilfeldige effektene. Den andre foreslåtte modellen tar med seg antakelsene
til den første modellen og bygger igjen videre på denne ved å anta at de faste ef-
fektene også har en sannsynlighetsfordeling. I likhet med de tilfeldige effektene,
antar vi at de faste effektene er normalfordelte. I tillegg antar også denne model-
len en apriorifordeling på variansen til de tilfeldige og faste effektene.

Kredibilitetsteori alene er ikke nok til å estimere parametere i de foreslåtte mod-
ellene. For den første foreslåtte modellen implementerer en variant av Monte
Carlo expectation-maximization-algoritmen som er beskrevet i Levine and Case-
lla (2001). For den andre modellen foreslås en implementering av Markov Chain
Monte Carlo-algoritmen. Ved rangering av resultater fra den originale modellen,
den første og den andre foreslåtte modellen, viser vi at den andre modellen kan
slå den originale. Med andre ord, vi ser at en Bayesiansk hierarkisk modell med
fordelinger på både de faste og tilfeldige effektene kan gjøre det bedre enn den
originale modellen. Markov Chain Monte Carlo-algoritmen gir en beregningstung
metode, og sammenlignet med den originale modellen, og dens metode, opplever
vi treg konvergens. Avslutningsvis ser vi på alternativer for estimering og imple-
mentering som kan gi en metode som slår den originale modellen på resultater
og samtidig tar hensyn til beregningstid.
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Chapter 1

Introduction

Determining risk is of high importance when selling insurance. Specifically, one
wants to predict what a customer will claim in the future accurately. Is it likely
that customer A will make more claims than customer B? If yes, why is that the
case? Statistical models allow us to model how often a customer will make a claim
and how extensive this claim will be. Some statistical models even will enable us
to interpret how they predict different outcomes for different customers.

For many years, generalized linear models and credibility theory have been a
cornerstone of insurance pricing. Generalized linear models provide a broad class
of statistical models with nice mathematical and statistical properties. On the
other hand, credibility theory has grown out of the insurance industry itself and
has provided ways of incorporating both individual and collective risk in an insur-
ance portfolio. Using credibility theory, statisticians have distinguished and given
value to risks with different exposure or credibility.

It is primarily Hans Bühlmann who has got the credit for developing credibil-
ity theory in a mathematical setting (Hickman & Heacox, 1999). In Bühlmann
and Gisler (2005), the rationale for credibility theory in insurance is thoroughly
introduced, along with proposals for real-life applications. At the heart of it is the
belief that every risk in the collective has an associated risk profile, where the risk
profiles are independent and identically distributed random variables. A typical
real-life example could be automobile insurance, where the brand of the car rep-
resents the risk profile. So Saab, Volvo, Peugot etc. have different risks associated
with them, but the risks are assumed to have been drawn independently from the
same probability distribution.

Furthermore, we assume that the number of claims a customer will make is a ran-
dom variable. The same goes for the size of the claim. Returning to our example,
the size of the claim is a random variable, drawn from a distribution which de-
pends on attributes about the driver and the car, including the brand of the car.
This constitutes a hierarchical model. The main goal is estimation of the size of

1



2 Ole-Magnus Høiback: Estimation in Credibility Models

the claim, but getting there we need an estimation of the risk profile as well.

One way of doing this is through the use of empirical Bayes, which is the main
method employed by Bühlmann and Gisler (2005). This is not a truly Bayesian
analysis, but uses the Bayesian formulation of the problem. Instead of assigning
priors and computing posteriors, we estimate the mean of the priors with the
available data. Another way of solving the problem is through a pure Bayesian
model, or Bayesian hierarchical model (Klugman, 1987). This will be the focus of
this thesis. From a pure Bayesian formulation of the model, we estimate paramet-
ers using various techniques and compare our results to the traditional empirical
Bayes that is so popular today.

Where a pure Bayesian model results in a posterior distribution of one or sev-
eral parameters, empirical Bayes provides only point estimates of these. Hence,
we expect the former to tell us more and provide better estimates. For this reason,
we consider it to be an attractive alternative to empirical Bayes. There is no nov-
elty using purely Bayesian models for this purpose, but it becomes increasingly
more available as computers grow more powerful. Coupled with specific distribu-
tions, we use efficient algorithms to estimate our parameters.



Chapter 2

Data analysis

In this chapter, we explore our data set and look at the covariates we will be
using when building our model. Initially, we will spend some time introducing
relevant notation and insurance-specific formulations. Where the introduction in
Chapter 1 should provide motivation and interest for the problem, an introduction
to standard terms and formulations specific to the insurance industry will provide
broader insight and understanding of our problem.

2.1 A brief introduction to insurance

An insurance company usually sells a wide range of insurance policies. An insur-
ance policy is a legal contract between the insurance company and the insured, e.g.
a person or another company. Talking about an individual risk, we refer to the risk
tied to one individual policy, i.e. the expected cost that one policy will have for
the company. Suppose the insured experiences damage and the policy covers the
specific damage. In that case, they can make a claim to the insurance company,
that is, a request for compensation for their losses. Depending on the fulfillment of
requirements stated in the policy, the insured can get their claim validated, which
results in a payment to cover their losses. The size of the claim the insured will
get is referred to as claim severity.

When we talk about the duration of a policy, we mean the number of days the
policy has been active divided by 365. Therefore, duration is a number between 0
and 1, giving a "weight" to the policy. Making multiple claims on the same policy
is also possible, giving us the number of claims. We can find the claim frequency by
dividing the number of claims by the duration. This means that a policy that has
been in place between the customer and company for several years, will have one
observation per year in effect.

The insured will have to pay for the insurance, a payment that is referred to as
the premium. The premium is supposed to cover claims made by the insured and
other insured people or companies. It is also meant to cover administrative fees

3



4 Ole-Magnus Høiback: Estimation in Credibility Models

and more. However, we are interested in the pure premium, which is the payment
necessary to break even with the insurance company’s loss on all its claims. Look-
ing at all the insured customers within a group, we can calculate the average pure
premium, i.e. the average cost of risk for the insurance company. It is the determ-
ination of this figure which is of highest statistical interest within insurance. How
much loss will we have to cover in the future?

For an individual policy, the pure premium is simply the total claim severity the
customer has had. It can also be seen as the number of claims multiplied by the
average claim severity. Typically, however, we will model the pure premium as

Pure premium= Claim frequency×Average claim severity.

The collection of policies on the same product, e.g. car insurance or life insur-
ance, will be referred to as a portfolio. It compromises many different customers,
but they are all common in what they insure, e.g. a car or a life.

In the next section, we will look at the specific data set available to us. We can
already say something about the notation that we will be using. We aim to model
a response variable, the variable we aim to predict and understand. This could,
for example, be the claim frequency or average claim severity. Next, we have ex-
planatory variables, that is, variables used to explain the response variables. The
terms should be familiar for all readers who have seen regression models at some
point. We use Y to denote the response variable and X to denote the explanatory
variables in the form of a design matrix. We also use yi j t and x i when referring
to unique data points. We will return to the notation in Chapter 3.

2.2 The data set

In the following chapters, we go on and build a statistical model. The model’s para-
meters are fitted using real data provided by If. The data consists of over 700000
observations, where each observation is connected to one individual insurance
policy. The data set contains insurances on valuables, i.e. usually expensive assets
such as the Norwegian national costume "bunad", art, etc. It includes what type
of valuable an observation is related to and information about the owner, such as
their age and area of residence.

The data was collected between 2012 and 2020, as shown in Figure 2.1. The
x-axis represents the year of insurance, while the left side y-axis shows the total
duration in each year. The right side y-axis measures the average pure premium in
NOK. By request from If, all of the average pure premiums plotted in this chapter
have been multiplied with a common arbitrary constant to mask the true value.
There has been a downward trend in the total duration, i.e. the number of obser-
vations per year, as can be seen by the vertical bars. The scatter plot in the same
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Figure 2.1: The total duration and average pure premium of policies from 2012
to 2020. The x-axis gives the year of insurance. The vertical bars indicate the total
duration, measured by the left side y-axis. The scatter plot indicates the average
pure premium in NOK, measured by the right side y-axis.

figure tells us how the average pure premium has varied, where the pure premium
is the average cost per policy year per insurance. There is no clear trend, but it
is reasonable to assume that the outlier that 2020 represents is connected to the
COVID-19 pandemic.

2.3 Variable selection

Variable selection, often referred to as feature selection, is essential for statistical
analysis. Identifying and keeping the variables best suited for analysis is an art of
its own, and many methods and algorithms are available. In this thesis, however,
we are interested in how the parameters are estimated, more than how the choice
of parameters fits the underlying patterns in the data. Should we conclude that
our method is competitive with the existing models, it seems likely that an even
better result can be reached by focusing more on variable selection.

We identify five key attributes from the original data that we assume to be im-
portant for making predictions about future claims on the object. We want to
know what type of object the valuable is, i.e. art, hearing-aid, wedding rings, etc.
We also want to know the sum they have insured for, i.e. the potential amount the
customer may claim. We also want to know the age of the customer, along with
the region of Norway they live in. Lastly, the customers has an associated rating
which, when negative tells us that the customer reports less than expected, and
when positive the customer make more claims than expected.
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Figure 2.2: The total duration and average pure premium distributed across six
age groups. The x-axis gives the groups of age. The vertical bars show that we
have an increasing amount of observations in the highest age groups.

Figure 2.2 shows how we have grouped the ages in different intervals. What is
also clear is that most of the insurance belongs to older people. The number of
things one wants to insure is arguably a number that grows throughout life, and
therefore the positive trend in duration for each increasing interval seems reas-
onable. It should also be noted that there is room for many more people in the
interval containing those of age 60 or above. Just as interesting is that the pure
premium decreases for each increasing interval of age. From this plot only, it ap-
pears that older customers have a lower cost than the younger ones. It should also
be pointed out that the exposure, i.e. the total duration, on the youngest intervals
is low, making possible outliers very significant.

The following figure, Figure 2.3, shows how we have distributed the observations
according to the insured sum. The group containing observations with a low level
has an insured sum up to 1000 NOK. Subsequently, medium-low is up to 2000
NOK, medium-high is up to 4000 NOK, and high is anything above 4000 NOK. It
is no apparent trend between the groups.

Figure 2.4 tells us how customers are distributed, according to the previous ex-
perience If has with the customer. Most customers find themselves at level 0 or
close to it, while some have largely subceeded or exceeded their expected num-
ber of claims. From a rating of −2 and upwards, there is a clear positive trend in
the pure premium, which resonates with the natural conclusion that customers
making more claims than expected should also be costlier. The pure premium for
ratings between −6 and −3 is more confusing. Given the low exposure, it could be
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Figure 2.3: The total duration and average pure premium distributed among
four levels of the insured sum. The x-axis gives the sum insured by customers.
The groups have been divided into "Low" (sums up to 1000 NOK), "Medium-low"
(sums from 1000 to 2000 NOK), "Medium-high" (sums from 2000 to 4000 NOK),
and "High" (sums over 4000 NOK).

argued that the pure premium does not have to be representative of the expected
pure premium. However, it is peculiar that all four levels are elevated.

The region of customers is represented in Figure 2.5. The smallest exposure can
be found in Nordland (NORDL) and Troms/Finnmark (TR/FI), which corresponds
well with how the population is distributed in Norway. The highest pure premium
can be found in Oslo and the lowest in Østlandet (OST). Finally, Figure 2.6 shows
various exposure and pure premium among 15 different types of object.
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Figure 2.4: The total duration and average pure premium varies over the cus-
tomer rating. The rating of customers is given by the x-axis. A low number indic-
ate less reported claims than expected and vice versa.
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Figure 2.5: The total duration and average pure premium over different regions.
The region of the customer is given by the x-axis. Norway has been divided into
seven familiar regions.
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Figure 2.6: The total duration and average pure premium for the type of object.
On the x-axis, we have the objects which have been anonymized. To better un-
derstand what they represent, one could imagine that DA is art, GA is kitchen
equipment, etc.





Chapter 3

Bayesian inference

3.1 Introduction to Bayesian inference

Bayesian inference allows us to associate probability distributions with parameters
of a statistical model. It is probably best understood compared to the frequentist
conception of statistical inference. It is two schools with one single difference.
Bayesian inference lets us include some hypothesis or prior knowledge in a model
parameter, while frequentist inference lets observations do all of the job estimating
a parameter. Imagine that we want to do inference on a Poisson distribution with
rate parameter λ. From a frequentist point of view, we can estimate the value of
λ by our observations, e.g. by maximum likelihood estimation (MLE). However,
in the Bayesian world, we would assign a prior distribution to λ, e.g. a Gamma
distribution with so-called hyperparametersα and β . Using Bayes’ theorem, we can
find the posterior distribution of λ, incorporating both prior and new knowledge
(Givens & Hoeting, 2012).

Theorem 3.1.1 (Bayes’ theorem). Assuming that X and Y are continuously dis-
tributed random variables, let f (x) and f (y) denote their marginal distribution
and f (x |y) and f (y|x) their conditional distributions. Then we have

f (x |y) =
f (y|x) f (x)

f (y)
.

Proof. The conditional probability f (x |y) is defined by

f (x |y) =
f (x , y)
f (y)

,

where f (x , y) is the joint distribution of X and Y . From this, it is straightforward
to show that

f (x |y) =
f (x , y)
f (y)

=
f (y|x) f (x)

f (y)
.

11
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y

λ

Figure 3.1: DAG of our hierarchical model. The hyperparameters α and β de-
termine the distribution of λ, and λ is again a parameter in the distribution of y .

Returning to our example of the Poisson distribution, we can assume that
f (y|λ) is Poisson distributed with rate parameter λ, and that f (λ) is Gamma
distributed with parameters α and β . A directed acyclic graph (DAG) of the hier-
archical model can be seen in Figure 3.1. Generally, a DAG of a hierarchical model
provides insight into its structure and possible distributions that can be formulated
from it. In literature, it is usual to refer to y as the observed variable, λ as the lat-
ent or hidden variable, and α and β as hyperparameters. Usually, we only include
the random elements of a model in the DAG, meaning that hyperparameters such
as α and β are left out. Applying Bayes’ theorem in this case yields

f (λ|y) =
f (y|λ) f (λ)

f (y)
,

where f (λ|y) is called the posterior distribution, f (λ) is the prior distribution, and
f (y|λ) is the likelihood. In the denominator, we find f (y), a function not having
λ as a variable. It is thus considered to be a simple constant when evaluating
f (λ|y). Letting c = 1/ f (y), we can reformulate to

f (λ|y) = c f (y|λ) f (λ).

As c is only a constant, it does not include any information about the shape of the
distribution and is thus often ignored. However, it is a crucial component of a prob-
ability distribution, as it ensures that the density function integrates to 1. For this
reason, it is called the normalizing constant. If we drop the normalizing constant,
we do not retain the equality between the two distributions but get distributions
proportional to one another. We indicate proportionality by the following notation

f (λ|y)∝ f (y|λ) f (λ).

Knowing f (λ|y), it is possible to do inference on λ. We can find quantities of in-
terest, such as expected value, variance, and credibility intervals. Next, we will
discuss Bayesian hierarchical models, a natural continuation of Bayesian infer-
ence.

3.2 Bayesian hierarchical models

The previous chapter looked at how we could assume a distribution on a para-
meter λ of Poisson distribution. We assigned hyperparameters α and β to the
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Gamma distribution we assumed that λ took. How would it have been had we
assigned distributions to α and β as well? This kind of model specification gives
rise to Bayesian hierarchical models (Casella & Berger, 2002). Building from the
previous example, we can introduce a more complex statistical model with several
levels and distributions. As the model will be used in a regression setting later, we
will also introduce some necessary notation.

We will refer to the response variable as Yi j t . The index i refers to a certain com-
bination of covariate values, e.g. when i = 3 we have a person under 20 living in
Oslo, and i = 4 could be a person between 20 and 30 living in Oslo. The index j
refers to a cluster modeled as a random effect, e.g. j = 2 could be a hearing aid,
and j = 3 could be art. Finally, t refers to the unique observation number for every
observation that shares i and j, e.g. we could have several observations having
i = 2 and j = 3. In such a case, we use t to distinguish between them. We could
further illustrate this point with the example variables Y111 and Y112, i.e. they
share the same fixed and random effect values, but Y111 is the first observation
within this group and Y112 the second. As they share i and j, they also share all
information we use to model. Hence, it is natural that we predict the same mean
for them. Therefore, Y111 and Y112 will have the same mean µ11. Note also that
q = (q1, q2, ...,qJ ) and y is the vector of observations y = (y111, y112, ...yNJni j

).
This notation will be used throughout the thesis. We now look at an example of
a model where this kind of notation is useful. The model is a generalized linear
mixed model, which is something we will look closer at in Chapter 4.

Example 3.2.1. Let Yi j t be a random variable, which conditional on λi j is Poisson
distributed with rate parameter λi j . Furthermore, let ln(λi j) = x T

i β + q j . Next, we
let q j be normally distributed, with zero mean and variance τ2. Next, τ2 is a random
variable following an inverse gamma prior distribution with shape α and scale ι. We
can formalize it in the following form

f (Yi j t |λi j)∼ Poisson(λi j),

ln(λi j) = x T
i β + q j ,

q ∼N (0,τ2 I),

τ2 ∼ IG(α, ι),

and a DAG of the hierarchical model can be seen in Figure 3.2. Notice how the q j ’s
all depend on the τ2, the cornerstone of credibility theory. The above is a complex
model, and an example of a generalized linear mixed model, which introduced and
discussed in the next chapter. It illustrates nicely how we can model with several layers
and distributions. Using Bayes’ theorem, we can also find distributions proportional
to f (q|y,τ2) and f (τ2|y, q) and do inference on them.
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Y111 Y112 Y121 Y211 Y311 . . . Y121 Y122 Y221 . . . YnJ Jni j

q1 q2 . . . qJ

τ2

Figure 3.2: DAG of our hierarchical model. The hyperparameters α and ι determ-
ine the distribution of τ2, which in turn is a variance parameter in the distribution
of q j . The distribution of q j is then used in λi j which is the parameter working
on yi j t .

3.3 Conjugate prior

Given a class F of pdfs or pmfs f (x ,θ ), a prior p in the class Π is a conjugate
prior for F if the posterior π is in Π for every possible f ∈ F and p ∈ Π (Casella
& Berger, 2002). Knowledge about conjugate priors is advantageous because of
their computational convenience.

Example 3.3.1. This example shows that the inverse gamma distribution is a conjug-
ate prior for the normal distribution. Assume that we have X1, X2, ..., Xn independent
and identically distributed with distribution N (µ,σ2). Furthermore, we assume that
µ is known and σ2 is unknown. We model σ2 with an inverse gamma distribution
with shape α and scale β . We now try to find an expression that is proportional to
the posterior distribution π of σ2. We have

π(σ2|x)∝ f (x |µ,σ2)p(σ2|α,β)

∝

[
n
∏

i=1

f (x i|µ,σ2)

]
p(σ2|α,β)

∝

[
n
∏

i=1

1
p

2πσ2
exp

Ç
−(x i −µ)2

2σ2

å]
βα

Γ (α)
σ2−(α+1)

exp
Å
−β
σ2

ã
∝

[
(2πσ2)−

n
2 exp

(
−

1
σ2

n
∑

i=1

(x i −µ)2

2

)]
βα

Γ (α)
σ2−(α+1)

exp
Å
−β
σ2

ã
∝
(
σ2)−(α+1+ n

2 ) exp

(
−

1
σ2

(
β +

n
∑

i=1

(x i −µ)2

2

))

∝ IG

(
α+

n
2

,β +
n
∑

i=1

(x i −µ)2

2

)
.
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We have not made any special assumptions on our parameters, so any inverse gamma
distributed prior will result in a posterior inverse gamma when the likelihood is nor-
mal with unknown variance.





Chapter 4

Generalized linear mixed models

Generalized linear mixed models (GLMM) are a class of distributions that is easy
to work with, both from a statistical and mathematical point of view. They are also
attractive because of the wide range of distributions that can be formulated as a
GLMM, such as the normal, Poisson, and exponential distributions (J. A. Nelder
& Wedderburn, 1972). Every GLMM consists of two main pieces, a probability
distribution with a specific form and a so-called link function. In the next section,
we focus on the former of the two before looking closer at the link function.

4.1 Exponential dispersion model

A requirement for any GLMM is a probability distribution that can be written
in the form of an exponential dispersion model. The exact required form of the
distribution varies in the literature, and it is not uncommon to require it to be an
exponential family. Even if the names differ, the forms are often equivalent when
applied to various statistical problems. We will restrict ourselves to one form only,
namely the exponential dispersion model.

Definition 4.1.1. Let Yi j t be a random variable. It belongs to the exponential dis-
persion models (EDM) if the density of its distribution can be written as

f (yi j t |θi j) = exp

Ç
yi j tθi j − b(θi j)

φ
wi j t + c(yi j t ,φ, wi j t)

å
,

where θi j is the natural (or canonical) parameter, b(θi j) is such that f (yi j t |θi j) is
normalized and the first and second derivatives, b′(θi j) and b′′(θi j), exists, c(yi j t ,φ, wi j t)
is a function not having the natural parameter as a variable, φ is a dispersion para-
meter and wi j t a known weight.

In the following, we illustrate how the Poisson and Gamma distributions can
be rewritten into the form of an EDM by identifying θi j , b(θi j), and c(yi j t ,φ, wi j t),
thus proving that they belong to the class of EDMs.

17
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Example 4.1.1. Starting from the most common form of the Poisson distribution,
we show how it can be rewritten to an EDM.

If Yi j t ∼ Poisson(λi j), then

fYi j t
(yi j t |λi j) =

λ
yi j t

i j

e−λi j yi j t !

= exp
(

yi j t lnλi j −λi j − ln yi j t !
)

= exp
(

yi j tθi j − b(θi j) + c(yi j t ,φ, wi j t)
)

,

where

φ =wi j t = 1,

θi j = ln(λi j),

b(θi j) =exp(θi j),

c(yi j t ,φ, wi j t) = ln(1/yi j t !).

Example 4.1.2. Similarly, we can show how the most common form of Gamma dis-
tribution can be rewritten to an EDM.

If Yi j t ∼ Gamma(αi j ,βi j), then

fYi j t
(yi j t |αi j ,βi j) =

1
Γ (αi j)

β
αi j

i j y
αi j−1
i j t e−βi j yi j t .

We can reparametrize by introducing δi j = αi j and µi j =
αi j

βi j
. We now have

fYi j t
(yi j t |µi j ,δi j) =

Ç
δi j

µi j

åδi j 1
Γ (δi j)

yi j t
δi j−1 exp

Ç
−δi j yi j t

µi j

å
= exp

(
θi j yi j t − b(θi j) + c(yi j t ,φ, wi j t)

)
,

where

φ =wi j t = 1,

θi j =− 1/µi j ,

b(θi j) = log(µi j) = − log(−θi j)

c(yi j t ,φ, wi j t) =δ log(δi j) + (δi j − 1) log(yi j t)− log(Γ (δi j t)).

A nice property of the EDMs is the simplicity in which we can compute the
mean and variance.

Theorem 4.1.1. If Yi j t belongs to an EDM, then

E[Yi j t] = b′(θi j),

Var[Yi j t] =
φ

wi j t
b′′(θi j).
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Proof. We begin by simplifying the expression for the moment generating function
of Y .

MYi j t
(s)

=E[exp(sYi j t)]

=

∫

yi j t

exp

Ç
yi j tθi j − b(θi j)

φ
wi j t + s yi j t + c(yi j t ,φ, wi j t)

å
d yi j t (4.1)

=exp
Åwi j t

φ
b(θ ∗i j)−

wi j t

φ
b(θi j)

ã∫
yi j t

v(θ ∗i j , yi j t ,φ, wi j t)d yi j t , (4.2)

where

v(θ ∗i j , yi j t ,φ, wi j t) = exp

Ç
yi j t(θ ∗i j)− b(θ ∗i j)

φ
wi j t + c(yi j t ,φ, wi j t)

å
,

θ ∗i j = θi j + (φ/wi j t)s

and Equation 4.2 is found by adding and subtracting b(θ ∗i j) in the exponential in
Equation 4.1. Within the integrand in Equation 4.2, we have the density of an-
other EDM, implying that it integrates to 1.

So we have

MYi j t
(s) = exp

Åwi j t

φ

Ä
b(θ ∗i j t)− b(θi j t)

äã
.

Recall that M ′Yi j t
(0) = E[Yi j t] and that M ′′Yi j t

(0) = E[Y 2
i j t]. Let us now calculate the

first and second derivative of MYi j t
(s) and set them equal to zero in order to find

expressions for the mean and variance.

M ′Yi j t
(s) =

wi j t

φ
b′(θ ∗i j)

φ

wi j t
exp

Åwi j t

φ

Ä
b(θ ∗i j)− b(θi j)

äã
,

M ′′Y i j t(s) =

(
wi j t

φ
b′′(θ ∗i j)

Ç
φ

wi j t

å2

+
Åwi j t

φ

ã2

b(θ ∗i j)
2

)
exp

Å
w
φ

Ä
b(θ ∗i j)− b(θi j)

äã
Using that θ ∗i j = θi j when s = 0, we find the expectation and variance,

E[Yi j t] = M ′Yi j t
(0) = b′(θ )

E[Y 2
i j t] = M ′′Yi j t

(0) =
φ

wi j t
b′′(θi j) + (b

′(θi j))
2

Var[Yi j] = E[Y 2
i j]− E[Yi j]

2 =
φ

wi j t
b′′(θi j).

Having formulated an EDM and looked at the important property on its ex-
pectation and variance, we go on to the next important component of a GLMM.
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4.2 Link function

When coupled with an EDM, the link function is everything we need to have a
fully specified GLMM. The link function is the component that shows the great
flexibility and thus attractiveness of using GLMMs.

Definition 4.2.1. The link function is a function g, which links the linear predictor
ηi j with the mean E[Yi j t] = µi j of the distribution. More specifically, the link func-
tion is so that

g(µi j) = ηi j ,

where ηi j = x T
i β + q j . In literature, we are often referenced to a response function

h, rather than the link function g. The response function is simply the inverse of the
link function.

Having defined the link function, we can investigate its role in the previous
Examples 4.1.1 and 4.1.2.

Example 4.2.1. In Example 4.1.1, we showed that b(θi j) = exp(θi j), and we know
that θi j = ln(λi j). From the property of the mean of an EDM, we also know that
b′(θi j) = µi j = h(ηi j). We have b′(θi j) =

d
dθi j

exp(θi j) = exp(θi j) = λi j , which is
what we would expect knowing the Poisson distribution.

Choosing that the linear predictor ηi j = g(µi j) = θi j , we obtain the so-called canon-
ical, or natural, link function. In this case, this would indicate that µi j = b′(θi j) =
exp(θi j) = exp(ηi j). This yields a so-called multiplicative model, as changes to the
linear predictor has a multiplicative effect on the mean.

Example 4.2.2. In Example 4.1.2, we showed that b(θi j) = ln(−θi j), and we know
that θi j = −1/µi j . From the property of the mean of an EDM, we also know that
b′(θi j) = µi j . We have b′(θi j) =

d
dθi j
− ln(−θi j) = −1/θi j = µi j , which is what we

would expect knowing the Gamma distribution and our chosen reparametrization.

Choosing that the linear predictor ηi j = g(µi j) = θi j , we obtain what the canon-
ical link function. In this case, this would indicate that µi j = −1/ηi j . Contrary to
Example 4.2.1, this link function is not as easy or intuitive to work with. Notice for
example that we will require that ηi j < 0, because of the relation b(θi j) = ln(−θi j).
This will require the use of constrained optimization when we want to estimate para-
meters. A possibility is to drop the natural link function and instead formulate a
relation that yields a multiplicative model. Wanting a multiplicative model, we need
µi j = exp(ηi j). We also know that µi j = −1/θi j . Hence, a reparametrization of θi j
is sufficient. By letting θi j = −1/exp(ηi j), it is straightforward to show that we will
obtain a multiplicative model.



Chapter 5

Methods of parameter estimation
and simulation

The vast amount of data available requires computation that is efficient and ideally
adapted to the given data and our assumptions. Computational techniques learned
in elementary statistical courses are no longer feasible when going from ten data
points to several hundred thousand. This chapter will look at algorithms and tech-
niques that are better suited for big data sets and complex statistical models.

5.1 Monte Carlo method

The Monte Carlo method is a class of methods to estimate values numerically with
the help of random sampling. It was originally proposed by Nicholas Metropolis
and Stanislaw Ulam in 1949. At the time, they both worked in Los Alamos, and
the method was developed and used as a tool in computations in mathematical
physics (Metropolis & Ulam, 1949). The use and effectiveness of the method have
probably far exceeded the expectations of its creators, and it was elected as one
of the top 10 algorithms of the 20th century within computing in science and en-
gineering (Dongarra & Sullivan, 2000).

Tossing a coin several times to approximate the probability of getting heads is
an example of the Monte Carlo method. The Monte Carlo integration is of par-
ticular interest to us, which uses random samples to estimate some mean µ of
a probability density function f (x). Let us assume that µ = E[g(X )], where X
follows a probability density function f (x). By the definition of expectation, we
have

µ= E[g(X )] =

∫ ∞

−∞
g(x) f (x)d x .

It is not unusual that this integral is difficult or even impossible to compute ana-
lytically. It can however be simple to draw random samples x1, ...xn from f (x).

21
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Monte Carlo integration is a technique that exploits the possibility of sampling
from a distribution when the analytical solution to the integral is intractable. A
Monte Carlo estimate µ̂ of µ is then

µ̂=
1
N

N
∑

i=1

g(x i).

It is straightforward to show that the estimate is unbiased. Furthermore, it is pos-
sible to show that µ̂ converges to µ by using the strong law of large numbers
(Givens & Hoeting, 2012).

5.2 Rejection sampling

Rejection sampling (RS) is a Monte Carlo method used to generate samples from
a distribution f (x) which is difficult to sample directly from. It does so with help
from a proposal distribution g(x) which we can sample from. We do not impose
any restrictions on g(x) other than that we need to know some constant A such
that Ag(x)≥ f (x),∀x (Gamerman & Lopes, 2006).

The algorithm starts by drawing a proposal x from g(x) and then a sample u from
the uniform distribution on [0,1]. If u≤ f (x)/Ag(x)we accept x as a sample from
f (x). A pseudocode is provided in Algorithm 1.

Algorithm 1 Rejection sampling

1: Draw x ∼ g(x)
2: Draw u∼ U(0, 1)
3: if u≤ f (x)

Ag(x) then
4: Accept x as sample from f (x)
5: else
6: Reject x as sample from f (x)
7: end if

As is evident from Algorithm 1, we are not guaranteed a new sample from f (x) at
every iteration, and one has to rerun the algorithm until one reaches the desired
sample size. The algorithm’s effectiveness depends on the similarity between f (x)
and g(x). The probability of acceptance is given by f (x)/Ag(x), and if f (x) tends
to be much smaller than Ag(x) it will spend more time to generate a new sample.

Using this algorithm, we ensure that each sample x is a sample from f (x). We can
show this using Bayes’ theorem. We let h(x , u) denote the joint density between
x and u. We want to find an expression for the conditional distribution h(x |u ≤
f (x)/Ag(x)), that is, the distribution of an x that is accepted and thus considered
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to have been drawn from f (x). We have

h
Å

x |u≤
f (x)

Ag(x)

ã
=

h
Ä
u≤ f (x)

Ag(x) |x
ä

g(x)
∫

h
Ä
u≤ f (x)

Ag(x) |x
ä

g(x)d x

=
f (x)

Ag(x) g(x)
∫ f (x)

Ag(x) g(x)d x

=
1
A f (x)
∫ 1

A f (x)d x

=
f (x)
∫

f (x)d x
,

which demonstrates that each accepted x is a sample from the normalized distri-
bution of f (x). For a thorough introduction to RS, see Devroye (1986). Next, we
discuss a variation of the algorithm.

Adaptive rejection sampling (ARS) was introduced in Gilks and Wild (1992), and
it represents a variation of the RS algorithm. The ARS comes closer to having
similar g(x) and f (x) by continually changing the proposal distribution g(x) to
approach that of f (x). It requires f (x) to be log-concave and uses this property to
approach f (x) from above. It readjusts and learns from every iteration, and thus
it will outperform the classical RS as the number of samples grows.

5.3 Markov chain Monte Carlo

We employ Monte Carlo integration in cases where the integral is intractable, but
sampling is easy. Markov chain Monte Carlo (MCMC) is another class of meth-
ods dealing with the scenario where sampling from f (x) is difficult or impossible.
However, it is assumed that we can evaluate f (x), and MCMC methods aim to
draw from a distribution that approximates that of f (x), potentially up to a nor-
malizing constant. It does that by the use of Markov chains. Next, we restrict our
definition of a Markov chain to a discrete state space, but it is just as easy to define
it within a continuous setting.

Given a sequence of random variables X1, X2, .., the sequence is referred to as
a Markov chain if and only if the probability of event number k+ 1 only depends
on the outcome of event number k. That is

P(Xk+1 ∈ A|Xk = x , Xk−1 ∈ An−1, ..., X1 ∈ A1) = P(Xk+1 ∈ A|Xk = x),

where A0, ...,Ak−1, A⊂ S and x ∈ S with S being the state space S (Gamerman &
Lopes, 2006). Of biggest interest is the limiting properties of the Markov chain,
i.e. how does the chain behave when k→∞?
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A Markov chain has a unique limiting distribution π(x) if the chain can be shown
to be irreducible, aperiodic and positive recurrent. We will not detail these terms,
but we can remind ourselves about their meaning and implications on a chain.
An irreducible Markov chain is a chain where all states can be reached from all
states, i.e. there is a positive probability for reaching state j from state i in a finite
number of steps, for all i, j ∈ S. An aperiodic Markov chain is a chain that can
return to any given state i in a multiple of d steps, where d is equal to one. A
positive recurrent Markov chain means that starting in any state i, the expected
mean time to return is finite. A more rigorous and detailed introduction to Markov
chains can be found in Ross (2014).

An essential part of any MCMC method is constructing a chain that eventually
reaches π(x) = f (x). The state space S is already specified by the model and our
assumptions. The key is how we transition from one state i to another state j.
This is where most MCMC methods branch out, and in the following, we will look
closer at two methods.

5.3.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a classical MCMC algorithm. After Metro-
polis’ work in 1949 and further improvements presented in Metropolis, Rosen-
bluth, Rosenbluth, Teller and Teller (1953), a statistics professor named Hastings
provided a generalized method in Hastings (1970). Its goal is to sample from a
target distribution f (x) which is otherwise difficult to sample directly from.

At t = 0 the algorithms starts at the starting point X (0) = x (0). The starting point
is drawn from a proposal distribution g, and it is required that f (x (0))> 0, where
f (x) is our target distribution. Given X (t) = x (t), the next step for sampling X (t+1)

is given in Algorithm 2.

Algorithm 2 Metropolis-Hastings algorithm

1: Sample a proposal value y from g(x (t), y).

2: Compute acceptance probability α(x (t), y) =min
{

1, f (y)g(y,x (t))
f (x (t))g(x (t),y)

}
3: Draw u from Uniform(0,1).
4: if u≤ α(x (t), y) then
5: x (t+1)← y
6: else
7: x (t+1)← x (t)

8: end if

How the chain moves from one state to another is given by the transition kernel
p(x , y), where x is our current state and y is the proposed state. The transition
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kernel consists of the product of two elements, namely the proposal density g(x , y)
and the acceptance probability α(x , y). We have

p(x , y) = g(x , y)α(x , y), x ̸= y.

The probability of staying in the same state is somewhat more complicated, but as
we shall see, it is not necessary to spend time evaluating it. The proposal density
is simply a density proposing the next step, i.e. a density we can sample from. The
acceptance probability is defined as

α(x , y) =min
ß

1,
f (y)g(y, x)
f (x)g(x , y)

™
.

The transition kernel is at the heart of every MCMC algorithm and is what makes
the algorithms unique. Despite their differences, they share the fact that the trans-
ition kernel has to be constructed in a way that ensures convergence to the desired
distribution. The Metropolis-Hastings algorithm rests on the so-called detailed bal-
ance equation, i.e. it requires the chain to fulfill the condition

f (x)p(x , y) = f (y)p(y, x).

The condition results in a time-reversible Markov chain, that is, a chain that is the
same going forward and backward. This requirement is sufficient but not neces-
sary to ensure a chain that converges to f (x). This can be demonstrated by using
some basic properties of statistics. We have

∑

x

f (x)p(x , y) =
∑

x

f (y)p(y, x),∀x , y

= f (y)
∑

x

p(y, x)

= f (y),

which gives that f (x) is the stationary distribution of a general Markov chain built
using the detailed balance equation.

Furthermore, we want to show that the specific transition kernel used in this case
satisfies the detailed balance equation. We then have

f (x)p(x , y) = f (x)g(x , y)α(x , y),∀x ̸= y

= f (x)g(x , y)min
ß

1,
f (y)g(y, x)
f (x)g(x , y)

™
=min { f (x)g(x , y), f (y)g(y, x)}

= f (y)g(y, x)min
ß

f (x)g(x , y)
f (y)g(y, x)

, 1
™

= f (y)p(y, x),
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where all we do is some manipulation of the minimum function which holds be-
cause the probabilities are defined and strictly positive in each iteration. For cases
where x = y , it is trivially true that the detailed balance equation holds. Thus,
f (x) is the chain’s stationary distribution, which is what we wanted to show.

As is clear to the reader, we have not specified any restrictions on the distributions,
and it is possible to employ distributions with properties that make the algorithm
even simpler. An example of a chain that makes the Metropolis-Hastings algorithm
simpler is the random walk Metropolis. It imposes a symmetric proposal density
around the current state. A consequence of this is that the acceptance probability
α is simplified to α=min

¶
1, f (y)

f (x)

©
(Givens & Hoeting, 2012).

5.3.2 Gibbs sampling

The Gibbs sampler is yet another MCMC algorithm, named after an American
physicist by the two brothers Stuart and Ronald Geman. The algorithm was ini-
tially developed for image restoration and is yet another example of a popular
statistical method with its roots in another science (Geman & Geman, 1984). As
with the Metropolis-Hastings algorithm, there is no lack of flexibility and vari-
ations with this algorithm. However, we can identify and highlight a core, unifying
every possible Gibbs sampler, where a Gibbs sampler is a nickname for the chain
that employs the Gibbs sampling algorithm.

The Gibbs sampler is characterized by how it reduces the sampling of high-dimensional
blocks to lower-dimensional blocks. It can thus be employed to obtain samples
from high-dimensional joint densities (Gelfand, 2000). This makes it an attractive
option to the Metropolis-Hastings algorithm, popularly used on lower-dimensional
and often only univariate densities. As mentioned, there are many ways to mould
the Gibbs sampler, some of which we will look at later. However, for the time be-
ing, we will restrict our attention to the most basic Gibbs sampler.

Imagine that we have a joint target distribution f (x ), where x = (x1, x2, ..., xn).
Direct sampling from the joint and marginal distributions is assumed to be dif-
ficult or impossible. The Gibbs sampler proposes to build a Markov chain which
samples from conditional distributions. From Bayes’ theorem, we have

f (x i|x−i)∝ f (x )∀i,

where x−i is the vector (x1, x2, ..., x i−1, x i+1, ..., xn−1, xn). Sampling from the uni-
variate conditional distributions is often available in closed form or with simpler
algorithms. A very general pseudocode of how the Gibbs sampler works can be
seen in Algorithm 3.

It should be clear that this chain is Markov, as each step only uses the last step
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Algorithm 3 Gibbs sampler

1: At t = 0 we initialize x (0).
2: while Not converged do
3: Sample from f (x t

1|x
t−1
2 , x t−1

3 , ..., x t−1
n ).

4: Sample from f (x t
2|x

t
1, x t−1

3 , ..., x t−1
n ).

5:
...

6: Sample from f (x t
n|x

t
1, x t

2, ..., x t
n−1).

7: Increment t.
8: end while

when drawing new values. Proving that the chain has f (x ) as its limiting distri-
bution is a bigger task, and the reader is therefore referred to Geman and Geman
(1984) for a proof.

Gibbs sampling is often used as a part of an MCMC algorithm, where draws from
certain variables can be made as a Gibbs step. This will always be accepted, as the
full conditional distribution of the variable is known. This is an implementation
that will be used in our method as well. There is a sense of duality here, as we
could also call it a Gibbs sampler, where the full conditionals difficult to sample
from can be done with the help of an MCMC step. What is important to note is
that we use combinations of Gibbs sampling and MCMC.

5.4 Expectation-maximization algorithm

The expectation-maximization (EM) algorithm is an algorithm used when we
want to estimate maximum likelihood estimates (MLE) from incomplete data. In
our context, missing data refers to some unobserved latent variable. The algorithm
first appeared in Dempster, Laird and Rubin (1977), which gives a thorough and
sufficient introduction to the algorithm.

Before we look at how the algorithm operates, we introduce a suitable context
for the algorithm to work in. Assume that we have a random variable Y which we
observe, and an unobserved latent variable Z . The complete data X is the collec-
tion of Y and Z , i.e. X = (Y, Z). Seeing that this is an algorithm aiming to estimate
parameters, it is natural to have some parameter ψ as well. How these quantit-
ies are related will vary. An example of how a model can be structured will follow
after a brief demonstration of the motivation of the algorithm and its construction.

Typically, the observed data density f (y|ψ) is what we would use to formulate
a likelihood and estimate the MLE “ψ of ψ. In some cases, the likelihoods can be
challenging to work with, and in such a case, the complete data X and the latent
variable Z might ease computation. Let f (x |ψ) = f (y, z|ψ) denote the complete
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data density and f (z|x ,ψ) the latent variable density.

The EM algorithm works by maximizing the log-likelihood of f (x |ψ) rather than
f (y|ψ). Let Q(ψ|ψ(t)) denote the expectation of the log-likelihood of the com-
plete data, that is

Q(ψ|ψ(t)) = E
¶

log L(ψ|x)|y,ψ(t)
©

= E
¶

log f (x |ψ)|y,ψ(t)
©

.

It is the structure of the model, with an unobserved z, that gives us the unusual
expression of the expectation of a log-likelihood function. Having formulated the
above, we can further develop the expression

Q(ψ|ψ(t)) =
∫

log f (x |ψ) f (z|y,ψ(t))dz. (5.1)

Computation of Q(ψ|ψ(t)) results in a function of ψ, which is subsequently max-
imized to obtainψ(t+1). Thus, the EM algorithm consists of two distinct and char-
acteristic steps, namely the expectation step of computing Q(ψ|ψ(t)) and the max-
imization step of computing the maximum of Q(ψ|ψ(t)). This can be seen in Al-
gorithm 4.

Algorithm 4 EM algorithm

1: At t = 0 we initialize ψ(0).
2: while Not converged do
3: Compute Q(ψ|ψ(t)).
4: Maximize Q(ψ|ψ(t)) with respect to ψ.
5: ψ(t+1))←ψ.
6: Increment t.
7: end while

Example 5.4.1. To properly understand the usefulness of the algorithm, we will
return to the example of the hierarchical model of a Poisson distributed random vari-
able Y with rate parameter λ, where λ is Gamma distributed with parameters α
and β . In this case, we have ψ = (α,β), and we aim to estimate the MLE “ψ of ψ.
Direct computation through the function L(ψ|y) is not easy, but we can exploit the
structure of our model with the EM algorithm.

The complete data is x = (y,λ) and the expected log-likelihood Q(ψ|ψ(t)) can be
formulated as

Q(ψ|ψ(t)) =
∫

[log f (x |ψ)] f (λ|y,ψ(t))dλ

=

∫

[log f (y,λ|ψ)] f (λ|y,ψ(t))dλ.
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The term log f (y,λ|ψ) can be computed with Bayes’ theorem to find a proportional
density. The same goes for f (λ|y,ψ(t)). Having done that, we can compute Q(ψ|ψ(t))
up to some constant and maximize this. It is clear that the missing constant should
not change the result in the expectation step.

The example illustrates how the latent variable λ is used to ease computa-
tion. We did not, however, look into how we would integrate the integrand. Even
though it would be straightforward to find a proportional expression, it is not evid-
ent that we would manage to solve the integral analytically. In the next section,
we will look at a possible remedy to this problem.

5.4.1 Monte Carlo expectation-maximization algorithm

A variation of the EM algorithm, named Monte Carlo expectation-maximization
(MCEM) algorithm, was developed by Wei and Tanner (1990). It was motivated by
the difficulty of analytically evaluating the integral to compute the expected log-
likelihood Q(ψ|ψ(t)). They proposed that, givenψ(t), one could generate samples
from the distribution f (z|y,ψ(t)) from Equation 5.1. If the generation of samples
is feasible, it is then possible to utilize the Monte Carlo integration to approximate
the expectation of the log-likelihood. By generating samples (z1, z2, ..., zn)we have

Q(ψ|ψ(t)) =
∫

log f (x |ψ) f (z|y,ψ(t))dz

=

∫

log f (y, z|ψ) f (z|y,ψ(t))dz

≈
1
m

m
∑

v=1

log f (y, zv|ψ)

:=Qm(ψ|ψ(t)).

Knowing how to compute the log-likelihood, we can compute an approximation
Qm(ψ|ψ(t)) of Q(ψ|ψ(t)) without integration.

An implementation of the algorithm has been proposed by Levine and Casella
(2001). This implementation will be the basis of our method, which we return to
in the following chapter.





Chapter 6

Credibility theory

In this chapter, we look at credibility theory and its methods of estimating para-
meters in a GLMM. This is the current way of estimation and the method we
aim to build from and challenge. Imagine that we have an insurance portfolio.
It contains several individual risks, and our goal is to predict the pure premium
yi j t . How can we do this? As a statistician, it is not difficult to imagine suitable
models. However, this problem was initially actuarial rather than statistical in its
nature. The actuarial solution was and still is credibility estimates. The notion of
credibility estimates has existed for over 100 years (Norberg, 2004).

Credibility estimates, and their theory, rest on the assumption that the individual
risks within the same portfolio are similar. In other words, we want to use inform-
ation from the other risks in predicting the new value for the individual risk i. A
possible prediction of the pure premium can be

ŷi j t = zi j. ȳi j. + (1− zi j.)µ,

where ŷi j t is the predicted pure premium, ȳi j. is the observed mean of the risks in
group ij., zi j. is a credibility weight on [0,1], and µ is the overall pure premium
mean of the portfolio. If zi j. = 1, we predict that the next observation will be in
line with what we have seen on this group of risks previously. If zi j. is lower, we
put more credibility on the portfolio and less trust in previous observations of the
risk in the same group. This can be useful if we have made few or no observations
on the group i j. before.

The above equation is an early form of credibility estimates. Credibility theory,
originally developed by actuaries, has been formalized and further developed to
an extent where it is used as a tool in more complex and modern statistical applic-
ations. A typical practice today is to use credibility estimates to estimate random
effects parameters in generalized linear mixed models (J. Nelder & Verrall, 1997).
In this thesis, we approach the problem by investigating how alternative ways of
estimating both the fixed and random effects will compare with the more tra-
ditional credibility weight used in insurance today. To properly understand how
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estimates are computed in the credibility setting, we include a pseudocode and
a short discussion of the backfitting algorithm, which employs credibility theory
when fitting a GLMM.

6.1 Backfitting algorithm

When employing the backfitting algorithm, we are in the context of estimating
parameters in a GLMM. We consider the response variable Yi j t , the fixed effects
β , and random effects q. In our setting, β will refer to parameter values of the
categorical variables given by age, region, customer rating, and insured sum. The
random effect q will refer to the type of valuable the observation is, i.e. is it art,
hearing-aid etc.

Estimation of the fixed effects is done using standard GLM fitting techniques. Then
we estimate τ2 andσ2, which are the assumed variance of q and the within-group
variance, respectively. The weight wi j t is given for every observation. Grouping
observations over i and t, we denote the total duration of level j by w. j..

The following equations is used estimating the random effects at each level j,

q̂ j = z̃ j Ỹ . j. + (1− z̃ j)µ0, (6.1)

z̃ j =
w̃. j.

w̃. j. +
σ2

τ2

, (6.2)

Ỹ . j. =
Σi.t w̃i j t Ỹi j t

Σi.t w̃i j t
. (6.3)

Equation 6.1 estimates the random effect of q j , where µ0 is some assumed mean
of q. Note that µ0 is used to incorporate possible prior belief about the value of
q j . Equation 6.2 and 6.3 compute the credibility weight z̃ j and the observed mean

Ỹ . j. for level j. To give some interpretation to this, we see from Equation 6.1, that
the estimated random effect will be a combination of the mean observed in the
group Ỹ . j., and our assumed mean µ0. We remark that Ỹ . j. is not a mean of the
predicted response variable but the random effect only, hence the tilde used in
the notation. It is not necessary to fully understand the computation but rather to
observe how the algorithm operates, as seen in Algorithm 5.

For a further introduction to model estimation in insurance, see Ohlsson and Jo-
hansson (2010). For an introduction to modern Credibility theory, see Bühlmann
and Gisler (2005). In the next chapter, we introduce alternatives to the model
specification and model estimation.
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Algorithm 5 Backfitting algorithm

Initialize q← µ0
while Not converged do

Fit β̂ by estimating a GLM with ln(q) as offset
Compute τ̂2 and σ̂2

Compute q̂ as in Equation 6.1
end while
return Ŷ = exp(X β̂ + q̂)





Chapter 7

Lorenz curves and Gini
coefficient

The Lorenz curve was introduced in Lorenz (1905) and provided an intuitive
measure and visualization of the distribution of wealth. The original curve was
given in a two-dimensional plot. The x-axis represented an ordered proportion of
a population from poorest to richest, and the y-axis was the ordered cumulative
wealth. An example of such a plot is given in Figure 7.1. If the wealth is evenly
distributed over the population, we would expect 10% of the wealth to belong to
10% of the population, 20% to 20%, etc. This would yield the line of equality, i.e.
the diagonal line in the figure. The Lorenz curve depicted in this figure does not in-
dicate an evenly distributed wealth but rather an imbalance. For example, we can
look at around the 50% mark along the x-axis. At this point, we have the poorest
half of the population. Looking at where the Lorenz curve at 50% intersects on
the y-axis, it is clear that they have approximately 25% of the cumulative wealth.
This procedure of visualizing balance between two distributions has been widely
used in economics and is also employed as a tool for rating insurance models.

Formalizing the idea of a Lorenz curve, we imagine a member i of a population
with individuals i = 1, ..., k. Member i has an associated income X i , which is as-
sumed to be a random variable with cumulative distribution function F(x). For
a given value of x , the resulting value of F(x) tells us what proportion of the
population has an income less or equal to x . In line with the idea presented in
Gastwirth (1971), we define the inverse F−1(t) of F(x) as

F−1(t) = inf
x
{x : F(x)≥ t}.

For a chosen proportion t of the population, this definition will return the smallest
income x that satisfies F(x) ≥ t. The definition might seem excessive for a con-
tinuous cumulative distribution function, but it allows for a similar interpretation
for a discrete cumulative distribution function.
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Figure 7.1: An example of the Lorenz curve. On the x-axis we have the sorted
proportional share of the population, and on the y-axis we have the cumulative
share of wealth.
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Next, the Lorenz curve for a random variable X with inverse cumulative distri-
bution function F−1(t) and mean µ is defined as

L(p) =
1
µ

∫ p

0

F−1(t)d t,

where p being a proportion, we have p ∈ [0,1]. It can also be shown that L(0) = 0
and L(1) = 1 by integration by parts (Frontczak, Jaeger & Schumacher, 2017). In
reality, the construction of the Lorenz curve is empirical and based on observed
data. We now construct an example with our insurance portfolio. Let Pi denote
the paid pure premium, i.e. the cost for the customer, of observation i. We can
sort the observations from smallest to largest premium and produce a plot of the
corresponding Lorenz curve. The empirical distribution function is

F̂P(x) =

∑n
i=1 Pi I(Pi ≤ x)
∑n

i=1 Pi
.

Figure 7.2 shows the computed Lorenz curve. Looking at the x-axis and the around
the fraction equaling 0.75, we see that the Lorenz curve crosses the y-axis as 0.2.
This signifies that 75% of the population pays only 20% of the total portfolio,
signifying that some customers pay a lot for their insurance. The dotted line rep-
resents the line of equality, where the curve would be situated if there was an
equality between the fraction of the population and premium.

From the original Lorenz curve, which compares one distribution to the popu-
lation, we now look at a Lorenz curve that compares two distributions over the
same population. This thesis will plot the cumulative pure premium with the cu-
mulative claim amount, i.e. cumulative loss. Given loss yi for observation i, a
prediction for the pure premium Pi , each graph is generated from the empirical
cumulative distribution functions of the premium F̂P(x) and of the and loss F̂L(x),
as given by

F̂P(x) =

∑k
i Pi I(Pi ≤ x)
∑k

i Pi

F̂L(x) =

∑k
i yi I(Pi ≤ x)
∑k

i yi

.

The Lorenz curve is the graph resulting from (F̂P(x), F̂L(x)).

A standard measure often used with a Lorenz curve is the Gini coefficient. The
coefficient is a metric that summarizes the Lorenz curve in a single number (Dorfman,
1979). It is related to the area between the line of equality and the Lorenz curve.
Let G denote the Gini coefficient, A denotes the area in grey, and B denotes the
area in blue in Figure 7.1. The Gini coefficient G is a measure of A’s area in the
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Figure 7.2: An example of the Lorenz curve for the pure premium in our insurance
portfolio. On the x-axis we have an ordered proportion of the population, and on
the y-axis we have the cumulative pure premium.
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total area under the line of equality. Assuming that the x-axis and y-axis are of
length 1, the total area given by A+ B is 0.5 and the Gini coefficient is given by

G =
A

A+ B
= 2A= 1− 2B.

A positive Gini coefficient indicates that the Lorenz curve is mainly below the line
of equality. Conversely, we get a negative number when the curve is mainly above
the line of equality. A larger Gini coefficient, both positively and negatively, implies
a larger imbalance of the distributions. In the case of insurance, we aim for a high
positive Gini coefficient, as this indicates an imbalance where the pure premium
is larger than the loss, i.e. a profitable situation for the insurance company. The
extreme case is when the Lorenz curve follows the x-axis and y-axis, giving A= 0.5
and G = 1. This represents a case where the insurance company has no loss but
generates pure premiums.





Chapter 8

Model extensions

The overall goal is to predict the pure premium of an insured object, and in this
chapter, we aim to model this with hierarchical models. As previously mentioned,
the pure premium can be expressed as the product of the claim frequency and the
average claim severity. In the following, we present the models of claim frequency
and claim severity as they are modeled today, using credibility theory. These will
be our baseline models. We also present two possible model extensions to this and
later methods to estimate the parameters of these models.

8.1 Models for claim frequency

The claim frequency is normally modeled with the help of a Poisson process (Ohlsson
& Johansson, 2010). Let Yi j t denote the response variable, in this case, the claim
frequency. The associated weight wi j t is the duration of the policy, and X i j t is
the number of claims on the policy. We have Yi j t = X i j t/wi j t . We assume that
X i j t is Poisson distributed with mean λi j when the duration wi j t = 1. Writing the
distribution of X i j t in the form of an EDM gives us

f (x i j t |λi j) = exp(−wi j tλi j)
(wi j tλi j)

x i j t

x i j t !
, for x i j t = 0,1, 2, ...

Knowing the relationship between the claim frequency Yi j t and the claim
amount X i j t we can express the distribution of the claim frequency

f (yi j t |λi j) = P(X i j t = wi j t yi j t)

= exp(−wi j tλi j)
(wi j tλi j)

wi j t yi j t

wi j t yi j t !

= exp(wi j t(yi j tθi j − exp(θi j)) + c(yi j t , wi j t)),

where θi j = ln(λi j), b(θi j) = exp(θi j), φ = 1 and c(yi j t , wi j t) = wi j t yi j t ln(i j t)−
ln((wi j t yi j t !)). On this form, it is clear that we can build a GLMM around this
distribution. The only thing missing is a link function relating the mean λi j and
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Y111 Y112 Y121 Y211 Y311 . . . Y121 Y122 Y221 . . . YnJ Jni j

q1 q2 . . . qJ

Figure 8.1: DAG of the proposed hierarchical model. The distribution of q is used
in λ which is the parameter working on Y .

the linear predictor ηi j . The canonical link function can be identified by relating
the canonical form ηi j = g(λi j) = θi j to the above equations. The canonical link
function is the exponential function, i.e. exp(θi j) = λi j . Choosing this link func-
tion, we get a multiplicative model, which is a model where changes in the linear
predictor will have a multiplicative effect on the mean. This is desirable as it is
easy to interpret the effect of a parameter on the prediction, and we, therefore,
use this going forward.

So, we now have a Poisson distributed response variable Yi j t , and a link between
the rate parameter λi j and the linear predictor ηi j , where the linear predictor is
a linear combination of fixed and random effects. At this point, the model can be
summarized as

f (Yi j t |λi j)∼ Poisson(λi j),

ln(λi j) = x T
i β + q j .

Our baseline model, which is in effect today, assumes that the random effects
are identically and independently distributed with mean E[q j] = 0 and variance
Var[q j] = τ2. However, a specific distribution is not assumed. We propose two
extensions to this model. The first model is different only in the assumptions on
the random effect. We assume q j ∼ N (0,τ2), instead of assumptions only about
its moments. A DAG of the model can be seen in Figure 8.1, and the model can
be summarized as

f (Yi j t |λi j)∼ Poisson(λi j),

ln(λi j) = x T
i β + q j ,

q ∼N (0,τ2 I).

Such an assumption will allow for Bayesian inference on the posterior distribu-
tion of q j . The reason for choosing the normal distribution is not that obvious, and
there are reasonable arguments for choosing both Gamma and Beta distributions
to model the random effect (Bühlmann & Gisler, 2005). We have however restric-
ted ourselves the normal distribution because of its nice mathematical properties.
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Y111 Y112 Y121 Y211 Y311 . . . Y121 Y122 Y221 . . . YnJ Jni j

β1 β2 . . . βR

q1 q2 . . . qJ

τ2

σ2

Figure 8.2: DAG of the proposed hierarchical model. The variance parameters
σ2 and τ2 determine the distribution of β and q, respectively. These are in turn
used to determine the distribution of Yi j t .

The second model extends the previous where we also include distributional as-
sumptions on the fixed effects and variance parameters. A DAG of this model can
be seen in Figure 8.2, and the model can be summarized as

f (Yi j t |λi j)∼ Poisson(λi j),

ln(λi j) = x T
i β + q j ,

q ∼N (0,τ2 I),

β ∼N (0,σ2 I),

τ2 ∼ IG(ατ, ιτ),

σ2 ∼ IG(ασ, ισ).

As with the previous model, the choice of distributions is based chiefly on what is
normal to find in the literature, as hierarchical models specified for insurance are
not that common (Gamerman & Lopes, 2006). We have little prior information
about what the variance parameters might look like, and we, therefore, want an
objective prior distribution for these. The inverse gamma distribution is suitable
as it is relatively objective when the shape and scale parameters are small. The
inverse gamma distribution is also a conjugate prior for the normal distribution,
which is helpful for the calculations to come.
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8.2 Models for claim severity

Claim severity is often modeled with the help of a Gamma distribution (Ohlsson
& Johansson, 2010). The distribution has support on (0,∞), and therefore we
use only observations with previous claims when modeling. Let X i j t denote the
total cost of an observation with duration wi j t . We then have the claim severity
Yi j t = X i j t/wi j t . In Example 4.1.2, we showed that the Gamma distribution can be
written into the form of an EDM with the correct parametrization. Example 4.2.2
showed that the relation θi j = −1/exp(ηi j) is needed to obtain a multiplicative
model.

The baseline model for claim severity is similar to the one seen for claim frequency.
Once again, we assume the random effects q j are identically and independently
distributed with mean E[q j] = 0 and variance Var[q j] = τ2. The model can be
summarized in the following form

f (Yi j t |µi j ,δi j)∼ Gamma(µi j ,δi j),

ln(µi j) = x T
i β + q j ,

where δi j is assumed to be fixed and common for every combination of i and j.
Our proposed model extension is identical to the one made for the claim frequency.
The simpler model has the form

f (Yi j t |µi j ,δi j)∼ Gamma(µi j ,δi j),

ln(µi j) = x T
i β + q j ,

q ∼N (0,τ2 I).

and the more complex model can be summarized as

f (Yi j t |λi j)∼ Gamma(µi j ,δi j),

ln(µi j) = x T
i β + q j ,

q ∼N (0,τ2 I),

β ∼N (0,σ2 I),

τ2 ∼ IG(ατ, ιτ),

σ2 ∼ IG(ασ, ισ).

8.3 Parameter estimation

Having proposed three different models for our problem, we now identify suitable
ways of estimating parameters in each model. A reminder of where we want to
end up might be of aid at this stage. Remember that we want a prediction for
the pure premium. The pure premium can be expressed as the product of claim
frequency and average claim severity, i.e.
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Pure premium= Claim frequency×Claim severity,

for a given observation. The models above are all multiplicative, meaning that
changes in the linear predictor will have a multiplicative effect on the mean. Let
Ŷi j t denote the prediction of the pure premium Yi j t , following from the estimation

of parameters in our models. Furthermore, let Ŷ f
i j t and Ŷ s

i j t denote the predicted
claim frequency and severity, respectively. We choose to model the prediction of
the pure premium as the prediction of the claim frequency multiplied by the pre-
diction of the claim severity. More formally, we write it as

Ŷi j t = Ŷ f
i j t × Ŷ s

i j t

=
”
eη

f
i j ×”eηs

i j ,

where η f
i j and ηs

i j are the linear predictor of the frequency and severity models,
respectively. Writing out the linear predictor, we have

Ŷi j t =
¤�

eβ
f
0 +β

f
1 I+...+β f

R I+q f
j × ¤�

eβ
s
0+β

s
1 I+...+β s

R I+qs
j .

In order to produce predictions of frequency and claim, we need estimates of β
and q in both cases. Exactly how this is resolved will differ from model to model,
so we return to this in the next chapters.

8.3.1 Claim frequency

We have presented three models for the claim frequency. The baseline model
which is in use today, the simple model which adds distributional assumptions
to the random effects of the baseline model, and a more complex model with
additional distributional assumptions on fixed effects and variance parameters.

Baseline model and the backfitting algorithm

Estimation of parameters in the baseline model is done with the backfitting al-
gorithm. We estimate the fixed effects with usual GLM fitting techniques, which
is usually some variation of the least squares method. The random effects are
estimated with the so-called credibility weights. This was introduced in Section
6.1.
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The simple model and the MCEM algorithm

The next model added assumptions on the distribution of the random effect q.
The model was stated as follows

f (Yi j t |λi j)∼ Poisson(λi j),

ln(λi j) = x T
i β + q j ,

q ∼N (0,τ2 I).

For this case, we propose an implementation of the MCEM algorithm, as de-
scribed in 5.4.1. We identify the vector of parameters ψ we aim to estimate. In
our given context, ψ= (β T ,τ2). Before the first iteration, we initialize the vector
ψ(0) = (0T , 0.1).

We need to sample from f (q|y,ψ(t)), as the samples will be used to generate
Monte Carlo estimates of the expected log-likelihood, which was defined as

Qm(ψ|ψ(t)) =
1
m

m
∑

v=1

log f (y, qv|ψ),

where qv is sample number v of the vector q and m is the number of samples of
q. Levine and Casella (2001) propose using importance sampling to reduce the
computational expense. This will relieve them from sampling at every iteration of
the algorithm, but instead, compute importance weights on an initial sample. The
idea is proposed in a general setting, but we propose a possibly better way with
our given model specification. It can be shown that f (q|y,ψ(t)) can be written as

f (q|y,ψ(t))∝ f (q1|y,ψ(t)) f (q2|y,ψ(t))... f (qJ |y,ψ(t)).

So qr and ql are conditionally independent given y and ψ(t) for r ̸= l. We can
show this by first finding an expression for f (q|y,ψ(t)). Letting h(q|ψ(t)) denote
the assumed joint normal distribution of q, we have
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Having an expression for the conditional distribution of q, we can show that we
can rewrite it on the form f (q|y,ψ(t)) = ρ f (q1|y,ψ(t)) f (q2|y,ψ(t))... f (qJ |y,ψ(t)),
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where ρ =
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. For every j in 1, ..., J we can sample q j individually,
by using

f (q j|y,ψ(t))
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There is a possibility to sample q by individually sampling q1, ...,qJ . These are
univariate distributions, and MCMC might not offer the best solution. Adaptive
rejection sampling is a possibility, but it requires f (q j|y,ψ(t)) to be log-concave
for every j. We can find an expression of log( f (q j|y,ψ(t))) and then show that
this is concave, which it is if and only if the second derivative is non-positive. We
have
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where ρ′ is some normalizing constant. Furthermore, we find

d
dq j

log( f (q j|y,ψ(t))) = −
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Both τ(t)
2

and wi j t are positive quantities because of assumptions made about

the initial distribution. Hence, d2

dq2
j
log( f (q j|y,ψ(t))) is non-positive. Adaptive re-

jection sampling is, therefore, an available option. A possible algorithm is pro-
posed in Gilks and Wild (1992). Having generated samples from f (q|y,ψ(t)) at
every iteration, we can compute the approximation to the expected log-likelihood
Q(ψ|ψ(t)).

The function Q(ψ|ψ(r)) is not possible to compute analytically, and we proposed
the function Qm(ψ|ψ(r)) as an approximation to this. We will have to find a work-
able expression of the function

Qm(ψ|ψ(t)) =
1
m

m
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ln f (y, qv|ψ).

We have
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where a(θ (v)i j , yi j t , wi j t) = wi j t(yi j t(θ
(v)
i j ) − exp(θ (v)i j )) + c(yi j t , wi j t). This is the

expression we will use in the implementation, to maximize Qm(ψ|ψ(t)). As we
aim maximize with respect to β and τ2, we can split the above function into to
separate optimization problems. We will optimize
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where Qm(ψ|ψ(t)) =Q1
m(ψ|ψ

(t))+Q2
m(ψ|ψ

(t)). Q1
m(ψ|ψ

(r)) is a function not hav-
ing τ2 as a variable. In fact, maximization of this function is equivalent to finding
the MLE of the regression parameters for a generalized linear model with an offset
(Chen, Zhang & Davidian, 2002). Maximizing Q2

m(ψ|ψ
(t)) is reduced to maxim-

izing with respect to only τ2, reducing it to a univariate optimization problem.

A pseudocode, summarizing the mentioned steps, can be seen in Algorithm 6.
The number of samples u generated at every iteration affects both the accuracy of
the approximation and the computational time. Levine and Casella (2001) pro-
pose several approaches, but having u = 10 at the first iterations and increasing
it as we get closer to convergence is recommended. They also discuss ways to es-
timate and reduce the unavoidable Monte Carlo error. This is pertinent, but we
have looked away from this and instead kept a high u to minimize the damage
done by this error.

Having run the algorithm, we are left with an approximated MLE “ψ and a sample
of size u for each q j . Seeing that the generations of q j come from the conditional
distribution f (q j|y,ψ(t)), we recognize that the draws are dependent on what we
have observed and thus in line with what credibility theory aims for. An estimator
of the random effect can be the mean of the samples from the last iteration of the
algorithm.

Algorithm 6 MCEM algorithm for claim frequency

1: At t = 0 we initialize ψ(0).
2: while Not converged do
3: Sample (q(1)j , q(2)j , ...,q(u)j ) ∼ f (q j|y,ψ(t)) for j = 1, ..., J using adaptive

rejection sampling.
4: Maximize Q1

m(ψ|ψ
(t)) as a usual GLM with offset.

5: Maxmimize Q2
m(ψ|ψ

(t)) with some optimization algorithm for univariate
functions.

6: ψ(t+1))←ψ.
7: Increment t.
8: end while
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The complex model and the MCMC algorithm

The complex model extends the previously defined model with the addition of a
normally distributed β , and we can write the model in the following way

f (Yi j t |λi j)∼ Poisson(λi j),

ln(λi j) = x T
i β + q j ,

q ∼N (0,τ2 I),

β ∼N (0,σ2 I),

τ2 ∼ IG(ατ, ιτ),

σ2 ∼ IG(ασ, ισ).

Using MCMC and Gibbs sampling, as introduced in Section 5.3, we can sample
from the full conditionals of q,β ,τ2 and σ2. At the convergence of the chain, we
have samples from the joint distribution of our variables and can use this to do
inference. The mean will be especially useful when predicting new values for a
given response variable with known covariates.

There are four distributions we aim to sample from with this model, namely the
four full conditionals of q,β ,τ2 and σ2. We go through each of them and look at
how we can sample from them, before we summarize it all in a pseudocode that
demonstrates how the algorithm has been implemented.

Letting θ = (ατ, ιτ,ασ, ισ), a distribution proportional to the joint distribution
f (y,β , q,σ2,τ2|θ ) can be found by Bayes’ theorem. We have

f (y,β , q,σ2,τ2|θ )∝ f (y|β , q) f (β |σ2) f (q|τ2) f (σ2|θ ) f (τ2|θ ).

Using the fact that the full conditional distributions are proportional to the joint
distribution, we can express distributions proportional to the full conditionals as
well. For f (β |y, q,σ2,τ2,θ ) we have

f (β |y, q,σ2,τ2,θ )∝ f (y|β , q) f (β |σ2).

Similarly, for the full conditional of q, we have

f (q|y,β ,σ2,τ2,θ )∝ f (y|β , q) f (q|τ2).

Reusing the methods from Section 8.3.1, it is straightforward to show that both
distributions are log-concave. Adaptive rejection sampling is thus a viable option
for sampling from the two distributions.

Left are sampling from the full conditional distributions of σ2 and τ2. Here, we
can exploit the concept of conjugate prior in Bayesian statistics, as introduced in
Section 3.3. When we use the inverse gamma distribution as a prior distribution,
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and the likelihood function is a normal distribution, the posterior will also be
inverse gamma. We showed this in Example 3.3.1. Therefore, the posterior distri-
bution of both σ2 and τ2 are inverse gamma.

A pseudocode, summarizing how we run this MCMC method is given in Algorithm
7. Exiting the algorithm, we are left with samples from a distribution proportional

Algorithm 7 MCMC algorithm for claim frequency

1: At t = 0 we initialize values for β (0), q(0),σ2(0),τ2(0),θ .
2: while Not converged do
3: Sample q(t)j ∼ f (q j|y,β (t−1),σ2(t−1),τ2(t−1),θ ) for j = 1, ..., J using ad-

aptive rejection sampling.
4: Sample β (t)r ∼ f (βr |y, q(t),σ2(t−1),τ2(t−1),θ ) for r = 1, ..., R using adapt-

ive rejection sampling.

5: Sample σ2 ∼ IG(ασ +
R
2 , ισ +
∑R

r
β (t)r

2

2 )

6: Sample τ2 ∼ IG(ατ +
J
2 , ιτ +
∑J

j

q(t)j

2

2 )
7: Increment t.
8: end while

to the limiting distribution of our chain. In this case that is the joint distribution
f (y,β , q,σ2,τ2|θ ).

8.3.2 Claim severity

Estimation of parameters in the case of claim severity is not much different from
the case of claim frequency. The difference between the models is the assumed
distribution of the response variable, which now is Gamma rather than Poisson.
As we shall see, this does have some implications on the implementation, as the
densities that were log-concave in the previous section no longer possess this prop-
erty.

Baseline model and the backfitting algorithm

The backfitting algorithm is reused for the baseline model. The only difference
from Section 8.3.1 is that the response is modeled as a Gamma distribution rather
than a Poisson distribution.
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The simple model and the MCEM algorithm

The simple model was summarized as

f (Yi j t |µi j ,δi j)∼ Gamma(µi j ,δi j),

ln(µi j) = x T
i β + q j ,

q ∼N (0,τ2 I).

We will still rely on the MCEM algorithm, but we are forced to make some adap-
tions. We do not describe every step as extensively as with the claim frequency in
Section 8.3.1, but we can highlight some of the main differences.

The first thing that can be shown is that the q j ’s are still independent. Their distri-
bution is, however, not log-concave, and adaptive rejection sampling is therefore
not an option. In this case, we have resorted to the random walk Metropolis chain,
as introduced in 5.3.1. Remember that we only model claim severity with obser-
vations having made some claims already due to the support of the Gamma dis-
tribution. Hence, the data set is considerably smaller than in the case of modeling
claim frequency, and the computational burden is not that large. Aside from that,
the maximization step can be done in the same way by optimizing to functions
Q1

m and Q2
m.

The complex model and the MCMC algorithm

The more complex model was given as

f (Yi j t |λi j)∼ Gamma(µi j ,δi j),

ln(µi j) = x T
i β + q j ,

q ∼N (0,τ2 I),

β ∼N (0,σ2 I),

τ2 ∼ IG(ατ, ιτ),

σ2 ∼ IG(ασ, ισ).

As with the claim severity in the case of the simple model, we cannot show that
the full conditional distributions of β and q are log-concave. We will therefore
resort to random walk Metropolis when sampling from these distributions. As the
conditional distribution of Yi j t has no impact on the posterior distribution of the
variance parameters σ2 and τ2, we can still use a Gibbs step to generate samples
from their distributions. A pseudocode is provided in Algorithm 8.

8.4 Implementation

The baseline model of the claim frequency will be used together with the baseline
model of the claim severity. Similarly, the simple models will be used together,
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Algorithm 8 MCMC algorithm for claim severity

1: At t = 0 we initialize values for β (0), q(0),σ2(0),τ2(0),θ .
2: while Not converged do
3: Sample q(t)j ∼ f (q j|y,β (t−1),σ2(t−1),τ2(t−1),θ ) for j = 1, ..., J using ran-

dom walk Metropolis.
4: Sample β (t)r ∼ f (βr |y, q(t),σ2(t−1),τ2(t−1),θ ) for r = 1, ..., R using ran-

dom walk Metropolis.

5: Sample σ2 ∼ IG(ασ +
R
2 , ισ +
∑R

r
β (t)r

2

2 )

6: Sample τ2 ∼ IG(ατ +
J
2 , ιτ +
∑J

j

q(t)j

2

2 )
7: Increment t.
8: end while

and the complex models with each other. To ease understanding in the coming
chapters, we will refer to the models by the name of their methods of estimation,
i.e. the baseline model will be called the credibility model, the simple model is
the MCEM model, and the complex model will be called the MCMC model. This
should also highlight the most significant differences between the models and
ways of estimation.

Section 8.3 discussed how we would use our methods to estimate parameters and
predictions of frequency and severity. In the case of the credibility model, the al-
gorithm leaves us with estimates of all parameters, e.g. we get β̂0, ..., β̂R, q̂1, ..., q̂J
when modeling. This can be directly plugged in and used to predict.

For the MCEM model, we are left with estimates for the fixed effects, i.e. β̂0, ..., β̂R,
and samples from the posterior distribution of q1, ...,qJ . We have resolved this by
using the mean of these distributions to estimate q̂1, ..., q̂J .

Finally, we have the MCMC model, which produces samples for both the fixed
and random effects. Given k samples, a way to predict the claim frequency or
severity is given by

Ŷi j t =”eηi j

=
1
k

k
∑

a=1

eη
(k)
i j

=
1
k

k
∑

a=1

eβ
(k)
0 +β

(k)
1 I+...+β (k)R I+q(k)j .

A disadvantage with this approach is the computational time needed when k is
large. An alternative approach is to compute means from every distribution and
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use these directly. That is

̂̂Yi j t =
””eηi j

= eβ̂0+β̂1 I+...+β̂R I+q̂ j .

The former is ideal, but the latter is faster. Testing the two estimators on 100000
observations, we have not found a big difference in their mean squared and ab-
solute error. More testing could have been carried out, but it has provided some

reassurance about the usefulness of ̂̂Yi j t . In the following chapter, we use ̂̂Yi j t for
the predictions related to the MCMC model.



Chapter 9

Results and findings

We have looked at the methods necessary to predict claim frequency and claim
severity with the MCEM and MCMC models. All methods have been written and
implemented on real data in Python, yielding predictions that we will investigate
in this chapter. The original data set has been divided into a training and a test
set, where the parameters were estimated with the training set, and our results
come from predictions made on the test set.

Initially, we look into the correctness of our algorithms with the help of sim-
ulations. Next, we dissect our results by methods frequently used in the insur-
ance industry. By doing this, we gain insight into both similarities and differences
between the methods that can be thought to be significant in practice. Finally, we
look into some of the assumptions made in our methods and test these.

9.1 Simulation study

In a simulation study, we aim to test the algorithm’s ability to estimate true para-
meter values. In reality, it can be hard to distinguish flaws in our assumptions and
our method of estimating parameters. By doing a simulation study, we consider
our assumptions to be true, meaning that a bad outcome must be linked to prob-
lems with the algorithm and its implementation.

For the MCEM model, we chose somewhat arbitrary values of β and the vari-
ance parameter τ2, while q is chosen to reflect the variance τ2. For the MCMC
model, both β and q have assumed distributions, and we, therefore, chose values
for σ2 and τ2 and generate independent samples from the normal distribution for
β and q. That is, we draw β ∼N (0,σ2) and q ∼N (0,τ2), for chosen values ofσ2

and τ2. Modeling the claim frequency, we draw Y f
i j t from a Poisson distribution

with mean λi j = exp(x T
i β + q j), where x i is the corresponding covariate values

of the fixed effects of observation Yi j t . Similarly, we draw Y s
i j t from a Gamma dis-

tribution with mean µi j = exp(x T
i β +q j) for the claim severity. Having done that,

55
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Figure 9.1: We see how the simulated region parameters match the true ones in
the MCEM model for claim frequency.

we can multiply the two quantities Y f
i j t and Y s

i j t to obtain the pure premium Yi j t
of every observation.

Running the algorithms, we are left with estimated parameter values that can
be compared to the true values set initially. In Figure 9.1 we see how the values
estimated for the MCEM model match the true values. An equivalent figure for
the MCMC model can be seen in Figure 9.2. A major difference is, of course, that
the β ’s estimated for the MCEM model are an estimation of actual parameters.
In contrast, for the MCMC model, the estimated parameters are the mean of the
posterior distribution of β . The estimated parameter values are used for the same
purpose, but their origin is fundamentally different.

Figure 9.3 shows the estimated random effect parameter values in the MCEM
model. The simulated values come very close to the true values, but what is espe-
cially interesting is the consistent tendency to overestimate the true value slightly.
This has been recurring in the simulation study, where simulated values are close
to, but not perfectly in line with the true values. We believe that it is connected
to the choice of base level and that a different base level would give a slightly
different perception of the simulated values. Looking at the plots, it is clear that
the methods do well in finding the true value, even though they sometimes miss
by a small constant.
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Figure 9.2: As with the previous figure, we see how the simulated region para-
meters match the true ones in the MCMC model for claim frequency.
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Figure 9.3: We see how the mean of the posterior distribution of the samples
match the true parameter values in the MCEM model. The x-axis gives the group,
and the y-axis indicate the parameter value.
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Figure 9.4: The resulting three Lorenz curves from the credibility, MCEM and
MCMC models. The Gini coefficient of each curve is given in the legend.

9.2 Lorenz curve and Gini coefficient

This section uses the Lorenz curve and Gini coefficient to distinguish the models’
ability to rank the risks. Figure 9.4 plots the classical Lorenz curves coming from
the credibility, MCEM, and MCMC models. They are very similar, which is what we
would expect, considering the almost identical assumptions that have been made
in every model. Looking at the curves directly, it can be challenging to distinguish
and point out a "best" curve, i.e. a curve creating the biggest area between itself
and the diagonal. However, the Gini coefficients are of help, and using them, the
MCMC method gives the best result, followed by the credibility model. Despite
their similarities, we can, from this test, conclude that the MCMC model is just
as good or even better at ranking the risk than the traditional credibility model.
Next, we look at how the actual predictions match the true outcome and use this
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to assess the three models further.

9.3 Mean error and risk ratio

In this section we investigate how the predictions of test data compares to the
true values. A common metric in this case is the mean squared error (MSE) and
mean absolute error (MAE), which allow us to rank the three models by a single
number. A single number allow us to quickly distinguish the models, but it does
not reveal the nuisances between three similar models. For this very reason, we
will also use risk ratio, which will be defined later on, to investigate how the three
models compare when looking at each parameter of the model.

The mean squared error is given by

MSE =
1

I × J × ni j

I
∑

i=1

J
∑

j=1

ni j
∑

t=1

(yi j t − ŷi j t)
2,

where yi j t is the observed pure premium and ŷi j t our prediction of the pure
premium. Computing this metric for each of our three models, we get an MSE
equal to 1.14 ∗ 107 for the credibility model. The MCEM model yields an MSE
of 1.17 ∗ 107 and the MCMC model an MSE of 1.13 ∗ 107. Comparing the three
models, it is easy to conclude that the MCMC model outperforms the other two.
The difference is however marginal and does not provide a conclusive answer in
any way. The MSE gets very big because we have some very large claims that we
in no way are able to predict. Squaring these terms results in a high overall MSE,
and it naturally gives a lot of weight to the largest claims. An alternative is the
MAE, which is given by

MSE =
1

I × J × ni j

I
∑

i=1

J
∑

j=1

ni j
∑

t=1

|yi j t − ŷi j t |.

This metric will not be as influenced by the largest claims, and may give a bet-
ter understanding of how the models actually differ. The resulting MAE of the
credibility model is 424.9, where the MAE of the MCEM and MCMC models are
424.0 and 425.9 respectively. The MCEM model outperforms the other two, but
yet again, the difference is too small to give any real feeling of their differences.

The risk ratio is a quantity, defined as the ratio between the true pure premium
divided by the predicted pure premium. If we predict a pure premium of 200 for
costumer A, and the customer has a realized pure premium of 100, the risk ratio
is 0.5. Such a situation is desirable for the insurance company, as opposed to a
case where the risk ratio is above one and will result in a loss. We now use the
risk ratio to measure how well the models model each parameter in the model,
i.e. all β ’s and q’s.
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In a very simple world, we could use our predictions for the pure premium as the
price we set on the insurance. A perfect model would thus give a risk ratio of 1. In
the real world however, there are other costs included in the price, other than just
the predicted loss. These are often referred to as operational costs. Thus, our aim
should not be a risk ratio of 1, but a ratio so low that the total ratio sums to 1 when
operational costs are included. The goal of this thesis is not the determination of
this level, so to avoid this problem, we use the observed risk ratio on the current
model to level out our three new models. That is, the insurance company may
have a risk ratio of 0.6 on the existing portfolio. We assume that this is the target
ratio for all of our models. If we sum all predicted pure premiums in a model, we
get the total predicted pure premium. Summing all observed pure premiums, we
get the total cost of the observations. Dividing the total cost of the observations
over the total predicted pure premium, we get the risk ratio of that model. We ex-
pect this number to differ for all three models, but in reality, we want them to be
the same, so that we compare them on the same ground. That is, we do not rank
the models on their ability to predict the total pure premium, but rather on their
ability to classify the risks. Hence, we multiply all the predicted pure premiums
of a model by a constant to ensure a common risk ratio for all models, e.g. a risk
ratio equal to 0.6. By doing this, we ensure that all three models predict the same
total pure premium. Their only difference is in their distribution of pure premium
across the observations.

In the following, we will look at the risk ratio for each parameter of our model,
e.g. the risk ratio of the parameter for "20<Age<30". That is we look at all obser-
vations where the age is equal to ""20<Age<30". This will give greater insight into
how the model distributes the risk over the portfolio. To make the results more
intuitive, we divide the risk ratio for a single parameter by the common risk ratio
of all models. As an example, the common risk ratio might be 0.6, as mentioned
before. Taking the credibility model and its predictions and observations of pure
premium in the group of "20<Age<30", we can compute a risk ratio solely for
this parameter. We can then divide the risk ratio of "20<Age<30" by the com-
mon risk ratio, and produce what we would call the normalized risk ratio. If the
normalized risk ratio is equal to 1, we have the same risk ratio for the parameter
"20<Age<30" as we have for the entire portfolio. This is desirable. To understand
why we would want this, we could imagine the opposite case. Summing over the
entire predicted pure premiums of a model, we know that the normalized pure
premium will be equal to 1. This follows from our multiplication of the predic-
tions by a constant that ensures the total cost divided by the total pure premium
to equal the common ratio. Thus, if we have a parameter, e.g. "20<Age<30", with
a normalized risk ratio of 0.5, there must necessarily be another parameter which
compensates for this deviation. Looking at the plots which follow, it is thus desir-
able with normalized risk ratios close to 1.
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Figure 9.5: The normalized risk ratio of the three models for the age parameters
of the model. The red dotted line signifies the desired level equal to 1, and the
dots represent each model. The total pure premium is given by the grey bars
which correspond to the left side y-axis, while the normalized risk ratios match
the right hand y-axis.

Age - normalized risk ratio Mean absolute error Mean squared error
Credibility model 0.22 0.17

MCEM 0.31 0.13
MCMC 0.24 0.09

Table 9.1: The MAE and MSE of the normalized risk ratio of the three models for
the age parameter.

Figure 9.5 portrays the normalized risk ratio of all age parameters for all three
models. There is a lot of information in the plot, but looking at each level for it-
self, e.g. "20<Age<30" we can determine which model that outperforms the other
two. For the level "20<Age<30" it is clear that the credibility model outperforms
both the MCEM and MCMC models. The MCEM model scores just under 0.4, sig-
nifying that the risk ratio is lower than our desired ratio which again signifies that
this parameter is more expensive than it could have been. On the contrary, the
MCMC model is too cheap at this level. Looking at the plot, it is easy to determine
how the model does for single parameters, but it can be difficult to draw any con-
clusion for all parameters related to age. As every observation belongs to some
age-group, we know that the mean normalized risk ratio will be 1. We can how-
ever compute the distance from the dots of each model to the red dotted line. We
can use means of both absolute and squared distance to quantify the performance
in a plot. Table 9.1 shows the scores related to Figure 9.5. The models are quite
similar, but it can be argued that the MCMC model outperforms the two other
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Figure 9.6: The normalized risk ratio of the three models for the insured sum
parameters of the model. The red dotted line signifies the desired level equal
to 1, and the dots represent each model. The total pure premium is given by the
grey bars which correspond to the left side y-axis, while the normalized risk ratios
match the right hand y-axis.

Insured sum - normalized risk ratio Mean absolute error Mean squared error
Credibility model 0.03 0.01

MCEM 0.31 0.21
MCMC 0.19 0.04

Table 9.2: The MAE and MSE of the normalized risk ratio of the three models for
the insured sum parameter.

when considering both the quantities.

A similar plot and table for the insured sum can be found in Figure 9.6 and Table
9.2. Simply looking at Figure 9.6, it is obvious that the credibility model vastly
outperforms the other two. This is impression can also be confirmed by looking at
Table 9.2. We also note that the MCMC model is closer to the credibility model,
and that the MCEM model struggle somewhat.

The parameters for the customer rating can be seen in Figure 9.7. As with the
insured sum, it is quite easy to find the best model from the figure alone. The
big difference is that it is the MCMC model which gives the best result. Table 9.3
confirms this, and also highlight the bad predictions made by both the credibil-
ity model and the MCEM model. It is strange that they struggle so much for the
lower rated customers, while the MCMC model manage much better. A possible
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Figure 9.7: The normalized risk ratio of the three models for the rating paramet-
ers of the model. The red dotted line signifies the desired level equal to 1, and
the dots represent each model. The total pure premium is given by the grey bars
which correspond to the left side y-axis, while the normalized risk ratios match
the right hand y-axis.

Rating - normalized risk ratio Mean absolute error Mean squared error
Credibility model 2.08 18.90

MCEM 3.45 46.19
MCMC 0.40 0.38

Table 9.3: The MAE and MSE of the normalized risk ratio of the three models for
the customer rating parameter.
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Figure 9.8: The normalized risk ratio of the three models for the region paramet-
ers of the model. The red dotted line signifies the desired level equal to 1, and
the dots represent each model. The total pure premium is given by the grey bars
which correspond to the left side y-axis, while the normalized risk ratios match
the right hand y-axis.

Region - normalized risk ratio Mean absolute error Mean squared error
Credibility model 0.13 0.03

MCEM 0.28 0.11
MCMC 0.10 0.01

Table 9.4: The MAE and MSE of the normalized risk ratio of the three models for
the region parameter.

explanation could be that the credibility model and MCEM model are both estim-
ated with usual GLM fitting techniques, e.g. some least squares procedure, but the
MCMC parameter has some more flexibility with it being a mean of some known
distribution.

Next in line is the region parameters, represented in Figure 9.8. Reading the plot,
it once again becomes clear that the MCEM model struggles to match the credib-
ility and MCMC model. It is difficult to separate the credibility and MCMC model,
but looking at Table 9.4 we see that the MCMC just outperform the credibility
model.

Finally, the models ability to predict the objects can be seen in Figure 9.9. There
are 15 objects, giving 45 dots in the plot. It is therefore difficult to make any con-
clusion just by looking at the plot. Table 9.5 can be of some aid. The MCEM model
has some trouble matching its two competitors. The credibility and MCMC model
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Figure 9.9: The normalized risk ratio of the three models for the object paramet-
ers of the model. The red dotted line signifies the desired level equal to 1, and
the dots represent each model. The total pure premium is given by the grey bars
which correspond to the left side y-axis, while the normalized risk ratios match
the right hand y-axis.

Object - normalized risk ratio Mean absolute error Mean squared error
Credibility model 0.19 0.05

MCEM 0.24 0.09
MCMC 0.18 0.04

Table 9.5: The MAE and MSE of the normalized risk ratio of the three models for
the object parameter.
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on the other hand continues to match each other. The MCMC model performs
slightly better, but the difference is almost negligible.

9.4 Interpretation of the results

Taking a step back, we now spend some time reflecting on the results from a
broader perspective. The previous sections have demonstrated both similarities
and differences between the models. The question is now if we can draw some
conclusions about the possible superiority of one of the models.

Section 9.2 used Lorenz curves and Gini coefficients to compare the results from
the three models. Because of the similarity, reading the plot was not straightfor-
ward, but the Gini coefficient revealed that the MCMC model was slightly better
than the credibility and MCEM models. Section 9.3 gave us insight into the models’
ability to predict using traditional statistical tools, such as the mean absolute and
squared error. It became clear that the credibility and MCMC model often has an
almost identical performance, while the MCEM model tended to do worse. That is
somewhat counter-intuitive, as the MCEM model lies somewhere in between the
credibility and MCMC model in its assumptions. Deciding on a "best" model based
on the above sections, it seems reasonable to conclude that the MCMC model out-
performs the other two. However, the difference between the MCMC and credib-
ility model is so tiny that some reflection about other factors than just their ability
to predict is necessary.

The credibility model is popular for several reasons, one of which is its superi-
ority in computational efficiency. Computation of point estimates is faster than
the generation of samples from a distribution we cannot sample from directly. In
light of this, the usefulness of the MCMC model will depend on the user’s interests
and necessities. If one is to update the pure premium prediction frequently and
thus needs to run the MCMC algorithm often, it can be problematic with how
the method is proposed in this thesis. If one wishes to update the predictions less
frequently, say once every week or month, the MCMC model should not be over-
looked.

If one concludes that the MCMC model is superior to the credibility model, there is
also an array of possibilities to improve computational time. Looking away from
trivial optimization of the current implementation, there are methods of para-
meter estimation that are more efficient than the traditional MCMC algorithm.
Integrated nested Laplace approximation (INLA) is an attractive option, but it
also forces some specific requirements on the structure of the model (Rue, Martino
& Chopin, 2009). Without going into too much detail, the requirements should
not pose any problem with our current model specification, thus making INLA an
available option that is likely to reduce the computational time.
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There is also a case to be made about the little exploration that has been made
in the MCMC model. We have not explored or truly tested the choice of prior
distributions or the value of the hyperparameters. It is therefore not impossible
that further improvements can be made with the MCMC model. There is also the
possibility of generating more samples and thus reducing the Monte Carlo er-
ror, introduced when we compute the mean of the different distributions. All in
all, there is a case to be made for the MCMC model. It seems likely that further
development of the model and implementation of modern parameter estimation
methods can yield better predictions and reduce the computational burden of the
Bayesian hierarchical model.





Chapter 10

Closing remarks

Prediction of the pure premium is of high importance to insurance companies.
Prediction of a pure premium that is too high will likely lead customers to find
insurance with a better price elsewhere. If the prediction is too low, the company
risks attracting bad customers and high risk. This thesis has proposed two model
extensions to the current model. We have also proposed methods of estimating
the two models.

Chapter 6 introduced credibility theory and explained how it had found its place
in modern statistics. We argued that it is a way of estimating what are essentially
random effects in a GLMM. Building on this perspective, we proposed two model
extensions in Chapter 8. Where the credibility theory only made assumptions on
the first and second moment of the random effects, we extended the idea by ini-
tially assuming the random effects to be normally distributed with zero mean and
common variance τ2. This resulted in the simple model, later referred to as the
MCEM model. In the next model, we assumed the fixed effects to be random and
come from a normal distribution with zero mean and common variance σ2. We
also added a prior distribution to the variance parameters σ2 and τ2. This resul-
ted in the complex model, later referred to as the MCMC model.

Having decided on models and methods of estimation, we tested the models’ abil-
ity to predict the pure premium on test data. Chapter 9 presented the results and
ranked the models by various metrics. The big question is if we have managed
to propose a model that beats the current model. The short answer to that ques-
tion is maybe. Section 9.4 discussed and presented a more nuanced answer to the
question. Suppose the sole goal is to make the best possible prediction of the pure
premium. In that case, the MCMC model appears to be suitable and competitive
with the credibility model employed today. However, in a broader perspective,
one might ask if the small gains achieved by using the MCMC model might be ab-
sorbed by the potential cost of implementing and maintaining this model. Another
remark is that training and test set choice will always influence the parameter es-
timation, predictions, and interpretation of the results. With the results being so
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close, one could wonder how the results would have been on a new data or a
different portfolio.

As we have decided to work with extensions of the credibility model, one might
argue that other models or statistical methods should be tested on insurance data.
The models and methods we have studied are, after all, several decades old. Our
counterargument is that the multiplicative GLMMs are explainable and very intu-
itive, not only for statisticians and analysts but also for their colleagues and cus-
tomers. For this reason, we recommend insurance companies using the credibility
model to look at the possibility of also building and testing Bayesian hierarchical
models on different portfolios. It is viable to construct models as we have pro-
posed in this thesis, but if the models are to be used on a bigger scale, we would
recommend optimizing the estimation methods.
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