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Abstract

In this Master’s thesis, we investigate splitting- and composition methods for solving semi-
linear SDEs with additive noise, where the drift satisfies a global one-sided Lipschitz condition,
is allowed to grow polynomially at infinity and satisfies a kind of dissipativity condition. We
prove that these methods are mean-square convergent of order p = 1 and that they can preserve
important structural properties of the SDE, such as geometric ergodicity and hypoellipticity.
It appears that the composition methods cannot preserve oscillatory dynamics in their entirety,
while the splitting methods can. We demonstrate these results by applying our methods to
a cubic model problem and the stochastic FitzHugh-Nagumo (FHN) model, and compare our
splitting- and composition methods with the drift-implicit Euler-Maruyama method.
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1 Introduction

In this thesis, we investigate the use of splitting- and composition methods for solving semi-linear
stochastic differential equations (SDE) with additive noise:

dX(t) =
(
AX(t) +B

(
X(t)

))
dt+ΣdW (t), t ≥ 0, X(0) = X0 ∈ Rd.

Here, the drift F
(
X(t)

)
:= AX(t)+B

(
X(t)

)
is semi-linear, i.e. it consists of a linear part AX(t)

and a nonlinear part B
(
X(t)

)
. The drift is locally Lipschitz, and is allowed to grow polynomially at

infinity. Such SDEs typically do not admit exact solutions, and the solution must be approximated
by some numerical method.

In [1], splitting methods were investigated as numerical methods for solving these types of SDEs.
Their approach was based on splitting the semi-linear SDE into a nonlinear ODE and a linear SDE:

dX(1)(t) = B
(
X(1)(t)

)
dt, t ≥ 0, X(1)(0) = X

(1)
0 ,

dX(2)(t) = AX(2)(t)dt+ΣdW (t), t ≥ 0, X(2)(0) = X
(2)
0 .

These two sub-equations were then solved exactly, and their exact solutions were composed to

yield an approximation X̃(tn) of the overall solution of the SDE. In particular, two approaches
of composing the exact solutions of the two sub-equations were considered: The Strang approach
and the Lie-Trotter approach. These two approaches then gives rise to the Lie-Trotter- and Strang
splitting methods [2]. It was shown that these splitting methods were mean-square convergent of

order 1, meaning that the numerical solution X̃(tn) and the exact solution X(tn) satisfies

max
0≤tn≤T

√
E
[ ∥∥∥X(tn)− X̃(tn)

∥∥∥2 ] ≤ Chp,

for some C > 0 and p = 1 [3] (p. XXIV). Here, p is referred to as the order of the method, and
h = tn − tn−1 is the step-size. It was also shown that the splitting methods could preserve impor-
tant structural properties of the SDE, such as hypoellipticity, geometric ergodicity and oscillatory
dynamics. Moreover, since the exact solutions to both the linear SDE and nonlinear ODE were
assumed to be available, the splitting methods were explicit and thereby computationally efficient.

The purpose of the specialization project [16] and this Master’s thesis is to generalize and expand
on the work of Buckwar et al. [1]. In particular, we investigate the scenario where the nonlinear
ODE is solved approximately by some numerical method. It is often the case for nonlinear ODEs
that they do not admit exact, explicit solutions, and so relaxing this assumption would allow for a
greater variety of SDEs to be considered within the splitting framework. It is commonly understood
within this framework that if all sub-equations are solved exactly, then the method is referred to
as a splitting method. If one or more sub-equations are solved approximately, then the method is
referred to as a composition method [4].

The goal of the specialization project and this thesis was then to investigate if our composition
methods converge strongly in the mean-square sense, and if they could preserve the same structural
properties as their splitting method counterparts. We also wanted to relax an assumption on the
linear term AX(t); in [1], it was assumed that

∥∥eAh
∥∥ < 1. This assumption was mainly used to

prove preservation of geometric ergodicity for both splitting methods. If this assumption could be
relaxed without sacrificing the preservation of geometric ergodicity, we would have more options in
partitioning a given drift term F

(
X(t)

)
into a linear part and a nonlinear part.
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In the specialization project, we considered explicit methods to approximate the nonlinear ODE–
in particular, the explicit Euler method. We chose the explicit Euler method since this is typically
the poorest performing explicit method for solving ODEs, and any results that hold positively for
the explicit Euler method is then expected to also hold for more accurate explicit methods. We
chose to focus on explicit methods of solving the nonlinear ODE, since we wanted our composition
methods to retain the computational efficiency obtained with splitting methods. While mean-square
convergence of order p = 1 was experimentally observed in the case of an explicit Euler solution of
the nonlinear ODE, we were unable to prove this result. The proof of mean-square convergence in [1]
required an assumption on linearly bounded growth of the solution to the nonlinear ODE. In order
to use the same proof-strategy to prove mean-square convergence of our composition methods, we
would need to show that the explicit Euler solution also satisfies the assumption of linearly bounded
growth for some step-size h > 0. Unfortunately, we were unable to show this for any step-size h > 0.
We also considered other explicit methods such as the tamed explicit Euler method and higher-
order methods in an attempt to regain linearly bounded growth of the solution to the nonlinear
ODE. Again, the desired outcome was observed experimentally, but any proof thereof eluded us.

In light of this, we instead turned our focus to composition methods where the nonlinear ODE
is solved using an implicit method; specifically the implicit Euler method. In this case, we are
able to attain theoretical results on mean-square convergence and on structure preservation. Thus,
solving the nonlinear ODE using the implicit Euler method has been the most extensively studied
approach in this thesis. Using the implicit Euler method involves, in general, the solution of a
system of nonlinear algebraic equations at every time-step. In the best-case scenario, this system
of nonlinear algebraic equations admits an explicit solution. If so, our composition method remains
explicit, and therefore computationally efficient. In the general case, however, we cannot solve the
system of nonlinear algebraic equations explicitly, and the solution must be approximated. This is
typically done using some iterative root-finding algorithm, with Newton’s method being a standard
choice. Unfortunately, such algorithms typically involves repeatedly solving a linear system at every
time-step. As a result, our composition method suffers in terms of computational efficiency since
it is no longer fully explicit.

This thesis is organized as follows: Section 2 presents the relevant notation and background
theory required for this thesis. Section 3 presents the class of SDEs studied in this thesis and
investigates its properties. Section 4 develops the numerical methods used in this thesis. Section 5
presents bounds on the solution to the nonlinear ODE, both in the case of an exact solution and in
the case of an implicit Euler solution. Section 6 investigates and proves mean-square convergence of
our splitting- and composition methods. Section 7 investigates our methods’ capabilities for preserv-
ing important structural properties of the SDE. Section 8 discusses some practical implementation
details, including strategies for speeding up Newton’s method. We demonstrate our results by
performing numerical experiments on a cubic model problem and the stochastic FitzHugh-Nagumo
(FHN) model in sections 9 and 10, respectively. Finally, we report our conclusions in section 11.

2 Preliminaries

This section presents the relevant notation and some required background for the theory presented
in this thesis.

4



2.a Scalars, vectors, matrices and functions

We distinguish between scalars, vectors and matrices by the following typeface conventions:

• Scalars are written using italic and light typeface, and may be lower-case or upper-case.
Examples: c,K ∈ R;

• Vectors are written using italic and bold typeface, and may be lower-case or upper-case.
Examples: b,F ∈ Rd

• Matrices are written using normal (non-italic) and bold typeface, and is restricted to upper-
case lettering only. Example: A ∈ Rd×m

Let a ∈ R be a generic scalar. We denote by |a| the absolute value of a, given by

|a| =

{
a if a ≥ 0

−a if a < 0

Let x,y ∈ Rd be generic vectors. Then, xi ∈ R denotes the i’th component of x and x⊤ denotes
the transpose of x. In addition, we denote the inner-product of x and y by

⟨x,y⟩ := x1y1 + x2y2 + ...+ xdyd = ⟨y,x⟩.

Moreover, we denote by ∥x∥ the Euclidean norm in Rd, given by

∥x∥ :=
√
x2
1 + x2

2 + ...+ x2
d =

√
⟨x,x⟩.

Let A ∈ Rd×m be a generic matrix. Then, A⊤ ∈ Rm×d denotes the transpose of A, and aij ∈ R
denotes the scalar element of A located in row i, column j. The scalar elements of a matrix are,
whenever appropriate, expressed using lower-case lettering. If A is a square matrix, i.e. A ∈ Rd×d,
we define its trace Tr(A) as the sum of the diagonal elements of A:

Tr(A) :=

d∑
i=1

aii, A ∈ Rd×d.

We denote by 0d ∈ Rd the d-dimensional zero vector, whose elements are all equal to zero. Similarly,
we denote by Id ∈ Rd×d the d-by-d-dimensional identity matrix. Note that for 0d and Id, we will
omit the d-subscript whenever the dimensionality is clear from the context.

We will make repeated use of the matrix exponential eAt. Let A ∈ Rd×d be a square matrix.
The matrix exponential eAt ∈ Rd×d is then given by

eAt :=

∞∑
k=0

tk

k!
Ak = I+ tA+

t2

2
A2 +O(t3), t ∈ R. (2.1)

Let A ∈ Rd×d be a square matrix. Let µ = µ(A) be the logarithmic norm of A, defined by

µ = µ(A) = λmax

(
A+A⊤

2

)
, (2.2)
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where λmax(M) denotes the largest eigenvalue of the matrix M ∈ Rd×d. Then, it holds for the
matrix exponential that ∥∥eAt

∥∥ ≤ eµt. (2.3)

Let G : R 7→ Rd×m be an arbitrary function of t ∈ R. We say that G = G(t) is of order p if
there exists a constant c ≥ 0 such that for all t ∈ R, it holds that

∥G(t)∥ ≤ c|t|p.

We will frequently write this as G(t) = O(tp).

2.b Stochastic processes

We will here summarize the theory regarding stochastic processes which is relevant for this work.
For a more detailed exposition, the reader is referred to e.g. [5] (chapters 2, 3). Let Ω be a given
set, and let F be a family of subsets of Ω with the following properties:

1. ∅ ∈ F ,

2. F ∈ F =⇒ FC ∈ F , FC = Ω\F ,

3. F1, F2, ... ∈ F =⇒ F :=
⋃∞

i=1 Fi ∈ F .

Then, F is a σ-algebra defined on Ω, and the tuple (Ω,F) is referred to as a measurable space.
Given any family U of subsets of Ω, there exists a smallest σ-algebra on Ω containing U , namely
the σ-algebra which is the intersection of all σ-algebras containing U . We call this the σ-algebra
generated by U . In the special case where Ω ⊆ Rd (or some other topological space) and U is the
collection of all open subsets on Ω, the generated σ-algebra is called the Borel σ-algebra, and is
denoted B(Ω).

A probability measure P on a measurable space (Ω,F) is a function P : F 7→ [0, 1] such that

1. P(∅) = 0, P(Ω) = 1,

2. If F1, F2, ... ∈ F and {Fi}∞i=1 are disjoint sets (i.e. Fi ∩ Fj = ∅ if i ̸= j), then

P
( ∞⋃

i=1

Fi

)
=

∞∑
i=1

P(Fi).

The triple (Ω,F ,P) is referred to as a probability space. A probability space is in general not
complete, however it can always be made complete. Therefore, whenever we consider a probability
space (Ω,F ,P) in this work, we will assume that it is a complete probability space. If (Ω,F ,P) is
a complete probability space, then a function Y : Ω 7→ Rm is called F-measurable if

Y −1(B) := {ω ∈ Ω : Y (ω) ∈ B} ∈ F ,

for all Borel sets B ⊂ Rm.
We define a stochastic process as a parameterized collection of random variables {X(t)}t∈[τ,T ]

for τ, T ∈ R≥0 with τ ≤ T . This collection of random variables are defined on a complete probability
space (Ω,F ,P). The m-dimensional Wiener process {W (t)}t∈[τ,T ] (also called Brownian motion)
is a stochastic process. We will assume here and throughout that all components Wi(t) of W (t)
for i = 1, ...,m are independent. Then, the m-dimensional Wiener process is the stochastic process
defined to satisfy the following:

6



1. W (0) = 0m.

2. W has independent increments; for every s > 0, the increments W (s + t) −W (s) are inde-
pendent from W (z), where t ≥ 0 and z ≤ s.

3. The increments W (s+ t)−W (s) are normally distributed as

W (s+ t)−W (s) ∼ N (0, tIm).

4. Wi(t) is continuous in t for all i = 1, ...,m.

Let W (t) be an m-dimensional Wiener process. Then, we define the filtration {F(t)}t∈[τ,T ] to be
the σ-algebra generated by the random variables {Wi(s)}1≤i≤m,τ≤t≤T . Observe that F(s) ⊂ F(t)
for s < t, i.e. the filtration F(t) is an increasing family of σ-algebras of subsets of Ω. A process
f(t, ω) : [τ, T ] × Ω 7→ Rm is called F(t)-adapted if for each t ∈ [τ, T ], the function ω 7→ f(t, ω) is
F(t)-measurable.

Let {X(t)}t∈[τ,T ] ∈ Rd be a d-dimensional stochastic process on [τ, T ] and let {M(t)}t∈[τ,T ]

be the σ-algebra generated by {X(s)}s∈[τ,t]. Let {F(t)} be the σ-algebra generated by the m-
dimensional Wiener process {W (t)}t∈[τ,T ]. Then, {X(t)}t∈[τ,T ] is a Markov process if

E[X(t)|M(s)] = E[X(t)|F
(
X(s)

)
], s ∈ [τ, t].

Thus, a Markov process has the property that the future behavior at time t ≥ s ≥ τ of the process
given what has happened up to time s is the same as the behavior obtained when starting the
process at time s; a Markov process ”has no memory”.

Let {X(t)}t∈[τ,T ] ∈ Rd be a Markov process. Denoting by B(Rd) the Borel σ-algebra on Rd,
the process’ transition probability is defined as

Pt−τ (B,x) := P
(
X(t) ∈ B|X(τ) = x

)
, (2.4)

where B ∈ B(Rd). The function Pt−τ (B,x) gives the probability that the process reaches a Borel
set B ⊂ Rd at time t, provided that it started in x ∈ Rd at time τ < t.

2.c Stochastic integrals

We will in this subsection develop the theory regarding stochastic integration relevant for this
work. Let W (t) denote an m-dimensional Wiener process whose components are independent. For
a deterministic function G : [τ, t] 7→ Rd×m with d,m ∈ N, we denote by I : [τ, T ] 7→ Rd the
stochastic integral defined by

I(τ, t) :=

∫ t

τ

G(s)dW (s) ∼ N (0,C(t− τ)), (2.5)

where τ ≤ t ≤ T and I(τ, τ) := 0. If τ = 0, we simply write I(t). Since G is assumed to
be a deterministic function, the integral (2.5) represents a particular kind of Ito integral, and is
sometimes referred to as a Wiener integral. For a general Ito-integral, G need not be a deterministic
function. [6]
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The expectation of I(τ, t) is always zero since it is an Ito-integral. Moreover, I(τ, t) satisfies
Ito-isometry [5] (chapter 3):

E

[(∫ t

τ

G(s)dW (s)

)(∫ t

τ

G(s)dW (s)

)⊤
]
= E

[ ∫ t

τ

G(s)G⊤(s)ds

]
.

Observe that if the stochastic integral I(τ, t) is given, the covariance matrix C(t − τ) of I(τ, t)
may be found directly using Ito-isometry, the fact that the components of the Wiener process are
independent and the fact that Ito-integrals are zero in expectation:

C(t− τ) = Cov[I(τ, t)] := E
[
(I(τ, t)− E[I(τ, t)])(I(τ, t)− E[I(τ, t)])⊤

]
= E

[
I(τ, t)I⊤(τ, t)

]
= E

[(∫ t

τ

G(s)dW (s)

)(∫ t

τ

G(s)dW (s)

)⊤
]
=

∫ t

τ

G(s)G⊤(s)ds.

Consider the trace of the covariance matrix C(t− τ):

Tr
(
C(t− τ)

)
=

d∑
i=1

∫ t

τ

[G(s)G⊤(s)]iids =

d∑
i=1

∫ t

τ

m∑
j=1

g2ij(s)ds (2.6)

Moreover, consider the mean-square norm of the stochastic integral I(τ, t):

E
[
∥I(τ, t)∥2

]
= E

[ d∑
i=1

I2i (τ, t)

]
= E

[
d∑

i=1

( m∑
j=1

∫ t

τ

gij(s)dWj(s)

)2
]
. (2.7)

It follows by linearity of expectation and Ito-isometry and that

E

[
d∑

i=1

( m∑
j=1

∫ t

τ

gij(s)dWj(s)

)2
]
=

d∑
i=1

E

[( m∑
j=1

∫ t

τ

gij(s)dWj(s)

)2
]

=

d∑
i=1

E

[(∫ t

τ

m∑
j=1

gij(s)dWj(s)

)2
]

=

m∑
j=1

∫ t

τ

m∑
j=1

g2ij(s)ds,

(2.8)

where the last equality follows from the fact that the components of the Wiener process are mutually
independent, such that cross-terms involving dWj(s) and dWk(s) for j ̸= k vanish in expectation.
Thus, by eqs. (2.6), (2.7) and (2.8), it follows that the stochastic integral I(t − τ) satisfies the
following relation:

E
[
∥I(t− τ)∥2

]
= Tr

(
C(t− τ)

)
. (2.9)

For later use, we define the following stochastic integral:

W (k)(t) :=

∫ t

0

(t− s)kdW (s), k = 0, 1, ... (2.10)

8



Observe that W (0)(t) corresponds to the standard Wiener process W (t). Since W (k)(t) is an
ito-integral for all k = 0, 1, ..., it follows that

W (k)(t) ∼ N (0,C(t)),

where the covariance matrix C is a diagonal matrix whose entries can be found via Ito-Isometry:
Letting G(t) = (t− s)kI, we find

C(t) = E
[ ∫ t

0

(t− s)2kIds

]
=

t2k+1

2k + 1
I.

Thus, it follows that

E
[ ∥∥∥W (k)(t)

∥∥∥2 ] = Tr
(
C(t)

)
= O(h2k+1), k = 0, 1, ... (2.11)

3 Model and Properties

We will in this section present and develop the model considered in this work. We consider the
time-interval t ∈ [0, T ]. Let (Ω,F ,P) be a complete probability space with filtration {F(t)}t∈[0,T ].
Moreover, let W (t) be an {F(t)}-adapted Wiener process with m = d components defined on
(Ω,F ,P). In the following, we will consider a class of d-dimensional, autonomous, semi-linear
stochastic differential equations with additive noise, given below as

dX(t) = F
(
X(t)

)
dt+ΣdW (t), t ∈ [0, T ], X(0) = X0 ∈ Rd. (3.1)

The initial value X0 is an F(0)-measurable random variable which is independent of the Wiener
process and has bounded second moment in expectation. The drift F

(
X(t)

)
is semi-linear, and is

given by
F
(
X(t)

)
= AX(t) +B

(
X(t)

)
. (3.2)

Here, X : [0, T ] 7→ Rd,F : Rd 7→ Rd, A ∈ Rd×d, B : Rd 7→ Rd and Σ ∈ Rd×d. We will assume
throughout that the components {Wi(t)}di=1 of the Wiener process are independent.

We suppose that the SDE (3.1) has a unique strong solution, which is regular insofar as it is
defined on the entire interval [0, T ] such that sample paths do not tend to infinity in finite time.
This requires the existence of a stochastic process {X(t)}t∈[0,T ] which is adapted to the filtration
{F(t)}t∈[0,T ] and has continuous paths satisfying

X(t) = X0 +

∫ t

0

F
(
X(s)

)
ds+

∫ t

0

ΣdW (s), (3.3)

for all t ∈ [0, T ] P-almost surely. Intuitively, we think of eq. (3.3) as the SDE (3.1) written on
integral form. Moreover, {X(t)}t∈[0,T ] is a Markov process, with transition probability given by
eq. (2.4).

As in [1] (Assumption 2.1), we suppose that the drift satisfies a global one-sided Lipschitz
condition and is allowed to grow polynomially at infinity. It suffices to place these assumptions on
the nonlinear part B

(
X(t)

)
of the drift. We formalize these assumption in Assumptions 3.1 and

3.2, respectively.
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Assumption 3.1 The function B ∈ C1(Rd) is globally one-sided Lipschitz continuous, i.e. there
exists a constant c1 > 0 such that〈

x− y,B(x)−B(y)
〉
≤ c1 ∥x− y∥2 , ∀ x,y ∈ Rd.

Assumption 3.2 The function B ∈ C1(Rd) grows at most polynomially, i.e. there exists constants
c2 > 0 and χ ≥ 1 such that

∥B(x)−B(y)∥2 ≤ c2

(
1 + ∥x∥2(χ−1)

+ ∥y∥2(χ−1)
)
∥x− y∥2 , ∀ x,y ∈ Rd.

Contrary to [1], we also introduce a kind of dissipativity condition on the nonlinear part of the drift
B. This condition is formalized in Assumption 3.3.

Assumption 3.3 There exists K ≥ 0 and α ∈ R such that〈
x,B(x)

〉
+ α ∥x∥2 ≤ K, ∀ x ∈ Rd.

Note that this condition is a true dissipativity condition only when K,α > 0. We introduce
Assumption 3.3 at the onset, since it finds applications both in proving mean-square convergence
and geometric ergodicity, as we will see in later sections.

Let Φ : Rd 7→ R be a twice-continuously differentiable function of X(t). We showed in the spe-
cialization project [16] using Ito’s Lemma that the stochastic process

{
Φ
(
X(t)

)}
t∈[0,T ]

is governed

by the SDE

dΦ
(
X(t)

)
=
(
L(0)Φ

)(
X(t)

)
dt+

d∑
i=1

(
L(i)Φ

)(
X(t)

)
dWi(t), t ≥ 0, Φ

(
X(0)

)
= Φ0, (3.4)

where L(0) and L(i) are the generators of the SDE (3.1), given below as

L(0) :=

d∑
i=1

Fi
∂

∂xi
+

1

2

∑
i=1

σ2
ii

∂2

∂x2
i

(3.5a)

L(i) := σii
∂

∂xi
, i = 1, ..., d. (3.5b)

3.a Noise structure: Ellipticity and hypoellipticity

We proceed with discussing the noise structure of our system. We will assume throughout this
work that the diffusion matrix Σ is a diagonal matrix whose diagonal elements σii ∈ R are kept
constant. Since the diffusion matrix is diagonal, each component {Xi(t)}di=1 of the process X(t) is
associated with one and only one component of the Wiener process. As in [1], we will consider two
classes of models obtained depending on the noise structure: The first class is called elliptic and
corresponds to the case when the diffusion matrix Σ is of full rank, i.e. σii ̸= 0 for all i = 1, ..., d.
The second class corresponds to the case when Σ is a degenerate matrix; in particular, we consider
the case when σ11 = 0 and σii > 0 for i > 1. Such a degenerate diffusion matrix naturally arises
in many applications, and is equivalent to the degenerate diffusion matrix considered in [1] and
[8]. In particular, this scenario occurs when transforming a d-dimensional system of second-order
SDEs to a 2d-dimensional system of first-order SDEs. In this second class of models, the first
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component of {X(t)}t∈[0,T ] is called smooth, since it is not directly affected by the noise due to
its corresponding noise term σ11dW1(t) being equal to zero for all t ∈ [0, T ]. By contrast, the
remaining d− 1 components of {X(t)}t∈[0,T ] are called rough, since the noise acts directly on these
components. We emphasize that the use of the words rough and smooth in this work should not be
misunderstood to have any connection with the theory of rough paths. [7].

In the scenario of a degenerate diffusion matrix Σ, the SDE (3.1) is often hypoelliptic. This
means that the transition probability admits a smooth density, despite the fact that ΣΣ⊤ is not
of full rank. It follows that a sufficient and necessary condition for hypoellipticity of the process
{X(t)}t∈[0,T ] is that at least one of its rough coordinates appear in the first component F1

(
X(t)

)
of the drift [8]. We summarize these notions in the following assumption:

Assumption 3.4 Let the diffusion matrix Σ ∈ Rd×d be a diagonal matrix. In addition, Σ satisfies
one of the following conditions:

A.3.2(1) Ellipticity: The diagonal elements σii are nonzero for all i = 1, ..., d.

A.3.2(2) Hypoellipticity: The first diagonal element σ11 equals zero and the remaining diagonal ele-
ments {σii}di=2 are nonzero. Additionally, at least one of the rough components {Xi(t)}di=2

of the process {X(t)}t∈[0,T ] appears in the first component F1

(
X(t)

)
of the drift.

3.b Lyapunov Structure: Geometric ergodicity

The SDE (3.1) is said to be geometrically ergodic if the distribution of the Markov process {X(t)}t∈[0,T ]

converges exponentially fast to a unique invariant distribution π satisfying

π(B) =

∫
Rd

Pt(B,x)π(dx) ∀ B ∈ B(Rd), t ∈ [0, T ].

A function L = L(x) is a Lyapunov function for the SDE (3.1) if L(x)→ +∞ as ∥x∥ → +∞, and
there exists constants ρ, η > 0 such that(

L(0)L
)
(x) ≤ −ρL(x) + η, ∀ x ∈ Rd, (3.6)

where L(0) is the generator from eq. (3.5a). Establishing geometric ergodicity of the SDE (3.1)
is, essentially, a matter of finding a Lyapunov function which satisfies eq. (3.6). The process
{X(t)}t∈[0,T ] must also satisfy a minorization condition [9]. It was shown in [9] that if the drift

F
(
X(t)

)
satisfies the following dissipativity condition〈

x,F (x)
〉
+ c ∥x∥2 ≤ K, ∀ x ∈ Rd, K, c > 0, (3.7)

then the function L : Rd 7→ [1,∞), defined by

L(x) := 1 + ∥x∥2 , ∀ x ∈ Rd, (3.8)

is a Lyapunov function for the SDE (3.1). In particular, if the SDE (3.1) is elliptic, condition
(3.7) is sufficient to establish geometric ergodicity of the solution of eq. (3.1). If the SDE (3.1)
is hypoelliptic, the process is geometrically ergodic if it satisfies (3.7) in addition to satisfying the
irreducibility condition Pt(B,x) > 0 for all open sets B ∈ B(Rd) and x ∈ Rd [1], [9].

We will now show under which conditions Assumption 3.3 implies condition (3.7). We start by
proving the following lemma:
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Lemma 3.1 Let A ∈ Rd×d be any square real-valued matrix. Then, it holds that

⟨x,Ax⟩ ≤ µ ∥x∥2 , ∀ x ∈ Rd,

where µ := λmax

(
(A+A⊤)/2

)
is, by definition, the logarithmic norm of A.

Proof: We start by writing the matrix A on the form

A =
A+A⊤

2
+

A−A⊤

2
. (3.9)

It may easily be shown that
(
A + A⊤)/2 and

(
A − A⊤)/2 are symmetric- and skew-symmetric

matrices, respectively. It follows, then, that

⟨x,Ax⟩ =
〈
x,

(
A+A⊤

2

)
x

〉
+

〈
x,

(
A−A⊤

2

)
x

〉
(3.10)

Since (A+A⊤)/2 is symmetric, it follows that its Rayleigh quotient is bounded from above by its
largest eigenvalue, i.e. the logarithmic norm µ of A. This immediately yields〈

x,

(
A+A⊤

2

)
x

〉
≤ µ ∥x∥2 , ∀ x ∈ Rd. (3.11)

Moreover, we find that〈
x,

(
A−A⊤

2

)
x

〉
=

1

2
⟨x,Ax⟩ − 1

2
⟨x,A⊤x⟩ = 0 ∀ x ∈ Rd, (3.12)

where the above follows from the fact that

⟨x,Ax⟩ =
(
⟨x,Ax⟩

)⊤
= ⟨x,A⊤x⟩ ∀ x ∈ Rd.

The result then immediately follows from eqs. (3.10) (3.11) and (3.12). ■

Lemma 3.2 Let B ∈ C1(Rd) be a d-dimensional vector-valued function satisfying Assumption 3.3
for some K ≥ 0 and α ∈ R. Let F (x) be the function given by

F (x) = Ax+B(x),

for some square real-valued matrix A ∈ Rd×d. Then it holds that

⟨x,F (x)⟩+ c ∥x∥2 ≤ K, ∀ x ∈ Rd,

where c := α− µ ∈ R and µ ∈ R is the logarithmic norm of A.

Proof: The result is a direct consequence of Assumption 3.3 and Lemma 3.1:

⟨x,F (x)⟩ = ⟨x,Ax+B(x)⟩ = ⟨x,Ax⟩+ ⟨x,B(x)⟩ ≤ K − (α− µ) ∥x∥2 .

Letting c = α− µ and rearranging the above yields the result. ■
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Lemma 3.2 tells us that if K > 0 and µ < α, then the drift F satisfies condition (3.7) with
c = α − µ > 0 and the SDE (3.1) is thereby geometrically ergodic. Note that if µ > 0, then the
linear part of the drift is unstable. Conversely, if α > 0, then the nonlinear part of the drift is stable.
Consider the case of µ > 0. The linear part of the drift is unstable, but if µ < α, then the nonlinear
part of the drift is more stable than the linear part is unstable, and the drift is therefore stable
overall. If, on the other hand, α < 0, then the nonlinear part of the drift is unstable. However, if
µ < α, then the linear part of the drift is more stable than the nonlinear part is unstable. Thus,
the condition µ < α, which guarantees geometric ergodicity of the SDE (3.1), is also a statement
about the stability of the semi-linear drift F . In particular, µ < α tells us that the instability of
the linear (nonlinear) term of the drift is compensated for by the stability of the nonlinear (linear)
term of the drift, resulting in a stable semi-linear drift overall.

4 Numerical Methods

Consider a discretization {tn}Nn=0 of the time-interval [0, T ] with uniform step-size h := tn− tn−1 ∈
(0, h0] for some h0 > 0, where tn := nh ≤ Nh = T . We denote by {X̃(tn)}Nn=0 a numerical solution

of the SDE (3.1) which approximates the process {X(t)}t∈[0,T ], where X̃(0) = X(0) = X0. We
start by defining the notions of compositions and flows.

Definition 4.1 (Composition) Let f : U 7→ V and g : W 7→ U be two well-defined functions
with U, V,W ⊆ Rd. The composition (f ◦ g) : W 7→ V of f and g is defined by

(f ◦ g)(x) = f
(
g(x)

)
, ∀ x ∈W.

Definition 4.2 (Flow) Let X(t) with initial value X(0) = X0 ∈ Rd be a solution to some initial
value problem at any time t ≥ 0. The flow φt(X0) is then defined as the mapping from X0 to X(t)
for all t ≥ 0, that is

φt(X0) = X(t), X(0) = X0, ∀ t ≥ 0.

The flow φt(X0) is furthermore defined to satisfy

φ0(X0) = X0 (Identity),

φs

(
φt(X0)

)
= φs+t(X0), ∀ t, s ≥ 0 (Group law).

4.a Splitting- and composition methods

We start by briefly introducing the concept of splitting methods, which in turn will lead us to the
concept of composition methods in a straight-forward manner. For a more detailed description of
splitting- and composition methods, see e.g. [2], [4]. We present the concept of splitting methods
in the context of ODEs, while keeping in mind that the following exposition is valid also for SDEs.
Suppose one wants to solve the initial value problem (IVP) given by

dX(t) = F
(
X(t)

)
dt, X(0) = X0, t ≥ 0. (4.1)

Suppose further that we can decompose the operator F as

F =

q∑
j=1

F (j), F (j) : Rd 7→ Rd, j = 1, ..., q. (4.2)
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Using this split, we may construct a collection of q sub-equations on the form

dX(j)(t) = F (j)
(
X(j)(t)

)
dt, X(j)(0) = X

(j)
0 , t ≥ 0, j = 1, ..., q, (4.3)

whose exact solutions at time t are denoted by the exact flows {φ(j)
t (X

(j)
0 )}qj=1. The solution to

our original IVP (4.1) is then constructed by some composition of the flows {φ(j)
t (X

(j)
0 )}qj=1 of each

sub-equation. This strategy is referred to as a splitting method. There are in general many ways
to decompose a given operator F , and the main idea behind splitting methods is to decompose
F such that each resulting sub-equation may be solved exactly. The manner in which we then

compose the flows {φ(j)
t (X

(j)
0 )}qj=1 determines the splitting method. Recall that if one or more of

the sub-equations are solved approximately by some numerical method, then our method is referred
to as a composition method. In this case, we refer to the numerical solution of this sub-equation

by the numerical flow φ̃
(j)
t (X

(j)
0 ). We proceed with presenting two approaches for composing the

(exact or approximate) solutions to our q sub-equations.

Definition 4.3 (Lie-Trotter- and Strang approach) Let φ
(j)
t (X

(j)

0 ) represent either the exact

or numerical flow for sub-equation j = 1, ..., q given by eq. (4.3). Let X
LT

(tn) and X
S
(tn) be

the Lie-Trotter- and Strang approaches for composing the flows of each sub-equation φ
(j)
t (X

(j)

0 ),

yielding an approximation to the initial value problem (4.1). Then, X
LT

(tn) and X
S
(tn) are defined

by the following compositional schemes:

X
LT

(t) :=
(
φ

(q)
t ◦ ... ◦φ

(1)
t

)
(X0),

XS(t) :=
(
φ

(1)
t/2 ◦ ... ◦φ

(q−1)
t/2 ◦φ(q)

t ◦φ
(q−1)
t/2 ◦ ... ◦φ(1)

t/2

)
(X0),

where X0 is the initial value from eq. (4.1).

We proceed with developing the numerical methods used in this work. As in [1], we propose
splitting the nonlinear SDE (3.1) into a nonlinear ODE and a linear SDE with additive noise:

dX(1)(t) = B
(
X(1)(t)

)
dt, t ≥ 0, X(1)(0) = X

(1)
0 , (4.4a)

dX(2)(t) = AX(2)(t)dt+ΣdW (t), t ≥ 0, X(2)(0) = X
(2)
0 . (4.4b)

We start by discussing solutions to eq. (4.4a). If the nonlinear ODE of eq. (4.4a) can be solved
exactly, then its exact solution is given by

φ
(1)
t (X

(1)
0 ) = f(X

(1)
0 ; t), (4.5)

where f : Rd ×R≥0 7→ Rd is a function of the initial value X
(1)
0 and time t. We may thus simulate

eq. (4.4a) exactly at each discrete time-point tn by

φ
(1)
h

(
X(1)(tn−1)

)
= f

(
X(1)(tn−1);h

)
, n = 1, ..., N, X(1)(0) = X

(1)
0 = X0. (4.6)

If eq. (4.4a) cannot be solved exactly, we approximate its solution at each discrete time-point tn
using the implicit Euler method. In this case, the numerical solution is given by

φ̃
(1)
h

(
X̃(1)(tn−1)

)
= X∗, n = 1, 2, ..., N, X̃(1)(0) = X

(1)
0 = X0 (4.7)
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where X∗ satisfies the implicit equation

X∗ = X̃(1)(tn−1) + hB(X∗). (4.8)

Obtaining the solution to the implicit equation (4.8) requires, in general, the solving of a nonlinear
system of equations. For certain choices of the nonlinear function B, however, the implicit equation
(4.8) may be solved such that we obtain an expression for X∗ which is a function f̃ that is explicit

in X̃(1)(tn−1) and h:

φ̃
(1)
h

(
X̃(1)(tn−1)

)
= X∗ = f̃

(
X(1)(tn−1);h

)
(4.9)

This is of course highly desirable in terms of computational efficiency, since our implicit Euler
method then behaves like an explicit method while still enjoying the unconditional stability of an
implicit method. If we cannot solve the implicit equation (4.8) explicitly forX∗, we can approximate
it to arbitrary precision using Newton’s method. This corresponds to iteratively solving the linear
system(

I− hJB(zk)
)
z(k+1) = hB(z(k))− hJB(z(k))z(k) − X̃(1)(tn−1), z(0) = X̃(1)(tn−1), (4.10)

for z(k+1) at every discrete time-point tn, with initial value at time t0 = 0 given by X̃(1)(0) = X0.
Then, we update k ← k+1 and repeat the procedure until

∥∥z(k+1) − z(k)
∥∥ < ϵ or until a maximum

number of iterations has been reached. Here, ϵ > 0 is the error tolerance of our approximation.
The last value for z(k+1) is then taken as the approximation of the solution X∗ to the implicit
equation (4.8). It is well known that Newton’s method exhibits local quadratic convergence for
initial values sufficiently close to the true solution. For well-posed problems, we can in practice (by
C1-continuity of B) guarantee that our initial value is always sufficiently close to the true solution
to yield quadratic convergence by choosing the step-size h small enough. Unfortunately, Newton’s
method requires repeatedly solving a linear system at each time-step, which negatively affects the
computational efficiency of our composition methods. We discuss in section 8 two strategies for
mitigating this issue.

We proceed by discussing the solution of eq. (4.4b). This linear SDE is linear in the narrow
sense, and it can easily be shown (see e.g. [3], chapter 4.2) that its exact solution is given by

φ
(2)
t = eAtX

(1)
0 +Z(t), (4.11)

where the random variable Z(t) is given by

Z(t) :=

∫ t

0

eA(t−s)ΣdW (s) ∼ N
(
0,C(t)

)
. (4.12)

We remark that Z(t) is normally distributed with mean zero since it is an Ito integral. Combined
with the fact that the Wiener processes are independent, we find its covariance matrix C(t) via
Ito-isometry:

C(t) = E[Z(t)Z⊤(t)] = E

[(∫ t

0

eA(t−s)ΣdW (s)

)(∫ t

0

eA(t−s)ΣdW (s)

)⊤
]

=

∫ t

0

eA(t−s)ΣΣ⊤eA
⊤(t−s)ds = L(t)L⊤(t),

(4.13)

15



where L(t) is the lower-triangular matrix obtained by a Cholesky factorization of C(t). We can
easily simulate the random variable Z(t) by sampling a standard Gaussian ζ ∼ N (0, I), and then
constructing Z(t) by Z(t) = L(t)ζ. We note that when Σ is of full rank (i.e. the elliptic case), C(t)
is symmetric and positive-definite (SPD), whereas C(t) is symmetric and positive semi-definite
(SPSD) in the hypoelliptic case. In either case, a Cholesky factorization exists, however in the
hypoelliptic case, such a factorization need not be unique.

Thus, we may simulate eq. (4.4b) exactly at the discrete time-points tn by

φ
(2)
h

(
X(2)(tn−1)

)
= eAhX(2)(tn−1) +Zn−1(h), n = 1, 2, ..., N (4.14)

where {Zn−1(h)}Nn=1 are independent and identically distributed (i.d.d.) random variables given
by eq. (4.12) with covariance matrix C(h) for each n = 1, 2, ..., N . Since {Zn−1(h)}Nn=1 are i.d.d.
random variables, we only need to compute C(h) once prior to sampling {Zn−1(h)}Nn=1. For some
systems, we may (often quite laboriously) find closed-form expressions for C(h), however we may
in general always approximate it to arbitrary precision (limited by machine precision, of course)
using numerical integration methods, e.g. the trapezoidal rule. To avoid having to derive explicit
expressions for C(h) for each individual problem, we approximate it using the trapezoidal rule in
all our implementations.

Having discussed the solutions to each sub-equation (4.4a)-(4.4b), the Lie-Trotter- and Strang
approach for composing these solutions are then given by

X
LT

(tn) = eAhφ
(1)
h

(
X

LT
(tn−1)

)
+Zn−1(h), n = 1, ..., N, X

LT
(0) = X0, (4.15a)

X
S
(tn) = φ

(1)
h/2

(
eAhφ

(1)
h/2

(
X

S
(tn−1)

)
+Zn−1(h)

)
, n = 1, ..., N, X

S
(0) = X0. (4.15b)

Here, φ
(1)
h is a generalized flow, representing both the exact flow φ

(1)
h and the numerical flow φ̃

(1)
h .

These two compositional approaches then give rise to two splitting methods and two composition

methods, depending on which of the flows φ
(1)
h or φ̃

(1)
h of eq. (4.4a) is used in eqs. (4.15a) and

(4.15b) Specifically, using the flow φ
(1)
h gives rise to the Lie-Trotter- and Strang splitting methods

X̃LT(tn) and X̃S(tn). Using the flow φ̃
(1)
h gives rise to the Lie-Trotter Implicit Euler (LTIE) and

Strang Implicit Euler (SIE) composition methods X̃LTIE(tn) and X̃SIE(tn).
We emphasize that eqs. (4.15a)-(4.15b) represent the compositional approaches of our methods

for one iteration in time. We see that both approaches involve solving multiple sub-equations in
succession at every time-step. The first sub-equation to be solved uses the overall solution from the
previous time-step as its initial condition. Then, the solution (flow) of one sub-equation is passed as
the initial condition to the next in accordance with either eq. (4.15a) or (4.15b). The solution to the
final sub-equation is then taken as the overall solution of the method for the current time-step, and
the process repeats for the next time-step. Lastly, we note that the Strang approach is expected to
be more accurate than the Lie-Trotter approach. This is due to the fact that the Strang approach
is equivalent to first performing the Lie-Trotter approach over a half time-step, then performing it
again over another half-time step, but reversing the order in which we compose the flows. As such,
the Strang approach is symmetric and uses fractional steps, whereas the Lie-Trotter approach does
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not. We conclude this section by writing out all four methods:

X̃LT(tn) := eAhφ
(1)
h

(
X̃LT(tn−1)

)
+Zn−1(h), X̃LT(0) = X0, (4.16a)

X̃S(tn) := φ
(1)
h/2

(
eAhφ

(1)
h/2

(
X̃S(tn−1)

)
+Zn−1(h)

)
, X̃S(0) = X0, (4.16b)

X̃LTIE(tn) := eAhφ̃
(1)
h

(
X̃LTIE(tn−1)

)
+Zn−1(h), X̃LTIE(0) = X0, (4.16c)

X̃SIE(tn) := φ̃
(1)
h/2

(
eAhφ̃

(1)
h/2

(
X̃SIE(tn−1)

)
+Zn−1(h)

)
, X̃SIE(0) = X0. (4.16d)

4.b Drift-Implicit Euler-Maruyama method

In our numerical experiments, we will frequently compare our methods with the Drift-Implicit

Euler-Maruyama method X̃DIEM(tn), defined below as

X̃DIEM(tn) = X̃DIEM(tn−1) + hF
(
X̃DIEM(tn)

)
+
√
hΣζn, ζn−1 ∼ N

(
0, Id

)
, (4.17)

with initial condition X̃DIEM(0) = X0. For SDEs with additive noise, it is known that the DIEM
method is mean-square convergent of order p = 1 [3] (chapter 12). The DIEM method represents a
standard implicit Euler-Maruyama-type method for solving SDEs with locally Lipschitz drift, and
as such, we use it to benchmark our splitting- and composition methods of eqs. (4.16a)-(4.16d).
Since this is an implicit method, we use Newton’s method to approximate the solution at every
time-step.

5 Nonlinear ODE: Bounds on solutions

Before proving mean-square convergence of our considered methods, we will derive bounds on the
exact- and implicit Euler solutions to the nonlinear ODE (4.4a). These bounds are required in our
proof of mean-square boundedness, a central ingredient of mean-square convergence. Moreover,
these bounds will help establish our results on geometric ergodicity, and will be used for deriving
asymptotic bounds in the limit tn → +∞. The key to obtaining these bounds lies in Assumption
3.3.

Consider a nonlinear ODE of the form

dX(t)

dt
= B

(
X(t)

)
, t ∈ [tn−1, tn], X(tn−1) = x ∈ Rd, (5.1)

where h = tn − tn−1. Let φh(x) = X(tn) denote the exact flow of eq. (5.1). Moreover, let

φ̃h(x) = X̃(tn) denote the numerical flow when eq. (5.1) is solved using the implicit Euler method.
The Lipschitz condition from Assumption 3.1 guarantees existence and uniqueness of both solu-
tions by Picard-Lindelöf’s theorem. Moreover, as the next two theorems establish, Assumption 3.3
determines the bounds on the solutions. We begin with the exact case.

Theorem 5.1 Let φh(x) denote the exact flow of eq. (5.1) at time tn with initial value X(tn−1) =
x ∈ Rd. Suppose B satisfies Assumptions 3.1 and 3.3. Then, there exists h0 > 0 such that for all
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h ∈ (0, h0], the exact flow φh(x) satisfies

0 ≤ ∥φh(x)∥2 ≤

{
e−2αh ∥x∥2 + K

α

(
1− e−2αh

)
, α ̸= 0,

∥x∥2 + 2Kh, α = 0,

where K ≥ 0 and α ∈ R are the constants from Assumption 3.3.

Proof: The key starting point is the following relation:

d ∥X(t)∥2

dt
= 2
〈
X(t),B

(
X(t)

)〉
, (5.2)

which follows directly via the chain rule and holds for all X(t) ∈ Rd. We will first consider the case
of α ̸= 0: It follows from Assumption 3.3 that

2
〈
X(t),B

(
X(t)

)〉
≤ 2K − 2α ∥X(t)∥2 . (5.3)

Inserting for the above into eq. (5.2) and using v(t) := ∥X(t)∥2, we obtain the following differential
inequality:

v′(t) ≤ −2αv(t) + 2K, ∀ t ∈ [tn−1, tn], (5.4)

where v′(t) = dv(t)
dt . Consider now the auxiliary function given by

u(t) := e2αt
(
v(t)− K

α

)
.

It follows by the product rule that

u′(t) =
d

dt

[
e2αt

(
v(t)− K

α

)]

= e2αtv′(t) + 2αe2αt
(
v(t)− K

α

)
= e2αt

(
v′(t) + 2αv(t)− 2K

)
Observe from the differential inequality (5.4) that

v′(t) + 2αv(t)− 2K ≤ 0, ∀ t ∈ [tn−1, tn].

Since e2αt > 0 for all t ∈ [tn−1, tn], it follows that u
′(t) ≤ 0 for all t ∈ [tn−1, tn]. That is, u(t) is a

monotonically decreasing function over the interval t ∈ [tn−1, tn]. Hence, it holds that

e2αtn
(
v(tn)−

K

α

)
≤ e2αtn−1

(
v(tn−1)−

K

α

)
.

Expressing the above inequality in terms of v(tn) yields

v(tn) ≤ e−2α(tn−tn−1)v(tn−1) +
K

α

(
1− e−2α(tn−tn−1)

)
= e−2αhv(tn−1) +

K

α

(
1− e−2αh

)
,
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where we used the fact that h = tn − tn−1. Inserting for v(tn) = ∥X(tn)∥2 = ∥φh(x)∥2 and

v(tn−1) = ∥x∥2 then yields the result for the case of α ̸= 0.
In the case of α = 0, the proof is considerably easier: In this case, eq. (5.3) reduces to

2
〈
X(t),B

(
X(t)

)〉
≤ 2K.

Using this, it follows directly by integrating eq. (5.2) with respect to time from tn−1 to tn that

∥φh(x)∥2 = ∥X(tn)∥2 ≤ ∥x∥2 + 2Kh,

which is the result when α = 0. We also note that the result for α ̸= 0 reduces to the result for
α = 0 in the limit, as expected. When α→ 0±, we get e−2αh → 1. Moreover, it follows that

lim
α→0±

K

α

(
1− e−2αh

)
= lim

α→0±
2Kh

1− e−2αh

2αh

= 2Kh lim
α→0±

1− e−2αh

2αh

= 2Kh,

where we used the fact that

lim
α→0±

1− e−2αh

2αh
= 1.

Thus, the bound on ∥φh(x)∥2 for α ̸= 0 reduces to the case of α = 0 in the limit α→ 0±. ■
We also remark that if α > 0, then the flow φh(x) is asymptotically bounded in the limit

h→ +∞:

lim
h→+∞

∥φh(x)∥2 ≤
K

α
. (5.5)

We proceed with proving an analogous theorem, where we consider the numerical approximation
φ̃h(x) = X∗ of eq. (5.1), where X∗ satisfies the implicit Euler equation

X∗ = x+ hB(X∗). (5.6)

To prove the analogue of Theorem 5.1 for the implicit Euler case, we require that the upper bound
h0 on the stepsize h satisfies the bound

1 + 2αh0 > 0. (5.7)

We require this condition to ensure positivity of ∥X∗∥2. Observe that as h0 → 0+, the condition
(5.7) may be satisfied for any value of α ∈ R.

Theorem 5.2 Let φ̃h(x) = X∗ ∈ Rd be the solution of eq. (5.1) as computed by the implicit Euler
method such that X∗ satisfies eq. (5.6). Let B satisfy Assumptions 3.1 and 3.3 for some K ≥ 0
and α ∈ R. Then, there exists h0 > 0 satisfying 1 + 2αh0 > 0 such that for all h ∈ (0, h0], the
numerical flow φ̃h(x) satisfies

0 ≤ ∥φ̃h(x)∥2 ≤ e−2α̃0h ∥x∥2 + 2Kh,

where α̃0 is given by

α̃0 :=
1

2h0
log (1 + 2αh0) ≤ α.
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Proof: Taking the norm-squared of both sides of eq. (5.6) yields

∥X∗∥2 = ∥x∥2 + 2h
〈
x,B(X∗)

〉
+ h2 ∥B(X∗)∥2

= ∥x∥2 + 2h
〈
X∗ − hB(X∗),B(X∗)

〉
+ h2 ∥B(X∗)∥2

= ∥x∥2 + 2h
〈
X∗,B(X∗)

〉
− h2 ∥B(X∗)∥2

≤ ∥x∥2 + 2h
(
K − α ∥X∗∥2

)
,

where the last inequality follows from Assumption 3.3 and from the fact that −h2 ∥B(X∗)∥2 ≤ 0

for all X∗ ∈ Rd and all h > 0. Rearranging and solving for ∥X∗∥2 then yields

∥X∗∥2 ≤ 1

1 + 2αh
∥x∥2 + 2Kh. (5.8)

Observe at this point that if 1 + 2αh0 > 0 holds, then it holds that 1 + 2αh > 0 for all h ∈ (0, h0]:
First consider the case of α ≥ 0. Then, 1 + 2αh > 0 holds trivially for any h > 0. Second, consider
the case α = −|α| < 0. In this case, it follows from 1 + 2αh = 1− 2|α|h0 > 0 and h ≤ h0 that

1 > 2|α|h0 > 2|α|h0 > 0,

which immediately yields 1 − 2|α|h = 1 + 2αh > 0 for all h ∈ (0, h0]. Moreover, consider at this
point the function α̃ = α̃(α, h), defined by

α̃(α, h) :=
1

2h
log (1 + 2αh).

Observe that this function is monotonically decreasing in h such that for all h ∈ (0, h0], it holds
that

α̃0 := α̃(α, h0) =
1

2h0
log 1 + 2αh0 ≤

1

2h
log (1 + 2αh) = α̃(α, h).

Rearranging the above inequality then yields

1

1 + 2αh
≤ e−2α̃0h, ∀ h ∈ (0, h0]. (5.9)

Inserting for eq. (5.9) into eq. (5.8) and recalling that φ̃h(x) = X∗ then yields the result:

0 ≤ ∥φ̃h(x)∥2 ≤ e−2α̃0h ∥x∥2 + 2Kh, ∀h ∈ (0, h0],

where positivity of ∥φ̃h(x)∥2 is guaranteed by the facts that K ≥ 0 and e−2α̃0h > 0. ■

6 Mean Square Convergence

We will in this section prove mean-square convergence in finite time of both splitting methods

X̃LT(tn) and X̃S(tn) and both composition methods X̃LTIE(tn) and X̃SIE(tn). Since the solution
to an SDE is a stochastic process, we can never guarantee convergence of any single solution.
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However, we can show that the solution converges in expectation. For this reason, the issue of
convergence is considered in the mean-square sense.

In proving mean-square convergence, we rely on Theorem 2.1. from [10], which is an extension
of Milstein’s Fundamental Theorem [11] for globally Lipschitz functions as considered through
Assumptions 3.1 and 3.2. We start with establishing some necessary definitions and stating the
main mean-square convergence theorem of this work. We will formulate these definitions and the
main mean-square convergence theorem as in [1]. To facilitate this, we introduce the following
notation: Let Xtn−1,ξ(tn) denote the exact solution of eq. (3.1) at time tn starting from ξ at time

tn−1; that is, X(tn−1) = ξ. Similarly, let X̃tn−1,ξ(tn) denote the one-step approximation starting

from ξ at time tn−1 used to construct a numerical solution X̃(tn) of eq. (3.1). As before, we use

X̃(tn) as a placeholder for all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn). It follows
from eqs. (4.16a)-(4.16b) that the one-step approximations for the Lie-Trotter- and Strang splitting
methods are given by

XLT
tn−1,ξ(tn) = eAhφ

(1)
h (ξ) +

∫ h

0

eA(h−s)ΣdW (s), (6.1a)

XS
tn−1,ξ(tn) = φ

(1)
h/2

(
eAhφ

(1)
h/2(ξ) +

∫ h

0

eA(h−s)ΣdW (s)

)
. (6.1b)

Similarly, it follows from eqs. (4.16c)-(4.16d) that the one-step approximations for the LTIE- and
SIE composition methods are given by

XLTIE
tn−1,ξ(tn) = eAhφ̃

(1)
h (ξ) +

∫ h

0

eA(h−s)ΣdW (s), (6.2a)

XSIE
tn−1,ξ(tn) = φ̃

(1)
h/2

(
eAhφ̃

(1)
h/2(ξ) +

∫ h

0

eA(h−s)ΣdW (s)

)
. (6.2b)

Definition 6.1 (Mean-square consistency) The one-step approximation X̃tn−1,ξ(tn) used to

construct a numerical solution X̃(tn) of eq. (3.1) is mean-square consistent of order p > 0 if
there exists h0 > 0 such that for arbitrary {tn}Nn=1, for all ξ ∈ Rd and for all h ∈ (0, h0], it has the
following orders of accuracy:∥∥∥E[Xtn−1,ξ(tn)− X̃tn−1,ξ(tn)

]∥∥∥ = O(hp+1),√
E
[ ∥∥∥Xtn−1,ξ(tn)− X̃tn−1,ξ(tn)

∥∥∥2 ] = O(hp+ 1
2 ).

Definition 6.2 (Mean-square boundedness) A numerical solution X̃(tn) of eq. (3.1) is mean-

square bounded if there exists h0 > 0 and a constant K̃ = K̃(h0, T ) > 0 such that for all step-sizes
h ∈ (0, h0] it holds that

max
t0≤tn≤T

E
[ ∥∥∥X̃(tn)

∥∥∥2 ] ≤ K̃(h0, T )

(
1 + E

[
∥X0∥2

])
,

where T ∈ [0,+∞) is the end-time.
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Definition 6.3 (Mean-square convergence) Let X(tn) denote the exact solution of an SDE on

the interval [0, T ], and let X̃(tn) denote a numerical solution of this SDE. The numerical solution

X̃(tn) is mean-square convergent of order p > 0 if

max
0≤tn≤T

√
E
[ ∥∥∥X(tn)− X̃(tn)

∥∥∥2 ] = O(hp).

Theorem 6.1 (Mean-square convergence (Thm. 2.1. [10])) Let X̃(tn) denote a numerical

solution of eq. (3.1) at time tn starting from X̃(t0) = X̃(0) = X(0) = X0, constructed using

the one-step approximation X̃tn−1,ξ(tn). Furthermore, let Assumptions 3.1, 3.2, 3.3 and 3.4 be
satisfied. If

1. The one-step approximation X̃tn−1,ξ(tn) is mean-square consistent of order p > 0 in the sense
of Definition 6.1;

2. The numerical solution X̃(tn) is mean-square bounded in the sense of Definition 6.2;

Then the numerical method X̃(tn) is mean-square convergent of order p in the sense of Definition
6.3.

It is perhaps clear from the preceding definitions and theorem that proving mean-square conver-
gence of a given method involves two tasks: (1) Proving that the method is mean-square consistent
and (2) proving that the method is mean-square bounded. In [1], mean-square convergence of or-

der p = 1 was proved for both splitting methods X̃LT(tn) and X̃S(tn). This proof, however, did
not rely on Assumption 3.3. In this thesis, we prove mean-square convergence of order p = 1 for

both splitting methods X̃LT(tn) and X̃S(tn) under Assumption 3.3. We include this assumption,

because it will allow us to formulate asymptotic bounds on E
[ ∥∥∥X̃LT(tn)

∥∥∥2 ] and E
[ ∥∥∥X̃S(tn)

∥∥∥2 ] as
T → +∞ even when µ ≥ 0, which could not be done using the theory of [1]. We also show that

both composition methods X̃LTIE(tn) and X̃SIE(tn) are mean-square convergent of order p = 1,
also under Assumption 3.3.

Proving mean-square consistency does not rely on Assumption 3.3. For this reason, we do

not prove mean-square consistency of X̃LT(tn) nor X̃S(tn), since we may rely fully on the proof

given in [1]. Here, it was shown that both splitting methods X̃LT(tn) and X̃S(tn) were mean-
square consistent of order p = 1. Thus, we only prove mean-square consistency for our composition

methods X̃LTIE(tn) and X̃SIE(tn), and we prove that they are both mean-square consistent of order
p = 1.

In our proof of mean-square boundedness, however, we rely heavily on Assumption 3.3, since this
assumption yields bounds on the solution of the nonlinear ODE (4.4a), as shown in section 5. Thus,

we provide mean-square boundedness proofs for all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and

X̃SIE(tn).

The mean-square boundedness proof for X̃LT(tn) and X̃LTIE(tn) are rather similar. For this
reason, we show mean-square boundedness for the generalized Lie-Trotter method as defined in
eq. (4.15a). Recall that the generalized Lie-Trotter method uses the Lie-Trotter approach with a

generalized flow φ
(1)
h of eq. (4.4a), which can represent either the exact flow φ

(1)
h or the numerical

flow φ̃
(1)
h . The result then holds for the X̃LT(tn) and X̃LTIE(tn) methods upon inserting for their
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respective flows φ
(1)
h or φ̃

(1)
h . Similarly, we prove mean-square boundedness for a generalized Strang

method defined through eq. (4.15b). Also here do we obtain the result for either X̃S(tn) or X̃
SIE(tn)

when inserting for the appropriate flow.
Once mean-square consistency of order p = 1 has been proved for both composition methods

X̃LTIE(tn) and X̃SIE(tn), and mean-square boundedness has been proved for all four methods

X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn), it follows immediately from Theorem 6.1 that all four
methods are mean-square convergent of order p = 1. We state this as separate theorems towards
the end of this section.

6.a Mean-square consistency

We will in this section prove the following Lemma:

Lemma 6.2 (Mean-square consistency) Let Assumptions 3.1, 3.2 and 3.4 be satisfied, and let
XLTIE

tn−1,ξ
(tn) and XSIE

tn−1,ξ
(tn) be the one-step approximations of the LTIE- and SIE methods defined

through eqs. (6.2a) and (6.2b), respectively. Then, XLTIE
tn−1,ξ

(tn) and XSIE
tn−1,ξ

(tn) are mean-square
consistent of order p = 1 in the sense of Definition 6.1.

Proof: The key to proving Lemma 6.2 lies in applying a stochastic Taylor expansion to Xtn−1,ξ(tn)
around ξ. We then compare this expansion with the corresponding expansions of our one-step
approximations XLTIE

tn−1,ξ
(tn) and XSIE

tn−1,ξ
(tn) to find the local error of each composition method. It

was shown in the specialization project preceding this work [16] that the one-step approximation
of the exact solution is given by

Xtn−1,ξ(tn) = ξ + hAξ + hB(ξ) +
h2

2
A2ξ +

h2

2
AB(ξ) +

h2

2
JB(ξ)Aξ +

h2

2
JB(ξ)B(ξ)

+
h2

2
D(ξ) +ΣW

(0)
n−1(h) +

(
AΣ+ JB(ξ)Σ

)
W

(1)
n−1(h) +O(h5/2).

(6.3)

Here, JB(ξ) is the Jacobian of B evaluated at ξ whose elements are given by[
JB(ξ)

]
ij
= ∂Bi(ξ)/∂xj , i, j = 1, ..., d.

Moreover, D(ξ) is the vector whose i’th element is given by

Di(ξ) = Tr
(
Σ2HBi

(ξ)
)
=

d∑
j=1

σ2
jj

∂2Bi(ξ)

∂x2
j

, i = 1, ..., d,

with HBi(ξ) being the Hessian of Bi evaluated at ξ and Tr(·) denoting the trace of a matrix. In

addition, W
(0)
n−1(h) and W

(1)
n−1(h) are stochastic Ito integrals which, for each n > 0, are given by

eq. (2.10).
We proceed with expanding the one-step approximations for our LTIE- and SIE composition

methods from eqs. (6.2a)-(6.2b). Recall from eq. (4.7) that

φ̃
(1)
h (ξ) = X∗,

where X∗ satisfies the equation
X∗ = ξ + hB(X∗). (6.4)
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We start by expanding B(X∗) to the first order around ξ:

B(X∗) = B(ξ) + JB(ξ)(X∗ − ξ) +O(h2). (6.5)

To see why the last term is O(h2), observe that the quadratic term in the expansion of B(X∗)
around ξ is given by Q, where Qi satisfies

Qi =
1

2

(
X∗ − ξ

)⊤
HBi

(ξ)
(
X∗ − ξ

)
, i = 1, ..., d.

From eq. (6.4) it is clear that X∗ − ξ = hB(X∗) = O(h). It then follows directly from the
expression for Qi that Qi = O(h2) for all i = 1, ..., d; hence, Q = O(h2), which justifies why the
last term in eq. (6.5) is O(h2). Inserting for eq. (6.5) into eq. (6.4) and rearranging then yields

X∗ = ξ + h
(
I− hJB(ξ)

)−1

B(ξ) +O(h3). (6.6)

Using the Neumann series, we have the following expansion:(
I− hJB(ξ)

)−1

=

∞∑
k=0

hkJk
B(ξ) = I+ hJB(ξ) +O(h2). (6.7)

Inserting for (6.7) back into eq. (6.6) then yields

X∗ = ξ + hB(ξ) + h2JB(ξ)B(ξ) +O(h3). (6.8)

Recalling that φ̃
(1)
h (ξ) = X∗, we’ve found

φ̃
(1)
h (ξ) = ξ + hB(ξ) + h2JB(ξ)B(ξ) +O(h3). (6.9)

We will now insert for the expansion (6.9) and the expansion of the matrix exponential given by
eq. (2.1) into the one-step approximations (6.2a)-(6.2b) of our composition methods. The one-step
approximation for the LTIE composition method then reads

XLTIE
tn−1,ξ(tn) = eAhφ̃

(1)
h (ξ) +

∫ h

0

eA(h−s)ΣdW (s)

=

(
I+ hA+

h2

2
A2

)(
ξ + hB(ξ) + h2JB(ξ)B(ξ)

)
+

∫ h

0

(
I+ (h− s)A+

(h− s)2

2
A2

)
ΣdW (s) +O(h3)

= ξ + hB(ξ) + h2JB(ξ)B(ξ) + hAξ + h2AB(ξ) +
h2

2
A2ξ +Σ

∫ h

0

dW (s)

+AΣ

∫ h

0

(h− s)dW (s) +
1

2
A2Σ

∫ h

0

(h− s)2dW (s) +O(h3)

= ξ + hB(ξ) + h2JB(ξ)B(ξ) + hAξ + h2AB(ξ) +
h2

2
A2ξ

+ΣW
(0)
n−1(h) +AΣW

(1)
n−1(h) +

1

2
A2ΣW

(2)
n−1(h) +O(h3)

(6.10)
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Similarly, we find the one-step approximation for the SIE composition method. Let S be given by

S := eAhφ̃
(1)
h/2(ξ) +

∫ h

0

eA(h−s)ΣdW (s)

=

(
I+ hA+

h2

2
A2

)(
ξ +

h

2
B(ξ) +

h2

4
JB(ξ)B(ξ)

)
+

∫ h

0

(
I+ (h− s)A+

(h− s)2

2
A2

)
ΣdW (s) +O(h3)

= ξ +
h

2
B(ξ) +

h2

4
JB(ξ)B(ξ) + hAξ +

h2

2
AB(ξ) +

h2

2
A2ξ

+ΣW
(0)
n−1(h) +AΣW

(1)
n−1(h) +

1

2
A2ΣW

(2)
n−1(h) +O(h3)

= ξ + y,

(6.11)

where y is given by

y :=
h

2
B(ξ) +

h2

4
JB(ξ)B(ξ) + hAξ +

h2

2
AB(ξ) +

h2

2
A2ξ

+ΣW
(0)
n−1(h) +AΣW

(1)
n−1(h) +

1

2
A2ΣW

(2)
n−1(h) +O(h3).

(6.12)

Using eqs. (6.11)-(6.12), we find that the one-step approximation for the SIE method reads

XSIE
tn−1,ξ(tn) = φ̃

(1)
h/2(S)

= S +
h

2
B(S) +

h2

4
JB(S)B(S) +O(h3)

= ξ + y +
h

2
B(ξ + y) +

h2

4
JB(ξ + y)B(ξ + y) +O(h3).

(6.13)

Expanding B(ξ + y) around ξ yields

B(ξ + y) = B(ξ) + JB(ξ)y +G(ξ) +O(∥y∥3),

where Gi(ξ) is given by
Gi = y⊤HBi(ξ)y, i = 1, ..., d,

and O(∥y∥3) = O(h3/2) since

O(∥y∥) = O(∥Wn−1(h)∥) = O(h1/2).

Thus, we have that

h

2
B(ξ + y) =

h

2
B(ξ) +

h

2
JB(ξ)y +

h

2
G(ξ) +O(h5/2), (6.14)

and
h2

4
JB(ξ + y)B(ξ + y) =

h2

4
JB(ξ)B(ξ) +O(h5/2). (6.15)
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Inserting for eqs. (6.14) and (6.15) into eq. (6.13) then yields

XSIE
tn−1,ξ(tn) = ξ + y +

h

2
B(ξ) +

h

2
JB(ξ)y +

h

2
G(ξ) +

h2

4
JB(ξ)B(ξ) +O(h5/2) (6.16)

Inserting for y from eq. (6.12), we find that

ξ + y +
h

2
B(ξ) = ξ + hB(ξ) +

h2

4
JB(ξ)B(ξ) + hAξ +

h2

2
AB(ξ) +

h2

2
A2ξ

+ΣW
(0)
n−1(h) +AΣW

(1)
n−1(h) +

1

2
A2ΣW

(2)
n−1(h) +O(h3),

(6.17)

and

h

2
JB(ξ)y =

h2

4
JB(ξ)B(ξ) +

h2

2
JB(ξ)Aξ +

h

2
JB(ξ)ΣW

(0)
n−1(h) +

h

2
JB(ξ)AΣW

(1)
n−1(h)

+
h

4
JB(ξ)A2ΣW

(2)
n−1(h) +O(h3).

(6.18)

Finally, inserting for eqs. (6.17) and (6.18) into eq. (6.16) yields

XSIE
tn−1,ξ(tn) = ξ + hB(ξ) +

h2

4
JB(ξ)B(ξ) + hAξ +

h2

2
AB(ξ) +

h2

2
A2ξ

+ΣW
(0)
n−1(h) +AΣW

(1)
n−1(h) +

1

2
A2ΣW

(2)
n−1(h)

+
h2

4
JB(ξ)B(ξ) +

h2

2
JB(ξ)Aξ +

h

2
JB(ξ)ΣW

(0)
n−1(h)

+
h

2
JB(ξ)AΣW

(1)
n−1(h) +

h

4
JB(ξ)A2ΣW

(2)
n−1(h) +

h

2
G(ξ)

+
h2

4
JB(ξ)B(ξ) +O(h5/2)

(6.19)

We now introduce the local errors δLTIE
tn−1,ξ

(tn) and δSIEtn−1,ξ
(tn), defined by

δLTIE
tn−1,ξ(tn) := Xtn−1,ξ(tn)−XLTIE

tn−1,ξ(tn), (6.20a)

δSIEtn−1,ξ(tn) := Xtn−1,ξ(tn)−XSIE
tn−1,ξ(tn). (6.20b)

It follows from eqs. (6.3) and (6.10) that δLTIE
tn−1,ξ

(tn) is given by

δLTIE
tn−1,ξ(tn) =

h2

2
JB(ξ)Aξ − h2

2
AB(ξ)− h2

2
JB(ξ)B(ξ) +

h2

2
D(ξ)

+ JB(ξ)ΣW
(1)
n−1(h)−

1

2
A2ΣW

(2)
n−1(h) +O(h5/2)

(6.21)

Similarly, it follows from eqs. (6.3) and (6.19) that δSIEtn−1,ξ
(tn) is given by

δSIEtn−1,ξ(tn) =
h2

2

(
D(ξ)−G(ξ)

)
− h2

4
JB(ξ)B(ξ) + JB(ξ)ΣW

(1)
n−1(h)

− 1

2
A2ΣW

(2)
n−1(h)−

h

2
JB(ξ)ΣW

(0)
n−1(h)−

h

2
JB(ξ)AΣW

(1)
n−1(h)

− h

4
JB(ξ)A2ΣW

(2)
n−1(h) +O(h5/2)

(6.22)
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Taking expectations of (6.21) and (6.22) yields∥∥∥E[δLTIE
tn−1,ξ(tn)

]∥∥∥ := O(h2), (6.23a)∥∥∥E[δSIEtn−1,ξ(tn)
]∥∥∥ := O(h2), (6.23b)

where we used the fact that

E
[
W

(k)
n−1(h)

]
= 0 ∀ k ≥ 0, n > 0.

Recalling from eq. (2.11) that E
[ ∥∥∥W (k)

n−1(h)
∥∥∥2 ] = O(h2k+1), it follows that√

E
[ ∥∥∥δLTIE

tn−1,ξ
(tn)

∥∥∥2 ] = O(h3/2), (6.24a)√
E
[ ∥∥∥δSIEtn−1,ξ

(tn)
∥∥∥2 ] = O(h3/2). (6.24b)

By eqs. (6.23a)-(6.23b) and (6.24a)-(6.24b), it follows that X̃LTIE(tn) and X̃SIE(tn) are mean-
square consistent of order p = 1 in the sense of Definition 6.1. ■

6.b Mean-square boundedness

We will now establish mean-square boundedness of all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn)

and X̃SIE(tn). This proof requires that the solution (exact or approximate) to the nonlinear ODE
(4.4a) is linearly bounded. In this thesis, we prove mean-square boundedness under Assumption 3.3,
wherein the assumption of linearly bounded growth on the exact- and implicit-Euler solutions of
(4.4a) follows readily through Theorems 5.1 and 5.2. Recall from [1] and the specialization project
[16] that linearly bounded solutions of (4.4a) had to be assumed explicitly in lieu of Assumption
3.3. Recall also from the specialization project that we approximated the solution to (4.4a) via the
explicit Euler method. This was problematic, since it was discovered that the explicit Euler method
could not guarantee linearly bounded solutions in the sense required (thus leading us to consider
the case where (4.4a) is solved using the implicit Euler method).

We will prove mean-square boundedness for all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and

X̃SIE(tn) by proving mean-square boundedness for the generalized methods X
LT

(tn) and X
S
(tn)

defined through eqs. (4.15a)-(4.15b). At this point, we introduce the function Θ(z), defined by

Θ(z) :=
1− e−z

z
, z ∈ R. (6.25)

Observe that while Θ(z) is undefined for z = 0, it follows in the limit that

lim
z→0±

Θ(z) = 1.

Thus, we define Θ(0) := 1. Observe that since Assumptions 3.1 and 3.3 holds, it follows from
Theorems 5.1 and 5.2 that∥∥∥φ(1)

h (x)
∥∥∥2 ≤ e−2αh ∥x∥2 + K

α

(
1− e−2αh

)
= e−2αh ∥x∥2 + 2KΘ(2αh)h, ∀ h ∈ (0, h0], (6.26a)∥∥∥φ̃(1)

h (x)
∥∥∥2 ≤ e−2α̃0h ∥x∥2 + 2Kh = e−2α̃0h ∥x∥2 + 2KΘ(0)h ∀ h ∈ (0, h0], (6.26b)
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where, in eq. (6.26b), the upper-bound h0 on the step-size h must satisfy 1+2αh0 > 0. Recall that
α, α̃0 ∈ R and that α̃0 is given by

α̃0 =
1

2h0
log (1 + 2αh0). (6.27)

It is clear that we may write eqs. (6.26a)-(6.26b) as a single expression using the generalized flow

φ
(1)
h (x): ∥∥∥φ(1)

h (x)
∥∥∥2 ≤ e−2ah ∥x∥2 + 2KΘ(2βh)h, ∀ h ∈ (0, h0]. (6.28)

Observe that if a = β = α, then eq. (6.28) reduces to eq. (6.26a). Similarly, if a = α̃0 and β = 0,
then eq. (6.28) reduces to eqs. (6.26b).

Having defined the necessary ingredients, the goal of this subsection is to prove the following
lemma:

Lemma 6.3 (mean-square boundedness) Let X̃LT(tn) and X̃S(tn) be the Lie-trotter and Strang

splitting methods defined through eqs. (4.16a) and (4.16b), respectively. Similarly, let X̃LTIE(tn)

and X̃SIE(tn) represent the LTIE- and SIE composition methods defined through eqs. (4.16c) and
(4.16d), respectively. Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold. Then there exists h0 > 0 such that

X̃LT(tn), X̃S(tn), X̃LTIE(tn) and X̃SIE(tn) are mean-square bounded in the sense of Definition
6.2 for all h ∈ (0, h0].

Proof: We start by proving mean-square boundedness for the generalized Lie-Trotter method
defined through eq. (4.15a). Taking the expectation of the norm-squared of (4.15a), we find

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] = E

[ ∥∥∥eAhφ
(1)
h

(
X

LT
(tn−1)

)
+Zn−1(h)

∥∥∥2 ]
= E

[ ∥∥∥eAhφ
(1)
h

(
X

LT
(tn−1)

)∥∥∥2 ]+ E
[
∥Zn−1(h)∥2

]
+ 2E

[〈
eAhφ

(1)
h

(
X

LT
(tn−1)

)
,Zn−1(h)

〉]
, n = 0, 1, ..., N ∈ N,

(6.29)

where we recall from eq. (4.12) that

Zn−1(h) =

∫ h

0

eA(h−s)ΣdW (s) ∼ N
(
0,C(h)

)
, n = 1, ..., N.

Moreover, it follows from eq. (2.9) that E
[
∥Zn−1(h)∥2

]
= Tr

(
C(h)

)
. The trace of a matrix satisfies

for any matrix M ∈ Rd×d the following relation:

Tr(MM⊤) = Tr(M⊤M) = ∥M∥2F , (6.30)

with ∥·∥F denoting the Frobenius norm, which is a submultiplicative norm. Additionally, the
Frobenius norm satisfies the following relation for any matrices M1,M2 ∈ Rd×d

∥M1M2∥2F ≤ ∥M1∥2 ∥M2∥2F , (6.31)
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where ∥·∥ is the usual Euclidean norm. Thus, it follows from eq. (4.13), submultiplicativity of the
Frobenius norm and eqs. (6.30)-(6.31) that

Tr
(
C(h)

)
= Tr

(∫ h

0

(
eA(h−s)Σ

)(
eA(h−s)Σ

)⊤
ds

)

=

∫ h

0

Tr

((
eA(h−s)Σ

)(
eA(h−s)Σ

)⊤)
ds

=

∫ h

0

Tr

((
eA(h−s)Σ

)⊤(
eA(h−s)Σ

))
ds

=

∫ h

0

∥∥∥eA(h−s)Σ
∥∥∥2
F
ds

≤ ∥Σ∥2F
∫ h

0

∥∥∥eA(h−s)
∥∥∥2 ds

Letting µ = µ(A) denote the logarithmic norm of A, it follows from eq. (2.3) that∥∥eAh
∥∥2 ≤ e2µh. (6.32)

Thus, we find that Tr
(
C(h)

)
satisfies

Tr
(
C(h)

)
≤ ∥Σ∥2F

∫ h

0

∥∥∥eA(h−s)
∥∥∥2 ds

≤ ∥Σ∥2F
∫ h

0

e2µ(h−s)ds

= ∥Σ∥2F
e2µh − 1

2µ

= ∥Σ∥2F
e2µh − 1

2µh
h

= ∥Σ∥2F e2µhΘ(2µh)h,

(6.33)

It follows from [5] (Theorem B2 (e)) and the fact that Zn−1(h) is zero in expectation that

E
[〈

eAhφ
(1)
h

(
X

LT
(tn−1)

)
,Zn−1(h)

〉]
=

〈
eAhφ

(1)
h

(
X

LT
(tn−1)

)
,E
[
Zn−1(h)

]〉
= 0. (6.34)

Thus, by eqs. (6.32), (6.33) and (6.34), we find that (6.29) reduces to

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] ≤ E

[ ∥∥∥eAhφ
(1)
h

(
X

LT
(tn−1)

)∥∥∥2 ]+ ∥Σ∥2F e2µhΘ(2µh)h

≤ E
[ ∥∥eAh

∥∥2 ∥∥∥φ(1)
h

(
X

LT
(tn−1)

)∥∥∥2 ]+ ∥Σ∥2F e2µhΘ(2µh)h

≤ e2µhE
[ ∥∥∥φ(1)

h

(
X

LT
(tn−1)

)∥∥∥2 ]+ ∥Σ∥2F e2µhΘ(2µh)h

(6.35)
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By eq. (6.28), it follows that∥∥∥φ(1)
h

(
X

LT
(tn−1)

)∥∥∥2 ≤ e−2ah
∥∥∥XLT

(tn−1)
∥∥∥2 + 2KΘ(2βh)h (6.36)

Inserting for eq. (6.36) into (6.35) yields

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] ≤ e2µhE

[
e−2ah

∥∥∥XLT
(tn−1)

∥∥∥2 + 2KΘ(2βh)h
]
+ ∥Σ∥2F e2µhΘ(2µh)h

= e2(µ−a)hE
[ ∥∥∥XLT

(tn−1)
∥∥∥2 ]+ e2µh

(
2KΘ(2βh) + ∥Σ∥2F Θ(2µh)

)
h

= e2(µ−a)hE
[ ∥∥∥XLT

(tn−1)
∥∥∥2 ]+ C

LT
h,

(6.37)

where C
LT

is given by

C
LT

= C
LT

(β, µ, h) = e2µh
(
2KΘ(2βh) + ∥Σ∥2F Θ(2µh)

)
. (6.38)

Note that C
LT

reduces to constants C̃LT associated with the LT splitting method and C̃LTIE

associated with the LTIE composition method by inserting for β = α and β = 0, respectively.
Back-iterating eq. (6.37) n times yields

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] ≤ e2(µ−a)nhE

[
∥X0∥2

]
+ C

LT
h

n−1∑
k=0

e2(µ−a)kh. (6.39)

Observe at this point that the sum involved above is a geometric sum, and satisfies

h

n−1∑
k=0

e2(µ−a)kh = h
e2(µ−a)tn − 1

e2(µ−a)h − 1
=: Ψ(tn), (6.40)

where we used the fact that nh = tn. Inserting for eq. (6.40) into eq. (6.39), we find

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] ≤ e2(µ−a)tnE

[
∥X0∥2

]
+ C

LT
Ψ(tn). (6.41)

Recalling that tn ≤ tN = T , we proceed with showing that Ψ(tn) may always be bounded from
above by a constant Ψ0(T ) which is independent of tn and h. For the case of µ− a > 0, it follows
that

h

e2(µ−a)h − 1
≤ 1

2(µ− a)
, e2(µ−a)tn − 1 ≤ e2(µ−a)T − 1, h > 0, µ− a > 0,

implying that

Ψ(tn) ≤ Ψ0(T ) =
e2(µ−a)T − 1

2(µ− a)
, µ− a > 0.

For the case µ − a < 0, it follows that Ψ(tn) is a monotonically increasing function in tn ≥ 0 and
h > 0, yielding

Ψ(tn) ≤ Ψ0(T ) = h0
e2(µ−a)T − 1

e2(µ−a)h0 − 1
, µ− a < 0.
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Lastly, we have that Ψ(tn) is undefined for µ− a = 0, however we have in the limit that

lim
µ−a→0±

Ψ(tn) = tn ≤ Ψ0(T ) = T.

Thus, we see that Ψ(tn) may be bounded from above for all µ−a ∈ R by a constant Ψ0(T ) which is

independent of tn and h. Similarly, the constant C
LT

= C
LT

(β, µ, h) may be bounded from above

by C
LT

0 := C
LT

(β, µ, h0), where C
LT

0 is independent of h. Note that depending on the sign of β, we
have

Θ(2βh) ≤

{
1, β ≥ 0

Θ(2βh0), β < 0

Thus, depending on the sign of µ and β, it follows that C
LT

0 is given by

C
LT

0 =


e2µh0

(
2K + ∥Σ∥2F Θ(2µh0)

)
, µ > 0, β ≥ 0

e2µh0

(
2KΘ(2βh0) + ∥Σ∥2F Θ(2µh0)

)
, µ > 0, β < 0,

2K + ∥Σ∥2F , µ ≤ 0, β ≥ 0,

2KΘ(2βh0) + ∥Σ∥2F , µ ≤ 0, β < 0.

(6.42)

Thus, we see that there exists constants C
LT

0 and Ψ0(T ) independent of h and tn such that

C
LT

Ψ(tn) ≤ C
LT

0 Ψ0(T ). Then, it follows from eq. (6.41) that

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] ≤ e2(µ−a)tnE

[
∥X0∥2

]
+ C

LT

0 Ψ0(T ) (6.43)

Moreover, it holds that

e2(µ−a)tn ≤

{
e2(µ−a)T , µ− a > 0,

1, µ− a ≤ 0.
(6.44)

Letting K
LT

be given by

K
LT

= max{1, e2(µ−a)T , C
LT

0 Ψ0(T )}, (6.45)

it follows from eqs. (6.43) and (6.44) that

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] ≤ K

LT
(
1 + E

[
∥X0∥2

])
(6.46)

Since eq. (6.46) holds for all n = 0, 1, ..., N , it also holds for the value of n which maximizes

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ]. Thus, we’ve shown that the generalized method X

LT
(tn) defined through eq.

(4.15a) is mean-square bounded in the sense of Definition 6.2. Since this generalized method

represents both the Lie-Trotter splitting method X̃LT(tn) (recovered by setting a = β = α) and

the LTIE composition method X̃LTIE(tn) (recovered by setting a = α̃0 and β = 0), it follows that

both X̃LT(tn) and X̃LTIE(tn) are mean-square bounded in the sense of Definition 6.2.
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We proceed with proving mean-square boundedness for the generalized Strang method defined
through eq. (4.15b). It follows from eq. (6.28) that

E
[ ∥∥∥XS

(tn)
∥∥∥2 ] = E

[ ∥∥∥φ(1)
h/2

(
eAhφ

(1)
h/2

(
X

S
(tn−1)

)
+Zn−1(h)

)∥∥∥2 ]
≤ e−ahE

[ ∥∥∥eAhφ
(1)
h/2

(
X

S
(tn−1)

)
+Zn−1(h)

∥∥∥2 ]+KΘ(βh)h

(6.47)

Using the same logic which brought us from eq. (6.29) to eq. (6.35) for the generalized Lie-Trotter
method, we find

E
[ ∥∥∥eAhφ

(1)
h/2

(
X

S
(tn−1)

)
+Zn−1(h)

∥∥∥2 ] ≤ e2µhE
[ ∥∥∥φ(1)

h/2

(
X

S
(tn−1)

)∥∥∥2 ]
+ ∥Σ∥2F e2µhΘ(2µh)h

(6.48)

It follows once more from eq. (6.28) that

E
[ ∥∥∥φ(1)

h/2

(
X

S
(tn−1)

)∥∥∥2 ] ≤ e−ahE
[ ∥∥∥XS

(tn−1)
∥∥∥2 ]+KΘ(βh)h (6.49)

Inserting for eq. (6.49) back into eq. (6.48) then yields

E
[ ∥∥∥eAhφ

(1)
h/2

(
X

S
(tn−1)

)
+Zn−1

∥∥∥2 ] ≤ e2µh
(
e−ahE

[ ∥∥∥XS
(tn−1)

∥∥∥2 ]+KΘ(βh)h

)
+ ∥Σ∥2F e2µhΘ(2µh)h

(6.50)

Moreover, inserting for eq. (6.50) into eq. (6.47) yields

E
[ ∥∥∥XS

(tn)
∥∥∥2 ] ≤ e−ahE

[ ∥∥∥eAhφ
(1)
h/2

(
X

S
(tn−1)

)
+Zn−1

∥∥∥2 ]+KΘ(βh)h

≤ e−ahe2µh
(
e−ahE

[ ∥∥∥XS
(tn−1)

∥∥∥2 ]+KΘ(βh)h

)
+ e−ah ∥Σ∥2F e2µhΘ(2µh)h+KΘ(βh)h

= e2(µ−a)hE
[ ∥∥∥XS

(tn−1)
∥∥∥2 ]+ e(2µ−a)hKΘ(βh)h

+ e(2µ−a)h ∥Σ∥2F Θ(2µh)h+KΘ(βh)h

= e2(µ−a)hE
[ ∥∥∥XS

(tn−1)
∥∥∥2 ]

+
((

e(2µ−a)h + 1
)
KΘ(βh) + e(2µ−a)h ∥Σ∥2F Θ(2µh)

)
h

= e2(µ−a)hE
[ ∥∥∥XS

(tn−1)
∥∥∥2 ]+ C

S
h,

(6.51)

where C
S
is given by

C
S
= C

S
(a, β, µ, h) =

(
e(2µ−a)h + 1

)
KΘ(βh) + e(2µ−a)h ∥Σ∥2F Θ(2µh). (6.52)
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Note that C
S
reduces to constants C̃S associated with the Strang splitting method and C̃SIE associ-

ated with the SIE composition method by inserting for a = β = α and (a = α̃0, β = 0), respectively.
By back-iterating eq. (6.51) n times and inserting for tn = nh, we obtain

E
[ ∥∥∥XS

(tn)
∥∥∥2 ] ≤ e2(µ−a)tnE

[
∥X0∥2

]
+ C

S
Ψ(tn), (6.53)

where Ψ(tn) is the same function from eq. (6.40). Comparing eq. (6.53) with the corresponding
expression (6.41) for the generalized Lie-Trotter case, it becomes clear that the remainder of the
proof is essentially identical to the generalized Lie-Trotter case: It is clear from eq. (6.52) that

there must exist a constant C
S

0 independent of h such that C
S ≤ C

S

0 . Thus, eq. (6.53) reduces to

E
[ ∥∥∥XS

(tn)
∥∥∥2 ] ≤ e2(µ−a)tnE

[
∥X0∥2

]
+ C

S

0Ψ0(T ), (6.54)

at which point it immediately follows that

E
[ ∥∥∥XS

(tn)
∥∥∥2 ] ≤ K

S
(
1 + E

[
∥X0∥2

])
, (6.55)

where K
S
is independent of tn and h, and is given by

K
S
= max{1, e2(µ−a)T , C̃S

0Ψ0(T )}. (6.56)

Since eq. (6.55) holds for all n = 0, 1, ..., N , it also holds for the value of n which maximizes

E
[ ∥∥∥XS

(tn)
∥∥∥2 ]. Thus, we’ve shown that the generalized Strang method X

S
(tn) defined through

eq. (4.15b) is mean-square bounded in the sense of Definition 6.2. Since this generalized method

represents both the Strang splitting method X̃S(tn) (recovered by setting a = β = α) and the SIE

composition method X̃SIE(tn) (recovered by setting a = α̃0 and β = 0), it follows that both X̃S(tn)

and X̃SIE(tn) are mean-square bounded in the sense of Definition 6.2. Thus, we’ve proven that all

four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn) are mean-square bounded in the sense of
Definition 6.2. ■
We summarize the results of this section in the following theorems:

Theorem 6.4 (Mean-square convergence of splitting methods) Let X̃LT(tn) and X̃S(tn)
be the Lie-Trotter- and Strang splitting methods defined through eqs. (4.16a) and (4.16b), respec-
tively. Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold. Then, there exists h0 > 0 such that for all

h ∈ (0, h0], X̃
LT(tn) and X̃S(tn) are mean-square convergent of order p = 1 in the sense of Defi-

nition 6.3.

Proof: The result follows directly from Lemma 4.1. of [1] and Lemma 6.3. ■

Theorem 6.5 (Mean-square convergence of composition methods) Let X̃LTIE(tn) and X̃SIE(tn)
be the LTIE- and SIE composition methods defined through eqs. (4.16c) and (4.16d), respectively.
Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold. Then, there exists h0 > 0 satisfying 1+ 2αh0 > 0 such

that for all h ∈ (0, h0], X̃
LTIE(tn) and X̃SIE(tn) are mean-square convergent of order p = 1 in the

sense of Definition 6.3

Proof: The result follows directly from Lemma 6.2 and Lemma 6.3. ■
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7 Structure Preservation

In this section, we investigate the conditions under which our considered methods are able to pre-
serve important structural properties; in particular, 1-step hypoellipticity and geometric ergodicity.

7.a Preservation of noise structure and 1-step hypoellipticity

Recall that the SDE (3.1) is hypoelliptic if its transition probability (2.4) admits a smooth density,
even though ΣΣ⊤ is not of full rank. The discrete analogue of this property is termed 1-step

hypoellipticity, and it states that the distribution of X̃(tn) given X̃(tn−1) admits a smooth density.
Of particular interest is the case where this smooth density is (multivariate) Gaussian. It was
shown in [1] that the Lie-Trotter splitting method is 1-step hypoelliptic, and that the distribution

of X̃LT(tn) given X̃LT(tn−1) is normally distributed with mean and covariance matrix given by

E
[
X̃LT(tn)|X̃LT(tn−1)

]
= eAhφ

(1)
h

(
X̃LT(tn−1)

)
,

Cov
[
X̃LT(tn)|X̃LT(tn−1)

]
= C(h),

where C(h) is the covariance matrix of eq. (4.13). By contrast, the conditional distribution for
the Strang splitting method is in general not explicitly available [1]. We prove in Theorem 7.1

that the LTIE method also satisfies 1-step hypoellipticity, and that the distribution of X̃LTIE(tn)

given X̃LTIE(tn−1) also is multivariate normal. We do not prove this for the SIE method since, also
here, the conditional distribution is in general not explicitly available. Furthermore, the property
of 1-step hypoellipticity implies that, for a hypoelliptic SDE, the numerical method propagates the
noise into the smooth component after 1 simulation step. It is known that Euler-Maruyama-type
methods don’t satisfy this property; rather, they are 2-step hypoelliptic, meaning that the noise is
propagated into the smooth component after 2 simulation steps [9].

Theorem 7.1 Let X̃LTIE(tn) be the LTIE composition method defined through eq. (4.16c). Assume
that the SDE (3.1) is hypoelliptic in the sense of Assumption 3.4. Suppose further that Assumptions
3.1 and 3.3 holds. Then, there exists h0 > 0 satisfying 1 + 2αh0 > 0 such that for all h ∈ (0, h0],

X̃LTIE(tn) is 1-step hypoelliptic. Moreover, the distribution of X̃LTIE(tn) given X̃LTIE(tn−1) is
multivariate normal with expectation and covariance given by

E
[
X̃LTIE(tn)|X̃LTIE(tn−1)

]
= eAhφ̃

(1)
h

(
X̃LTIE(tn−1)

)
,

Cov
[
X̃LTIE(tn)|X̃LTIE(tn−1)

]
= C(h),

where C(h) is the covariance matrix of eq. (4.13).

Proof: By Assumptions 3.1 and 3.3, and since h0 satisfies 1+2αh0 > 0, the implicit-Euler solution
of (4.4a) is well-defined for all h ∈ (0, h0]. It follows immediately from eq. (4.16c) and from the
fact that E

[
Zn−1(h)

]
= 0 that

E
[
X̃LTIE(tn)|X̃LTIE(tn−1)

]
= E

[
eAhφ̃

(1)
h

(
X̃LTIE(tn−1) +Zn−1(h)

)]
= eAhφ̃

(1)
h

(
X̃LTIE(tn−1)

)
.
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The result then follows by

Cov
[
X̃LTIE(tn)|X̃LTIE(tn−1)

]
= E

[(
X̃LTIE(tn)− E

[
X̃LTIE(tn)|X̃LTIE(tn−1)

])(
X̃LTIE(tn)− E

[
X̃LTIE(tn)|X̃LTIE(tn−1)

])⊤
]

= E
[
Zn−1(h)Z

⊤
n−1(h)

]
= C(h),

where C(h) is the covariance matrix of eq. (4.13). ■

7.b Preservation of Lyapunov structure and geometric ergodicity

Recall from Lemma 3.2 that if µ < α and K > 0, then the drift F satisfies the following dissipativity
condition: 〈

x,F (x)
〉
≤ K − c ∥x∥2 , ∀ x ∈ Rd, c = α− µ > 0, K > 0. (7.1)

Recall further that this condition ensured that the function

L(x) := 1 + ∥x∥2 , ∀ x ∈ R

was a Lyapunov function satisfying condition (3.6) for the SDE (3.1). The existence of such a
function then implies that the SDE is geometrically ergodic [9], [1].

Our goal now is to show that our numerical methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn)
preserves the geometric ergodicity of the underlying SDE (3.1). The key to proving this result lies
in showing that the methods satisfy a discrete analogue of 3.6, which we refer to (as in [1]) as a
discrete Lyapunov condition. The discrete Lyapunov condition is formally stated in Definition 7.1.

Definition 7.1 (Discrete Lyapunov Condition) Let L be a Lyapunov function for the SDE

(3.1). A numerical solution X̃(tn) of (3.1) satisfies the discrete Lyapunov condition if there exists
ρ̃ ∈ (0, 1) and η̃ > 0 such that

E
[
L
(
X̃(tn)

)
|X̃(tn−1)

]
≤ ρ̃L

(
X̃(tn−1)

)
+ η̃.

It was shown in [1] that both splitting methods X̃LT(tn) and X̃S(tn) satisfy this condition, however,
their proof required

∥∥eAh
∥∥ < 1. This is guaranteed if µ < 0 (though the converse does not hold).

In this work, we prove that all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn) satisfy the
discrete Lyapunov condition of Definition 7.1, albeit under slightly different conditions. Specifically,

we prove that if µ < α, then there exists h0 > 0 such that X̃LT(tn) and X̃S(tn) preserves geometric
ergodicity of the SDE (3.1) for all h ∈ (0, h0]. Similarly, we prove that if µ < α̃0, then there exists

h0 > 0 satisfying 1 + 2αh0 > 0 such that X̃LTIE(tn) and X̃SIE(tn) preserves geometric ergodicity
of the SDE (3.1) for all h ∈ (0, h0]. Crucially, and in contrast to [1], there is room for µ to be
non-negative.

The proof is nearly identical for all four methods, so we will prove the result for a general-

ized method X̃(tn), where X̃(tn) represents all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and

X̃SIE(tn). Recall from eq. (6.37) that

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] ≤ e2(µ−a)hE

[ ∥∥∥XLT
(tn−1)

∥∥∥2 ]+ C
LT

h, (7.2)
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where C
LT

= C
LT

(β, µ, h) is given by eq. (6.38). Here, X
LT

(tn) represents both methods X̃LT(tn)

and X̃LTIE(tn). Setting a = β = α causes X
LT

(tn) and C
LT

to reduce to X̃LT(tn) and C̃LT,

respectively, where C̃LT = C
LT

(α, µ, h). Similarly, setting a = α̃0 and β = 0 causes X
LT

(tn) and

C
LT

to reduce to X̃LTIE(tn) and C̃LTIE, respectively, where C̃LTIE = C
LT

(0, µ, h). Recall also from
(6.51) that

E
[ ∥∥∥XS

(tn)
∥∥∥2 ] ≤ e2(µ−a)hE

[ ∥∥∥XS
(tn−1)

∥∥∥2 ]+ C
S
h. (7.3)

where C
S
= C

S
(a, β, µ, h) is given by eq. (6.52). Here, X

S
(tn) represents both methods X̃S(tn)

and X̃SIE(tn). Setting a = β = α causes X
S
(tn) and C

S
to reduce to X̃S(tn) and C̃S, respectively,

where C̃S = C
S
(α, α, µ, h). Similarly, setting a = α̃0 and β = 0 causes X

S
(tn) and C

S
to reduce to

X̃SIE(tn) and C̃SIE, respectively, where C̃SIE = C
S
(α̃0, 0, µ, h).

Using the generalized method X̃(tn), we can represent eqs. (7.2) and (7.3) by the general
expression

E
[ ∥∥∥X̃(tn)

∥∥∥2 ] ≤ e2(µ−a)hE
[ ∥∥∥X̃(tn−1)

∥∥∥2 ]+ C̃h. (7.4)

We will use eq. (7.4) to prove that the generalized method X̃(tn) satisfies the discrete Lya-

punov condition of Definition 7.1 when µ < a. The result for all four methods X̃LT(tn), X̃
S(tn),

X̃LTIE(tn) and X̃SIE(tn) is then obtained by appropriately inserting for a = {α, α̃0} and C̃ =

{C̃LT, C̃S, C̃LTIE, C̃SIE}.

Theorem 7.2 Let X̃LT(tn) and X̃S(tn) be the Lie-Trotter and Strang splitting methods defined

through eqs. (4.16a) and (4.16b), respectively. Moreover, let X̃LTIE(tn) and X̃SIE(tn) be the
LTIE- and SIE composition methods defined through eqs. (4.16c) and (4.16d), respectively. Let

L(x) := 1 + ∥x∥2 , ∀ x ∈ Rd,

be a Lyapunov function of the SDE (3.1). Let µ = µ(A) be the logarithmic norm of A. Suppose
Assumption 3.3 holds for some K ≥ 0 and α ∈ R. If µ < α, then there exists h0 > 0 such that

X̃LT(tn) and X̃S(tn) satisfies the discrete Lyapunov condition of Definition 7.1 for h ∈ (0, h0] . If
µ < α̃0, where α̃0 is given by

α̃0 :=
1

2h0
log (1 + 2αh0),

then there exists h0 > 0 satisfying 1 + 2αh0 > 0 such that X̃LTIE(tn) and X̃SIE(tn) satisfy the
discrete Lyapunov condition of Definition 7.1 for h ∈ (0, h0].

Proof: We will now show that the generalized method X̃(tn) satisfies the discrete Lyapunov
condition of Definition 7.1 using eq. (7.4). By assumption, µ < a. If a = α, then this proof

corresponds to the case of X̃LT(tn) of X̃
S(tn). If a = α̃0, then this proof corresponds to the case of

X̃LTIE(tn) and X̃SIE(tn). In either case, µ < a implies that e2(µ−a)h < 1 for all h ∈ (0, h0]. Thus,
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we find

E
[
L
(
X̃(tn)

)
|X̃(tn−1)

]
= 1 + E

[
X̃(tn)|X̃(tn−1)

]
≤ 1 + e2(µ−a)h

∥∥∥X̃(tn−1)
∥∥∥2 + C̃h

≤ e2(µ−a)h
(
1 +

∥∥∥X̃(tn−1)
∥∥∥2 )+ C̃h+ 1

= e2(µ−a)hL
(
X̃(tn−1)

)
+ C̃h+ 1.

(7.5)

That is, X̃(tn) satisfies the discrete Lyapunov condition of Definition 7.1 with ρ̃ and η̃ given by

ρ̃ = e2(µ−α)h ∈ (0, 1), η̃ = C̃h+ 1 > 0, h ∈ (0, h0].

Appropriate insertion of a = {α, α̃0} and C̃ = {C̃LT, C̃S, C̃LTIE, C̃SIE} yields the result for all four

methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn). ■
Recall that α̃0 ≤ α with equality only when α = 0. As such, it is clear from Theorem 7.2 that

the splitting methods X̃LT(tn) and X̃S(tn) can preserve geometric ergodicity for larger values of µ

than the composition methods X̃LTIE(tn) and X̃SIE(tn). It follows in the limit h0 → 0+, however,
that

lim
h0→+∞

α̃0 = lim
h0→+∞

1

2h0
log (1 + 2αh0) = α.

Thus, as the step-size decreases, the condition for preserving geometric ergodicity for the splitting
methods and composition methods coincide. Figure 1 shows α̃0 as a function of α for three different
step-sizes h0. We also include the straight line y = α for reference. Observe that as the step-size
decreases, α̃0 approaches the line y = α.

10 5 0 5 1010

5

0

5

10 0 vs 

0, h0 = 1.0)
0, h0 = 0.1)
0, h0 = 0.01)

Figure 1: α̃0 vs α for different stepsizes h0.

We proceed with deriving asymptotic bounds for all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn)

and X̃SIE(tn) as tn → +∞. We will again consider the generalized method X̃(tn) in this proof.
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Recall from eq. (7.4) that all splitting- and composition methods satisfy a bound of the type

E
[ ∥∥∥X̃(tn)

∥∥∥2 ] ≤ e2(µ−a)hE
[
∥X(tn−1)∥2

]
+ C̃h,

where appropriate insertion of a = {α, α̃0} and C̃ = {C̃LT, C̃S, C̃LTIE, C̃SIE} yields the particular

bound for any of our methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn). Back-iterating eq. (7.4)
n times then yields the bound

E
[ ∥∥∥X̃(tn)

∥∥∥2 ] ≤ e2(µ−a)tnE
[
∥X0∥2

]
+ C̃Ψ(tn) =: κ̃(tn). (7.6)

Here, we obtain four different bounds κ̃(tn) = {κ̃LT(tn), κ̃
S(tn), κ̃

LTIE(tn), κ̃
SIE(tn)} corresponding

to each of our four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn), depending on our choice

of a = {α, α̃0} and C̃ = {C̃LT, C̃S, C̃LTIE, C̃SIE}.

Corollary 7.2.1 Let the conditions of Theorem 7.2 hold. If µ < α, then it holds that

lim
tn→+∞

E
[ ∥∥∥X̃LT(tn)

∥∥∥2 ] ≤ hC̃LT

1− e2(µ−α)h
≤ h0C̃

LT
0

1− e2(µ−α)h0
,

lim
tn→+∞

E
[ ∥∥∥X̃S(tn)

∥∥∥2 ] ≤ hC̃S

1− e2(µ−α)h
≤ h0C̃

S
0

1− e2(µ−α)h0
.

Similarly, if µ < α̃0, then it holds that

lim
tn→+∞

E
[ ∥∥∥X̃LTIE(tn)

∥∥∥2 ] ≤ hC̃LTIE

1− e2(µ−α̃0)h
≤ h0C̃

LTIE
0

1− e2(µ−α̃0)h0
,

lim
tn→+∞

E
[ ∥∥∥X̃SIE(tn)

∥∥∥2 ] ≤ hC̃SIE

1− e2(µ−α̃0)h
≤ h0C̃

SIE
0

1− e2(µ−α̃0)h0
.

Proof: Let X̃(tn) represent all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn). More-

over, let a represent both α and α̃0, and let C̃ represent any of the constants {C̃LT, C̃S, C̃LTIE, C̃SIE}.
Suppose now that µ < a. Then, it follows in the limit tn → +∞ of eq. (7.6) that

lim
tn→+∞

e2(µ−a)tn = 0,

lim
tn→+∞

Ψ(tn) = lim
tn→+∞

h
e2(µ−a)tn − 1

e2(µ−a)h − 1
=

h

1− e2(µ−a)h
≤ h0

1− e2(µ−a)h0
,

and the result immediately follows for X̃(tn). Appropriate insertion for a = {α, α̃0} and C̃ =

{C̃LT, C̃S, C̃LTIE, C̃SIE} then yields the result for all four methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn)

and X̃SIE(tn). ■
As an interesting side-note, we investigate the behavior of our methods in the limit h0 → 0+.

This also implies that h → +∞ since h ∈ (0, h0]. In this limit, we transition from a discretized
regime to a continuous regime, whereupon tn → t. Observe moreover from eq. (6.27) that α̃0

approaches α as h0 → 0+. We will therefore insert for a = α whenever h0 → 0+. Since our
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splitting- and composition methods approach the exact solution of (3.1) in this limit, the bound
obtained is interpreted as a bound on the exact solution of (3.1). It follows from eq. (6.40)

Ψ(t) := lim
h→0+

Ψ(tn) = lim
h→0+

h
e2(µ−α)tn − 1

e2(µ−α)h − 1
=

e2(µ−α)t − 1

2(µ− α)
. (7.7)

Moreover, we find from eq. (6.38) that

lim
h→0+

C
LT

= lim
h→0+

e2µh
(
2KΘ(2βh) + ∥Σ∥2F Θ(2µh)

)
= 2K + ∥Σ∥2F (7.8)

Similarly, we find from eq. (6.52) that

lim
h→0+

C
S
= lim

h→0+

((
e(2µ−a)h + 1

)
KΘ(βh) + e(2µ−a)h ∥Σ∥2F Θ(2µh)

)
= 2K + ∥Σ∥2F (7.9)

Thus, taking the limit h→ 0+ of eqs. (6.41) and (6.53) and inserting for eqs. (7.7), (7.8) and (7.9)
yields

lim
h→0+

E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] ≤ e2(µ−α)tE

[
∥X0∥2

]
+
(
2K + ∥Σ∥2F

)e2(µ−α)t − 1

2(µ− α)

lim
h→0+

E
[ ∥∥∥XS

(tn)
∥∥∥2 ] ≤ e2(µ−α)tE

[
∥X0∥2

]
+
(
2K + ∥Σ∥2F

)e2(µ−α)t − 1

2(µ− α)

Since the upper bounds on E
[ ∥∥∥XLT

(tn)
∥∥∥2 ] and E

[ ∥∥∥XS
(tn)

∥∥∥2 ] converge in the limit h→ 0+, we

treat this as an upper limit on E
[
∥X(t)∥2

]
, where X(t) is the exact solution of eq. (3.1). Thus,

we find

E
[
∥X(t)∥2

]
≤ e2(µ−α)tE

[
∥X0∥2

]
+
(
2K + ∥Σ∥2F

)e2(µ−α)t − 1

2(µ− α)

= e−2(α−µ)tE
[
∥X0∥2

]
+

2K + ∥Σ∥2F
2(α− µ)

(
1− e−2(α−µ)t

)
.

(7.10)

The bound (7.10) is only defined for α− µ ̸= 0, however in the limit α− µ→ 0± we find

E
[
∥X(t)∥2

]
≤ E

[
∥X0∥2

]
+ (2K + ∥Σ∥2F)t (7.11)

Moreover, observe that if µ < α, then from eq. (7.10) it holds in the limit t→ +∞ that

lim
t→+∞

E
[
∥X(t)∥2

]
≤

2K + ∥Σ∥2F
2(α− µ)

, α− µ > 0. (7.12)

Observe the close correspondence between the bounds (7.10) and (7.11), and the bounds from
Theorem 5.1. Observe also the similarities between the asymptotic bound for the nonlinear ODE
given by eq. (5.5), which we recall here as

lim
t→+∞

∥X(t)∥2 ≤ K

α
, α > 0,

and the bound on the SDE given by eq. (7.12). Note in particular that, for the nonlinear ODE
(5.1), asymptotic boundedness is determined by α > 0, whereas for the SDE (3.1) asymptotic
boundedness is determined by α− µ > 0 (or equivalently, µ < α).
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8 Implementation

In this section, we discuss some practical implementation details of our proposed methods. We
discuss how to speed up the implementation of Newton’s method for the case where the implicit
equation (4.8) cannot be solved explicitly. We also discuss our approach for numerically demon-
strating mean-square convergence.

8.a Newton’s method

In this section we describe two simple strategies for speeding up our implementation of Newton’s
method when the implicit equation (4.8) cannot be solved explicitly. The first strategy consists
in choosing a split of the semi-linear drift F such that the jacobian of the nonlinear part B is
diagonal, while still satisfying Assumptions 3.1, 3.2 and 3.3. This may require further splitting of
the nonlinear part B into multiple nonlinear parts, increasing the total number of sub-equations
to be solved by our composition methods. If the Jacobian is diagonal, then the Newton matrix
I − hJB(z(k)) from eq. (4.10) is trivially invertible, and its inverse is also a diagonal matrix.
Thus, we may easily find an explicit expression for the inverse Newton matrix (I − hJB(z(k)))−1,
reducing our problem of solving the linear system (4.10) to the problem of performing the following
matrix-vector multiplication at every discrete time-point tn:

z(k+1) =
(
I− hJB(zk)

)−1[
hB(z(k))− hJB(z(k))z(k) − X̃(1)(tn−1)

]
, z(0) = X̃(1)(tn−1), (8.1)

where X̃(1)(0) = X0. Moreover, since the inverse Newton matrix is diagonal, this vector-matrix
multiplication can be further reduced by simply multiplying the i’th diagonal element of the in-
verse Newton matrix with the i’th component of the right-hand-side of eq. (4.10). Then, on an
implementation level, Newton’s method behaves like a standard fixed-point iteration scheme where
z(k+1) = V (z(k)) for the function V : Rd 7→ Rd defined by the right-hand-side of eq. (8.1). We note
that finding an explicit expression for the inverse Newton matrix may require placing restrictions
on the step-size h and/or parameters of the system.

Recall from section 4 that the DIEM method also employs Newton’s method at every time-
iteration if the corresponding implicit equation (4.17) cannot be solved explicitly. With this method,
there is no equation splitting, and so we are forced to use the Jacobian of the full drift, which
will in general not be a diagonal matrix. For this case, it would typically be easier to use a
standard implementation of Newton’s method, where we repeatedly solve a linear system. Lastly, we
note that for systems of small dimensionality d, the difference in computational efficiency between
a standard implementation of Newton’s method, and an implementation which uses the inverse
Newton matrix explicitly, will be small. However, for systems of large dimensionality, this difference
in computational efficiency could in and of itself be sufficient to prefer the composition methods
over the DIEM method.

The second strategy for speeding up our approximation of the solution to the implicit equation
involves only performing a single iteration of Newton’s method. Letting k = 0 and noting that

z(0) = X̃(1)(tn−1), eq. (8.1) reduces to

z(1) = X̃(1)(tn−1) + h
(
I− hJB

(
X̃(1)(tn−1)

))−1

B
(
X̃(1)(tn−1)

)
.

The vector z(1) is then taken as the approximation to the implicit Equation of eq. (4.8). Note that
with this approach, we are no longer approximating the solution to the nonlinear ODE of eq. (4.4a)
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by the implicit Euler method (via Newton’s method). Rather, we are employing its linearized cousin;
a first-order Rosenbrock method [12]. This method corresponds to approximating the solution to
eq. (4.4a) at every time-step tn by

φ̂
(1)
h

(
X̂(1)(tn−1)

)
= X̂(1)(tn−1) + h

(
I− hJB

(
X̂(1)(tn−1)

))−1

B
(
X̂(1)(tn−1)

)
, (8.2)

where the initial value is given by X̂(1)(0) = X0. Combined with a diagonal Jacobian JB, the
method of eq. (8.2) can then easily be implemented to behave like an explicit method (in terms of
computational efficiency) for solving the nonlinear ODE of eq. (4.4a), while still enjoying increased
stability over e.g. the explicit Euler method.

Having introduced another method for approximating the solution to the nonlinear ODE of
eq. (4.4a), we remark that the theory of sections 5, 6 and 7, which pertain to the implicit Euler
method, no longer applies and would require modification. We will nevertheless include some
numerical examples where eq. (4.4a) is solved using eq. (8.2), for comparison purposes. Whenever
we do, we will refer to the composition methods obtained by solving the nonlinear ODE using eq.

(8.2) as the Lie-Trotter first-order Rosenbrock (LTR1) method X̃LTR1(tn) and the Strang first-

order Rosenbrock (SR1) method X̃SR1(tn). These composition methods are given by eq. (4.15a)

and 4.15b, respectively, where the generalized flow φ
(1)
h is replaced by the flow φ̂

(1)
h of eq. (8.2).

The next two sections will be dedicated to numerical demonstrations of the theory presented
in this thesis. First, we consider a simple 1D cubic model problem which will demonstrate several
of the theoretic results derived thus far. Second, we will consider the FitzHugh-Nagumo (FHN)
model, which was also considered in [1]. Using the theory developed in this thesis, we are able to
extend several of the results obtained in [1].

8.b Testing mean-square convergence

We test mean-square convergence by first computing a reference solution using a small step-size
h, and then compare the error between this reference solution and the solutions obtained by our

numerical method X̃(tn) for successively larger step-sizes h. Since the solution (exact or numerical)
of an SDE is itself a stochastic process, we repeat this process across M simulated Brownian paths,

recording the error along each path. Our measure for the overall error of the method X̃(tn) as a
function of step-size h is the Root Mean-Squared Error (RMSE), defined as

RMSE(h) :=

√√√√ 1

M

M∑
m=1

∥∥∥X(T )− X̃(T )
∥∥∥2,

where X̃(T ) represents any of our considered methods. Essentially, the RMSE is the average error of
our method across all M simulated paths. Note that all errors are recorded at the end time tN = T .
This is because our methods incur a local error at every time-step which accumulate throughout
the simulation. Thus, we expect the error to be largest at the end-time T of the simulation.

The issue of reconstructing the Brownian paths at larger step-sizes is a nontrivial matter, and
is discussed in the specialization project [16]. Using the terminology of that work, we recon-
struct the correct Brownian paths across all step-sizes using an exact accumulation of fine-grid ran-

dom variables when testing mean-square convergence of X̃LT(tn), X̃
S(tn), X̃

LTIE(tn), X̃
SIE(tn),

X̃LTR1(tn) and X̃SR1(tn). For comparison purposes, we also test mean-square convergence of the
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DIEM method X̃DIEM(tn). In this case, we reconstruct the correct Brownian paths using a linear
accumulation of fine-grid random variables. The RMSE is of order p if it holds for some constant
C > 0 that

RMSE(h) ≤ Chp.

Note that by taking logs, we may express the above as

log
(
RMSE(h)

)
≤ logC + p log h

We may then use a linear least-squares regression to fit a straight line to the data points(
log h, log

(
RMSE(h)

)
. The slope of this straight-line is then the experimental order of mean-

square convergence.
When computing the reference solution, we would ideally like to use the exact solution of the

SDE in question. This is of course rarely available, so we compute our reference solution by using
Strang splitting with a small step-size h. We choose Strang splitting since this is presumed to
be the most accurate of our methods and will therefore be the best proxy for the exact solution.
Nevertheless, the results remain unchanged if we instead compute the reference solution using any
of the other splitting- or composition methods, or indeed the DIEM method.

9 1D Cubic model problem

In this section we will investigate the following 1-dimensional cubic model problem:

dX(t) =
(
ωX(t)−X3(t)

)
dt+ σdW (t), t ≥ 0, X(0) = X0 ∈ R, (9.1)

where ω ∈ R and σ > 0. The drift F
(
X(t)

)
is on the form

F
(
X(t)

)
= AX(t) +B

(
X(t)

)
, A = ω, B

(
X(t)

)
= −X3(t). (9.2)

We start by showing that this choice of B
(
X(t)

)
satisfies Assumptions 3.1, 3.2 and 3.3:

Proposition 9.1 The function B
(
X(t)

)
= −X3(t) satisfies Assumption 3.1 for any c1 > 0.

Proof: Using the relation

(x− y)2(x2 + xy + y2) = x4 + y4 − xy3 − yx3, ∀ x, y ∈ R,

where

x2 + xy + y2 =

(
x+

y

2

)2

+
3y2

4
≥ 0, ∀ x, y ∈ R,

the result follows immediately〈
x− y,B(x)−B(y)

〉
= −x4 − y4 + xy3 + yx3

= −(x− y)2(x2 + xy + y2) ≤ 0 ≤ c1(x− y)2, ∀x, y ∈ R, c1 > 0. ■

Proposition 9.2 The function B
(
X(t)

)
= −X3(t) satisfies Assumption 3.2 for c2 = 8 and χ = 3.
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Proof: Using the relations

(y3 − x3)2 = (x2 + xy + y2)2(x− y)2, ∀ x, y ∈ R,
xy ≤ x2 + y2 ∀ x, y ∈ R,

2x2y2 ≤ x4 + y4, ∀ x, y ∈ R,

the result follows by (
B(x)−B(y)

)2
=
(
y3 − x3)2

= (x2 + xy + y2)2(x− y)2

≤ 4(x2 + y2)2(x− y)2

= 4(x4 + y4 + 2x2y2)(x− y)2

≤ 8(x4 + y4)(x− y)2

≤ 8(1 + x4 + y4)(x− y)2 ■

Proposition 9.3 The function B
(
X(t)

)
satisfies Assumption 3.3 for any α ∈ R and K = α2/4.

Proof: We find
xB(x) + αx2 = −x4 + αx2 (9.3)

We note that if α ≤ 0, then the above is clearly globally bounded from above by K = 0. Assuming
that α > 0, we differentiate the above, set the derivative equal to zero and solve for x:

−4x3 + 2αx = 0 ⇐⇒ x = {0,±
√
α/2}.

It follows that x = 0 corresponds to a local minimum of xB(x) + αx2, whereas x = ±
√
α/2

correspond to global maxima when α > 0. Inserting for x = ±
√
α/2 into eq. (9.3) then yields the

global maxima α2/4 of xB(x) + αx2, which is the result. ■
With the split (9.2), the resulting linear SDE is given by

dX(2)(t) = ωX(2)(t)dt+ σdW (t), t ≥ 0, X(2)(0) = X0. (9.4)

The exact solution to the linear SDE (9.4) at time tn starting from X(2)(tn−1) is thus given by

X(2)(tn) = eωhX(2)(tn−1) + Zn−1(h), (9.5)

where Zn−1(h) is given for every n > 0 as

Zn−1(h) = σ

∫ h

0

eω(h−s)dW (s) ∼ N
(
0,

σ2

2ω
(e2ωh − 1)

)
. (9.6)

Note that in the limit ω → 0±, the variance of Zn−1(h) reduces to σ2h.
The nonlinear ODE for the split (9.2) is given by

dX(1)(t) = −
(
X(1)(t)

)3
dt, t ≥ 0, X(1)(0) = X0. (9.7)
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The exact solution of this ODE at time tn starting from X(1)(tn−1) is given by

φ
(1)
h

(
X(1)(tn−1)

)
=

X(1)(tn−1)√
1 + 2

(
X(1)(tn−1)

)2
h
, X(1)(0) = X0. (9.8)

The implicit equation (4.8) used to compute the implicit Euler solution of eq. (9.7) is given by

X∗ = X̃(1)(tn−1)− h
(
X∗)3 (9.9)

This corresponds to a depressed cubic equation on the form(
X∗)3 + aX∗ = b,

where a = 1
h and b = X̃(1)(tn−1)/h. Thus, we can find an explicit solution X∗ to the implicit

equation. Introducing the change-of-variables 3uv = a and u3 − v3 = b, it follows that the solution
X∗ is given by X∗ = u− v, where u and v are given by

u =
3

√
−b+

√
b2 + 4(a/3)3

2
, v =

a

3u
. (9.10)

Thus, the implicit Euler solution is given at every time-step as

φ̃
(1)
h

(
X̃(1)(tn−1)

)
=

3

√
−b+

√
b2 + 4(a/3)3

2
− a

3
3

√
−b+
√

b2+4(a/3)3

2

, X̃(1)(0) = X0, (9.11)

where a = 1/h and b = X̃(1)(tn−1)/h.
The Jacobian of B(X(t)) = −X3(t) is simply equal to its derivative since d = 1. Thus, the

first-order Rosenbrock solution of eq. (9.7) defined through eq. (8.2) is given at every time-step as

φ̂
(1)
h

(
X̂(1)(tn−1)

)
= X̂(1)(tn−1)−

(
X̂(1)(tn−1)

)3
h

1 + 3
(
X̂(1)(tn−1)

)2
h
, X̂(1)(0) = X0. (9.12)

We emphasize once more that we have not developed any theory regarding mean-square convergence
or structure preservation for the composition methods X̃LTR1(tn) and X̃SR1(tn) obtained when the
nonlinear ODE is solved by the first-order Rosenbrock method. However, for comparison purposes,
we include its results when appropriate.

9.a Mean-square convergence

We start by investigating mean-square convergence of our methods when applied to the cubic model
problem (9.1). We test mean-square convergence for two noise levels: A moderate noise level given
by σ = 0.1 and a high noise level of σ = 1. We test mean-square convergence for three distinct
choices of the parameter ω, namely ω = {−1, 0, 1}. Observe that for the cubic model problem (9.1),
the logarithmic norm µ of A is given simply by ω. As such, we can vary the behavior of the linear
SDE (4.4b) by simply varying the parameter ω. In particular, ω = −1 yields a stable linear SDE.
By contrast, ω = 1 yields an unstable linear SDE, and ω = 0 yields neither a stable nor unstable
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SDE. Thus, we refer to the linear SDE as non-stable when ω = {0, 1}. We perform this test for

X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃SIE(tn). For comparison purposes, we also report the results

for the DIEM method X̃DIEM(tn). The reference solution is computed using Strang splitting with
step-size h = 2−14. We test our methods for step-sizes h = 2−q with q = {12, 11, 10, 9, 8, 7, 6}. We
simulate the solutions across M = 1000 Brownian paths. For each path, the initial value is set to
X0 = 2 and the end-time is set to T = 10. The results for mean-square convergence are reported
in Figures 2, 3 and 4.

10 3 10 2

h
10 9

10 7

10 5

10 3

10 1

RM
SE

(h
)

[CMP] MSC ( =-1.0, =0.1)

y = h

XDIEM(tn)
XLT(tn)
XS(tn)

XLTIE(tn)
XSIE(tn)

(a) σ = 0.1

10 3 10 2

h
10 9

10 7

10 5

10 3

10 1

RM
SE

(h
)

[CMP] MSC ( =-1.0, =1.0)

y = h

XDIEM(tn)
XLT(tn)
XS(tn)

XLTIE(tn)
XSIE(tn)

(b) σ = 1

Figure 2: Cubic model problem; mean-square convergence (msc) test with ω = µ = −1 using two
different noise levels σ = 0.1 and σ = 1. Tested for each method across M = 1000 simulated
Brownian paths with initial value X0 = 2 and end-time T = 10 for step-sizes h = 2−q with
q = {12, 11, 10, 9, 8, 7, 6}.
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Figure 3: Cubic model problem; mean-square convergence (msc) test with ω = µ = 0 using two
different noise levels σ = 0.1 and σ = 1. Tested for each method across M = 1000 simulated
Brownian paths with initial value X0 = 2 and end-time T = 10 for step-sizes h = 2−q with
q = {12, 11, 10, 9, 8, 7, 6}.
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Figure 4: Cubic model problem; mean-square convergence (msc) test with ω = µ = 1 using two
different noise levels σ = 0.1 and σ = 1. Tested for each method across M = 1000 simulated
Brownian paths with initial value X0 = 2 and end-time T = 10 for step-sizes h = 2−q with
q = {12, 11, 10, 9, 8, 7, 6}.

Mean-square convergence of order p = 1 is observed for all considered method, for all choices of
ω = {−1, 0, 1} and noise levels σ = {0.1, 1}. The results for X̃DIEM(tn) are somewhat difficult to

observe in Figures 3b and 4a because they coincide with those of the X̃LT and X̃S, respectively. In
Figure 4b, the results for X̃DIEM(tn) lie nestled between those of X̃LT and X̃S.
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We observe a general trend of the Strang approach outperforming the Lie-Trotter approach,
which is expected due to the inherent symmetry and use of fractional steps associated with the
Strang approach. Moreover, we observe a general trend of X̃S(tn) outperforming X̃SIE(tn) and

X̃LT(tn) outperforming X̃LTIE(tn), which is also as expected. The difference in error between our
splitting- and composition methods for a given compositional approach (Strang or Lie-Trotter)

varies across our tests. In Fig. 2a, for instance, it is observed that X̃S(tn) and X̃SIE(tn) coincide,

and the same is true for X̃LT(tn) and X̃LTIE(tn). By contrast, in Fig. 4a for instance, the difference
in error between our splitting- and composition methods are rather large for a given compositional
approach.

We observe a general trend of error increasing with the noise level σ, which seems reasonable.
We also observe that the errors for all splitting- and composition methods tend to increase with ω,
however this does not appear to be the case for X̃DIEM(tn). This is especially interesting considering
that, for our splitting- and composition methods, ω only features in the linear SDE, which these
methods solve exactly. This is perhaps explained non-rigorously by the fact that when ω = {0, 1},
the linear SDE is non-stable. Meanwhile, the nonlinear ODE remains stable. For ω = {0, 1}, then,
it may be the case that the intra-step dynamics of composing the solutions from a non-stable linear
SDE and a stable nonlinear ODE increases error more than solving the linear SDE exactly reduces
it. By this logic, it would make sense that the DIEM method is relatively unaffected by the changing
values of ω: The DIEM method features no equation splitting, and hence it does not distinguish
between the linear and nonlinear parts of the drift; there is just “the drift” F (X(t)) = ωX(t)−X3(t).
From proposition 9.3, we showed that Assumption 3.3 is satisfied for any α ∈ R. Hence, we can
always guarantee ω = µ < α, meaning that the drift F (X(t)) = ωX(t) − X3(t) is stable for all
values of ω. More work is needed to determine if this notion indeed can explain this observed result,
and if so, to what extent it generalizes.

Lastly, we investigate mean-square convergence for the LTR1- and SR1 methods in the case
of ω = −1, and compare them with the results of the LTIE- and SIE methods. The results are
reported in Figure 5
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Figure 5: Cubic model problem; mean-square convergence test comparing the LTIE- and SIE
composition methods against the LTR1- and SR1 composition methods with ω = µ = −1 using
two different noise levels σ = 0.1 and σ = 1. Tested for each method across M = 1000 simulated
Brownian paths with initial value X0 = 2 and end-time T = 10 for step-sizes h = 2−q with
q = {12, 11, 10, 9, 8, 7, 6}.

We observe that the results for the LTIE- and LTR1 methods essentially coincide, as do the
results for the SIE- and SR1 methods. Numerical experiments indicate that this holds true for
ω = {−10, 0, 1, 10} as well, for both noise levels. This seems promising, especially since the first-
order Rosenbrock method can be made to behave like an explicit method in terms of computational
efficiency if we split the drift term F such that all nonlinear parts of the drift has diagonal Jacobians,
as discussed in section 8.

9.b Preservation of geometric ergodicity

We proceed by investigating the proposed methods’ ability to preserve geometric ergodicity. As
shown in Proposition 9.3, B

(
X(t)

)
satisfies Assumption 3.3 for any value of α. Therefore, the SDE

is geometrically ergodic for any value of ω since ω = µ < α can always be ensured. Consequently,
our splitting- and composition methods should be able to preserve geometric ergodicity for any
value of ω as well. Of particular interest is the case when ω = µ ≥ 0, since the linear SDE in this
case is neither stable nor geometrically ergodic.

We note that for any SDE of the form

dX(t) = −dV (x)

dx
dt+ σdW (t), t ≥ 0, X(0) = X0 ∈ R, (9.13)

the limiting distribution of the process X(t) is given by the Gibbs distribution [13] (Chapter 4.5)

π(x) = ze−2V (x)/σ2

, (9.14)

Observe that may write eq. (9.1) on the form (9.13) by letting V (x) be given by

V (x) =
ωx2

2
− x4

4
. (9.15)
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Thus, we may test if our methods preserve geometric ergodicity by whether or not the distribution
of their solutions approach, for all initial values, the true limiting distribution given by eq. (9.14)
with V (x) as in eq. (9.15). We test this by simulating M = 50000 Brownian paths and measuring

the value of X̃(tn) at time tn = 20. Moreover, for each simulated Brownian path, the initial value
X0 is drawn from a uniform distribution over the interval [1, 2]. That is, X0 ∼ U(1, 2) for each
simulated path. The noise level and step-size are set to σ = 1 and h = 0.01, respectively. The results
for X̃LT(tn), X̃

S(tn), X̃
LTIE(tn) and X̃SIE(tn) are reported in figures 6, 7, 8 and 9, respectively.

For comparison purposes, we also report the results for X̃LTR1(tn), X̃
SR1(tn) and X̃DIEM(tn) in

Figures 10, 11 and 12, respectively.
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Figure 6: Histogram of X̃LT(tn = 20) across all M = 50000 simulated Brownian paths vs theoretical
Gibbs density for ω = {−1, 0, 1}. Computed using step-size h = 0.01, noise σ = 1 and initial values

X̃LT(0) = X0 ∼ U(1, 2) for each path.
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Figure 7: Histogram of X̃S(tn = 20) across all M = 50000 simulated Brownian paths vs theoretical
Gibbs density for ω = {−1, 0, 1}. Computed using step-size h = 0.01, noise σ = 1 and initial values

X̃S(0) = X0 ∼ U(1, 2) for each path.
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Figure 8: Histogram of X̃LTIE(tn = 20) across all M = 50000 simulated Brownian paths vs theo-
retical Gibbs density for ω = {−1, 0, 1}. Computed using step-size h = 0.01, noise σ = 1 and initial

values X̃LTIE(0) = X0 ∼ U(1, 2) for each path.
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Figure 9: Histogram of X̃SIE(tn = 20) across allM = 50000 simulated Brownian paths vs theoretical
Gibbs density for ω = {−1, 0, 1}. Computed using step-size h = 0.01, noise σ = 1 and initial values

X̃SIE(0) = X0 ∼ U(1, 2) for each path.
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Figure 10: Histogram of X̃LTR1(tn = 20) across all M = 50000 simulated Brownian paths vs
theoretical Gibbs density for ω = {−1, 0, 1}. Computed using step-size h = 0.01, noise σ = 1 and

initial values X̃LTR1(0) = X0 ∼ U(1, 2) for each path.
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Figure 11: Histogram of X̃SR1(tn = 20) across all M = 50000 simulated Brownian paths vs
theoretical Gibbs density for ω = {−1, 0, 1}. Computed using step-size h = 0.01, noise σ = 1 and

initial values X̃SR1(0) = X0 ∼ U(1, 2) for each path.
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Figure 12: Histogram of X̃DIEM(tn = 20) across all M = 50000 simulated Brownian paths vs
theoretical Gibbs density for ω = {−1, 0, 1}. Computed using step-size h = 0.01, noise σ = 1 and

initial values X̃DIEM(0) = X0 ∼ U(1, 2) for each path.

It appears that all methods are able to preserve geometric ergodicity for ω = {−1, 0, 1}, since
all methods show good correspondence between the predicted Gibbs distribution (9.14) and the
distribution of the numerical solution. It is particularly interesting that geometric ergodicity of
the SDE (9.1) appears preserved even when ω = µ = {0, 1}, since the linear SDE in this case is

not geometrically ergodic nor stable. As we saw in section 7, this is justified for X̃LT(tn), X̃
S(tn),

X̃LTIE(tn) and X̃SIE(tn) since the conditions µ < α and µ < α̃0 can always be guaranteed by

Proposition 9.3. It seems reasonable that similar justifications could be derived for X̃LTR1(tn),

X̃SR1(tn) and X̃DIEM(tn), given their apparent ability of preserving geometric ergodicity.
When performing this test, the normalization constant z of the Gibbs distribution (9.14) needs

to be computed via ∫ ∞

−∞
e−2V (x)/σ2

=
1

z
, (9.16)

where V (x) is given by eq. (9.15). Unfortunately, this integral does not admit an analytic ex-
pression; hence, we must compute the integral numerically to obtain an approximation of the
normalization constant z. It turns out that the Gibbs distribution in eq. (9.14) features very
narrow peaks for even moderately small values of σ and moderately large absolute values of ω,
leading to an inaccurate approximation of the integral in eq. (9.16). For this reason, we don’t test
geometric ergodicity for other values of σ or ω.

Lastly, we report the distribution of X̃LTIE(tn) when ω = 1 for the time-points tn = {0, 1, 5} to
see how the distribution evolves over time. The results are reported in Figure 13.
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Figure 13: Histogram of X̃LTIE(tn) across all M = 50000 simulated Brownian paths vs theoretical
Gibbs density at times tn = {0, 1, 5} for ω = 1. Computed using step-size h = 0.01, noise σ = 1

and initial values X̃LT(0) = X0 ∼ U(1, 2) for each path.

We also investigate the asymptotic behavior of our methods. Recall from eq (7.6) that our
splitting- and composition methods satisfy bounds of the form

E
[ ∥∥∥X̃(tn)

∥∥∥2 ] ≤ e2(µ−a)tnE
[
∥X0∥2

]
+ C̃Ψ(tn) =: κ̃(tn). (9.17)

Appropriately inserting for a = {α, α̃0} and C̃ = {C̃LT, C̃S, C̃LTIE, C̃SIE} then yields bounds κ̃(tn) =
{κ̃LT(tn), κ̃

S(tn), κ̃
LTIE(tn), κ̃

SIE(tn)} for our methods for all tn ≥ 0. We perform a numerical

experiment to investigate whether or not the bound (9.17) holds for the methods X̃LT(tn), X̃
S(tn),

X̃LTIE(tn) and X̃SIE(tn). We do not consider X̃LTR1(tn), X̃
SR1(tn) nor X̃DIEM(tn) since we have

not derived asymptotic bounds for these methods.
We perform this test by simulating the solution from each considered method M = 50000 times,

and computing the mean-square norm of the solution of each method as a function of time. We
then compare this with the predicted bound from eq. (9.17). We test this for X0 = 2, T = 10,
h = 0.01, σ = 0.5 and ω = {−1, 0, 1}. Note that for each value of ω, we must choose a value of
α such that µ < α and µ < α̃0 is guaranteed for our choice of step-size h = 0.01. It follows that
choosing α = {0, 1, 2} for ω = {−1, 0, 1}, respectively, satisfies µ < α and µ < α̃0. The results of
this test are reported in Figure 14.
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Figure 14: Experimentally observed asymptotic behavior of the mean-square norm of X̃LT(tn),

X̃S(tn), X̃LTIE(tn) and X̃SIE(tn) vs their predicted upper bounds for ω = {−1, 0, 1}. For all
M = 50000 simulated paths we set X0 = 2, T = 10, h = 0.01 and σ = 0.5.

We observe good correspondence between the experimentally observed values of the mean-square
norm of X̃LT(tn), X̃

S(tn), X̃
LTIE(tn) and X̃SIE(tn), and their predicted upper bounds κ̃LT(tn),

κ̃S(tn), κ̃
LTIE(tn), κ̃

SIE(tn), respectively. Note that for ω = {−1, 0}, the experimentally observed
values and predicted bounds are essentially indistinguishable from one method to the next. Observe
also that the bound is particularly tight for ω = −1. When ω = 1, we notice a slight difference
between both the experimentally observed values and the predicted bounds from one method to
the next. This discrepancy is no longer noticeable when decreasing the step-size to h = 0.001.

Lastly, we investigate the effect of a large initial value. For this experiment, we set X0 = 2 · 104.
We let h = 0.01, T = 5 and σ = 0.5, and consider ω = {−1, 0, 1}. We perform this test for all

methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn), X̃
SIE(tn), X̃

LTR1(tn), X̃
SR1(tn) and X̃DIEM(tn). The results

are seen in Figure 15.
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Figure 15: Plot of all methods along a single simulated Brownian path with large initial value
X0 = 2 · 104, where T = 5, σ = 0.5 and h = 0.01.

All methods appear to converge towards the same solution for all ω = {−1, 0, 1}, even for this
very large initial value. There is some discrepancy between our methods in the initial decay of the
solution, particularly for the LTR1- and SR1 composition methods, but this discrepancy quickly
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resolves. The discrepancy in the initial decay is hardly noticeable when reducing the step-size to
h = 0.001. It is unsurprising that the LTR1- and SR1 methods are the worst performing methods
for this test, since they represent a linearization of the implicit Euler solution. For the rapid initial
decay exhibited by this problem when X0 is large, this linearization has considerable error.

10 FitzHugh-Nagumo model

We will in this section investigate our splitting- and composition methods applied to the stochastic
FitzHugh-Nagumo (FHN) model, which is a widely used neuronal model used to model the firing
activity of single neurons. For a more in-depth discussion of this model, see e.g. [14] and [15]. This
model was also investigated in [1].

The FHN model is given by the following 2-dimensional semi-linear SDE:

d

[
X1(t)
X2(t)

]
=

[
1
ε

(
X1(t)−X3

1 (t)−X2(t)
)

γX1(t)−X2(t) + β

]
︸ ︷︷ ︸

:=F
(
X(t)

)
dt+

[
σ1 0
0 σ2

]
dW (t), X(0) = X0, t ∈ [0, T ], (10.1)

with solution X(t) =
(
X1(t), X2(t)

)⊤
for t ∈ [0, T ]. Here ε > 0, γ > 0 and β ≥ 0 are parameters

which describe the neuronal activity. In [1], the following split of F
(
X(t)

)
was considered:

A =

[
0 − 1

ε
γ −1

]
, B

(
X(t)

)
=

[
1
ε

(
X1(t)−X3

1 (t)
)

β

]
(10.2)

For this split, mean-square convergence for Lie-Trotter splitting could be proved for all β ≥ 0. For
Strang splitting, however, mean-square convergence could only be proved for β = 0. Numerical
demonstrations nevertheless indicated that mean-square boundedness was satisfied in the case of
Strang splitting for any β ≥ 0. Moreover, preservation of geometric ergodicity for Strang- and Lie-
Trotter splitting could only be proved under β = 0 and γ = 1

ε . We remark that, in [1], preservation
of geometric ergodicity for the Strang- and Lie-Trotter splitting methods was guaranteed by the
condition

∥∥eAh
∥∥ < 1, which holds for the split (10.2) for all h > 0 when β = 0 and γ = 1/ε. Lastly,

asymptotic bounds on the mean-square norm of the solution could not be derived for this split,
since the split (10.2) with β = 0 and γ = 1/ε yields µ = 0. In the theory of [1], µ < 0 was required
to derive such asymptotic bounds. Note that µ < 0 implies

∥∥eAh
∥∥ < 1, but the converse does not

hold.
It can be shown that the split (10.2) can only satisfy Assumption 3.3 when α < 0. This is

a problem, since for this split, µ ≥ 0 for all ε > 0 and γ > 0. Thus, there is no choice of
parameters which will yield µ < α for the split (10.2), and geometric ergodicity for this split cannot
be established within the theory of this thesis.

The following split was also briefly discussed in [1]:

A =

[
0 − 1

ε
γ 0

]
, B

(
X(t)

)
=

[
1
ε

(
X1(t)−X3

1 (t)
)

β −X2(t)

]
(10.3)

It was remarked that for this split, mean-square convergence could be established for both splitting
methods under β = 0. However, geometric ergodicity of this split could not be established since∥∥eAh

∥∥ ≥ 1. Employing the theory of this thesis, however, we are able to prove for the split (10.3)
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(1) mean-square convergence for both splitting- and composition methods with arbitrary β ≥ 0 and
(2) preservation of geometric ergodicity for arbitrary β ≥ 0 and arbitrary ε > 0 with |γ − 1

ε | < 2.
We start by proving that Assumptions 3.1, 3.2 and 3.3 holds for the function B given by the

split (10.3).

Proposition 10.1 The function B from eq. (10.3) satisfies Assumption 3.1 for c1 = 1
ε .

Proof: We find〈
x− y,B(x)−B(y)

〉
= (x1 − y1)

(
B1(x)−B1(y)

)
+ (x2 − y2)

(
B2(x)−B2(y)

)
=

1

ε
(x1 − y1)(x1 − y1 + y31 − x3

1)− (x2 − y2)
2

=
1

ε
(x1 − y1)

2 − (x2 − y2)
2 +

1

ε
(x1 − y1)(y

3
1 − x3

1)

≤ 1

ε

(
(x1 − y1)

2 + (x2 − y2)
2
)
+

1

ε
(x1 − y1)(y

3
1 − x3

1)

=
1

ε
∥x− y∥2 + 1

ε
(x1 − y1)(y

3
1 − x3

1)

=
1

ε
∥x− y∥2 − 1

ε
(x1 − y1)

2(x2
1 + x1y1 + y21)

≤ 1

ε
∥x− y∥2 . ■

Proposition 10.2 The function B from eq. (10.3) satisfies Assumption 3.2 for c2 = 1+ 8/ε2 and
χ = 3.
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Proof: We find

∥B(x)−B(y)∥2 =
1

ε2

(
x1 − y1 + y31 − x3

1

)2
+ (x2 − y2)

2

=
1

ε2

(
− (x1 − y1)(x

2
1 + x1y1 + y21 − 1)

)2
+ (x2 − y2)

2

=
1

ε2

(
(x1 − y1)− (x1 − y1)(x

2
1 + x1y1 + y21)

)2
+ (x2 − y2)

2

=
1

ε2

(
(x1 − y1)

2 + (x1 − y1)
2(x2

1 + x1y1 + y21)
2 − 2(x1 − y1)

2(x2
1 + x1y1 + y2)

)
+ (x2 − y2)

2

=
1

ε2
(x1 − y1)

2
(
1 + (x2

1 + x1y1 + y21)
2 − 2(x2

1 + x1y1 + y21)
)
+ (x2 − y2)

2

≤ 1

ε2
(x1 − y1)

2
(
1 + (x2

1 + x1y1 + y21)
2
)
+ (x2 − y2)

2

≤ 1

ε2
(x1 − y1)

2(1 + 8x4
1 + 8y41) + (x2 − y2)

2

≤ 1

ε2
(x1 − y1)

2(8 + 8x4
1 + 8x4

2 + 8y41 + 8y42) + (x2 − y2)
2

≤ 8

ε2
(x1 − y1)

2(1 + ∥x∥4 + ∥y∥4) + (x2 − y2)
2

≤
(
1 +

8

ε2

)
(1 + ∥x∥4 + ∥y∥4)

(
(x1 − y1)

2 + (x2 − y2)
2
)

=

(
1 +

8

ε2

)
(1 + ∥x∥4 + ∥y∥4) ∥x− y∥2 . ■

Proposition 10.3 The function B satisfies Assumptions 3.3 for any α < 1 and

K =
1

4

(
(αε− 1)2

ε
+

β2

1− α

)
, β ≥ 0, ε > 0.

Proof: We find 〈
x,B(x)

〉
+ α ∥x∥2 =

1

ε
x2
1 −

1

ε
x4
1 + βx2 − x2

2 + αx2
1 + αx2

2. (10.4)

We consider the terms involving x1 and x2 separately, and investigate their global maxima, should
they exist. Defining the two functions

f1(x1) =
1

ε
x2
1 −

1

ε
x4
1 + αx2

1, (10.5a)

f2(x2) = βx2 − x2
2 + αx2

2, (10.5b)

we find their stationary points by solving the equations d/dxifi(xi) = 0 for i = {1, 2}. Doing this

for f1(x1) yields stationary points at x = 0 and x = ±
√

αε+1
2 , whereupon x = 0 is revealed to be

a local minimum and x = ±
√

αε+1
2 are global maxima. It follows, then, that the maximal value of

f1(x1) is given by

max
x1∈R

f1(x1) =
(αε+ 1)2

4ε
,
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attained at both x = ±
√

αε+1
2 . Moving on, we find that f2(x2) has a stationary point at x = β

2(1−α) .

This stationary point corresponds to a global maxima if and only if α < 1; for α = 1, f2(x2) is a
linear function and α > 1 yields a convex parabola, neither of which can be bounded from above.
Assuming α < 1, it follows that the maximum value attained by f2(x2) is given by

max
x2∈R

f2(x2) =
β2

4(1− α)
.

Thus, we find that the choice of B in (10.3) satisfies the dissipativity condition 3.3 with

K =
1

4

(
(αε+ 1)2

ε
+

β2

1− α

)
> 0, α < 1, ε > 0, β ≥ 0. ■ (10.6)

The exact solution of the nonlinear ODE (4.4a) at time tn starting from X(1)(tn−1), with B
given by eq. (10.3), is given by

φ
(1)
h

(
X(1)(tn−1)

)
=

 X
(1)
1 (tn−1)√

e−2ε/h+(1−e−2h/ε)
(
X(1)(tn−1)

)2
e−h

(
X

(1)
2 (tn−1)− β

)
+ β

 , X(1)(0) = X0. (10.7)

The implicit Euler solution is given at every discrete time-point tn as

φ̃
(1)
h

(
X̃(1)(tn−1)

)
=

[
X∗

1

X∗
2 ,

]
, X̃(1)(0) = X0, (10.8)

where X∗ = (X∗
1 , X

∗
2 )

⊤ satisfies the implicit equation[
X∗

1

X∗
2

]
=

[
X̃

(1)
1 (tn−1)− h

ε

(
X∗

1 − (X∗
1 )

3
)

X̃
(1)
2 (tn−1) + hβ − hX∗

2

]
(10.9)

Note that the equations for X∗
1 and X∗

2 are decoupled, so we can solve them individually. The
equation for X∗

1 can be solved in the same way as for the cubic model problem, since it can also be
written as a depressed cubic equation

X∗
1 + a(X∗

1 )
3 = b,

with a = ε
h − 1 and b = εX̃

(1)
1 (tn−1)/h. The equation for X∗

2 is easily solved to yield

X∗
2 =

X̃
(1)
2 (tn−1) + hβ

1 + h
.

Lastly, the Jacobian of B with B defined through eq. (10.3) is diagonal. Thus, the Newton
matrix of eq. (8.2) is easily invertible, and the first-order Rosenbrock solution of the nonlinear ODE
is given at every discrete time-point by

φ̂
(1)
h

(
X̂(1)(tn−1)

)
=

X̂
(1)
1 (tn−1) +

h
ε

(
X̂

(1)
1 (tn−1)−

(
X̂

(1)
1 (tn−1)

)3)
1−h

ε

(
1−3
(
X̂

(1)
1 (tn−1)

)2)
X̂

(1)
2 (tn−1) +

h(β−X̂
(1)
2 (tn−1))
1+h .

 , X̂(1)(0) = X0. (10.10)

Note that for the above solution to be defined everywhere, we require 0 < h
ε < 1.
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10.a Mean-square convergence

We test mean-square convergence of the methods X̃LT(tn), X̃
S(tn), X̃

LTIE(tn) and X̃S(tn) applied
to the FHN model (10.1) using the split of (10.3). We also include the results for the DIEM

method X̃DIEM(tn) for comparison purposes. We test mean-square convergence in the same manner
as described in section 9, using M = 1000 simulated paths, computing the reference solution
using Strang splitting with step-size h = 2−14 and testing our methods for step-sizes 2−q with
q = {12, 11, 10, 9, 8, 7, 6}. We set ε = β = γ = 1 and let the initial value and end-time be
X0 = (2, 0)⊤ and T = 10, respectively. The noise is set to σ1 = σ2 = 0.5. We report the results in
Figure 16.
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Figure 16: FHN model; mean-square convergence (msc) test using M = 1000 simulated Brow-
nian paths with initial value X0 = (2, 0)⊤, end-time T = 10 and step-sizes h = 2−q with
q = {12, 11, 10, 9, 8, 7, 6}. We set ε = γ = β = 1 and σ1 = σ2 = 0.5

Mean-square convergence of order p = 1 is observed for all considered methods. As for the
cubic model problem, it appears that the Strang compositional approach outperforms the Lie-
Trotter compositional approach. For a given compositional approach, we observe that the splitting
methods outperform the composition methods. Lastly, we observe that the DIEM method performs
roughly at the level of the Lie-Trotter splitting method.

10.b Preservation of geometric ergodicity

We proceed by investigating the proposed methods’ ability to preserve geometric ergodicity for the
FHN model using the split (10.3). Recall from Proposition 10.3 that the function B from eq. (10.3)
satisfies Assumption 3.3 for α < 1. Thus, our system is geometrically ergodic if µ < α < 1, which
in practice reduces to µ < 1 since, for any µ < 1, there exists α ∈ (µ, 1). From a simple eigenvalue
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computation of (A+A⊤)/2 with A given by eq. (10.3), we find that the logarithmic norm of A is
given by

µ = max

{
± εγ − 1

2ε

}
=

{
εγ−1
2ε , if γ ≥ 1

ε
1−εγ
2ε , if γ < 1

ε

Under the constraint that µ < 1, it follows immediately that we obtain a geometrically ergodic
system for any ε > 0 and γ satisfying |γ − 1

ε | < 2.

We test preservation of geometric ergodicity for all methods X̃LT(tn), X̃S(tn), X̃LTIE(tn),

X̃SIE(tn), X̃
LTR1(tn), X̃

SR1(tn) and X̃DIEM(tn). This test is performed in the same way as for
the cubic model problem of section 9: We compute the solution to each method across M = 50000
simulated Brownian paths. For each method, we consider the distribution of the M = 50000
solutions at time tn = 20, with initial values drawn from a uniform distribution over the interval
(1, 2). The step-size is h = 0.01, and we set ε = 1, γ = 2 and β = 2. Lastly, the noise is set to
σ1 = σ2 = 0.5. The results for the first component of the solution are reported in Figures 17, 18 and
19. All methods appear to approach the same limiting distribution. We don’t report the results
for the second component, though this component also appears to approach the same limiting
distribution for all methods (a different distribution from that of the first component, though).
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Figure 17: Histograms of X̃LT
1 (tn = 20) and X̃S

1 (tn = 20) across all M = 50000 simulated Brownian
paths. Computed using step-size h = 0.01, noise σ1 = σ2 = 0.5 and initial values X0 ∼ U(1, 2).
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Figure 18: Histograms of X̃LTIE
1 (tn = 20) and X̃SIE

1 (tn = 20) across all M = 50000 simulated
Brownian paths. Computed using step-size h = 0.01, noise σ1 = σ2 = 0.5 and initial values
X0 ∼ U(1, 2).
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Figure 19: Histograms of X̃DIEM
1 (tn = 20), X̃LTR1

1 (tn = 20) and X̃SR1
1 (tn = 20) across all M =

50000 simulated Brownian paths. Computed using step-size h = 0.01, noise σ1 = σ2 = 0.5 and
initial values X0 ∼ U(1, 2).

We proceed by considering asymptotic bounds of the mean-square norm of the solution for all
methods, as we did for the cubic model problem of section 9. Again, the theoretically predicted
bounds are given in general by eq. (7.6), which reduce to bounds for each method. We simulate
M = 50000 Brownian paths, and compute the mean-square norm of the solution across all paths
for each method. The initial value, end-time, noise level and step-size are given by X0 = (2, 0)⊤,
T = 20, σ1 = σ2 = 0.5 and h = 0.01, respectively. We perform this test for ε = {1, 0.05} with
γ = 1

ε + 1 and β = 2. For these parameter values, the logarithmic norm µ is given by µ = 0.5.
Lastly, we use α = 0.8 for this test.
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Figure 20: Experimentally observed asymptotic behavior of the mean-square norm of X̃LT(tn),

X̃S(tn), X̃
LTIE(tn) and X̃SIE(tn) vs their predicted upper bounds for ε = {1, 0.05} with γ = 1/ε+1

and β = 2. For all M = 50000 simulated paths we set X0 = (2, 0)⊤, T = 20, h = 0.01 and
σ1 = σ2 = 0.5

The theoretically predicted bounds appear to hold, though they significantly over-estimate the
true mean-square norm of the solution to our methods compared to the cubic model problem of
section 9. This is due to the fact that the constant K from Assumption 3.3 becomes quite large
for the FHN model with the split (10.3) and our chosen values of ε, β and γ, as is evident from eq.
(10.6). Moreover, observe that when ε = 0.05, the observed mean-square norm appears to oscillate
at first, though this oscillation appears to decay with time.

10.c Oscillatory Dynamics

Lastly, we investigate our proposed methods’ ability of preserving oscillatory dynamics. This was
also investigated in [1], where the Lie-Trotter- and Strang splitting methods indeed appeared to
preserve such dynamics. We test this by setting ε = 0.05, γ = 20, β = 0.1, σ1 = 0.1 and σ2 = 0.2;
a parameter choice which in [1] yielded oscillating solutions. We perform this test by computing
the solution for all methods across a single simulated Brownian path with end-time T = 30 and
initial value X = (−1, 0). We then observe how the phase, amplitude and frequency of the first
component of the solutions evolve over time. The results are reported in Figure 21 for step-sizes
h = 0.01 and h = 0.001.
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Figure 21: Oscillatory dynamics of our methods: We compute the solution for each method along
a single simulated path, and consider the first component of each solution. Parameters are set to
ε = 0.05, γ = 20, β = σ1 = 0.1 and σ2 = 0.2 with initial value X0 = (−1, 0)⊤, end-time T = 30
and step-sizes h = {0.01, 0.001}.

In agreement with [1], the splitting methods X̃LT(tn) and X̃S(tn) appear to preserve phase,
amplitude and frequency, since they coincide at every time-step. By contrast, none of our compo-
sition methods appear to preserve phase, though amplitude and frequency appear to be preserved.
This is presumably due to the fact that the composition methods only solve the nonlinear ODE
approximately, but it is nevertheless interesting that this error appears to only manifest as error
in the phase of the solution, and not in the frequency or amplitude. It appears that the DIEM
method preserves neither phase nor amplitude, and the error in phase appears larger than for the
composition methods. This is especially apparent for the step-size h = 0.001.

11 Conclusion

Splitting methods has recently been proven in Buckwar et. al. [1] to be fast and reliable methods
for approximating the solutions to semi-linear SDEs with additive noise and globally one-sided
Lipschitz-continuous drift, where the drift is allowed polynomial growth at infinity. In this context,
the semi-linear SDE is split into a linear SDE and a nonlinear ODE, both of which are solved exactly.
The exact solutions are then composed according to the Lie-Trotter and Strang approaches to yield
a solution of the overall semi-linear SDE. Depending on the compositional approach used, this
strategy gives rise to the Lie-Trotter- and Strang splitting methods, which remained the focus of
the work of Buckwar et. al.

Following their success, this thesis set out to generalize their work by considering the case
where the nonlinear ODE is solved approximately, which is often required in applications. In
such a scenario, our strategy is referred to as a composition method. In particular, we consider
the case where the nonlinear ODE is solved using the implicit Euler method. This gives rise to
the Lie-Trotter implicit Euler (LTIE) and Strang implicit Euler (SIE) composition methods. The
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goal of this thesis was to investigate mean-square convergence and structure preservation of these
composition methods.

By introducing an additional condition (Assumption 3.3) on the nonlinear part of the drift, we
were able to prove that our composition methods are mean-square convergent of order p = 1. This
was facilitated by the fact that this additional condition yields global bounds on the exact- and
implicit Euler solutions to the nonlinear ODE. For completeness, we also provided a proof of mean-
square convergence of the splitting methods under this additional condition. Using this condition,
we were further able to prove that our splitting- and composition methods preserve geometric
ergodicity, even in cases where the linear SDE itself is not geometrically ergodic, provided that the
overall semi-linear SDE is. This result could not be attained using the theory of Buckwar et. al.
Lastly, we derived asymptotic bounds on the mean-square norm of the solutions to our splitting-
and composition methods, even for cases where the linear SDE is non-stable, provided that the
overall semi-linear SDE is. This is also an extension of the work of Buckar et. al.

These results were confirmed by numerical experiments. In particular, we demonstrated our
results on a cubic model problem and the FitzHugh-Nagumo (FHN) model. In the cubic model
problem, it was also shown that the composition methods remained stable even when the initial
value is very large. Under the FHN model, Assumption 3.3 allowed us to show preservation of
geometric ergodicity for a larger parameter space than in [1]. Our experiments using the FHN model
also showed that our composition methods could not completely preserve oscillatory dynamics of
the SDE; in particular, it appears that phase is not preserved. Though frequency and amplitude
appears to be preserved, more research is needed to answer this definitively.

If the implicit equation associated with the implicit Euler method can be solved explicitly for the
updated value of the solution, then our composition methods retain the computational efficiency of
their splitting-method counterparts. If this is not possible, the solution to the implicit equation can
be approximated to arbitrary precision using Newton’s method. This reduces the computational
efficiency of our composition methods, since they are no longer fully explicit. We briefly discussed
strategies for mitigating this issue: In particular, by choosing a split of the drift of the semi-linear
SDE such that the nonlinear part(s) has only diagonal Jacobians, and by restricting ourselves to
a single Newton iteration (corresponding to a Rosenbrock approximation of the solution to the
nonlinear ODE), we may devise composition methods which are essentially explicit in terms of
computational efficiency. We did not present theoretical results for these composition methods,
however numerical demonstrations indicate that these composition methods perform at the same
level as the LTIE- and SIE composition methods.

For future work, additional composition methods could be studied by considering alternative
numerical methods for solving the nonlinear ODE, e.g. using the first-order Rosenbrock approxima-
tion. Future work could also consider other types of semi-linear SDEs than those studied here, e.g.
semi-linear SDEs where the diffusion matrix is non-diagonal and/or non-constant in time, or indeed,
semi-linear SDEs with multiplicative noise. Lastly, preservation of other structural properties than
those considered here is also an interesting topic for future work.
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