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Abstract. We study the existence of solitary waves in two classes of pseudo-
differential evolution equations with fully mixed nonlinear and nonlocal terms.
The nonlinearity is either cubic: ∂tu+ ∂x(Lu− uNu2) = 0 or quadratic:
∂tu+ ∂x(Lu− T (u, u)) = 0. Here, L,N are linear Fourier multipliers, while

T is a bilinear Fourier multiplier: T̂ (u, u)(ξ) =
∫
R p(ξ − η, η)û(ξ − η)û(η) dη.

The dispersive operator L is of positive order, while the orders of N,T (positive
or negative) are restricted above by the order of L. We prove that there exist
solitary-wave solutions u of small and large amplitude to these equations using
constrained minimization and the concentration–compactness principle. We find
that the solutions are in H∞(R) and have subcritical wave speed c. For small
solutions, we estimate the size of ‖u‖L∞ and the wave speed c.

Sammendrag. Vi studerer eksistens av solitære bølger i to familier av pseu-
dodifferensialligninger med ikkelokale ikkelineariteter. Ikkelineariteten er enten
kubisk: ∂tu+ ∂x(Lu− uNu2) = 0 eller kvadratisk: ∂tu+ ∂x(Lu− T (u, u)) = 0.
Her er L,N lineære Fourier-multiplikatorer, mens T er en bilineær Fourier-

multiplikator: T̂ (u, u)(ξ) =
∫
R p(ξ − η, η)û(ξ − η)û(η) dη. Den dispersive ope-

ratoren L har positiv orden, mens ordenen til N,T (positiv eller negativ) er
oppad begrenset av ordenen til L. Vi beviser at det finnes solitær-bølgeløsninger
u med sm̊a og store amplituder til disse ligningene ved hjelp av betinget mi-
nimering og konsentrasjons–kompakthetsprinsippet. Vi finner at løsningene er i
H∞(R) og har subkritisk bølgefart c. For sm̊a løsninger estimerer vi størrelsen
til ‖u‖L∞ og bølgefarten c.
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CHAPTER 1

Introduction

The equations studied in this thesis are related to and inspired by the math-
ematical theory of water waves. To provide background, we very briefly review
some history of this subject and introduce the basic governing equations. We dis-
cuss recent developments and related research motivating the problems considered
in this thesis, and give an outline of the work at hand.

1.1. Early history

The mathematical study of water waves began in earnest after Leonhard Euler
published his work on the governing equations of hydrodynamics in 1757 [9]. In the
century that followed, several mathematicians worked on water waves. An outline
of the early history can be found in [3]. Notable contributors include Laplace
and Lagrange in the latter half of the 18th century and Poisson and Cauchy in
the beginning of the 19th century. They mainly studied linearized water waves.
Although there were some investigations into nonlinear theory at the time, linear
theory dominated the field. Another influential figure within linear theory was
Airy; linear wave theory is often called Airy wave theory due to his contributions
[3].

In 1844, naval engineer John Scott Russel published his Report on Waves [25].
There, he describes wave phenomena he calls “waves of translation”, which are
now known as solitary waves.

I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat sud-
denly stopped — not so the mass of water in the channel which
it had put in motion; it accumulated round the prow of the vessel
in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large
solitary elevation, a rounded, smooth and well defined heap of
water, which continued its course along the channel apparently
without change of form or diminution of speed. [ . . . ] Such, in
the month of August 1834, was my first chance interview with
that singular and beautiful phenomenon which I have called the
Wave of Translation.

(Russel, 1844)

1



2 1. INTRODUCTION

A solitary wave is a single waveform propagating without changing shape. Rus-
sel reproduced the phenomenon in wave tanks and theorized about the properties
of this type of wave. His observations were initially met with skepticism. This type
of solution cannot arise from linearized equations and was not predicted by the ex-
isting theory at the time. Several mathematicians tried, unsuccessfully, to explain
the phenomenon; among them were Airy and also Stokes (who later contributed
to the derivation of the famous Navier-Stokes equations) [3].

The solitary wave could finally be mathematically explained when Boussinesq
introduced the equations now known as the Boussinesq equations in 1872 and the
Korteweg–de Vries equation in 1877 (Later rediscovered by Korteweg and de Vries
in 1895) [17]. These types of solutions have since become a topic of mathematical
research. They appear not only in water wave equations but may arise in a wide
class of partial differential equations (PDEs) describing wave motion in physical
systems.

1.2. The water waves problem

This section is based on the monograph [17]. There are many variations of the
governing equations for water waves, the most general of them being the Navier-
Stokes equations. These can be reduced to the incompressible Euler equations,
where the flow is additionally assumed to be inviscid, incompressible, and irro-
tational. While these assumptions may seem restrictive, they are reasonable for
a wide range of applications. The equations are supplemented by dynamic and
kinematic boundary conditions; the domain is bounded by a fixed bottom and an
unknown free surface, where the flow must satisfy certain conditions. The Euler
equations combined with the set of boundary conditions are commonly referred to
as the free-surface water waves problem.

The Euler equations with boundary conditions represent one formulation of this
problem, but in fact, there exist many. We mention the Zakharov–Craig–Sulem
formulation, a formulation where the unknowns are evaluated only at the sur-
face. These equations are well suited for deriving models for different asymptotic
regimes.

The water waves equations allow for a wide array of solutions with qualitatively
different properties. A pertinent question is then whether our simplified models
admit solutions that exhibit observed behaviors of physical waves.

One such behavior is that of traveling waves: Waves that propagate with con-
stant speed while retaining their original shape. In one dimension, suppose that
η(x, t) denotes the surface elevation at position x and time t. We can formulate
traveling waves mathematically by introducing a new steady variable x−ct, where
c ∈ R is the wave speed; traveling waves are exactly those that can be written in
the form

η(x, t) = η̃(x− ct)
for some function η̃.
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(a) (b)

Figure 1. Illustration of periodic traveling waves (A) and a solitary
wave (B).

If η̃ is periodic, then η is a periodic traveling wave. If η̃ is instead localized,
that is η̃(x− ct)→ 0 as |x− ct| → ∞, then η describes a solitary wave. This is the
mathematical formulation of “the waves of translation” described by Russel and
the solution type we concern ourselves with in this thesis.

Due to the complexity of the water waves equations, it is useful to classify the
problem based on physical characteristics. In a fluid domain Ω, let h0, a, λ denote
the characteristic water depth, amplitude and horizontal scale respectively, see
Figure 2.

λ

a

Ω
h0

x

η(x, t)

Figure 2. Illustration of the fluid domain Ω with characteristic sizes.

A nondimensionalized equation will typically include terms that represent the
ratio between such characteristic sizes, examples being

ε =
a

h0

, µ =
h2

0

λ
.

The parameter ε is often referred to as the nonlinearity parameter, while µ is called
the shallowness parameter.

Often, a simplified model equation can only be rigorously justified if one or
both of these parameters are small. Furthermore, the nature of the equations will
depend on the sizes of these parameters and their combinations. For example, ε�
1 and ε � 1 correspond to weakly and strongly nonlinear equations respectively,
while µ � 1 and µ � 1 correspond to shallow and deep water respectively.
Nonlinear effects are more important when µ is large, and dispersive effects play
a larger role in deep than in shallow water. An equation is dispersive if waves of
different spacial frequency propagate with different velocities.
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Solitary waves arise when nonlinear and dispersive effects are balanced. The
canonical example is the Korteweg–de Vries equation, which describes weakly non-
linear waves in shallow water (long waves):

∂tη + ∂3
xη + η∂xη = 0,

where η(x, t) is the surface elevation at position x and time t. The last term is
nonlinear, and the equation is dispersive due to the second term.

1.3. Recent developments

The dispersive properties depend on the dispersion relation. The Korteweg–de
Vries equation does not preserve the dispersion relation of the full water waves
equations, but is rather a second-order approximation. Incorporating the origi-
nal dispersion relation leads to the Whitham equation [31], which is a nonlocal
equation.

Nonlocal equations have increasingly been used to model water waves and other
wave phenomena. In these equations, the solution in one point cannot be deter-
mined by the action in a neighborhood of that point. Instead, it depends on global
information from the whole domain, making these types of equations suitable for
capturing long-range effects. When reduced to the surface, model equations for
water waves featuring the exact dispersion relation will include nonlocal terms;
The Zacharov-Craig-Sulem formulation involves the Dirichlet-Neumann operator
which is nonlocal. As already mentioned, the simpler Whitham equation is also
nonlocal.

Nonlocal operators can be expressed as integral operators or Fourier multiplier
operators. In fact, a large class of scalar evolution equations for water waves are
of the form

∂tη + ∂x(Lη + n(η)) = 0, (1.1)

where n is a nonlinear, local term and L is a Fourier multiplier operator. This
means that the action of L on η may be expressed as multiplication with a function,
called the symbol, on the Fourier side:

L̂η(ξ) = m(ξ)η̂(ξ).

If m is a polynomial, then the action of L reduces to differentiation and the equa-
tion is local. Other m give truly nonlocal and far more general operators.

Typically, the search for solutions is carried out in a Sobolev space H t(R). If

L : H t(R)→ H t−s(R)

is continuous, then L is said to be of order s. The Whitham equation is a special
case of (1.1) where L is of negative order s = −1/2. For positive s, (1.1) covers
for example the Korteweg–de Vries equation and the capillary–gravity Whitham
equation.
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The class of equations (1.1) has been widely studied under different assump-
tions on m and n. We briefly review relevant research. In 1987, Weinstein proved
existence of solitary waves to an equation on the form 1.1 with s ≥ 1 [30] using the
method of concentration–compactness, introduced by Lions in [20]. The approach
was put in a more general framework in [1]. Following this, the case 0 < s < 1
has been studied by several authors. The fractional Korteweg–de Vries equation
with 1/2 < s < 1 was treated by Linares, Pilod & Saut in [19]. In [21], Maehlen
proved existence of solitary waves to a class of model equations of low positive
order (The order allowed depends on the nonlinearity: s > 1/3 corresponds to
the case of a quadratic nonlinearity), where he allowed also for inhomogeneous
nonlinearities and weaker regularity assumptions on the symbol of L. Other works
treating positive-order operators include [2, 16, 15].

Similar techniques, albeit more technical, were used to show existence of small-
amplitude solitary waves in the case where s < 0 in [7]. The class of equations
covered there includes the Whitham equation, and it is shown that solitary waves in
the Whitham equation are approximated by scalings of Korteweg–de Vries solitary
waves. A similar existence result was also shown in [27] using a different method
based on the implicit function theorem. Solutions in spaces of lower regularity
were studied in [14].

Whitham-type equations and other full-dispersion models have been shown to
exhibit a number of desirable features [7, 18, 6]. The balance between nonlin-
earity and dispersion can be investigated by fixing one and varying the other.
In [18], Linares, Pilod & Saut fix a quadratic nonlinearity and vary the disper-
sion. They investigate several issues related to exitence and stability for fractional
KdV-equations (m = |ξ|s, n(u) = u2), and show that solitary-wave solutions to
this equation do not exist for s ≤ 1/3.

Recently, it has been attempted to study the case when not only the linear
term but also the nonlinearity n, is nonlocal. These kinds of equations can arise
from the water waves equations, see for example [26], [5] or [17]. Traveling waves
for equations of the form (1.1) where the nonlinearity n is of this type have been
studied in e.g. [8] (capillary–gravity Whitham after inverting the linear operator)
or [23] (a fractional Degasperis–Procesi equation), albeit from a different angle
than in this thesis. We also mention results on Whitham-Boussinesq equations
[4, 22] and a full-dispersion Green–Naghdi system [6] (introduced by Duchêne et
al. in [5]). There, existence of small amplitude solitary-wave solutions is shown
using concentration–compactness, and the equations include terms where a Fourier
multiplier is entangled with the nonlinearity.

1.4. Problem description

We study two classes of equations with nonlocal nonlinearities and wish to
show existence of solitary waves.
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The first class has a cubic nonlinearity:

∂tu+ ∂x(Lu− uNu2) = 0. (1.2)

Here, the L is a Fourier multiplier of positive order s > 1/2, while N is a Fourier
multiplier or order r < s − 1 which can be either positive or negative. Existence
of solitary waves in an equation of this type was shown in the project thesis:

∂tu+ ∂x(Λ
su− uΛru2) = 0.

There, L,N corresponded to Fourier multipliers Λs,Λr with symbols (1+ξ2)s/2 and
(1 + ξ2)r/2 respectively. Furthermore s, r had to satisfy s > 1, 0 < r < s− 1, and
existence of small solutions was shown only for 0 < r < min(s− 1, 1). The novelty
in the present work lies in showing existence of both big and small solutions for
all r considered, allowing also for negative r, in relaxing the restriction on s, and
in allowing for more general operators. We also include new regularity results and
estimates of the wave speed c.

Existence is shown by means of minimization: We transform the problem into
a constrained variational problem where we seek to minimize a functional E sub-
ject to a given constraint. The functional is chosen so that the minimizer solves
the equation (1.2). Working on an unbounded domain R, it is not clear that a
minimizing sequence converges to a minimizer. To overcome this, we rely on the
method of concentration–compactness (as in many of the aforementioned papers
on solitary waves). While this is a common approach, see e.g. [21], [7], [1], the
details along the way differ from case to case and the proofs in this thesis are
modified or constructed independently by the author. Specifications are given
throughout.

The second class of equations has a quadratic nonlinearity. This is perhaps
more physically relevant, as the nonlinearity is quadratic in many problems arising
from physics and fluid mechanics. We consider equations of the form:

∂tu+ ∂x(Lu− T (u, u)) = 0. (1.3)

Again, L is a Fourier multiplier of positive order s, this time with s > 0. Analo-
gously to the cubic case, the order of T , r, must satisfy r < min(s− 1, (2s− 1)/3)
and can be either positive or negative. However, the nonlinear term T (·, ·) is now
a bilinear Fourier multiplier with symbol p:

T̂ (u, v) =

∫
R
p(ξ − η, η)û(ξ − η)v̂(η) dη.

One reason for this is that we wanted to investigate quadratic nonlocal nonlinear-
ities, but equations with a quadratic term on the simpler form

uNu, where N is a linear Fourier multiplier

do not permit a variational formulation, see Section 4.1. We derive sufficient and
necessary conditions on the symbol p for a variational formulation of (1.3) to exist.
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Although uNu as above is a special case of a bilinear Fourier multiplier, we will
see that the necessary conditions exclude this case.

We show existence of solitary waves to (1.3) using a similar variational formu-
lation and method as in the cubic case. However, this has not before been done for
an operator of the type 1.4 and many new or modified arguments were required.

We summarize our main results.

Theorem 1.1. For every q > 0 there exist solitary-wave solutions u, v ∈
H∞(R) satisfying 1

2
‖u‖L2 , 1

2
‖v‖L2 = q to (1.2) and (1.3) respectively. The cor-

responding wave speeds cu, cv are subcritical.
Furthermore, if q ∈ (0, q0) for some q0 > 0, then

‖u‖L∞ h ‖u‖Hs/2 h q1/2, m(0)− cu h qα,

and
‖v‖L∞ h ‖v‖Hs/2 h q1/2, m(0)− cv h qβ

where m is the symbol om L and α, β depend on L.

The study of equations (1.2) and (1.3) make up Chapter 3 and Chapter 4
respectively. For easy reference and to fix notation, we also include a chapter with
preliminaries, Chapter 2, where basic notions and some important results are very
briefly summarized.





CHAPTER 2

Preliminaries

The purpose of this section is to fix notation, review basic definitions, and
collect certain results that will be explicitly referenced to later in the thesis. For
background and details on Fourier analysis and Sobolev spaces, we refer to books
by Grafakos[10, 11] and Triebel [29].

2.1. Definitions and spaces

Let S(R) be the Schwartz space of rapidly decaying smooth functions on R
S(R) = {f ∈ C∞(R) : |f |k,l <∞ for all k, l ∈ N0},

where
|f |k,l = sup

x∈R
(1 + |x|2)k

∑
α≤l

|∂αx f(x)|.

Let S ′(R) denote its dual space, the space of tempered distributions. Furthermore,
let F be the Fourier transform, defined by

F(f)(ξ) =
1√
2π

∫
R
f(x) exp (−iξx) dx for f ∈ S(R),

and extended by duality to S ′(R). We shall often write F(f) = f̂ .
We define Lp(R) to be the set of all equivalence classes of Lebesgue-

measurable functions on R with finite norm ‖f‖Lp = (
∫
R |f |

p dx)1/p or
‖u‖L∞ = ess suppx∈R |f(x)| in the L∞-case. We assume familiarity with these
spaces as well as standard results on them and the Fourier transform.

Define the operator Λs : S ′(R)→ S ′(R) by

Λ̂sf(ξ) = 〈ξ〉sf̂(ξ),

where we use the Japanese bracket 〈ξ〉 = (1 + |ξ|2)1/2. For s ∈ R, 1 < p < ∞, we
define the fractional Sobolev spaces Hs

p(R) (also called Bessel-Potential Spaces) as

Hs
p = {f ∈ S ′(R) : ‖f‖Hs

p
= ‖Λsf‖Lp <∞}.

To simplify notation, we often omit the subscript when p = 2 and write Hs(R) for
Hs

2(R). We define
H∞(R) = ∩s∈RHs(R).

Recall that F is a unitary operator on L2(R), so that

‖f‖Hs
2

= ‖〈·〉sf‖L2 .

9
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This is not the case for other p. For all 1 < p < ∞ we write H0
p (R) = Lp(R).

We will also need the homogeneous version of the fractional Sobolev norm ‖ · ‖Ḣs
p
,

which we define for s ≥ 0 as

‖f‖Ḣs
p
‖(−∂2)s/2f‖Lp <∞,

where the fractional derivative is defined by ̂(−∂2)s/2f(ξ) = |ξ|sf̂(ξ). The elements
of homogeneous Sobolev spaces are equivalence classes of tempered distributions.
For more information, we refer to [11, Chapter 6].

We will use the notation a . b if there is a constant C > 0 such that a ≤ Cb
and write a & b if b . a. If b . a . b we write a h b.

2.2. Inequalities and embeddings

We will make use of the following inequalities and embedding results, most of
which can be found in the book by Runst and Sickel[24].

Proposition 2.1 ( [24, Theorem 2.2.4/1 (i)]). Suppose t > 1/2. Then

H t(R) ↪→ L∞(R).

Proposition 2.2 ([24, Corollary 2.2.4/2]). Let 2 < p <∞. Then

H t(R) ↪→ Lp(R) ⇐⇒ t ≥ 1

2
− 1

p
.

Proposition 2.3 ([24, Theorem 4.6.1/1]). Assume that

t1 ≤ t2 and t1 + t2 > 0.

Furthermore, let f ∈ H t1(R), g ∈ H t2(R).

(i) Let t2 > 1/2. Then

‖fg‖Ht1 . ‖f‖Ht1‖g‖Ht2 .

(ii) Let t2 < 1/2. Then

‖fg‖Ht1+t2−1/2 . ‖f‖Ht1‖g‖Ht2 .

Proposition 2.4 ([24, Remark 2.5.3/2]). Suppose that s0, s1 ∈ R, p0, p1 ≥
1, θ ∈ (0, 1) satisfy

s = (1− θ)s0 + θs1,

1

p
=

1− θ
p0

+
θ

p1

.

Suppose that f ∈ Hs0
p0

(R) ∩Hs1
p1

(R). Then

‖f‖Hs
p
≤ ‖f‖1−θ

H
s0
p0

‖f‖θ
H
s1
p1
.
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Proposition 2.5 (Young inequalities, [10, Theorem 1.2.12]). Let p, q, r ∈
[1,∞].

(i) If p, q, r satisfy

1 +
1

r
=

1

p
+

1

q
,

Then

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .
(ii) If p, q, r satisfy

1

p
+

1

q
+

1

r
= 2,

then

‖f(g ∗ h)‖L1 ≤ ‖f‖p‖g‖q‖h‖r.

Proposition 2.6 (Gagliardo-Nirenberg interpolation inequality, [12, Corol-
lary 1.5]). Suppose that 1 < p, p0, p1 <∞, s, s1 ∈ R, 0 < θ < 1 satisfy

1

p
− s =

1− θ
p0

+ θ(
1

p1

− s1), s ≤ θs1.

Then

‖f‖Ḣs
p
. ‖f‖1−θ

Lp0 ‖f‖
θ
Ḣ
s1
p1
.

2.3. Other results

We will need the complex interpolation method, which allows us to extend prop-
erties to spaces with non-integer exponents by interpolation between two spaces
with integer exponents.

Theorem 2.7 (Complex interpolation, [28, Chapter 4.2]). Let s1, s2 ∈ R and
let s = θs1 + (1− θ)s2 for some θ ∈ [0, 1]. Suppose T is a linear map, continuous
from Hs1(R) to Hs1(R) and from Hs2(R) to Hs2(R). Then

T : Hs(R)→ Hs(R)

is also continuous.

It is well known that the derivative of a function is zero at its extrema. Gen-
eralizing this, it is reasonable that a minimizer of a functional A should solve the
equation A′(u) = 0. If we additionally impose a constraint on the solution, we
arrive at the Lagrange multiplier principle:
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Theorem 2.8 (Lagrange multiplier principle, [32, Theorem 1.43]). Let c ∈
R, f, g ∈ C1(U,R) and let u0 be a local extreme point of f on the constrained set
{u ∈ U : g(u0) = c}. Then either g′(u0) = 0 or there exists a λ such that

f ′(u0) = λg′(u0).

If a search for minimizers is carried out in a function space on a compact
domain, any uniformly regular minimizing sequence will admit a subsequence con-
verging to a minimizer. When working on R, which is unbounded, one can instead
use the concentration–compactness principle, first introduced by Lions in [20], to
show that a sequence “concentrates”. Informally, any bounded sequence admits a
subsequence that either vanishes, meaning that the mass spreads out on an infinite
domain, dichotomizes, meaning that the mass splits and separates in space, or it
concentrates, i.e. most of the mass remains concentrated in a bounded domain.
The theorem is stated below.

Theorem 2.9 (The concentration–compactness principle, [20]). Any sequence
{ρn}n∈N ⊂ L1(R) satisfying

ρn ≥ 0 a.e. on R,∫
R
dx = µ

for some µ > 0 and for all n ∈ N, admits a subsequence {ρnk}k∈N that satisfies
either:

(i) (Compactness) There exists a subsequence {yk}k∈N ⊂ R such that for
every ε > 0, there exists r <∞ satisfying∫ yk+r

yk−r
ρnk(x) dx ≤ µ− ε for all k ∈ N.

(ii) (Vanishing) For all r <∞,

lim
k→∞

sup
y∈R

∫ y+r

y−r
ρnk(x) dx = 0.

(iii) (Dichotomy) There exists µ̄ ∈ (0, µ) such that for every ε > 0
there is a k0 ∈ N, k0 ≥ 1 and sequences of positive L1(R)-functions
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{ρ(1)
k }k∈N, {ρ

(2)
k }k∈N satisfying for all k ≥ k0

‖ρnk − (ρ
(1)
k + ρ

(2)
k )‖L1(R) ≤ ε,

|
∫
R
ρ

(1)
k dx− µ̄| ≤ ε,

|
∫
R
ρ

(2)
k dx− (µ− µ̄)| ≤ ε,

dist(supp(ρ
(1)
k ), supp(ρ

(2)
k ))→∞.

Elementary convergence results are assumed known, but we recall the
Kolmogorov–Riez compactness theorem.

Theorem 2.10 (Kolmogorov–Riesz compactness theorem [13]). A subset
F ⊂ Lp(R), 1 ≤ p <∞, is totally bounded if, and only if,

(i) F is bounded,
(ii) for all ε > 0, there exists an R > 0 such that for every f ∈ F∫

|x|>R
|f(x)|p dx < εp,

(iii) for all ε > 0, there exists a ρ > 0 such that for every f ∈ F and y ∈
R, |y| < ρ, ∫

Rn
|f(x+ y)− f(x)|p dx < εp.





CHAPTER 3

Solitary waves in equations with a nonlocal cubic term

In this chapter we study solitary-wave solutions to the equation

∂tu+ ∂x(Lu− uNu2) = 0, (3.1)

describing the evolution of a function u of time t ∈ R and space x ∈ R. Here, L,N
are Fourier multiplier operators of order s and r respectively, meaning

L̂u = m(ξ)û(ξ), N̂u2 = n(ξ)û2(ξ)

for functions m,n and

L : H t(R)→ H t−s(R), N : H t(R)→ H t−r(R)

are continuous. We assume that L is of positive order, s > 1/2. The order of the
operator N , r, can be either positive or negative but is restricted above by the
order of L: r < s − 1. See Figure 1 for an overview. A detailed description and
discussion of the assumptions are given in Section 3.1.

s = 1/2 r = s− 1

0 1 2 3 4 5 6

1

2

3

4

−1

−2

r

s

Figure 1. Illustration of the values of s, r for which we show ex-
istence of solitary waves. We show existence of both small- and
large-amplitude solutions for values of s, r in the gray region. The
boundaries are not included.

As we wish to study solitary-wave solutions, we insert

u(t, x) = ũ(x− ct), ũ(x− ct)→ 0 as |x− ct| → ∞,
15
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into the equation (3.1). Immediately denoting ũ again by u and x − ct by x and
integrating, we arrive at the solitary-wave equation

−cu+ Lu− uNu2 = 0. (3.2)

We reformulate the problem as a constrained minimization problem. To set up
the problem, we define the functionals E ,Q,L,N : Hs/2(R)→ R:

E(u) = L(u)−N (u),

Q(u) =
1

2

∫
R
u2 dx,

L(u) =
1

2

∫
R
uLu dx =

1

2

∫
R
m(ξ)|û(ξ)|2 dξ,

N (u) =
1

4

∫
R
u2Nu2 dx =

1

4

∫
R
n(ξ)|û2(ξ)|2 dξ.

We often omit the variable x for notational convenience, but always keep the
variables in frequency space to avoid ambiguity. We will work in the Sobolev space
Hs/2(R), thus ensuring that the functionals are well-defined. We shall see that
E ,Q are Fréchet differentiable with derivatives E ′(u) = Lu−uNu2 and Q′(u) = u.
The Lagrange multiplier principle then implies that a minimizer of E subject to a
constraint on Q solves (3.2) for some c, see Lemma 3.17 in Section 3.4.3 for details.

We therefore seek minimizers of the constrained variational problem

Iq := inf{E(u) : u ∈ Hs/2(R) and Q(u) = q}. (3.3)

We will construct a minimizing sequence for (3.3) and show that is concentrates
according to Lions’ concentration–compactness principle 2.9. This is then used to
show convergence to a minimizer in Hs/2(R).

In Section 3.1, we state and discuss the assumptions and main result. Sections
3.2 and 3.3 establish properties of the functionals and minimization problem Iq
that we rely on in the subsequent analysis. In Section 3.4, we exclude vanishing
and dichotomy and show how the concentration-alternative implies convergence
and exitence of solutions. We conclude the chapter with estimates on the wave
speed c and the regularity of the solutions in Section 3.5.

3.1. Assumptions and main theorem

Throughout the chapter, we assume the following::

(A) The symbol m of the Fourier multiplier L is real-valued, positive, even
and satisfies the growth bounds

(A1) m(ξ)−m(0) h |ξ|s for |ξ| ≥ 1,

(A2) m(ξ)−m(0) h |ξ|s′ for |ξ| < 1,
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with s > 1/2, s′ > 1. Furthermore, we require that

(A3)
∣∣∣∂m
∂ξ

(ξ)
∣∣∣ . 〈ξ〉s−1 for all ξ ∈ R.

(B) The symbol n of the Fourier Multiplier N is real-valued, even, and satisfies
the growth bound

(B1) n(ξ) h 〈ξ〉r for all ξ ∈ R,

where r < s− 1. We also require that

(B2)
∣∣∣∂n
∂ξ

(ξ)
∣∣∣ . 〈ξ〉r−1 for all ξ ∈ R.

Given these assumptions, we obtain the following result:

Theorem 3.1 (Existence of solitary-wave solutions). For every q > 0, there is
a solution u ∈ H∞(R) of the solitary-wave equation (3.2) satisfying 1

2
‖u‖2

L2 = q.
The corresponding wave speed c is subcritical, that is, c < m(0).

Furthermore, there is a q0 > 0 such that for q ∈ (0, q0), the solution u and
wave speed c additionally satisfy

(i) ‖u‖L∞ h ‖u‖Hs/2 h q1/2,

(ii) m(0)− c h qα, α = s′

s′−1
.

We take a look at the assumptions and the parts they play in the proof.

3.1.1. The symbol m. The assumptions on L are inspired [21], where exis-
tence of solitary-wave solutions is shown for a class of equations with a positive-
order Fourier multiplier on the linear term, such as here, but where the nonlinearity
differs and is local. Concerning assumption (A2), the upper bound for the growth
at zero is used to find a sufficiently low upper bound for Iq in 3.7. The lower bound
is used to show properties of the solution u in Section 3.5 but is not necessary to
show existence.

As for assumption (A1), the upper growth bound ensures that the minimization
problem is well-defined in Hs/2(R). Working in a higher-order Sobolev space would
pose problems as ‖ · ‖Hs/2 is still the highest-order norm that we can bound for
minimizing sequences, see Lemma 3.8.

The lower bound for the growth of m is necessary to control the Hs/2−norm
by L. This is used to bound the L4−norm by Sobolev embedding, using that
s > 1/2, which is again used to exclude vanishing. The condition that s > 1/2
arises from the use of Sobolev embedding and interpolation theorems. However, it
is also motivated by a comparison with the fractional Korteweg–de Vries equation.
The condition s > 1/2 in the cubic case implies that Hs/2(R) ↪→ L4(R). It
corresponds to the condition that s > 1/3 in a setting where the nonlinearity is
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quadratic(s > 1/3 implies Hs/2(R) ↪→ L3(R)). If s ≤ 1/3, the homogenous fKdV
equation has no non-trivial solitary-wave solutions [18].

One could possibly exploit that the operator on the nonlinear term can be of
negative order to allow for even smaller values of s. The minimization problem
would still be well-defined with Iq > −∞, see Lemma 3.6, and the main problem
would be to exclude vanishing by bounding an Lp̃-norm for 2 < p̃ < 2/(1−s) from
below (see Lemma 3.9). We do something along these lines for an equation with a
quadratic nonlinearity in Chapter 4, but the argument used to achieve that is not
directly applicable to the cubic case here.

The assumption (A3) is needed to exclude dichotomy and used in Lemma 3.13.
The point is to ensure that L is not “too” nonlocal, and this is related to the
regularity of m [21]. The bound by a lower order, s − 1 instead of s, is natural,
but not necessary. Instead of (A3), one could assume that

|m(ξ + t)−m(ξ)| . ω(t)〈ξ〉s−1

for some modulus of continuity ω.
Alternatively, one could assume that ξ 7→ m(ξ)/〈ξ〉s be uniformly continuous.

This is done in [21]. It is a slightly weaker assumption, but would suffice for our
purpose noting that (A3) holds for the symbol 〈ξ〉s and

|m(ξ)−m(ξ − t)| =
∣∣∣∣m(ξ)

〈ξ〉s
− m(ξ − t)
〈ξ − t〉s

∣∣∣∣ 〈ξ〉s +
m(ξ − t)
〈ξ − t〉s

|〈ξ〉s − 〈ξ − t〉s|

≤ (ω̃m(|t|) + |t|)〈ξ〉s/2〈ξ − t〉s/2〈t〉s/2,

for some bounded modulus of continuity ωm.
In a completely different direction, one could consider an equation of type (3.2)

with a negative-order operator L. However, this changes the nature of the problem
and will not be pursued in this thesis.

3.1.2. The symbol n. The upper bound for the growth of n and the cor-
responding bound on r are used to bound N in terms of L, which is crucial for
obtaining both the lower bound for Iq in Lemma 3.6. Without this bound, we
could not rely on the product estimates in Proposition 2.3 to do this. Several
other lemmas also rely on the relation between s and r. The lower bound on the
growth of n is used to bound Iq from above in Lemma 3.7. Furthermore, it implies
that N (u) h ‖u2‖2

Hr/2 , see Lemma 3.4. Although relaxing this assumption would
require some (technical) changes throughout, the main issue is that n must be
bounded below by a positive constant near zero in Lemma 3.7. Hence the lower
bound could likely be replaced with a less strict requirement ensuring this.

As for assumption (B2), it plays the same role as assumption (A3) and the
same modifications are possible.
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3.1.3. Improvements from project thesis. The work in this chapter builds
on the project thesis, where existence of solitary-wave solutions was shown for the
equations

∂tu+ ∂x(Λ
su− uΛru2) = 0,

where s > 1, r < s− 1. Equation 3.2 is clearly a generalization of this, with L,N
generalizing Λs,Λr. A comment on the differences and similarities in the result
and proof is therefore due.

The largest improvement is that we allow for a greater range of values of s and
r. In particular, we allow s to be below the critical value s = 1 where the Sobolev
embedding Hs/2(R) ↪→ L∞(R) ceases to hold. Instead, we rely on estimates from
[24] that are summarized in Chapter 2 or use different arguments. We also allow for
negative r and we show existence of both big and small solutions for all admissible
values of s, r. The symbols m,n are allowed to be slightly more general, inspired
by [21], the biggest change being that m can now be homogeneous.

To obtain the improved result, most Lemmas in Section 3.2 and Section 3.3
are new or significantly changed. Lemmas related to vanishing and dichotomy are
similar, but generalized or otherwise improved. A few lemmas are only slightly
rewritten and remain very similar but are included for completeness. This includes
the proof for sub-additivity in Lemmas 3.11 and 3.12 and for existence from min-
imizers in Lemma 3.4.3.

The last section, on properties of the solutions and wave speed, is new.

3.2. Properties of symbols and functionals

We will repeatedly use that 〈x〉s h 1 + |x|s for s > 0. We will also need the
estimates in the next two lemmas.

Lemma 3.2. For all x, y ∈ R, we have the estimates

〈x+ y〉 . 〈x〉+ 〈y〉 (3.4)

〈x+ y〉 . 〈x〉〈y〉 (3.5)

Proof.

〈x+ y〉2 = 1 + x2 + 2xy + y2

. (1 + x2) + (1 + y2)

= 〈x〉2 + 〈y〉2

≤ (〈x〉+ 〈y〉)2.
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and

〈x+ y〉2 = 1 + x2 + 2xy + y2

. 1 + x2 + y2 + x2y2

. (1 + x2)(1 + y2)

= 〈x〉2〈y〉2.
�

Lemma 3.3. The following estimates hold for all ξ, η ∈ R,

(i) The symbol m satisfies

|m(ξ)−m(η)| . |ξ − η|〈ξ − η〉s/2〈ξ〉s/2〈η〉s/2.
(ii) The symbol n satisfies

|n(ξ)− n(η)| . |ξ − η| if r ≤ 0,

|n(ξ)− n(η)| . |ξ − η|〈ξ − η〉r/2〈ξ〉r/2〈η〉r/2 if r > 0.

Proof. We begin by proving the estimate for m. The estimate for n when
r > 0 is proved in exactly the same manner. With a = ξ − η, b = η, (3.4) implies
that

〈ξ〉s/2 . 〈ξ − η〉s/2〈η〉s/2, (3.6)

and
〈η〉s/2 . 〈ξ − η〉s/2〈ξ〉s/2. (3.7)

Using assumption (A3), the mean value theorem, and the estimates (3.6), (3.7),
we obtain

|m(ξ)−m(η)| ≤ |ξ − η| sup
|θ|≤|ξ|,|η|

〈θ〉s−1

≤ |ξ − η| sup
|θ|≤|ξ|,|η|

〈θ〉s

≤ |ξ − η|(〈ξ〉s + 〈η〉s)
. |ξ − η|〈ξ〉s/2〈η〉s/2〈ξ − η〉s/2,

which concludes the proof of (i).
We show (ii) for r ≤ 0 similarly.

|n(ξ)− n(η)| . sup
|θ|≤|ξ|,|η|

|ξ − η|〈θ〉r−1

≤ |ξ − η|.
�

Instead of working directly with the functionals L,N , it is often simpler to
consider the related norms. We have the following result.
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Lemma 3.4. We have the estimates

L(u) +Q(u) h ‖u‖Hs/2 ,

and

N (u) h ‖u2‖Hr/2 .

Proof. For |ξ| ≥ 1, we have that

m(ξ) + 1 = m(ξ)−m(0) +m(0) + 1 h 1 + |ξ|s h 〈ξ〉s,

while for |ξ| < 1,

m(ξ) + 1 h 1 h 〈ξ〉s.
It then follows automatically that

L(u) +Q(u) h ‖u‖2
Hs/2

since

L(u) +Q(u) =
1

2

∫
R
(1 +m(ξ))|û(ξ)|2 dξ.

The estimate on N (u) follows trivially from the definition of N and assumption
(B1). �

The next lemma allows us to bound N in terms of L. The result is closely
related to the restriction r < s − 1 on r and crucial for providing a lower bound
for Iq as well as other important bounds in Lemma 3.8.

Lemma 3.5. Let u ∈ Hs/2(R). Then

‖u2‖Hr/2 . ‖u‖2−γ
L2 ‖u‖γHs/2

for some γ < 1.

Proof. Step 1. Assume s > 1 and r > 0. Then we can pick a τ ∈ R satisfying

1 < τ < s− r

and apply Propsition 2.3 (i) with t1 = r/2 and t2 = τ
2
:

‖u2‖Hr/2 . ‖u‖Hr/2‖u‖Hτ/2

. ‖u‖1−r/s
L2 ‖u‖r/s

Hs/2‖u‖
1−τ/s
L2 ‖u‖τ/s

Hs/2

= ‖u‖2−(r+τ)/s

L2 ‖u‖(r+τ)/s

Hs/2 ,

which show the desired result with γ = r+τ
s
< r+s−r

s
= 1.

If r ≤ 0, pick r̃ such that 0 < r̃ < s− 1, apply Step 1 with r̃ instead of r and
use that

‖u2‖Hr/2 ≤ ‖u2‖H r̃/2 .
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Step 2. Assume s < 1. If r > −1, then we can apply Proposition 2.3 (ii) with
t1 = 0 and t2 = 1/2 + r/2:

‖u2‖Hr/2 . ‖u‖L2‖u‖1/2+r/2

. ‖u‖2− r+1
s

L2 ‖u‖
r+1
s

Hs/2 .

By assumption,
r + 1

s
< 1,

so we have shown the result of the lemma with γ = r+1
s

when s < 1 and r > −1.
If r ≤ −1, then we pick r̃ satisfying s − 1 > r̃ > −1 and apply Step 2 with r̃

instead of r. Such an r̃ exists since by assumption s > 0.
Step 3. If s = 1, then pick s̃ satisfying r + 1 < s̃ < 1, apply Step 2 with s̃

instead of s and use that
‖u‖H s̃/2 ≤ ‖u‖Hs/2 .

�

3.3. Bounds for Iq and norm-estimates

In this section we lay the foundation for excluding vanishing and dichotomy
later on. We provide upper and lower bounds for Iq and bound the norms of
functions that are “close” to the minimizer in a way that will soon be made clear.
It is the upper bound on Iq that allows us to show these bounds, while the lower
bound Iq > −∞ ensures that the minimization problem is meaningful.

Lemma 3.6. For all q > 0,
Iq > −∞.

Proof. Let u ∈ Hs/2(R) and satisfy Q(u) = q. Using Lemma 3.4 and Lemma
3.5, then for some constants C1, C2 > 0 and γ < 1 we get that

E(u) = L(u) +Q(u)−N (u)−Q(u)

> C1‖u‖2
Hs/2 − C2q

2−γ‖u‖2γ

Hs/2 − q
> −∞,

where the last inequality holds since γ < 1 guarantees that the expression is
positive as ‖u‖Hs/2 →∞. �

To prove the next lemma, we introduce the ansatz function φt =
√
tφ(tx). This

is standard, see for example [1], [21], but the details differ.

Lemma 3.7. For all q > 0,

Iq < m(0)q.
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Proof. It suffices to show that there exists a function u ∈ Hs/2(R) with
Q(u) = q such that E(u) < m(0)q. To that end, pick a function φ ∈ S(R)
satisfying Q(φ) = q and let 0 < t < 1. Define

φt(x) =
√
tφ(tx)

and observe that Q(φt) = q.
Step 1. Finding lower bounds for N (φt). Observe that if r ≥ 0, then 〈tξ〉r ≥ 1

for all ξ, while if r < 0, then 〈tξ〉r > 〈ξ〉r for all ξ. We have that

N (φt) =
1

4

∫
R
n(ξ)|φ̂2

t (ξ)|2 dξ

&
1

4

∫
R
〈ξ〉r|φ̂2(ξ/t)|2 dξ

=
1

4

∫
R
t〈tξ〉r|φ̂2(ξ)|2 dξ

≥ tmin(‖φ2‖2
L2 , ‖φ2‖2

Hr/2)

Hence

N (u) ≥ C1t (3.8)

for some constant C1 > 0 depending on φ and r.
Step 2. Finding upper bounds for L(φt). We have that

L(φt) =
1

2

∫
R
m(ξ)|φ̂t(ξ)|2 dξ

= m(0)q +
t

2

∫
R
(m(ξ)−m(0))|φ̂(t·)(ξ)|2 dξ

= m(0)q +
1

2t

∫
R
(m(ξ)−m(0))|φ̂(ξ/t)|2 dξ

= m(0)q +
1

2

∫
R
(m(tξ)−m(0))|φ̂(ξ)|2 dξ

If s < s′, then m(tξ) −m(0) . |tξ|s′ for all ξ ∈ R. On the other hand, if s ≥ s′,
then m(tξ) −m(0) . |tξ|s′ + |tξ|s. Hence, for constants C2, C3 > 0 depending on
φ, s′ and s, we get that

L(u)(φt) ≤

{
m(0)q + C2t

s′
∫
R |ξ|

s′|φ̂(ξ)|2 dξ + C2t
s
∫
R |ξ|

s|φ̂(ξ)|2 dξ if s ≥ s′

m(0)q + C2t
s′
∫
R |ξ|

s′|φ̂(ξ)|2 dξ if s < s′

≤

{
m(0)q + C2t

s′‖φ‖2
Hs′/2 + C2t

s‖φ‖2
Hs/2 if s ≥ s′

≤ m(0)q + C2t
s′‖φ‖2

Hs′/2 if s < s′

≤ m(0)q + C3t
s′ . (3.9)
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Step 3. Finding an upper bound for E(φt). Combining (3.8), and (3.9) gives

E(φt) = L(φt)−N (φt)

≤ m(0)q + C3t
s′ − C1t

1.

The positive terms will go to zero faster than the negative term as t → 0, since
s′ > 1 by assumption. Hence it is possible to pick a t > 0 such that

Iq ≤ E(φt) < m(0)q

for all q > 0. �

The upper bound on ‖·‖Hs/2 is used repeatedly in the rest of the chapter, while
the lower bound on ‖ · ‖L4 will be used to exclude vanishing.

Lemma 3.8. Any minimizing sequence for Iq has a subsequence satisfying

‖un‖−1
Hs/2 + ‖u2

n‖Hr/2 + ‖un‖L4 ≥ δ for all n ∈ N.
for some δ > 0.

Proof. In light of Lemma 3.7, we can pick a subsequence {un}n∈N satisfying

E(un) < m(0)q for all n ∈ N. (3.10)

Step 1. Finding an upper bound for ‖un‖Hs/2. We use (3.10), Lemma 3.4 and
Lemma 3.5 and find that

‖un‖2
Hs/2 h L(un) +Q(un)

= E(un) +N (un) +Q(un)

. (m(0) + 1)q + ‖u2
n‖2

Hr/2

. q + q2−γ‖un‖2γ

Hs/2

for some γ < 1. Since this means ‖u‖Hs/2 is bounded by itself to a smaller power,
then it must be bounded. Picking δ1 > 0 small enough, then

‖un‖Hs/2 ≤ 1/δ1 for all n ∈ N.
Step 2. Finding a lower bound for ‖u2

n‖Hr/2. Assuming {un}n∈N has no subse-
quence such that ‖u2

n‖Hr/2 ≥ δ2 for any δ2 > 0, then

lim sup
n→∞

‖u2
n‖Hr/2 ≤ 0.

But then there is a constant C1 > 0 such that

Iq = lim inf
n→∞

(L(un)−N (un))

≥ lim inf
n→∞

(m(0)q +

∫
R
(m(ξ)−m(0))|ûn|2 dx− C1‖u2

n‖2
Hr/2)

≥ m(0)q − C1 lim sup
n→∞

‖u2
n‖2

Hr/2

= m(0)q,
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which contradicts (3.10). Hence, passing again to a subsequence if necessary,

‖u2
n‖Hr/2 ≥ δ2 for all n ∈ N

for some δ2 > 0.
Step 3. Finding a lower bound for ‖un‖L4. If r ≤ 0, then the result is immediate

from

‖un‖L4 = ‖u2
n‖

1/2

L2 ≥ ‖u2
n‖

1/2

Hr/2 ≥ δ
1/2
2 .

If r > 0, then s > 1. By interpolation and using Lemma 2.3(i) with
t1 = t2 = s/2 > 1/2, we obtain

‖u2
n‖Hr/2 ≤ ‖u2

n‖
1−r/s
L2 ‖u2

n‖
r/s

Hs/2 ≤ ‖un‖
2(1−r/s)
L4 ‖un‖2r/s

Hs/2 ,

which implies

‖un‖L4 ≥

(
‖u2

n‖Hr/2

‖un‖2r/s

Hs/2

) 1
2(1−r/s)

≥ δ
r

s(1−r/s)
1 δ

1
2(1−r/s)
2 = δ3.

Combining step 1,2,3 and picking δ = min(δ1, δ2, δ
1/2
2 , δ3) gives the main result.

�

We will restrict our attention to functions u ∈ Hs/2(R),Q(u) = q satisfying

E(u) < m(0)q and ‖u‖−1
Hs/2 + ‖u2‖r/2 + ‖u‖L4 ≥ δ,

henceforth referred to as near minimizers. Any minimizing sequence is from now
on implicitly assumed to consist solely of near minimizers. Due to Lemma 3.7 and
Lemma 3.8, such a sequence can be obtained from any minimizing sequence by
passing to a subsequence.

3.4. Concentration–compactness and existence of solutions

We make use of the Concentration–compactness principle 2.9 to show existence
of solutions to (3.2).

3.4.1. Excluding vanishing. The method for excluding vanishing is similar
in several articles, including [1, 14, 2], and we use the same approach.

Lemma 3.9. Let v ∈ Hs/2(R) and assume that p∗ satisfies p∗ > 2 if s ≥ 1
and 2 < p∗ < 2/(1 − s) if s < 1. Given δ > 0, suppose that ‖v‖Hs/2 ≤ 1/δ and
‖v‖Lp∗ ≥ δ. Then there exists ε > 0 such that

sup
j∈Z

∫ j+2

j−2

|v(x)|2 dx ≥ ε.
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Proof. First, we wish to establish the inequality∑
j∈Z

‖ξjv‖2
Hs/2 . ‖v‖2

Hs/2 for all v ∈ Hs/2(R). (3.11)

To that end, let ζ : R → [0, 1] denote a smooth function such that
supp ζ ⊂ [−2, 2] and

∑
j∈Z ζ(x− j) = 1 for all x ∈ R and write ζ(x − j) = ζj(x).

Consider the operator T : v → {ζjv}j.
Clearly, T is bounded from Hn(R) to l2(Hn(R)) for any n ∈ N0 since at each

x only finitely many ζjv, (ζjv)(n) are non-zero. This implies (3.11) for all n ∈ N0.
Using complex interpolation 2.7, (3.11) follows for all s > 0.

Again using that only finitely many ζj are non-zero at any x, we establish that

‖v‖p
∗

Lp
∗ h

∑
j∈Z

‖ζjv‖p
∗

Lp
∗ for all v ∈ Lp∗(R). (3.12)

By assumption s/2 > 1/2− 1/p∗. Hence there is an 1/2 < s̃ < s such that by
the Sobolev embedding theorem,

‖ζjv‖p
∗

Lp∗
. ‖ζjv‖p

∗

H s̃/2 ≤ ‖ζjv‖p
∗−τ
Hs/2 ‖ζjv‖τL2 for all v ∈ Hs/2(R), (3.13)

where τ = p∗(1− s̃/s) > 0.
Combining (3.11), (3.12) and (3.13), then

‖v‖p
∗

Lp∗
h
∑
j∈Z

‖ζjv‖p
∗

Lp∗

.
∑
j∈Z

‖ζjv‖p
∗−τ
Hs/2 ‖ζjv‖τL2

≤ sup
j∈Z
‖ζjv‖τL2‖ζjv‖p

∗−2−τ
Hs/2

(∑
j∈Z

‖ζjv‖2
Hs/2

)
. sup

j∈Z
‖ζjv‖τL2‖v‖p

∗−τ
Hs/2 .

Hence,

sup
j∈Z

∫ j+2

j−2

|v(x)|2 dx ≥ sup
j∈Z
‖ζjv‖2

L2

& ‖v‖2p∗/τ

Lp∗
‖v‖2(τ−p∗)/τ

Hs/2

≥ δ4p∗/τ−2 = ε > 0,

which concludes the proof. �

Near minimizers un satisfy the assumptions of Lemma 3.9 with p∗ = 4 and
δ > 0 from Lemma 3.8. We conclude that no minimizing sequence of Iq vanishes
in accordance with the Concentration–Compactness principle 2.9.

Corollary 3.10. Vanishing does not occur.
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3.4.2. Excluding dichotomy. The task of excluding dichotomy is quite tech-
nical and we split the proof into several parts. The main idea is to force a contra-
diction: We will first show that Iq is strictly sub-additive, that is Iq1+q2 < Iq1 +Iq2 .
Then we proceed to show that if dichotomy occurs, then Iq1+q2 ≥ Iq1 + Iq2 .

In the next two lemmas, we show that Iq is sub-homogeneous and that this
implies sub-additivity.

Lemma 3.11. Suppose a function f : R→ R is strictly sub-homogeneous, i.e.

f(tx) < tf(x) for t > 1.

Then f is strictly sub-additive:

f(x1 + x2) < f(x1) + f(x2).

Proof. If x1 = x2, then the result is immediate with t = 2.
If x1 6= x2, assume without loss of generality that x1 < x2. Then for some

t > 1, we can write x2 = tx1 and hence

f(x1 + x2) = f

(
x2

(
1 +

1

t

))
<

(
1 +

1

t

)
f(x2)

= f(x2) +
1

t
f(t

x2

t
) < f(x2) +

t

t
f(
x2

t
)

= f(x1) + f(x2).

�

Lemma 3.12 (Sub-additivity). Iq is strictly sub-additive, meaning

Iq1+q2 < Iq1 + Iq2 .

Proof. By Lemma 3.11, it suffices to show sub-homogeneity of q 7→ Iq, mean-
ing

Itq < tIq for t > 1, q > 0.

Let {un}n∈N be a minimizing sequence of Iq, and let ũn =
√
tun define a new

sequence. Then Q(ũn) = tq and

Itq ≤ L(ũn)−N (ũn)

= tL(un)− t2N (un)

= tE(un) + t(1− t)N (un).

Sub-homogeneity now follows since (1− t) < 0 by assumption and N (un) ≥ δ > 0
by Lemma 3.8. �

The next result is the key to excluding dichotomy.
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Lemma 3.13. Let u ∈ Hs/2(R) and let ρ ∈ S(R) be a non-negative Schwartz
function. Define ρR(x) = ρ(x/R).

(i) For the operator L,

|
∫
R
ρRu(ρRLu− L(ρRu)) dx| → 0, (3.14)

and

|
∫
R
(1− ρR)u((1− ρR)Lu− L((1− ρR)u)) dx| → 0 (3.15)

as R→∞.
(ii) For the operator N ,

|
∫
R
ρRu

2(ρRNu
2 −N(ρRu

2)) dx| → 0

and

|
∫
R
(1− ρR)u2((1− ρR)Nu2 −N((1− ρR)u2)) dx| → 0

as R→∞.

Proof. (i) Lemma 3.3 implies that

|m(ξ − t)−m(ξ)| . |t|〈ξ〉s/2〈ξ − t〉s/2〈t〉s/2

for all ξ, t ∈ R.
Using this combined with Plancherel and Fubini’s theorem, equation (3.14)

follows from a direct calculation:

|
∫
R
ρRu(ρRLu− L(ρRu)) dx|

≤
∫
R
|ρ̂Ru|(ξ)

∫
R
|ρ̂R(t)||û(ξ − t)||m(ξ − t)−m(ξ)| dtdξ

.
∫
R
|ρ̂R(t)||t|〈t〉s/2

∫
R
|ρ̂Ru(ξ)||û(ξ − t)|〈ξ〉s/2〈ξ − t〉s/2dξdt

≤
∫
R
|ρ̂R(t)||t|〈t〉s/2‖ρRu‖Hs/2‖u‖Hs/2dt

= ‖ρRu‖Hs/2‖u‖Hs/2

∫
R
|Rρ̂(Rt)||t|〈t〉s/2dt

= ‖ρRu‖Hs/2‖u‖Hs/2

∫
R

1

|R|
|ρ̂(v)||v|〈v/R〉s/2dv

→ 0

as R→∞ since ρ ∈ S(R).
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To show (3.15), observe that∫
R
v((1− ρR)Lu− L((1− ρR)u)) dx

=

∫
R
v(−ρRLu+ LρRu) dx

→ 0

as R→∞, concluding the proof.
(ii) First, we show that u2 ∈ Hs/2(R) if r > 0 and that u2 ∈ L2(R) if r ≤ 0:
If r > 0, then s > 1 and u2 ∈ Hs/2(R) by Lemma 2.3(i) with t1 = t2 = s/2 > 1/2.

If on the other hand r ≤ 0, then

‖u2‖L2 = ‖u‖2
L4 . ‖u‖Hs/2 ,

by the Sobolev Embedding theorem 2.2.
Hence, if r > 0, the proof of (ii) is identical to the proof of (ii) since n satisfies

|n(ξ − t)− n(ξ)| . |t|〈ξ〉r/2〈ξ − t〉r/2〈t〉r/2

by Lemma 3.3 and since u2 ∈ Hs/2(R).
If on the other hand r ≤ 0, then u2 ∈ L2(R) and

|n(ξ − t)− n(ξ)| . |t|,

and hence

|
∫
R
ρRu

2(ρRNu
2 −N(ρRu

2)) dx|

≤
∫
R
|ρ̂Ru2|(ξ)

∫
R
|ρ̂R(t)||û2(ξ − t)||n(ξ − t)− n(ξ)| dtdξ

.
∫
R
|ρ̂R(t)||t|

∫
R
|ρ̂Ru2(ξ)||û2(ξ − t)|dξdt

≤
∫
R
|ρ̂R(t)||t|‖ρRu2‖L2‖u2‖L2dt

= ‖ρRu2‖L2‖u2‖L2

∫
R

1

|R|
|ρ̂(v)||v|dv

→ 0

as R→∞. The proof for 1− ρR is as before. �

In the next lemma, we make concrete a consequence of dichotomy.

Lemma 3.14. Suppose that dichotomy occurs for a sequence {1
2
u2
n}n∈N with

Q(un) = q.
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Let φ ∈ C∞(R) be a non-negative function satisfying

φ(x) =

{
1 if |x| < 1

0 if |x| > 2

and let

ψ(x) = 1− φ(x) for all x ∈ R.

Let φn(x) = φ(x−yn
Rn

) and ψn(x) = ψ(x−yn
Rn

) for {yn}n∈N ⊂ R and {Rn}n∈N ⊂ R to

be determined, and where Rn →∞ as n→∞. Define u
(1)
n = φnun, u

(2)
n = ψnun.

Then for some q̄ ∈ (0, q), {un}n∈N and the two sequences {u(1)
n }n∈N and

{u(2)
n }n∈N satisfy

Q(u(1)
n )→ q̄, (3.16)

Q(u(2)
n )→ (q − q̄), (3.17)

1

2

∫
Rn≤|x−yn|≤2Rn

u2
n dx→ 0. (3.18)

as n→∞.

Proof. If Dichotomy occurs, then we can find q̄ ∈ (0, q) and two sequences

{ρ(1)
n }n∈N and {ρ(2)

n }n∈N ∈ L1(R) satisfying

‖1

2
u2
n − (ρ(1)

n + ρ(2)
n )‖L1 → 0,

|
∫
R
ρ(1)
n dx− q̄| → 0,

|
∫
R
ρ(2)
n dx− (q − q̄)| → 0,

as n→∞ and

supp ρ(1)
n ⊂ (yn −Rn, yn +Rn),

supp ρ(2)
n ⊂ (−∞, yn − 2Rn)

⋃
(yn + 2Rn,∞),

for {yn}n∈N ⊂ R and {Rn}n∈N ⊂ R, where Rn →∞ as n→∞. Then clearly

1

2

∫
Rn≤|x−yn|≤2Rn

u2
n dx→ 0 as n→∞,

which is (3.18).
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Now only a simple calculation is required to establish (3.16)

|Q(u(1)
n )− q̄| ≤ |

∫
R

1

2
φ2
nu

2
n − ρ(1)

n dx|

+ |
∫
R
ρ(1)
n dx− q̄|

= |
∫
Rn≤|x−yn|<2Rn

1

2
u2
n − ρ(1)

n − ρ(2)
n dx|+ |

∫
Rn≤|x−yn|<2Rn

1

2
φ2
nu

2
n dx|

+

∫
R
ρ(1)
n dx− q̄|

≤ |
∫
R

1

2
u2
n − ρ(1)

n − ρ(2)
n dx|+ |

∫
Rn≤|x−yn|<2Rn

1

2
u2
n dx|

+ |
∫
R
ρ(1)
n dx− q̄|

→ 0

as n→∞. The result for u
(2)
n , (3.17), is found similarly. �

Finally, we combine the results of this subsection to show that dichotomy does
not occur.

Lemma 3.15. Dichotomy does not occur.

Proof. Let u
(1)
n , u

(2)
n , φn, ψn be as in Lemma 3.14 and assume that dichotomy

occurs. Seeking to contradict Lemma 3.12, we wish to show that

E(un) ≥ E(u(1)
n ) + E(u(2)

n ) (3.19)

as n→∞. Using that φn + ψn = 1 and the symmetry of L and N , we have that

E(un) = L(φnun + ψnun)−N (φnun + ψnun)

= E(φnun) + E(ψnun) +

∫
R
φnunL(ψnun) dx

− (4N (
√
ψnφnun) + 2

∫
R
φ2
nu

2
nN(ψ2

nu
2
n) dx

+ 4

∫
R
(φ2

n + ψ2
n)u2

nN(ψnφnu
2
n) dx)
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Thus, if we can show that

lim
n→∞

∫
R
φnunL(ψnun) dx ≥ 0, (3.20)

lim
n→∞

|N (
√
ψnφnun)| = 0, (3.21)

lim
n→∞

|
∫
R
φ2
nu

2
nN(ψ2

nu
2
n) dx| = 0, (3.22)

lim
n→∞

|
∫
R
(φ2

n + ψ2
n)u2

nN(ψnφnu
2
n) dx| = 0, , (3.23)

then we are done.
We show (3.20) using (3.18) and Lemma 3.13 repeatedly with φn, ψn as ρR, 1−

ρR:

lim
n→∞

(

∫
R
φnunL(ψnun) dx) = lim

n→∞
(

∫
R

√
φnψnunL(

√
φnψnun) dx)

= lim
n→∞

(L(
√
φnψnun) +Q(

√
φnψnun)−Q(

√
φnψnun)

& lim
n→∞

(‖
√
φnψnun‖2

Hs/2 −
∫
R
φnψnu

2
n dx)

≥ lim
n→∞

(‖
√
φnψnun‖2

Hs/2 −
∫
Rn≤|x−yn|≤2Rn

u2
n dx)

≥ 0.

By Lemma 3.13 with φ2
n, ψ

2
n as ρR, 1− ρR,

lim
n→∞

|
∫
R
φ2
nu

2
nN(ψ2

nu
2
n) dx| = lim

n→∞
(|
∫
R
φnψnu

2
nNφnψnu

2
n) dx|)

= lim
n→∞

(N (
√
φnψnun)),

and, using Lemma 3.5(recall that γ < 1) and (3.18),

lim
n→∞

(N (
√
φnψnun)) h lim

n→∞
(‖φnψnu2

n‖2
Hr/2)

≤ lim
n→∞

(‖
√
φnψnun‖2γ

Hs/2(

∫
Rn≤|x−yn|≤2Rn

u2
n dx)2−γ)

= 0,

for some γ < 1. This shows (3.21) and (3.22).
For (3.23) observe that∫

R
(φ2

n + ψ2
n)u2

nN(ψnφnu
2
n) dx = ‖φ3/2

n ψ1/2
n u2

n‖2
Hr/2 + ‖φ1/2

n ψ3/2
n u2

n‖2
Hr/2 → 0.
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again using Lemma 3.5 and (3.18). Having established (3.19), clearly

Iq = lim inf
n→∞

(E(un)) ≥ lim inf
n→∞

(E(u(1)
n )) lim inf

n→∞
(E(u(2)

n )) ≥ Iq̄ + Iq−q̄.

As Iq is sub-additive by Lemma 3.12, this cannot be the case and so we conclude
that dichotomy does not occur. �

3.4.3. Existence of solutions.

Lemma 3.16 (Existence of minimizer). Let {un}n be a minimizing sequence of
Iq, q > 0. Then there is a subsequence of {un(·+yn)}n∈N that converges in Hs/2(R)
to a minimizer of Iq.

Proof. We have excluded vanishing and dichotomy, and so only the
concentration–compactness alternative remains. Define ũn(x) = un(x+ yn). Note
that ‖ũn‖Hs/2 = ‖un‖Hs/2 < 1/δ for some δ > 0 by Lemma 3.8. Since {ũ}n∈N is
bounded in Hs/2(R), it admits a subsequence that converges weakly in Hs/2(R) to
w ∈ Hs/2(R).

Since the sequence concentrates, then for each ε > 0, there is an R > 0 such
that ∫

R
ũ2
n dx < ε as n→∞.

If additionally ũn were uniformly continuous with respect to translation in L2(R),
then Kolmogorov-Riez-Sudakov’s compactness theorem 2.10 would imply the ex-
istence of a subsequence that converges to a limit in L2(R) which must be
w ∈ Hs/2(R) by uniqueness of limits.

This is indeed the case, as∫
R
|ũn(x+ y)− ũn(x)|2 dx =

∫
R
|(e−iyξ − 1)ˆ̃un(ξ)|2 dξ

=

∫
R
|(e−iyξ − 1)〈ξ〉−s/2)|2|〈ξ〉s/2 ˆ̃un(ξ)|2 dξ

≤ sup
ξ∈R
|(e−iyξ − 1)〈ξ〉−s/2)|2‖un‖Hs/2

−−→
y→0

0.

We now demonstrate that

E(w) = Iq.

Fatou’s lemma implies that

L(w) ≤ lim inf L(ũn).
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Furthermore N (ũn)→ N (w). As n(ξ) h 〈ξ〉r, it suffices to show that ũ2
n → w2 in

Hr/2(R). Recall from Lemma 3.8 that ‖ũn‖Hs/2 < 1/δ. If r ≥ 0, then s > 1 and

‖w2 − ũ2
n‖Hr/2 = ‖(w − ũn)(w + ũn)‖Hr/2

≤ ‖(w − ũn)(w + ũn‖1−r/s
L2 ‖(w − ũn)(w + ũn)‖r/s

Hs/2

≤ ‖w − ũn‖1−r/s
L4 ‖w + ũn‖1−r/s

L4 ‖w − ũn‖r/sHs/2‖w + ũn‖r/sHs/2

≤ ‖w − ũn‖(1−r/s)
L4 (2/δ)(1+r/s)

while if r < 0, then

‖w2 − ũ2
n‖Hr/2 ≤ ‖(w − ũn)(w + ũn)‖L2

≤ ‖w − ũn‖L4‖w + ũn‖L4

. ‖w − ũn‖L4(2/δ)

In both cases, the expression goes to 0 as n → ∞. To see this, let 1/2 < s̃ < s
and use the Sobolev embedding theorem and interpolation:

‖w − ũn‖L4 . ‖w − ũn‖Hτ/2

≤ ‖w − ũn‖1−s̃/s
L2 ‖w − ũn‖s̃/2Hs/2

≤ ‖w − ũn‖1−s̃/s
L2 (1/δ)s̃/2 → 0

since 1− s̃/s > 0.
We conclude that E(w) = Iq = limn→∞ E(ũn). Since N (ũn) → N (w), then we

must have that L(ũn)→ L(w), which together with the already established weak
convergence ũn ⇀ w implies norm convergence in Hs/2(R). �

Lemma 3.17. Any minimizer of the constrained variational problem Iq solves
(3.2), where the wave-speed c is the Lagrange multiplier.

Proof. According to the Lagrange multiplier principle 2.8, any minimizer of
Iq satisfies

E ′(u)− cQ′(u) = 0. (3.24)
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We find that the Fréchet derivatives of L,N ,Q are Lu, uNu2 and u respec-
tively:

lim
‖v‖

Hs/2
→0

|L(u+ v)− L(u)−
∫
R vLu dx|

‖v‖Hs/2

= lim
‖v‖

Hs/2
→0

|
∫
R

1
2
(uLu+ uLv + vLu+ vLv − 1

2
uLu− vLu dx|

‖v‖Hs/2

= lim
‖v‖

Hs/2
→0

|1
2

∫
R vLv dx|
‖v‖Hs/2

. lim
‖v‖

Hs/2
→0

‖v‖2
Hs/2

‖v‖Hs/2

= 0,

while

lim
‖v‖

Hs/2
→0

|Q(u+ v)−Q(u)−
∫
R vu dx|

‖v‖Hs/2

= lim
‖v‖

Hs/2
→0

|
∫
R

1
2
(u2 + 2uv + v2 − 1

2
u2 − uv dx|

‖v‖Hs/2

= lim
‖v‖

Hs/2
→0

|1
2

∫
R v

2 dx|
‖v‖Hs/2

. lim
‖v‖

Hs/2
→0

‖v‖2
Hs/2

‖v‖Hs/2

= 0.

and

lim
‖v‖

Hs/2
→0

|N (u+ v)−N (u)−
∫
R vuNu

2 dx|
‖v‖Hs/2

= lim
‖v‖

Hs/2
→0

|1
4

∫
R u

2Nv2 + 4uvN(uv) + 2uvNv2 + v2Nu2 + 2v2N(uv) + v2Nu2 dx|
‖v‖Hs/2

. lim
‖v‖

Hs/2
→0

‖v‖2
Hs/2‖u‖2

Hs/2 + ‖v‖3
Hs/2‖u‖Hs/2

‖v‖Hs/2

= 0.

Inserting the Fréchet derivatives into (3.24) gives the solitary-wave equation (3.2).
�
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3.5. Properties of solutions

We have established the first part of 3.1, namely that solutions u ∈ Hs/2(R) to
(3.2) satisfying 1

2
‖u‖2

L2 = q exist for all q > 0. It remains to show the properties
of the solutions u and wave speed c.

3.5.1. Improved estimates for Iq, ‖u‖Hs/2 ,N (u). We will refer to big and
small solutions as solutions u ∈ Hs/2(R) of (3.2) whose L2-norms are respectively
larger or smaller than a constant q0 > 0 which will be introduced shortly.

If we consider small and big solutions separately, we can find improved upper
bounds for Iq in both cases.

Lemma 3.18. There exists a q̃0 > 0 such that for all q ≥ q̃0,

Iq < 0.

Proof. Pick a function φ ∈ Hs/2(R) satisfying Q(φ) = 1 and set

φq(x) =
√
qφ(x),

so that Q(φq) = q.
Since L(u) . ‖u‖2

Hs/2 and N (u) & ‖u2‖2
Hr/2 for u ∈ Hs/2(R), then there are

constants C1, C2 > 0 such that

E(φq) ≤ C1‖φq‖2
Hs/2 − C2‖φ2

q‖2
Hr/2

= C1q‖φ‖2
Hs/2 − C2q

2‖φ2‖2
Hr/2 ,

which is negative for q ≥ q̃0 if q̃0 is large enough. Thus there is a function
v = φq ∈ Hs/2(R) such that

Iq ≤ E(v) < 0,

which is what we wanted to prove. �

The next two results are inspired by [21], where similar results are shown for
equations where the nonlinearity is only local.

Lemma 3.19. Let q0 > 0 be any positive constant. There exists κ > 0 such that
for all q ∈ (0, q0),

Iq < m(0)q − κq1+α,

where α = s′

s′−1
.

Remark 3.20. If m(ξ) = 〈ξ〉s, then the result holds with α = 2.

Proof. It suffices to show that there exists a function u ∈ Hs/2(R),Q(u) = q
such that E(u) < m(0)q−κq1+α. To that end, pick a function φ ∈ S(R) satisfying
Q(φ) = 1 and let 0 < t < 1. Define

φq,t(x) =
√
qtφ(tx)

and observe that Q(φq,t) = q.
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By a similar calculation as in Lemma 3.7,

N (φq,t) h
q2

4

∫
R
t〈tξ〉r|φ̂2(ξ)|2 dξ

which implies

N (u) ≥ C1q
2t

for some constant C1 > 0.
Furthermore, again by a similar calculation as in Lemma 3.7,

L(φq,t) = m(0)q +
q

2

∫
R
(m(tξ)−m(0))|φ̂(ξ)|2 dξ

≤ m(0)q + C2t
s′q,

for some C2 > 0.
Combining this, we get that

E(φq,t) = L(φq,t)−N (φq,t)

≤ m(0)q + C4t
s′q − C2tq

2

Set ts = C5q
α, where C5 > 0 is small enough to have t < 1 for all q < q0. Then

E(φq,t) ≤ m(0)q + q1+α(C4C5 − C2C
1/s′

5 q1+α/s′−α)

≤ m(0)q − q1+α (C2C
1/s′

5 − C4C5)︸ ︷︷ ︸
κ

.

Since 1/s′ < 1, we can pick C5 small enough to guarantee that κ > 0 which gives
the desired result. �

Lemma 3.21. Let α = s′/(s′ − 1). For all q < q0, near minimizers u of Iq
satisfy

L(u)−m(0)q h N (u) h q1+α (3.25)

and

‖u‖2
Hs/2 h q. (3.26)

Proof. Let u ∈ Hs/2(R). From Lemma 3.19, we get that

L(u)−N (u) ≤ m(0)q − κq1+α.

It follows directly that

N (u) & q1+α

for all values of r.
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We now find a crude upper bound N (u) that will be improved upon later. It
follows from Lemma 3.5, where we recall that γ ∈ (0, 1), that

N (u) h ‖u2‖2
Hr/2

. q2−γ‖u‖2γ

Hs/2

h q2−γ(L(u)−m(0)q +Q(u) +m(0)q)γ

. q2 + q2−γN (u)γ.

This implies that

N (u) . q2 + q
2−γ
1−γ . q2 + q1+ 1

1γ . q2.

With this in hand, we establish the estimate (3.26):

q . ‖u‖2
Hs/2 h L(u) +Q(u) . Q(u) +N (u) +m(0)q − κq1+α . q.

To show (3.25) we partition u = u1 + u2 where û1 = χ[−1,1]û and
û2 = (1− χ[−1,1])û. Here χA denotes the function with value 1 at each point in
the set A and 0 otherwise. Using Proposition 2.6, we find that

‖u1‖4
L4 . ‖u1‖4−2/s′

L2 ‖u1‖2/s′

Ḣs′/2

. q2−1/s′(L(u)−m(0)q)1/s′ . (3.27)

If r > 0, we have additionally that

‖u1‖4

Ḣ
r/2
4

. ‖u1‖
4− 4r+2

s′
L2 ‖u1‖

4r+2
s′

Ḣs′/2

. q2−1/s′(L(u)−m(0)q)1/s′ . (3.28)

In the last line we used assumption (A1), that 2r+1
s′

> 1
s′

and N (u) . q2 . q.
By Sobolev embedding on u2,

‖u2‖4
L4 . ‖u2‖4

Hs/2

. (L(u)−m(0)q)2

. (L(u)−m(0)q)1/s′q(2−1/s′), (3.29)

where in the last line we used that L(u)−m(0)q . N (u) . q2 . q for q < q0.
If r ≤ 0, we combine (3.27) and (3.29) and find that

N (u) ≤ ‖u‖4
L4

. ‖u1‖4
L4 + ‖u2‖4

L4

. q2−1/s′(L(u)−m(0)q)1/s′

= (q1+α)1−1/s′(L(u)−m(0)q)1/s′ . (3.30)
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If r > 0, we use the estimate (3.5) and obtain

N (u) h
∫
R
〈ξ〉r|û2|2 dξ

.
∫
R
|〈η〉r/2〈ξ − η〉r/2(û ∗ û)|2 dξ

= ‖(Λr/2u)2‖2
L2

= ‖u‖4

H
r/2
4

≤ ‖u1‖4
L4 + ‖u1‖4

Ḣ
r/2
4

+ ‖u2‖4

H
r/2
4

. (3.31)

Now, observe that

‖u2‖4

H
r/2
4

= ‖〈·〉r/2û2 ∗ 〈·〉r/2û2‖2
L2

≤ ‖〈·〉r/2û2‖2
L2‖〈·〉r/2û2‖2

L1

. ‖u2‖2
Hr/2‖u2‖2

Hs/2

≤ ‖u2‖4
Hs/2

. q2−1/s′‖u2‖1/s′

Ḣs/2

. q2−1/s′(L(u)−m(0)q)1/s′ . (3.32)

In the second to last line we used that ‖u2‖Hs/2 . ‖u‖Hs/2 . q and
(−1, 1) * supp û2.

Inserting (3.27), (3.28) and (3.32) into (3.31), we get that

N (u) . q2−1/s′(L(u)−m(0)q)1/s′ . (3.33)

Using (3.30) for r ≤ 0 and (3.33) for r > 0, and combining this with the fact that
L(u)−m(0)q . N (u) and N (u) & q1+α, it now follows that

L(u)−m(0)q h N (u) h q1+α.

�

3.5.2. The wave speed c. We estimate the size of the wave speed c.

Lemma 3.22. Let q0 be any constant larger than q̃0 from Lemma 3.18. Any
minimizer of Iq solves (3.2) with subcritical wave speed, that is c < m(0). Further-
more,

(i) if q ≥ q0, then
c < −m(0).

(ii) If q < q0, then

m(0)− c h qα,

where α = s′/(s′ − 1).
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Remark 3.23. The result implies that c < m(0) for all q > 0 and that c →
m(0) if and only if q → 0.

Proof. Minimizers u of Iq must satisfy

E ′(u)− cQ′(u) = 0

in H−s/2(R). Pairing with u we obtain

c =
〈E ′(u), u〉
〈Q′(u), u〉

=
E(u)−N (u)

q
(3.34)

< m(0).

(i) By Lemma 3.18, big solutions satisfy

L(u)−N (u) < 0,

so that

N (u) > L(u) ≥ m(0)q.

Combined with (3.34), then

c < −N (u)

q
< −m(0).

(ii) By Lemma 3.19, small solutions satisfy

L(u)−N (u) < m(0)q − κq1+α.

Combined with (3.34), then

c ≤ m(0)− κqα.

For the lower bound, observe that by Lemma 3.21 there is a constant C1 > 0 such
that,

c =
L(u)− 2N (u)

q

≥ m(0)− C1q
α.

We conclude that

m(0)− c h qα

for small solutions. �
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3.5.3. Regularity of solutions. We conclude the chapter by showing the
regularity estimates stated in Theorem 3.1. Combined with the existence proof in
Section 3.4.3 and the estimates on the wave speed in Lemma 3.22, this completes
the proof of Theorem 3.1.

Lemma 3.24 (Regularity of solutions). Any solution u ∈ Hs/2(R) of the
solitary-wave equation 3.2 is also in H∞(R). Furthermore, if q ∈ (0, q0), then

‖u‖L∞ h ‖u‖Hs/2 h q.

Proof. Rewriting (3.2), we have

(L− c)u = uNu2.

Observe that L−c is invertible since c < m(0), so that (L− c)−1 : H t(R)→ H t+s(R)
is well defined and continuous.

We first assume that s > 1. We want to show that

uNu2 ∈ H1−s/2(R). (3.35)

Then, we would have that (L− c)u ∈ H1−s/2(R) and consequently u ∈ H1+s/2(R).
We could repeat the procedure with s̃ = 2+s to find that u ∈ H s̃/2+1(R) = Hs/2+2.
Continuing like this indefinitely, we would arrive at u ∈ H∞(R).

Since s > 1, then Nu2 ∈ Hs/2−r by Proposition 2.3(i) with t1 = t2 = s/2 > 1/2.
If r ≤ 0, Proposition 2.3(i) also gives

‖uNu2‖Hs/2 . ‖u‖Hs/2‖Nu2‖Hs/2−r ,

while if r > 0,

‖uNu2‖Hs/2−r . ‖u‖Hs/2‖Nu2‖Hs/2−r .

In both cases, this implies that (3.35) since

s/2− r = s− r − s/2 > 1− s/2 and s/2 = s− s/2 > 1− s/2,

which completes the proof that u ∈ H∞(R) if s > 1.
If s < 1, we can use 2.3(ii) with t1 = t2 = s/2 and find that u2 ∈ Hs−1/2(R),

which implies that Nu2 ∈ Hs−r−1/2(R). Observing that s−r−1/2 > 1/2, we then
use 2.3(i)with t1 = s/2, t2 = s− r − 1/2 to see that

‖uNu2‖s/2 . ‖u‖s/2‖Nu2‖s−r−1/2.

Thus uNu2 ∈ Hs/2(R). Consequently, (L − c)u ∈ Hs/2(R) as well and hence
u ∈ H3s/2(R). We can now proceed with s̃ = 3s > 1 to arrive at u ∈ H∞(R) also
when 1/2 < s < 1.

For the last part, suppose that q ∈ (0, q0). Then we know from Lemma 3.21
that

‖u‖Hs/2 h q1/2.
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Now ‖u‖L∞ . q1/2 by a similar argument as above:

‖u‖L∞ . ‖u‖H1 . ‖u‖Hs/2 h q.

Moreover,

q = ‖u2‖L1 ≤ ‖u‖L∞‖u‖L1 . ‖u‖L∞‖u‖H1 . ‖u‖L∞q1/2,

so that
‖u‖L∞ & q1/2.

Hence
‖u‖L∞ h q1/2

and the proof is completed. �



CHAPTER 4

Solitary waves in equations with a nonlocal quadratic term

In the previous chapter, the nonlinearity was cubic. It is perhaps more physi-
cally relevant to study the case when the nonlinearity is quadratic. Our goal in this
chapter is to prove existence of solitary waves in such an equation using similar
techniques as in the cubic case.

As a first inquiry, one could replace the term uNu2 in equation (3.2) with
uNu, where N is still a linear Fourier multiplier. The next question is then what
functional we would have to minimize to obtain this new equation

−cu+ Lu− uNu = 0.

It is not obvious how one could construct such a functional and indeed, we will
see that no functional with Fréchet derivative uNu, where N is a linear Fourier
multiplier, can exist.

Instead, we will study the equation

∂tu+ ∂x(Lu− T (u, u)) = 0, (4.1)

where L is still a linear Fourier multiplier, but T is now a bilinear Fourier multiplier
with symbol p, meaning that

T̂ (u, u) =

∫
R
p(ξ − η, η)û(ξ − η)û(η) dη.

We wish to find out what conditions the symbol p has to satisfy in order to have
a functional T with derivative

T ′(u) = T (u, u).

Operators of the form u 7→ uNu where N is a linear Fourier multiplier are
special cases of bilinear Fourier multipliers where the symbol p only depends on
one variable:

T̂ (u, v)(ξ) =

∫
R
p(η)û(ξ − η)v̂(η) dη = (pv̂ ∗ û)(ξ) = ûNv(ξ).

However, the condition on p we derive will exclude operators of this type.
We derive sufficient and necessary conditions on p in Section 4.1. The remain-

der of the chapter is devoted to proving existence and properties of solitary-wave
solutions to (4.1).

43
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4.1. Integrable bilinear Fourier multipliers

Let Bn be a bilinear Fourier multiplier with symbol n of order s, meaning

B̂n(u, v)(ξ) =

∫
R
n(ξ − η, η)û(ξ − η)v̂(η) dη

and
n(ξ − η, η) . 〈|ξ|+ |η|〉s.

Furthermore, let Tp be a trilinear Fourier multiplier with symbol p of order t,
meaning

̂Tp(u, v, w) =

∫
p(ξ − η, η − σ, σ)û(ξ − η)û(η − σ)û(σ) dσ dη

and
p(ξ − η, η − σ, σ) . 〈|ξ|+ |η|+ |σ|〉t.

We begin by showing some simple properties of trilinear Fourier multipliers.

Lemma 4.1. Let f, g, h ∈ H t(R). Then

Tp(f, g, h) = Tp′(f, g, h) = Tp′′(f, g, h),

where

p′(ξ1, ξ2, ξ3) = p(ξ3, ξ1, ξ2),

p′′(ξ1, ξ2, ξ3) = p(ξ2, ξ3, ξ1).

Proof. To show the first equality, we use the substitution σ 7→ η − σ and
η 7→ ξ − σ combined with Plancherel and Fubini’s theorems:

̂Tp(f, g, h)(ξ) =

∫
R2

p(ξ − η, η − σ, σ)f̂(ξ − η)ĝ(η − σ)ĥ(σ) dσ dη

=

∫∫
R2

p(σ, ξ − η, η − σ)f̂(σ)ĝ(ξ − η)ĥ(η − σ) dσ dη

=

∫
R2

p′(ξ − η, η − σ, σ)ĝ(ξ − η)ĥ(η − σ)f̂(σ) dσ dη

= ̂Tp′(g, h, f)(ξ)

In the second to last line we used the definition of p′.
To show the second equality, let p′ = q and use the first equality:

̂Tp′′(h, f, g) = ̂T ′q(h, f, g)(ξ) = ̂Tq(g, h, f)(ξ) = ̂Tp′(g, h, f)(ξ),

where

p′′(ξ1, ξ2, ξ3) = q′(ξ1, ξ2, ξ3) = q(ξ3, ξ1, ξ2) = p′(ξ3, ξ1, ξ2) = p(ξ2, ξ3, ξ1).

�
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Proposition 4.2. Let Bn be a bilinear Fourier multiplier with symbol n of
order s and let Tp be a trilinear Fourier multiplier with symbol p of order t > 0.
Assume t+1

2
< s. Define a functional T (u) by

T (u) =

∫
Tp(u, u, u) dx

Then then for all u, v ∈ Hs(R), the Fréchet derivative

DT [u](v) =

∫
vBn(u, u) dx

if and only if

n(ξ − η, η) = p(η, ξ − η,−ξ) + p(−ξ, η, ξ − η) + p(ξ − η,−ξ, η).

Proof. Since the Fréchet derivative is unique,

DT [u](v) =

∫
vBn(u, u) dx

if and only if

lim
‖v‖Hs→0

|
∫

1 · F−1( ̂Tp(u+ v, u+ v, u+ v)− ̂Tp(u, u, u)) dx−
∫
vBn(u, u) dx|

‖v‖Hs

= 0.

(4.2)
We apply Lemma 4.1 and find that

Tp(u+ v, u+ v, u+ v)−Tp(u, u, u)

= Tp(u, u, v) + Tp(u, v, u) + T (u, v, v)

+ Tp(v, u, u) + Tp(v, u, v) + Tp(v, v, u) + Tp(v, v, v)

= Tp′′(v, u, u) + Tp′(v, u, u) + Tp′(v, v, u)

+ Tp(v, u, u) + Tp′′(v, v, u) + Tp(v, v, u) + Tp(v, v, v).
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In the next equations, p, p′, p′′ are functions of (ξ − η, η − σ, σ) in every line.
We omit the arguments for shorter notation. Inserting the above into (4.2), we get

lim
‖v‖Hs→0

|
∫
R 1 · F−1( ̂Tp(u+ v, u+ v, u+ v)− ̂Tp(u, u, u)) dx−

∫
R vBn(u, u) dx|

‖v‖Hs

≤ lim
‖v‖Hs→0

1

‖v‖Hs

∣∣∣∫
R
δ(ξ)

∫
R2

(p′′ + p′ + p)v̂(ξ − η)û(η − σ)û(σ) dσ dη dξ

−
∫
R2

v̂(−ξ)n(ξ − η, η)û(ξ − η)û(η) dη dξ
∣∣∣ := A

+ lim
‖v‖Hs→0

|
∫
R δ(ξ)

∫
R2(p

′′ + p′ + p)v̂(ξ − η)v̂(η − σ)û(σ) dσ dη|
‖v‖Hs

:= B

+ lim
‖v‖Hs→0

|
∫
R δ(ξ)

∫
R2 pv̂(ξ − η)v̂(η − σ)v̂(σ) dσ dη|

‖v‖Hs

:= C.

We wish to show that A = B = C = 0.
Since Tp, Tp′ , Tp′′ are all of order t and using that

〈|η|+ |σ|〉 . 〈η〉+ 〈σ〉 . 〈−η〉1/2〈η − σ〉1/2〈σ〉1/2

we get that

B = lim
‖v‖Hs→0

|
∫
R2(p

′′ + p′ + p)(−η, η − σ, σ)v̂(−η)v̂(η − σ)û(σ) dσ dη|
‖v‖Hs

. lim
‖v‖Hs→0

∫
R2〈−η〉t/2〈η − σ〉t/2〈σ〉t/2|v̂(η)||v̂(η − σ)||û(σ)| dσ dη

‖v‖Hs

. lim
‖v‖Hs→0

‖|〈·〉t/2v̂|(|〈·〉t/2û| ∗ |〈·〉t/2û|)‖L1

‖v‖Hs

. lim
‖v‖Hs→0

‖v‖Ht/2‖v‖Ht/2‖Λt/2u‖L1

‖v‖Hs

= 0

since ‖Λt/2u‖L1 ≤ ‖u‖Hs‖〈·〉t/2−s‖L2 is finite. That

C = 0

is shown in a similar manner.
Finally,

A= lim
‖v‖Hs→0

1

‖v‖Hs

∣∣∣∫
R2

(p′′+p′+p)(−η,η−σ,σ)v̂(−η)û(η−σ)û(σ)dσdη

−
∫
R2

v̂(−ξ)n(ξ−η,η)û(ξ−η)û(η)dηdξ
∣∣∣
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Renaming η 7→ξ,σ 7→η in the first integral, we get

A= lim
‖v‖Hs→0

|
∫
R2((p

′′+p′+p)(−ξ,ξ−η,η)−n(ξ−η,η))v̂(−ξ)û(ξ−η)û(η)dηdξ|
‖v‖Hs

This expression is only zero if

n(ξ−η,η)=(p′′+p′+p)(−ξ,ξ−η,η)=p(ξ−η,η,−ξ)+p(η,−ξ,ξ−η)+p(−ξ,ξ−η,η),

which is what we wanted to show. �

If the operators satisfy the conditions of the last proposition, then the func-
tional T is on a specific form.

Corollary 4.3. Let Bn, Tp, T be as in Proposition 4.2. Then

T (u) =

∫
R
Tp(u, u, u) dx =

1

3

∫
R
uBn(u, u) dx.

Proof. Similarly to the proof of 4.2,

T (u) =

∫
R
Tp(u, u, u) dx

=

∫
R2

p(−η, η − ξ, ξ)û(−η)û(η − ξ)û(ξ) dη dξ

=

∫
R2

p(η, ξ − η,−ξ)û(η), û(η − ξ)û(−ξ) dη dξ (ξ 7→ −ξ, η 7→ −η)

=
1

3

∫
R2

p(η, ξ − η,−ξ)û(η), û(ξ − η)û(−ξ) dη dξ

+
1

3

∫
R2

p(−ξ, η, ξ − η)û(−ξ), û(ξ − η)û(η) dη dξ (ξ 7→ η − ξ, η 7→ −ξ)

+
1

3

∫
R2

p(ξ − η,−ξ, η)û(ξ − η), û(−ξ)û(η) dη dξ (ξ 7→ −η, η 7→ ξ − η)

=
1

3

∫
R

¯̂u(ξ)n(ξ − η, η)û(ξ − η)û(η) dη dξ

=
1

3

∫
R
uBn(u, u) dx.

�

4.2. Assumptions and main theorem

As in the previous chapter, we search for solitary-wave solutions. We follow
the same strategy. From (4.1), we get the solitary-wave equation

−cu+ Lu− T (u, u) = 0. (4.3)
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Keeping in mind the results of last section, we define several functionals from
Hs/2(R)→ R:

Q(u) =
1

2

∫
R
u2 dx,

J (u) = L(u)− T (u),

L(u) =
1

2

∫
R
uLu dx =

1

2

∫
R
m(ξ)|û(ξ)|2 dξ,

T (u) =
1

3

∫
R
uT (u, u) dx =

1

3

∫
R2

p(ξ − η, η)û(−ξ)û(ξ − η)û(η) dη dξ.

Observe that Q is identical here as in the cubic case in the previous chapter. The
operator L has the same form, but the assumptions on m will be slightly different.

As in Chapter 3 we seek minimizers to a constrained variational problem,
namely

Γq := inf{J (u) : u ∈ Hs/2 and Q(u) = q}.
We shall again use the concentration–compactness principle to show existence

of such minimizers, and use the Lagrange multiplier principle to show that they
solve (4.3) with the wave speed being the Lagrange multiplier.

We make the following assumptions:

(A) The symbol m of the Fourier multiplier L is real-valued, positive, even
and satisfies the growth bounds

(A1) m(ξ) h 〈ξ〉s for ξ ∈ R,

(A2) m(ξ)−m(0) h |ξ|s′ for |ξ| < 1,

where

s > 0, s′ > 1/2.

Furthermore, we require that

(A3)
∣∣∣∂m
∂ξ

(ξ)
∣∣∣ . 〈ξ〉s−1 for all ξ ∈ R.

(B) The symbol p of the bilinear Fourier multiplier T satisfies

(B1) 〈|ξ|+ |η|〉r′ . p(ξ − η, η) . 〈|ξ|+ |η|〉r

for all ξ, η ∈ R and where

r′ ≤ r ≤ min(s− 1,
2s− 1

3
).

We further require that

(B2)

∣∣∣∣∂p(ξ − η, η)

∂ξ

∣∣∣∣ . 〈|ξ|+ |η|〉r−1 for all ξ ∈ R.
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Finally, we require that

(B3) p(ξ − η, η) should be symmetric in ξ − η, η and − ξ.

r = s− 1

r = 2s−1
3

0 1 2 3 4 5 6

1

2

3

4

−1

−2

r

s

Figure 1. Illustration of the values of s, r for which we show ex-
istence of solitary waves. We show existence of both small- and
large-amplitude solutions for values of s, r in the gray region. The
boundaries are not included.

Given these assumptions, we show the result stated below.

Theorem 4.4 (Existence of solitary-wave solutions). For every q > 0, there is
a solution u ∈ H∞(R) of the solitary-wave equation (4.3) satisfying 1

2
‖u‖2

L2 = q.
The corresponding wave speed c is subcritical, that is, c < m(0).

Furthermore, there is a q0 > 0 such that for q ∈ (0, q0), the solution u and
wave speed c additionally satisfy

(i) ‖u‖L∞ h ‖u‖Hs/2 h q1/2

(ii) m(0)− c h qβ, β = s′

2s′−1
.

Remark 4.5. In the final stages of preparation, an error related to the signs
of the Fourier transforms was discovered. We present the argument as is here, but
discuss ways to remedy this in Section 4.2.2.

4.2.1. Discussion of assumptions. The assumptions on the symbol m are
similar to those in Chapter 3 and we refer to the discussion of those in Section
3.1.1. Here, we comment only on the differences. In assumption (A2), s′ is allowed
to be lower (s′ > 1/2 as opposed to s′ > 1). This is related to the lower order
of the nonlinearity (quadratic as opposed to cubic), see the proof of Lemma 4.11.
Furthermore, s is now allowed to be an arbitrarily small positive number. We
achieve this by exploiting the decay of p in ξ and η when r < s− 1 < 0 for small
s.
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As opposed to Chapter 3, the symbol m is now assumed to be inhomogeneous
(this follows from (A1)). This simplifies many of the calculations. However, the
same techniques as in Chapter 3 could easily be applied to L in this chapter to
allow also for homogeneous symbols m.

As for the symbol p, we first remark that the symmetry of p in −ξ, ξ − η, η is
a sufficient condition for

DT (u) = T (u, u),

which allows us to use the Lagrange multiplier principle and minimization tech-
niques. This of course follows from the first section of this chapter, Section 4.1.

The growth bound on the derivative, (B2), is used to exclude dichotomy. Mod-
ifications akin to (A3) and (B2) in Chapter 3 are possible.

The lower bound for the growth of p ensures that p is bounded below by a
positive constant near zero, which is necessary to find an upper bound for Γq in
Lemma 4.11. It could be replaced by another condition ensuring this. The upper
bound for the growth of p and the corresponding bounds on r are used in the
proof of Lemma 4.8 which is again used to bound Γq from below and to show
Hs/2-convergence in Lemma 4.5.3.

One could likely find more appropriate growth restrictions on the symbol p by
considering different types of symmetries separately, see Section 4.2.2.

4.2.2. Discussion of method and assumption (B). In the final stages of
preparations, we discovered certain faults in the argument, all of the same type:
Estimates on the symbol p were in some calculations used to find estimates on
|T (u)| without regards to the sign of û(ξ). In the cubic case (Chapter 3), this was
not an issue, as we automatically end up with an absolute value on the Fourier
side:

N (u) =
1

4

∫
R
n(ξ)|û2(ξ)|2 dξ.

Of course, the same does not apply to T (u). We have reduced the problem to two
lemmas: Lemma 4.12 where we find lower bounds for ‖u‖L3 , ‖u‖Lp̃ (for some p̃ > 2)
and Lemma 4.21 were we show that T (u) . q1+β. The former is used mainly to
exclude vanishing, while the latter is used to estimate the size of solutions and the
wave speed. In particular, the following inequalities do not necessarily hold:

(i) T (u) . ‖u‖3
L3 if r ≤ 0 in equation (4.14),

(ii) T (u) . ‖u‖3

H
r/2
3

if r ≥ 0 in equations (4.15) and (4.27),

(iii) T (u) .
∫
R u(Λr/2u)2 dx if r ≤ 0 in (4.16),

(iv) T (u) . ‖u‖3

H
r/3
3

if r ≤ 0 in equation (4.30).

Time did not permit to fully resolve this issue, but we briefly discuss what
happens if the symmetry of p in −ξ, ξ − η, η is multiplicative, (4.4), or additive,
(4.6) (other symmetries are also possible).
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If p satisfies the assumptions under (B) and is additionally of the form

p(ξ − η, η) = p̃(−ξ)p̃(ξ − η)p̃(η), (4.4)

then

T (u) =
1

3

∫
R
p̃(−ξ)p̃(ξ − η)p(η)û(−ξ)û(ξ − η)û(η) dξ

=
1

3

∫
R
(p̃û)(−ξ)(p̃û ∗ p̃û) dξ

=
1

3

∫
R
(Tp̃u)3 dx, (4.5)

where Tp̃ is now a linear Fourier multiplier with symbol p̃. To satisfy assumption
(B1), the order of p̃ must be lower than r/3 if r ≤ 0 due to equation 4.11 and lower
than r/2 if r > 0 due to (4.9). This implies (i), (ii) and (iv) if p̃ is as described,
and the whole proof goes through with s > 1/3 and r < min(s − 1, 2s−1

3
). The

inequality (iii) does still not hold, but (4.5) will serve the same purpose provided
the order of p̃ is lower than r/2. Then the proof holds for s > 0.

Now consider the case when p is instead of the form

p(ξ − η, η) = p̃(−ξ) + p̃(ξ − η) + p̃(η). (4.6)

Then

T (u) =

∫
R
u2Tp̃u dx,

where Tp̃ is again a Fourier multiplier with symbol p̃. Suppose first that r ≥ 0.
Then assumption (B1) is satisfied if it is satisfied for p̃, but this is not necessarily
enough to get the wanted estimates on T (u). However, if we instead use the
stricter assumption that

p̃(ξ) . 〈ξ〉r/2,
then (ii) holds by a simple application of Hölders inequality:

|T (u)| . ‖u2Tp̃u‖L1 ≤ ‖u2‖L3/2‖p̃u‖L3 . ‖u‖L3‖u‖Hr/2 ≤ ‖u‖
H
r/2
3
.

For r < 0 an assumption of the type (B1) is never satisfied if p is a sum as (4.6).
However, an estimate like Lemma 4.8 goes through also in this case, provided

p̃(ξ) . 〈ξ〉r/2,

Furthermore, the bounds on Γq still hold, and clearly

|T (u)| . ‖u2‖L3/2‖p̃u‖L3 . ‖u‖3
L3 .

Hence we could likely relax the restriction on p to allow for this type of symbol
also when r < 0.
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When continuing to resolve these issues in future work, it is perhaps more
sensible to impose different growth restrictions on p depending on the type of
symmetry and on the sign of r.

With these reservations, we can begin proving Theorem 4.4. The proof is
structured in the same way as the proof of Theorem 3.1 in Chapter 3. The parts
that are identical are referenced to and left out. Parts that are similar, but where
the details differ are written out for clarity.

4.3. Properties of symbols and functionals

We begin by verifying that J is a conserved property in time.

Proposition 4.6. The functional J is a conserved property in time for any
solution u of (4.1) that is in S(R) for each t and continuously differentiable in
time.

Proof. Using the symmetry of L and T , we get

d

dt
J (u) =

d

dt
L(u)− d

dt
T (u)

=

∫
R
(∂tu)Ludx− 1

3

∫
R
(∂tu)S(u, u) dx− 1

3

∫
R
u∂tS(u, u) dx

=

∫
R
(∂tu)Ludx− 1

3

∫
R
(∂tu)S(u, u) dx

− 1

3

∫
R
uS(∂tu, u) dx− 1

3

∫
R
uS(u, ∂tu) dx

=

∫
R
(∂tu)(Lu− S(u, u)) dx

=
1

2

∫
R
∂x(Lu− S(u, u))2 dx

= (Lu− S(u, u))

∣∣∣∣x=∞

x=−∞
= 0,

since u(·, t) ∈ S(R) for all t ∈ R. �

We establish some estimates for 〈·〉 that will be used repeatedly in the rest of
this chapter.

For easy reference, we recall the estimates from Lemma 3.2 in chapter 3

〈a+ b〉 . 〈a〉+ 〈b〉 (4.7)

〈a+ b〉 . 〈a〉〈b〉 (4.8)
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Lemma 4.7. The following estimates hold for all ξ, η ∈ R:

〈|ξ|+ |η|〉 . 〈−ξ〉1/2〈η〉1/2〈ξ − η〉1/2 (4.9)

〈|ξ|+ |η|〉 & 〈−ξ〉1/2〈η〉1/2 (4.10)

and

〈ξ〉1/3〈ξ − η〉1/3〈η〉1/3 . 〈|ξ|+ |η|〉 (4.11)

Proof. It follows from (4.8) with a = ξ − η, b = η that

〈ξ〉 . 〈ξ〉1/2〈η〉1/2〈ξ − η〉1/2,

and similarly for 〈η〉.
Using this and (4.7) with a = |ξ|, b = |η| and (4.8), we find

〈|ξ|+ |η|〉 . 〈|ξ|〉+ 〈|η|〉 = 〈ξ〉+ 〈η〉 . 〈ξ〉1/2〈ξ − η〉1/2〈η〉1/2,

which establishes (4.9).
For (4.10), simply observe that

〈−ξ〉〈η〉 ≤ 〈|ξ|+ |η|〉〈|ξ|+ |η|〉 ≤ 〈|ξ|+ |η|〉2.

The first inequality of (4.11) is found by applying (4.8), while the last is found
in the same way as (4.10). �

The next lemma plays the same role as Lemma 3.5 in the previous Chapter.
It allows us to bound T in terms of L and will be used repeatedly in the rest of
the chapter.

Lemma 4.8. Let u ∈ Hs/2(R). Then

|T (u)| . ‖u‖3−γ
L2 ‖u‖γHs/2 ,

for some γ < 2.

Proof. Assume first that r > 0. Pick τ such that r + 1 < τ < 2s− 2r. This
is possible since

r <
2s− 1

3
=⇒ r + 1 < 2s− 2r.
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Using the estimate (4.9), Hölders inequality and Youngs convolution inequality we
obtain

|T (u)| h |
∫
R
uT (u, u) dx|

.
∫
R2

|û(ξ)||û(ξ − η)||û(η)|〈|ξ|+ |η|〉r dη dξ

.
∫
R2

|û(−ξ)〈−ξ〉r/2||û(ξ − η)〈ξ − η〉r/2||û(η)〈η〉r/2| dη dξ

≤ ‖|〈·〉r/2û|(|〈·〉r/2û| ∗ |〈·〉r/2û|)‖L1

≤ ‖〈·〉r/2û‖2
L2‖〈·〉r/2û‖L1

≤ ‖u‖2
Hr/2‖〈·〉(r−τ)/2‖L2‖u‖Hτ/2

. ‖u‖3−(2r+τ)/s

L2 ‖u‖(2r+τ)/s

Hs/2 ,

which shows the result with γ = 2r+τ
s

< 2.
If r ≤ 0, then (4.10) gives that

〈|ξ|+ |η|〉r . 〈−ξ〉r/2〈η〉r/2.

Recall that (r − s)/2 < −1/2. Proceeding in a similar manner as before, we get

|T (u)| . ‖|〈·〉r/2û|(|〈·〉r/2û| ∗ |û|)‖L1

. ‖u‖Hr/2‖u‖L2‖〈·〉(r−s)/2‖L2‖u‖Hs/2

. ‖u‖2
L2‖u‖Hs/2 ,

which shows the statement when r ≤ 0 with γ = 1 < 2. �

The next lemma will be used to bound ‖ · ‖L3 from below in Lemma 4.12.

Lemma 4.9. Let u ∈ Hs/2(R) and suppose r > 0. Then the estimate

‖u‖
H
r/2
3
. ‖u‖1−r/τ

L3 ‖u‖r/τ
Hs/2 ,

holds for τ ∈ (r, s− 1).

Proof. Using Proposition 2.4 with s = r/2, s0 = 0, s1 = τ/2, p = p0 = p1 = 3,
we obtain

‖u‖
H
r/2
3
≤ ‖u‖1−r/τ

L3 ‖u‖r/τ
H
τ/2
3

. (4.12)
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Furthermore, using Plancherel and Youngs convolutions inequality

‖u‖3

H
τ/2
3

=

∫
R
|Λτ/2u|3 dx

=

∫
R

(Λτ/2u)(Λτ/2u)|Λτ/2u| dx

=

∫
R
〈ξ〉τ/2û(ξ)(〈·〉τ/2û ∗ F(|Λτ/2u|)(ξ) dξ

. ‖〈·〉τ/2û‖L2‖F(|Λτ/2u|)‖L2‖〈·〉û‖L1

≤ ‖u‖2
Hτ/2‖〈·〉(τ−s)/2‖L2‖〈·〉s/2û‖L2

≤ ‖u‖3
Hs/2 . (4.13)

Combining (4.12) and (4.13) gives the desired estimate. �

4.4. Bounds for Γq and norm-estimates

As in the previous chapter, we find upper and lower bounds for Γq.

Lemma 4.10. For all q > 0,

Γq > −∞.

Proof. Let u ∈ Hs/2(R), Q(u) = q. Using Lemma 4.8, then for γ < 2,

J (u) = L(u)− T (u)

> C1‖u‖2
Hs/2 − C2q

3−γ‖u‖γ
Hs/2

> −∞

since the expression is positive as ‖u‖Hs/2 →∞. �

Lemma 4.11. For all q > 0,

Γq < m(0)q.

Proof. Pick a function φ ∈ S(R) satisfying Q(φ) = q and φ̂(ξ) ≥ 0 for all
ξ ∈ R. Let 0 < t < 1 and define

φt(x) =
√
tφ(tx).

Then Q(φt) = q.
The upper bound for L(φt) in Chapter 3, Lemma 3.7 used no properties of s

except s > 0. Hence for some constant C1 > 0,

L(φt) ≤ m(0)q + C1t
s′ .
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We now find a lower bound for T (φt).

T (φt) =
1

3

∫
R
φ̂t(−ξ)p(ξ − η, η)φ̂t(ξ − η)φ̂t(ξ − η) dη dξ

h t3/2−3

∫
R
φ̂(−ξ/t)p(ξ − η, η)φ̂((ξ − η)/t)φ̂(η/t) dη dξ

= t1/2
∫
R
φ̂(−ξ)p(t(ξ − η), tη)φ̂(ξ − η)φ̂(η) dη dξ

& t1/2
∫
R
φ̂(−ξ)〈|tξ|+ |tη|〉r′φ̂(ξ − η)φ̂(η) dη dξ

& t1/2 min(‖u‖3
L3
, ‖u‖3

H
r′/2
3

)

& t1/2.

Hence for constants C1, C2,

J (φt) = L(φt)− T (φt)

≤ m(0)q + C1t
s′ − C2t

1/2

< m(0)q

for t > 0 small enough since s′ > 1/2 by assumption. �

The next Lemma gives bounds for ‖ · ‖Hs/2 and T that are used throughout
the rest of the chapter, among other things to exclude vanishing and dichotomy
and to show convergence from concentration. The lower bound for ‖ · ‖L3 will be
used to exclude vanishing when s > 1/3, while the lower bound on ‖ · ‖Lp̃ is used
to exclude vanishing when s ≤ 1/3.

Lemma 4.12. Let {un}n∈N be a minimizing sequence for Γq.

(i) There is a subsequence, again denoted by {un}n∈N and a δ > 0 such that

‖un‖−1
Hs/2 + T (un) + ‖un‖L3 ≥ δ.

(ii) If s ≤ 1/3, then additionally

‖un‖Lp̃ ≥ δ,

for some p̃ ∈ (2, 2/(1− s)).

Proof. Step 1. Bounding ‖un‖Hs/2 from above. Lemma 4.8 and Lemma 4.11
together imply that

‖un‖2
Hs/2 h L(un)

= J (un) + T (u)

. m(0)q + q(3−γ)/2‖un‖γHs/2 ,
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for some γ < 2. Dividing both sides by ‖un‖γHs/2 it is clear that ‖un‖Hs/2 must be
bounded:

‖un‖Hs/2 ≤ 1/δ1,

provided δ1 > 0 is small enough.
Step 2. Bounding T (un) from below. If no subsequence satisfies T (un) ≥ δ2

for any δ2 > 0, then

lim sup
n→∞

T (un) ≤ 0.

this is a contradiction, since it would imply that

Iq = lim inf
n→∞

(L(un)− T (un)

≥ m(0)q,

contrary to Lemma 4.11.
Step 3. Bounding ‖un‖L3 from below. If r ≤ 0, then

‖un‖3
L3 & T (un) ≥ δ2, (4.14)

while if r > 0, then it follows from Lemma 4.9 and equation (4.9) that

‖un‖1−r/τ
L3 ≥ ‖un‖Hr/2

3
‖un‖−r/τHs/2 & T (un)1/3‖un‖−r/τHs/2 ≥ δ

1/3
2 δ

r/τ
1 = δ

1−r/τ
3 (4.15)

for some τ ∈ (r, s− 1).

Picking δ = min(δ1, δ2, δ
1/3
2 , δ3) concludes the proof of (i).

To show (ii), suppose that s ≤ 1/3. Then r < 0. It follows from properties of
T , Hölders inequality and Proposition 2.4 that

T (un) .
∫
R
un(Λr/2un)2 dx (4.16)

≤ ‖un‖Lp̃‖(Λr/2un)2‖Lq̃
= ‖un‖Lp̃‖un‖2

H
r/2

2̃q

≤ ‖un‖Lp̃‖un‖
12/q̃−6

H
r/2
3

‖un‖8−12/q̃

H
r/2
4
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where 2 < p̃ < 2/(1 − s) < 3, 3 < 2q̃ < 4 and 1/p̃ + 1/q̃ = 1. Now, ‖un‖Hr/2
3
.

‖un‖Hs/2 by equation (4.13). The same holds for ‖un‖Hr/2
4

by a similar calculation:

‖un‖4

H
r/2
4

=

∫
R
|Λr/2un)|4 dx

=

∫
R

̂(Λr/2un)2 ̂(Λr/2un)2 dx

= ‖〈·〉r/2ûn ∗ 〈·〉r/2ûn‖2
L2

≤ ‖un‖2
Hr/2‖〈·〉r/2ûn‖2

L1

≤ ‖un‖2
Hs/2‖〈·〉(r−s)/2‖2

L2‖un‖2
Hs/2

. ‖un‖4
Hs/2 .

Hence

‖un‖Lp̃ & T (un)‖un‖−2
Hs/2 ≥ δ2

1δ2.

�

4.5. Concentration–compactness and existence of solutions

We use the Concentration–Compactness principle and the results from the last
section to exclude vanishing and dichotomy, before showing existence of solutions.

4.5.1. Excluding vanishing.

Lemma 4.13. Vanishing does not occur.

Proof. The result is a direct consequence of Lemma 3.9 from Chapter 3,
applied to near minimizers, with δ > 0 from Lemma 4.12, p∗ = 3 if s > 1/3 and
p∗ = p̃ if s ≤ 1/3. �

4.5.2. Excluding dichotomy. To exclude dichotomy, we reuse some of the
results from Chapter 3.

Lemma 4.14 (Sub-additivity). Γq is strictly sub-additive:

Γq1+q2 < Γq1 + Γq2 .

Proof. Let t > 1. Let {un}n∈N be a minimizing sequence and define a new
sequence {ũn}n∈N by ũn =

√
tun, such that Q(ũn) = tq. We find that

Itq = lim inf
n→∞

tL(un)− t3/2T (un)

= lim inf
n→∞

(tJ (un)− (t3/2 − t)T (un))

≤ tΓq − (t3/2 − t)δ
< tΓq.
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In the second to last line we used that T (un) ≥ δ > 0, see Lemma 4.12.
We conclude that q 7→ Γq is sub-homogeneous, which implies sub-additivity by

Lemma 3.11. �

The next Lemma is the equivalent of Lemma 3.13, but for the operator T .

Lemma 4.15. Let u, v ∈ Hs/2(R) and let ρ ∈ S(R) be a non-negative Schwartz
function. Define ρR(x) = ρ(x/R). Then

(i)

∣∣∣∣∫
R
v(ρRT (u, u)− T (ρRu, u) dx

∣∣∣∣→ 0

and

(ii)

∣∣∣∣∫
R
v((1− ρR)T (u, u)− T ((1− ρR)u, u) dx

∣∣∣∣→ 0

as R→∞.

Proof. Combining Plancherel and Fubinis theorem, we have that

|
∫
R
v(ρRT (u,u)−T (ρRu,u)dx|

=|
∫
R
v̂(ξ)(ρ̂R∗

∫
R
p(·−η,η)û(·−η)û(η)dη−

∫
R
p(ξ−η,η)(ρ̂R∗û)(ξ−η)û(η)dηdξ|

≤
∫
R3

|v̂(ξ)ρ̂R(t)û(η)û(ξ−t−η)||(p(ξ−t−η,η)−p(ξ−η,η)|dηdtdξ. (4.17)

By assumption on p and the mean value theorem,

|p(ξ − t− η, η)− p(ξ − η, η)| ≤ sup
|θ|≤|ξ−t|,|ξ|

|t|∂p
∂ξ

(θ)

.

{
|t| if r ≤ 0

|t|(〈|ξ − t|+ |η|〉r + 〈|ξ|+ |η|〉r) if r > 0.

Furthermore, applying estimates on 〈·〉 (4.8) and (4.9), then

|p(ξ − t− η, η)− p(ξ − η, η)| .

{
|t| if r ≤ 0

|t|〈ξ〉r/2〈t〉r/2〈η〉r/2〈ξ − t− η〉r/2 if r > 0.
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Assume first that r > 0. Inserting this into equation (4.17), we get that

|
∫
R
v(ρRT (u,u)−T (ρRu,u)dx|

.
∫
R
|ρ̂R(t)|t|〈t〉r/2|

∫
R
|v̂(ξ)〈ξ〉r/2|

∫
R
|û(η)〈η〉r/2||û(ξ−t−η)〈ξ−t−η〉r/2|dηdξdt

≤‖v̂〈·〉r/2‖L2‖û〈·〉s/2‖L2‖〈·〉(r−s)/2‖L2‖û〈·〉r/2‖L2

∫
R
|ρ̂(Rt)|t|〈t〉r/2dt

≤‖v‖Hr/2‖u‖Hs/2‖u‖Hr/2

1

|R|

∫
R
|ρ̂(t)|t|〈t/R〉r/2dt.

This expression goes to zero as R goes to infinity since ρ ∈ S(R).
If r ≤ 0, then

|
∫
R
v(ρRT (u, u)− T (ρRu, u) dx|

.
∫
R
|ρ̂R(t)||t|

∫
R2

|v̂(ξ)||û(η)||û(ξ − t− η)| dη dξ dt

≤ ‖v̂‖L2‖û‖2
L2‖|ρ̂(Rt)|t|‖L2

≤ 1

|R|
‖v‖L2‖u‖2

L2‖tρ̂(t)‖L2 .

This expression also goes to zero since ρ ∈ S(R), concluding the proof of (i).
Now (ii) follows from a simple calculation using that T is a bilinear operator:

|
∫
R
v((1− ρR)T (u, u)− T ((1− ρR)u, u) dx| = |

∫
R
−vρRT (u, u) + vT (ρRu, u) dx|

= |
∫
R
v(T (u, u)− T (ρRu, u)) dx|

→ 0.

�

With this result in hand, and using the results from Chapter 3 for L, we can
exclude dichotomy.

Lemma 4.16. Dichotomy does not occur.

Proof. The proof of Lemma 3.14 did not rely on properties of the near mini-
mizers of Iq except for Q(un) = q. Hence the result also holds for near minimizers

of Γq. Hence, let u
(1)
n = φnun, u

(2)
n = ψnun as in Lemma 3.14, but where {un}n∈N

minimizes Γq. Suppose that dichotomy occurs. We conclude that
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Q(u(1)
n )→ q̄,

Q(u(2)
n )→ (q − q̄),

1

2

∫
Rn≤|x−yn|≤2Rn

u2
n dx→ 0 as n→∞.

We now wish to show that

J (un) ≥ J (u(1)
n ) + J (u(2)

n ) (4.18)

as n→∞. We have that

J (un) = L(φnun + ψnun)− T (φnun + ψnun)

= L(φnun) + L(ψnun) +

∫
R
φunL(ψnun) dx− T (φnun)− T (ψnun)

−
∫
R
φnunT (ψnun, ψnun) dx−

∫
R
ψnunT (φnun, φnun).

In the last line, we used the symmetry of L and T .
It then suffices to show that

lim
n→∞

(

∫
R
φnunL(ψnun) dx) ≥ 0, (4.19)

lim
n→∞

(

∫
R
φnunT (ψnun, ψnun) dx) = 0,

lim
n→∞

(

∫
R
ψnunT (φnun, φnun)) = 0. (4.20)

To show (4.19) we use 3.13, where φn and ψn corresponds to ρR and 1 − ρR
respectively:

lim
n→∞

(

∫
R
φnunL(ψnun) dx) = lim

n→∞
(

∫
R

√
φnψnunL(

√
φψnun) dx)

h lim
n→∞

‖
√
φnψnun‖2

Hs/2

≥ 0.
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To show equation 4.5.2, we use Lemma 4.15 repeatedly with (φn)1/3 as ρR and
(ψn)1/3 as (1− ρR). Then we apply Lemma 4.8, where γ < 2. We get that

lim
n→∞

|
∫
R
φnunT (ψnun, ψnun) dx| = lim

n→∞
|T ( 3
√
φn

3/2
√
ψnun)|

. lim
n→∞

‖ 3
√
φn

3/2
√
ψnun‖3−γ

L2 ‖ 3
√
φn

3/2
√
ψnun‖γHs/2

. ‖un‖γHs/2 lim
n→∞

(∫
Rn≤|x−yn|≤2Rn

u2
n dx

)(3−γ)/2

= 0.

Equation (4.20) is shown in the same manner, and we conclude that (4.18)
holds if dichotomy occurs.

However, this contradicts Lemma 4.14, since

Γq = lim inf
n→∞

J (un) ≥ lim inf
n→∞

J (u1
n) + lim inf

n→∞
J (u2

n) ≥ Γq̄ + Γ(q−q̄).

Hence dichotomy cannot occur. �

4.5.3. Existence of solutions. We first show existence of a minimizer of Γq
for each q > 0.

Lemma 4.17 (Existence of minimizer). For any minimizing sequence {un}n∈N
of Γq where q > 0, there is a subsequence of {un(· + yn)}n∈N that converges in
Hs/2(R) to a minimizer of Γq.

Proof. Let ũn(x) = un(x + yn). Existence of a subsequence of {ũn}n∈N that
converges strongly in L2(R) and weakly in Hs/2(R) to w ∈ Hs/2(R) is shown in
exactly the same manner as in Lemma 3.4.3.

As before, we then wish to show that

J (ω) = Γq.

Since ũn ⇀ ω in Hs/2 and L(ũn) h ‖un‖2
Hs/2 , then

L(ω) ≤ lim inf
n→∞

L(ũn).

Furthermore,

T (ũn) −−−→
n→∞

T (ω),

since

|T (ũn)− T (ω)| = |T (ũn − ω)−
∫
R
ũnT (ω, ω) dx+

∫
R
ũnT (ω, ũn) dx|

≤ |T (ũn − ω)|+ |
∫
R
p(ξ − η, η)(̂̃un(−ξ)ω̂(ξ − η)(ω̂(η)− ̂̃un(η)) dx|
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Using Lemma 4.8, where γ < 2, and the known L2-convergence,

|T (ũn − ω)| . ‖ũn − ω‖3−γ
L2 ‖ũn − ω‖γHs/2 −−−→

n→∞
0.

By a similar argument as in the proof of 4.8,

|
∫
R
p(ξ − η, η)(̂̃un(−ξ)ω̂(ξ − η)(ω̂(η)− ̂̃un(η)) dx|

.

{
‖ω‖Hr/2‖ũn − ω‖r/sHs/2‖ũn − ω‖

1−r/s
L2 ‖ũn‖Hs/2 if r > 0,

‖ω‖Hr/2‖ũn − ω‖L2‖ũn‖Hs/2 if r ≤ 0

−−−→
n→∞

0

since ũn → ω in L2(R).
As in the previous section, we conclude that J (ω) = Γq = limn→∞ J (ũn), that

T (ũn) → T (ω), and hence that L(ũn) → L(ω). Combined, this and the weak
convergence of ũn ⇀ ω implies norm convergence in Hs/2(R). �

We verify that minimizers of Γq are in fact solutions of the solitary-wave equa-
tion.

Lemma 4.18. Any minimizer u ∈ Hs/2(R) of the constrained variational prob-
lem Γq solves the solitary-wave equation (4.3), where c is the Langrange multiplier.

Proof. By the Lagrange multiplier principle 2.8, any minimizer of Γq satisfies

J ′(u)− cQ′(u) = 0, (4.21)

where the wave speed c is the Lagrange multiplier in the constrained variational
problem.
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The estimates (4.9) and (4.10) and symmetry assumptions on T guarantees
that the Fréchet derivative T ′(u) = T (u, u):

T ′(u) = lim
‖v‖

Hs/2
→0

|T (u+ v)− T (u)− vT (u, u)|
‖u‖Hs/2

= lim
‖v‖

Hs/2
→0

|
∫
R uT (v, v) dx|
‖v‖Hs/2

. lim
‖v‖

Hs/2
→0

|
∫
R |û(ξ)|〈|ξ|+ |η|〉r|v̂(ξ − η)||v̂(η)| dx|

‖v‖Hs/2

.

lim‖v‖
Hs/2

→0
‖|û〈·〉r/2||v̂〈·〉r/2|∗|v̂〈·〉r/2|‖L1

‖v‖
Hs/2

if r > 0

lim‖v‖
Hs/2

→0
‖|û||v̂〈·〉r/2|∗|v̂〈·〉r/2|‖L1

‖v‖
Hs/2

if r ≤ 0

.

lim‖v‖
Hs/2

→0
‖u‖

Hr/2
‖v‖

Hr/2
‖v‖

Hs/2

‖v‖
Hs/2

if r > 0

lim‖v‖
Hs/2

→0
‖u‖L2‖v‖Hr/2‖v‖Hs/2

‖v‖
Hs/2

if r ≤ 0

= 0.

The Fréchet derivatives of L(u) and Q(u) are known from Chapter 3, see
Lemma 3.17:

L′(u) = Lu Q′(u) = u.

Inserting the derivatives into (4.21) gives (4.3). �

4.6. Properties of solutions

As in the previous chapter, we will distinguish between big and small solutions,
that is solutions u ∈ Hs/2(R) of the solitary-wave equation (4.3) with L2-norm
bigger or smaller than a constant q0 respectively. We then find improved estimates
of Γq, ‖u‖Hs/2 and the wave speed in the two cases separately. Finally, we find that
all solutions are H∞-regular and estimate ‖u‖L∞ for small solutions.

4.6.1. Improved estimates for Γq, ‖u‖Hs/2 , T (u). The next three Lemmas
are similar to the corresponding results in Chapter 3, and some details are left out.

Lemma 4.19. There exists a q̃0 > 0 such that for all q ≥ q̃0,

Γq < 0.

Proof. Pick φ ∈ Hs/2(R) that satisfies Q(φ) = 1 and T (φ) > 0. Set

φq(x) =
√
qφ(x),

so that Q(φq) = q. We find that

J (φq) = q(L(φ)−√qT (φ)).
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This expression is negative for big q, proving the existence of a q̃0 as described. �

Lemma 4.20. Let q0 be any positive constant and let β = s′/(2s′ − 1). There
is a κ > 0 such that for all q ∈ (0, q0),

Γq < m(0)q − κq1+β.

Proof. Pick a function φ ∈ S(R) satisfying Q(φ) = 1 and define

φq,t =
√
qtφ(tx),

for t ∈ (0, 1). In a similar manner as in Lemma 4.11 and Lemma 3.19, we find
that the following holds for some constants C1, C2 > 0

Q(φq,t) = q,

L(φq,t) ≤ m(0)q + C1qt
s′ ,

T (φq,t) ≥ C2q
3/2t1/2.

Since q < q0, we can set ts
′

= C3q
β and pick C3 small enough to guarantee

t < 1.
Combined with the above, we then get

J (φq,t) ≤ m(0)q + C1qt
s′ − C2q

3/2t1/2

= m(0)q − q1+β(C2C
1/2s′

3 q1/2+β/2s′−β − C1C3)

= m(0)q − κq1+β.

In the last line, we used that 1/2 + β/2s′ − β = 0 by the definition of β and set

κ = C2C
1/2s′

3 − C1C3. Since 1/2s′ < 1, we can always pick C3 small enough to
guarantee that κ > 0 which concludes the proof. �

With this result in hand, we can estimate the size of T (u) and ‖u‖Hs/2 for
small solutions.

Lemma 4.21. Let β = s′/(2s′ − 1) and let q0 be as in Lemma 4.19. For all
q ∈ (0, q0), near minimizers satisfy

‖u‖Hs/2(R) h q1/2, (4.22)

T (u) h q1+β
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Proof. We begin by finding a crude upper bound for T (u). For some γ ∈
(0, 2), Lemma 4.8 gives that

T (u) . q
3−γ
2 ‖u‖γ

Hs/2

. q
3−γ
2 (m(0)q + L(u)−m(0)q)

γ
2

. q3/2 + q
3−γ
2 T (u)

γ
2 .

This implies that

T (u) . q3/2 + q
3−γ
2−γ = q3/2 + q1+ 1

2−γ . q3/2.

A simple argument now gives (4.22):

q . ‖u‖2
L2 . ‖u‖2

Hs/2 h L(u) . T (u) + q . q.

The lower bound for T (u) is a direct consequence of Lemma 4.20:

T (u) > L(u)−m(0)q + κq1+β & q1+β.

It remains to show the improved upper bound

T (u) . q1+β.

Partition u = u1 + u2 where û1 = χ[−1,1]û, û2 = (1−χ[−1,1])û. Observe that by the
Gagliardo-Nirenberg interpolation inequality 2.6,

‖u1‖3
L3 . ‖u1‖3−1/s′

L2 ‖u1‖1/s′

Ḣs′/2 . q3/2−1/2s′(L(u)−m(0)q)1/2s′ . q3/2−1/2s′T (u)1/2s′

(4.23)

Suppose now that r > 0. Then using again the Gagliardo-Nirenberg interpo-
lation inequality, we have that

‖u1‖3

Ḣ
r/2
3

. ‖u1‖
3− 3r+1

s′
L2 ‖u1‖

3r+1
s′

Ḣs′/2

. q3/2− 3r+1
2s′ (L(u)−m(0)q)

3r+1
2s′

. q3/2− 3r+1
2s′ (T (u))

3r+1
2s′

. q3/2−1/2s′T (u)1/2s′ . (4.24)

In the last line, we used that T (u) . q3/2 . q and 1/2s′ < (3r+1)/2s′ when r > 0.
Furthermore, by Lemma 4.8, there is a γ ∈ (0, 2) such that

‖u2‖3

H
r/2
3

. ‖u2‖3−γ
L2 ‖u2‖γHs/2 . ‖u2‖3

Hs/2 .

Since
‖u2‖Hs/2 ≤ ‖u‖Hs/2 . q1/2 (4.25)

as established in 4.22, then also

‖u2‖3

H
r/2
3

. q3/2−1/2s′‖u2‖1/s′

Hs/2 . q3/2−1/2s′(L(u)−m(0)q)1/2s′ . q3/2−1/2s′(T (u))1/2s′ .

(4.26)
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Combining (4.9), (4.23), (4.24) and (4.26), we conclude that for r > 0,

T (u) . ‖u‖3

H
r/2
3

. ‖u1‖3

H
r/2
3

+ ‖u2‖3

H
r/2
3

. ‖u1‖3

Ḣ
r/2
3

+ ‖u1‖3
L3 + ‖u2‖Hr/2

3

. q3/2−1/2s′(T (u))1/2s′ . (4.27)

Suppose now that r ≤ 0. Using the estimate (4.8) repeatedly,

〈η〉1/2 . 〈η〉1/3〈ξ − η〉1/6〈ξ〉1/6,

so that

〈ξ − η〉r/3〈η〉r/3 = 〈ξ〉r/6〈ξ − η〉r/6〈η〉r/3〈ξ − η〉r/6〈ξ〉−r/6 . 〈η〉r/2〈ξ〉−r/6〈ξ − η〉r/6.
(4.28)

Then

‖u2‖3

H
r/3
3

=

∫
R

(Λr/3u2)(Λr/3u2)|Λr/3u2| dx

=

∫
R
(〈·〉r/3û2 ∗ 〈·〉r/3û2)F(|Λr/3u2|) dξ

.
∫
R2

〈ξ − η〉r/3〈η〉r/3û2(η)û2(ξ − η)F(|Λr/3u2|) dη dξ

.
∫
R2

〈η〉r/2û2(η)〈ξ − η〉r/6û2(ξ − η)〈ξ〉−r/6F(|Λr/3u2|) dη dξ

.
∫
R2

(〈·〉r/2û2 ∗ 〈·〉r/6û2)〈ξ〉−r/6F(|Λr/3u2|) dξ

≤ ‖〈·〉r/2û2‖L1‖〈·〉r/6û2‖L2‖〈ξ〉−r/6F(|Λr/3u2|‖L2

≤ ‖u2‖Hs/2‖u2‖L2‖Λr/3u2‖H−r/6
. ‖u2‖2

Hs/2‖u2‖Hr/6

. ‖u2‖3
Hs/2

. q3/2−1/2s′‖u2‖1/s′

Hs/2 , (4.29)

where in the last line we used (4.25).
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We combine (4.23), (4.28) and (4.29) and conclude for that for r ≤ 0

T (u) . ‖u1 + u2‖3

H
r/3
3

. ‖u1‖3

H
r/3
3

+ ‖u2‖3

H
r/3
3

. ‖u1‖3
L3 + q3/2−1/2s′‖u2‖1/s′

Hs/2

. q3/2−1/2s′(L(u)−m(0)q)1/2s′

. q3/2−1/2s′(T (u))1/2s′ . (4.30)

Dividing (4.27) and (4.30) by T (u)1/2s′ for r ≤ 0 and r > 0 respectively, we
arrive at

T (u) . q
3/2−1/2s′
1−1/2s′ = q1+β,

which is what we wanted to show. �

4.6.2. The wave speed c.

Lemma 4.22. Let q0 be any constant larger than q̃0 from Lemma 4.19. Any
minimizer of Γq solves (4.3) with subcritical wave speed. Furthermore,

(i) if q ≥ q0, then

c < −m(0)

2
. (4.31)

(ii) If q < q0, then

m(0)− c . qβ, (4.32)

where β = s′/(2s′ − 1).

Proof. That a minimizer u of Γq is a solution to (4.3) was shown in Lemma
4.18. For any q, such a minimizer satisfies

T (u, u)− cu− Lu = 0,

Multiplying by u and integrating gives

3T (u)−2cq − 2L(u) = 0,

which implies that

c =
J (u)− 1/2T (u)

q

< m(0).

Suppose now that q ≥ q0. By Lemma 4.19,

L(u)− T (u) < 0

so that

T (u) > L(u) ≥ m(0)q.
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Hence

c =
J (u)− 1/2T (u)

q

≤ −m(0)

2
,

which is (4.31).
For q ∈ (0, q0), observe that for a constant C1 > 0,

c =
J (u)− 1/2T (u)

q

≤ m(0)− C1q
β, (4.33)

where the lower bound on T (u) is from Lemma 4.21. Furthermore, using the upper
bound on T (u) from the same Lemma, we obtain for some constant C2,

c =
L(u)− 3/2T (u)

q

≥ m(0)− C2q
β. (4.34)

Combining (4.33) and (4.34) gives (4.32). �

4.6.3. Regularity of solutions. We show the regularity results stated in
Theorem 4.4.

Lemma 4.23 (Regularity of solutions). Any solution u ∈ Hs/2(R) of (4.3) with
Q(u) = q is also in H∞(R). Furthermore, if q < q0 then

‖u‖2
L∞ h ‖u‖2

Hs/2 h q.

Proof. Rewriting (4.3), we have

(L− c)u = T (u, u). (4.35)

Since c < m(0), then (L − c) : H t(R) → H t−s(R) is an invertible linear operator
with continuous inverse (L− c)−1 : H t(R)→ H t+s(R).

Assume first that r > 0. We wish to show that

T (u, u) ∈ H−r/2(R). (4.36)
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To see this, use estimate 4.9 and observe that

‖T (u, u)‖H−r/2 = ‖〈·〉−r/2
∫
R
p(· − η, η)û(· − η)û(η) dη‖L2

≤ ‖
∫
R
|〈· − η〉r/2û(· − η)||〈η〉r/2û(η)| dη‖L2

≤ ‖〈·〉r/2û‖L1‖〈·〉r/2û‖L2

≤ ‖u‖2
Hs/2 .

Equation (4.36) combined with (4.35) implies that (L− c)u ∈ H−r/2(R) which
in turn implies u ∈ Hs/2+(s−r)/2(R) ⊂ Hs/2+1/2(R). Repeating the procedure with
s̃ = s/2 + (s − r)/2, we obtain that u ∈ Hs/2+1(R). Continuing this indefinitely,
we conclude that u ∈ H∞(R).

Now suppose r ≤ 0. Then T (u, u) ∈ L2(R) since

‖T (u, u)‖2
L2 =

∫
R
|
∫
R
p(ξ − η, η)û(ξ − η)û(η) dη|2 dξ

. ‖|〈·〉r/2û| ∗ |〈·〉r/2û|‖L2

≤ ‖〈·〉r/2û‖L1‖〈·〉r/2û‖L2

≤ ‖〈·〉s/2û‖L2‖〈·〉(r−s)/2‖L2‖u‖Hr/2

. ‖u‖2
Hs/2 .

This implies that that (L−c)u ∈ L2(R), which in turn implies that that u ∈ Hs(R).
Analogously to earlier, we can then repeat the procedure with s̃ = 2s and obtain
u ∈ H2s(R). Continuing indefinitely, we conclude that u ∈ H∞(R) also when
r ≤ 0.

In the remainder of the proof, we assume that q ∈ (0, q0). We know from
Lemma 4.21 that then

‖u‖Hs/2 h q1/2.

Using the same bootstrap argument as above, we get

‖u‖L∞ . ‖u‖H1 . ‖u‖Hs/2 . q1/2.

Furthermore, we have that

q = ‖u2‖L1 ≤ ‖u‖L∞‖u‖L1 . ‖u‖L∞‖〈·〉−1‖L2‖u‖H1 . ‖u‖L∞‖u‖Hs/2

so that

‖u‖L∞ &
q

‖u‖Hs/2

& q1/2.

�

We have proved all the components needed to establish Theorem 4.4: Lemma
4.5.3 guarantees the existence of minimizers of Γq for all q > 0, while Lemma 4.18
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shows that these minimizers satisfy (4.3). The regularity of the solutions follows
from Lemma 4.23 and the estimates on the wave speed c are found in Lemma 4.22.
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